
IBM Informix
Guide to SQL
Syntax
IBM Informix Extended Parallel Server, Version 8.4
IBM Informix Dynamic Server, Version 9.4
March 2003
Part Nos. CT1SQNA (Volume 1) and CT1SRNA (Volume 2)

ii IBM Informix Guide to
This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2003. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Note:
Before using this information and the product it supports, read the information in the appendix
entitled “Notices.”
 SQL: Syntax

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Manual 3

Types of Users 3
Software Dependencies 4
Assumptions About Your Locale. 4
Demonstration Databases 5

New Features in Dynamic Server, Version 9.4 5
New Features in Extended Parallel Server Version 8.4 7

Documentation Conventions 9
Typographical Conventions 9
Icon Conventions 10
Syntax Conventions 12
Example-Code Conventions 16

Additional Documentation 17
Related Reading 19
Compliance with Industry Standards 20
IBM Welcomes Your Comments 20

Chapter 1 Overview of SQL Syntax
In This Chapter 1-3
How to Enter SQL Statements 1-3
How to Enter SQL Comments 1-6
Categories of SQL Statements 1-9
ANSI Compliance and Extensions 1-13

iv IBM In
Chapter 2 SQL Statements
In This Chapter 2-7
ALLOCATE COLLECTION. 2-8
ALLOCATE DESCRIPTOR 2-10
ALLOCATE ROW 2-12
ALTER ACCESS_METHOD 2-14
ALTER FRAGMENT 2-16
ALTER FUNCTION 2-39
ALTER INDEX 2-41
ALTER PROCEDURE 2-44
ALTER ROUTINE 2-46
ALTER SEQUENCE 2-49
ALTER TABLE 2-52
BEGIN WORK 2-82
CLOSE . 2-85
CLOSE DATABASE 2-88
COMMIT WORK 2-90
CONNECT . 2-92
CREATE ACCESS_METHOD 2-102
CREATE AGGREGATE 2-104
CREATE CAST 2-108
CREATE DATABASE 2-112
CREATE DISTINCT TYPE 2-115
CREATE DUPLICATE 2-118
CREATE EXTERNAL TABLE 2-121
CREATE FUNCTION 2-133
CREATE FUNCTION FROM 2-141
CREATE INDEX 2-144
CREATE OPAQUE TYPE 2-169
CREATE OPCLASS 2-176
CREATE PROCEDURE 2-182
CREATE PROCEDURE FROM. 2-192
CREATE ROLE 2-194
CREATE ROUTINE FROM 2-196
CREATE ROW TYPE 2-198
CREATE SCHEMA. 2-203
CREATE SCRATCH TABLE. 2-205
CREATE SEQUENCE 2-206
CREATE SYNONYM 2-210
CREATE TABLE. 2-214
CREATE TEMP TABLE 2-260
CREATE Temporary TABLE 2-261
formix Guide to SQL: Syntax

CREATE TRIGGER 2-269
CREATE VIEW 2-310
DATABASE. 2-316
DEALLOCATE COLLECTION 2-318
DEALLOCATE DESCRIPTOR 2-320
DEALLOCATE ROW 2-322
DECLARE . 2-323
DELETE . 2-344
DESCRIBE . 2-351
DESCRIBE INPUT 2-359
DISCONNECT 2-366
DROP ACCESS_METHOD 2-369
DROP AGGREGATE 2-370
DROP CAST 2-371
DROP DATABASE 2-372
DROP DUPLICATE 2-374
DROP FUNCTION 2-375
DROP INDEX 2-377
DROP OPCLASS 2-378
DROP PROCEDURE 2-379
DROP ROLE 2-381
DROP ROUTINE 2-382
DROP ROW TYPE 2-384
DROP SEQUENCE 2-386
DROP SYNONYM 2-387
DROP TABLE 2-388
DROP TRIGGER 2-391
DROP TYPE 2-392
DROP VIEW 2-393
EXECUTE . 2-394
EXECUTE FUNCTION. 2-404
EXECUTE IMMEDIATE 2-411
EXECUTE PROCEDURE 2-414
FETCH . 2-424
FLUSH . 2-435
FREE . 2-437
GET DESCRIPTOR 2-439
GET DIAGNOSTICS 2-446
GRANT . 2-459
GRANT FRAGMENT 2-480
INFO . 2-487
INSERT . 2-489
Table of Contents v

vi IBM In
LOAD . 2-504
LOCK TABLE 2-513
OPEN . 2-516
OUTPUT . 2-525
PREPARE . 2-527
PUT . 2-539
RENAME COLUMN 2-549
RENAME DATABASE 2-551
RENAME INDEX 2-552
RENAME SEQUENCE 2-553
RENAME TABLE 2-554
REVOKE . 2-557
REVOKE FRAGMENT 2-575
ROLLBACK WORK 2-579
SELECT . 2-581
SET AUTOFREE 2-640
SET COLLATION 2-643
SET CONNECTION 2-646
SET CONSTRAINTS 2-651
SET Database Object Mode 2-652
SET DATASKIP 2-659
SET DEBUG FILE TO 2-661
SET Default Table Type 2-663
SET Default Table Space 2-665
SET DEFERRED_PREPARE. 2-666
SET DESCRIPTOR 2-670
SET ENVIRONMENT. 2-678
SET EXPLAIN 2-683
SET INDEX . 2-689
SET INDEXES 2-690
SET ISOLATION 2-691
SET LOCK MODE 2-696
SET LOG . 2-698
SET OPTIMIZATION 2-700
SET PDQPRIORITY 2-704
SET PLOAD FILE 2-707
SET Residency 2-708
SET ROLE . 2-710
SET SCHEDULE LEVEL 2-712
SET SESSION AUTHORIZATION 2-713
SET STATEMENT CACHE 2-715
SET TABLE . 2-719
formix Guide to SQL: Syntax

SET TRANSACTION 2-720
SET Transaction Mode 2-725
SET TRIGGERS 2-728
START VIOLATIONS TABLE 2-729
STOP VIOLATIONS TABLE 2-748
TRUNCATE 2-750
UNLOAD . 2-753
UNLOCK TABLE 2-760
UPDATE . 2-762
UPDATE STATISTICS 2-778
WHENEVER 2-789

Chapter 3 SPL Statements
In This Chapter 3-3
CALL . 3-4
CASE . 3-6
CONTINUE 3-9
DEFINE . 3-10
EXIT . 3-22
FOR . 3-23
FOREACH . 3-27
IF . 3-33
LET . 3-36
ON EXCEPTION 3-39
RAISE EXCEPTION 3-43
RETURN . 3-45
SYSTEM . 3-47
TRACE . 3-50
WHILE . 3-54

Chapter 4 Segments
In This Chapter 4-3
Arguments . 4-5
Collection-Derived Table 4-7
Collection Subquery 4-22
Condition . 4-24
Database Name 4-44
Database Object Name 4-46
Data Type . 4-49
DATETIME Field Qualifier 4-65
Expression . 4-67
External Routine Reference 4-187
Table of Contents vii

viii IBM
Identifier . 4-189
INTERVAL Field Qualifier 4-205
Jar Name . 4-207
Literal Collection 4-208
Literal DATETIME 4-212
Literal INTERVAL 4-214
Literal Number 4-216
Literal Row . 4-218
Optimizer Directives 4-222
Owner Name. 4-234
Purpose Options 4-237
Quoted String 4-243
Relational Operator 4-248
Return Clause 4-253
Routine Modifier 4-257
Routine Parameter List 4-266
Shared-Object Filename 4-270
Specific Name 4-274
Statement Block 4-276

Appendix A Reserved Words for IBM Informix Dynamic Server

Appendix B Reserved Words for IBM Informix Extended Parallel Server

Appendix C Notices

Index
 Informix Guide to SQL: Syntax

Introduction
Introduction
In This Introduction 3

About This Manual 3
Types of Users 3
Software Dependencies 4
Assumptions About Your Locale 4
Demonstration Databases 5

New Features in Dynamic Server, Version 9.4 5
New Features in Extended Parallel Server Version 8.4 7

Performance Enhancements 7
New SQL Functionality 7
Version 8.4 Features from Version 7.3 8

Documentation Conventions 9
Typographical Conventions 9
Icon Conventions 10

Comment Icons 10
Feature, Product, and Platform Icons 10
Compliance Icons 12

Syntax Conventions 12
Elements That Can Appear on the Path 13
How to Read a Syntax Diagram 15

Example-Code Conventions 16

Additional Documentation 17

Related Reading . 19

Compliance with Industry Standards 20

IBM Welcomes Your Comments 20

2 IBM In
formix Guide to SQL: Syntax

In This Introduction
This introduction provides an overview of the information in this manual
and describes the documentation conventions that it uses.

About This Manual
This manual describes the syntax of the structured query language (SQL) and
Stored Procedure Language (SPL) statements for Version 9.4 of IBM Informix
Dynamic Server and Version 8.4 of IBM Informix Extended Parallel Server.

This manual is a companion volume to the IBM Informix Guide to SQL:
Reference, the IBM Informix Guide to SQL: Tutorial, and the IBM Informix Database
Design and Implementation Guide. The IBM Informix Guide to SQL: Reference
provides reference information about the system catalog, the built-in SQL
data types, and environment variables that can affect SQL statements. The
IBM Informix Guide to SQL: Tutorial shows how to use basic and advanced SQL
and SPL routines to access and manipulate the data in your databases. The
IBM Informix Database Design and Implementation Guide shows how to use SQL
to implement and manage relational databases.

Types of Users
This manual is written for the following users:

� Database users

� Database administrators

� Database-application programmers
Introduction 3

Software Dependencies
This manual assumes that you have the following background:

� A working knowledge of your computer, your operating system,
and the utilities that your operating system provides

� Some experience working with relational databases or exposure to
database concepts

� Some experience with computer programming

If you have limited experience with relational databases, SQL, or your
operating system, refer to the Getting Started Guide for your database server
for a list of supplementary titles.

Software Dependencies
This manual assumes that you are using one of the following database
servers:

� IBM Informix Extended Parallel Server, Version 8.4

� IBM Informix Dynamic Server, Version 9.4

Assumptions About Your Locale
IBM Informix products can support many languages, cultures, and code sets.
All culture-specific information is brought together in a single environment,
called a Global Language Support (GLS) locale.

This manual assumes that you use the U.S. 8859-1 English locale as the
default locale. The default is en_us.8859-1 (ISO 8859-1) on UNIX platforms or
en_us.1252 (Microsoft 1252) for Windows environments. These locales
support U.S. English format conventions for dates, times, and currency, and
also support the ISO 8859-1 or Microsoft 1252 code set, which includes the
ASCII code set plus many 8-bit characters such as é, è, and ñ.

If you plan to use non-ASCII characters in your data or in SQL identifiers, or
if you want to conform to localized collation rules of character data, you need
to specify an appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and
other considerations related to GLS locales, see the IBM Informix GLS
Programmer’s Manual.
4 IBM Informix Guide to SQL: Syntax

Demonstration Databases
Demonstration Databases
The DB-Access utility, which is provided with your IBM Informix database
server products, includes one or more of the following demonstration
databases:

� The stores_demo database illustrates a relational schema with infor-
mation about a fictitious wholesale sporting-goods distributor.
Many examples in IBM Informix manuals are based on the
stores_demo database.

� The sales_demo database illustrates a dimensional schema for data-
warehousing applications. For conceptual information about dimen-
sional data modeling, see the IBM Informix Database Design and
Implementation Guide. ♦

� The superstores_demo database illustrates an object-relational
schema. The superstores_demo database contains examples of
extended data types, type and table inheritance, and user-defined
routines. ♦

For information about how to create and populate the demonstration
databases, see the IBM Informix DB-Access User’s Guide. For descriptions of the
databases and their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory on UNIX platforms and in the
%INFORMIXDIR%\bin directory in Windows environments.

New Features in Dynamic Server, Version 9.4
For a comprehensive list of new database server features, see the Getting
Started Guide. This section lists new features relevant to this manual. In
addition to documenting the new features that are listed in this section, this
manual corrects errata that have been identified since the previous edition.

The following list provides information about the new features for
IBM Informix Dynamic Server, Version 9.4, that this manual describes.

XPS

IDS
Introduction 5

New Features in Dynamic Server, Version 9.4
� The following new SQL statements are documented in Chapter 2:

� The following SQL statements support new syntax in Version 9.4:

� The SET COLLATION statement can specify a localized collating order
for sorting NCHAR and NVARCHAR values that is different from
what DB_LOCALE specifies. Database objects such as indexes and
UDRs that perform sorting operations always use the collating order
that was in effect when they were created.

� This release provides data definition language (DDL) statements to
support sequence objects, from which one or more users can generate
unique integers in the INT8 range. The GRANT and REVOKE state-
ments can control privileges on a sequence, and CREATE SYNONYM
can declare synonyms for sequence objects. New CURRVAL and
NEXTVAL operators can read and increment sequence objects.

� The new DESCRIBE INPUT and DESCRIBE OUTPUT statements can
return information about multiple input and output parameters
prior to execution of a prepared statement.

� The CREATE TRIGGER statement can create INSTEAD OF Triggers on
Views. You can use these to update views that in previous releases
did not support UPDATE operations.

� The ORDER BY Clause of the SELECT statement can include column
names and expressions that did not appear in the Projection clause.

� The FROM clause of the SELECT statement can include iterator
functions that create a virtual table.

� The PDQ feature supports cursors that were declared WITH HOLD.

� The new DESCRIBE INPUT statement supports dynamic queries.

ALTER SEQUENCE RENAME SEQUENCE
CREATE SEQUENCE DESCRIBE INPUT
DROP SEQUENCE SET COLLATION

ALTER FUNCTION DESCRIBE
ALTER PROCEDURE GRANT
CREATE FUNCTION REVOKE
CREATE PROCEDURE SELECT
CREATE SYNONYM SET EXPLAIN
CREATE TRIGGER SET Residency
6 IBM Informix Guide to SQL: Syntax

New Features in Extended Parallel Server Version 8.4
� The LOAD and UNLOAD statements for flat-file I/O can support file
sizes larger than the 2 Gigabyte limit of earlier release versions.

� User-defined functions can include multiple OUT parameters.

� SPL functions can declare named return parameters.

� Functional indexes can be based on more than 16 columns. The new
limit on index parts is language-dependent, but is greater than 90.

� The LVARCHAR data type can be declared with a new size parameter
that can be larger than the former upper limit of 2048 bytes.

� The functionality of the SET Residency statement is provided
automatically by the database server.

New Features in Extended Parallel Server Version 8.4
This manual describes new features in Version 8.4 of IBM Informix Extended
Parallel Server. The features fall into the following areas:

� Performance enhancements

� New SQL functionality

� Version 8.3 features from Dynamic Server, Version 7.30

Performance Enhancements

This manual describes the following performance enhancements to
Version 8.4 of IBM Informix Extended Parallel Server:

� Insert cursors with simple large objects

� Coarse-grain index locks

� Updates with subquery in SET clause

� Index on aggregates

New SQL Functionality

This manual describes the following new SQL functionality in Version 8.4 of
IBM Informix Extended Parallel Server:

� CASE statement in SPL

� Creating a table with RANGE fragmentation
Introduction 7

New Features in Extended Parallel Server Version 8.4
� DELETE…USING statement to delete rows based on a table join

� Globally detached indexes

� Load and unload simple large objects to external tables

� MIDDLE function

� Referential integrity for globally detached indexes

� TRUNCATE statement

Version 8.4 Features from Version 7.3

This manual describes the following features from Version 7.3 of Dynamic
Server in Version 8.4 of IBM Informix Extended Parallel Server:

� Ability to retain update locks

� ALTER FRAGMENT attach with remainders

� ALTER TABLE to add or drop a foreign key constraint

� ALTER TABLE to add, drop, or modify a column

� Constraints on columns other than the fragmentation column

� COUNT function

� DBINFO provides all Version 7.3 information and adds the coserver
ID and dbspace name

� Deferred constraints for all constraint types

� Deferred referential-integrity constraints

� Insert from SPL functions

� NVL and DECODE functions

� REPLACE, SUBSTR, LPAD, and RPAD string manipulation functions

� RENAME COLUMN statement

� TO_CHAR and TO_DATE functions for date conversion

� Triggers

� UPDATE SET clause subqueries

� UPPER, LOWER, and INITCAP functions for case-insensitive search

� Memory-resident tables

� Violations table
8 IBM Informix Guide to SQL: Syntax

Documentation Conventions
Documentation Conventions
This section describes the conventions that this manual uses. These
conventions make it easier to gather information from this and other volumes
in the documentation set.

Typographical Conventions
This manual uses the following conventions to introduce new terms,
illustrate screen displays, describe command syntax, and so forth.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you are
to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of product- or platform-specific
information.

� This symbol indicates a menu item. For example, “Choose
Tools�Options” means choose the Options item from the
Tools menu.
Introduction 9

Icon Conventions
Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

Feature, Product, and Platform Icons

Feature, product, and platform icons identify paragraphs that contain
feature-specific, product-specific, or platform-specific information.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information

Important: Identifies paragraphs that contain significant
information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described

Icon Description

Identifies information that is specific to C user-defined
routines (UDRs)

Identifies information that is specific to DB-Access

Identifies information that is specific to IBM Informix
ESQL/C

(1 of 2)

C

DB

E/C
10 IBM Informix Guide to SQL: Syntax

Icon Conventions
These icons can apply to an entire section or to one or more paragraphs
within a section. If an icon appears next to a section heading, the information
that applies to the indicated feature, product, or platform ends at the next
heading at the same or higher level. A ♦ symbol indicates the end of feature-,
product-, or platform-specific information that appears in one or more
paragraphs within a section.

Identifies information that is specific to external routines,
that is, UDRs written in either C or Java language

Identifies information that relates to the IBM Informix
Global Language Support (GLS) feature

Identifies information or syntax that is specific to
IBM Informix Dynamic Server

Identifies information that is specific to UDRs written in
Java

Identifies information that is specific to the UNIX
operating system

Identifies information that applies to all Windows
environments

Identifies information or syntax that is specific to
IBM Informix Extended Parallel Server

Icon Description

(2 of 2)

Ext

GLS

IDS

Java

UNIX

Windows

XPS
Introduction 11

Syntax Conventions
Compliance Icons

Compliance icons indicate paragraphs that provide guidelines for complying
with a standard.

These icons can apply to an entire section or to one or more paragraphs
within a section. If an icon appears next to a section heading, the information
that applies to the indicated feature, product, or platform ends at the next
heading at the same or higher level. A ♦ symbol indicates the end of feature-,
product-, or platform-specific information that appears within one or more
paragraphs within a section.

Syntax Conventions
This section describes conventions for syntax diagrams. Each diagram
displays the sequences of required and optional keywords, terms, and
symbols that are valid in a given statement or segment, as Figure 1 shows.

Each syntax diagram begins at the upper-left corner and ends at the upper-
right corner with a vertical terminator. Between these points, any path that
does not stop or reverse direction describes a possible form of the statement.

Icon Description

Identifies information that is specific to an ANSI-compliant
database

Identifies functionality that conforms to X/Open

Identifies an Informix extension to ANSI SQL-92 entry-
level standard SQL

ANSI

X/O

+

Figure 1
Example of a Simple Syntax Diagram

OFF

SET EXPLAIN ON
12 IBM Informix Guide to SQL: Syntax

Syntax Conventions
Syntax elements in a path represent terms, keywords, symbols, and segments
that can appear in your statement. The path always approaches elements
from the left and continues to the right, except in the case of separators in
loops. For separators in loops, the path approaches counterclockwise. Unless
otherwise noted, at least one blank character separates syntax elements.

Elements That Can Appear on the Path

You might encounter one or more of the following elements on a path.

Element Description

KEYWORD A word in UPPERCASE letters is a keyword. You must
spell the word exactly as shown; however, you can use
either uppercase or lowercase letters.

(. , ; @ + * - /) Punctuation and other nonalphanumeric characters
are literal symbols that you must enter exactly as
shown.

' ' [Single quotes are literal symbols that you must enter
as shown.]

variable A word in italics represents a value that you must
supply. A table immediately following the diagram
explains the value.

A reference in a box represents a subdiagram. Imagine
that the subdiagram is spliced into the main diagram
at this point. When a page number is not specified, the
subdiagram appears on the same page. The aspect
ratio of a box is not significant.

A reference in a box in the upper-right corner of a
subdiagram refers to the next higher-level diagram of
which this subdiagram is a member.

(1 of 3)

ADD
Clause
p. 3-288

ADD Clause

Back to ADD Clause
p. 1-14
Introduction 13

Syntax Conventions
An icon is a warning that this path is valid only for
some products, or only under certain conditions.
Characters on the icons indicate what products or
conditions support the path.

These icons might appear in path of a syntax diagram:

Valid only for Dynamic Server.

Valid only for Extended Parallel Server.

Valid only for external routines, that is,
UDRs written in C and Java.

Valid only if you are using IBM Informix
Stored Procedure Language (SPL)

Valid only for INFORMIX-ESQL/C.

A shaded option is the default specification. This
option is in effect, unless you specify another path.

Syntax between a pair of arrows is a subdiagram.

The vertical line at the upper right terminates the
syntax diagram.

A branch below the main path indicates an optional
path. (Any term on the main path is required, unless
a branch can circumvent it.)

Element Description

(2 of 3)

E/C

IDS

XPS

Ext

SPL

E/C

ALL

. . .

NOT

NULLIS
14 IBM Informix Guide to SQL: Syntax

Syntax Conventions
How to Read a Syntax Diagram

Figure 2 shows a syntax diagram that uses most of the path elements that the
previous table lists.

Tip: For purposes of illustrating how to read syntax diagrams, this diagram has been
simplified, and does not reflect all of the options of the DELETE statement. See the
section “DELETE” on page 2-344” for the complete syntax of DELETE.

To use this diagram to construct a statement, start at the top left with the
keyword DELETE FROM. Then follow the diagram to the right, proceeding
through the options that you want.

A set of multiple branches indicates that a choice
among more than two different paths is available.

A loop indicates a path that you can repeat.
Punctuation along the top of the loop indicates the
separator symbol for list items. If no symbol appears,
a blank space is the separator (except in the diagrams
for “Identifier” on page 4-189, “Literal Number” on
page 4-216, and “Quoted String” on page 4-243, which
allow no separators between characters within loops.

A gate () on a path indicates that you can use that
path only the indicated number of times, even if it is
part of a larger loop. You can specify size no more than
three times within this statement segment.

Element Description

(3 of 3)

ERROR

WARNING

NOT FOUND

statement

variable

,

size

,

3

3

Figure 2
Example of a Syntax Diagram

Condition
p. 4-5

DELETE FROM

WHERE

CURRENT OF cursor

view

synonym

table

E/C
Introduction 15

Example-Code Conventions
Figure 2 illustrates the following steps:

1. Type DELETE FROM.

2. You can delete a table, view, or synonym:

� Type the table name, view name, or synonym, as you desire.

� You can type WHERE to limit the rows to delete.

� If you type WHERE and you are using DB-Access or the SQL Editor,
you must include the Condition clause to specify a condition to
delete. To find the syntax for specifying a condition, go to the
“Condition” segment on the specified page.

� If you are using ESQL/C, you can include either the Condition
clause to delete a specific condition or the CURRENT OF cursor
clause to delete a row from the table.

3. Follow the diagram to the terminator.

Your DELETE statement is complete.

Example-Code Conventions
Examples of SQL code occur throughout this manual. Except where noted,
the code is not specific to any single IBM Informix application development
tool. If only SQL statements are listed in the example, they are not delimited
by semicolons. For instance, you might see the code in the following
example:

CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules
for that product. For example, if you are using DB-Access, you must delimit
multiple statements with semicolons. If you are using an SQL API, you must
use EXEC SQL at the start of each statement and a semicolon (or other appro-
priate delimiter) at the end of the statement.
16 IBM Informix Guide to SQL: Syntax

Additional Documentation
Tip: Ellipses points in program fragments indicate that additional code (that a full
application would include) has been omitted to simplify presentation of the concept
under discussion. In addition, ellipses symbols never begin or end an example. In
most contexts, including literal ellipses symbols in SQL code will produce an error.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the manual for your product.

Additional Documentation
IBM Informix Dynamic Server documentation is provided in a variety of
formats:

� Online manuals. The IBM Informix Online Documentation site at
http://www.ibm.com/software/data/informix/pubs/library/
contains manuals provided for your use. This Web site enables you
to print chapters or entire books.

� Online help. This facility provides context-sensitive help, an error
message reference, language syntax, and more.

� Documentation notes and release notes. Documentation notes,
which contain additions and corrections to the manuals, and release
notes are located in the directory where the product is installed.

Please examine these files because they contain vital information
about application and performance issues.
Introduction 17

Additional Documentation
On UNIX platforms in the default locale, the following online files
appear in the $INFORMIXDIR/release/en_us/0333 directory.

♦

Online File Purpose

ids_sqls_docnotes_9.40.html
(for Dynamic Server) or
xps_sqls_docnotes_8.40.html
(for Extended Parallel Server)

The documentation notes file for
your version of this manual describes
topics that are not covered in the
manual or that were modified since
publication.

ids_unix_release_notes_9.40.html
and (in plain text format)
ids_unix_release_notes_9.40.txt
(for Dynamic Server) or
xps_release_notes_9.40.html
and (in plain text format)
xps_release_notes_9.40.txt
(for Extended Parallel Server)

The release notes file describes
feature differences from earlier
versions of IBM Informix products
and how these differences might
affect current products. This file also
contains information about any
known problems and their
workarounds.

ids_machine_notes_9.40.txt
(for Dynamic Server) or
xps_machine_notes_8.40.txt
(for Extended Parallel Server)

The machine notes file describes any
special actions that you must take to
configure and use IBM Informix
products on your computer. Machine
notes are named for the product
described.

UNIX
18 IBM Informix Guide to SQL: Syntax

Related Reading
The following items appear in the Informix folder. To display this
folder, choose Start�Programs�Informix� Documentation Notes
or Release Notes from the task bar.

Machine notes do not apply to Windows platforms. ♦
� Error message files. IBM Informix software products provide ASCII

files that contain error messages and their corrective actions.

To read the error messages on UNIX, you can use the finderr com-
mand to display the error messages online. ♦
To read error messages and corrective actions on Windows, use the
Informix Error Messages utility. To display this utility, choose
Start�Programs�Informix from the task bar. ♦

Related Reading
For a list of publications that provide an introduction to database servers and
operating-system platforms, refer to your Getting Started Guide.

Program Group Item Description

Documentation Notes This item includes additions or corrections to
manuals with information about features that
might not be covered in the manuals or that have
been modified since publication.

Release Notes This item describes feature differences from
earlier versions of IBM Informix products and
how these differences might affect current
products. This file also contains information
about any known problems and their
workarounds.

Windows

UNIX

Windows
Introduction 19

Compliance with Industry Standards
Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. IBM Informix SQL-based products are fully
compliant with SQL-92 Entry Level (published as ANSI X3.135-1992), which
is identical to ISO 9075:1992. In addition, many features of Informix database
servers comply with the SQL-92 Intermediate and Full Level and X/Open
SQL CAE (common applications environment) standards.

IBM Welcomes Your Comments
To help us with future versions of our manuals, let us know about any correc-
tions or clarifications that you would find useful. Include the following
information:

� The name and version of your manual

� Any comments that you have about the manual

� Your name, address, and phone number

Send electronic mail to us at the following address:

docinf@us.ibm.com

This address is reserved for reporting errors and omissions in our documen-
tation. For immediate help with a technical problem, contact Customer
Services.
20 IBM Informix Guide to SQL: Syntax

1
Chapter
Overview of SQL Syntax
In This Chapter . 1-3

How to Enter SQL Statements 1-3

How to Enter SQL Comments 1-6

Categories of SQL Statements 1-9

ANSI Compliance and Extensions 1-13

1-2 IBM
 Informix Guide to SQL: Syntax

In This Chapter
This chapter provides information about how to use the SQL statements, SPL
statements, and segments that are discussed in the later chapters of this book.
It is organized into the following sections.

How to Enter SQL Statements
Statement descriptions are provided in this manual to help you to enter SQL
statements successfully. A statement description includes this information:

� A brief introduction that explains what the statement does

� A syntax diagram that shows how to enter the statement correctly

� A table that explains each input parameter in the syntax diagram

� Rules of usage, typically with examples that illustrate these rules

If a statement can include multiple clauses, this information is provided for
each clause.

Section Page Scope

“How to Enter SQL
Statements”

1-3 How to use the statement diagrams and descrip-
tions to enter SQL statements correctly

“How to Enter SQL
Comments”

1-6 How to enter comments for SQL statements

“Categories of SQL
Statements”

1-9 The SQL statements, listed by functional category

“ANSI Compliance
and Extensions”

1-13 The SQL statements, listed by degree of ANSI
compliance
Overview of SQL Syntax 1-3

How to Enter SQL Statements
Most statement descriptions conclude with references to related information
in this manual and in other manuals.

The major aids for entering SQL statements include:

� The combination of the syntax diagram and syntax table

� The examples of syntax that appear in the rules of usage

� The references to related information

Using Syntax Diagrams and Syntax Tables
Before you try to use the syntax diagrams in this chapter, it is helpful to read
the “Syntax Conventions” on page 12 of the Introduction. This section is the
key to understanding the syntax diagrams in the statement descriptions, and
explains the elements that can appear in a syntax diagram and the paths that
connect the elements to each other. This section also includes an example that
illustrates the elements of typical syntax diagrams. The narrative that follows
the example diagram shows how to read the diagram in order to enter the
statement successfully.

When a syntax diagram includes input specifications, such as identifiers,
expressions, filenames. host variables, or other terms, the syntax diagram is
followed by a table that describes how to enter the term without generating
errors. Each syntax table includes four columns:

� The Elements column lists the name of each variable term that
appears in the syntax diagram.

� The Purpose column briefly describes the term, and identifies the
default value, if the term has one.

� The Restrictions column summarizes the restrictions on the term,
such as acceptable ranges of values. (For some diagrams, restrictions
that cannot be tersely summarized appear in the Usage notes, rather
than in this column.)

� The Syntax column points to the SQL segment that gives the detailed
syntax for the term. For a few terms, such as the names of host
variables or literal characters, no page reference is provided.

The diagrams generally provide an intuitive notation for what is valid in a
given SQL statement, but for some statements, dependencies or restrictions
among syntax elements are identified only in the text of the Usage section.
1-4 IBM Informix Guide to SQL: Syntax

How to Enter SQL Statements
Using Examples
To understand the main syntax diagram and subdiagrams for a statement,
study the examples of syntax that appear in the rules of usage for each
statement. These examples have two purposes:

� To show how to accomplish specific tasks with the statement or its
clauses

� To show how to use the syntax of the statement or its clauses in a
concrete way

Tip: An efficient way to understand a syntax diagram is to find an example of the
syntax and compare it with the keywords and parameters in the syntax diagram. By
mapping the concrete elements of the example to the abstract elements of the syntax
diagram, you can understand the syntax diagram and use it more effectively.

For an explanation of the conventions used in the examples in this manual,
see “Example-Code Conventions” on page 16 of the Introduction.

These code examples are program fragments to illustrate valid syntax, rather
than complete SQL programs. In some code examples, ellipsis (. . .) symbols
indicate that additional code has been omitted. To save space, however,
ellipses are not shown at the beginning or end of the program fragments.

Using Related Information
For help in understanding the concepts and terminology in the SQL
statement description, check the “Related Information” section at the end of
each statement.

This section points to related information in this manual and other manuals
that helps you to understand the statement in question. The section provides
some or all of the following information:

� The names of related statements that might contain a fuller
discussion of topics in this statement

� The titles of other manuals that provide extended discussions of
topics in this statement

Tip: If you do not have extensive knowledge and experience with SQL, the
“IBM Informix Guide to SQL: Tutorial” gives you the basic SQL knowledge that you
need to understand and use the statement descriptions in this manual.
Overview of SQL Syntax 1-5

How to Enter SQL Comments
How to Enter SQL Comments
You can add comments to clarify the purpose or effect of particular SQL state-
ments. You can also use comment symbols during program development to
disable individual statements without deleting them from your source code.

Your comments can help you or others to understand the role of the
statement within a program, SPL routine, or command file. The code
examples in this manual sometimes include comments that clarify the role of
an SQL statement within the code, but your own SQL programs will be easier
to read and to maintain if you document them with frequent comments.

The following table shows the SQL comment indicators that you can enter in
your code. Here a Y in a column signifies that you can use the symbol with
the product or with the database type identified in the column heading. An
N in a column signifies that you cannot use the symbol with the indicated
product or database type. (For additional information about a special use of
comments, see the section “Optimizer Directives” on page 4-222.)

Characters within the comment are ignored by the database server.

The section “Optimizer Directives” on page 4-222 describes a context where
information that you specify within comments can influence query plans of
the database server, and where (besides comments in these two formats),
comments in the style of the C language are also valid. ♦

Comment
Symbol ESQL/C

SPL
Routine DB-Access

ANSI-
Compliant
Databases

Databases
Not ANSI
Compliant Description

double
hyphen
(--)

Y Y Y Y Y The double hyphen precedes a
comment within a single line. To
comment more than one line, you must
put the double hyphen symbols at the
beginning of each comment line.

braces
({ })

N Y Y Y Y Braces enclose the comment. The {
precedes the comment, and the }
follows it. Braces can delimit single-
line or multiple-line comments, but
comments cannot be nested.

IDS
1-6 IBM Informix Guide to SQL: Syntax

How to Enter SQL Comments
If the product that you are using supports both comment symbols, your
choice of a comment symbol depends on requirements for ANSI compliance:

� Double hyphen (--) complies with the ANSI/ISO standard for SQL.

� Braces ({ }) are an Informix extension to the ANSI/ISO standard.

If ANSI compliance is not an issue, your choice of comment symbols is a
matter of personal preference. ♦

In DB-Access, you can use either comment symbol when you enter SQL state-
ments with the SQL editor and when you create SQL command files with the
SQL editor or a system editor. An SQL command file is an operating-system
file that contains one or more SQL statements. Command files are also known
as command scripts. For more information about command files, see the
discussion of command scripts in the IBM Informix Guide to SQL: Tutorial. For
information on how to create and modify command files with the SQL editor
or a system editor in DB-Access, see the IBM Informix DB-Access User’s Guide. ♦

You can use either comment symbol in any line of an SPL routine. See the
discussion of how to comment and document an SPL routine in the
IBM Informix Guide to SQL: Tutorial. ♦

In ESQL/C, the double hyphen (--) can begin a comment that extends to the
end of the same line. For information on language-specific comment symbols
in ESQL/C programs, see the IBM Informix ESQL/C Programmer’s Manual. ♦

Examples of SQL Comment Symbols
These examples illustrate different ways to use the SQL comment indicators.

Examples of the Double-Hyphen Symbol

The next example uses the double hyphen (--) to include a comment after
an SQL statement. The comment appears on the same line as the statement.

SELECT * FROM customer -- Selects all columns and rows

The following example uses the same SQL statement and the same comment
as in the preceding example, but places the comment on a line by itself:

SELECT * FROM customer
-- Selects all columns and rows

ANSI

DB

SPL

E/C
Overview of SQL Syntax 1-7

How to Enter SQL Comments
In the following example, the user enters the same SQL statement as in the
preceding example but now enters a multiple-line comment:

SELECT * FROM customer
-- Selects all columns and rows
-- from the customer table

Examples of the Braces Symbols

This example uses braces ({ }) to delimit a comment after an SQL statement.
In this example, the comment appears on the same line as the statement.

SELECT * FROM customer {Selects all columns and rows}

The next example uses the same SQL statement and the same comment as in
the preceding example, but the comment appears on a line by itself:

SELECT * FROM customer
{Selects all columns and rows}

In the following example, the same SQL statement as in the preceding
example is followed by a multiple-line comment:

SELECT * FROM customer
{Selects all columns and rows
 from the customer table}

Non-ASCII Characters in SQL Comments
You can enter non-ASCII characters (including multibyte characters) in SQL
comments if the database locale supports the non-ASCII characters. For
further information on the GLS aspects of SQL comments, see the IBM Informix
GLS User’s Guide.

DB

SPL

GLS
1-8 IBM Informix Guide to SQL: Syntax

Categories of SQL Statements
Categories of SQL Statements
SQL statements are traditionally divided into these twelve logical categories:

� Data definition statements. These data definition language (DDL)
statements can declare, rename, modify, or destroy database objects.

� Data manipulation statements. These data manipulation language
(DML) statements can retrieve, insert, delete, or modify data values.

� Cursor manipulation statements. These statements can declare,
open, and close cursors, which are data structures for operations on
multiple rows of data.

� Cursor optimization statements. These statements can be used to
improve the performance of cursors.

� Dynamic management statements. These statements support
memory management and allow users to specify at runtime the
details of DML operations.

� Data access statements. These statements specify access privileges
and support concurrent access to the database by multiple users.

� Data integrity statements. These implement transaction logging and
support the referential integrity of the database.

� Optimization statements. These can be used to improve the perfor-
mance of operations on the database.

� Routine definition statements. These can declare, define, modify,
execute, or destroy user-defined routines that the database stores.

� Client/server connection statements. These can open or close a
connection between a database and a client application.

� Auxiliary statements. These can provide information about the
database. (This is also a residual category for statements that are not
closely related to the other statement categories.)

� Optical subsystem statements. These support storage and retrieval
of database objects in the optical subsystem, whose statements are
separately documented in IBM Informix Optical Subsystem Guide.)

The SQL statements of each category are listed in the pages that follow.
As their descriptions in Chapter 3 indicate, some statements (and options of
some statements, as designated with special icons in the syntax diagrams) are
specific to Dynamic Server or to Extended Parallel Server.
Overview of SQL Syntax 1-9

Categories of SQL Statements
Data Definition Statements

Data Manipulation Statements

ALTER ACCESS_METHOD
ALTER FRAGMENT
ALTER FUNCTION
ALTER INDEX
ALTER PROCEDURE
ALTER ROUTINE
ALTER SEQUENCE
ALTER TABLE
CLOSE DATABASE
CREATE ACCESS_METHOD
CREATE AGGREGATE
CREATE CAST
CREATE DATABASE
CREATE DISTINCT TYPE
CREATE DUPLICATE
CREATE EXTERNAL TABLE
CREATE FUNCTION
CREATE FUNCTION FROM
CREATE INDEX
CREATE OPAQUE TYPE
CREATE OPCLASS
CREATE PROCEDURE
CREATE PROCEDURE FROM
CREATE ROLE
CREATE ROUTINE FROM
CREATE ROW TYPE
CREATE SCHEMA
CREATE SEQUENCE

CREATE SYNONYM
CREATE TABLE
CREATE Temporary TABLE
CREATE TRIGGER
CREATE VIEW
DROP ACCESS_METHOD
DROP AGGREGATE
DROP CAST
DROP DATABASE
DROP DUPLICATE
DROP FUNCTION
DROP INDEX
DROP OPCLASS
DROP PROCEDURE
DROP ROLE
DROP ROUTINE
DROP ROW TYPE
DROP SEQUENCE
DROP SYNONYM
DROP TABLE
DROP TRIGGER
DROP TYPE
DROP VIEW
RENAME COLUMN
RENAME DATABASE
RENAME INDEX
RENAME SEQUENCE
RENAME TABLE

DELETE
INSERT
SELECT
UPDATE

LOAD
TRUNCATE
UNLOAD
1-10 IBM Informix Guide to SQL: Syntax

Categories of SQL Statements
Cursor Manipulation Statements

Cursor Optimization Statements

Dynamic Management Statements

Data Access Statements

Data Integrity Statements

CLOSE
DECLARE
FETCH
FLUSH

FREE
OPEN
PUT
SET AUTOFREE

SET AUTOFREE SET DEFERRED_PREPARE

ALLOCATE COLLECTION
ALLOCATE DESCRIPTOR
ALLOCATE ROW
DEALLOCATE COLLECTION
DEALLOCATE DESCRIPTOR
DEALLOCATE ROW
DESCRIBE
DESCRIBE INPUT

EXECUTE
EXECUTE IMMEDIATE
FREE
GET DESCRIPTOR
INFO
PREPARE
SET DEFERRED_PREPARE
SET DESCRIPTOR

GRANT
GRANT FRAGMENT
LOCK TABLE
REVOKE
REVOKE FRAGMENT
SET ISOLATION

SET LOCK MODE
SET ROLE
SET SESSION AUTHORIZATION
SET TRANSACTION
SET Transaction Mode
UNLOCK TABLE

BEGIN WORK
COMMIT WORK
ROLLBACK WORK
SET Database Object Mode
SET LOG

SET PLOAD FILE
SET Transaction Mode
START VIOLATIONS TABLE
STOP VIOLATIONS TABLE
Overview of SQL Syntax 1-11

Categories of SQL Statements
Optimization Statements

Routine Definition Statements

Auxiliary Statements

Client/Server Connection Statements

Optical Subsystem Statements

Important: Optical Subsystem statements are described in the ”IBM Informix
Optical Subsystem Guide.”

SET Default Table Space
SET Default Table Type
SET ENVIRONMENT
SET EXPLAIN
SET OPTIMIZATION

SET PDQPRIORITY
SET Residency
SET SCHEDULE LEVEL
SET STATEMENT CACHE
UPDATE STATISTICS

ALTER FUNCTION
ALTER PROCEDURE
ALTER ROUTINE
CREATE FUNCTION
CREATE FUNCTION FROM
CREATE PROCEDURE
CREATE PROCEDURE FROM

CREATE ROUTINE FROM
DROP FUNCTION
DROP PROCEDURE
DROP ROUTINE
EXECUTE FUNCTION
EXECUTE PROCEDURE
SET DEBUG FILE TO

INFO
OUTPUT
GET DIAGNOSTICS

SET COLLATION
SET DATASKIP
WHENEVER

CONNECT
DATABASE

DISCONNECT
SET CONNECTION

ALTER OPTICAL CLUSTER
CREATE OPTICAL CLUSTER
DROP OPTICAL CLUSTER

RELEASE
RESERVE
SET MOUNTING TIMEOUT

IDS
1-12 IBM Informix Guide to SQL: Syntax

ANSI Compliance and Extensions
ANSI Compliance and Extensions
The following lists show statements that are compliant with the ANSI SQL-92
standard at the entry level, statements that are ANSI compliant but include
Informix extensions, and statements that are Informix extensions to the ANSI
standard.

ANSI-Compliant Statements

ANSI-Compliant Statements with Informix Extensions

Statements That Are Extensions to the ANSI Standard

CLOSE
COMMIT WORK
EXECUTE IMMEDIATE

ROLLBACK WORK
SET SESSION AUTHORIZATION
SET TRANSACTION

CONNECT
CREATE SCHEMA AUTHORIZATION
CREATE TABLE
CREATE Temporary TABLE
CREATE VIEW
DECLARE
DELETE
DISCONNECT
EXECUTE

FETCH
GRANT
INSERT
OPEN
SELECT
SET CONNECTION
SET Transaction Mode
UPDATE
WHENEVER

ALLOCATE COLLECTION
ALLOCATE DESCRIPTOR
ALLOCATE ROW
ALTER ACCESS_METHOD
ALTER FRAGMENT
ALTER FUNCTION

ALTER INDEX
ALTER OPTICAL CLUSTER
ALTER PROCEDURE
ALTER ROUTINE
ALTER SEQUENCE
ALTER TABLE

BEGIN WORK

ANSI
Overview of SQL Syntax 1-13

ANSI Compliance and Extensions
CLOSE DATABASE
CREATE ACCESS_METHOD
CREATE AGGREGATE
CREATE CAST
CREATE DATABASE
CREATE DISTINCT TYPE
CREATE DUPLICATE
CREATE EXTERNAL TABLE
CREATE FUNCTION
CREATE FUNCTION FROM
CREATE INDEX

CREATE OPAQUE TYPE
CREATE OPCLASS
CREATE OPTICAL CLUSTER
CREATE PROCEDURE
CREATE PROCEDURE FROM
CREATE ROLE
CREATE ROUTINE FROM
CREATE ROW TYPE
CREATE SEQUENCE
CREATE SYNONYM
CREATE TRIGGER

DATABASE
DEALLOCATE COLLECTION
DEALLOCATE DESCRIPTOR
DEALLOCATE ROW
DESCRIBE
DESCRIBE INPUT
DROP ACCESS_METHOD
DROP AGGREGATE
DROP CAST
DROP DATABASE
DROP DUPLICATE
DROP FUNCTION

DROP INDEX
DROP OPCLASS
DROP OPTICAL CLUSTER
DROP PROCEDURE
DROP ROLE
DROP ROUTINE
DROP ROW TYPE
DROP SEQUENCE
DROP SYNONYM
DROP TABLE
DROP TRIGGER
DROP TYPE
DROP VIEW

EXECUTE FUNCTION
EXECUTE PROCEDURE

FLUSH
FREE

GET DESCRIPTOR
GET DIAGNOSTICS

GRANT FRAGMENT
INFO

LOAD LOCK TABLE

OUTPUT

PREPARE PUT
1-14 IBM Informix Guide to SQL: Syntax

ANSI Compliance and Extensions
RELEASE
RENAME COLUMN
RENAME DATABASE
RENAME INDEX
RENAME SEQUENCE

RENAME TABLE
RESERVE
REVOKE
REVOKE FRAGMENT

SET AUTOFREE
SET COLLATION
SET Database Object Mode
SET DATASKIP
SET DEBUG FILE TO
SET Default Table Type
SET Default Table Space
SET DEFERRED_PREPARE
SET DESCRIPTOR
SET ENVIRONMENT
SET EXPLAIN
SET ISOLATION

SET LOCK MODE
SET LOG
SET MOUNTING TIMEOUT
SET OPTIMIZATION
SET PDQPRIORITY
SET PLOAD FILE
SET RESIDENCY
SET ROLE
SET SCHEDULE LEVEL
SET STATEMENT CACHE
START VIOLATIONS TABLE
STOP VIOLATIONS TABLE

TRUNCATE

UNLOAD
UPDATE STATISTICS

UNLOCK TABLE
Overview of SQL Syntax 1-15

2
Chapter
SQL Statements
In This Chapter . 2-7
ALLOCATE COLLECTION 2-8
ALLOCATE DESCRIPTOR 2-10
ALLOCATE ROW 2-12
ALTER ACCESS_METHOD 2-14
ALTER FRAGMENT 2-16
ALTER FUNCTION 2-39
ALTER INDEX . 2-41
ALTER PROCEDURE 2-44
ALTER ROUTINE 2-46
ALTER SEQUENCE 2-49
ALTER TABLE . 2-52
BEGIN WORK . 2-82
CLOSE . 2-85
CLOSE DATABASE 2-88
COMMIT WORK 2-90
CONNECT . 2-92
CREATE ACCESS_METHOD 2-102
CREATE AGGREGATE 2-104
CREATE CAST . 2-108
CREATE DATABASE 2-112
CREATE DISTINCT TYPE 2-115
CREATE DUPLICATE. 2-118
CREATE EXTERNAL TABLE 2-121
CREATE FUNCTION 2-133
CREATE FUNCTION FROM 2-141
CREATE INDEX. 2-144

2-2 IBM
CREATE OPAQUE TYPE 2-169
CREATE OPCLASS 2-176
CREATE PROCEDURE 2-182
CREATE PROCEDURE FROM 2-192
CREATE ROLE . 2-194
CREATE ROUTINE FROM 2-196
CREATE ROW TYPE 2-198
CREATE SCHEMA 2-203
CREATE SCRATCH TABLE 2-205
CREATE SEQUENCE 2-206
CREATE SYNONYM 2-210
CREATE TABLE . 2-214
CREATE TEMP TABLE 2-260
CREATE Temporary TABLE 2-261
CREATE TRIGGER 2-269
CREATE VIEW . 2-310
DATABASE . 2-316
DEALLOCATE COLLECTION 2-318
DEALLOCATE DESCRIPTOR 2-320
DEALLOCATE ROW 2-322
DECLARE . 2-323
DELETE. 2-344
DESCRIBE . 2-351
DESCRIBE INPUT 2-359
DISCONNECT . 2-366
DROP ACCESS_METHOD 2-369
DROP AGGREGATE 2-370
DROP CAST . 2-371
DROP DATABASE 2-372
DROP DUPLICATE. 2-374
DROP FUNCTION 2-375
DROP INDEX. 2-377
DROP OPCLASS. 2-378
DROP PROCEDURE 2-379
DROP ROLE . 2-381
DROP ROUTINE 2-382
 Informix Guide to SQL: Syntax

DROP ROW TYPE. 2-384
DROP SEQUENCE 2-386
DROP SYNONYM 2-387
DROP TABLE . 2-388
DROP TRIGGER . 2-391
DROP TYPE . 2-392
DROP VIEW. 2-393
EXECUTE . 2-394
EXECUTE FUNCTION 2-404
EXECUTE IMMEDIATE. 2-411
EXECUTE PROCEDURE 2-414
FETCH . 2-424
FLUSH . 2-435
FREE . 2-437
GET DESCRIPTOR 2-439
GET DIAGNOSTICS 2-446
GRANT . 2-459
GRANT FRAGMENT 2-480
INFO . 2-487
INSERT . 2-489
LOAD . 2-504
LOCK TABLE . 2-513
OPEN . 2-516
OUTPUT . 2-525
PREPARE. 2-527
PUT. 2-539
RENAME COLUMN 2-549
RENAME DATABASE 2-551
RENAME INDEX . 2-552
RENAME SEQUENCE 2-553
RENAME TABLE . 2-554
REVOKE . 2-557
REVOKE FRAGMENT 2-575
ROLLBACK WORK 2-579
SELECT . 2-581
SET AUTOFREE . 2-640
SQL Statements 2-3

2-4 IBM
SET COLLATION 2-643
SET CONNECTION 2-646
SET CONSTRAINTS 2-651
SET Database Object Mode 2-652
SET DATASKIP . 2-659
SET DEBUG FILE TO 2-661
SET Default Table Type 2-663
SET Default Table Space 2-665
SET DEFERRED_PREPARE 2-666
SET DESCRIPTOR 2-670
SET ENVIRONMENT 2-678
SET EXPLAIN . 2-683
SET INDEX . 2-689
SET INDEXES. 2-690
SET ISOLATION. 2-691
SET LOCK MODE 2-696
SET LOG . 2-698
SET OPTIMIZATION 2-700
SET PDQPRIORITY. 2-704
SET PLOAD FILE 2-707
SET Residency . 2-708
SET ROLE . 2-710
SET SCHEDULE LEVEL 2-712
SET SESSION AUTHORIZATION. 2-713
SET STATEMENT CACHE 2-715
SET TABLE. 2-719
SET TRANSACTION 2-720
SET Transaction Mode 2-725
SET TRIGGERS . 2-728
START VIOLATIONS TABLE 2-729
STOP VIOLATIONS TABLE 2-748
TRUNCATE . 2-750
UNLOAD . 2-753
UNLOCK TABLE 2-760
UPDATE . 2-762
 Informix Guide to SQL: Syntax

UPDATE STATISTICS 2-778
WHENEVER . 2-789
SQL Statements 2-5

2-6 IBM
 Informix Guide to SQL: Syntax

In This Chapter
This chapter describes the syntax and semantics of SQL statements that are
recognized by Dynamic Server or Extended Parallel Server. Statements (and
statement segments, and notes describing usage) that are not marked by the
icon for one of these database servers are valid for both.

The statement descriptions appear in alphabetical order. For some state-
ments, important details of the semantics appear in other volumes of this
documentation set, as indicated by cross-references.

For many statements, the syntax diagram, or the table of terms immediately
following the diagram, or both, can includes references to syntax segments in
Chapter 4, “Segments.”

When the name of an SQL statement includes lowercase characters, such as
”CREATE Temporary TABLE,” it means that two or more different keywords
can follow the preceding uppercase keyword.

For an explanation of the structure of statement descriptions, see Chapter 1,
“Overview of SQL Syntax.”
SQL Statements 2-7

ALLOCATE COLLECTION
ALLOCATE COLLECTION
Use the ALLOCATE COLLECTION statement to allocate memory for a variable
of a collection data type (such as LIST, MULTISET, or SET) or an untyped
collection variable. Use this statement with ESQL/C.

Syntax

Usage
The ALLOCATE COLLECTION statement allocates memory for an ESQL/C
variable that can store the value of a collection data type.

To create a collection variable for an ESQL/C program

1. Declare the collection variable as a client collection variable in an
ESQL/C program.

The collection variable can be a typed or untyped collection variable.

2. Allocate memory for the collection variable with the ALLOCATE
COLLECTION statement.

The ALLOCATE COLLECTION statement sets SQLCODE (sqlca.sqlcode) to
zero (0) if the memory allocation was successful and to a negative error code
if the allocation failed.

You must explicitly release memory with the DEALLOCATE COLLECTION
statement. After you free the collection variable with the DEALLOCATE
COLLECTION statement, you can reuse the collection variable.

+

IDS

E/C

Element Purpose Restrictions Syntax
variable Name of typed or untyped

collection variable to allocate
Must be an unallocated ESQL/C
collection-type host variable

Must conform to language-
specific rules for names

variableALLOCATE COLLECTION
2-8 IBM Informix Guide to SQL: Syntax

ALLOCATE COLLECTION
Tip: The ALLOCATE COLLECTION statement allocates memory for an ESQL/C
collection variable only. To allocate memory for an ESQL/C row variable, use the
ALLOCATE ROW statement.

Examples

The following example shows how to allocate resources with the ALLOCATE
COLLECTION statement for the untyped collection variable, a_set:

EXEC SQL BEGIN DECLARE SECTION;
client collection a_set;

EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL allocate collection :a_set;
. . .

The following example uses ALLOCATE COLLECTION to allocate resources
for a typed collection variable, a_typed_set:

EXEC SQL BEGIN DECLARE SECTION;
client collection set(integer not null) a_typed_set;

EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL allocate collection :a_typed_set;
. . .

Related Information
Related examples: Refer to the collection-variable example in PUT.

Related statements: ALLOCATE ROW and DEALLOCATE COLLECTION

For a discussion of collection data types in ESQL/C programs, see the
IBM Informix ESQL/C Programmer’s Manual.
SQL Statements 2-9

ALLOCATE DESCRIPTOR
ALLOCATE DESCRIPTOR
Use the ALLOCATE DESCRIPTOR statement to allocate memory for a system-
descriptor area. Use this statement with ESQL/C.

Syntax

Usage
The ALLOCATE DESCRIPTOR statement creates a system-descriptor area, which
is a location in memory to hold information that a DESCRIBE statement
obtains, or to hold information about the WHERE clause of a statement.

A system-descriptor area contains one or more fields called item descriptors.
Each item descriptor holds a data value that the database server can receive
or send. The item descriptors also contain information about the data, such
as data type, length, scale, precision, and nullability.

A system-descriptor area holds information that a DESCRIBE...USING SQL
DESCRIPTOR statement obtains or it holds information about the WHERE
clause of a dynamically executed statement.

+

E/C

Element Purpose Restrictions Syntax
descriptor Quoted string that identifies a

system-descriptor area
Use single (') quotes. Must be the
unique name of an unallocated
system-descriptor area

Quoted String,
p. 4-243

descriptor_var Host variable that contains the name
of a system-descriptor area

Must contain name of an unallo-
cated system-descriptor area

Language
specific

items Number of item descriptors in
descriptor. Default value is 100.

Must be an unsigned INTEGER
greater than zero

Literal Number,
p. 4-216

items_var Host variable that contains the
number of items

Data type must be INTEGER or
SMALLINT

Language
specific

descriptor_var WITH MAX

'descriptor 'ALLOCATE DESCRIPTOR

items

items_var
2-10 IBM Informix Guide to SQL: Syntax

ALLOCATE DESCRIPTOR
If the name that you assign to a system-descriptor area matches the name of
an existing system-descriptor area, the database server returns an error. If
you free the descriptor with the DEALLOCATE DESCRIPTOR statement, you
can reuse the descriptor.

WITH MAX Clause

You can use the WITH MAX clause to indicate the maximum number of item
descriptors you need. When you use this clause, the COUNT field is set to the
number of items that you specify. If you do not specify the WITH MAX clause,
the default value of the COUNT field is 100. You can change the value of the
COUNT field with the SET DESCRIPTOR statement.

The following examples show valid ALLOCATE DESCRIPTOR statements.
Each example includes the WITH MAX clause. The first line uses embedded
variable names to identify the system-descriptor area and to specify the
desired number of item descriptors. The second line uses a quoted string to
identify the system-descriptor area and an unsigned integer to specify the
desired number of item descriptors.

EXEC SQL allocate descriptor :descname with max :occ;

EXEC SQL allocate descriptor 'desc1' with max 3;

Related Information
Related statements: DEALLOCATE DESCRIPTOR, DECLARE, DESCRIBE,
EXECUTE, FETCH, GET DESCRIPTOR, OPEN, PREPARE, PUT, and SET
DESCRIPTOR

For more information on system-descriptor areas, refer to the IBM Informix
ESQL/C Programmer’s Manual.
SQL Statements 2-11

ALLOCATE ROW
ALLOCATE ROW
Use the ALLOCATE ROW statement to allocate memory for a ROW variable.
Use this statement with ESQL/C.

Syntax

Usage
The ALLOCATE ROW statement allocates memory for a variable that stores
ROW-type data.

To create a row variable using your ESQL/C program

1. Declare the ROW variable.

The ROW variable can be a typed or untyped ROW variable.

2. Allocate memory for the ROW variable with the ALLOCATE ROW
statement.

The ALLOCATE ROW statement sets SQLCODE (sqlca.sqlcode) to zero (0) if
the memory allocation was successful and to a negative error code if the
allocation failed.

You must explicitly release memory with the DEALLOCATE ROW statement.
Once you free the ROW variable with the DEALLOCATE ROW statement, you
can reuse the ROW variable.

Tip: The ALLOCATE ROW statement allocates memory for an ESQL/C row variable
only. To allocate memory for an ESQL/C collection variable, use the ALLOCATE
COLLECTION statement.

+

IDS

E/C

Element Purpose Restrictions Syntax
variable Name of a typed or untyped

ROW variable to allocate
Must be an unallocated ESQL/C
ROW-type host variable.

Must conform to language-
specific rules for names.

variableALLOCATE ROW
2-12 IBM Informix Guide to SQL: Syntax

ALLOCATE ROW
When you use the same ROW variable in multiple calls without deallocating
it, a memory leak on the client computer results. Because there is no way to
determine if a pointer is valid when it is passed, ESQL/C assumes that it is not
valid and assigns it to a new memory location.

Example

The following example shows how to allocate resources with the ALLOCATE
ROW statement for the typed ROW variable, a_row:

EXEC SQL BEGIN DECLARE SECTION;
row (a int, b int) a_row;

EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL allocate row :a_row;

Related Information
Related statements: ALLOCATE COLLECTION and DEALLOCATE ROW

For a discussion of complex data types in ESQL/C programs, see the
IBM Informix ESQL/C Programmer’s Manual.
SQL Statements 2-13

2-14 IBM Informix Guide to SQL: Syntax

ALTER ACCESS_METHOD
ALTER ACCESS_METHOD
The ALTER ACCESS_METHOD statement changes the attributes of a user-
defined access method in the sysams system catalog table.

Syntax

Usage
Use ALTER ACCESS_METHOD to modify the definition of a user-defined
access method. You must be the owner of the access method or have DBA
privileges to alter an access method.

When you alter an access method, you change the purpose-option specifica-
tions (purpose functions, purpose methods, purpose flags, or purpose
values) that define the access method. For example, you might alter an access
method to assign a new user-defined function or method name or to provide
a multiplier for the scan cost on a table.

If a transaction is in progress, the database server waits to alter the access
method until the transaction is committed or rolled back. No other users can
execute the access method until the transaction has completed.

+

IDS

Element Purpose Restrictions Syntax
access_method Name of the access

method to alter
The access method must be registered in the
sysams system catalog table with a previous
CREATE ACCESS_METHOD statement

Database Object
Name, p. 4-46

purpose_keyword A keyword that
indicates which
feature to change

The keyword must be associated with the
access method by a previous statement

Purpose Functions,
Methods, Flags, and
Values, p. 4-239

ALTER ACCESS_METHOD access_method

,

MODIFY

ADD

DROP purpose_keyword

Purpose
Option

p. 4-237

ALTER ACCESS_METHOD
Example

The following statement alters the remote user-defined access method:

ALTER ACCESS_METHOD remote
ADD am_scancost = FS_scancost,
ADD am_rowids,
DROP am_getbyid,
MODIFY am_costfactor = 0.9;

The preceding example makes the following changes to the access method:

� Adds a user-defined function or method named FS_scancost(),
which is associated in the sysams table with the am_scancost
keyword

� Sets (adds) the am_rowids flag

� Drops the user-defined function or method associated with the
am_getbyid keyword

� Modifies the am_costfactor value

Related Information
Related statements: CREATE ACCESS_METHOD and DROP ACCESS_METHOD

For detailed information about how to set purpose-option specifications, see
“Purpose Options” on page 4-237.

For more information on primary-access methods, see the IBM Informix
Virtual-Table Interface Programmer’s Guide.

For more information on secondary-access methods, see the IBM Informix
Virtual-Index Interface Programmer’s Guide.

For a discussion of privileges, see the GRANT statement or the IBM Informix
Database Design and Implementation Guide.
SQL Statements 2-15

ALTER FRAGMENT
ALTER FRAGMENT
Use the ALTER FRAGMENT statement to alter the distribution strategy or
storage location of an existing table or index.

Syntax

Usage
The ALTER FRAGMENT statement applies only to table fragments or index
fragments that are located at the current site (or cluster, for Extended Parallel
Server). No remote information is accessed or updated.

You must have the Alter or the DBA privilege to change the fragmentation
strategy of a table. You must have the Index or the DBA privilege to alter the
fragmentation strategy of an index.

+

Element Purpose Restrictions Syntax
surviving_index Index on which to modify the

distribution or storage
Must exist when the statement
executes

Database Object
Name, p. 4-46

surviving_table Table on which to modify the
distribution or storage

Must exist. See “Restrictions on the
ALTER FRAGMENT Statement” on
page 2-17

Database Object
Name, p. 4-46

surviving_indexINDEX

TABLE ATTACH Clause
p. 2-19surviving_tableALTER FRAGMENT ON

MODIFY Clause
p. 2-37

INIT Clause
p. 2-29

ADD Clause
p. 2-34

DROP Clause
p. 2-36

DETACH Clause
p. 2-27

IDS

IDS
2-16 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT
Warning: This statement can cause indexes to be dropped and rebuilt. Before under-
taking alter operations, check corresponding sections in your “Performance Guide”
to review effects and strategies.

Clauses of the ALTER FRAGMENT statement support the following tasks.

Use the CREATE TABLE statement or the INIT clause of the ALTER FRAGMENT
statement to create fragmented tables.

Restrictions on the ALTER FRAGMENT Statement

You cannot use the ALTER FRAGMENT statement on a temporary table, an
external table, or on a view. If your table or index is not already fragmented,
the only clauses available to you are INIT and ATTACH.

You cannot use ALTER FRAGMENT on a generalized-key (GK) index. If the
surviving_table has hash fragmentation, the only clauses available are
ATTACH and INIT. You cannot use the ALTER FRAGMENT statement on any
table that has a dependent GK index defined on it. In addition, you cannot use
this statement on a table that has range fragmentation. ♦

Clause Purpose

ATTACH Combines tables that contain identical table structures into a single
fragmented table

DETACH Detaches a table fragment or slice from a fragmentation strategy and
places it in a new table

INIT Provides the following options:

� Defines and initializes a fragmentation strategy on a table

� Creates a fragmentation strategy for tables

� Changes the order of evaluation of fragment expressions

� Alters the fragmentation strategy of an existing table or index

� Changes the storage location of an existing table

ADD Adds an additional fragment to an existing fragmentation list

DROP Drops an existing fragment from a fragmentation list

MODIFY Changes an existing fragmentation expression

XPS
SQL Statements 2-17

ALTER FRAGMENT
You cannot use ALTER FRAGMENT on a typed table that is part of a table
hierarchy. ♦

ALTER FRAGMENT and Transaction Logging

If your database uses logging, ALTER FRAGMENT is executed within a single
transaction. When the fragmentation strategy uses large numbers of records,
you might run out of log space or disk space. (The database server requires
extra disk space for the operation; it later frees the disk space).

When you run out of log space or disk space, try one of the following
procedures to make more space available:

� Turn off logging and turn it back on again at the end of the operation.
This procedure indirectly requires a backup of the root dbspace.

� Split the operations into multiple ALTER FRAGMENT statements,
moving a smaller portion of records each time.

For information about log-space requirements and disk-space requirements,
see your Administrator’s Guide. That guide also contains detailed instructions
about how to turn off logging. For information about backups, refer to your
IBM Informix Backup and Restore Guide.

Determining the Number of Rows in the Fragment

You can place as many rows into a fragment as the available space in the
dbspace allows.

To find out how many rows are in a fragment

1. Run the UPDATE STATISTICS statement on the table. This step fills the
sysfragments system catalog table with the current table
information.

2. Query the sysfragments system catalog table to examine the npused
and nrows fields. The npused field gives you the number of data
pages used in the fragment, and the nrows field gives you the
number of rows in the fragment.

IDS
2-18 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT
ATTACH Clause
Use the ATTACH clause to combine tables that contain identical table
structures into a fragmentation strategy.

Element Purpose Restrictions Syntax
consumed_
table

Table that loses its identity
to be merged with
surviving_table

Must exist. Cannot include serial columns
nor unique, referential, or primary key
constraints. See also “General Restrictions
for the ATTACH Clause” on page 2-20.

Database Object
Name, p. 4-46

dbspace Dbspace(s) that specifies
where the consumed table
expression exists in the
fragmentation list

Must exist. See also “Altering Hybrid-
Fragmented Tables” on page 2-22.

Identifier,
p. 4-189

expression Expression that defines
which rows are stored in a
fragment

Can include only columns from the
current table, and only data values from a
single row. See also “General Restrictions
for the ATTACH Clause” on page 2-20.

Condition,
p. 4-24;
Expression,
p. 4-67

surviving_table Table on which to modify
the distribution or storage

Must exist. Cannot have any constraints.
See also “Restrictions on the ALTER
FRAGMENT Statement” on page 2-17.

Database Object
Name, p. 4-46

ATTACH
Clause

Back to ALTER FRAGMENT
p. 2-16

consumed_table

,

1

dbspaceBEFORE

AS REMAINDER

AFTER

surviving_tableATTACH 1

expressionAS

IDS
SQL Statements 2-19

ALTER FRAGMENT
To use this clause, you must have the DBA privilege, or else be the owner of
the specified tables. The ATTACH clause supports the following tasks:

� Creates a single fragmented table by combining two or more identi-
cally-structured, nonfragmented tables

(See “Combining Nonfragmented Tables to Create a Fragmented
Table” on page 2-21.)

� Attaches one or more tables to a fragmented table

(See “Attaching a Table to a Fragmented Table” on page 2-21.)

General Restrictions for the ATTACH Clause

Any tables that you attach must have been created previously in separate
dbspaces. You cannot attach the same table more than once.

All consumed tables listed in the ATTACH clause must have the same
structure as the surviving table. The number, names, data types, and relative
position of the columns must be identical.

The expression cannot include aggregates, subqueries, nor variant functions.

User-defined routines and references to fields of a row-type column are not
valid. You cannot attach a fragmented table to another fragmented table. ♦

Additional Restrictions on the ATTACH Clause Specific to XPS

In addition to the general restrictions, every consumed table must be of the
same usage type as the surviving table. For information about how to specify
the usage type of a table, refer to “Logging Options” on page 2-215.

The ATTACH clause is not valid under either of the following conditions:

� If the consumed tables contain data that belongs in some existing
fragment of the surviving table

� If existing data in the surviving table would belong in a new
fragment

Thus, you cannot use the ATTACH clause for data movement among
fragments. To perform this task, see the “INIT Clause” on page 2-29.

IDS

XPS
2-20 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT
Using the BEFORE, AFTER, and REMAINDER Options

The BEFORE and AFTER options allow you to place a new fragment either
before or after an existing dbspace. You cannot use the BEFORE and AFTER
options when the distribution scheme is round-robin.

When you attach a new fragment without an explicit BEFORE or AFTER
option, the database server places the added fragment at the end of the
fragmentation list, unless a remainder fragment exists. If a remainder
fragment exists, the new fragment is placed just before the remainder
fragment. You cannot attach a new fragment after the remainder fragment.

When you create or append to a hybrid-fragmented table, the positioning
specification (BEFORE, AFTER, or REMAINDER) applies to an entire dbslice.
You can use any dbspace in a dbslice to identify the dbslice for the BEFORE or
AFTER position. ♦

Combining Nonfragmented Tables to Create a Fragmented Table

When you transform tables with identical table structures into fragments in
a single table, you allow the database server to manage the fragmentation
instead of allowing the application to manage the fragmentation. The distri-
bution scheme can be round-robin or expression-based.

To make a single, fragmented table from two or more identically-structured,
nonfragmented tables, the ATTACH clause must contain the surviving table
in the attach list. The attach list is the list of tables in the ATTACH clause.

To include a rowid column in the newly-created single, fragmented table,
attach all tables first and then add the rowid with the ALTER TABLE
statement. ♦

Attaching a Table to a Fragmented Table

To attach a nonfragmented table to an already fragmented table, the
nonfragmented table must have been created in a separate dbspace and must
have the same table structure as the fragmented table. In the following
example, a round-robin distribution scheme fragments the table cur_acct,
and the table old_acct is a nonfragmented table that resides in a separate
dbspace. The example shows how to attach old_acct to cur_acct:

ALTER FRAGMENT ON TABLE cur_acct ATTACH old_acct

XPS

IDS
SQL Statements 2-21

ALTER FRAGMENT
When you attach one or more tables to a fragmented table, a consumed_table
must be nonfragmented. ♦

When you attach one or more tables to a fragmented table, a consumed_table
can be nonfragmented or have hash fragmentation.

If you specify a consumed_table that has hash fragmentation, the hash
column specification must match that of the surviving_table and any other
consumed_table involved in the attach operation. ♦

Altering Hybrid-Fragmented Tables

When you alter a hybrid-fragmented table with either an ATTACH or
DETACH clause, you need specify only one dbspace to identify the entire set
of dbspaces that are associated with a given expression in the base fragmen-
tation strategy of the table. The set of dbspaces associated with an expression
in the base fragmentation strategy of the table might have been defined as
one or more dbslices or a dbspaces. For more information, see “Fragmenting
by HYBRID” on page 2-243.

If you know the name of the dbslice but not the names any of the dbspaces
that it is made up of, you can name the first dbspace in the dbslice by
adding.1 to the name of the dbslice. For example, if the dbslice were named
dbsl1, you could specify dbsl1.1.

Effect of the ATTACH Clause

After an ATTACH operation, all consumed tables no longer exist. Any
constraints (CHECK or NOT NULL) that were on the consumed tables also no
longer exist. You must reference the records that were in the consumed tables
through the surviving table.

What Happens to Indexes?

In a logging database, an ATTACH operation extends any attached index on
the surviving table according to the new fragmentation strategy of the
surviving table. All rows in the consumed table are subject to these automat-
ically adjusted indexes. For information on whether the database server
completely rebuilds the index on the surviving table or reuses an index that
was on the consumed table, see your Performance Guide.

IDS

XPS

XPS
2-22 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT
In a nonlogging database, an ATTACH operation does not extend indexes on
the surviving table according to the new fragmentation strategy of the
surviving table. To extend the fragmentation strategy of an attached index
according to the new fragmentation strategy of the surviving table, you must
drop the index and re-create it on the surviving table. ♦

A detached index on the surviving table retains its same fragmentation
strategy. That is, a detached index does not automatically adjust to accom-
modate the new fragmentation of the surviving table. For more information
on what happens to indexes, see the discussion about altering table
fragments in your Performance Guide.

What Happens to BYTE and TEXT Columns?

Each BYTE and TEXT column in every table that is named in the ATTACH
clause must have the same storage type, either blobspace or tblspace. If the
BYTE or TEXT column is stored in a blobspace, the same column in all tables
must be in the same blobspace. If the BYTE or TEXT column is stored in a
tblspace, the same column must be stored in a tblspace in all tables. ♦

In Extended Parallel Server, BYTE and TEXT columns are stored in separate
fragments created for that purpose. If a table includes a BYTE or TEXT
column, the database server creates a separate, additional fragment in the
same dbspace as each regular table fragment. BYTE or TEXT columns are
stored in the separate fragment that is associated with the regular table
fragment where a given row resides.

When an ATTACH occurs, BYTE and TEXT fragments of the consumed table
become part of the surviving table and continue to be associated with the
same rows and data fragments as they were before the ATTACH. ♦

What Happens to Triggers and Views?

When you attach tables, triggers on the surviving table survive the ATTACH,
but triggers on the consumed table are automatically dropped. No triggers
are activated by the ATTACH clause, but subsequent data-manipulation
operations on the new rows can activate triggers.

Views on the surviving table survive the ATTACH operation, but views on the
consumed table are automatically dropped.

IDS

IDS

XPS
SQL Statements 2-23

ALTER FRAGMENT
What Happens with the Distribution Scheme?

You can attach a nonfragmented table to a table with any type of supported
distribution scheme. In general, the resulting table has the same fragmen-
tation strategy as the prior fragmentation strategy of the surviving_table.

When you attach two or more nonfragmented tables, however, the distri-
bution scheme can either be based on expression or round-robin.

The following table shows the distribution schemes that can result from
different distribution schemes of the tables mentioned in the ATTACH clause.

♦

The following table shows the distribution schemes that can result from
different distribution schemes of the tables mentioned in the ATTACH clause.

When you attach a nonfragmented table to a table that has hash fragmen-
tation, the resulting table has hybrid fragmentation.

Prior Distribution Scheme
of Surviving Table

Prior Distribution Scheme
of Consumed Table Resulting Distribution Scheme

None None Round-robin or expression

Round-robin None Round-robin

Expression None Expression

Prior Distribution Scheme
of Surviving Table

Prior Distribution Scheme
of Consumed Table Resulting Distribution Scheme

None None Round-robin or expression

None Hash Hybrid

Round-robin None Round-robin

Expression None Expression

Hash None Hybrid

Hash Hash Hybrid

Hybrid None Hybrid

Hybrid Hash Hybrid

IDS

XPS
2-24 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT
You can attach a table with a hash distribution scheme to a table that
currently has no fragmentation, hash fragmentation, or hybrid fragmen-
tation. In any of these situations, the resulting table has a hybrid distribution
scheme. ♦

The following examples illustrate the use of the ATTACH clause to create
fragmented tables with different distribution schemes.

Round-Robin Distribution Scheme

The following example combines nonfragmented tables pen_types and
pen_makers into a single, fragmented table, pen_types. Table pen_types
resides in dbspace dbsp1, and table pen_makers resides in dbspace dbsp2.
Table structures are identical in each table.

ALTER FRAGMENT ON TABLE pen_types ATTACH pen_types, pen_makers

After you execute the ATTACH clause, the database server fragments the table
pen_types round-robin into two dbspaces: the dbspace that contained
pen_types and the dbspace that contained pen_makers. Table pen_makers
is consumed, and no longer exists; all rows that were in table pen_makers are
now in table pen_types.

Expression Distribution Scheme

Consider the following example that combines tables cur_acct and new_acct
and uses an expression-based distribution scheme. Table cur_acct was origi-
nally created as a fragmented table and has fragments in dbspaces dbsp1 and
dbsp2. The first statement of the example shows that table cur_acct was
created with an expression-based distribution scheme. The second statement
of the example creates table new_acct in dbsp3 without a fragmentation
strategy. The third statement combines the tables cur_acct and new_acct.
Table structures (columns) are identical in each table.

CREATE TABLE cur_acct (a int) FRAGMENT BY EXPRESSION
a < 5 in dbsp1,
a >= 5 and a < 10 in dbsp2;

CREATE TABLE new_acct (a int) IN dbsp3;

ALTER FRAGMENT ON TABLE cur_acct ATTACH new_acct AS a>=10;
SQL Statements 2-25

ALTER FRAGMENT
When you examine the sysfragments system catalog table after you alter the
fragment, you see that table cur_acct is fragmented by expression into three
dbspaces. For additional information about the sysfragments system catalog
table, see the IBM Informix Guide to SQL: Reference.

In addition to simple range rules, you can use the ATTACH clause to fragment
by expression with hash or arbitrary rules. For a discussion of all types of
expressions in an expression-based distribution scheme, see “FRAGMENT
BY Clause for Tables” on page 2-31.

Warning: When you specify a date value as the default value for a parameter, make
sure to specify 4 digits instead of 2 digits for the year. When you specify a 4-digit year,
the DBCENTURY environment variable has no effect on how the database server
interprets the date value. When you specify a 2-digit year, DBCENTURY can affect
how the database server interprets the date value, so the UDR might not use the
default value that you intended. For more information, see the “IBM Informix Guide
to SQL: Reference.”

Hybrid Fragmentation Distribution Scheme

Consider a case where monthly sales data is added to the sales_info table
defined below. Due to the large amount of data, the table is distributed
evenly across multiple coservers with a system-defined hash function. To
manage monthly additions of data to the table, it is also fragmented by a date
expression. The combined hybrid fragmentation is declared in the following
CREATE TABLE statement:

CREATE TABLE sales_info (order_num INT, sale_date DATE, ...)
FRAGMENT BY HYBRID (order_num) EXPRESSION
sale_date >= '01/01/1996' AND sale_date < '02/01/1996'
IN sales_slice_9601,
sale_date >= '02/01/1996' AND sale_date < '03/01/1996'
IN sales_slice_9602,

. . .
sale_date >= '12/01/1996' AND sale_date < '01/01/1997'
IN sales_slice_9612

The data values for a new month are originally loaded from an external
source. The data values are distributed evenly across the name coservers on
which the sales_info table is defined, using a system-defined hash function
on the same column:

CREATE TABLE jan_97 (order_num INT, sale_date DATE, ...)
FRAGMENT BY HASH (order_num) IN sales_slice_9701

INSERT INTO jan_97 SELECT (...) FROM ...

XPS
2-26 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT
After data values are loaded, you can attach the new table to sales_info. You
can issue the following ALTER FRAGMENT statement to attach the new table:

ALTER FRAGMENT ON TABLE sales_info ATTACH jan_97
AS sale_date >= '01/01/1997' AND sale_date < '02/01/1997'

DETACH Clause
Use the DETACH clause to detach a table fragment from a distribution scheme
and place the contents into a new nonfragmented table.

In Extended Parallel Server, the new table can also be a table with hash
fragmentation. ♦

For an explanation of distribution schemes, see “FRAGMENT BY Clause for
Tables” on page 2-31.

The new table that results from executing the DETACH clause does not inherit
any indexes or constraints from the original table. Only the data remains.

Similarly, the new table does not inherit any privileges from the original
table. Instead, the new table has the default privileges for any new table. For
further information on default table-level privileges, see the GRANT
statement on “Table-Level Privileges” on page 2-463.

The DETACH clause cannot be applied to a table if that table is the parent of a
referential constraint or if a rowid column is defined on the table.

XPS

Element Purpose Restrictions Syntax
dbspace Dbspace that contains the fragment to be detached. With

a hybrid-fragmented table, dbspace identifies a set of
dbspaces (XPS only). See “Altering Hybrid-Fragmented
Tables” on page 2-22.

Must exist at the
time of execution.

Identifier,
p. 4-189

new_table Nonfragmented table that results after you execute the
ALTER FRAGMENT statement. (In XPS, this can also be
a hash-fragmented table.)

Must not exist
before the time of
execution.

Database Object
Name, p. 4-46

DETACH
Clause

Back to ALTER FRAGMENT
p. 2-16

dbspace new_tableDETACH
SQL Statements 2-27

ALTER FRAGMENT
In Extended Parallel Server, you cannot use the DETACH clause if the table
has a dependent GK index defined on it. ♦

Detach That Results in a Nonfragmented Table

The following example shows the table cur_acct fragmented into two
dbspaces, dbsp1 and dbsp2:

ALTER FRAGMENT ON TABLE cur_acct DETACH dbsp2 accounts

This example detaches dbsp2 from the distribution scheme for cur_acct and
places the rows in a new table, accounts. Table accounts now has the same
structure (column names, number of columns, data types, and so on) as table
cur_acct, but the table accounts does not contain any indexes or constraints
from the table cur_acct. Both tables are now nonfragmented. The following
example shows a table that contains three fragments:

ALTER FRAGMENT ON TABLE bus_acct DETACH dbsp3 cli_acct

This statement detaches dbsp3 from the distribution scheme for bus_acct
and places the rows in a new table, cli_acct. Table cli_acct now has the same
structure (column names, number of columns, data types, and so on) as
bus_acct, but the table cli_acct does not contain any indexes or constraints
from the table bus_acct. Table cli_acct is a nonfragmented table, and table
bus_acct remains a fragmented table.

Detach That Results in a Table with Hash Fragmentation

The new table is a hash-fragmented table if the surviving_table had hybrid
fragmentation and the detached dbslice has more than one fragment. In a
hybrid-fragmented table, the dbslice is detached if you specify any dbspace
in that slice. For example, see the sales_info table discussed in the “Hybrid
Fragmentation Distribution Scheme” on page 2-26. Once the January 1997
data is available in sales_info, you might archive year-old sales_info data.

ALTER FRAGMENT ON TABLE sales_info
DETACH sales_slice_9601.1 jan_96

In this example, data from January 1996 is detached from the sales_info table
and placed in a new table called jan_96.

XPS

XPS
2-28 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT
INIT Clause
The INIT clause of ALTER FRAGMENT has the following syntax.

The INIT clause can accomplish tasks like the following:

� Move a nonfragmented table from one dbspace to another dbspace.

� Convert a fragmented table to a nonfragmented table.

� Fragment an existing not fragmented table without redefining it.

� Convert a fragmentation strategy to another fragmentation strategy.

� Fragment an existing index that is not fragmented without
redefining the index.

� Convert a fragmented index to a nonfragmented index. ♦

You cannot use the INIT clause to change the fragmentation strategy of a table
that has a GK index. ♦

When you use the INIT clause to modify a table, the tabid value in the system
catalog tables changes for the affected table. The constrid of all unique and
referential constraints on the table also change.

For more information about the storage spaces in which you can store a table,
see “Using the IN Clause” on page 2-237.

Element Purpose Restrictions Syntax
dbslice Dbslice storing fragmented information Must exist at time of execution. Identifier, p. 4-189
dbspace Dbspace storing fragmented information Must exist at time of execution. Identifier, p. 4-189

Back to ALTER FRAGMENT
p. 2-16

INIT
Clause

WITH ROWIDS

IDS

IN dbslice

IN dbspace

FRAGMENT BY Clause for Tables
p. 2-31INIT

XPS

IDS FRAGMENT BY Clause for Indexes
p. 2-33

IDS

XPS
SQL Statements 2-29

ALTER FRAGMENT
Warning: When you execute the ALTER FRAGMENT statement with this clause, it
results in data movement if the table contains any data. If data moves, the potential
exists for significant logging, for the transaction being aborted as a long transaction,
and for a relatively long exclusive lock being held on the affected tables. Use this
statement when it does not interfere with day-to-day operations.

WITH ROWIDS Option

Nonfragmented tables contain a hidden column called rowid. By default,
fragmented tables do not contain this column unless it is explicitly created.
You can use the WITH ROWIDS option to add a new rowid column. The
database server assigns a unique rowid number to each row and automati-
cally creates an index that it can use to find the physical location of the row.
The rowid value of a row cannot be updated, but remains stable during the
existence of the row. Each row requires an additional 4 bytes to store the
rowid column after you specify the WITH ROWIDS option.

Important: The rowid column is a deprecated feature. You should use primary keys,
rather than the rowid column, as an access method.

Converting a Fragmented Table to a Nonfragmented Table

You might decide that you no longer want a table to be fragmented. You can
use the INIT clause to convert a fragmented table to a nonfragmented table.
The following example shows the original fragmentation definition as well as
how to use the ALTER FRAGMENT statement to convert the table:

CREATE TABLE checks (col1 INT, col2 INT)
FRAGMENT BY ROUND ROBIN IN dbsp1, dbsp2, dbsp3;

ALTER FRAGMENT ON TABLE checks INIT IN dbsp1;

You must use the IN dbspace clause to place the table in a dbspace explicitly.

When you use the INIT clause to change a fragmented table to a
nonfragmented table, all attached indexes become nonfragmented indexes.
In addition, constraints that do not use existing user indexes (detached
indexes) become nonfragmented indexes. All newly nonfragmented indexes
exist in the same dbspace as the new nonfragmented table.

Using the INIT clause to change a fragmented table to a nonfragmented table
has no effect on the fragmentation strategy of detached indexes, nor of
constraints that use detached indexes.

IDS
2-30 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT
FRAGMENT BY Clause for Tables
Use the FRAGMENT BY portion of the INIT clause to fragment an existing non-
fragmented table, or to convert one fragmentation strategy to another.

In the HYBRID clause, column identifies the column or columns on which you
want to apply the hash portion of the hybrid table fragmentation strategy.
The expression can contain only columns from the current table and only data
values from a single row. No subqueries or aggregates are allowed. In
addition, the built-in CURRENT, DATE, and TIME functions are not valid.

Element Purpose Restrictions Syntax
column Column to which fragmentation

strategy applies
Must exist in the specified
table.

Identifier, p. 4-189

dbslice Dbslice that contains the table fragment Must be defined. Identifier, p. 4-189
dbspace Dbspace that contains the table

fragment
Must specify at least two but
no more than 2,048 dbspaces.

Identifier, p. 4-189

expr Expression that defines a table fragment
by a range, hash, or arbitrary rule

Must evaluate to a Boolean
value (true or false).

Expression, p. 4-67

FRAGMENT BY ROUND ROBIN dbspace

,

IN dbsliceXPS

column

,

)(HASH

FRAGMENT BY
Clause for Tables

HYBRID

,

column()

XPS

EXPRESSION

,

expr IN dbspace IN dbspace

IN

IN

EXPRESSION

Back to INIT Clause
p. 2-29

, REMAINDER

expr

(

,

,

expr IN ,dbslice

dbspace

)

INREMAINDER

expr

dbslice

dbspace

dbspace

(

,

)dbspace

,

,

dbspace dbspace)(

dbslice

,

,

SQL Statements 2-31

ALTER FRAGMENT
For more information on the available fragmentation strategies, see the
“FRAGMENT BY Clause” on page 2-238.

Changing an Existing Fragmentation Strategy on a Table

You can redefine a fragmentation strategy on a table if you decide that your
initial strategy does not fulfill your needs. When you alter a fragmentation
strategy, the database server discards the existing fragmentation strategy and
moves records to fragments as defined in the new fragmentation strategy.

The following example shows the statement that originally defined the
fragmentation strategy on the table account and then shows an ALTER
FRAGMENT statement that redefines the fragmentation strategy:

CREATE TABLE account (col1 INT, col2 INT)
FRAGMENT BY ROUND ROBIN IN dbsp1, dbsp2;

ALTER FRAGMENT ON TABLE account
INIT FRAGMENT BY EXPRESSION
col1 < 0 IN dbsp1,
col2 >= 0 IN dbsp2;

If an existing dbspace is full when you redefine a fragmentation strategy, you
must not use it in the new fragmentation strategy.

Defining a Fragmentation Strategy on a Nonfragmented Table

The INIT clause can define a fragmentation strategy on a nonfragmented
table, regardless of whether the table was created with a storage option:

CREATE TABLE balances (col1 INT, col2 INT) IN dbsp1;
ALTER FRAGMENT ON TABLE balances INIT

FRAGMENT BY EXPRESSION
col1 <= 500 IN dbsp1,
col1 > 500 AND col1 <=1000 IN dbsp2,
REMAINDER IN dbsp3;

When you use the INIT clause to fragment an existing nonfragmented table,
all indexes on the table become fragmented in the same way as the table. ♦

When you use the INIT clause to fragment an existing nonfragmented table,
indexes retain their existing fragmentation strategy. ♦

IDS

XPS
2-32 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT
FRAGMENT BY Clause for Indexes
The INIT FRAGMENT BY clause for indexes allows you to fragment an existing
index that is not fragmented without redefining the index. Use this clause to
define an expression-based distribution scheme for indexes.

You can convert an existing fragmentation strategy to another fragmentation
strategy. Any existing fragmentation strategy is discarded and records are
moved to fragments as defined in the new fragmentation strategy. You can
also convert a fragmented index to a nonfragmented index.

The expression can contain only columns from the current table and data
values from only a single row. No subqueries nor aggregates are allowed. The
built-in CURRENT, DATE, and TIME functions are not valid here.

Fragmenting Unique and System Indexes

You can fragment unique indexes only if the table uses an expression-based
distribution scheme. Any columns referenced in the fragment expression
must be indexed columns. If your ALTER FRAGMENT INIT statement fails to
meet either of these restrictions, the INIT fails, and work is rolled back.

You might have an attached unique index on a table fragmented by
Column A. If you use INIT to change the table fragmentation to Column B,
the INIT fails because the unique index is defined on Column A. To resolve
this issue, use the INIT clause on the index to detach it from the table fragmen-
tation strategy and fragment it separately.

IDS

Element Purpose Restrictions Syntax
dbspace Dbspace that contains the fragmented

information
You must specify at least two but
no more than 2,048 dbspaces.

Identifier, p. 4-189

expr Expression defining an index fragment
by a range, hash, or arbitrary rule

Must return a Boolean value. Condition, p. 4-24;
Expression, p. 4-67

Back to INIT Clause
p. 2-29

FRAGMENT BY
Clause for Indexes

FRAGMENT BY EXPRESSION

,

expr IN dbspace

REMAINDER IN dbspace,
SQL Statements 2-33

ALTER FRAGMENT
System indexes (such as those used in referential constraints and unique
constraints) use user indexes if the indexes exist. If no user indexes can be
used, system indexes remain nonfragmented and are moved to the dbspace
where the database was created. To fragment a system index, create the
fragmented index on the constraint columns and then use the ALTER TABLE
statement to add the constraint.

Detaching an Index from a Table-Fragmentation Strategy

You can detach an index from a table-fragmentation strategy with the INIT
clause, which causes an attached index to become a detached index. This
breaks any dependency of the index on the table fragmentation strategy.

ADD Clause
Use the ADD clause to add another fragment to an existing fragmentation list.

The expression can contain column names only from the current table and data
values only from a single row. No subqueries or aggregates are allowed. In
addition, the built-in CURRENT, DATE, and TIME functions are not valid here.

IDS

Element Purpose Restrictions Syntax
existing_dbspace Name of a dbspace in an

existing fragmentation list
Must exist at the time when
you execute the statement

Identifier, p. 4-189

expression Expression that defines the new
fragment that is to be added

Must return a Boolean value
(true or false)

Condition, p. 4-24;
Expression, p. 4-67

new_dbspace Name of dbspace to be added to
the fragmentation scheme

Must exist at the time when
you execute the statement

Identifier, p. 4-189

Back to ALTER FRAGMENT
p. 2-16

ADD
Clause

ADD new_dbspace

BEFORE

AFTER

existing_dbspace

IN new_dbspaceexpression

REMAINDER IN
2-34 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT
Adding a New Dbspace to a Round-Robin Distribution Scheme

You can add more dbspaces to a round-robin distribution scheme. The
following example shows the original round-robin definition:

CREATE TABLE book (col1 INT, col2 INT)
FRAGMENT BY ROUND ROBIN IN dbsp1, dbsp4;

To add another dbspace, use the ADD clause, as in this example:

ALTER FRAGMENT ON TABLE book ADD dbsp3;

Adding Fragment Expressions

Adding a fragment expression to the fragmentation list in an expression-
based distribution scheme can relocate records from existing fragments into
the new fragment. When you add a new fragment into the middle of the
fragmentation list, all the data existing in fragments after the new one must
be re-evaluated. The next example shows the original expression definition:

FRAGMENT BY EXPRESSION
c1 < 100 IN dbsp1,
c1 >= 100 AND c1 < 200 IN dbsp2,
REMAINDER IN dbsp3;

To add another fragment to hold rows between 200 and 300, use the
following ALTER FRAGMENT statement:

ALTER FRAGMENT ON TABLE news ADD
c1 >= 200 AND c1 < 300 IN dbsp4;

Any rows that were formerly in the remainder fragment and that fit the
criteria c1 >= 200 and c1 < 300 are moved to the new dbspace.

Using the BEFORE and AFTER Options

The BEFORE and AFTER options allow you to place a new fragment either
before or after an existing dbspace. You cannot use the BEFORE and AFTER
options when the distribution scheme is round-robin.

When you attach a new fragment without an explicit BEFORE or AFTER
option, the database server places the added fragment at the end of the
fragmentation list, unless a remainder fragment exists. If a remainder
fragment exists, the new fragment is placed just before the remainder
fragment. You cannot attach a new fragment after the remainder fragment.
SQL Statements 2-35

ALTER FRAGMENT
Using the REMAINDER Option

You cannot add a remainder fragment when one already exists. When you
add a new fragment to the fragmentation list, and a remainder fragment
exists, the records in the remainder fragment are retrieved and re-evaluated.
Some of these records might move to the new fragment. The remainder
fragment always remains the last item in the fragment list.

DROP Clause
Use the DROP clause to drop an existing fragment from a fragmentation list.

You cannot drop one of the fragments when the table contains only two
fragments. You cannot drop a fragment in a table that is fragmented with an
expression-based distribution scheme if the fragment contains data that
cannot be moved to another fragment. If the distribution scheme contains a
REMAINDER option, or if the expressions were constructed in an overlapping
manner, you can drop a fragment that contains data.

When you want to make a fragmented table nonfragmented, use either the
INIT or DETACH clause.

When you drop a fragment from a dbspace, the underlying dbspace is not
affected. Only the fragment data values within that dbspace are affected.

When you drop a fragment, the database server attempts to move all the
records in the dropped fragment to another fragment. In this case, the desti-
nation fragment might not have enough space for the additional records.
When this happens, follow one of the procedures that are listed in “ALTER
FRAGMENT and Transaction Logging” on page 2-18 to increase your space,
and retry the procedure.

IDS

Element Purpose Restrictions Syntax
dbspace Name of dbspace that contains

the dropped fragment
Must exist at the time when you
execute the statement.

Identifier, p. 4-189

Back to ALTER FRAGMENT
p. 2-16

DROP
Clause

DROP dbspace
2-36 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT
The following examples show how to drop a fragment from a fragmentation
list. The first line shows how to drop an index fragment, and the second line
shows how to drop a table fragment.

ALTER FRAGMENT ON INDEX cust_indx DROP dbsp2;

ALTER FRAGMENT ON TABLE customer DROP dbsp1;

MODIFY Clause
Use the MODIFY clause to change an existing fragment expression on an
existing dbspace. You can also use the MODIFY clause to move a fragment
expression from one dbspace to a different dbspace.

The expression must evaluate to a Boolean value (true or false).

No subqueries nor aggregates are allowed in the expression. In addition, the
built-in CURRENT, DATE, and TIME functions are not allowed.

When you use the MODIFY clause, the underlying dbspaces are not affected.
Only the fragment data values within the dbspaces are affected.

You cannot change a REMAINDER fragment into a nonremainder fragment if
records within the REMAINDER fragment do not satisfy the new expression.

IDS

Element Purpose Restrictions Syntax
expression Modified range, hash, or

arbitrary expression
Can specify columns in current table
only and data from only a single row.

Condition, p. 4-24;
Expression, p. 4-67

mod_ dbspace Modified dbspace Must exist when you execute the
statement.

Identifier, p. 4-189

new_dbspace Dbspace that contains the
modified information

Must exist when you execute the
statement.

Identifier, p. 4-189

Back to ALTER FRAGMENT
p. 2-16

MODIFY
Clause

1

MODIFY TO

REMAINDER

mod_dbspace

,

IN new_dbspaceexpression
SQL Statements 2-37

ALTER FRAGMENT
When you use the MODIFY clause to change an expression without changing
the dbspace storage for the expression, you must use the same name for the
mod_dbspace and the new_dbspace, as in the following example:

ALTER FRAGMENT ON TABLE cust_acct
MODIFY dbsp1 TO acct_num < 65 IN dbsp1

When you use the MODIFY clause to move an expression from one dbspace
to another, mod_dbspace is the name of the dbspace where the expression was
previously located, and new_dbspace is the new location for the expression:

ALTER FRAGMENT ON TABLE cust_acct
MODIFY dbsp1 TO acct_num < 35 IN dbsp2

Here the distribution scheme for the cust_acct table is modified so that all
row items in column acct_num that are less than 35 are now contained in the
dbspace dbsp2. These items were formerly contained in the dbspace dbsp1.

When you use the MODIFY clause to change the expression and to move it to
a new dbspace, you must change both the expression and the dbspace name.

If your indexes are attached indexes, and you modify the table, the index
fragmentation strategy is also modified.

Related Information
Related statements: CREATE TABLE, CREATE INDEX, and ALTER TABLE

For a discussion of fragmentation strategy, refer to the IBM Informix Database
Design and Implementation Guide.

For information on how to maximize performance when you make fragment
modifications, see your Performance Guide.
2-38 IBM Informix Guide to SQL: Syntax

ALTER FUNCTION
ALTER FUNCTION
Use the ALTER FUNCTION statement to change the routine modifiers or
pathname of a user-defined function.

Syntax

Usage
The ALTER FUNCTION statement allows you to modify a user-defined
function to tune its performance. With this statement you can modify charac-
teristics that control how the function executes. You can also add or replace
related used-defined routines (UDRs) that provide alternatives for the
optimizer, which can improve performance.

All modifications take effect on the next invocation of the function.

To use the ALTER FUNCTION statement, you must be the owner of the UDR or
have the DBA privilege.

+

IDS

Element Purpose Restrictions Syntax
function User-defined

function to be
modified

Must be registered in the database. If the name does
not uniquely identify a function, you must enter one
or more appropriate values for parameter_type.

Database Object
Name, p. 4-46

parameter_type Data type of a
parameter

Must be the same data types (and specified in the
same order) as in the definition of function.

Identifier,
p. 4-189

ALTER Routine
Modifier
p. 4-257

SPECIFIC FUNCTION
Specific
Name

p. 4-274

ADD

MODIFY

DROP

MODIFY EXTERNAL NAME

Shared-
Object

Filename
p. 4-270

,

WITH ()

,

parameter_type Ext

)

=

 FUNCTION function (
SQL Statements 2-39

ALTER FUNCTION
Keywords That Introduce Modifications

Use the following keywords to introduce what you modify in the UDR.

If the routine modifier is a BOOLEAN value, MODIFY sets the value to be T
(equivalent of using the keyword ADD to add the routine modifier). For
example, both of the following statements alter the func1 function so that it
can be executed in parallel in the context of a parallelizable data query:

ALTER FUNCTION func1 WITH (MODIFY PARALLELIZABLE)
ALTER FUNCTION func1 WITH (ADD PARALLELIZABLE)

See also “Altering Routine Modifiers Example” on page 2-48.

Related Information
Related Statements: ALTER PROCEDURE, ALTER ROUTINE, CREATE
FUNCTION, and CREATE PROCEDURE

For a discussion on how to create and use SPL routines, see the IBM Informix
Guide to SQL: Tutorial.

For a discussion on how to create and use external routines, see IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

For information about how to create C UDRs, see the IBM Informix DataBlade
API Programmer’s Guide.

Keyword Purpose

ADD Introduces a routine modifier that you want to
add to the user-defined function

MODIFY Introduces a routine modifier for which you want
to modify a value

DROP Introduces a routine modifier that you want to
remove from the user-defined function

MODIFY EXTERNAL NAME
(for external functions only)

Introduces a new location for the executable file

WITH Introduces all modifications
2-40 IBM Informix Guide to SQL: Syntax

ALTER INDEX
ALTER INDEX
Use the ALTER INDEX statement to change the clustering attribute or the
locking mode of an existing index.

Syntax

Usage
ALTER INDEX is valid only on indexes created explicitly with the CREATE
INDEX statement. It cannot modify indexes that were created implicitly to
support constraints, and it cannot modify an index on a temporary table.

You cannot change the collating order of an existing index. If you use ALTER
INDEX to modify an index after SET COLLATION has specified a non-default
collating order, the SET COLLATION statement has no effect on the index. ♦

TO CLUSTER Option

The TO CLUSTER option causes the database server to reorder the rows of the
physical table according to the indexed order.

The next example shows how you can use the ALTER INDEX TO CLUSTER
statement to order the rows in the orders table physically. The CREATE INDEX
statement creates an index on the customer_num column of the table. Then
the ALTER INDEX statement causes the physical ordering of the rows.

CREATE INDEX ix_cust ON orders (customer_num);
ALTER INDEX ix_cust TO CLUSTER;

+

Element Purpose Restrictions Syntax
 index Name of the index to be altered Must exist Database Object Name, p. 4-46

ALTER INDEX index TO

NOT

CLUSTER

COARSE

NORMALXPS

IDS

LOCK MODE

IDS
SQL Statements 2-41

ALTER INDEX
For an ascending index, TO CLUSTER puts rows in lowest-to-highest order.
For a descending index, the rows are reordered in highest-to-lowest order.

When you reorder, the entire file is rewritten. This process can take a long
time, and it requires sufficient disk space to maintain two copies of the table.

While a table is clustering, it is locked IN EXCLUSIVE MODE. When another
process is using the table to which the index name belongs, the database
server cannot execute the ALTER INDEX statement with the TO CLUSTER
option; it returns an error unless lock mode is set to WAIT. (When lock mode
is set to WAIT, the database server retries the ALTER INDEX statement.)

Over time, if you modify the table, you can expect the benefit of an earlier
cluster to disappear because rows are added in space-available order, not
sequentially. You can recluster the table to regain performance by issuing
another ALTER INDEX TO CLUSTER statement on the clustered index. You do
not need to drop a clustered index before you issue another ALTER INDEX TO
CLUSTER statement on a currently clustered index.

If you are using Extended Parallel Server, you cannot use the CLUSTER
option on STANDARD tables. ♦

TO NOT CLUSTER Option

The TO NOT CLUSTER option drops the cluster attribute on the index name
without affecting the physical table. Because only one clustered index per
table can exist, you must use the TO NOT CLUSTER option to release the
cluster attribute from one index before you assign it to another. The following
statements illustrate how to remove clustering from one index and how a
second index physically reclusters the table:

CREATE UNIQUE INDEX ix_ord
ON orders (order_num);

CREATE CLUSTER INDEX ix_cust
ON orders (customer_num);

. . .
ALTER INDEX ix_cust TO NOT CLUSTER;

ALTER INDEX ix_ord TO CLUSTER;

The first two statements create indexes for the orders table and cluster the
physical table in ascending order on the customer_num column. The last two
statements recluster the physical table in ascending order on the order_num
column.

XPS
2-42 IBM Informix Guide to SQL: Syntax

ALTER INDEX
LOCK MODE Options

Use the LOCK MODE clause to specify the locking granularity of the index.

When you use the COARSE mode, index-level locks are acquired on the index
instead of item-level or page-level locks. This mode reduces the number of
lock calls on an index.

The COARSE mode offers performance advantages when you know the index
is not going to change; for example, when read-only operations are
performed on the index.

Use the NORMAL mode to have the database server place item-level or page-
level locks on the index as necessary. Use this mode when the index gets
updated frequently.

When the database server executes the LOCK MODE COARSE option, it
acquires an exclusive lock on the table for the duration of the ALTER INDEX
statement. Any transactions currently using a lock of finer granularity must
complete before the database server switches to the COARSE lock mode.

Related Information
Related statements: CREATE INDEX and CREATE TABLE

For a discussion of the performance implications of clustered indexes, see
your Performance Guide.

XPS
SQL Statements 2-43

ALTER PROCEDURE
ALTER PROCEDURE
Use the ALTER PROCEDURE statement to change the routine modifiers or
pathname of a previously defined external procedure.

Syntax

Usage
The ALTER PROCEDURE statement allows you to modify an external
procedure to tune its performance by modifying characteristics that control
how it executes. You can also add or replace related UDRs that provide alter-
natives for the optimizer, which can improve performance.

To use the ALTER PROCEDURE statement, you must be the owner of the UDR
or have the DBA privilege.

If the name is not unique among routines registered in the database, you
must enter one or more appropriate values for parameter_type.

All modifications take effect on the next invocation of the procedure.

+

IDS

Element Purpose Restrictions Syntax
procedure User-defined

procedure to
modify

Must be registered in the database. If the name does
not uniquely identify a function, you must enter one
or more appropriate values for parameter_type.

Database Object
Name,
p. 4-46

parameter_type Data type of a
parameter

Must be the same data types (and specified in the
same order) as in the definition of procedure.

Identifier,
p. 4-189

ALTER Routine
Modifier
p. 4-257

SPECIFIC PROCEDURE
Specific
Name

p. 4-274

ADD

MODIFY

DROP

MODIFY EXTERNAL NAME

Shared-
Object

Filename
p. 4-270

,

WITH ()

,

parameter_type Ext

)

=

 PROCEDURE procedure (
2-44 IBM Informix Guide to SQL: Syntax

ALTER PROCEDURE
Use the following keywords to introduce the items in the external procedure
that you want to modify.

If the routine modifier is a BOOLEAN value, MODIFY sets the value to be T
(equivalent to using the keyword ADD to add the routine modifier). For
example, both of the following statements alter the proc1 procedure so that it
can be executed in parallel in the context of a parallelizable data query:

ALTER PROCEDURE proc1 WITH (MODIFY PARALLELIZABLE)
ALTER PROCEDURE proc1 WITH (ADD PARALLELIZABLE)

See also “Altering Routine Modifiers Example” on page 2-48.

Related Information
Related Statements: ALTER FUNCTION, ALTER ROUTINE, CREATE
FUNCTION, CREATE PROCEDURE, DROP PROCEDURE, and DROP ROUTINE

For a discussion on how to create and use SPL routines, see the IBM Informix
Guide to SQL: Tutorial.

For a discussion on how to create and use external routines, see IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

For information about how to create C UDRs, see the IBM Informix DataBlade
API Programmer’s Guide.

Keyword Purpose

ADD Introduces a routine modifier that you want to
add to the external procedure

MODIFY Introduces a routine modifier for which you want
to modify a value

DROP Introduces a routine modifier that you want to
remove from the external procedure

MODIFY EXTERNAL NAME
(for external routines only)

Introduces a new location for the executable file,
specifying a different pathname from the original

WITH Introduces all modifications
SQL Statements 2-45

ALTER ROUTINE
ALTER ROUTINE
Use the ALTER ROUTINE statement to change the routine modifiers or
pathname of a previously defined user-defined routine (UDR).

Syntax

Usage
The ALTER ROUTINE statement allows you to modify a previously defined
UDR to tune its performance by modifying characteristics that control how
the UDR executes. You can also add or replace related UDRs that provide
alternatives for the optimizer, which can improve performance.

This statement is useful when you do not know whether a UDR is a user-
defined function or a user-defined procedure. When you use this statement,
the database server alters the appropriate user-defined procedure or user-
defined function.

All modifications take effect on the next invocation of the UDR.

+

IDS

Element Purpose Restrictions Syntax
routine User-defined

routine to
modify

Must be registered in the database. If the name does
not uniquely identify a routine, you must enter one or
more appropriate values for parameter_type.

Database
Object Name,
p. 4-46

parameter_type Data type of a
parameter

Must be the same data types (and specified in the
same order) as in the definition of routine.

Identifier,
p. 4-189

ALTER ROUTINE routine (Routine
Modifier
p. 4-257

SPECIFIC ROUTINE
Specific
Name

p. 4-274

ADD

MODIFY

DROP

MODIFY EXTERNAL NAME

Shared-
Object

Filename
p. 4-270

,

WITH ()

,

parameter_type Ext

)

=

2-46 IBM Informix Guide to SQL: Syntax

ALTER ROUTINE
To use the ALTER ROUTINE statement, you must be the owner of the UDR or
have the DBA privilege.

Restrictions

If the name does not uniquely identify a UDR, you must enter one or more
appropriate values for parameter_type.

When you use this statement, the type of UDR cannot be ambiguous. The UDR
that you specify must refer to either a user-defined function or a user-defined
procedure. If either of the following conditions exist, the database server
returns an error:

� The name (and parameters) that you specify applies to both a user-
defined procedure and a user-defined function.

� The specific name that you specify applies to both a user-defined
function and a user-defined procedure.

Keywords That Introduce Modifications

Use the following keywords to introduce the items in the UDR that you want
to modify.

If the routine modifier is a BOOLEAN value, MODIFY sets the value to be T
(equivalent to using the keyword ADD to add the routine modifier).

Keyword Purpose

ADD Introduces a routine modifier that you want to
add to the UDR

MODIFY Introduces a routine modifier for which you want
to modify a value

DROP Introduces a routine modifier that you want to
remove from the UDR

MODIFY EXTERNAL NAME
(for external UDRs only)

Introduces a new location for the executable file

WITH Introduces all modifications
SQL Statements 2-47

ALTER ROUTINE
For example, both of the following statements alter the func1 UDR so that it
can be executed in parallel in the context of a parallelizable data query
statement:

ALTER ROUTINE func1 WITH (MODIFY PARALLELIZABLE)
ALTER ROUTINE func1 WITH (ADD PARALLELIZABLE)

Altering Routine Modifiers Example

Suppose you have an external function func1 that is set to handle NULL
values and has a cost per invocation set to 40. The following ALTER ROUTINE
statement adjusts the settings of the function by dropping the ability to
handle NULL values, tunes the func1 by changing the cost per invocation to
20, and indicates that the function can execute in parallel:

ALTER ROUTINE func1(CHAR, INT, BOOLEAN)
WITH (

DROP HANDLESNULLS,
MODIFY PERCALL_COST = 20,
ADD PARALLELIZABLE
)

Because the name func1 is not unique to the database, the data type param-
eters are specified so that the routine signature would be unique. If this
function had a Specific Name, for example, raise_sal, specified when it was
created, you could identify the function with the following first line:

ALTER SPECIFIC ROUTINE raise_sal

Related Information
Related Statements: ALTER FUNCTION, ALTER PROCEDURE, CREATE
FUNCTION, CREATE PROCEDURE, DROP FUNCTION, DROP PROCEDURE, and
DROP ROUTINE

For a discussion on how to create and use SPL routines, see the IBM Informix
Guide to SQL: Tutorial.

For a discussion on how to create and use external routines, see IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

For information about how to create C UDRs, see the IBM Informix DataBlade
API Programmer’s Guide.
2-48 IBM Informix Guide to SQL: Syntax

ALTER SEQUENCE
ALTER SEQUENCE
Use the ALTER SEQUENCE statement to modify the definition of a sequence.

Syntax

Usage
ALTER SEQUENCE redefines an existing sequence object. It only affects subse-
quently generated values (and any unused values in the sequence cache).

You cannot use the ALTER SEQUENCE statement to rename a sequence nor to
change the owner of a sequence.

+

IDS

Element Purpose Restrictions Syntax
max New upper limit on values Must be integer > CURRVAL and restart Literal Number, p. 4-216
min New lower limit on values Must be integer < CURRVAL and restart Literal Number, p. 4-216
owner Owner of sequence Cannot be changed by this statement Owner Name, p. 4-234
restart New first value in sequence Must be integer in the INT8 range Literal Number, p. 4-216
sequence Name of an existing

sequence
Must exist. Cannot be a synonym. Identifier, p. 4-189

size New number of values to
preallocate in memory

Integer > 2 but < cardinality of values in
one cycle (= |(max - min)/step|)

Literal Number, p. 4-216

step New interval between values Must be a nonzero integer Literal Number, p. 4-216

NOMAXVALUE

ALTER SEQUENCE

INCREMENT step

CACHE

MAXVALUE max

minMINVALUE

CYCLE

NOCACHE

NOORDER

restart

NOMINVALUE

BY

WITH

NOCYCLE

size

ORDER

1

1

1

1

1

1

1RESTART

owner

sequence

.

SQL Statements 2-49

ALTER SEQUENCE
You must be the owner, or the DBA, or else have the ALTER privilege on the
sequence to modify its definition. Only elements of the sequence definition
that you specify explicitly in the ALTER SEQUENCE statement are modified.
An error occurs if you make contradictory changes, such as specifying both
MAXVALUE and NOMAXVALUE, or both the CYCLE and NOCYCLE options.

INCREMENT BY Option

Use the INCREMENT BY option to specify a new interval between successive
numbers in a sequence. The interval, or step value, can be a positive whole
number (for ascending sequences) or a negative whole number (for
descending sequences) in the INT8 range. The BY keyword is optional.

START WITH Option

Use the START WITH option to specify a new first number of the sequence.
The restart value must be an integer within the INT8 range that is greater than
or equal to the min value (for an ascending sequence) or that is less than or
equal to the max value (for a descending sequence), if min or max is specified
in the ALTER SEQUENCE statement. The WITH keyword is optional.

MAXVALUE or NOMAXVALUE Option

Use the MAXVALUE option to specify a new upper limit of values in the
sequence. The maximum value, or max, must be an integer in the INT8 range
that is greater than sequence.CURRVAL and restart (or greater than the origin in
the original CREATE SEQUENCE statement, if restart is not specified).

Use the NOMAXVALUE option to replace the current limit with a new default
maximum of 2e64 for ascending sequences or -1 for descending sequences.

MINVALUE or NOMINVALUE Option

Use the MINVALUE option to specify a new lower limit of values in the
sequence. The minimum value, or min, must be an integer the INT8 range that
is less than sequence.CURRVAL and restart (or less than the origin in the original
CREATE SEQUENCE statement, if restart is not specified).

Use the NOMINVALUE option to replace the current lower limit with a default
of 1 for ascending sequences or -(2e64) for descending sequences.
2-50 IBM Informix Guide to SQL: Syntax

ALTER SEQUENCE
CYCLE or NOCYCLE Option

Use the CYCLE option to continue generating sequence values after the
sequence reaches the maximum (ascending) or minimum (descending) limit,
to replace the NOCYCLE attribute. After an ascending sequence reaches max,
it generates the min value for the next value. After a descending sequence
reaches min, it generates the max value for the next sequence value.

Use the NOCYCLE option to prevent the sequence from generating more
values after reaching the declared limit. Once the sequence reaches the limit,
the next reference to sequence.NEXTVAL returns an error message.

CACHE or NOCACHE Option

Use the CACHE option to specify a new number of sequence values that are
preallocated in memory for rapid access. The cache size must be a whole
number in the INT range that is less than the number of values in a cycle (or
less than |(max - min)/step|). The minimum size is 2 preallocated values.

Use NOCACHE to have no values preallocated in memory. (See also the
description of SEQ_CACHE_SIZE in “CREATE SEQUENCE” on page 2-206.)

ORDER or NOORDER Option

These keywords have no effect on the behavior of the sequence. The sequence
always issues values to users in the order of their requests, as if the ORDER
keyword were always specified. The ORDER and NOORDER keywords are
accepted by the ALTER SEQUENCE statement, however, for compatibility
with implementations of sequence objects in other dialects of SQL.

Related Information
Related statements: CREATE SEQUENCE, DROP SEQUENCE, RENAME
SEQUENCE, CREATE SYNONYM, DROP SYNONYM, GRANT, REVOKE, INSERT,
UPDATE, and SELECT

For information about the syssequences system catalog table in which
sequence objects are registered, see the IBM Informix Guide to SQL: Reference.

For information about initializing, generating, or reading values from a
sequence, see “NEXTVAL and CURRVAL Operators” on page 4-102.
SQL Statements 2-51

ALTER TABLE
ALTER TABLE
Use the ALTER TABLE statement to modify the definition of a table.

Syntax

Usage
Altering a table on which a view depends might invalidate the view.

Warning: The clauses available with this statement have varying performance impli-
cations. Before you undertake alter operations, check corresponding sections in your
“Performance Guide” to review effects and strategies.

You cannot alter a temporary table. You also cannot alter a violations or
diagnostics table. In addition, you cannot add, drop, or modify a column if
the table that contains the column has a violation table or a diagnostics table
associated with it. If the USETABLENAME environment variable is set, you
cannot specify a synonym for the table in the ALTER TABLE statement.

If a table has range fragmentation, only the Logging TYPE options and LOCK
MODE clause are valid. All other ALTER TABLE options return an error. ♦

If you have a static or raw table, the only information that you can alter is the
logging type of the table. That is, the Logging TYPE options are the only part
of the ALTER TABLE statement that you can use.

+

Element Purpose Restrictions Syntax
synonym Synonym for the table to be

altered
Synonym and its table must exist;
USETABLENAME is not set

Database Object Name, p. 4-46

table Name of table to be altered Must exist in current database Database Object Name, p. 4-46

synonym

IDS Typed-Table Options
p. 2-80

Logging TYPE Options
p. 2-79

ALTER TABLE table
Basic Table Options

p. 2-53

XPS
2-52 IBM Informix Guide to SQL: Syntax

ALTER TABLE
To use ALTER TABLE, you must meet one of the following conditions:

� You must have DBA privilege on the database containing the table.

� You must own the table.

� You must have the Alter privilege on the specified table and the
Resource privilege on the database where the table resides.

� To add a referential constraint, you must have the DBA or References
privilege on either the referenced columns or the referenced table.

� To drop a constraint, you must have the DBA privilege or be the
owner of the constraint. If you are the owner of the constraint but not
the owner of the table, you must have Alter privilege on the specified
table. You do not need the References privilege to drop a constraint.

Basic Table Options
The Basic Table Options segment of ALTER TABLE has the following syntax.

Basic Table Options Back to ALTER TABLE
p. 2-52

LOCK MODE Clause
p. 2-76

MODIFY NEXT SIZE Clause
p. 2-76

DROP CONSTRAINT Clause
p. 2-75

ADD CONSTRAINT Clause
p. 2-72

MODIFY Clause
p. 2-65

1

1

,

IDS ADD

DROP

PUT Clause
p. 2-71

IDS

1
ADD TYPE Clause

p. 2-78

ADD Clause
p. 2-55

ROWIDS

DROP

CRCOLSADD

DROP Clause
p. 2-63
SQL Statements 2-53

ALTER TABLE
You can use the Basic Table Options segment to modify the schema of a table
by adding, modifying, or dropping columns and constraints, or changing the
extent size or locking granularity of a table. The database server performs
alterations in the order that you specify. If any of the actions fails, the entire
operation is cancelled.

You can also associate a table with a named ROW type or specify a new
storage space to store large-object data. You can also add or drop rowid
columns and shadow columns for Enterprise Replication. You cannot,
however, specify these options in conjunction with any other alterations. ♦

Using the ADD ROWIDS Keywords

Use the ADD ROWIDS keywords to add a new column called rowid to a
fragmented table. (Fragmented tables do not contain the hidden rowid
column by default.) When you add a rowid column, the database server
assigns a unique number to each row that remains stable for the life of the
row. The database server creates an index that it uses to find the physical
location of the row. After you add the rowid column, each row of the table
contains an additional 4 bytes to store the rowid value.

Tip: Use the ADD ROWIDS clause only on fragmented tables. In nonfragmented
tables, the rowid column remains unchanged. It is recommended that you use
primary keys as an access method rather than exploiting the rowid column.

For additional information about the rowid column, refer to your Adminis-
trator’s Reference.

Using the DROP ROWIDS Keywords

The DROP ROWIDS keywords can drop a rowid column that you added (with
either the CREATE TABLE or ALTER FRAGMENT statement) to a fragmented
table. You cannot drop the rowid column of a nonfragmented table.

Using the ADD CRCOLS Keywords

The ADD CRCOLS keywords create shadow columns, cdrserver and cdrtime,
that Enterprise Replication uses for conflict resolution. These columns enable
the database server to use the time-stamp or SPL conflict-resolution rule.
For more information, refer to “Using the WITH CRCOLS Option” on
page 2-235 and to the IBM Informix Dynamic Server Enterprise Replication Guide.

IDS

IDS

IDS

IDS
2-54 IBM Informix Guide to SQL: Syntax

ALTER TABLE
Using the DROP CRCOLS Keywords

Use the DROP CRCOLS keywords to drop the cdrserver and cdrtime shadow
columns. You cannot drop these columns if Enterprise Replication is in use.

ADD Clause
Use the ADD clause to add a column to a table.

The following restrictions apply to the ADD clause:

� You cannot add a serial column to a table if the table contains data

� In Extended Parallel Server, you cannot add a column to a table that
has a bit-mapped index. ♦

IDS

Element Purpose Restrictions Syntax
column Name of column before which

new_column is to be placed
Must already exist in the table. Identifier, p. 4-189

new_column Name of column that you are
adding

You cannot add a serial column
if the table contains data.

Identifier, p. 4-189

,

New Column()ADD

BEFORE

new_column Data
Type

p. 4-49
DEFAULT

Clause
p. 2-56

Single-Column
Constraint

Format
p. 2-57

ADD
Clause

New Column

New Column

Back to Basic Table Options
p. 2-53

column

XPS
SQL Statements 2-55

ALTER TABLE
Using the BEFORE Option

The BEFORE option specifies the column before which to add the new
column(s). In the following example, the BEFORE option directs the database
server to add the item_weight column before the total_price column:

ALTER TABLE items
ADD (item_weight DECIMAL(6,2) NOT NULL

BEFORE total_price)

If you do not include the BEFORE option, the database server adds the new
column or list of columns to the end of the table definition by default.

DEFAULT Clause
Use the DEFAULT clause to specify at value that the database server should
insert in a column when an explicit value for the column is not specified.

You cannot specify a default value for serial columns. If the table that you are
altering already has rows in it when you add a column that contains a default
value, the database server inserts the default value for all pre-existing rows.

Element Purpose Restrictions Syntax
literal Literal default value

for the column
Must be appropriate for the data type of the column.
See “Using a Literal as a Default Value” on page 2-218.

Expression,
p. 4-67

DEFAULT
Clause

literalDEFAULT

USER

SITENAME

DBSERVERNAME

TODAY

NULL

CURRENT

Back to ADD Clause p. 2-55
Back to MODIFY Clause p. 2-65

+
DATETIME Field
Qualifier p. 4-65
2-56 IBM Informix Guide to SQL: Syntax

ALTER TABLE
The following example adds a column to the items table. In items, the new
column item_weight has a literal default value:

ALTER TABLE items
ADD item_weight DECIMAL (6, 2) DEFAULT 2.00
BEFORE total_price

In this example, each existing row in the items table has a default value of
2.00 for the item_weight column.

For more information about the options of the DEFAULT clause, refer to
“DEFAULT Clause” on page 2-217.

Single-Column Constraint Format
Use the Single-Column Constraint Format to associate constraints with a
specified column.

You cannot specify a primary-key or unique constraint on a new column if
the table contains data. In the case of a unique constraint, however, the table
can contain a single row of data. When you want to add a column with a
primary-key constraint, the table must be empty when you issue the ALTER
TABLE statement.

Single-Column
Constraint Format

Back to ADD Clause
p. 2-55

UNIQUE

DISTINCT

PRIMARY KEY

REFERENCES
Clause
p. 2-59

CHECK Clause
p. 2-62

NOT NULL

+

++

Constraint
Definition
p. 2-58

Constraint
Definition
p. 2-58
SQL Statements 2-57

ALTER TABLE
The following rules apply when you place primary-key or unique constraints
on existing columns:

� When you place a primary-key or unique constraint on a column or
set of columns, the database server creates an internal B-tree index on
the constrained column or set of columns unless a user-created index
was defined on the column or set of columns.

� When you place a primary-key or unique constraint on a column or
set of columns, and a unique index already exists on that column or
set of columns, the constraint shares the index. If the existing index
allows duplicates, however, the database server returns an error. You
must then drop the existing index before you add the constraint.

� When you place a primary-key or unique constraint on a column or
set of columns, and a referential constraint already exists on that
column or set of columns, the duplicate index is upgraded to unique
(if possible), and the index is shared.

You cannot place a unique constraint on a BYTE or TEXT column, nor can you
place referential constraints on columns of these types. A check constraint on
a BYTE or TEXT column can check only for IS NULL, IS NOT NULL, or LENGTH.

When you place a referential constraint on a column or set of columns, and
an index already exists on that column or set of columns, the index is
upgraded to unique (if possible) and the index is shared.

Using Not-Null Constraints with ADD

If a table contains data, when you add a column with a not-null constraint
you must also include a DEFAULT clause. If the table is empty, however, you
can add a column and apply only the not-null constraint. The following
statement is valid whether or not the table contains data:

ALTER TABLE items
ADD (item_weight DECIMAL(6,2)
DEFAULT 2.0 NOT NULL

BEFORE total_price)

Constraint Definition

In Dynamic Server, use the Constraint Definition portion of the ALTER TABLE
statement to declare the name of a constraint and to set the mode of the
constraint to disabled, enabled, or filtering. ♦

IDS
2-58 IBM Informix Guide to SQL: Syntax

ALTER TABLE
In Extended Parallel Server, use the Constraint Definition portion of the
ALTER TABLE statement to declare the name of a constraint. ♦

For more information about constraint-mode options, see “Choosing a
Constraint-Mode Option” on page 2-230.

REFERENCES Clause

The REFERENCES clause has the following syntax.

XPS

Element Purpose Restrictions Syntax
constraint Name declared here to the constraint Must be unique. Identifier, p. 4-189

Constraint Definition Back to Single-Column Constraint Format p. 2-57
Back to Multiple-Column Constraint Format p. 2-73

CONSTRAINT

FILTERING

DISABLED

WITH ERROR

ENABLED

WITHOUT ERROR

constraint IDS

Element Purpose Restrictions Syntax
column Referenced column in

the referenced table
See “Restrictions on Referential
Constraints” on page 2-60.

Identifier, p. 4-189

table The referenced table The referenced and the referencing tables
must reside in the same database.

Database Object Name,
p. 4-46

)

,

column

REFERENCES

ON DELETE CASCADE

table

REFERENCES
Clause

Back to Single-Column Constraint Format p. 2-57
Back to Multiple-Column Constraint Format p. 2-73

+

(

SQL Statements 2-59

ALTER TABLE
The REFERENCES clause allows you to place a foreign-key reference on a
column. The referenced column can be in the same table as the referencing
column, or in a different table in the same database.

If the referenced table is different from the referencing table, the default is the
primary-key column. If the referenced table is the same as the referencing
table, there is no default.

Restrictions on Referential Constraints

You must have the REFERENCES privilege to create a referential constraint.

The following restrictions apply to the column that is specified (the referenced
column) in the REFERENCES clause:

� The referenced and referencing tables must be in the same database.

� The referenced column (or set of columns) must have a unique or
primary-key constraint.

� The referencing and referenced columns must be the same data type.

(The only exception is that a referencing column must be an integer
data type if the referenced column is a serial data type.)

� You cannot place a referential constraint on a BYTE or TEXT column.

� Constraints uses the collation in effect at their time of creation. ♦
� A column-level REFERENCES clause can include only a single

column name.

� The maximum number of columns in a table-level REFERENCES
clause is 16.

� The total length of the columns in a table-level REFERENCES clause
cannot exceed 390 bytes. ♦

� The total length of the columns in a table-level REFERENCES clause
cannot exceed 255 bytes. ♦

Default Values for the Referenced Column

If the referenced table is different from the referencing table, you do not need
to specify the referenced column; the default column is the primary-key
column (or columns) of the referenced table. If the referenced table is the
same as the referencing table, you must specify the referenced column.

IDS

IDS

XPS
2-60 IBM Informix Guide to SQL: Syntax

ALTER TABLE
The following example creates a new column in the cust_calls table,
ref_order. The ref_order column is a foreign key that references the
order_num column in the orders table.

ALTER TABLE cust_calls
ADD ref_order INTEGER
REFERENCES orders (order_num)
BEFORE user_id

When you place a referential constraint on a column or set of columns, and a
duplicate or unique index already exists on that column or set of columns, the
index is shared.

Using the ON DELETE CASCADE Option

Use the ON DELETE CASCADE option if you want rows deleted in the child
table when corresponding rows are deleted in the parent table. If you do not
specify cascading deletes, the default behavior of the database server
prevents you from deleting data in a table if other tables reference it.

If you specify this option, later when you delete a row in the parent table, the
database server also deletes any rows associated with that row (foreign keys)
in a child table. The advantage of the ON DELETE CASCADE option is that it
allows you to reduce the quantity of SQL statements needed to perform delete
actions.

For example, in the stores_demo database, the stock table contains the
stock_num column as a primary key. The catalog table refers to the
stock_num column as a foreign key. The following ALTER TABLE statements
drop an existing foreign-key constraint (without cascading delete) and add a
new constraint that specifies cascading deletes:

ALTER TABLE catalog DROP CONSTRAINT aa

ALTER TABLE catalog ADD CONSTRAINT
(FOREIGN KEY (stock_num, manu_code) REFERENCES stock
ON DELETE CASCADE CONSTRAINT ab)

With cascading deletes specified on the child table, in addition to deleting a
stock item from the stock table, the delete cascades to the catalog table that is
associated with the stock_num foreign key. This cascading delete works only
if the stock_num that you are deleting was not ordered; otherwise, the
constraint from the items table would disallow the cascading delete. For
more information, see “Restrictions on DELETE When Tables Have
Cascading Deletes” on page 2-346.
SQL Statements 2-61

ALTER TABLE
If a table has a trigger with a DELETE trigger event, you cannot define a
cascading-delete referential constraint on that table. You receive an error
when you attempt to add a referential constraint that specifies ON DELETE
CASCADE to a table that has a delete trigger.

For information about syntax restrictions and locking implications when you
delete rows from tables that have cascading deletes, see “Considerations
When Tables Have Cascading Deletes” on page 2-346.

Locks Held During Creation of a Referential Constraint

When you create a referential constraint, the database server places an
exclusive lock on the referenced table. The lock is released after you finish
with the ALTER TABLE statement or at the end of a transaction (if you are
altering the table in a database that uses transaction logging).

CHECK Clause

A check constraint designates a condition that must be met before data can be
inserted into a column.

During an insert or update, if a row returns false for any check constraint
defined on a table, the database server returns an error. No error is returned,
however, if a row returns NULL for a check constraint. In some cases, you
might want to use both a check constraint and a NOT NULL constraint.

Check constraints are defined using search conditions. The search condition
cannot contain user-defined routines, subqueries, aggregates, host variables,
or rowids. In addition, the condition cannot contain the variant built-in
functions CURRENT, USER, SITENAME, DBSERVERNAME, or TODAY.

The check constraint cannot include columns in different tables. When you
are using the ADD or MODIFY clause, the check constraint cannot depend
upon values in other columns of the same table.

Condition
p. 4-24CHECK ()

CHECK
Clause

Back to Single-Column Constraint Format p. 2-57
Back to Multiple-Column Constraint Format p. 2-73
2-62 IBM Informix Guide to SQL: Syntax

ALTER TABLE
The next example adds a new unit_price column to the items table and
includes a check constraint to ensure that the entered value is greater than 0:

ALTER TABLE items
ADD (unit_price MONEY (6,2) CHECK (unit_price > 0))

To create a constraint that checks values in more than one column, use the
ADD CONSTRAINT clause. The following example builds a constraint on the
column that was added in the previous example. The check constraint now
spans two columns in the table.

ALTER TABLE items ADD CONSTRAINT CHECK (unit_price < total_price)

DROP Clause
Use the DROP clause to drop one or more columns from a table.

You cannot issue an ALTER TABLE DROP statement that would drop every
column from the table. At least one column must remain in the table.

You cannot drop a column that is part of a fragmentation strategy.

In Extended Parallel Server, you cannot use the DROP clause if the table has
a dependent GK index. ♦

How Dropping a Column Affects Constraints

When you drop a column, all constraints on that column are also dropped:

� All single-column constraints are dropped.

� All referential constraints that reference the column are dropped.

Element Purpose Restrictions Syntax
column Name of a column

to be dropped
Must exist in the table. If any fragment expression references it,
or if it is the last column in the table, column cannot be dropped.

Identifier,
p. 4-189

,

column

DROP ()

DROP
Clause

Back to Basic Table Options
p. 2-53

column

XPS
SQL Statements 2-63

ALTER TABLE
� All check constraints that reference the column are dropped.

� If the column is part of a multiple-column primary-key or unique
constraint, the constraints placed on the multiple columns are also
dropped. This action, in turn, triggers the dropping of all referential
constraints that reference the multiple columns.

Because any constraints that are associated with a column are dropped when
the column is dropped, the structure of other tables might also be altered
when you use this clause. For example, if the dropped column is a unique or
primary key that is referenced in other tables, those referential constraints
also are dropped. Therefore the structure of those other tables is also altered.

How Dropping a Column Affects Triggers

In general, when you drop a column from a table, the triggers based on that
table remain unchanged. If the column that you drop appears in the action
clause of a trigger, however, dropping the column can invalidate the trigger.
The following statements illustrate the possible effects on triggers:

CREATE TABLE tab1 (i1 int, i2 int, i3 int);
CREATE TABLE tab2 (i4 int, i5 int);
CREATE TRIGGER col1trig UPDATE OF i2 ON tab1

BEFORE(INSERT INTO tab2 VALUES(1,1));
ALTER TABLE tab2 DROP i4;

After the ALTER TABLE statement, tab2 has only one column. The col1trig
trigger is invalidated because the action clause as it is currently defined with
values for two columns cannot occur.

If you drop a column that occurs in the triggering column list of an UPDATE
trigger, the database server drops the column from the triggering column list.
If the column is the only member of the triggering column list, the database
server drops the trigger from the table. For more information on triggering
columns in an UPDATE trigger, see “CREATE TRIGGER” on page 2-269.

If a trigger is invalidated when you alter the underlying table, drop and then
re-create the trigger.

How Dropping a Column Affects Views

When you drop a column from a table, the views based on that table remain
unchanged. That is, the database server does not automatically drop the
corresponding columns from associated views.
2-64 IBM Informix Guide to SQL: Syntax

ALTER TABLE
The view is not automatically dropped because ALTER TABLE can change the
order of columns in a table by dropping a column and then adding a new
column with the same name. In this case, views based on the altered table
continue to work, but retain their original sequence of columns.

If a view is invalidated when you alter the underlying table, you must rebuild
the view.

How Dropping a Column Affects a Generalized-Key Index

In Extended Parallel Server, if you drop a column from a table that has a
dependent GK index, all GK indexes on the table that refer to the dropped
column are dropped. Any GK indexes on other tables that refer to the
dropped column are also dropped.

MODIFY Clause
Use the MODIFY clause to change the data type, length, or default value of a
column, or to allow or disallow NULL values in a column.

In Extended Parallel Server, you cannot use the MODIFY clause if the table
has a dependent GK index. ♦

XPS

Element Purpose Restrictions Syntax
column Column to modify Must exist in table. Cannot be a collection data type. Identifier, p. 4-189

,

Modify Column Clause

()MODIFY

Modify Column
Clause

column Data Type
p. 4-49

Single-Column Constraint Format
p. 2-57

Modify Column
Clause

MODIFY
Clause

Back to Basic Table Options
p. 2-53

DEFAULT Clause
p. 2-56

XPS
SQL Statements 2-65

ALTER TABLE
You cannot change the data type of a column to a collection or a row type. ♦

When you modify a column, all attributes previously associated with that
column (that is, default value, single-column check constraint, or referential
constraint) are dropped. When you want certain attributes of the column to
remain, such as PRIMARY KEY, you must re-specify those attributes.

For example, if you are changing the data type of an existing column,
quantity, to SMALLINT, but you want to keep the default value (in this case,
1) and the NOT NULL column attribute, you can issue this statement:

ALTER TABLE items MODIFY (quantity SMALLINT DEFAULT 1 NOT NULL)

Tip: Both attributes are specified again in the MODIFY clause.

When you change the data type of a column, the database server does not
perform the modification in-place. The next example (for Dynamic Server
only) changes a VARCHAR(15) column to an LVARCHAR(3072) column:

ALTER TABLE stock MODIFY (description LVARCHAR(3072))

When you modify a column that has column constraints associated with it,
the following constraints are dropped:

� All single-column constraints are dropped.

� All referential constraints that reference the column are dropped.

� If the modified column is part of a multiple-column primary-key or
unique constraint, all referential constraints that reference the
multiple columns also are dropped.

For example, if you modify a column that has a unique constraint, the unique
constraint is dropped. If this column was referenced by columns in other
tables, those referential constraints are also dropped. In addition, if the
column is part of a multiple-column primary-key or unique constraint, the
multiple-column constraints are not dropped, but any referential constraints
placed on the column by other tables are dropped.

For another example, suppose that a column is part of a multiple-column
primary-key constraint. This primary key is referenced by foreign keys in two
other tables. When this column is modified, the multiple-column primary-
key constraint is not dropped, but the referential constraints placed on it by
the two other tables are dropped.

IDS
2-66 IBM Informix Guide to SQL: Syntax

ALTER TABLE
Using the MODIFY Clause in Different Situations
The characteristics of the object you are attempting to modify can affect how
you handle your modifications.

Altering BYTE and TEXT Columns

You can use the MODIFY clause to change a BYTE column to a TEXT column,
and vice versa. You cannot use the MODIFY clause, however, to change a BYTE
or TEXT column to any other type of column, and vice versa.

You can also use the MODIFY clause to change a BYTE column to a BLOB
column and a TEXT column to a CLOB column. ♦

Altering the Next Serial Number

You can use the MODIFY clause to reset the next value of a serial column. You
cannot set the next value below the current maximum value in the column
because that action can cause the database server to generate duplicate
numbers. You can set the next value, however, to any value higher than the
current maximum, which creates gaps in the sequence.

The following example sets the next serial number to 1000:

ALTER TABLE my_table MODIFY (serial_num serial (1000))

As an alternative, you can use the INSERT statement to create a gap in the
sequence of a serial column. For more information, see “Inserting Values into
Serial Columns” on page 2-495.

Altering the Next Serial Number of a Typed Table

You can set the initial serial number or modify the next serial number for a
row-type field with the MODIFY clause of the ALTER TABLE statement. (You
cannot set the start number for a serial field when you create a row type.)

Suppose you have row types parent, child1, child2, and child3.

CREATE ROW TYPE parent (a int);
CREATE ROW TYPE child1 (s serial) UNDER parent;
CREATE ROW TYPE child2 (b float, s8 serial8) UNDER child1;
CREATE ROW TYPE child3 (d int) UNDER child2;

IDS

IDS
SQL Statements 2-67

ALTER TABLE
You then create corresponding typed tables:

CREATE TABLE OF TYPE parent;
CREATE TABLE OF TYPE child1 UNDER parent;
CREATE TABLE OF TYPE child2 UNDER child1;
CREATE TABLE OF TYPE child3 UNDER child2;

To change the next SERIAL and SERIAL8 numbers to 75, you can enter the
following command:

ALTER TABLE child3tab MODIFY (s serial(75), s8 serial8(75))

When the ALTER TABLE statement executes, the database server updates
corresponding serial columns in the child1, child2, and child3 tables.

Altering the Structure of Tables

When you use the MODIFY clause, you can also alter the structure of other
tables. If the modified column is referenced by other tables, those referential
constraints are dropped. You must add those constraints to the referencing
tables again, using the ALTER TABLE statement.

When you change the data type of an existing column, all data is converted
to the new data type, including numbers to characters and characters to
numbers (if the characters represent numbers). The following statement
changes the data type of the quantity column:

ALTER TABLE items MODIFY (quantity CHAR(6))

When a primary-key or unique constraint exists, however, conversion takes
place only if it does not violate the constraint. If a data type conversion would
result in duplicate values (by changing FLOAT to SMALLFLOAT, for example,
or by truncating CHAR values), the ALTER TABLE statement fails.

Modifying Tables for NULL Values

You can modify an existing column that formerly permitted NULLs to
disallow NULLs, provided that the column contains no NULL values. To do
this, specify MODIFY with the same column name and data type and the NOT
NULL keywords. Those keywords create a not-null constraint on the column.
2-68 IBM Informix Guide to SQL: Syntax

ALTER TABLE
You can modify an existing column that did not permit NULLs to permit-
NULLs. To do this, specify MODIFY with the column name and the existing
data type, and omit the NOT NULL keywords. The omission of the NOT NULL
keywords drops the not-null constraint on the column. If a unique index
exists on the column, you can remove it using the DROP INDEX statement.

An alternative method of permitting NULLs in an existing column that did
not permit NULLs is to use the DROP CONSTRAINT clause to drop the not-null
constraint on the column.

Adding a Constraint When Existing Rows Violate the Constraint

If you use the MODIFY clause to add a constraint in the enabled mode and
receive an error message because existing rows would violate the constraint,
take the following steps to add the constraint successfully:

1. Add the constraint in the disabled mode.

Issue the ALTER TABLE statement again, but this time specify the DIS-
ABLED keyword in the MODIFY clause.

2. Start a violations and diagnostics table for the target table with the
START VIOLATIONS TABLE statement.

3. Issue the SET CONSTRAINTS statement to switch the database object
mode of the constraint to the enabled mode.

When you issue this statement, existing rows in the target table that
violate the constraint are duplicated in the violations table; however,
you receive an integrity-violation error message, and the constraint
remains disabled.

4. Issue a SELECT statement on the violations table to retrieve the
nonconforming rows that are duplicated from the target table.

You might need to join the violations and diagnostics tables to get all
the necessary information.

5. Take corrective action on the rows in the target table that violate the
constraint.

6. After you fix all the nonconforming rows in the target table, issue the
SET statement again to enable the constraint that were disabled.

Now the constraint is enabled, and no integrity-violation error mes-
sage is returned because all rows in the target table now satisfy the
new constraint.

IDS
SQL Statements 2-69

ALTER TABLE
How Modifying a Column Affects a Generalized-Key Index

In Extended Parallel Server, when you modify a column, all GK indexes that
reference the column are dropped if the column is used in the GK index in a
way that is incompatible with the new data type of the column.

For example, if a numeric column is changed to a character column, any GK
indexes involving that column are dropped if they involve arithmetic
expressions.

How Modifying a Column Affects Triggers

If you modify a column that appears in the triggering column list of an
UPDATE trigger, the trigger is unchanged.

When you modify a column in a table, the triggers based on that table remain
unchanged, but the column modification might invalidate the trigger.

The following statements illustrate the possible affects on triggers:

CREATE TABLE tab1 (i1 int, i2 int, i3 int);
CREATE TABLE tab2 (i4 int, i5 int);
CREATE TRIGGER col1trig UPDATE OF i2 ON tab1

BEFORE(INSERT INTO tab2 VALUES(1,1));
ALTER TABLE tab2 MODIFY i4 char;

After the ALTER TABLE statement, column i4 accepts only character values.
Because character columns accept only values enclosed in quotation marks,
the action clause of the col1trig trigger is invalidated.

If a trigger is invalidated when you modify the underlying table, drop and
then re-create the trigger.

How Modifying a Column Affects Views

When you modify a column in a table, the views based on that table remain
unchanged. If a view is invalidated when you alter the underlying table, you
must rebuild the view.

XPS
2-70 IBM Informix Guide to SQL: Syntax

ALTER TABLE
PUT Clause
Use the PUT clause to specify the storage space (an sbspace) for a column that
contains smart large objects. This clause can specify storage characteristics
for a new column or replace the storage characteristics of an existing column.

When you modify the storage characteristics of a column, all attributes previ-
ously associated with the storage space for that column are dropped. When
you want certain attributes to remain, you must respecify those attributes.
For example, to retain logging, you must respecify the LOG keyword.

The format column.field is not valid here. That is, the smart large object that
you are storing cannot be one field of a ROW type.

IDS

Element Purpose Restrictions Syntax
column Column to store in the

specified sbspace
Must contain a user-defined, or
complex, or BLOB, or CLOB data type.

Identifier, p. 4-189

kilobytes Number of kilobytes to
allocate for the extent size

Must be an integer value. Literal Number, p. 4-216

sbspace Name of an area of storage
for smart large objects

The sbspace must exist. Identifier, p. 4-189

INcolumnPUT

EXTENT SIZE kilobytes

KEEP ACCESS TIME

sbspace

PUT Clause

(

,

)

()

NO KEEP ACCESS TIME

HIGH INTEG

NO LOG

Back to Basic Table Options
p. 2-53

,

LOG
SQL Statements 2-71

ALTER TABLE
When you modify the storage characteristics of a column that holds smart
large objects, the database server does not alter smart large objects that
already exist, but applies the new storage characteristics to only those smart
large objects that are inserted after the ALTER TABLE statement takes effect.

For more information on the available storage characteristics, refer to the
counterpart of this section in the CREATE TABLE statement, “PUT Clause” on
page 2-249. For a discussion of large-object characteristics, refer to “Large-
Object Data Types” on page 4-57.

ADD CONSTRAINT Clause
Use the ADD CONSTRAINT clause to specify a constraint on a new or existing
column or on a set of columns.

For example, to add a unique constraint to the fname and lname columns of
the customer table, use the following statement:

ALTER TABLE customer ADD CONSTRAINT UNIQUE (lname, fname)

To declare a name for the constraint, change the preceding statement:

ALTER TABLE customer
ADD CONSTRAINT UNIQUE (lname, fname) CONSTRAINT u_cust

When you do not specify a name for a new constraint, the database server
provides one. You can find the name of the constraint in the sysconstraints
system catalog table. For more information about the sysconstraints system
catalog table, see the IBM Informix Guide to SQL: Reference.

When you add a constraint, the collating order must be the same as when the
table was created. ♦

,

()

ADD CONSTRAINT

ADD CONSTRAINT
Clause

Multiple-Column Constraint Format
p. 2-73

Back to Basic Table Options
p. 2-53

Multiple-Column Constraint Format
p. 2-73

IDS
2-72 IBM Informix Guide to SQL: Syntax

ALTER TABLE
Multiple-Column Constraint Format
Use the Multiple-Column Constraint Format option to assign a constraint to
one column or a set of columns.

A multiple-column constraint has these restrictions:

� It can include no more than 16 column names.

� The total length of the list of columns cannot exceed 390 bytes. ♦
� The total length of the list of columns cannot exceed 255 bytes. ♦

You can declare a name for the constraint and set its mode by means of
“Constraint Definition” on page 2-58.

Element Purpose Restrictions Syntax
column A column on which the constraint is placed No more than 16 columns. Identifier, p. 4-216

UNIQUE

FOREIGN KEY

REFERENCES
Clause
p. 2-59

CHECK Clause
p. 2-62

Multiple-Column
Constraint Format

PRIMARY KEY Constraint
Definition
p. 2-58

DISTINCT

Back to ADD CONSTRAINT Clause
p. 2-72

column)(

,

++

16

column)(

,

16

+

IDS

XPS
SQL Statements 2-73

ALTER TABLE
Adding a Primary-Key or Unique Constraint

When you place a primary-key or unique constraint on a column or set of
columns, those columns must contain unique values. The database server
checks for existing constraints and indexes:

� If a user-created unique index already exists on that column or set of
columns, the constraint shares the index.

� If a user-created index that allows duplicates already exists on that
column or set of columns, the database server returns an error.

In this case, you must drop the existing index before adding the pri-
mary-key or unique constraint.

� If a referential constraint already exists on that column or set of
columns, the duplicate index is upgraded to unique (if possible) and
the index is shared.

� If no referential constraint or user-created index exists on that
column or set of columns, the database server creates an internal
B-tree index on the specified columns.

When you place a referential constraint on a column or set of columns, and
an index already exists on that column or set of columns, the index is shared.

If you own the table or have the Alter privilege on the table, you can create a
check, primary-key, or unique constraint on the table and specify yourself as
the owner of the constraint. To add a referential constraint, you must have the
References privilege on either the referenced columns or the referenced table.
When you have the DBA privilege, you can create constraints for other users.

Recovery from Constraint Violations

If you use the ADD CONSTRAINT clause to add a constraint in the enabled
mode, you receive an error message because existing rows would violate the
constraint. For a procedure to add the constraint successfully, see “Adding a
Constraint When Existing Rows Violate the Constraint” on page 2-69.

IDS
2-74 IBM Informix Guide to SQL: Syntax

ALTER TABLE
DROP CONSTRAINT Clause
Use the DROP CONSTRAINT clause to drop a named constraint.

To drop an existing constraint, specify the DROP CONSTRAINT keywords
and the name of the constraint. Here is an example of dropping a constraint:

ALTER TABLE manufact DROP CONSTRAINT con_name

If no name is specified when the constraint is created, the database server
generates the name. You can query the sysconstraints system catalog table
for the name and owner of a constraint. For example, to find the name of the
constraint placed on the items table, you can issue the following statement:

SELECT constrname FROM sysconstraints
WHERE tabid = (SELECT tabid FROM systables

WHERE tabname = 'items')

When you drop a primary-key or unique constraint that has a corresponding
foreign key, the referential constraints are dropped. For example, if you drop
the primary-key constraint on the order_num column in the orders table and
order_num exists in the items table as a foreign key, that referential
relationship is also dropped.

Element Purpose Restrictions Syntax
constraint Constraint to be dropped Must exist. Database Object Name, p. 4-46

DROP CONSTRAINT

DROP CONSTRAINT
Clause

Back to Basic Table Options
p. 2-53,

constraint

()constraint
SQL Statements 2-75

ALTER TABLE
MODIFY NEXT SIZE Clause
Use the MODIFY NEXT SIZE clause to change the size of new extents.

For example, if you have a 2-kilobyte page system, the minimum length is
8 kilobytes. The maximum length is equal to the chunk size. The following
example specifies an extent size of 32 kilobytes:

ALTER TABLE customer MODIFY NEXT SIZE 32

When you use this clause, the size of existing extents does not change. You
cannot change the size of existing extents without unloading all of the data.

To change the size of existing extents, you must unload all the data, modify
the extent and next-extent sizes in the CREATE TABLE statement of the
database schema, re-create the database, and reload the data. For information
about how to optimize extents, see your Administrator’s Guide.

LOCK MODE Clause
Use the LOCK MODE keywords to change the locking granularity of a table.

Element Purpose Restrictions Syntax
kilobytes Length (in kilobytes) assigned here for

the next extent for this table
Minimum length is four times the disk-
page size on your system.

Expression,
p. 4-67

MODIFY NEXT SIZE
Clause

kilobytesMODIFY NEXT SIZE

Back to Basic Table Options p. 2-53
Back to Typed-Table Options p. 2-80

LOCK MODE
Clause

LOCK MODE

ROW

()

XPS TABLE

Back to Basic Table Options
p. 2-53

PAGE
2-76 IBM Informix Guide to SQL: Syntax

ALTER TABLE
The following table describes the locking-granularity options available.

Precedence and Default Behavior

The LOCK MODE setting in an ALTER TABLE statement takes precedence over
the settings of the IFX_DEF_TABLE_LOCKMODE environment variable and
the DEF_TABLE_LOCKMODE configuration parameter. For information about
the IFX_DEF_TABLE_LOCKMODE environment variable, refer to the
IBM Informix Guide to SQL: Reference. For information about the
DEF_TABLES_LOCKMODE configuration parameter, refer to the IBM Informix
Dynamic Server Administrator’s Reference.

Granularity Purpose

PAGE Obtains and releases one lock on a whole page of rows

This is the default locking granularity. Page-level locking is especially
useful when you know that the rows are grouped into pages in the
same order that you are using to process all the rows. For example, if
you are processing the contents of a table in the same order as its
cluster index, page locking is especially appropriate.

ROW Obtains and releases one lock per row

Row-level locking provides the highest level of concurrency. If you are
using many rows at one time, the lock-management overhead can
become significant. You can also exceed the maximum number of locks
available, depending on the configuration of your database server.

TABLE
(XPS only)

Places a lock on the entire table

This type of lock reduces update concurrency in comparison to row
and page locks. A table lock reduces the lock-management overhead
for a table. Multiple read-only transactions can still access the table.

IDS
SQL Statements 2-77

ALTER TABLE
ADD TYPE Clause
Use the ADD TYPE clause to convert a table that is not based on a named ROW
data type into a typed table.

To add a named ROW type to a table, all of the following must be true:

� The named ROW type already exists.

� The named ROW type fields match the column types in the table.

� You have the Usage privilege on the table.

When you use the ADD TYPE clause, you assign a named ROW data type to a
table whose columns match the fields of the ROW type. The table cannot be a
fragmented table that has rowids.

You cannot combine the ADD TYPE clause with any clause that changes the
structure of the table. No other ADD, DROP, or MODIFY clause is valid in the
same ALTER TABLE statement that has the ADD TYPE clause. The ADD TYPE
clause does not allow you to change column data types. (To change the data
type of a column, use the MODIFY clause.)

IDS

Element Purpose Restrictions Syntax
row_type_name Name of the row type being

added to the table
The field types of this ROW type must match
the column types of the table.

Data Type,
p. 4-49

ADD TYPE
Clause

ADD TYPE row_type_name

Back to Basic Table Options
p. 2-53
2-78 IBM Informix Guide to SQL: Syntax

ALTER TABLE
Logging TYPE Options
Use the Logging TYPE options to specify that the table have particular charac-
teristics that can improve various bulk operations on it.

Other than the default option (STANDARD) that is used for online transaction
processing (OLTP) databases, these Logging TYPE options are used primarily
to improve performance in data warehousing databases.

A table can have any of the following logging characteristics.

Logging TYPE Options Back to ALTER TABLE
p. 2-52

TYPE)(

OPERATIONAL

STANDARD

STATIC

RAW

XPS

Option Purpose

STANDARD Logging table that allows rollback, recovery, and restoration
from archives. This is the default. Use this type for recovery and
constraints functionality on OLTP databases.

RAW Nonlogging table that cannot have indexes or referential
constraints but can be updated. Use this type for quickly loading
data. In XPS, raw tables take advantage of light appends and
avoid the overhead of logging, checking constraints, and
building indexes.

OPERATIONAL
(XPS only)

Logging table that uses light appends and cannot be restored
from archive. Use this type on tables that are refreshed
frequently. Light appends allow the quick addition of many
rows.

STATIC
(XPS only)

Nonlogging table that can contain index and referential
constraints but cannot be updated. Use this type for read-only
operations because there is no logging or locking overhead.
SQL Statements 2-79

ALTER TABLE
Warning: Use raw tables for fast loading of data. It is recommended that you alter the
logging type to STANDARD and perform a level-0 backup before you use the table in
a transaction or modify the data within the table. If you must use a raw table within
a transaction, either set the isolation level to Repeatable Read or lock the table in
exclusive mode to prevent concurrency problems.

For more information on these logging types of tables, refer to your Adminis-
trator’s Guide.

The Logging TYPE options have the following restrictions:

� You must perform a level-0 archive before the logging type of a table
can be altered to STANDARD from any other logging type.

� If you want to change the logging type of a table to RAW, you must
drop all indexes on the table before you do so.

� If you have triggers defined on the table, you cannot change the
logging type to RAW or STATIC. Such tables do not support triggers.

� The table cannot be a SCRATCH or TEMP table, and you cannot
change any of these types of tables to a SCRATCH or TEMP table.

� The table cannot have a dependent GK index. ♦

Typed-Table Options
The Typed-Table options support operations on tables of a ROW data type.

XPS

IDS

DROP CONSTRAINT Clause
p. 2-75

1

,

1

Typed-Table
Options

DROP TYPE

ADD CONSTRAINT
Clause
p. 2-72

Back to ALTER TABLE
p. 2-52

MODIFY NEXT
SIZE Clause

p. 2-76
LOCK MODE Clause

p. 2-76

1

2-80 IBM Informix Guide to SQL: Syntax

ALTER TABLE
In Dynamic Server, the database server performs the actions in the ALTER
TABLE statement in the order that you specify. If any action fails, the entire
operation is cancelled.

Altering Subtables and Supertables

The following considerations apply to tables that are part of inheritance
hierarchies:

� For subtables, ADD CONSTRAINT and DROP CONSTRAINT are not
allowed on inherited constraints.

� For supertables, ADD CONSTRAINT and DROP CONSTRAINT
propagate to all subtables.

DROP TYPE Option

Use the DROP TYPE option to drop the type from a table. DROP TYPE removes
the association between a table and a named-row type. You must drop the
type from a typed table before you can modify, drop, or change the data type
of a column in the table.

If a table is part of a table hierarchy, you cannot drop its type unless it is the
last subtype in the hierarchy. That is, you can only drop a type from a table if
that table has no subtables. When you drop the type of a subtable, it is
automatically removed from the hierarchy. The table rows are deleted from
all indexes defined by its supertables.

Related Information
Related statements: CREATE TABLE, DROP TABLE, LOCK TABLE, and SET
Database Object Mode

For discussions of data-integrity constraints and the ON DELETE CASCADE
option, see the IBM Informix Guide to SQL: Tutorial.

For a discussion of database and table creation, see the IBM Informix Database
Design and Implementation Guide.

For information on how to maximize performance when you make table
modifications, see your Performance Guide.
SQL Statements 2-81

2-82 IBM Informix Guide to SQL: Syntax

BEGIN WORK
BEGIN WORK
Use the BEGIN WORK statement to start a transaction (a series of database
operations that the COMMIT WORK or ROLLBACK WORK statement
terminates). Use the BEGIN WORK WITHOUT REPLICATION statement to start
a transaction that does not replicate to other database servers.

Syntax

Usage
Each row that an UPDATE, DELETE, or INSERT statement affects during a
transaction is locked and remains locked throughout the transaction. A trans-
action that contains many such statements or that contains statements that
affect many rows can exceed the limits that your operating system or the
database server configuration imposes on the maximum number of simulta-
neous locks.

If no other user is accessing the table, you can avoid locking limits and reduce
locking overhead by locking the table with the LOCK TABLE statement after
you begin the transaction. Like other locks, this table lock is released when
the transaction terminates. The example of a transaction on “Example of
BEGIN WORK” on page 2-84 includes a LOCK TABLE statement.

Important: Issue the BEGIN WORK statement only if a transaction is not in progress.
If you issue a BEGIN WORK statement while you are in a transaction, the database
server returns an error.

In ESQL/C, if you use the BEGIN WORK statement within a UDR called by a
WHENEVER statement, specify WHENEVER SQLERROR CONTINUE and
WHENEVER SQLWARNING CONTINUE before the ROLLBACK WORK
statement. These statements prevent the program from looping if the
ROLLBACK WORK statement encounters an error or a warning. ♦

+

BEGIN

WITHOUT REPLICATION
IDS

E/C
WORK

E/C

BEGIN WORK
The WORK keyword is optional in a BEGIN WORK statement. The following
two statements are equivalent:

BEGIN;

BEGIN WORK;

BEGIN WORK and ANSI-Compliant Databases

In an ANSI-compliant database, you do not need the BEGIN WORK statement
because transactions are implicit; every SQL statement occurs within a trans-
action. The database server generates a warning when you use a BEGIN
WORK statement immediately after any of the following statements:

� DATABASE

� COMMIT WORK

� CREATE DATABASE

� ROLLBACK WORK

The database server returns an error when you use a BEGIN WORK statement
after any other statement in an ANSI-compliant database.

BEGIN WORK WITHOUT REPLICATION

When you use Enterprise Replication for data replication, you can use the
BEGIN WORK WITHOUT REPLICATION statement to start a transaction that
does not replicate to other database servers.

You cannot execute BEGIN WORK WITHOUT REPLICATION as a stand-alone
embedded statement in an ESQL/C application. Instead you must execute
this statement indirectly. You can use either of the following methods:

� You can use a combination of the PREPARE and EXECUTE statements
to prepare and execute the BEGIN WORK WITHOUT REPLICATION
statement.

� You can use the EXECUTE IMMEDIATE statement to prepare and
execute BEGIN WORK WITHOUT REPLICATION in a single step.

You cannot use the DECLARE cursor CURSOR WITH HOLD with the BEGIN
WORK WITHOUT REPLICATION statement.

ANSI

IDS

E/C
SQL Statements 2-83

BEGIN WORK
For more information about data replication, see the IBM Informix Dynamic
Server Enterprise Replication Guide.

Example of BEGIN WORK

The following code fragment shows how you might place statements within
a transaction. The transaction is made up of the statements that occur
between the BEGIN WORK and COMMIT WORK statements. The transaction
locks the stock table (LOCK TABLE), updates rows in the stock table
(UPDATE), deletes rows from the stock table (DELETE), and inserts a row into
the manufact table (INSERT).

BEGIN WORK;
LOCK TABLE stock;
UPDATE stock SET unit_price = unit_price * 1.10

WHERE manu_code = 'KAR';
DELETE FROM stock WHERE description = 'baseball bat';
INSERT INTO manufact (manu_code, manu_name, lead_time)

VALUES ('LYM', 'LYMAN', 14);
COMMIT WORK;

The database server must perform this sequence of operations either
completely or not at all. When you include all of these operations within a
single transaction, the database server guarantees that all the statements are
completely and perfectly committed to disk, or else the database is restored
to the same state that it was in before the transaction began.

Related Information
Related statements: COMMIT WORK and ROLLBACK WORK

For discussions of transactions and locking, see the IBM Informix Guide to SQL:
Tutorial.
2-84 IBM Informix Guide to SQL: Syntax

CLOSE
CLOSE
Use the CLOSE statement when you no longer need to refer to the rows that
a select or function cursor retrieved, or to flush and close an insert cursor.

Use this statement with ESQL/C.

Syntax

Usage
Closing a cursor makes the cursor unusable for any statements except OPEN
or FREE and releases resources that the database server had allocated to the
cursor. A CLOSE statement treats a cursor that is associated with an INSERT
statement differently than one that is associated with a SELECT or EXECUTE
FUNCTION (or EXECUTE PROCEDURE) statement.

In a database that is not ANSI-compliant, you can close a cursor that has not
been opened or that has already been closed. No action is taken in these cases.

In an ANSI-compliant database, the database server returns an error if you
close a cursor that was not open. ♦

Closing a Select or Function Cursor

When a cursor identifier is associated with a SELECT or EXECUTE FUNCTION
(or EXECUTE PROCEDURE) statement, closing the cursor terminates the
SELECT or EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement.

E/C

Element Purpose Restrictions Syntax
cursor_id Name of cursor to be closed Must have been declared. Identifier, p. 4-189
cursor_id_var Host variable that contains the

value of cursor_id
Host variable must be a
character data type.

Must conform to language-
specific rules for names.

CLOSE cursor_id

cursor_id_var+

ANSI
SQL Statements 2-85

CLOSE
The database server releases all resources that it might have allocated to the
active set of rows, for example, a temporary table that it used to hold an
ordered set. The database server also releases any locks that it might have
held on rows that were selected through the cursor. If a transaction contains
the CLOSE statement, the database server does not release the locks until you
execute COMMIT WORK or ROLLBACK WORK.

After you close a select or function cursor, you cannot execute a FETCH
statement that names that cursor until you have reopened it.

Closing an Insert Cursor

When a cursor identifier is associated with an INSERT statement, the CLOSE
statement writes any remaining buffered rows into the database. The number
of rows that were successfully inserted into the database is returned in the
third element of the sqlerrd array, sqlca.sqlerrd[2], in the sqlca structure. For
information on how to use SQLERRD to count the total number of rows that
were inserted, see “Error Checking” on page 2-546.

The SQLCODE field of the sqlca structure, sqlca.sqlcode, indicates the result
of the CLOSE statement for an insert cursor. If all buffered rows are success-
fully inserted, SQLCODE is set to zero. If an error is encountered, the
sqlca.sqlcode field in the SQLCODE is set to a negative error message number.

When SQLCODE is zero, the row buffer space is released, and the cursor is
closed; that is, you cannot execute a PUT or FLUSH statement that names the
cursor until you reopen it.

Tip: When you encounter an SQLCODE error, a corresponding SQLSTATE error
value also exists. For information about how to get the message text, check the GET
DIAGNOSTICS statement.

If the insert is not successful, the number of successfully inserted rows is
stored in sqlerrd. Any buffered rows that follow the last successfully inserted
row are discarded. Because the insert fails, the CLOSE statement fails also,
and the cursor is not closed. For example, a CLOSE statement can fail if insuf-
ficient disk space prevents some of the rows from being inserted. In this case,
a second CLOSE statement can be successful because no buffered rows exist.
An OPEN statement can also be successful because the OPEN statement
performs an implicit close.
2-86 IBM Informix Guide to SQL: Syntax

CLOSE
Closing a Collection Cursor

You can declare both select and insert cursors on collection variables. Such
cursors are called collection cursors. Use the CLOSE statement to deallocate
resources that have been allocated for the collection cursor.

For more information on how to use a collection cursor, see “Fetching from a
Collection Cursor” on page 2-432 and “Inserting into a Collection Cursor” on
page 2-544.

Using End of Transaction to Close a Cursor

The COMMIT WORK and ROLLBACK WORK statements close all cursors
except those that are declared with a hold. It is better to close all cursors
explicitly, however. For select or function cursors, this action simply makes
the intent of the program clear. It also helps to avoid a logic error if the WITH
HOLD clause is later added to the declaration of a cursor.

For an insert cursor, it is important to use the CLOSE statement explicitly so
that you can test the error code. Following the COMMIT WORK statement,
SQLCODE reflects the result of the COMMIT statement, not the result of
closing cursors. If you use a COMMIT WORK statement without first using a
CLOSE statement, and if an error occurs while the last buffered rows are being
written to the database, the transaction is still committed.

For how to use insert cursors and the WITH HOLD clause, see “DECLARE”
on page 2-323.

In an ANSI-compliant database, a cursor cannot be closed implicitly. You
must issue a CLOSE statement. ♦

Related Information
Related statements: DECLARE, FETCH, FLUSH, FREE, OPEN, PUT, and SET
AUTOFREE

For an introductory discussion of cursors, see the IBM Informix Guide to SQL:
Tutorial.

For a more advanced discussion of cursors, see the IBM Informix ESQL/C
Programmer’s Manual.

IDS

ANSI
SQL Statements 2-87

CLOSE DATABASE
CLOSE DATABASE
Use the CLOSE DATABASE statement to close the current database.

Syntax

Usage
When you issue a CLOSE DATABASE statement, you can issue only the
following SQL statements immediately after it:

� CONNECT

� CREATE DATABASE

� DATABASE

� DROP DATABASE

� DISCONNECT

(The DISCONNECT statement is valid here only if an explicit connec-
tion existed before CLOSE DATABASE was executed.)

Issue the CLOSE DATABASE statement before you drop the current database.

If your database supports transaction logging, and if you have started a
transaction, you must issue a COMMIT WORK statement before you can use
the CLOSE DATABASE statement.

The following example shows how to use the CLOSE DATABASE statement to
drop the current database:

DATABASE stores_demo
. . .
CLOSE DATABASE
DROP DATABASE stores_demo

+

CLOSE DATABASE
2-88 IBM Informix Guide to SQL: Syntax

CLOSE DATABASE
In ESQL/C, the CLOSE DATABASE statement cannot appear in a multi-
statement PREPARE operation.

If you use the CLOSE DATABASE statement within a UDR called by a
WHENEVER statement, specify WHENEVER SQLERROR CONTINUE and
WHENEVER SQLWARNING CONTINUE before the ROLLBACK WORK
statement. This action prevents the program from looping if the ROLLBACK
WORK statement encounters an error or a warning.

When you issue the CLOSE DATABASE statement, any declared cursors are no
longer valid. You must re-declare any cursors that you want to use. ♦

In an ANSI-compliant database, if no error is encountered while you exit from
DB-Access in non-interactive mode without issuing the CLOSE DATABASE,
COMMIT WORK, or DISCONNECT statement, the database server automati-
cally commits any open transaction. ♦

Related Information
Related statements: CONNECT, CREATE DATABASE, DATABASE,
DISCONNECT, and DROP DATABASE

E/C

ANSI
SQL Statements 2-89

COMMIT WORK
COMMIT WORK
Use the COMMIT WORK statement to commit all modifications made to the
database from the beginning of a transaction.

Syntax

Usage
The COMMIT WORK statement informs the database server that you reached
the end of a series of statements that must succeed as a single unit. The
database server takes the required steps to make sure that all modifications
that the transaction makes are completed correctly and saved to disk.

Use COMMIT WORK only at the end of a multistatement operation in a
database with transaction logging, when you are sure that you want to keep
all changes made to the database from the beginning of a transaction.

The COMMIT WORK statement releases all row and table locks.

The WORK keyword is optional in a COMMIT WORK statement. The following
two statements are equivalent:

COMMIT;
COMMIT WORK;

The following example shows a transaction bounded by BEGIN WORK and
COMMIT WORK statements.

BEGIN WORK;
DELETE FROM call_type WHERE call_code = 'O';
INSERT INTO call_type VALUES ('S', 'order status');

COMMIT WORK;

In this example, the user first deletes the row from the call_type table where
the value of the call_code column is O. The user then inserts a new row in the
call_type table where the value of the call_code column is S. The database
server guarantees that both operations succeed or else neither succeeds.

WORK

COMMIT
2-90 IBM Informix Guide to SQL: Syntax

COMMIT WORK
In ESQL/C, the COMMIT WORK statement closes all open cursors except those
that were declared using the WITH HOLD option. ♦

Issuing COMMIT WORK in a Database That Is Not ANSI Compliant

In a database that is not ANSI compliant, but that supports transaction
logging, if you initiate a transaction with a BEGIN WORK statement, you must
issue a COMMIT WORK statement at the end of the transaction. If you fail to
issue a COMMIT WORK statement in this case, the database server rolls back
any modifications that the transaction made to the database.

If you do not issue a BEGIN WORK statement, however, each statement
executes within its own transaction. These single-statement transactions do
not require either a BEGIN WORK statement or a COMMIT WORK statement.

Issuing COMMIT WORK in an ANSI-Compliant Database

In an ANSI-compliant database, you do not need BEGIN WORK to mark the
beginning of a transaction. You only need to mark the end of each trans-
action, because a transaction is always in effect. A new transaction starts
automatically after each COMMIT WORK or ROLLBACK WORK statement.

You must, however, issue an explicit COMMIT WORK statement to mark the
end of each transaction. If you fail to do so, the database server rolls back any
modifications that the transaction made to the database.

In an ANSI-compliant database, however, if no error is encountered while
you exit from DB-Access in non-interactive mode without issuing the CLOSE
DATABASE, COMMIT WORK, or DISCONNECT statement, the database server
automatically commits any open transaction. ♦

Related Information
Related statements: BEGIN WORK, ROLLBACK WORK, and DECLARE

For a discussion of concepts related to transactions, see the IBM Informix Guide
to SQL: Tutorial.

E/C

ANSI

DB-Access
SQL Statements 2-91

CONNECT
CONNECT
Use the CONNECT statement to connect to a database environment.

Syntax

Usage
The CONNECT statement connects an application to a database environment,
which can be a database, a database server, or a database and a database
server. If the application successfully connects to the specified database
environment, the connection becomes the current connection for the appli-
cation. SQL statements fail if the application has no current connection to a
database server. If you specify a database name, the database server opens
that database. You cannot include CONNECT within a PREPARE statement.

An application can connect to several database environments at the same
time, and it can establish multiple connections to the same database
environment, provided each connection has a unique connection name.

+

Element Purpose Restrictions Syntax
connection Case-sensitive name that you

declare here for a connection
Must be unique among
connection names.

Quoted String, p. 4-243

connection_var Host variable that stores the name
of connection

Must be a fixed-length
character data type.

Language specific

AS connection_var

WITH CONCURRENT TRANSACTION

Database
Environment

p. 2-97
CONNECT TO

DEFAULT

USER
Clause
p. 2-99

E/CE/C

E/C

'connection'
2-92 IBM Informix Guide to SQL: Syntax

CONNECT
On UNIX, the only restriction on establishing multiple connections to the
same database environment is that an application can establish only one
connection to each local server that uses the shared-memory connection
mechanism. To find out whether a local server uses the shared-memory
connection mechanism or the local-loopback connection mechanism,
examine the $INFORMIXDIR/etc/sqlhosts file. For more information on the
sqlhosts file, refer to your Administrator’s Guide. ♦

On Windows, the local connection mechanism is named pipes. Multiple
connections to the local server from one client can exist. ♦

Only one connection is current at any time; other connections are dormant.
The application cannot interact with a database through a dormant
connection. When an application establishes a new connection, that
connection becomes current, and the previous current connection becomes
dormant. You can make a dormant connection current with the SET
CONNECTION statement. See also “SET CONNECTION” on page 2-646.

Privileges for Executing the CONNECT Statement

The current user, or PUBLIC, must have the Connect database privilege on the
database specified in the CONNECT statement. The user who executes the
CONNECT statement cannot have the same user name as an existing role in
the database.

For information on how to use the USER clause to specify an alternate user
name when the CONNECT statement connects to a database server on a
remote host, see “USER Clause” on page 2-99.

Connection Identifiers

The optional connection name is a unique identifier that an application can
use to refer to a connection in subsequent SET CONNECTION and
DISCONNECT statements. If the application does not provide a connection
name (or a connection-host variable), it can refer to the connection using the
database environment. If the application makes more than one connection to
the same database environment, however, each connection must have a
unique connection name.

After you associate a connection name with a connection, you can refer to the
connection using only that connection name.

UNIX

Windows
SQL Statements 2-93

CONNECT
Connection Context

Each connection encompasses a set of information that is called the connection
context. The connection context includes the name of the current user, the
information that the database environment associates with this name, and
information on the state of the connection (such as whether an active trans-
action is associated with the connection). The connection context is saved
when an application becomes dormant, and this context is restored when the
application becomes current again. (For more information, see “Making a
Dormant Connection the Current Connection” on page 2-646.)

DEFAULT Option

Use the DEFAULT option to request a connection to a default database server,
called a default connection. The default database server can be either local or
remote. To designate the default database server, set its name in the
environment variable INFORMIXSERVER. This form of the CONNECT
statement does not open a database.

If you select the DEFAULT option for the CONNECT statement, you must use
the DATABASE statement or the CREATE DATABASE statement to open or
create a database in the default database environment.

The Implicit Connection with DATABASE Statements

If you do not execute a CONNECT statement in your application, the first SQL
statement must be one of the following database statements (or a single
statement PREPARE for one of the following statements):

� DATABASE

� CREATE DATABASE

� DROP DATABASE

If one of these database statements is the first SQL statement in an application,
the statement establishes a connection to a database server, which is known
as an implicit connection. If the database statement specifies only a database
name, the database server name is obtained from the DBPATH environment
variable. This situation is described in “Specifying the Database
Environment” on page 2-98.
2-94 IBM Informix Guide to SQL: Syntax

CONNECT
An application that makes an implicit connection can establish other
connections explicitly (using the CONNECT statement) but cannot establish
another implicit connection unless the original implicit connection is discon-
nected. An application can terminate an implicit connection using the
DISCONNECT statement.

After any implicit connection is made, that connection is considered to be the
default connection, regardless of whether the database server is the default
that the INFORMIXSERVER environment variable specifies. This feature
allows the application to refer to the implicit connection if additional explicit
connections are made, because the implicit connection has no identifier.

For example, if you establish an implicit connection followed by an explicit
connection, you can make the implicit connection current by issuing the SET
CONNECTION DEFAULT statement. This means, however, that once you
establish an implicit connection, you cannot use the CONNECT DEFAULT
statement, because the implicit connection is now the default connection.

The database statements can always be used to open a database or create a
new database on the current database server.

WITH CONCURRENT TRANSACTION Option

The WITH CONCURRENT TRANSACTION clause lets you switch to a different
connection while a transaction is active in the current connection. If the
current connection was not established using the WITH CONCURRENT
TRANSACTION clause, you cannot switch to a different connection if a trans-
action is active; the CONNECT or SET CONNECTION statement fails, returning
an error, and the transaction in the current connection continues to be active.

In this case, the application must commit or roll back the active transaction in
the current connection before it switches to a different connection.

The WITH CONCURRENT TRANSACTION clause supports the concept of
multiple concurrent transactions, where each connection can have its own
transaction and the COMMIT WORK and ROLLBACK WORK statements affect
only the current connection.The WITH CONCURRENT TRANSACTION clause
does not support global transactions in which a single transaction spans
databases over multiple connections. The COMMIT WORK and ROLLBACK
WORK statements do not act on databases across multiple connections.
SQL Statements 2-95

CONNECT
The following example illustrates how to use the WITH CONCURRRENT
TRANSACTION clause:

main()
{
EXEC SQL connect to 'a@srv1' as 'A';
EXEC SQL connect to 'b@srv2' as 'B' with concurrent transaction;
EXEC SQL connect to 'c@srv3' as 'C' with concurrent transaction;

/*
Execute SQL statements in connection 'C' , starting a
transaction

*/

EXEC SQL set connection 'B'; -- switch to connection 'B'

/*
Execute SQL statements starting a transaction in 'B'.
Now there are two active transactions, one each in 'B'
and 'C'.

*/

EXEC SQL set connection 'A'; -- switch to connection 'A'

/*
Execute SQL statements starting a transaction in 'A'.
Now there are three active transactions, one each in 'A',
'B' and 'C'.

*/

EXEC SQL set connection 'C'; -- ERROR, transaction active in 'A'

/*
SET CONNECTION 'C' fails (current connection is still 'A')
The transaction in 'A' must be committed/rolled back since
connection 'A' was started without the CONCURRENT TRANSACTION
clause.

*/

EXEC SQL commit work;-- commit tx in current connection ('A')

/*
Now, there are two active transactions, in 'B' and in 'C',
which must be committed/rolled back separately

*/

EXEC SQL set connection 'B'; -- switch to connection 'B'
EXEC SQL commit work; -- commit tx in current connection ('B')

EXEC SQL set connection 'C'; -- go back to connection 'C'
EXEC SQL commit work; -- commit tx in current connection ('C')

EXEC SQL disconnect all;
}

Warning: When an application uses the WITH CONCURRENT TRANSACTION
clause to establish multiple connections to the same database environment, a deadlock
condition can occur.
2-96 IBM Informix Guide to SQL: Syntax

CONNECT
Database Environment

If the DELIMIDENT environment variable is set, any quotation (') marks in
the database environment must be single. If DELIMIDENT is not set, then
either single (') or double (") quotation marks are valid here.

Restrictions on dbservername

If you specify dbservername, it must satisfy the following restrictions.

� If the database server that you specify is not online, you receive an
error.

� On UNIX, the database server that you specify in dbservername must
match the name of a database server in the sqlhosts file. ♦

� On Windows, dbservername must match the name of a database
server in the sqlhosts subkey in the registry. It is recommended that
you use the setnet32 utility to update the registry. ♦

Element Purpose Restrictions Syntax
db_var Host variable that contains a

valid database environment (in
one of the formats in the syntax
diagram)

Must be a fixed-length character data type,
whose contents are in a format from the
syntax diagram.

Language
specific

dbname Database to which to connect Must already exist. Identifier,
p. 4-189

dbservername Name of the database server to
which a connection is made

Must already exist; blank space is not valid
between @ symbol and dbservername. See also
“Restrictions on dbservername.”

Identifier,
p. 4-189

'dbname'

db_var

'dbname@dbservername'

'@dbservername'

Back to CONNECT p. 2-92
Back to SET CONNECTION p. 2-646

Database
Environment

E/C

UNIX

Windows
SQL Statements 2-97

CONNECT
Specifying the Database Environment

You can specify a database server and a database, or a database server only,
or a database only. How a database is located and opened depends on
whether you specify a database server name in the database environment
expression.

Only Database Server Specified

The @dbservername option establishes a connection to the database server
only; it does not open a database. When you use this option, you must subse-
quently use the DATABASE or CREATE DATABASE statement (or a PREPARE
statement for one of these statements and an EXECUTE statement) to open a
database.

Database Server and Database Specified

If you specify both a database server and a database, your application
connects to the database server, which locates and opens the database.

Only Database Specified

The dbname option establishes a connection to the default database server or
to another database server in the DBPATH environment variable. It also
locates and opens the named database. (The same is true of the db_var option
if this specifies only a database name.)

If you specify only dbname, its database server is read from the DBPATH
environment variable. The database server in the INFORMIXSERVER
environment variable is always added before the DBPATH value.

On UNIX, set the INFORMIXSERVER and DBPATH environment variables as
the following example (for the C shell) shows:

setenv INFORMIXSERVER srvA
setenv DBPATH //srvB://srvC

♦

UNIX
2-98 IBM Informix Guide to SQL: Syntax

CONNECT
On Windows, choose Start�Programs�Informix�setnet32 from the Task
Bar and set the INFORMIXSERVER and DBPATH environment variables:

set INFORMIXSERVER = srvA
set DBPATH = //srvA://srvB://srvC

♦

The next example shows the resulting DBPATH that your application uses:

//srvA://srvB://srvC

The application first establishes a connection to the database server that
INFORMIXSERVER specifies. The database server uses parameters in the
configuration file to locate the database. If the database does not reside on the
default database server, or if the default database server is not online, the
application connects to the next database server in DBPATH. In the previous
example, that database server would be srvB.

USER Clause
The USER clause specifies information that is used to determine whether the
application can access the target computer on a remote host.

Windows

Element Purpose Restrictions Syntax
user_id Valid login name See “Restrictions on the User Identifier

Parameter” on page 2-100.
Quoted String,
p. 4-243

user_id_var Host variable that contains
user_id

Must be a fixed-length character data
type; same restrictions as user_id.

Language
specific

validation_var Host variable that contains a
valid password for login name
in user_id or user_id_var

Must be a fixed-length character data
type. See “Restrictions on the
Validation Variable Parameter” on
page 2-100.

Language
specific

USER
Clause

'user _id 'USER

user_id_var

USING validation_var

Back to CONNECT
p. 2-92
SQL Statements 2-99

CONNECT
The USER clause is required when the CONNECT statement connects to the
database server on a remote host. Subsequent to the CONNECT statement, all
database operations on the remote host use the specified user name.

Restrictions on the Validation Variable Parameter

On UNIX, the password stored in validation_var must be a valid password and
must exist in the /etc/passwd file. If the application connects to a remote
database server, the password must exist in this file on both the local and
remote database servers. ♦

On Windows, the password stored in validation_var must be a valid password
and must be the one entered in User Manager. If the application connects to
a remote database server, the password must exist in the domain of both the
client and the server. ♦

Restrictions on the User Identifier Parameter

On UNIX, the login name you specify in user_id must be a valid login name
and must exist in the /etc/passwd file. If the application connects to a remote
server, the login name must exist in this file on both the local and remote
database servers. ♦

On Windows, the login name that you specify in user_id must be a valid login
name and must exist in User Manager. If the application connects to a remote
server, the login name must exist in the domain of both the client and the
server. ♦

The connection is rejected if the following conditions occur:

� The specified user lacks the privileges to access the database named
in the database environment.

� The specified user does not have the required permissions to connect
to the remote host.

� You supply a USER clause but do not include the USING
validation_var phrase.

In compliance with the X/Open specification for the CONNECT statement, the
ESQL/C preprocessor allows a CONNECT statement that has a USER clause
without the USING validation_var specification. If the validation_var is not
present, however, the database server rejects the connection at runtime. ♦

UNIX

Windows

UNIX

Windows

E/C

X/O
2-100 IBM Informix Guide to SQL: Syntax

CONNECT
Use of the Default User ID

If you do not supply the USER clause, the default user ID is used to attempt
the connection. The default user ID is the login name of the user running the
application. In this case, you obtain network permissions with the standard
authorization procedures. For example, on UNIX, the default user ID must
match a user ID in the /etc/hosts.equiv file. On Windows, you must be a
member of the domain, or if the database server is installed locally, you must
be a valid user on the computer where it is installed.

Related Information
Related Statements: DISCONNECT, SET CONNECTION, DATABASE, and
CREATE DATABASE

For more information about sqlhosts, refer to your Administrator’s Guide.
SQL Statements 2-101

2-102 IBM Informix Guide to SQL: Syntax

CREATE ACCESS_METHOD
CREATE ACCESS_METHOD
Use the CREATE ACCESS_METHOD statement to register a new access method
in the sysams system catalog table.

Syntax

Usage
The CREATE ACCESS_METHOD statement adds a user-defined access method
to a database.

When you create an access method, you specify purpose functions or
methods, purpose flags, or purpose values as attributes of the access method,
and you associate purpose keywords in the sysams system catalog table with
user-defined functions or methods.

The am_getnext keyword is required in the Purpose Options list. You must
use this to specify a UDR (or the name of a method) to scan for the next item
that satisfies a query. For information on how to set purpose options, refer to
“Purpose Options” on page 4-237.

The PRIMARY keyword specifies a user-defined primary-access method for a
virtual table. The SECONDARY keyword specifies creating a user-defined
secondary-access method for a virtual index. The SECONDARY keyword (and
creating virtual indexes) is not supported in the Java Virtual-Table Interface.

You must have the DBA or Resource privilege to create an access method.

+

IDS

Element Purpose Restrictions Syntax
access
_method

Name declared here for the
new access method

Must be unique among access-method
names in the sysams system catalog table.

Database Object
Name, p. 4-46

()CREATE

,

Purpose Options
p. 4-237

access_methodACCESS_METHODSECONDARY

PRIMARY

CREATE ACCESS_METHOD
The following statement creates a secondary-access method named T-tree
that resides in an sbspace:

CREATE SECONDARY ACCESS_METHOD T_tree
(
am_getnext = ttree_getnext,
am_unique,
am_cluster,
am_sptype = 'S'
);

In the preceding example, the am_getnext keyword is associated with the
user-defined function ttree_getnext(). The T_tree access method supports
unique keys and clustering.

The following statement creates a primary-access method named
am_tabprops that resides in an extspace.

CREATE PRIMARY ACCESS_METHOD am_tabprops
(
am_open = FS_open,
am_close = FS_close,
am_beginscan = FS_beginScan,
am_create = FS_create,
am_scancost = FS_scanCost,
am_endscan = FS_endScan,
am_getnext = FS_getNext,
am_getbyid = FS_getById,
am_drop = FS_drop,
am_rowids,
am_sptype = ’x’
);

Related Information
Related statements: ALTER ACCESS_METHOD and DROP ACCESS_METHOD

For detailed information about how to set purpose-option specifications, see
“Purpose Options” on page 4-237.

For more information on primary-access methods, see the IBM Informix
Virtual-Table Interface Programmer’s Guide.

For more information on secondary-access methods, see the IBM Informix
Virtual-Index Interface Programmer’s Guide (C only).

For a discussion of privileges, see the GRANT or REVOKE statements or the
IBM Informix Database Design and Implementation Guide.
SQL Statements 2-103

CREATE AGGREGATE
CREATE AGGREGATE
Use the CREATE AGGREGATE statement to create a new aggregate function
and register it in the sysaggregates system catalog table. User-defined aggre-
gates extend the functionality of the database server by performing
aggregate computations that the user implements.

Syntax

+

IDS

Element Purpose Restrictions Syntax
aggregate Name of the new aggregate Must be unique among names of

built-in aggregates and UDRs
Identifier, p. 4-189

comb_func Function that merges one partial
result into the other and returns
the updated partial result

Must specify the combined function
both for parallel queries and for
sequential queries

Database Object
Name, p. 4-46

final_func Function that converts a partial
result into the result type

If this is omitted, then the returned
value is the final result of iter_func

Database Object
Name, p. 4-46

init_func Function that initializes the data
structures required for the
aggregate computation

Must be able to handle NULL
arguments

Database Object
Name, p. 4-46

iter_func Function that merges a single
value with a partial result and
returns updated partial result

Must specify an iterator function. If
init_func is omitted, iter_func must be
able to handle NULL arguments

Database Object
Name, p. 4-46

CREATE AGGREGATE aggregate ()WITH

Owner Name
p. 4-234

,

Modifiers

Modifiers

INIT = init_func

COMBINE = comb_func

ITER = iter_func

HANDLESNULLS

FINAL = final_func
2-104 IBM Informix Guide to SQL: Syntax

CREATE AGGREGATE
Usage
You can specify the INIT, ITER, COMBINE, FINAL, and HANDLESNULLS
modifiers in any order.

Important: You must specify the ITER and COMBINE modifiers in a CREATE
AGGREGATE statement. You do not have to specify the INIT, FINAL, and
HANDLESNULLS modifiers in a CREATE AGGREGATE statement.

The ITER, COMBINE, FINAL, and INIT modifiers specify the support functions
for a user-defined aggregate. These support functions do not have to exist at
the time you create the user-defined aggregate.

If you omit the HANDLESNULLS modifier, rows with NULL aggregate
argument values do not contribute to the aggregate computation. If you
include the HANDLESNULLS modifier, you must define all the support
functions to handle NULL values as well.

Extending the Functionality of Aggregates

Dynamic Server provides two ways to extend the functionality of aggregates.
Use the CREATE AGGREGATE statement only for the second of the two cases.

� Extensions of built-in aggregates

A built-in aggregate is an aggregate that the database server pro-
vides, such as COUNT, SUM, or AVG. These support only built-in
data types. To extend a built-in aggregate so that it supports a user-
defined data type (UDT), you must create user-defined routines that
overload the binary operators for that aggregate. For further infor-
mation on extending built-in aggregates, see the IBM Informix User-
Defined Routines and Data Types Developer’s Guide.

� Creation of user-defined aggregates

A user-defined aggregate is an aggregate that you define to perform
an aggregate computation that the database server does not provide.
You can use user-defined aggregates with built-in data types,
extended data types, or both. To create a user-defined aggregate, use
the CREATE AGGREGATE statement. In this statement, you name the
new aggregate and specify the support functions that compute the
aggregate result. These support functions perform initialization,
sequential aggregation, combination of results, and type conversion.
SQL Statements 2-105

CREATE AGGREGATE
Example of Creating a User-Defined Aggregate

The following example defines a user-defined aggregate named average:

CREATE AGGREGATE average
WITH (

INIT = average_init,
ITER = average_iter,
COMBINE = average_combine,
FINAL = average_final
)

Before you use the average aggregate in a query, you must also use CREATE
FUNCTION statements to create the support functions specified in the
CREATE AGGREGATE statement.

The following table gives an example of the task that each support function
might perform for average.

Parallel Execution

The database server can break up an aggregate computation into several
pieces and compute them in parallel. The database server uses the INIT and
ITER support functions to compute each piece sequentially. Then the
database server uses the COMBINE function to combine the partial results
from all the pieces into a single result value. Whether an aggregate is parallel
is an optimization decision that is transparent to the user.

Keyword Support Function Effect

INIT average_init Allocates and initializes an extended data type
storing the current sum and the current row count

ITER average_iter For each row, adds the value of the expression to
the current sum and increments the current row
count by one

COMBINE average_combine Adds the current sum and the current row count
of one partial result to the other and returns the
updated result

FINAL average_final Returns the ratio of the current sum to the current
row count and converts this ratio to the result type
2-106 IBM Informix Guide to SQL: Syntax

CREATE AGGREGATE
Related Information
Related statements: CREATE FUNCTION and DROP AGGREGATE

For information about how to invoke a user-defined aggregate, see “User-
Defined Aggregates” on page 4-173 in the Expression segment.

For a description of the sysaggregates system catalog table that stores data
about user-defined aggregates, see the IBM Informix Guide to SQL: Reference.

For a discussion of user-defined aggregates, see IBM Informix User-Defined
Routines and Data Types Developer’s Guide.
SQL Statements 2-107

CREATE CAST
CREATE CAST
Use the CREATE CAST statement to register a cast that converts data from one
data type to another.

Syntax

Usage
A cast is a mechanism that the database server uses to convert one data type
to another. The database server uses casts to perform the following tasks:

� To compare two values in the WHERE clause of a SELECT, UPDATE, or
DELETE statement

� To pass values as arguments to user-defined routines

� To return values from user-defined routines

To create a cast, you must have the necessary privileges on both the source
data type and the target data type. All users have permission to use the built-in
data types. To create a cast to or from an OPAQUE, DISTINCT, or named ROW
data type, however, requires the Usage privilege on that data type.

+

IDS

Element Purpose Restrictions Syntax
function User-defined function

that you register to
implement the cast

See “WITH Clause” on page 2-111. Database
Object Name,
p. 4-46

source_type Data type to be
converted

Must exist in the database at the time when the cast
is registered. See also “Source and Target Data
Types” on page 2-109.

Data Type,
p. 4-49

target_type Data type that results
from the conversion

The same restrictions that apply for the source_type
(as listed above) also apply for the target_type.

Data Type,
p. 4-49

CREATE

functionIMPLICIT

EXPLICIT CAST (source_type target_typeAS)

WITH
2-108 IBM Informix Guide to SQL: Syntax

CREATE CAST
The CREATE CAST statement registers a cast in the syscasts system catalog
table. For more information on syscasts, see the chapter on system catalog
tables in the IBM Informix Guide to SQL: Reference.

Source and Target Data Types

The CREATE CAST statement defines a cast that converts a source data type to
a target data type. Both the source data type and target data type must exist in the
database when you execute the CREATE CAST statement to register the cast.
The source data type and the target data type have the following restrictions:

� Either the source data type or the target data type, but not both, can be
a built-in type.

� Neither the source data type nor the target data type can be a distinct
type of the other.

� Neither the source data type nor the target data type can be a collection
data type.

Explicit and Implicit Casts

To process queries with multiple data types often requires casts that convert
data from one data type to another. You can use the CREATE CAST statement
to create the following kinds of casts:

� Use the CREATE EXPLICIT CAST statement to define an explicit cast.

� Use the CREATE IMPLICIT CAST statement to define an implicit cast.

Explicit Casts

An explicit cast is a cast that you must specifically invoke, with either the
CAST AS keywords or with the cast operator (::). The database server does
not automatically invoke an explicit cast to resolve data type conversions.
The EXPLICIT keyword is optional; by default, the CREATE CAST statement
creates an explicit cast.

The following CREATE CAST statement defines an explicit cast from the
rate_of_return opaque data type to the percent distinct data type:

CREATE EXPLICIT CAST (rate_of_return AS percent
WITH rate_to_prcnt)
SQL Statements 2-109

CREATE CAST
The following SELECT statement explicitly invokes this explicit cast in its
WHERE clause to compare the bond_rate column (of type rate_of_return) to
the initial_APR column (of type percent):

SELECT bond_rate FROM bond
WHERE bond_rate::percent > initial_APR

Implicit Casts

The database server invokes built-in casts to convert from one built-in data
type to another built-in type that is not directly substitutable. For example,
the database server performs conversion of a character type such as CHAR to
a numeric type such as INTEGER through a built-in cast.

An implicit cast is a cast that the database server can invoke automatically
when it encounters data types that cannot be compared with built-in casts.
This type of cast enables the database server to automatically handle conver-
sions between other data types.

To define an implicit cast, specify the IMPLICIT keyword in the CREATE CAST
statement. For example, the following CREATE CAST statement specifies that
the database server should automatically use the prcnt_to_char() function to
convert from the CHAR data type to a distinct data type, percent:

CREATE IMPLICIT CAST (CHAR AS percent WITH char_to_prcnt)

This cast only supports automatic conversion from the CHAR data type to
percent. For the database server to convert from percent to CHAR, you also
need to define another implicit cast, as follows:

CREATE IMPLICIT CAST (percent AS CHAR WITH prcnt_to_char)

The database server automatically invokes the char_to_prcnt() function to
evaluate the WHERE clause of the following SELECT statement:

SELECT commission FROM sales_rep WHERE commission > "25%"

Users can also invoke implicit casts explicitly. For more information on how
to explicitly invoke a cast function, see “Explicit Casts” on page 2-109.

When a built-in cast does not exist for conversion between data types, you
can create user-defined casts to make the necessary conversion.
2-110 IBM Informix Guide to SQL: Syntax

CREATE CAST
WITH Clause

The WITH clause of the CREATE CAST statement specifies the name of the
user-defined function to invoke to perform the cast. This function is called
the cast function. You must specify a function name unless the source data type
and the target data type have identical representations. Two data types have
identical representations when the following conditions are met:

� Both data types have the same length and alignment

� Both data types are passed by reference or both are passed by value

The cast function must be registered in the same database as the cast at the
time the cast is invoked, but need not exist when the cast is created. The
CREATE CAST statement does not check permissions on the specified function
name, or even verify that the cast function exists. Each time a user invokes the
cast explicitly or implicitly, the database server verifies that the user has the
Execute privilege on the cast function.

Related Information
Related statements: CREATE FUNCTION, CREATE DISTINCT TYPE, CREATE
OPAQUE TYPE, CREATE ROW TYPE, and DROP CAST

For more information about data types, casting, and conversion, see the Data
Types segment in this manual and the IBM Informix Guide to SQL: Reference.

For examples that show how to create and use casts, see the IBM Informix
Database Design and Implementation Guide.
SQL Statements 2-111

CREATE DATABASE
CREATE DATABASE
Use the CREATE DATABASE statement to create a new database.

Syntax

Usage
This statement is an extension to ANSI-standard syntax. (The ANSI/ISO
standard for the SQL language does not specify any syntax for construction
of a database, the process by which a database comes into existence.)

The database that CREATE DATABASE specifies becomes the current database.

The database name that you use must be unique within the database server
environment in which you are working. The database server creates the
system catalog tables that describe the structure of the database.

When you create a database, you alone can access it. It remains inaccessible
to other users until you, as DBA, grant database privileges. For information
on how to grant database privileges, see “GRANT” on page 2-459.

In ESQL/C, the CREATE DATABASE statement cannot appear in a
multistatement PREPARE operation. ♦

+

Element Purpose Restrictions Syntax
database Name that you declare here for the

new database that you are creating
Must be unique among the names of
databases on the database server.

Database Name,
p. 4-44

dbspace The dbspace to store the data for this
database; default is the root dbspace

Must already exist. Identifier,
p. 4-189

databaseCREATE DATABASE

BUFFERED

LOG

LOG MODE ANSI

WITHIN dbspace

E/C
2-112 IBM Informix Guide to SQL: Syntax

CREATE DATABASE
If you do not specify the dbspace, the database server creates the system
catalog tables in the root dbspace. The following statement creates the
vehicles database in the root dbspace:

CREATE DATABASE vehicles

The following statement creates the vehicles database in the research
dbspace:

CREATE DATABASE vehicles IN research

In Extended Parallel Server you can create a database in the dbspace of the
primary coserver (coserver 1) only. ♦

Logging Options

The logging options of the CREATE DATABASE statement determine the type
of logging that is done for the database.

In the event of a failure, the database server uses the log to re-create all
committed transactions in your database.

If you do not specify the WITH LOG option, you cannot use transactions or
the statements that are associated with databases that have logging (BEGIN
WORK, COMMIT WORK, ROLLBACK WORK, SET IMPLICIT TRANSACTION,
SET LOG, and SET ISOLATION).

If you are using Extended Parallel Server, the CREATE DATABASE statement
always creates a database with logging. If you do not specify the WITH LOG
option, the unbuffered log type is used by default. ♦

Designating Buffered Logging

The following example creates a database that uses a buffered log:

CREATE DATABASE vehicles WITH BUFFERED LOG

If you use a buffered log, you marginally enhance the performance of logging
at the risk of not being able to re-create the last few transactions after a failure.
(See the discussion of buffered logging in the IBM Informix Database Design and
Implementation Guide.)

XPS

XPS
SQL Statements 2-113

CREATE DATABASE
ANSI-Compliant Databases

When you use the LOG MODE ANSI option in the CREATE DATABASE
statement, the database that you create is an ANSI-compliant database. The
following example creates an ANSI-compliant database:

CREATE DATABASE employees WITH LOG MODE ANSI

ANSI-compliant databases are different from databases that are not ANSI
compliant in several ways, including the following features:

� All statements are automatically contained in transactions.

� All databases use unbuffered logging.

� Owner-naming is enforced.

You must use the owner name when you refer to each table, view,
synonym, index, or constraint, unless you are the owner.

� For databases, the default isolation level is REPEATABLE READ.

� Default privileges on objects differ from those in databases that are
not ANSI compliant. Users do not receive PUBLIC privilege to tables
and synonyms by default.

Other slight differences exist between databases that are ANSI compliant and
those that are not. These differences are noted with the related SQL statement
in this manual. For a detailed discussion of the differences between ANSI
compliant databases and databases that are not ANSI-compliant, see the
IBM Informix Database Design and Implementation Guide.

Creating an ANSI-compliant database does not mean that you automatically
get warnings for Informix extensions to the ANSI/ISO standard for SQL
syntax when you run the database. You must also use the -ansi flag or the
DBANSIWARN environment variable to receive such warnings.

For additional information about -ansi and DBANSIWARN, see the
IBM Informix Guide to SQL: Reference.

Related Information
Related statements: CLOSE DATABASE, CONNECT, DATABASE, and DROP
DATABASE

ANSI
2-114 IBM Informix Guide to SQL: Syntax

CREATE DISTINCT TYPE
CREATE DISTINCT TYPE
Use the CREATE DISTINCT TYPE statement to create a new distinct data type.

Syntax

Usage
A distinct type is a data type based on a built-in data type or on an existing
opaque data type, a named-row data type, or another distinct data type.
Distinct data types are strongly typed. Although the distinct type has the
same physical representation as data of its source type, values of the two
types cannot be compared without an explicit cast from one type to the other

To create a distinct type in a database, you must have the Resource privilege.
Any user with the Resource privilege can create a distinct type from one of
the built-in data types, which user informix owns.

Important: You cannot create a distinct type on the SERIAL or SERIAL8 data type.

To create a distinct type from an opaque type, a named-ROW type, or another
distinct type, you must be the owner of the data type or have the Usage
privilege on the data type.

Once a distinct type is defined, only the type owner and the DBA can use it.
The owner of the type can grant other users the Usage privilege on the type.

+

IDS

Element Purpose Restrictions Syntax
distinct_type Name that you

declare here for the
new distinct data
type

In an ANSI-compliant database, the combination of the
owner and data type must be unique within the database.
In a database that is not ANSI compliant, the name must
be unique among names of data types in the database.

Data Type,
p. 4-49

source_type Name of an existing
type on which the
new type is based

Must be either a built-in data type or one created with the
CREATE DISTINCT TYPE, CREATE OPAQUE TYPE, or
CREATE ROW TYPE statement.

Data Type,
p. 4-49

CREATE DISTINCT TYPE distinct_type AS source_type
SQL Statements 2-115

CREATE DISTINCT TYPE
A distinct type has the same storage structure as its source type. The
following statement creates the distinct type birthday, based on the built-in
DATE data type:

CREATE DISTINCT TYPE birthday AS DATE

Although Dynamic Server uses the same storage format for the distinct type
as it does for its source type, a distinct type and its source type cannot be
compared in an operation unless one type is explicitly cast to the other type.

Privileges on Distinct Types

To create a distinct type, you must have the Resource privilege on the
database. When you create the distinct type, only you, the owner, have Usage
privilege on this type. Use the GRANT or REVOKE statements to grant or
revoke Usage privilege to other database users.

To find out what privileges exist on a particular type, check the sysxtdtypes
system catalog table for the owner name and the sysxtdtypeauth system
catalog table for additional data type privileges that might have been
granted. For more information on system catalog tables, see the IBM Informix
Guide to SQL: Reference.

The DB-Access utility can also display privileges on distinct types. ♦

Support Functions and Casts

When you create a distinct type, Dynamic Server automatically defines two
explicit casts:

� A cast from the distinct type to its source type

� A cast from the source type to the distinct type

Because the two data types have the same representation (the same length
and alignment), no support functions are required to implement the casts.

You can create an implicit cast between a distinct type and its source type. To
create an implicit cast, use the Table Options clause to specify the format of
the external data. You must first drop the default explicit cast, however,
between the distinct type and its source type.

DB
2-116 IBM Informix Guide to SQL: Syntax

CREATE DISTINCT TYPE
All support functions and casts that are defined on the source type can be
used on the distinct type. Casts and support functions that are defined on the
distinct type, however, Use the Table Options clause to specify the format of
the external data.are not available to the source type.

Manipulating Distinct Types

When you compare or manipulate data of a distinct type and its source type,
you must explicitly cast one type to the other in the following situations:

� To insert or update a column of one type with values of the other type

� To use a relational operator to add, subtract, multiply, divide,
compare, or otherwise manipulate two values, one of the source type
and one of the distinct type

For example, suppose you create a distinct type, dist_type, that is based on
the NUMERIC data type. You then create a table with two columns, one of
type dist_type and one of type NUMERIC.

CREATE DISTINCT TYPE dist_type AS NUMERIC;
CREATE TABLE t(col1 dist_type, col2 NUMERIC);

To directly compare the distinct type and its source type or assign a value of
the source type to a column of the distinct type, you must cast one type to the
other, as the following examples show:

INSERT INTO tab (col1) VALUES (3.5::dist_type);

SELECT col1, col2
FROM t WHERE (col1::NUMERIC) > col2;

SELECT col1, col2, (col1 + col2::dist_type) sum_col
FROM tab;

Related Information
Related statements: CREATE CAST, CREATE FUNCTION, CREATE OPAQUE
TYPE, CREATE ROW TYPE, DROP TYPE, and DROP ROW TYPE

For information and examples that show how to use and cast distinct types,
see the IBM Informix Guide to SQL: Tutorial.

For more information on when you might create a distinct type, see
IBM Informix User-Defined Routines and Data Types Developer’s Guide.
SQL Statements 2-117

CREATE DUPLICATE
CREATE DUPLICATE
Use the CREATE DUPLICATE statement to create a duplicate copy of an
existing table for read-only use in a specified dbslice or in specified dbspaces
across coservers.

Syntax

Usage
If the original table resides entirely on a single coserver, you can create
duplicate copies of small tables across coservers for read-only use. For each
attached index of the original table, a similarly defined index is built on each
table duplicate, using the same dbspaces as the table.

Because query operators read the local copy of the table, duplicating small
tables across coservers might improve the performance of some queries.

If a local copy of a duplicated table exists but is not available because the
dbspace that stores it is offline (or for some similar reason), a query that
requires access to the table fails. The database server does not attempt to
access the original table.

+

XPS

Element Description Restrictions Syntax
dbslice Name of a dbslice in which to

duplicate one fragment of table
Must exist and must contain at most one
dbspace on each target coserver.

Database Object
Name

dbspace Name of a dbspace in which to
duplicate one fragment of table

Must exist and must not already contain an
original or duplicate fragment of table.

Database Object
Name

table Name of the original table from
which to create a duplicate

Must already exist in the database. See also
“Supported Operations” on page 2-120.

Database Object
Name

table INCREATE DUPLICATE OF TABLE dbspace()

,

dbslice
2-118 IBM Informix Guide to SQL: Syntax

CREATE DUPLICATE
The location of a duplicated table can be either a dbslice or a comma-
separated list of dbspaces. You can combine dbslices and lists of dbspaces in
a single CREATE DUPLICATE statement.

� If the original table is not fragmented, the dbspace list need provide
only a single dbspace on each coserver.

For example, if the table tab1 is not fragmented, enter the following
statement to create a duplicate on the remaining three of the four
coservers if the original table is stored in the dbspace db1 on coserver
1 and db2 is on coserver 2, db3 is on coserver 3, and db4 is on
coserver 4.
CREATE DUPLICATE OF TABLE tab1 IN (db2, db3, db4)

� If the original table is fragmented with one fragment in the first
dbspace of several dbslices that contain dbspaces on all coservers,
you can create duplicate copies of the table in the remaining
dbspaces of the dbslice.

For example, you might create the tab3 table in the first dbspace of
three dbslices, each of which contains a dbspace on each coserver, as
follows:
CREATE TABLE tab3 (...)

FRAGMENT BY HASH (....) IN dbsl1.l, dbsl2.1, dbsl3.1

To duplicate the tab3 table across the remaining coservers, use the
following statement:
CREATE DUPLICATE OF TABLE tab3 IN dbsl1, dbsl2, dbsl3

� You can mix dbslice names and dbspace lists in the same CREATE
DUPLICATE statement. For example, instead of using dbspaces in a
dbslice, for the previous example you might enter the following
statement in which dbsp2a is on coserver 2, dbsp3a is on coserver 3,
and dbsp4a is on coserver 4:
CREATE DUPLICATE OF TABLE tab3 IN

dbsl1, dbsl2, (dbsp2a, dbsp3a, dbsp4a)

The first fragment of the original table is duplicated into dbsl1, which
contains a dbspace on each coserver, the second fragment into dbsl2, which
also contains a dbspace on each coserver, and the third fragment into the list
of dbspaces.
SQL Statements 2-119

CREATE DUPLICATE
Only one fragment of a duplicated table can reside in any single dbspace. You
cannot list an existing dbspace of the duplicated table in the list of dbspaces
into which it is duplicated, but it is not an error for an existing dbspace to be
a member of a dbslice that specifies duplication dbspaces. Matching
dbspaces in the dbslice are ignored.

The CREATE DUPLICATE statement requires the ALTER privilege.

Supported Operations

The following operations are permitted on duplicated tables:

� SELECT

� UPDATE STATISTICS

� LOCK and UNLOCK

� SET RESIDENCY

� DROP TABLE

You cannot duplicate a table in certain circumstances. The table must not:

� Have GK or detached indexes

� Use range fragmentation

� Be a temporary table

� Be a violations or diagnostic table

� Contain BYTE, TEXT, or SERIAL columns

� Have referential constraints

The CREATE DUPLICATE statement does not support incremental dupli-
cation. It also does not support multiple duplicates of the same table on a
single coserver, nor duplication of tables that are fragmented across
coservers.

If you need to take a dbspace offline and it contains a copy of a duplicated
table, or if you need to update data in a duplicated table, first drop all dupli-
cates of the table, as described in “DROP DUPLICATE.”

Related Statement
DROP DUPLICATE
2-120 IBM Informix Guide to SQL: Syntax

CREATE EXTERNAL TABLE
CREATE EXTERNAL TABLE
Use the CREATE EXTERNAL TABLE statement to define an external source that
is not part of your database to load and unload data for your database.

Syntax

Usage
The left-hand portion of the syntax diagram declares the name of the table
and defines its columns and any column-level constraints.

The portion that follows the USING keyword specifies external files that the
database server opens when you use the external table, and additional
options for characteristics of the external table.

After executing the CREATE EXTERNAL TABLE statement, you can move data
to and from the external source with an INSERT INTO ... SELECT statement. See
the section “INTO EXTERNAL Clause” on page 2-635 for more information
about loading the results of a query into an external table.

+

XPS

Element Purpose Restrictions Syntax
table Name declared here for a

table to store external data
Must be unique among names of tables, views,
and synonyms in the current database.

Database Object
Name, p. 4-46

,,

CREATE EXTERNAL TABLE)USING (
Column

Definition
p. 2-122

DATAFILES
Clause
p.2-126

table

Table
Options
p. 2-128

Table
Options
p. 2-128
SQL Statements 2-121

CREATE EXTERNAL TABLE
Column Definition

Using the SAMEAS Clause

The SAMEAS template clause uses all the column names and data types from
the template table in the definition of new table. You cannot, however, use
indexes in the external table definition, and you cannot use the SAMEAS
clause for FIXED-format files.

Element Purpose Restrictions Syntax
column One column name for each

column of the external table
For each column, you must
specify a built-in data type

Identifier, p. 4-189

n Number of 8-bit bytes to
represent the integer

For FIXED format binary
integers; big-endian byte order

n=2 for 16-bit integers;
n=4 for 32-bit integers

p Precision (total number of digits) For FIXED-format files only Literal Number, p. 4-216
s Scale (digits in fractional part) For FIXED-format files only Literal Number, p. 4-216
null_string Value to be interpreted as NULL See “Defining NULL Values” on

page 2-123.
Quoted String, p. 4-243

template Existing table with the same
schema as the external table

Cannot be subset of columns nor
differ in any column data type

Database Object Name,
p. 4-46

column

,

Back to CREATE EXTERNAL TABLE
p. 2-121

Column
Definition

templateSAMEAS

Data Type
p. 4-49

Default
Clause
p. 2-217

Column-Level
Constraints

p. 2-125

EXTERNAL

'PACKED(p,s)'

'BINARY(n)'

'ZONED(p,s)'

Data Type
p. 4-49

NULL 'null_string'

'TEXT'

'HEX'
2-122 IBM Informix Guide to SQL: Syntax

CREATE EXTERNAL TABLE
Using the EXTERNAL Keyword

Use the EXTERNAL keyword to specify a data type for each column of your
external table that has a data type different from the internal table. For
example, you might have a VARCHAR column in the internal table that you
want to map to a CHAR column in the external table.

You must specify an external type for every column that is in fixed format.
You cannot specify an external type for delimited format columns except for
BYTE and TEXT columns where your specification is optional. For more infor-
mation, see “TEXT and HEX External Types” on page 2-124.

Integer Data Types

Besides valid Informix integer data types, you can specify packed decimal,
zoned decimal, and IBM-format binary representation of integers. For packed
or zoned decimal, specify precision (total number of digits in the number) and
scale (number of digits that are to the right of the decimal point). Packed
decimal representation can store two digits, or a digit and a sign, in each byte.
Zoned decimal requires (p + 1) bytes to store p digits and the sign.

Big-Endian Format

The database server also supports two IBM-format binary representations of
integers: BINARY(2) for 16-bit integer storage and BINARY(4) for 32-bit
integer storage. The most significant byte of each number has the lowest
address; that is, binary-format integers are stored big-end first (big-endian
format) in the manner of IBM and Motorola processors. Intel processors and
some others store binary-format integers little-end first, a storage method
that the database server does not support for external data.

Defining NULL Values

The packed decimal, zoned decimal, and binary data types do not have a
natural NULL value, so you must define a value to be interpreted as a NULL
when loading or unloading data from an external source. You can define the
null_string as a number outside the set of numbers stored in the data file (for
example, -9999.99). You can also define a bit pattern in the field as a
hexadecimal pattern, such as 0xffff, that is to be interpreted as a NULL.
SQL Statements 2-123

CREATE EXTERNAL TABLE
The database server uses the NULL representation for a FIXED-format
external table to both interpret values as the data is loaded into the database
and to format NULL values into the appropriate data type when data is
unloaded to an external table.

The following examples are of column definitions with NULL values for a
FIXED-format external table:

i smallint external “binary (2)” null “-32767”
li integer external “binary (4)” null “-99999”
d decimal (5,2) external “packed (5,2)” null “0xffffff”
z decimal (4,2) external “zoned (4,2)” null “0x0f0f0f0f”
zl decimal (3,2) external “zoned (3,2)” null “-1.00”

If the packed decimal or zoned decimal is stored with all bits cleared to
represent a NULL value, the null_string can be defined as 0x0. The following
rules apply to the value assigned to a null_string:

� The NULL representation must fit into the length of the external field.

� If a bit pattern is defined, the null_string is not case sensitive.

� If a bit pattern is defined, the null_string must begin with 0x.

� For numeric fields, the left-most fields are assigned zeros by the
database server if the bit pattern does not fill the entire field.

� If the NULL representation is not a bit pattern, the NULL value must
be a valid number for that field.

Warning: If a row that contains a NULL value is unloaded into an external table and
the column that receives the NULL value has no NULL value defined, the database
server inserts a zero into the column.

TEXT and HEX External Types

An Informix BYTE or TEXT column can be encoded in either the TEXT or HEX
external type. You can use only delimited BYTE and TEXT formats with these
external types. Fixed formats are not allowed. In addition, you cannot use
these external types with any other type of delimited-format columns (such
as character columns).

You do not need to specify these external types. If you do not define an
external column specifically, Informix TEXT columns default to TEXT and
Informix BYTE columns default to HEX.

The database server interprets two adjacent field delimiters as a NULL value.
2-124 IBM Informix Guide to SQL: Syntax

CREATE EXTERNAL TABLE
User-defined delimiters are limited to one byte each. During unloading,
delimiters and backslash (\) symbols are escaped. During loading, any
character that follows a backslash is interpreted as a literal. In TEXT format,
nonprintable characters are directly embedded in the data file. For delimiter
rules in a multibyte locale, see the IBM Informix GLS User’s Guide.

For more information on BYTE and TEXT data, see your Administrator’s Guide.

Manipulating Data in Fixed Format Files

For files in FIXED format, you must declare the column name and the
EXTERNAL item for each column to set the name and number of characters.
For FIXED-format files, the only data type allowed is CHAR. You can use the
keyword NULL to specify what string to interpret as a NULL value.

Column-Level Constraints
Use column-level constraints to limit the type of data that is allowed in a
column. Constraints at the column level are limited to a single column.

Using the Not-Null Constraint

If you do not indicate a default value for a column, the default is NULL unless
you place a not-null constraint on the column. In that case, no default value
exists for the column. If you place a not-null constraint on a column (and no
default value is specified), the data in the external table must have a value set
for the column when loading through the external table.

When no reject file exists and no value is encountered, the database server
returns an error and the loading stops. When a reject file exists and no value
is encountered, the error is reported in the reject file and the load continues.

Column-Level
Constraints

()Condition
p. 4-24CHECK

Back to Column-Definition
p. 2-122

NOT NULL
SQL Statements 2-125

CREATE EXTERNAL TABLE
Using the CHECK Constraint

Check constraints allow you to designate conditions that must be met before
data can be assigned to a column during an INSERT or UPDATE statement.
When a reject file does not exist and a row evaluates to false for any check
constraint defined on a table during an insert or update, the database server
returns an error. When there is a reject file and a row evaluates to false for a
check constraint defined on the table, the error is reported in the reject file
and the statement continues to execute.

Check constraints are defined with search conditions. The search condition
cannot contain subqueries, aggregates, host variables, or SPL routines. In
addition, it cannot include the built-in functions CURRENT, USER, SITENAME,
DBSERVERNAME, or TODAY. When you define a check constraint at the
column level, the only column that the check constraint can check against is
the column itself. In other words, the check constraint cannot depend upon
values in other columns of the table.

DATAFILES Clause
The DATAFILES clause specifies external files that are opened when you use
external tables.

Element Purpose Restrictions Syntax
coserver_group Coserver group that contains the external data Must exist. Identifier, p. 4-189
coserver_num Numeric ID of coserver containing the external data Must exist. Literal Number, p. 4-216
fixed_path Pathname for input or output files in the definition

of the external table
Must exist. Must conform to

operating-system rules.
formatted_path Formatted pathname that uses pattern-matching

characters
Must exist. Must conform to

operating-system rules.

: :coserver_num

formatted_path

fixed_path

,

DISKDATAFILES)(

coserver_group

Back to CREATE EXTERNAL TABLE p. 2-121
Back to INTO EXTERNAL Clause p. 2-632

DATAFILES
Clause

' '

PIPE
2-126 IBM Informix Guide to SQL: Syntax

CREATE EXTERNAL TABLE
You can use cogroup names and coserver numbers when you describe the
input or output files for the external table definition. You can identify the
DATAFILES either by coserver number or by cogroup name. A coserver
number contains only digits. A cogroup name is a valid identifier that begins
with a letter but otherwise contains any combination of letters, digits, and
underscore symbols.

If you use only some of the available coservers for reading or writing files,
you can designate these coservers as a cogroup using onutil and then use the
cogroup name, rather than explicitly specifying each coserver and file
separately. Whenever you use all coservers to manage external files, you can
use the predefined coserver_group.

For examples of the DATAFILES clause, see “Examples” on page 2-131.

Using Formatting Characters

You can use a formatted pathname to designate a filename. If you use a
formatted pathname, you can take advantage of the substitution characters
%c, %n, and %r(first ... last).

Important: The formatted pathname option does not support the %o formatting
string.

Formatting String Effect

%c Replaced with the number of the coserver that manages the file

%n Replaced with the name of the node on which the coserver that
manages the file resides

%r(first ... last) Specifies multiple files on a single coserver
SQL Statements 2-127

CREATE EXTERNAL TABLE
Table Options
These options specify additional characteristics that define the table.

The num_errors specification is ignored during unload tasks. If MAXERRORS
environment variable is not set, the database server processes all data in load
operations, regardless of the number of errors or num_errors value.

Element Purpose Restrictions Syntax
field_delimiter Character to separate fields.

Default is pipe (|) character
For nonprinting
characters, use octal

Quoted String, p. 4-243

filename Full pathname for conversion
error messages from coservers

See “Reject Files” on
page 2-130.

Must conform to
operating-system rules.

num_errors Errors per coserver before load
operations are terminated

Value ignored unless
MAXERRORS is set

Literal Number, p. 4-216

num_rows Approximate number of rows
contained in the external table

Cannot be a negative
number

Literal Number, p. 4-216

quoted_string ASCII character that represents
the escape

Only a single character is
valid

Quoted String, p. 4-243

record_delimiter Character to separate records.
Default is Newline (\n).

For nonprinting
characters, use octal

Quoted String, p. 4-243

,

CODESETFIXED

DEFAULT DELIMITER

RECORDEND

MAXERRORS

REJECTFILE

ESCAPE

DELUXE

EXPRESS

INFORMIX

'filename '

'field_delimiter '

' record_delimiter '

num_errors

'FORMAT '

'

'

Back to CREATE EXTERNAL TABLE
p. 2-121

Table
Options

DELIMITED

SIZE num_rows

EBCDIC

ASCII
2-128 IBM Informix Guide to SQL: Syntax

CREATE EXTERNAL TABLE
If the RECORDEND environment variable is not set, record_delimiter defaults
to the Newline character (\n). To specify a nonprinting character as the
record delimiter or field delimiter, you must encode it as the octal represen-
tation of the ASCII character. For example, '\006' can represent CTRL-F.

Use the table options keywords as the following table describes. You can use
each keyword whenever you plan to load or unload data unless only one of
the two modes is specified.

Keyword Purpose

CODESET Specifies the type of code set of the data

DEFAULT
(load only)

Specifies replacing missing values in delimited input files with
column defaults (if they are defined) instead of NULLs, so input
files can be sparsely populated. Files do not need an entry for every
column in the file where a default is the value to be loaded.

DELIMITER Specifies the character that separates fields in a delimited text file

DELUXE
(load only)

Sets a flag causing the database server to load data in deluxe mode

Deluxe mode is required for loading into STANDARD tables.

ESCAPE Defines a character to mark ASCII special characters in ASCII-text-
based data files

EXPRESS Sets a flag that causes the database server to attempt to load data
in express mode. If you request express mode but indexes or
unique constraints exist on the table or the table contains BYTE or
TEXT data, or the target table is not RAW or OPERATIONAL, the
load stops with an error message that reports the problem.

FORMAT Specifies the format of the data in the data files

MAXERRORS Sets the number of errors that are allowed per coserver before the
database server stops the load

RECORDEND Specifies the character that separates records in a delimited text file

REJECTFILE Sets the full pathname where all coservers write data-conversion
errors. If not specified or if files cannot be opened, any error ends
the load job abnormally. See also “Reject Files” on page 2-130.

SIZE The approximate number of rows in the external table. This can
improve performance when external table is used in a join query.
SQL Statements 2-129

CREATE EXTERNAL TABLE
Important: Check constraints on external tables are designed to be evaluated only
when loading data. The database server cannot enforce check constraints on external
tables because the data can be freely altered outside the control of the database server.
If you want to restrict rows that are written to an external table during unload, use
a WHERE clause to filter the rows.

Reject Files
Rows that have conversion errors during a load or rows that violate check
constraints on the external table are written to a reject file on the coserver that
performs the conversion. Each coserver manages its own reject file. The
REJECTFILE clause declares the name of the reject file on each coserver.

You can use the formatting characters %c and %n (but not %r) in the filename
format. Use the %c formatting characters to make the filenames unique. For
more information on how to format characters, see the section “Using
Formatting Characters” on page 2-127.

If you perform another load to the same table during the same session, any
earlier reject file of the same name is overwritten.

Reject file entries have the following format:

coserver-number, filename, record, reason-code,
field-name: bad-line

The following table describes these elements of the reject file:

Element Purpose

coserver-number Number of the coserver from which the file is read

filename Name of the input file

record Record number in the input file where the error was detected

reason-code Description of the error

field-name External field name where the first error in the line occurred, or
'<none>' if the rejection is not specific to a particular column

bad-line Line that caused the error (delimited or fixed-position character
files only): up to 80 characters
2-130 IBM Informix Guide to SQL: Syntax

CREATE EXTERNAL TABLE
The reject file writes the coserver-number, filename, record, field-name, and
reason-code in ASCII. The bad-line information varies with the type of input file.

� For delimited files or fixed-position character files, up to 80
characters of the bad-line are copied directly into the reject file.

� For Informix internal data files, the bad-line is not placed in the reject
file because you cannot edit the binary representation in a file; but the
Use the Table Options clause to specify the format of the external
data.coserver-number, filename, record, reason-code, and field-name are
still reported in the reject file so you can isolate the problem.

Errors that can cause a row to be rejected include the following.

Examples

The examples in this section show how to specify the DATAFILES field.

Assume that the database server is running on four nodes, and one file is to
be read from each node. All files have the same name. The DATAFILES speci-
fication can then be as follows:

DATAFILES ("DISK:cogroup_all:/work2/unload.dir/mytbl")

Error Text Explanation

CONSTRAINT constraint name This constraint was violated.

CONVERT_ERR Any field encounters a conversion error.

MISSING_DELIMITER No delimiter was found.

MISSING_RECORDEND No recordend was found.

NOT NULL A NULL was found in field-name.

ROW_TOO_LONG The input record is longer than 32 kilobytes.
SQL Statements 2-131

CREATE EXTERNAL TABLE
Now, consider a system with 16 coservers where only three coservers have
tape drives attached (for example, coservers 2, 5, and 9). If you define a
cogroup for these coservers before you run load and unload commands, you
can use the cogroup name rather than a list of individual coservers when you
execute the commands. To set up the cogroup, run onutil.

% onutil
1> create cogroup tape_group
2> from coserver.2, coserver.5, coserver.9;
Cogroup successfully created.

Then define the file locations for named pipes:

DATAFILES ("PIPE:tape_group:/usr/local/TAPE.%c")

The filenames expand as follows:

DATAFILES ("pipe:2:/usr/local/TAPE.2",
"pipe:5:/usr/local/TAPE.5",
"pipe:9:/usr/local/TAPE.9")

If, instead, you want to process three files on each of two coservers, define the
files as follows:

DATAFILES ("DISK:1:/work2/extern.dir/mytbl.%r(1..3)",
"DISK:2:/work2/extern.dir/mytbl.%r(4..6)")

The expanded list follows:

DATAFILES ("disk:1:/work2/extern.dir/mytbl.1",
"disk:1:/work2/extern.dir/mytbl.2",
"disk:1:/work2/extern.dir/mytbl.3",
"disk:2:/work2/extern.dir/mytbl.4",
"disk:2:/work2/extern.dir/mytbl.5",
"disk:2:/work2/extern.dir/mytbl.6")

Related Information
Related statements: INSERT and SET PLOAD FILE

See also the “INTO Table Clauses” of SELECT.

For more information on external tables, refer to your Administrator’s
Reference.
2-132 IBM Informix Guide to SQL: Syntax

CREATE FUNCTION
CREATE FUNCTION
Use the CREATE FUNCTION statement to create a user-defined function,
register an external function, or to write and register an SPL function.

Syntax

Tip: If you are trying to create a function from text of source code that is in a separate
file, use the CREATE FUNCTION FROM statement.

+

IDS

Element Purpose Restrictions Syntax
function Name of new function

that is defined here
You must have the appropriate language
privileges. See “GRANT” on page 2-459
and “Naming a Function” on page 2-135.

Database Object Name,
p. 4-46

pathname Pathname to a file in
which compile-time
warnings are stored

The specified pathname must exist on the
computer where the database resides.

The path and filename
must conform to your
operating-system rules.

functionCREATE FUNCTION

DBA

()
Routine

Parameter List
p. 4-266

Ext

SPECIFIC
Specific Name

p. 4-274 WITH

External Routine Reference
p.4-187

DOCUMENT

WITH LISTING IN 'pathname'

()

,

Routine Modifier
p. 4-257

,

Quoted String
p. 4-243

END FUNCTION
Statement Block

p. 4-276SPL

Return
Clause
p. 4-253

;

SQL Statements 2-133

CREATE FUNCTION
Usage
The database server supports user-defined functions written in the following
languages:

� Stored Procedure Language (SPL)

An SPL function can return one or more values.

� One of the external languages (C or Java) that Dynamic Server
supports (external functions)

An external function must return exactly one value.

For information on how this manual uses the terms UDR, function, and
procedure as well as recommended usage, see “Relationship Between
Routines, Functions, and Procedures” on page 2-183 and “Using CREATE
PROCEDURE Versus CREATE FUNCTION” on page 2-183, respectively.

The entire length of a CREATE FUNCTION statement must be less than
64 kilobytes. This length is the literal length of the statement, including
whitespace characters such as blank spaces and tabs.

You can use a CREATE FUNCTION statement only within a PREPARE
statement. If you want to create a user-defined function for which the text is
known at compile time, you must put the text in a file and specify this file
with the CREATE FUNCTION FROM statement. ♦

Functions use the collating order that was in effect when they were created.
See SET COLLATION for information about using non-default collation ♦

Privileges Necessary for Using CREATE FUNCTION

You must have the Resource privilege on a database to create a function
within that database.

Before you can create an external function, you must also have the Usage
privilege on the language in which you will write the function. For more
information, see “GRANT” on page 2-459. ♦

By default, the Usage privilege on SPL is granted to PUBLIC. You must also
have at least the Resource privilege on a database to create an SPL function
within that database. ♦

E/C

IDS

Ext

SPL
2-134 IBM Informix Guide to SQL: Syntax

CREATE FUNCTION
DBA Keyword and Privileges on the Created Function

The level of privilege necessary to execute a UDR depends on whether the
UDR is created with the DBA keyword.

If you create a UDR with the DBA keyword, it is known as a DBA-privileged
UDR. You need the DBA privilege to create or execute a DBA-privileged UDR.

If you omit the DBA keyword, the UDR is known as an owner-privileged UDR.

If you create an owner-privileged UDR in an ANSI-compliant database,
anyone can execute the UDR. ♦

If you create an owner-privileged UDR in a database that is not ANSI
compliant, the NODEFDAC environment variable prevents privileges on that
UDR from being granted to PUBLIC. If this environment variable is set, the
owner of a UDR must grant the Execute privilege for that UDR to other users.

If an external function has a negator function, you must grant the Execute
privilege on both the external function and its negator function before users
can execute the external function. ♦

Naming a Function

Because Dynamic Server offers routine overloading, you can define more than
one function with the same name, but different parameter lists. You might
want to overload functions in the following situations:

� You create a user-defined function with the same name as a built-in
function (such as equal()) to process a new user-defined data type.

� You create type hierarchies, in which subtypes inherit data represen-
tation and functions from supertypes.

� You create distinct types, which are data types that have the same
internal storage representation as an existing data type, but have
different names and cannot be compared to the source type without
casting. Distinct types inherit support functions from their source
types.

For a brief description of the routine signature that uniquely identifies each
user-defined function, see “Routine Overloading and Naming UDRs with a
Routine Signature” on page 4-48.

ANSI

Ext
SQL Statements 2-135

CREATE FUNCTION
Using the SPECIFIC Clause to Specify a Specific Name

You can specify a specific name for a user-defined function. A specific name
is a name that is unique in the database. A specific name is useful when you
are overloading a function.

DOCUMENT Clause

The quoted string in the DOCUMENT clause provides a synopsis and
description of the UDR. The string is stored in the sysprocbody system
catalog table and is intended for the user of the UDR. Anyone with access to
the database can query the sysprocbody system catalog table to obtain a
description of one or all of the UDRs stored in the database.

For example, the following query obtains a description of the SPL function
update_by_pct, that “SPL Functions” on page 2-137 shows:

SELECT data FROM sysprocbody b, sysprocedures p
WHERE b.procid = p.procid

--join between the two catalog tables
AND p.procname = 'update_by_pct'

-- look for procedure named update_by_pct
AND b.datakey = 'D'-- want user document;

The preceding query returns the following text:

USAGE: Update a price by a percentage
Enter an integer percentage from 1 - 100
and a part id number

A UDR or application program can query the system catalog tables to fetch
the DOCUMENT clause and display it for a user.

You can use a DOCUMENT clause at the end of the CREATE FUNCTION
statement, whether or not you use the END FUNCTION keywords. ♦

WITH LISTING IN Clause

The WITH LISTING IN clause specifies a filename where compile time
warnings are sent. After you compile a UDR, this file holds one or more
warning messages.

If you do not use the WITH LISTING IN clause, the compiler does not generate
a list of warnings.

Ext
2-136 IBM Informix Guide to SQL: Syntax

CREATE FUNCTION
If you specify a filename but not a directory, this listing file is created in your
home directory on the computer where the database resides. If you do not
have a home directory on this computer, the file is created in the root
directory (the directory named “/”). ♦

If you specify a filename but not a directory, this listing file is created in your
current working directory if the database is on the local computer. Otherwise,
the default directory is %INFORMIXDIR%\bin. ♦

SPL Functions
SPL functions are UDRs written in SPL that return one or more values. To
write and register an SPL function, use a CREATE FUNCTION statement.
Embed appropriate SQL and SPL statements between the CREATE FUNCTION
and END FUNCTION keywords. You can also follow the function with the
DOCUMENT and WITH FILE IN options.

SPL functions are parsed, optimized (as far as possible), and stored in the
system catalog tables in executable format. The body of an SPL function is
stored in the sysprocbody system catalog table. Other information about the
function is stored in other system catalog tables, including sysprocedures,
sysprocplan, and sysprocauth. For more information about these system
catalog tables, see the IBM Informix Guide to SQL: Reference.

The END FUNCTION keywords are required in every SPL function, and a
semicolon (;) must follow the clause that immediately precedes the
statement block. The following code example creates an SPL function:

CREATE FUNCTION update_by_pct (pct INT, pid CHAR(10))
RETURNING INT;
DEFINE n INT;
UPDATE inventory SET price = price + price * (pct/100)

WHERE part_id = pid;
LET n = price;
RETURN price;

END FUNCTION
DOCUMENT "USAGE: Update a price by a percentage",

"Enter an integer percentage from 1 - 100",
"and a part id number"

WITH LISTING IN '/tmp/warn_file'

For more information on how to write SPL functions, see the chapter about
SPL routines in IBM Informix Guide to SQL: Tutorial.

See also the section “Transactions in SPL Routines” on page 4-280.

UNIX

Windows

SPL
SQL Statements 2-137

CREATE FUNCTION
You can include valid SQL or SPL language statements in SPL functions. See,
however, the following sections in Chapter 4 that describe restrictions on SQL
and SPL statements within SPL routines: “Subset of SPL Statements Valid in
the Statement Block” on page 4-276; “SQL Statements Not Valid in an SPL
Statement Block” on page 4-277; and “Restrictions on SPL Routines in Data-
Manipulation Statements” on page 4-279.

External Functions
External functions are functions you write in an external language (that is, a
programming language other than SPL) that Dynamic Server supports.

To create a C user-defined function

1. Write the C function.

2. Compile the function and store the compiled code in a shared library
(the shared-object file for C).

3. Register the function in the database server with the CREATE
FUNCTION statement.

To create a user-defined function written in the Java language

1. Write a Java static method, which can use the JDBC functions to
interact with the database server.

2. Compile the Java source file and create a .jar file (the shared-object
file for Java).

3. Execute the install_jar() procedure with the EXECUTE PROCEDURE
statement to install the jar file in the current database.

4. If the UDR uses user-defined types, create a map between SQL data
types and Java classes.

Use the setUDTExtName() procedure that is explained in
“EXECUTE PROCEDURE” on page 2-414.

5. Register the UDR with the CREATE FUNCTION statement.

Rather than storing the body of an external routine directly in the database,
the database server stores only the pathname of the shared-object file that
contains the compiled version of the routine. When it executes the external
routine, the database server invokes the external object code.

Ext

C

Java
2-138 IBM Informix Guide to SQL: Syntax

CREATE FUNCTION
The database server stores information about an external function in system
catalog tables, including sysprocbody and sysprocauth. For more infor-
mation on the system catalog, see the IBM Informix Guide to SQL: Reference.

Example of Registering a C User-Defined Function

The following example registers an external C user-defined function named
equal() in the database. This function takes two arguments of the type
basetype1 and returns a single Boolean value. The external routine reference
name specifies the path to the C shared library where the function object code
is actually stored. This library contains a C function basetype1_equal(),
which is invoked during execution of the equal() function.

CREATE FUNCTION equal (arg1 basetype1, arg2 basetype1)
RETURNING BOOLEAN;
EXTERNAL NAME
"/usr/lib/basetype1/lib/libbtype1.so(basetype1_equal)"
LANGUAGE C
END FUNCTION

Example of Registering a User-Defined Function Written in the Java
Language

The following CREATE FUNCTION statement registers the user-defined
function, sql_explosive_reaction(). This function is discussed in
“sqlj.install_jar” on page 2-418.

CREATE FUNCTION sql_explosive_reaction(int) RETURNS int
WITH (class="jvp")
EXTERNAL NAME "course_jar:Chemistry.explosiveReaction"
LANGUAGE JAVA

This function returns a single INTEGER value. The EXTERNAL NAME clause
specifies that the Java implementation of the sql_explosive_reaction()
function is a method called explosiveReaction(), which resides in the
Chemistry Java class that resides in the course_jar jar file.

C

Java
SQL Statements 2-139

CREATE FUNCTION
Ownership of Created Database Objects

The user who creates an owner-privileged UDR owns any database objects
that are created by the UDR when the UDR is executed, unless another owner
is specified for the created database object. In other words, the UDR owner,
not the user who executes the UDR, is the owner of any database objects
created by the UDR unless another owner is specified in the statement that
creates the database object.

For example, assume that user mike creates this user-defined function:

CREATE FUNCTION func1 () RETURNING INT;
CREATE TABLE tab1 (colx INT);
RETURN 1;

END FUNCTION

If user joan now executes function func1, user mike, not user joan, is the
owner of the newly created table tab1.

In the case of a DBA-privileged UDR, however, the user who executes a UDR
(rather than the UDR owner) owns any database objects created by the UDR,
unless another owner is specified for the database object within the UDR.

For example, assume that user mike creates this user-defined function:

CREATE DBA FUNCTION func2 () RETURNING INT;
CREATE TABLE tab2 (coly INT);
RETURN 1;

END FUNCTION

If user joan now executes function func2, user joan, not user mike, is the
owner of the newly created table tab2.

See also the section “Support for Roles and User Identity” on page 4-280.

Related Information
Related statements: ALTER FUNCTION, ALTER ROUTINE, CREATE
PROCEDURE, CREATE FUNCTION FROM, DROP FUNCTION, DROP ROUTINE,
GRANT, EXECUTE FUNCTION, PREPARE, REVOKE, and UPDATE STATISTICS

Chapter 3 of this manual describes the syntax of the SPL language. For a
discussion on how to create and use SPL routines, see the IBM Informix Guide
to SQL: Tutorial.
2-140 IBM Informix Guide to SQL: Syntax

CREATE FUNCTION FROM
For a discussion on how to create and use external routines, see IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

For information about how to create C UDRs, see the IBM Informix DataBlade
API Programmer’s Guide.

For more information on the NODEFDAC environment variable and the
related system catalog tables (sysprocedures, sysprocplan, sysprocbody and
sysprocauth), see the IBM Informix Guide to SQL: Reference.

CREATE FUNCTION FROM
Use the CREATE FUNCTION FROM statement to access a user-defined
function whose CREATE FUNCTION statement resides in a separate file.

Syntax

+

IDS

E/C

Element Purpose Restrictions Syntax
file Path and filename of a file that contains the

full CREATE FUNCTION statement text.
Default pathname is current directory.

Must exist and contain
exactly one CREATE
FUNCTION statement.

Must conform to
operating-system
rules.

file_var Variable storing value of file Same as for file. Language specific

' file '

file_var

CREATE FUNCTION FROM
SQL Statements 2-141

CREATE FUNCTION FROM
Usage
An ESQL/C program cannot directly create a user-defined function. That is,
it cannot contain the CREATE FUNCTION statement.

To create these functions within an ESQL/C program

1. Create a source file with the CREATE FUNCTION statement.

2. Use the CREATE FUNCTION FROM statement to send the contents of
this source file to the database server for execution.

The file that you specify in the file parameter can contain only one
CREATE FUNCTION statement.

For example, suppose that the following CREATE FUNCTION statement is in
a separate file, called del_ord.sql:

CREATE FUNCTION delete_order(p_order_num int)
RETURNING int, int;
DEFINE item_count int;
SELECT count(*) INTO item_count FROM items

WHERE order_num = p_order_num;
DELETE FROM orders WHERE order_num = p_order_num;
RETURN p_order_num, item_count;

END FUNCTION;

In the ESQL/C program, you can access the delete_order() SPL function with
the following CREATE FUNCTION FROM statement:

EXEC SQL create function from 'del_ord.sql';

If you are not sure whether the UDR in the file is a user-defined function or a
user-defined procedure, use the CREATE ROUTINE FROM statement.

The filename that you provide is relative. If you provide a simple filename
with no pathname (as in the preceding example), the client application looks
for the file in the current directory.

Important: The ESQL/C preprocessor does not process the contents of the file that you
specify. It just sends the contents to the database server for execution. Therefore, there
is no syntactic check that the file that you specify in CREATE FUNCTION FROM
actually contains a CREATE FUNCTION statement. To improve readability of the
code, however, It is recommended that you match these two statements.
2-142 IBM Informix Guide to SQL: Syntax

CREATE FUNCTION FROM
Related Information
Related statements: CREATE FUNCTION, CREATE PROCEDURE, CREATE
PROCEDURE FROM, and CREATE ROUTINE FROM
SQL Statements 2-143

2-144 IBM Informix Guide to SQL: Syntax

CREATE INDEX
CREATE INDEX
Use the CREATE INDEX statement to create an index for one or more columns
in a table, or on values returned by a UDR using columns as arguments.

Syntax

Usage
When you issue the CREATE INDEX statement, the table is locked in exclusive
mode. If another process is using the table, CREATE INDEX returns an error.

Indexes use the collation that was in effect when CREATE INDEX executed. ♦

+

Element Purpose Restrictions Syntax
index Name declared here for a new index Must be unique among index

names in the database
Database Object
Name, p. 4-46

static Table on which a Generalized Key
index is created

Table must exist and be static;
it cannot be a virtual table

Database Object
Name, p. 4-46

synonym,
table

Name or synonym of a standard or
temporary table to be indexed

Synonym and its table must exist
in the current database

Database Object
Name, p. 4-46

USING BITMAP

Index-Type
Options
p. 2-145

INDEXCREATE ON table

synonym

index

Storage
Options
p. 2-156

GK INDEX ONindex static
GK SELECT Clause

p. 2-166 USING BITMAP

XPSXPS

Index-Key
Specification

p. 2-147

USING Access-
Method Clause

p. 2-153

FILLFACTOR
Option

p. 2-155

)(

IDSIDS

LOCK MODE
Options
p. 2-165

Index
Modes

p. 2-161

XPS

IDS

CREATE INDEX
A secondary-access method (sometimes referred to as an index-access method) is
a set of database server functions that build, access, and manipulate an index
structure such as a B-tree, R-tree, or an index structure that a DataBlade
module provides, in order to speed up the retrieval of data.

Neither synonym nor table can refer to a virtual table. ♦

If you are using Extended Parallel Server, use the USING BITMAP keywords
to store the list of records in each key of the index as a compressed bitmap.
The storage option is not compatible with a bitmap index because bitmap
indexes must be fragmented in the same way as the table. ♦

Index-Type Options

The index-type options let you specify the characteristics of the index.

UNIQUE or DISTINCT Option

Use the UNIQUE or DISTINCT keyword to require that the column(s) on
which the index is based accepts only unique data. If you do not specify the
UNIQUE or DISTINCT keyword, the index allows duplicate values in the
indexed column. The following example creates a unique index:

CREATE UNIQUE INDEX c_num_ix ON customer (customer_num)

A unique index prevents duplicate values in the customer_num column.
A column with a unique index can have, at most, one NULL value.

The DISTINCT keyword is a synonym for the keyword UNIQUE, so the
following statement has the same effect as the previous example:

CREATE DISTINCT INDEX c_num_ix ON customer (customer_num)

The index in both examples is maintained in ascending order, which is the
default order.

IDS

XPS

CLUSTERUNIQUE

Index-Type
Options

Back to CREATE INDEX
p. 2-144

DISTINCT
SQL Statements 2-145

CREATE INDEX
You can also prevent duplicates in a column or set of columns by creating a
unique constraint with the CREATE TABLE or ALTER TABLE statement. You
cannot specify an R-tree secondary-access method for a UNIQUE index key.
For more information on how to create unique constraints, see the CREATE
TABLE or ALTER TABLE statements.

How Indexes Affect Primary-Key, Unique, and Referential Constraints

The database server creates internal B-tree indexes for primary-key, unique,
and referential constraints. If a primary-key, unique, or referential constraint
is added after the table is created, any user-created indexes on the
constrained columns are used, if appropriate. An appropriate index is one
that indexes the same columns that are used in the primary-key, referential,
or unique constraint. If an appropriate user-created index is not available, the
database server creates a nonfragmented internal index on the constrained
column or columns.

CLUSTER Option

Use the CLUSTER keyword to reorder the rows of the table in the order that
the index designates. The CREATE CLUSTER INDEX statement fails if a
CLUSTER index already exists on the same table.

CREATE CLUSTER INDEX c_clust_ix ON customer (zipcode)

This statement creates an index on the customer table that physically orders
the table by zip code.

If the CLUSTER option is specified in addition to fragments on an index, the
data is clustered only within the context of the fragment and not globally
across the entire table.

Some secondary-access methods (such as R-tree) do not support clustering.
Before you specify CLUSTER for your index, be sure that it uses an access
method that supports clustering. ♦

If you are using Extended Parallel Server, you cannot use the CLUSTER
option on STANDARD tables. In addition, you cannot use the CLUSTER option
and storage options in the same CREATE INDEX statement (see “Storage
Options” on page 2-156). When you create a clustered index the constrid
of any unique or referential constraints on the associated table changes.
The constrid is stored in the sysconstraints system catalog table. ♦

IDS

XPS
2-146 IBM Informix Guide to SQL: Syntax

CREATE INDEX
Index-Key Specification

Use the Index-Key Specification portion of the CREATE INDEX statement to
specify the key value for the index, an operator class, and whether the index
will be sorted in ascending or descending order.

The index-key value can be one or more columns that contain built-in data
types. When multiple columns are listed, the concatenation of the set of
columns is treated as a single composite column for indexing.

In addition, the index-key value can be one of the following types:

� A column of type LVARCHAR(size), if size is fewer than 387 bytes

� One or more columns that contain user-defined data types

� One or more values that a user-defined function returns (referred to
as a functional index)

� A combination of columns and functions ♦

Element Purpose Restrictions Syntax
column Column or columns used

as a key to this index
See “Using a Column as the Index Key” on
page 2-148.

Identifier,
p. 4-189

function User-defined function
used as a key to this index

Must be a nonvariant function that does not return a
large object data type. Cannot be a built-in algebraic,
exponential, log, or hex function.

Database
Object Name,
p. 4-46

func_col Column(s) on which the
user-defined function acts

See “Using a Column as the Index Key” on
page 2-148.

Identifier,
p. 4-189

op_class Operator class associated
with column or function for
this index

If the secondary-access method in the USING clause
has no default operator class, you must specify one
here. (See “Using an Operator Class” on page 2-152.)

Identifier,
p. 4-189

Index-Key
Specification

column

DESC

ASC

op_class

IDS

Back to CREATE INDEX
p. 2-144

function

,

)(
,

func_col)(

IDS

IDS
SQL Statements 2-147

CREATE INDEX
Using a Column as the Index Key

These restrictions apply to a column or columns specified as the index key:

� All the columns must exist and must be in the table being indexed.

� The maximum number of columns and total width of all columns
depends on the database server. See “Creating Composite Indexes”
on page 2-149.

� You cannot add an ascending index to a column or column list that
already has a unique constraint on it. See “Using the ASC and DESC
Sort-Order Options” on page 2-149.

� You cannot add a unique index to a column or column list that has a
primary-key constraint on it. The reason is that defining the column
or column list as the primary key causes the database server to create
a unique internal index on the column or column list. So you cannot
create another unique index on this column or column list with the
CREATE INDEX statement.

� The number of indexes that you can create on the same column or the
same set of columns is restricted. See “Restrictions on the Number of
Indexes on a Set of Columns” on page 2-152.

� You cannot create an index on a column of an external table.

� The column cannot be of a collection data type. ♦

Using a Function as an Index Key

You can create functional indexes within an SPL routine.

You can also create an index on a nonvariant user-defined function that does
not return a large object.

A functional index can be a B-tree index, an R-tree index, or a user-defined
secondary-access method.

Functional indexes are indexed on the value that the specified function
returns, rather than on the value of a column. For example, the following
statement creates a functional index on table zones using the value that the
function Area() returns as the key:

CREATE INDEX zone_func_ind ON zones (Area(length,width));

IDS

IDS
2-148 IBM Informix Guide to SQL: Syntax

CREATE INDEX
Creating Composite Indexes

A simple index lists only one column (or for IDS, only one column or function)
in its Index Key Specification. Any other index is a composite index. You
should list the columns in a composite index in the order from most-
frequently used to least-frequently used.

If you use SET COLLATION to specify a non-default locale, you can create
multiple indexes on the same set of columns, using different collations.
(Such indexes would be useful only on NCHAR or NVARCHAR columns.) ♦

The following example creates a composite index using the stock_num and
manu_code columns of the stock table:

CREATE UNIQUE INDEX st_man_ix ON stock (stock_num, manu_code)

The UNIQUE keyword prevents any duplicates of a given combination of
stock_num and manu_code. The index is in ascending order by default.

You can include up to 16 columns in a composite index. The total width of all
indexed columns in a single COMPOSITE index cannot exceed 380 bytes. ♦

An index key part is either a column in a table, or the result of a user-defined
function on one or more columns. A composite index can have up to 16 key
parts that are columns, or up to 341 key parts that are values returned by a
UDR. This limit is language-dependent, and applies to UDRs written in SPL or
Java; functional indexes based on C language UDRs can have up to 102 key
parts. A composite index can have any of the following items as an index key:

� One or more columns

� One or more values that a user-defined function returns (referred to
as a functional index)

� A combination of columns and user-defined functions

The total width of all indexed columns in a single CREATE INDEX statement
cannot exceed 390 bytes, except for functional indexes of Dynamic Server,
whose language-dependent limits are described earlier in this section. ♦

Using the ASC and DESC Sort-Order Options

The ASC option specifies an index maintained in ascending order; this is the
default order. The DESC option can specify an index that is maintained in
descending order. These ASC and DESC options are valid with B-trees only.

XPSIDS

XPS

XPSIDS
SQL Statements 2-149

CREATE INDEX
Effects of Unique Constraints on Sort Order Options

When a column or list of columns is defined as unique in a CREATE TABLE or
ALTER TABLE statement, the database server implements that UNIQUE
CONSTRAINT by creating a unique ascending index. Thus, you cannot use the
CREATE INDEX statement to add an ascending index to a column or column
list that is already defined as unique.

However, you can create a descending index on such columns, and you can
include such columns in composite ascending indexes in different combina-
tions. For example, the following sequence of statements is valid:

CREATE TABLE customer (
customer_num SERIAL(101) UNIQUE,
fname CHAR(15),
lname CHAR(15),
company CHAR(20),
address1 CHAR(20),
address2 CHAR(20),
city CHAR(15),
state CHAR(2),
zipcode CHAR(5),
phone CHAR(18)
)

CREATE INDEX c_temp1 ON customer (customer_num DESC)
CREATE INDEX c_temp2 ON customer (customer_num, zipcode)

In this example, the customer_num column has a unique constraint placed
on it. The first CREATE INDEX statement places an index sorted in descending
order on the customer_num column. The second CREATE INDEX includes the
customer_num column as part of a composite index. For more information
on composite indexes, see “Creating Composite Indexes” on page 2-149.

Bidirectional Traversal of Indexes

If you do not specify the ASC or DESC keywords when you create an index on
a column, key values are stored in ascending order by default; but the bidirec-
tional-traversal capability of the database server lets you create just one index
on a column and use that index for queries that specify sorting of results in
either ascending or descending order of the sort column.

Because of this capability, it does not matter whether you create a single-
column index as an ascending or descending index. Whichever storage order
you choose for an index, the database server can traverse that index in
ascending or descending order when it processes queries.
2-150 IBM Informix Guide to SQL: Syntax

CREATE INDEX
If you create a composite index on a table, however, the ASC and DESC
keywords might be required. For example, if you want to enter a SELECT
statement whose ORDER BY clause sorts on multiple columns and sorts each
column in a different order and you want to use an index for this query, you
need to create a composite index that corresponds to the ORDER BY columns.
For example, suppose that you want to enter the following query:

SELECT stock_num, manu_code, description, unit_price
FROM stock ORDER BY manu_code ASC, unit_price DESC

This query sorts first in ascending order by the value of the manu_code
column and then in descending order by the value of the unit_price column.
To use an index for this query, you need to issue a CREATE INDEX statement
that corresponds to the requirements of the ORDER BY clause. For example,
you can enter either of the following statements to create the index:

CREATE INDEX stock_idx1 ON stock
(manu_code ASC, unit_price DESC);

CREATE INDEX stock_idx2 ON stock
(manu_code DESC, unit_price ASC);

The composite index that was used for this query (stock_idx1 or stock_idx2)
cannot be used for queries in which you specify the same sort direction for
the two columns in the ORDER BY clause. For example, suppose that you
want to enter the following queries:

SELECT stock_num, manu_code, description, unit_price
FROM stock ORDER BY manu_code ASC, unit_price ASC;

SELECT stock_num, manu_code, description, unit_price
FROM stock ORDER BY manu_code DESC, unit_price DESC;

If you want to use a composite index to improve the performance of these
queries, you need to enter one of the following CREATE INDEX statements.
You can use either one of the created indexes (stock_idx3 or stock_idx4) to
improve the performance of the preceding queries.

CREATE INDEX stock_idx3 ON stock
(manu_code ASC, unit_price ASC);

CREATE INDEX stock_idx4 ON stock
(manu_code DESC, unit_price DESC);

You can create no more than one ascending index and one descending index
on a single column. Because of the bidirectional-traversal capability of the
database server, you only need to create one of the indexes. Creating both
would achieve exactly the same results for an ascending or descending sort
on the stock_num column.
SQL Statements 2-151

CREATE INDEX
Restrictions on the Number of Indexes on a Set of Columns

You can create multiple indexes on a set of columns, provided that each index
has a unique combination of ascending and descending columns. For
example, to create all possible indexes on the stock_num and manu_code
columns of the stock table, you could create four indexes:

� The ix1 index on both columns in ascending order

� The ix2 index on both columns in descending order

� The ix3 index on stock_num in ascending order and on manu_code
in descending order

� The ix4 index on stock_num in descending order and on manu_code
in ascending order

Because of the bidirectional-traversal capability of the database server, you
do not need to create these four indexes. You only need to create two indexes:

� The ix1 and ix2 indexes achieve the same results for sorts in which
the user specifies the same sort direction (ascending or descending)
for both columns, so you only need one index of this pair.

� The ix3 and ix4 indexes achieve the same results for sorts in which
the user specifies different sort directions for the two columns
(ascending on the first column and descending on the second column
or vice versa). Thus, you only need to create one index of this pair.
(See also “Bidirectional Traversal of Indexes” on page 2-150.)

Dynamic Serve can also suppport multiple indexes on the same combination
of ascending and descending columns, if each index has a different collating
order; see “SET COLLATION” on page 2-643.

Using an Operator Class

An operator class is the set of operators associated with a secondary-access
method for query optimization and building the index. You must specify an
operator class when you create an index if either one of the following is true:

� No default operator class for the secondary-access method exists. (A
user-defined access method can provide no default operator class.)

� You want to use an operator class that is different from the default
operator class that the secondary-access method provides.

IDS

IDS
2-152 IBM Informix Guide to SQL: Syntax

CREATE INDEX
If you use an alternative access method, and if the access method has a
default operator class, you can omit the operator class here; but if you do not
specify an operator class and the secondary-access method does not have a
default operator class, the database server returns an error. For more infor-
mation, see “Default Operator Classes” on page 2-180. The following CREATE
INDEX statement creates a B-tree index on the cust_tab table that uses the
abs_btree_ops operator class for the cust_num key:

CREATE INDEX c_num1_ix ON cust_tab (cust_num abs_btree_ops);

USING Access-Method Clause

The USING clause specifies the secondary-access method for the new index.

A secondary-access method is a set of routines that perform all of the operations
needed for an index, such as create, drop, insert, delete, update, and scan.

IDS

Element Purpose Restrictions Syntax
parameter Secondary-access-method

parameter for this index
See the user documentation for your
user-defined access method.

Quoted String,
p. 4-243

sec_acc_method Secondary-access method
for this index

Method can be a B-tree, R-tree, or user-
defined access method, such as one that
a DataBlade module defines.

Identifier, p. 4-189

 value Value of the specified
parameter

Must be a valid literal value for parameter
in this secondary-access method.

Quoted String,
p. 4-243 or Literal
Number, p. 4-216

USING Access-Method
Clause

Back to CREATE INDEX
p. 2-144

USING)(

,

sec_acc_method parameter = value
SQL Statements 2-153

CREATE INDEX
The database server provides the following secondary-access methods:

� The generic B-tree index is the built-in secondary-access method.

A B-tree index is good for a query that retrieves a range of data val-
ues. The database server implements this secondary-access method
and registers it as btree in the system catalog tables.

� The R-tree method is a registered secondary-access method.

An R-tree index is good for searches on multidimensional data. The
database server registers this secondary-access method as rtree in the
system catalog tables of a database. An R-tree secondary-access
method is not valid for a UNIQUE index key. For more information
on R-tree indexes, see the IBM Informix R-Tree Index User’s Guide.

The access method that you specify must be a valid access method in the
sysams system catalog table. The default secondary-access method is B-tree.

If the access method is B-tree, you can create only one index for each unique
combination of ascending and descending columnar or functional keys with
operator classes. (This does not apply to other secondary-access methods.)
By default, CREATE INDEX creates a generic B-tree index. If you want to
create an index with a secondary-access method other than B-tree, you must
specify the name of the secondary-access method in the USING clause.

Some user-defined access methods are packaged as DataBlades. Some
DataBlade modules provide indexes that require specific parameters when
you create them. For more information about user-defined access methods,
refer to your access-method or DataBlade documentation.

The following example (for a database that implements R-tree indexes)
creates an R-tree index on the location column that contains an opaque data
type, point, and performs a query with a filter on the location column.

CREATE INDEX loc_ix ON TABLE emp (location) USING rtree;
SELECT name FROM emp WHERE location N_equator_equals point('500, 0');

The following CREATE INDEX statement creates an index that uses the
secondary-access method fulltext, which takes two parameters:
WORD_SUPPORT and PHRASE_SUPPORT. It indexes a table t, which has two
columns: i, an integer column, and data, a TEXT column.

CREATE INDEX tx ON t(data)
USING fulltext (WORD_SUPPORT=‘PATTERN’,
PHRASE_SUPPORT=’MAXIMUM’);
2-154 IBM Informix Guide to SQL: Syntax

CREATE INDEX
FILLFACTOR Option

The FILLFACTOR option takes effect only when you build an index on a table
that contains more than 5,000 rows and uses more than 100 table pages, when
you create an index on a fragmented table, or when you create a fragmented
index on a nonfragmented table.

Use the FILLFACTOR option to provide for expansion of an index at a later
date or to create compacted indexes.

When the index is created, the database server initially fills only that
percentage of the nodes specified with the FILLFACTOR value.

The FILLFACTOR can also be set as a parameter in the ONCONFIG file. The
FILLFACTOR clause on the CREATE INDEX statement overrides the setting in
the ONCONFIG file. For more information about the ONCONFIG file and the
parameters you can use, see your Administrator’s Guide.

Providing a Low Percentage Value

If you provide a low percentage value, such as 50, you allow room for growth
in your index. The nodes of the index initially fill to a certain percentage and
contain space for inserts. The amount of available space depends on the
number of keys in each page as well as the percentage value.

For example, with a 50-percent FILLFACTOR value, the page would be half
full and could accommodate doubling in size. A low percentage value can
result in faster inserts and can be used for indexes that you expect to grow.

Element Purpose Restrictions Syntax
percent Percentage of each index page that is filled by index

data when the index is created. The default is 90.
1 ≤ percent ≤ 100 Literal Number,

p. 4-216

FILLFACTOR
Option

Back to CREATE INDEX
p. 2-144

FILLFACTOR percent
SQL Statements 2-155

CREATE INDEX
Providing a High Percentage Value

If you provide a high percentage value, such as 99, your indexes are
compacted, and any new index inserts result in splitting nodes. The
maximum density is achieved with 100 percent. With a 100-percent
FILLFACTOR value, the index has no room available for growth; any
additions to the index result in splitting the nodes.

A 99-percent FILLFACTOR value allows room for at least one insertion per
node. A high percentage value can result in faster selects and can be used for
indexes that you do not expect to grow or for mostly read-only indexes.

Storage Options

The storage options specify the distribution scheme of an index. You can use
the IN clause to specify a storage space for the entire index, or you can use the
FRAGMENT BY clause to fragment the index across multiple storage spaces.

Element Purpose Restrictions Syntax
dbslice The dbslice that contains all of the index fragments Must exist. Identifier, p. 4-189
dbspace The dbspace in which to store the index Must exist. Identifier, p. 4-189
extspace Name assigned by the onspaces command to a

storage area outside the database server
Must exist. See the documentation for

your access method.

Storage
Options

Back to CREATE INDEX
p. 2-144

extspace

dbspace

dbsliceXPS

IN

FRAGMENT BY
Clause for Indexes

p. 2-159

IDS
2-156 IBM Informix Guide to SQL: Syntax

CREATE INDEX
When you specify one of the storage options, you create a detached index.
Detached indexes are indexes that are created with a specified distribution
scheme. Even if the distribution scheme specified for the index is identical to
that specified for the table, the index is still considered to be detached. If the
distribution scheme of a table changes, all detached indexes continue to use
their own distribution scheme.

For information on locally-detached and globally-detached indexes, see
“FRAGMENT BY Clause for Indexes” on page 2-159. If you are using
Extended Parallel Server, you cannot use the CLUSTER option and storage
options in the same CREATE INDEX statement. See “CLUSTER Option” on
page 2-146. ♦

In some earlier releases of Dynamic Server, if you did not use the storage
options to specify a distribution scheme, then by default the index inherited
the distribution scheme of the table on which it was built. Such an index is
called an attached index. In this release, CREATE INDEX creates new indexes as
detached indexes by default, but supports existing attached indexes that
were created by earlier release versions. An attached index is created in the
same dbspace (or dbspaces, if the table is fragmented) as the table on which
it is built. If the distribution scheme of a table changes, all attached indexes
start using the new distribution scheme.

Only B-tree indexes that are nonfragmented and that are on nonfragmented
tables can be attached. All other indexes, including extensibility related
indexes, such as R-trees and UDT indexes, must be detached. You cannot
create an attached index using a collating order different from that of the
table, nor different from what DB_LOCALE specifies. For information on how
to create attached indexes, see the description of the DEFAULT_ATTACH
environment variable in IBM Informix Guide to SQL: Reference. ♦

IN Clause

Use the IN clause to specify a storage space to hold the entire index. The
storage space that you specify must already exist.

Use the IN dbspace clause to specify the dbspace where you want your index
to reside. When you use this clause, you create a detached index.

XPS

IDS
SQL Statements 2-157

CREATE INDEX
The IN dbspace clause allows you to isolate an index. For example, if the
customer table is created in the custdata dbspace, but you want to create an
index in a separate dbspace called custind, use the following statements:

CREATE TABLE customer
. . .
IN custdata EXTENT SIZE 16

CREATE INDEX idx_cust ON customer (customer_num)
IN custind

Storing an Index in a dbslice

If you are using Extended Parallel Server, the IN dbslice clause allows you to
fragment an index across multiple dbspaces. The database server fragments
the table by round-robin in the dbspaces that make up the dbslice at the time
when the table is created.

Storing an Index in an extspace

In general, use this option in conjunction with the “USING Access-Method
Clause” on page 2-153. You can also store an index in an sbspace. For more
information, refer to the user documentation for your custom access method.

XPS

IDS
2-158 IBM Informix Guide to SQL: Syntax

CREATE INDEX
FRAGMENT BY Clause for Indexes

Use the FRAGMENT BY clause to create a detached index and to define its
fragmentation strategy across multiple dbspaces.

To specify a fragmented index, the IN keyword introduces the storage space
where an index fragment is to be stored. If you list multiple dbspace names
after the IN keyword, use parentheses to delimit the dbspace list.

Element Purpose Restrictions Syntax
column Column on which to fragment the index Must exist in the current table Identifier, p. 4-189
dbslice Dbslice storing all the index fragments Must exist Identifier, p. 4-189
dbspace Dbspace in which to store the index

fragment that expr defines
You must specify at least 2, but no
more than 2,048 dbspace names

Identifier, p. 4-189

expr Expression defining which index keys
each fragment stores

See “Restrictions on Fragmen-
tation Expressions,” page 2-160.

Expression, p. 4-67;
Condition, p. 4-24

(

,

FRAGMENT BY
Clause for Indexes

Back to Storage Options
p. 2-156

,

IN

dbspace

EXPRESSION

XPS

HYBRID

,

column()

,

,

expr IN ,dbslice

dbspace

)

IN

,

expr IN dbspace IN dbspaceFRAGMENT BY

HASH

,

column)(

, REMAINDER

dbspace

expr

dbslice

REMAINDER

expr

dbslice

dbspace

EXPRESSION)(

dbspace

(

,

)dbspace
SQL Statements 2-159

CREATE INDEX
Restrictions on Fragmentation Expressions

The following restrictions apply to the expression:

� Each fragment expression can contain columns only from the current
table, with data values only from a single row.

� The columns contained in a fragment expression must be the same as
the indexed columns or a subset of the indexed columns.

� The expression must return a Boolean (true or false) value.

� No subqueries, aggregates, user-defined routines, nor references to
fields of a ROW type column are allowed.

� The built-in CURRENT, DATE, and TIME functions are not allowed.

You can fragment indexes on any column of a table, even if the table spans
multiple coservers. The columns that you specify in the FRAGMENT BY clause
do not have to be part of the index key.

Detached indexes can be either locally detached or globally detached. A
locally detached index is an index in which, for each data tuple in a table, the
corresponding index tuple is guaranteed to be on the same coserver. The
table and index fragmentation strategies do not have to be identical as long
as co-locality can be guaranteed. If the data tuple and index tuple co-locality
do not exist, then the index is a globally-detached index. For performance impli-
cations of globally-detached indexes, see your Performance Guide.

For more information on expression, hash, and hybrid distribution schemes,
see “Fragmenting by EXPRESSION” on page 2-239, “Fragmenting by
HASH” on page 2-242, and “Fragmenting by HYBRID” on page 2-243,
respectively, in the description of the CREATE TABLE statement. ♦

Fragmentation of System Indexes

System indexes (such as those used in referential constraints and unique
constraints) utilize user indexes if they exist. If no user indexes can be
utilized, system indexes remain nonfragmented and are moved to the
dbspace where the database was created.

To fragment a system index, create the fragmented index on the constraint
columns, and then add the constraint using the ALTER TABLE statement.

XPS
2-160 IBM Informix Guide to SQL: Syntax

CREATE INDEX
Fragmentation of Unique Indexes

You can fragment unique indexes only with a table that uses an expression-
based distribution scheme. The columns referenced in the fragment
expression must be part of the indexed columns. If your CREATE INDEX
statement fails to meet either of these restrictions, the CREATE INDEX fails,
and work is rolled back.

Fragmentation of Indexes on Temporary Tables

You can fragment a unique index on a temporary table only if the underlying
table uses an expression-based distribution scheme. That is, the CREATE
Temporary TABLE statement that defines the temporary table must specify an
explicit expression-based distribution scheme.

If you try to create a fragmented, unique index on a temporary table for
which you did not specify a fragmentation strategy when you created the
table, the database server creates the index in the first dbspace that the
DBSPACETEMP environment variable specifies.For more information on the
DBSPACETEMP environment variable, see the IBM Informix Guide to SQL:
Reference.

For more information on the default storage characteristics of temporary
tables, see “Where Temporary Tables are Stored” on page 2-266.

Index Modes

Use the index modes to control the behavior of the index during INSERT,
DELETE, and UPDATE operations.

IDS

IDS

Index Modes

ENABLED

FILTERING

Back to CREATE INDEX
p. 2-144

WITHOUT ERROR

WITH ERROR

DISABLED
SQL Statements 2-161

CREATE INDEX
The following table explains the index modes.

If you specify filtering for a unique index, you can also specify one of the
following error options.

Mode Purpose

DISABLED The database server does not update the index after insert, delete,
and update operations that modify the base table. The optimizer does
not use the index during the execution of queries.

ENABLED The database server updates the index after insert, delete, and update
operations that modify the base table. The optimizer uses the index
during query execution. If an insert or update operation causes a
duplicate key value to be added to a unique index, the statement fails.

FILTERING The database server updates a unique index after insert, delete, and
update operations that modify the base table. (This option is not
available with duplicate indexes.)

The optimizer uses the index during query execution. If an insert or
update operation causes a duplicate key value to be added to a
unique index in filtering mode, the statement continues processing,
but the bad row is written to the violations table associated with the
base table. Diagnostic information about the unique-index violation
is written to the diagnostics table associated with the base table.

Error Option Purpose

WITHOUT ERROR A unique-index violation during an insert or update
operation returns no integrity-violation error to the user.

WITH ERROR Any unique-index violation during an insert or update
operation returns an integrity-violation error to the user.
2-162 IBM Informix Guide to SQL: Syntax

CREATE INDEX
Specifying Modes for Unique Indexes

You must observe the following rules when you specify modes for unique
indexes in CREATE INDEX statements:

� You can set the mode of a unique index to enabled, disabled, or
filtering.

� If you do not specify a mode, then by default the index is enabled.

� For an index set to filtering mode, if you do not specify an error
option, the default is WITHOUT ERROR.

� When you add a new unique index to an existing base table and
specify the disabled mode for the index, your CREATE INDEX
statement succeeds even if duplicate values in the indexed column
would cause a unique-index violation.

� When you add a new unique index to an existing base table and
specify the enabled or filtering mode for the index, your CREATE
INDEX statement succeeds provided that no duplicate values exist in
the indexed column that would cause a unique-index violation.
However, if any duplicate values exist in the indexed column, your
CREATE INDEX statement fails and returns an error.

� When you add a new unique index to an existing base table in the
enabled or filtering mode, and duplicate values exist in the indexed
column, erroneous rows in the base table are not filtered to the viola-
tions table. Thus, you cannot use a violations table to detect the
erroneous rows in the base table.

Adding a Unique Index When Duplicate Values Exist in the Column

If you attempt to add a unique index in the enabled mode but receive an error
message because duplicate values are in the indexed column, take the
following steps to add the index successfully:

1. Add the index in the disabled mode. Issue the CREATE INDEX
statement again, but this time specify the DISABLED keyword.

2. Start a violations and diagnostics table for the target table with the
START VIOLATIONS TABLE statement.
SQL Statements 2-163

CREATE INDEX
3. Issue a SET Database Object Mode statement to switch the mode of
the index to enabled. When you issue this statement, existing rows in
the target table that violate the unique-index requirement are dupli-
cated in the violations table. However, you receive an integrity-
violation error message, and the index remains disabled.

4. Issue a SELECT statement on the violations table to retrieve the
nonconforming rows that are duplicated from the target table. You
might need to join the violations and diagnostics tables to get all the
necessary information.

5. Take corrective action on the rows in the target table that violate the
unique-index requirement.

6. After you fix all the nonconforming rows in the target table, issue the
SET Database Object Mode statement again to switch the disabled
index to the enabled mode. This time the index is enabled, and no
integrity violation error message is returned because all rows in the
target table now satisfy the new unique-index requirement.

Specifying Modes for Duplicate Indexes

You must observe the following rules when you specify modes for duplicate
indexes in CREATE INDEX statements:

� You can set a duplicate index to enabled or disabled mode. Filtering
mode is available only for unique indexes.

� If you do not specify the mode of a duplicate index, by default the
index is enabled.

How the Database Server Treats Disabled Indexes

Whether a disabled index is a unique or duplicate index, the database server
effectively ignores the index during data-manipulation (DML) operations.

When an index is disabled, the database server stops updating it and stops
using it during queries, but the catalog information about the disabled index
is retained. You cannot create a new index on a column or set of columns if a
disabled index on that column or set of columns already exists. Similarly, you
cannot create an active (enabled) unique, foreign-key, or primary-key
constraint on a column or set of columns if the indexes on which the active
constraint depends are disabled.

IDS
2-164 IBM Informix Guide to SQL: Syntax

Generalized-Key Indexes
LOCK MODE Options

The LOCK MODE options specify the locking granularity of the index.

In COARSE lock mode, index-level locks are acquired on the index instead of
item-level or page-level locks. This mode reduces the number of lock calls on
an index. Use the coarse-lock mode when you know the index is not going to
change, that is, when read-only operations are performed on the index.

If you specify no lock mode, the default is NORMAL. That is, the database
server places item-level or page-level locks on the index as necessary.

Generalized-Key Indexes
If you are using Extended Parallel Server, you can create generalized-key
(GK) indexes. Keys in a conventional index consist of one or more columns of
the STATIC table that is being indexed. A GK index stores information about
the records in a STATIC table based on the results of a query.

GK indexes provide a form of pre-computed index capability that allows
faster query processing, especially in data-warehousing environments. The
optimizer can use the GK index to improve performance.

A GK index is defined on a table when that table is the one being indexed. A
GK index depends on a table when the table appears in the FROM clause of the
index. Before you create a GK index, keep the following issues in mind:

� All tables used in a GK index must be STATIC tables. If you try to
change the type of a table to a non-static type while a GK index
depends on that table, the database server returns an error.

� Any table involved in a GK index must be a STATIC type. UPDATE,
DELETE, INSERT, and LOAD operations are not valid on such a table
until the dependent GK index is dropped and the table type changes.

Key-only index scans are not available with GK indexes.

XPS

LOCK MODE
Options

LOCK MODE

Back to CREATE INDEX
p. 2-144COARSE

NORMAL

XPS
SQL Statements 2-165

Generalized-Key Indexes
SELECT Clause for Generalized-Key Index

If you are using Extended Parallel Server, the options of the GK SELECT clause
are a subset of the options of “SELECT” on page 2-581. The GK SELECT clause
has the following syntax.

The following restrictions apply to expressions in the GK SELECT clause:

� It cannot refer to any SPL routine.

� It cannot include the USER, TODAY, CURRENT, DBINFO built-in
functions, nor any function that refers to a point in time or interval.

Element Purpose Restrictions Syntax
alias Temporary name assigned to the

table in the FROM clause
You cannot use an alias for the table
on which the index is built

Identifier, p. 4-189

synonym,
table

Synonym or table from which to
retrieve data

The synonym and the table to
which it points must exist

Database Object
Name, p. 4-46

GK
WHERE
Clause
p. 2-168

GK
FROM
Clause
p. 2-167

SELECT

GK SELECT
Clause

Back to CREATE INDEX
p. 2-144

ALL

UNIQUE

+
DISTINCT

,

*

Expression
p. 4-67

table.

synonym.

alias.
2-166 IBM Informix Guide to SQL: Syntax

Generalized-Key Indexes
FROM Clause for Generalized-Key Index

All tables that appear in the FROM clause must be local static tables. That is,
no views, non-static, or remote tables are allowed.

The tables that are mentioned in the FROM clause must be transitively joined
on key to the indexed table. Table A is transitively joined on key to table B if
A and B are joined with equal joins on the unique-key columns of A. For
example, suppose tables A, B, and C each have col1 as a primary key. In the
following example, B is joined on key to A and C is joined on key to B. C is
transitively joined on key to A.

CREATE GK INDEX gki
(SELECT A.col1, A.col2 FROM A, B, C
WHERE A.col1 = B.col1 AND B.col1 = C.col1)

Element Purpose Restrictions Syntax
alias Temporary name for a table You cannot use an alias with

indexed_table.
Identifier, p. 4-189

indexed_table,
synonym1

Table on which the index is
being built

The FROM clause must include
the indexed table.

Database Object
Name, p. 4-46

synonym2,
table

Synonym or table from which to
retrieve data

The synonym and the table to
which it points must exist.

Database Object
Name, p. 4-46

GK FROM
Clause

,

FROM

Back to GK SELECT Clause
p. 2-166

indexed_table

table

synonym1

aliasASsynonym2
SQL Statements 2-167

Generalized-Key Indexes
WHERE Clause for Generalized-Key Index

The WHERE clause for a GK index has the following limitations:

� It cannot include USER, TODAY, CURRENT, nor DBINFO built-in
functions, nor any functions that refer to time or a time interval.

� It cannot refer to any SPL routine.

� It cannot have any subqueries.

� It cannot use any aggregate function.

� It cannot have any IN, LIKE, or MATCH clauses.

Related Information
Related statements: ALTER INDEX, CREATE OPCLASS, CREATE TABLE, DROP
INDEX, RENAME INDEX, and SET Database Object Mode

For a discussion of the structure of indexes, see your Administrator’s Reference.

For a discussion of the different types of indexes and information about
performance issues with indexes, see your Performance Guide.

For a discussion of the GLS aspects of the CREATE INDEX statement, see the
IBM Informix GLS User’s Guide. ♦

For information about operator classes, refer to the CREATE OPCLASS
statement and IBM Informix User-Defined Routines and Data Types Developer’s
Guide.

For information about the indexes that DataBlade modules provide, refer to
your DataBlade module user’s guide.

GK WHERE
Clause

Condition
p. 4-24

Join
p. 2-619

WHERE

AND
Back to GK SELECT Clause

p. 2-166

GLS
2-168 IBM Informix Guide to SQL: Syntax

CREATE OPAQUE TYPE
CREATE OPAQUE TYPE
Use the CREATE OPAQUE TYPE statement to create an opaque data type.

Syntax

Usage
The CREATE OPAQUE TYPE statement registers a new opaque type in the
sysxtdtypes system catalog table.

To create an opaque type, you must have the Resource privilege on the
database. When you create the opaque type, only you, the owner, have the
Usage privilege on this type. Use the GRANT or REVOKE statements to grant
or revoke the Usage privilege to other database users.

To view the privileges on a data type, check the sysxtdtypes system catalog
table for the owner name and the sysxtdtypeauth system catalog table for
additional type privileges that might have been granted.

For details of system catalog tables, see the IBM Informix Guide to SQL:
Reference.

+

IDS

Element Purpose Restrictions Syntax
length Number of bytes needed to store

a value of this data type
Positive integer returned when sizeof()
directive is applied to the type structure.

Literal Number,
p. 4-216

type Name that you declare here for
the new opaque data type

Must be unique among data type names
in the database.

Identifier, p. 4-189;
Data Type, p. 4-49

lengthtypeCREATE OPAQUE TYPE (INTERNALLENGTH =)

Opaque-Type Modifier
p. 2-171

,

VARIABLE

,

SQL Statements 2-169

CREATE OPAQUE TYPE
The DB-Access utility can also display privileges on opaque types. ♦

Declaring a Name for an Opaque Type

The name that you declare for an opaque data type is an SQL identifier. When
you create an opaque type, the name must be unique within a database.

When you create an opaque type in an ANSI-compliant database, owner.type
combination must be unique within the database.

The owner name is case sensitive. If you do not put quotes around the owner
name, the name of the opaque-type owner is stored in uppercase letters. ♦

INTERNALLENGTH Modifier

The INTERNALLENGTH modifier specifies the storage size that is required for
the opaque type as fixed length or varying length.

Fixed-Length Opaque Types

A fixed-length opaque type has an internal structure of fixed size. To create a
fixed-length opaque type, specify the size of the internal structure, in bytes,
for the INTERNALLENGTH modifier. The next example creates a fixed-length
opaque type called fixlen_typ and allocates 8 bytes for this type.

CREATE OPAQUE TYPE fixlen_typ(INTERNALLENGTH=8, CANNOTHASH)

Varying-Length Opaque Types

A varying-length opaque type has an internal structure whose size might
vary from one value to another. For example, the internal structure of an
opaque type might hold the actual value of a string up to a certain size but
beyond this size it might use an LO-pointer to a CLOB to hold the value.

To create a varying-length opaque data type, use the VARIABLE keyword
with the INTERNALLENGTH modifier. The following statement creates a
variable-length opaque type called varlen_typ:

CREATE OPAQUE TYPE varlen_typ
(INTERNALLENGTH=VARIABLE, MAXLEN=1024)

DB

ANSI
2-170 IBM Informix Guide to SQL: Syntax

CREATE OPAQUE TYPE
Opaque-Type Modifier

Modifiers can specify the following optional information for opaque types:

� MAXLEN specifies the maximum length for varying-length types.

� CANNOTHASH specifies that the database server cannot use the
built-in hash function on the opaque type.

� ALIGNMENT specifies the byte boundary on which the database
server aligns the opaque type.

� PASSEDBYVALUE specifies that an opaque type of 4 bytes or fewer is
passed by value.

By default, opaque types are passed to user-defined routines by reference.

Element Purpose Restrictions Syntax
align_value Byte boundary on which to align an

opaque type that is passed to a user-
defined routine. Default is 4 bytes.

Must be 1, 2, 4, or 8, depending on the C
definition of the opaque type and hardware
and compiler used to build the object file
for the type.

Literal
Number,
p. 4-216

length Maximum length to allocate for
instances of varying-length opaque
types. Default is 2 kilobytes.

Must be a positive integer £ 32 kilobytes.
Do not specify for fixed-length data types.
Values that exceed this length return errors.

Literal
Number,
p. 4-216

Opaque-Type Modifier Back to CREATE OPAQUE TYPE
p. 2-169

MAXLEN = length

ALIGNMENT = align_value

PASSEDBYVALUE

CANNOTHASH
SQL Statements 2-171

CREATE OPAQUE TYPE
Defining an Opaque Type

To define the opaque type to the database server, you must provide the
following information in the C or Java language:

� A data structure that serves as the internal storage of the opaque type

The internal storage details of the type are hidden, or opaque. Once
you define a new opaque type, the database server can manipulate it
without knowledge of the C or Java structure in which it is stored.

� Support functions that allow the database server to interact with this
internal structure

The support functions tell the database server how to interact with
the internal structure of the type. These support functions must be
written in the C or Java programming language.

� Additional user-defined functions that other support functions or
end users can invoke to operate on the opaque type (optional)

Possible support functions include operator functions and cast func-
tions. Before you can use these functions in SQL statements, they
must be registered with the appropriate CREATE CAST, CREATE PRO-
CEDURE, or CREATE FUNCTION statement.

The following table summarizes the support functions for an opaque type.

Function Description Invoked

input() Converts the opaque type from its external
LVARCHAR representation to its internal
representation

When a client application sends a
character representation of the
opaque type in an INSERT,
UPDATE, or LOAD statement

output() Converts the opaque type from its internal
representation to its external LVARCHAR
representation

When the database server sends a
character representation of the
opaque type as a result of a SELECT
or FETCH statement

receive() Converts the opaque type from its internal
representation on the client computer to its
internal representation on the server computer

Provides platform-independent results
regardless of differences between client and
server computer types

When a client application sends an
internal representation of the
opaque type in an INSERT,
UPDATE, or LOAD statement

(1 of 3)
2-172 IBM Informix Guide to SQL: Syntax

CREATE OPAQUE TYPE
send() Converts the opaque type from its internal repre-
sentation on the server computer to its internal
representation on the client computer

Provides platform-independent results
regardless of differences between client and
database server computer types

When the database server sends an
internal representation of the
opaque type as a result of a SELECT
or FETCH statement

db_receive() Converts the opaque type from its internal repre-
sentation on the local database to the
DBSENDRECV type for transfer to an external
database on the local server

When a local database receives a
dbsendrecv type from an external
database on the local database
server

db_send() Converts the opaque type from its internal repre-
sentation on the local database to the
DBSENDRECV type for transfer to an external
database on the local server

When a local database sends a
dbsendrecv type to an external
database on the local database
server

server_receive() Converts the opaque type from its internal repre-
sentation on the local server computer to the
SRVSENDRECV type for transfer to a remote
database server

Use any name for this function.

When the local database server
receives a srvsendrecv type from a
remote database server

server_send() Converts the opaque type from its internal repre-
sentation on the local server computer to the
SRVSENDRECV type for transfer to a remote
database server

Use any name for this function.

When the local database server
sends a srvsendrecv type to a
remote database server

import() Performs any tasks needed to convert from the
external (character) representation of an opaque
type to the internal format for a bulk copy

When DB-Access (LOAD) or the
High-Performance Loader (HPL)
initiates a bulk copy from a text file
to a database

export () Performs any tasks needed to convert from the
internal representation of an opaque type to the
external (character) format for a bulk copy

When DB-Access (UNLOAD) or the
High Performance Loader initiates
a bulk copy from a database to a text
file

importbinary() Performs any tasks needed to convert from the
internal representation of an opaque type on the
client computer to the internal representation on
the server computer for a bulk copy

When DB-Access (LOAD) or the
High Performance Loader initiates
a bulk copy from a binary file to a
database

Function Description Invoked

(2 of 3)
SQL Statements 2-173

CREATE OPAQUE TYPE
After you write the necessary support functions for the opaque type, use the
CREATE FUNCTION statement to register these support functions in the same
database as the opaque type. Certain support functions convert other data
types to or from the new opaque type. After you create and register these
support functions, use the CREATE CAST statement to associate each function
with a particular cast. The cast must be registered in the same database as the
support function.

After you have written the necessary C language or Java language source
code to define an opaque data type, you then use the CREATE OPAQUE TYPE
statement to register the opaque data type in the database.

exportbinary() Performs any tasks needed to convert from the
internal representation of an opaque type on the
server computer to the internal representation on
the client computer for a bulk copy

When DB-Access (UNLOAD) or the
High Performance Loader initiates
a bulk copy from a database to a
binary file

assign() Performs any processing required before storing
the opaque type to disk

This support function must be named assign().

When the database server executes
INSERT, UPDATE, or LOAD, before
it stores the opaque type to disk

destroy() Performs any processing necessary before
removing a row that contains the opaque type

This support function must be named destroy().

When the database server executes
the DELETE or DROP TABLE,
before it removes the opaque type
from disk

lohandles() Returns a list of the LO-pointer structures
(pointers to smart large objects) in an opaque
type

When the database server must
search opaque types for references
to smart large objects: when
oncheck runs, or an archive is
performed

compare() Compares two values of the opaque type and
returns an integer value to indicate whether the
first value is less than, equal to, or greater than
the second value

When the database server
encounters an ORDER BY,
UNIQUE, DISTINCT, or UNION
clause in a SELECT statement, or
when CREATE INDEX creates a B-
tree index

Function Description Invoked

(3 of 3)
2-174 IBM Informix Guide to SQL: Syntax

CREATE OPAQUE TYPE
Related Information
Related statements: CREATE CAST, CREATE DISTINCT TYPE, CREATE
FUNCTION, CREATE ROW TYPE, CREATE TABLE, and DROP TYPE

For a description of an opaque type, see the IBM Informix Guide to SQL:
Reference.

For information on how to define an opaque type, see IBM Informix User-
Defined Routines and Data Types Developer’s Guide.

For information on how to use the Java language to define an opaque type,
see the J/Foundation Developer’s Guide.

For information about the GLS aspects of the CREATE OPAQUE TYPE
statement, refer to the IBM Informix GLS User’s Guide.
SQL Statements 2-175

CREATE OPCLASS
CREATE OPCLASS
Use the CREATE OPCLASS statement to create an operator class for a secondary-
access method.

Syntax

Usage
An operator class is the set of operators that Dynamic Server associates with
the specified secondary-access method for query optimization and building
the index. A secondary-access method (sometimes referred to as an index
access method) is a set of database server functions that build, access, and
manipulate an index structure such as a B-tree, R-tree, or an index structure
that a DataBlade module provides.

The database server provides the B-tree and R-tree secondary-access
methods. For more information on the btree secondary-access method, see
“Default Operator Classes” on page 2-180.

+

IDS

Element Purpose Restrictions Syntax
opclass Name that you declare here for

operator class
Must be unique among operator
classes within the database.

Database Object

sec_acc_method Secondary-access method with
which the specified operator class
is being associated

Must already exist and must be
registered in the sysams system
catalog table.

Identifier,
p. 4-189

support_function Support function that the
secondary-access method requires

Must be listed in the order
expected by the access method.

Identifier,
p. 4-189

()Strategy Specification
p. 2-178

CREATE OPCLASS STRATEGIESFORopclass sec_acc_method

support_function

,

SUPPORT()

,

2-176 IBM Informix Guide to SQL: Syntax

CREATE OPCLASS
Define a new operator class when you want one of the following:

� An index to use a different order for the data than the sequence that
the default operator class provides

� A set of operators that is different from any existing operator classes
that are associated with a particular secondary-access method

You must have the Resource privilege or be the DBA to create an operator
class. The actual name of an operator class is an SQL identifier. When you
create an operator class, opclass name must be unique within a database.

When you create an operator class in an ANSI-compliant database,
owner.opclass_name must be unique within the database. The owner name is
case sensitive. If you do not put quotes around the owner name, the name of
the operator-class owner is stored in uppercase letters. ♦

The following CREATE OPCLASS statement creates a new operator class
called abs_btree_ops for the btree secondary-access method:

CREATE OPCLASS abs_btree_ops FOR btree
STRATEGIES (abs_lt, abs_lte, abs_eq, abs_gte, abs_gt)
SUPPORT (abs_cmp)

An operator class has two kinds of operator-class functions:

� Strategy functions

Specify strategy functions of an operator class in the STRATEGY
clause of the CREATE OPCLASS statement. In the preceding CREATE
OPCLASS code example, the abs_btree_ops operator class has five
strategy functions.

� Support functions

Specify support functions of an operator class in the SUPPORT clause.
In the preceding CREATE OPCLASS code example, the abs_btree_ops
operator class has one support function.

STRATEGIES Clause

Strategy functions are functions that end users can invoke within an SQL
statement to operate on a data type. The query optimizer uses the strategy
functions to determine if a particular index can be used to process a query.

ANSI
SQL Statements 2-177

CREATE OPCLASS
If an index exists on a column or user-defined function in a query, and the
qualifying operator in the query matches one of the strategy functions in the
Strategy Specification list, the optimizer considers using the index for the
query. For more information on query plans, see your Performance Guide.

When you create a new operator class, you specify the strategy functions for
the secondary-access method in the STRATEGIES clause. The Strategy Specifi-
cation lists the name of each strategy function. List these functions in the
order that the secondary-access method expects. For the specific order of
strategy operators for the default operator classes for a B-tree index and an R-
tree index, see IBM Informix User-Defined Routines and Data Types Developer’s
Guide.

Strategy Specification

Element Purpose Restrictions Syntax
input_type Data type of the input argument

for the strategy function for which
you want to use a specific
secondary-access method

A strategy function takes two
input arguments and one
optional output argument.

Data Type,
p. 4-49

output_type Data type of the optional output
argument for the strategy function

This is an optional output
argument for side-effect indexes.

Data Type,
p. 4-49

strategy_function Name of a strategy function to
associate with the specified
operator class

Must be listed in the order that
the specified secondary-access
method expects.

Database Object
Name, p. 4-46

Strategy Specification

input_type()

,
strategy_function

2

output_type

Back to CREATE OPCLASS, p. 2-176
2-178 IBM Informix Guide to SQL: Syntax

CREATE OPCLASS
The strategy_function is an external function. The CREATE OPCLASS statement
does not verify that a user-defined function of the name you specify exists.
However, for the secondary-access method to use the strategy function, the
external function must be:

� Compiled in a shared library

� Registered in the database with the CREATE FUNCTION statement

Optionally, you can specify the signature of a strategy function in addition to
its name. A strategy function requires two input parameters and an optional
output parameter. To specify the function signature, specify:

� An input data type for each of the two input parameters of the strategy
function, in the order that the strategy function uses them

� Optionally, one output data type for an output parameter of the
strategy function

You can specify UDTs as well as built-in data types. If you do not specify the
function signature, the database server assumes that each strategy function
takes two arguments of the same data type and returns a BOOLEAN value.

Indexes on Side-Effect Data

Side-effect data are additional values that a strategy function returns after a
query that contains the strategy function. For example, an image DataBlade
module might use a fuzzy index to search image data. The index ranks the
images according to how closely they match the search criteria. The database
server returns the rank value as side-effect data with the qualifying images.

SUPPORT Clause

Support functions are functions that the secondary-access method uses
internally to build and search the index. Specify these functions for the
secondary-access method in the SUPPORT clause of CREATE OPCLASS.

You must list the names of the support functions in the order that the
secondary-access method expects. For the specific order of support operators
for the default operator classes for a B-tree index and an R-tree index, refer to
“Default Operator Classes” on page 2-180.
SQL Statements 2-179

CREATE OPCLASS
The support function is an external function. CREATE OPCLASS does not
verify that a named support function exists. For the secondary-access method
to use a support function, however, the support function must be:

� Compiled in a shared library

� Registered in the database with the CREATE FUNCTION statement

Default Operator Classes

Each secondary-access method has a default operator class that is associated
with it. By default, the CREATE INDEX statement associates the default
operator class with an index. For example, the following CREATE INDEX
statement creates a B-tree index on the zipcode column and automatically
associates the default B-tree operator class with this column:

CREATE INDEX zip_ix ON customer(zipcode)

For each of the secondary-access methods that Dynamic Server provides, it
provides a default operator class, as follows:

� The default B-tree operator class is a built-in operator class.

The database server implements the operator-class functions for this
operator class and registers it as btree_ops in the system catalog
tables of a database.

� The default R-tree operator class is a registered operator class.

The database server registers this operator class as rtree_ops in the
system catalog tables. The database server does not implement the
operator-class functions for the default R-tree operator class.

Important: To use an R-tree index, you must install a spatial DataBlade module such
as the Geodetic DataBlade module or any other third-party DataBlade module that
implements the R-tree index. These implement the R-tree operator-class functions.

DataBlade modules can provide other types of secondary-access methods. If
a DataBlade module provides a secondary-access method, it might also
provide a default operator class. For more information, refer to your
DataBlade module user’s guide.
2-180 IBM Informix Guide to SQL: Syntax

CREATE OPCLASS
Related Information
Related statements: CREATE FUNCTION, CREATE INDEX, and DROP OPCLASS

For information on support functions and how to create and extend an
operator class, see IBM Informix User-Defined Routines and Data Types
Developer’s Guide.

For more about R-tree indexes, see the IBM Informix R-Tree Index User’s Guide.

For information about the GLS aspects of the CREATE OPCLASS statement,
refer to the IBM Informix GLS User’s Guide.
SQL Statements 2-181

2-182 IBM Informix Guide to SQL: Syntax

CREATE PROCEDURE
CREATE PROCEDURE
Use the CREATE PROCEDURE statement to create a user-defined procedure.
(To create a procedure from text of source code that is in a separate file, use
the CREATE PROCEDURE FROM statement.)

Syntax

+

Element Purpose Restrictions Syntax
function,
procedure

Name declared here
for a new SPL function
or procedure

(XPS) The name must be unique among all
SPL routines in the database.

(IDS) See “Naming a Procedure in
Dynamic Server” on page 2-185.

Database Object Name,
p. 4-46

pathname File to store compile-
time warnings

Must exist on the computer where the
database resides.

Must conform to naming
rules of operating system.

Ext

CREATE PROCEDURE

DBA SPL

()

SPECIFIC
Specific
Name

p. 4-274
WITH

External Routine Reference
p.4-187

DOCUMENT

WITH LISTING IN 'pathname'

()

,

Routine
Modifier
p. 4-257

,

Quoted String
p. 4-243

procedure

function

IDS

END PROCEDURE
Statement Block

p. 4-276SPL

Return
Clause
p. 4-253

Routine
Parameter List

p. 4-266

SPL

IDS

SPL

;

IDS

CREATE PROCEDURE
Usage
The entire length of a CREATE PROCEDURE statement must be less than
64 kilobytes. This length is the literal length of the CREATE PROCEDURE
statement, including blank space, tabs, and other whitespace characters.

In ESQL/C, you can use CREATE PROCEDURE only as text within a PREPARE
statement. If you want to create a procedure for which the text is known at
compile time, you must use a CREATE PROCEDURE FROM statement. ♦

Routines use the collating order that was in effect when they were created.
See SET COLLATION for information about using non-default collation ♦

Using CREATE PROCEDURE Versus CREATE FUNCTION

In Extended Parallel Server, besides using this statement to create SPL proce-
dures, yoau must use CREATE PROCEDURE to write and register an SPL
routine that returns one or more values (that is, an SPL function). Extended
Parallel Server does not support the CREATE FUNCTION statement. ♦

In Dynamic Server, although you can use CREATE PROCEDURE to write and
register an SPL routine that returns one or more values (that is, an SPL
function), it is recommended that you use CREATE FUNCTION instead. To
register an external function, you must use CREATE FUNCTION.

Use the CREATE PROCEDURE statement to write and register an SPL
procedure or to register an external procedure. ♦

For information on how terms such as user-defined procedures and user-
defined functions are used in this manual, see “Relationship Between
Routines, Functions, and Procedures” on page 2-183.

Tip: If you are trying to create a procedure from text that is in a separate file, use the
CREATE PROCEDURE FROM statement.

Relationship Between Routines, Functions, and Procedures

A procedure is a routine that can accept arguments but does not return any
values. A function is a routine that can accept arguments and returns one or
more values. User-defined routine (UDR) is a generic term that includes both
user-defined procedures and user-defined functions. For information about
named and unnamed returned values, see “Return Clause” on page 4-253.

E/C

IDS

XPS

IDS
SQL Statements 2-183

CREATE PROCEDURE
You can write a UDR in SPL (SPL routine) or in an external language (external
routine) that the database server supports. Where the term UDR appears in the
manual, it can refer to both SPL routines and external routines.

The term user-defined procedure refers to SPL procedures and external proce-
dures. User-defined function refers to SPL functions and external functions.

In earlier IBM Informix products, the term stored procedure was used for both
SPL procedures and SPL functions. In this manual, the term SPL routine
replaces the term stored procedure. When it is necessary to distinguish
between an SPL function and an SPL procedure, the manual does so. ♦

The term external routine applies to an external procedure or an external
function. When it is necessary to distinguish between an external function
and an external procedure, the manual does so. ♦

Extended Parallel Server does not support external routines, but the term
user-defined routine (UDR) encompasses both SPL routines and external
routines. Wherever the term UDR appears, it is applicable to SPL routines. ♦

Privileges Necessary for Using CREATE PROCEDURE

You must have the Resource privilege on a database to create a user-defined
procedure within that database.

Before you can create an external procedure, you must also have the Usage
privilege on the language in which you will write the procedure. For more
information, see “GRANT” on page 2-459. ♦

By default, the Usage privilege on SPL is granted to PUBLIC. You must also
have at least the Resource privilege on a database to create an SPL procedure
within that database. ♦

DBA Keyword and Privileges on the Created Procedure

If you create a UDR with the DBA keyword, it is known as a DBA-privileged
UDR. You need the DBA privilege to create or execute a DBA-privileged UDR.
If you omit the DBA keyword, the UDR is known as an owner-privileged UDR.

If you create an owner-privileged UDR in an ANSI-compliant database,
anyone can execute the UDR. ♦

SPL

IDS

XPS

Ext

SPL

ANSI
2-184 IBM Informix Guide to SQL: Syntax

CREATE PROCEDURE
If you create an owner-privileged UDR in a database that is not ANSI
compliant, the NODEFDAC environment variable prevents privileges on that
UDR from being granted to PUBLIC. If this environment variable is set, the
owner of a UDR must grant the Execute privilege for that UDR to other users.

Naming a Procedure in Extended Parallel Server

In Extended Parallel Server, the name for any SPL routine that you create
must be unique among the names of all SPL routines in the database.

Naming a Procedure in Dynamic Server

Because Dynamic Server offers routine overloading, you can define more than
one user-defined routine (UDR) with the same name, but different parameter
lists. You might want to overload UDRs in the following situations:

� You create a UDR with the same name as a built-in routine (such as
equal()) to process a new user-defined data type.

� You create type hierarchies in which subtypes inherit data represen-
tation and UDRs from supertypes.

� You create distinct types, which are data types that have the same
internal storage representation as an existing data type, but have
different names and cannot be compared to the source type without
casting. Distinct types inherit UDRs from their source types.

For a brief description of the routine signature that uniquely identifies each
UDR, see “Routine Overloading and Naming UDRs with a Routine
Signature” on page 4-48.

Using the SPECIFIC Clause to Specify a Specific Name

You can specify a specific name for a user-defined procedure. A specific name
is a name that is unique in the database. A specific name is useful when you
are overloading a procedure.

DOCUMENT Clause

The quoted string in the DOCUMENT clause provides a synopsis and
description of a UDR. The string is stored in the sysprocbody system catalog
table and is intended for the user of the UDR.

XPS

IDS
SQL Statements 2-185

CREATE PROCEDURE
Anyone with access to the database can query the sysprocbody system
catalog table to obtain a description of one or all the UDRs stored in the
database. A UDR or application program can query the system catalog tables
to fetch the DOCUMENT clause and display it for a user.

For example, to find the description of the SPL procedure raise_prices, shown
in “SPL Procedures” on page 2-187, enter a query such as this example:

SELECT data FROM sysprocbody b, sysprocedures p
WHERE b.procid = p.procid

--join between the two catalog tables
AND p.procname = 'raise_prices'

-- look for procedure named raise_prices
AND b.datakey = 'D';-- want user document

The preceding query returns the following text:

USAGE: EXECUTE PROCEDURE raise_prices(xxx)
xxx = percentage from 1 - 100

You can use a DOCUMENT clause at the end of the CREATE PROCEDURE
statement, whether or not you use the END PROCEDURE keywords. ♦

Using the WITH LISTING IN Option

The WITH LISTING IN clause specifies a filename where compile time
warnings are sent. After you compile a UDR, this file holds one or more
warning messages. This listing file is created on the computer where the
database resides.

If you do not use the WITH LISTING IN clause, the compiler does not generate
a list of warnings.

If you specify a filename but not a directory, this listing file is created in your
home directory on the computer where the database resides. If you do not
have a home directory on this computer, the file is created in the root
directory (the directory named “/”). ♦

If you specify a filename but not a directory, this listing file is created in your
current working directory if the database is on the local computer. Otherwise,
the default directory is %INFORMIXDIR%\bin. ♦

Ext

UNIX

Windows
2-186 IBM Informix Guide to SQL: Syntax

CREATE PROCEDURE
SPL Procedures
SPL procedures are UDRs written in Stored Procedure Language (SPL) that do
not return a value. To write and register an SPL routine, use the CREATE
PROCEDURE statement. Embed appropriate SQL and SPL statements between
the CREATE PROCEDURE and END PROCEDURE keywords. You can also
follow the UDR definition with the DOCUMENT and WITH FILE IN options.

SPL routines are parsed, optimized (as far as possible), and stored in the
system catalog tables in executable format. The body of an SPL routine is
stored in the sysprocbody system catalog table. Other information about the
routine is stored in other system catalog tables, including sysprocedures,
sysprocplan, and sysprocauth.

If the Statement Block portion of the CREATE PROCEDURE statement is
empty, no operation takes place when you call the procedure. You might use
such a procedure in the development stage when you want to establish the
existence of a procedure but have not yet coded it.

If you specify an optional clause after the parameter list, you must place a
semicolon after the clause that immediately precedes the Statement Block.

The following example creates an SPL procedure:

CREATE PROCEDURE raise_prices (per_cent INT)
UPDATE stock SET unit_price =

unit_price + (unit_price * (per_cent/100));
END PROCEDURE

DOCUMENT "USAGE: EXECUTE PROCEDURE raise_prices(xxx)",
"xxx = percentage from 1 - 100 "
WITH LISTING IN '/tmp/warn_file'

External Procedures
External procedures are procedures you write in an external language that the
database server supports.

To create a C user-defined procedure

1. Write a C function that does not return a value.

2. Compile the C function and store the compiled code in a shared
library (the shared-object file for C).

3. Register the C function in the database server with the CREATE
PROCEDURE statement.

SPL

IDS

Ext
SQL Statements 2-187

CREATE PROCEDURE
To create a user-defined procedure written in the Java language

1. Write a Java static method, which can use the JDBC functions to
interact with the database server.

2. Compile the Java source and create a jar file (the shared-object file).

3. Execute the install_jar() procedure with the EXECUTE PROCEDURE
statement to install the jar file in the current database.

4. If the UDR uses user-defined types, create a mapping between SQL
data types and Java classes, using the setUDTExtName() procedure
that is explained in “EXECUTE PROCEDURE” on page 2-414.

5. Register the UDR with the CREATE PROCEDURE statement. (If an
external routine returns a value, you must register it with the
CREATE FUNCTION statement, rather than CREATE PROCEDURE.)

Rather than storing the body of an external routine directly in the database,
the database server stores only the pathname of the shared-object file that
contains the compiled version of the routine. The database server executes an
external routine by invoking the external object code.

Registering a User-Defined Procedure

This example registers a C user-defined procedure named check_owner()
that takes one argument of the type LVARCHAR. The external routine
reference specifies the path to the C shared library where the procedure object
code is stored. This library contains a C function unix_owner(), which is
invoked during execution of the check_owner() procedure.

CREATE PROCEDURE check_owner (owner lvarchar)
EXTERNAL NAME "/usr/lib/ext_lib/genlib.so(unix_owner)"
LANGUAGE C

END PROCEDURE
♦

This example registers a user-defined procedure named showusers() that is
written in the Java language:

CREATE PROCEDURE showusers()
WITH (CLASS = "jvp") EXTERNAL NAME 'admin_jar:admin.showusers'
LANGUAGE JAVA

The EXTERNAL NAME clause specifies that the Java implementation of the
showusers() procedure is a method called showusers(), which resides in the
admin Java class that resides in the admin_jar jar file. ♦

C

Java
2-188 IBM Informix Guide to SQL: Syntax

CREATE PROCEDURE
Ownership of Created Database Objects

The user who creates an owner-privileged UDR owns any database objects
that the UDR creates when the UDR is executed, unless another owner is
specified for the created database object. In other words, the UDR owner, not
the user who executes the UDR, is the owner of any database objects created
by the UDR unless another owner is specified in the statement that creates the
database object.

In the case of a DBA-privileged UDR, however, the user who executes the
UDR, not the UDR owner, owns any database objects that the UDR created
unless another owner is specified for the database object within the UDR.

For examples, see “Ownership of Created Database Objects” on page 2-140 in
the description of the CREATE FUNCTION statement.

Using sysbdopen() and sysdbclose() Stored Procedures

To set the initial environment for one or more sessions, create and install the
sysdbopen() SPL procedure. The main function of these procedures is to
initialize a session’s properties without requiring the properties to be
explicitly defined within the session. These procedures are executed
whenever users connect to a database where the procedures are installed.
Such procedures are useful if users access databases through client applica-
tions that cannot modify application code or set environment options or
environment variables.

You can also create the sysdbclose() SPL procedure which is executed when
a user disconnects from the database.

You can include valid SQL or SPL language statements that are appropriate
when a database is opened or closed. See the following sections for restric-
tions on SQL and SPL statements within SPL routines:

� “Subset of SPL Statements Valid in the Statement Block” on
page 4-276

� “SQL Statements Not Valid in an SPL Statement Block” on
page 4-277

� “Restrictions on SPL Routines in Data-Manipulation Statements” on
page 4-279

XPS
SQL Statements 2-189

CREATE PROCEDURE
Important: The sysdbopen() and sysdbclose() procedures are exceptions to the
scope rule for stored procedures. In ordinary user-created stored procedures, the scope
of variables and statements is local. SET PDQPRIORITY and SET ENVIRONMENT
statement settings do not persist when these SPL procedures exit. However, in
sysdbopen() and sysdbclose() procedures, statements that set the session
environment remain in effect until another statement resets the options.

For example, you might create the following procedure, which sets the
isolation level to Dirty Read and turns on the IMPLICIT_PDQ environment
option, to be executed when any user connect to the database:

create procedure public.sysdbopen()
set role engineer;

end procedure

Procedures do not accept arguments or return values. The sysdbopen() and
sysdbclose() procedures must be executed from the connection coserver and
must be installed in each database where you want to execute them. You can
create the following four SPL procedures.

See also the section “Transactions in SPL Routines” on page 4-280.

Procedure Name Description

user.sysdbopen() This procedure is executed when the specified user opens the
database as the current database.

public.sysdbopen() If no user.sysdbopen() procedure applies, this procedure is
executed when any user opens the database as the current
database. To avoid duplicating SPL code, you can call this
procedure from a user-specific procedure.

user.sysdbclose() This procedure is executed when the specified user closes the
database, disconnects from the database server, or the user
session ends. If the sysdbclose() procedure did not exist
when a session opened the database, however, it is not
executed when the session closes the database.

public.sysdbclose() If no user.sysdbopen() procedure applies, this procedure is
executed when the specified user closes the database, discon-
nects from the database server, or the user session ends.
If the sysdbclose() procedure did not exist when a session
opened the database, however, it is not executed when the
session closes the database.
2-190 IBM Informix Guide to SQL: Syntax

CREATE PROCEDURE
Make sure that you set permissions appropriately to allow intended users to
execute the SPL procedure statements. For example, if the SPL procedure
executes a command that writes output to a local directory, permissions must
be set to allow users to write to this directory. If you want the procedure to
continue if permission failures occur, include an ON EXCEPTION error
handler for this condition.

See also the section “Support for Roles and User Identity” on page 4-280.

Warning: If a sysdbopen() procedure fails, the database cannot be opened. If a
sysdbclose() procedure fails, the failure is ignored. While you are writing and
debugging a sysdbopen() procedure, set the DEBUG environment variable to
NODBPROC before you connect to the database. When DEBUG is set to NODBPROC
the procedure is not executed, and failures cannot prevent the database from opening.
Failures from these procedures can be generated by the system or simulated by the
procedures with the SPL statement RAISE EXCEPTION. For more information, refer
to “RAISE EXCEPTION” on page 3-43.

Only a user with DBA privileges can install these procedures. For security
reasons, non-DBAs cannot prevent execution of these procedures. For some
applications, however, such as ad hoc query applications, users can execute
commands and SQL statements that subsequently change the environment.
For general information about how to write and install SPL procedures, refer
to the chapter about SPL routines in IBM Informix Guide to SQL: Tutorial.

Related Information
Related statements: ALTER FUNCTION, ALTER PROCEDURE, ALTER
ROUTINE, CREATE FUNCTION, CREATE FUNCTION FROM, CREATE
PROCEDURE FROM, DROP FUNCTION, DROP PROCEDURE, DROP ROUTINE,
EXECUTE FUNCTION, EXECUTE PROCEDURE, GRANT, PREPARE, REVOKE,
and UPDATE STATISTICS

For a discussion of how to create and use SPL routines, see the IBM Informix
Guide to SQL: Tutorial. For a discussion of external routines, see IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

For information about how to create C UDRs, see the IBM Informix DataBlade
API Programmer’s Guide. For more information on the NODEFDAC
environment variable and the related system catalog tables (sysprocedures,
sysprocplan, sysprocbody and sysprocauth), see the IBM Informix Guide to
SQL: Reference.
SQL Statements 2-191

CREATE PROCEDURE FROM
CREATE PROCEDURE FROM
Use the CREATE PROCEDURE FROM statement to access a user-defined
procedure. The actual text of the CREATE PROCEDURE statement resides in a
separate file. Use this statement with ESQL/C.

In Extended Parallel Server, use this statement to access any SPL routine.
Extended Parallel Server does not support the CREATE FUNCTION FROM
statement. ♦

Syntax

Usage
You cannot create a user-defined procedure directly in an ESQL/C program.
That is, the program cannot contain the CREATE PROCEDURE statement.

To use a user-defined procedure in an ESQL/C program

1. Create a source file with the CREATE PROCEDURE statement.

2. Use the CREATE PROCEDURE FROM statement to send the contents of
this source file to the database server for execution.

The file can contain only one CREATE PROCEDURE statement.

+

E/C

XPS

Element Purpose Restrictions Syntax
file Pathname and filename of file that

contains full text of a CREATE
PROCEDURE statement. Default
pathname is the current directory.

Must exist, and can contain only one
CREATE PROCEDURE statement.
Se also “Default Directory That
Holds the File” on page 2-193.

Must conform to
the rules of the
operating system.

file_var Name of a program variable that
contains file specification

Character data type; contents have
same restrictions as file.

Language specific

'file'

file_var

CREATE PROCEDURE FROM
2-192 IBM Informix Guide to SQL: Syntax

CREATE PROCEDURE FROM
For example, suppose that the following CREATE PROCEDURE statement is in
a separate file, called raise_pr.sql:

CREATE PROCEDURE raise_prices(per_cent int)
UPDATE stock -- increase by percentage;
SET unit_price = unit_price +

(unit_price * (per_cent / 100));
END PROCEDURE;

In the ESQL/C program, you can access the raise_prices() SPL procedure with
the following CREATE PROCEDURE FROM statement:

EXEC SQL create procedure from 'raise_pr.sql';

If you are not sure whether the UDR in the file is a user-defined function or a
user-defined procedure, use the CREATE ROUTINE FROM statement. ♦

Procedures use the collating order that was in effect when they were created.
See SET COLLATION for information about using non-default collation ♦

Default Directory That Holds the File

The filename (and any pathname) that you specify is relative.

On UNIX, if you specify a simple filename instead of a full pathname in the
file parameter, the client application looks for the file in your home directory
on the computer where the database resides. If you do not have a home
directory on this computer, the default directory is the root directory. ♦

On Windows, if you specify a filename but not a directory in the file
parameter, the client application looks for the file in your current working
directory if the database is on the local computer. Otherwise, the default
directory is %INFORMIXDIR%\bin. ♦

Important: The ESQL/C preprocessor does not process the contents of the file that you
specify. It just sends the contents to the database server for execution. Therefore, there
is no syntactic check that the file that you specify in CREATE PROCEDURE FROM
actually contains a CREATE PROCEDURE statement. To improve readability of the
code, however, it is recommended that you match these two statements.

Related Information
Related statements: CREATE PROCEDURE, CREATE FUNCTION FROM, and
CREATE ROUTINE FROM

IDS

IDS

UNIX

Windows
SQL Statements 2-193

CREATE ROLE
CREATE ROLE
Use the CREATE ROLE statement to create a new role.

Syntax Usage

The database administrator (DBA) can use the CREATE ROLE statement to
create a new role. A role can be considered as a classification, with privileges
on database objects granted to the role. The DBA can assign the privileges of
a related work task, such as engineer, to a role and then grant that role to
users, instead of granting the same set of privileges to every user.

The role name is an authorization identifier. It cannot be a user name that is
known to the database server or to the operating system of the database
server. The role name cannot already be listed in the username column of the
sysusers system catalog table, nor in the grantor or grantee columns of the
systabauth, syscolauth, sysprocauth, and sysroleauth system catalog tables.

Also, the role name cannot already be listed in the grantor or grantee
columns of the sysfragauth system catalog table. ♦

After a role is created, the DBA can use the GRANT statement to grant the role
to users or to other roles. When a role is granted to a user, the user must use
the SET ROLE statement to enable the role. Only then can the user use the
privileges of the role.

The CREATE ROLE statement, when used with the GRANT and SET ROLE
statements, allows a DBA to create one set of privileges for a role and then
grant the role to many users, instead of granting the same set of privileges to
many users.

+

Element Purpose Restrictions Syntax
role Name declared here for a

role that the DBA created
Must be unique among role names in the database.
The maximum number of bytes in role is 32.

Identifier,
p. 4-189

CREATE ROLE role

' role '

IDS
2-194 IBM Informix Guide to SQL: Syntax

CREATE ROLE
A role exists until either the DBA or a user to whom the role was granted with
the WITH GRANT OPTION uses the DROP ROLE statement to drop the role.

To create the role engineer, enter the following statement:

CREATE ROLE engineer

Related Information
Related statements: DROP ROLE, GRANT, REVOKE, and SET ROLE

For a discussion on how to use roles, see the IBM Informix Database Design and
Implementation Guide.
SQL Statements 2-195

CREATE ROUTINE FROM
CREATE ROUTINE FROM
Use the CREATE ROUTINE FROM statement to access a user-defined routine
(UDR). The actual text of the CREATE FUNCTION or CREATE PROCEDURE
statement resides in a separate file.

Syntax

Usage
An IBM Informix ESQL/C program cannot directly define a UDR. That is, it
cannot contain the CREATE FUNCTION or CREATE PROCEDURE statement.

To use a UDR in an ESQL/C program

1. Create a source file with the CREATE FUNCTION or CREATE
PROCEDURE statement.

2. Use the CREATE ROUTINE FROM statement to send the contents of
this source file to the database server for execution.

The file that you specify can contain only one CREATE FUNCTION or
CREATE PROCEDURE statement.

The filename that you provide is relative. If you provide no pathname, the
client application looks for the file in the current directory.

+

IDS

Element Purpose Restrictions Syntax
file Pathname and filename of file that contains

the text of a CREATE PROCEDURE or
CREATE FUNCTION statement

Default path is current directory.

Must exist and can contain only one
CREATE FUNCTION or CREATE
PROCEDURE statement.

Operating-
system
dependent

file_var Name of a program variable that contains file
specification

Must be a character data type;
contents must satisfy file restrictions.

Language
specific

CREATE ROUTINE FROM

file_var

' file '
2-196 IBM Informix Guide to SQL: Syntax

CREATE ROUTINE FROM
If you do not know at compile time whether the UDR in the file is a function
or a procedure, use the CREATE ROUTINE FROM statement in the ESQL/C
program. If you do know if the UDR is a function or a procedure, it is recom-
mended that you use the matching statement to access the source file:

� To access user-defined functions, use CREATE FUNCTION FROM.

� To access user-defined procedures, use CREATE PROCEDURE FROM.

Use of the matching statements improves the readability of the code.

Routines use the collating order that was in effect when they were created.
See SET COLLATION for information about using non-default collation ♦

Related Information
Related statements: CREATE FUNCTION, CREATE FUNCTION FROM, CREATE
PROCEDURE, and CREATE PROCEDURE FROM

IDS
SQL Statements 2-197

CREATE ROW TYPE
CREATE ROW TYPE
Use the CREATE ROW TYPE statement to create a named row type.

Syntax

Usage
The CREATE ROW TYPE statement creates a named ROW data type. You can
assign a named ROW type to a table or view to create a typed table or typed
view. You can also define a column as a named ROW type. Although you can
assign a ROW type to a table to define the schema of the table, ROW types are
not the same as table rows. Table rows consist of one or more columns; ROW
types consist of one or more fields, defined using the Field Definition syntax.

A named ROW type is valid in most contexts where you can specify a data
type. Named ROW types are strongly typed. No two named ROW types are
equivalent, even if they are structurally equivalent.

ROW types without names are called unnamed ROW types. Any two unnamed
ROW types are considered equivalent if they are structurally equivalent. For
more information, see “Row Data Types” on page 4-62.

Privileges on named ROW type columns are the same as privileges on any
column. For more information, see “Table-Level Privileges” on page 2-463.
(To see what privileges you have on a column, check the syscolauth system
catalog table, which is described in the IBM Informix Guide to SQL: Reference.)

+

IDS

Element Purpose Restrictions Syntax
row_type Name that you declare here for a

new named row data type
See “Procedure for Creating a Subtype” on
page 2-200.

Identifier,
p. 4-189

supertype Name of the supertype within
an inheritance hierarchy

Must already exist as a named row type. Data type,
p. 4-49

Field Definition
p. 2-201row_type

UNDER supertype

CREATE ROW TYPE (

,

)

2-198 IBM Informix Guide to SQL: Syntax

CREATE ROW TYPE
Privileges on Named Row Data Types

This table indicates which privileges you must have to create a ROW type.

For information about Resource and Under privileges, and the ALL keyword
in the context of privileges, see the GRANT statement.

To find out what privileges exist on a ROW type, check the sysxtdtypes
system catalog table for the owner name and the sysxtdtypeauth system
catalog table for privileges that might have been granted.

Privileges on a typed table (a table that is assigned a named ROW type) are
the same as privileges on any table. For more information, see “Table-Level
Privileges” on page 2-463.

To find out what privileges you have on a given table, check the systabauth
system catalog table. For more information on system catalog tables, see the
IBM Informix Guide to SQL: Reference.

Inheritance and Named ROW Types

A named ROW type can belong to an inheritance hierarchy, as either a
subtype or a supertype. Use the UNDER clause in the CREATE ROW TYPE
statement to create a named ROW type as a subtype.

The supertype must also be a named ROW type. If you create a named ROW
type under an existing supertype, then the new type name row_type becomes
the name of the subtype.

When you create a named ROW type as a subtype, the subtype inherits all
fields of the supertype. In addition, you can add new fields to the subtype
that you create. The new fields are specific to the subtype alone.

You cannot substitute a ROW type in an inheritance hierarchy for its
supertype or for its subtype.

Task Privileges Required

Create a named ROW type Resource privilege on the database

Create a named ROW type as a subtype
under a supertype

Under privilege on the supertype, as
well as the Resource privilege
SQL Statements 2-199

CREATE ROW TYPE
For example, consider a type hierarchy in which person_t is the supertype
and employee_t is the subtype. If a column is of type person_t, the column
can only contain person_t data. It cannot contain employee_t data. Likewise,
if a column is of type employee_t, the column can only contain employee_t
data. It cannot contain person_t data.

Creating a Subtype

In most cases, you add new fields when you create a named ROW type as a
subtype of another named ROW type (its supertype). To create the fields of a
named ROW type, use the field definition clause, as described in “Field
Definition” on page 2-201. When you create a subtype, you must use the
UNDER keyword to associate the supertype with the named ROW type that
you want to create. The following statement creates the employee_t type
under the person_t type:

CREATE ROW TYPE employee_t (salary NUMERIC(10,2),
bonus NUMERIC(10,2)) UNDER person_t;

The employee_t type inherits all the fields of person_t and has two
additional fields: salary and bonus; but the person_t type is not altered.

Type Hierarchies

When you create a subtype, you create a type hierarchy. In a type hierarchy,
each subtype that you create inherits its properties from a single supertype.
If you create a named ROW type customer_t under person_t, customer_t
inherits all the fields of person_t. If you create another named ROW type,
salesrep_t under customer_t, salesrep_t inherits all the fields of customer_t.

Thus, salesrep_t inherits all the fields that customer_t inherited from
person_t as well as all the fields defined specifically for customer_t. For a
discussion of type inheritance, refer to the IBM Informix Guide to SQL: Tutorial.

Procedure for Creating a Subtype

Before you create a named ROW type as a subtype in an inheritance hierarchy,
check the following information:

� Verify that you are authorized to create new data types. You must
have the Resource privilege on the database. You can find this infor-
mation in the sysusers system catalog table.
2-200 IBM Informix Guide to SQL: Syntax

CREATE ROW TYPE
� Verify that the supertype exists. You can find this information in the
sysxtdtypes system catalog table.

� Verify that you are authorized to create subtypes to that supertype.
You must have the Under privilege on the supertype. You can find
this information in the sysusers system catalog table.

� Verify that the name that you assign to the named ROW type is
unique within the database. In an ANSI-compliant database, the
owner.type combination must be unique within the database. In a
database that is not ANSI-compliant, the name must be unique
among data type names in the database. To verify whether the name
you want to assign to a new data type is unique within the schema,
check the sysxtdtypes system catalog table. The name must not be
the name of an existing data type.

� If you are defining fields for the ROW type, check that no duplicate
field names exist in both new and inherited fields.

Important: When you create a subtype, do not redefine fields that it inherited for its
supertype. If you attempt to redefine these fields, the database server returns an error.

You cannot apply constraints to named ROW types, but you can specify
constraints when you create or alter a table that uses named ROW types.

Field Definition

Use the field definition portion of CREATE ROW TYPE to define a new field in
a named ROW type.

Element Purpose Restrictions Syntax
data_type Data type of the field See “Restrictions on Serial and Simple-Large-

Object Data Types” on page 2-202.
Identifier,
p. 4-189

field Name of a field in data_type Must be unique among field names of this row
type and of its supertype.

Identifier,
p. 4-189

NOT NULL

Field Definition Back to CREATE ROW TYPE

data_typefield
SQL Statements 2-201

CREATE ROW TYPE
The NOT NULL constraint on named ROW type field applies to corresponding
columns when the named ROW type is used to create a typed table.

Restrictions on Serial and Simple-Large-Object Data Types

Serial and simple-large-object data types cannot be nested within a table.
Therefore, if a ROW type contains a BYTE, TEXT, SERIAL, or SERIAL8 field, you
cannot use the ROW type to define a column in a table that is not based on a
ROW type. For example, the following code example produces an error:

CREATE ROW TYPE serialtype (s serial, s8 serial8);
CREATE TABLE tab1 (col1 serialtype) --INVALID CODE

You cannot create a ROW type that has a BYTE or TEXT value that is stored in
a separate storage space. That is, you cannot use the IN clause to specify the
storage location. For example, the following example produces an error:

CREATE ROW TYPE row1 (field1 byte IN blobspace1) --INVALID CODE

Across a table hierarchy, you can use only one SERIAL and one SERIAL8. That
is, if a supertable table contains a SERIAL column, no subtable can contain a
SERIAL column. However, a subtable can have a SERIAL8 column (as long as
no other subtables contain a SERIAL8 column). Consequently, when you
create the named ROW types on which the table hierarchy is to be based, they
can contain at most one SERIAL and one SERIAL8 field among them.

You cannot set the starting SERIAL or SERIAL8 value with CREATE ROW TYPE.
To modify the value for a serial field, you must use either the MODIFY clause
of the ALTER TABLE statement or the INSERT statement to insert a value that
is larger than the current maximum (or default) serial value.

Serial fields in ROW types havte performance implications across a table
hierarchy. To insert data into a subtable whose supertable (or its supertable)
contains the serial counter, the database server must also open the supertable,
update the serial value, and close the supertable, thus adding extra overhead.

Related Information
Related statements: DROP ROW TYPE, CREATE TABLE, CREATE CAST, GRANT,
and REVOKE

For a discussion of named ROW types, see the IBM Informix Database Design
and Implementation Guide and the IBM Informix Guide to SQL: Reference.
2-202 IBM Informix Guide to SQL: Syntax

CREATE SCHEMA
CREATE SCHEMA
Use the CREATE SCHEMA statement to issue a block of data definition
language (DDL) and GRANT statements as a logical unit. Use this statement
with DB-Access.

Syntax

DB

SQLE

Element Purpose Restrictions Syntax
user User who owns the

database objects that this
statement creates

If you have DBA privileges, you can specify the name of
any user. Otherwise, you must have the Resource
privilege and you must specify your own user name.

Identifier,
p. 4-189

userCREATE SCHEMA AUTHORIZATION

+
OP CREATE OPTICAL CLUSTER Statement

See the “IBM Informix Optical Subsystem

CREATE TABLE Statement
p. 2-214

CREATE INDEX Statement
p. 2-144

CREATE VIEW Statement
p. 2-310

CREATE SYNONYM Statement
p. 2-210

GRANT Statement
p. 2-459

CREATE TRIGGER Statement
p. 2-269

CREATE OPAQUE TYPE Statement
p. 2-169

CREATE DISTINCT TYPE Statement
p. 2-115

CREATE CAST Statement
p. 2-108

CREATE ROW TYPE Statement
p. 2-198

IDS
SQL Statements 2-203

CREATE SCHEMA
Usage
The CREATE SCHEMA statement allows the DBA to specify an owner for all
database objects that the CREATE SCHEMA statement creates. You cannot
issue CREATE SCHEMA until you create the database that stores the objects.

Users with the Resource privilege can create a schema for themselves. In this
case, user must be the name of the person with the Resource privilege who is
running the CREATE SCHEMA statement. Anyone with the DBA privilege can
also create a schema for someone else. In this case, user can identify a user
other than the person who is running the CREATE SCHEMA statement.

You can put CREATE and GRANT statements in any logical order, as the
following example shows. Statements are considered part of the CREATE
SCHEMA statement until a semicolon or an end-of-file symbol is reached.

CREATE SCHEMA AUTHORIZATION sarah
CREATE TABLE mytable (mytime DATE, mytext TEXT)
GRANT SELECT, UPDATE, DELETE ON mytable TO rick
CREATE VIEW myview AS

SELECT * FROM mytable WHERE mytime > '12/31/1997'
CREATE INDEX idxtime ON mytable (mytime);

Creating Database Objects Within CREATE SCHEMA
All database objects that a CREATE SCHEMA statement creates are owned by
user, even if you do not explicitly name each database object. If you are the
DBA, you can create database objects for another user. If you are not the DBA,
specifying an owner other than yourself results in an error message.

You can only grant privileges with the CREATE SCHEMA statement; you
cannot revoke or drop privileges.

If you create a database object or use the GRANT statement outside a CREATE
SCHEMA statement, you receive warnings if you use the -ansi flag or set
DBANSIWARN.

Related Information
Related statements: CREATE INDEX, CREATE SYNONYM, CREATE TABLE,
CREATE VIEW, and GRANT

For a discussion of how to create a database, see the IBM Informix Database
Design and Implementation Guide.
2-204 IBM Informix Guide to SQL: Syntax

CREATE SCRATCH TABLE
CREATE SCRATCH TABLE
Use the CREATE SCRATCH TABLE statement to create a non-logging
temporary table in the current Extended Parallel Server database.

Syntax

Usage
CREATE SCRATCH TABLE is a special case of the CREATE Temporary TABLE
statement. See “CREATE Temporary TABLE” on page 2-261.

XPS

Element Purpose Restrictions Syntax
dbslice Name of dbslice to store table Must already exist. Identifier, p. 4-189
dbspace Name of dbspace to store table. Default is the

dbspace that stores the current database.
Must already exist. Identifier, p. 4-189

table Name that you declare here for a nonlogging
temporary table

Must be unique in the
current session.

Database Object
Name, p. 4-46

Scratch Table Options

+ USING
Access-
Method
Clause
p. 2-252

IN

dbspace

LOCK MODE

TABLE

ROW

PAGE

FRAGMENT BY Clause
p. 2-238

dbslice

(),

table

,,

Column
Definition
p. 2-216

Multiple-Column
Constraint Format

p. 2-264

CREATE

Scratch Table
Options

Scratch Table
DefinitionSCRATCH TABLE

Scratch Table
Definition
SQL Statements 2-205

CREATE SEQUENCE
CREATE SEQUENCE
Use the CREATE SEQUENCE statement to create a new sequence. A sequence is
a database object from which multiple users can generate unique integers.

Syntax

Usage
A sequence (sometimes called a sequence generator) returns a monotonically
ascending or descending series of unique integers, one at a time. The CREATE
SEQUENCE statement defines a new sequence and declares its identifier.

+

IDS

Element Purpose Restrictions Syntax
max Upper limit of values Must be an integer > origin Literal number, p. 4-216
min Lower limit of values Must be an integer less than origin Literal number, p. 4-216
origin First number in the sequence Must be an integer in INT8 range Literal number, p. 4-216
owner Owner of sequence Must be aauthorization identifier Owner Name, p. 4-234
sequence Name that you declare here for the

new sequence
Must be unique among sequence,
table, view, and synonym names

Identifier, p. 4-189

size Number of values that are preallo-
cated in memory

Integer > 1, but < cardinality of
a cycle (= |(max - min)/step|)

Literal number, p. 4-216

step Interval between successive values Nonzero integer in INT range Literal number, p. 4-216

NOMAXVALUE

CREATE SEQUENCE

INCREMENT step

CACHE

MAXVALUE max

minMINVALUE

CYCLE

NOCACHE

NOORDER

origin

NOMINVALUE

BY

WITH

NOCYCLE

size

ORDER

1

1

1

1

1

1

1START

sequence

owner .
2-206 IBM Informix Guide to SQL: Syntax

CREATE SEQUENCE
Authorized users of a sequence can request a new value by including the
sequence.NEXTVAL expression in SQL statements. The sequence.CURRVAL
expression returns the current value of the specified sequence.

Generated values logically resemble the SERIAL8 data type, but are unique
within the sequence. Because the database server generates the values,
sequences support a much higher level of concurrency than a serial column
can. The values are independent of transactions; a generated value cannot be
rolled back, even if the transaction in which it was generated fails.

You can use a sequence to generate primary key values automatically, using
one sequence for many tables, or each table can have its own sequence.

CREATE SEQUENCE can specify the following characteristics of a sequence:

� Initial value

� Size and sign of the increment between values.

� Maximum and minimum values

� Whether the sequence recycles values after reaching its limit

� How many values are preallocated in memory for rapid access

A database can support multiple sequences concurrently, but the name of a
sequence must be unique within the current database among the names of
tables, temporary tables, views, synonyms, and sequences.

In an ANSI-compliant database, the owner.sequence combination must be
unique among tables, temporary tables, views, synonyms, and sequences. ♦

An error occurs if you include contradictory options, such as specifying both
the MINVALUE and NOMINVALUE options, or both CACHE and NOCACHE.

INCREMENT BY Option

Use the INCREMENT BY option to specify the interval between successive
numbers in the sequence. The interval, or step value, can be a positive whole
number (for an ascending sequence) or a negative whole number (for a
descending sequence) in the INT8 range. The BY keyword is optional.

If you do not specify any step value, the default interval between successive
generated values is 1, and the sequence is an ascending sequence.

ANSI
SQL Statements 2-207

CREATE SEQUENCE
START WITH Option

Use the START WITH option to specify the first number of the sequence. This
origin value must be an integer within the INT8 range that is greater than or
equal to the min value (for an ascending sequence) or that is less than or equal
to the max value (for a descending sequence), if min or max is specified in the
CREATE SEQUENCE statement. The WITH keyword is optional.

If you do not specify an origin value, the default initial value is min for an
ascending sequence or max for a descending sequence. (The “MAXVALUE or
NOMAXVALUE Option” and “MINVALUE or NOMINVALUE Option”
sections that follow describe the max and min specifications respectively.)

MAXVALUE or NOMAXVALUE Option

Use the MAXVALUE option to specify the upper limit of values in a sequence.
The maximum value, or max, must be an integer in the INT8 range that is
greater than the value of the origin.

If you do not specify a max value, the default is NOMAXVALUE. This default
setting supports values that are less than or equal to 2e64 for ascending
sequences, or less than or equal to -1 for descending sequences.

MINVALUE or NOMINVALUE Option

Use the MINVALUE option to specify the lower limit of values in a sequence.
The minimum value, or min, must be an integer in the INT8 range that is less
than the value of the origin.

If you do not specify a min value, the default is NOMINVALUE. This default
setting supports values that are greater than or equal to 1 for ascending
sequences, or greater than or equal to -(2e64) for descending sequences.

CYCLE or NOCYCLE Option

Use the CYCLE option to continue generating sequence values after the
sequence reaches the maximum (ascending) or minimum (descending) limit.
After an ascending sequence reaches the max value, it generates the min value
for the next sequence value. After a descending sequence reaches the min
value, it generates the max value for the next sequence value.
2-208 IBM Informix Guide to SQL: Syntax

CREATE SEQUENCE
The default is NOCYCLE. At this default setting, the sequence cannot generate
more values after reaching the declared limit. Once the sequence reaches the
limit, the next reference to sequence.NEXTVAL returns an error.

CACHE or NOCACHE Option

Use the CACHE option to specify the number of sequence values that are
preallocated in memory for rapid access. This feature can enhance the perfor-
mance of a heavily used sequence. The cache size must be a positive whole
number in the INT range. If you specify the CYCLE option, then size must be
less than the number of values in a cycle (or less than |(max - min)/step|).
The minimum is 2 preallocated values. The default is 20 preallocated values.

The NOCACHE keyword specifies that no generated values (that is, zero) are
preallocated in memory for this sequence object.

The configuration parameter SEQ_CACHE_SIZE specifies the maximum
number of sequence objects that can have preallocated values in the sequence
cache. If this configuration parameter is not set, then by default no more than
10 different sequence objects can be defined with the CACHE option.

ORDER or NOORDER Option

These keywords have no effect on the behavior of the sequence. The sequence
always issues values to users in the order of their requests, as if the ORDER
keyword were always specified. The ORDER and NOORDER keywords are
accepted by the CREATE SEQUENCE statement for compatibility with imple-
mentations of sequence objects in other dialects of SQL.

Related Information
Related statements: ALTER SEQUENCE, DROP SEQUENCE, RENAME
SEQUENCE, CREATE SYNONYM, DROP SYNONYM, GRANT, REVOKE, INSERT,
UPDATE, and SELECT

For information about the syssequences system catalog table in which
sequence objects are registered, see the IBM Informix Guide to SQL: Reference.

For information about initializing a sequence and generating or reading
values from a sequence, see “NEXTVAL and CURRVAL Operators” on
page 4-102.
SQL Statements 2-209

CREATE SYNONYM
CREATE SYNONYM
Use the CREATE SYNONYM statement to declare and register an alternative
name for an existing table, view, or sequence object.

Syntax

Usage
Users have the same privileges for a synonym that they have for the database
object that the synonym references. The syssynonyms, syssyntable, and
systables system catalog tables maintain information about synonyms.

You cannot create a synonym for a synonym in the same database.

The identifier of the synonym must be unique among the names of tables,
temporary tables, views, and sequence objects in the same database. (See,
however, the section “Synonyms with the Same Name” on page 2-212.)

Once a synonym is created, it persists until the owner executes the DROP
SYNONYM statement. (This persistence distinguishes a synonym from an
alias that you can declare in the FROM clause of a SELECT statement; the alias
is in scope only during execution of that SELECT statement.) If a synonym
refers to a table, view, or sequence in the same database, the synonym is
automatically dropped if the referenced table, view, or sequence is dropped.

+

Element Purpose Restrictions Syntax
sequence Name of a local sequence Must exist in current database Identifier, p. 4-189
table,
view

Name of table or view for which
synonym is being created

Must exist in current database, or in a
database specified in a qualifier

Database Object
Name, p. 4-46

synonym Synonym declared here for the
name of a table, view, or sequence

Must be unique among table object
names; see also Usage notes.

Database Object
Name, p. 4-46

CREATE SYNONYM FOR

PUBLIC

PRIVATE

synonym

IDS

table

view

sequence
2-210 IBM Informix Guide to SQL: Syntax

CREATE SYNONYM
Synonyms for Remote and External Tables and Views

A synonym can be created for any table or view in any database on your
database server. This example declares a synonym for a table outside your
current database, in the payables database of your current database server.

CREATE SYNONYM mysum FOR payables:jean.summary

You can also create a synonym for a table or view that exists in a database of
a database server that is not your current database server. Both database
servers must be online when you create the synonym. In a network, the
remote database server verifies that the table or view referenced by the
synonym exists when you create the synonym. The next example reates a
synonym for a table supported by a remote database server:

CREATE SYNONYM mysum FOR payables@phoenix:jean.summary

The identifier mysum now refers to the table jean.summary, which is in the
payables database on the phoenix database server. If the summary table is
dropped from the payables database, the mysum synonym is left intact.
Subsequent attempts to use mysum return the error Table not found.

You cannot create synonyms, however, for these external objects:

� Typed tables (including any table that is part of a table hierarchy)

� Tables or views that contain any extended data types.

� Sequence objects outside the local database ♦

PUBLIC and PRIVATE Synonyms

If you use the PUBLIC keyword (or no keyword at all), anyone who has access
to the database can use your synonym. If the database is not ANSI-compliant,
a user does not need to know the name of the owner of a public synonym.
Any synonym in a database that is not ANSI compliant and was created in an
Informix database server earlier than Version 5.0 is a public synonym.

In an ANSI-compliant database, all synonyms are private. If you use the
PUBLIC or PRIVATE keywords, the databasde server issues a syntax error. ♦

If you use the PRIVATE keyword to declare a synonym in a database that is
not ANSI-compliant, the unqualified synonym can be used by its owner.
Other users must qualify the synonym with the name of the owner.

IDS

ANSI
SQL Statements 2-211

CREATE SYNONYM
Synonyms with the Same Name

In an ANSI-compliant database, the owner.synonym combination must be
unique among all synonyms, tables, views. and sequences . You must specify
owner when you refer to a synonym that you do not own, as in this example:

CREATE SYNONYM emp FOR accting.employee ♦

In a database that is not ANSI-compliant, no two public synonyms can have
the same identifier, and the identifier of a synonym must also be unique
among the names of tables, views, and sequences in the same database.

The owner.synonym combination of a private synonym must be unique
among all the synonyms in the database. That is, more than one private
synonym with the same name can exist in the same database, but a different
user must own each of these synonyms. The same user cannot create both a
private and a public synonym that have the same name. For example, the
following code generates an error:

CREATE SYNONYM our_custs FOR customer;
CREATE PRIVATE SYNONYM our_custs FOR cust_calls;-- ERROR!!!

A private synonym can be declared with the same name as a public synonym
only if the two synonyms have different owners. If you own a private
synonym, and a public synonym exists with the same name, the database
server resolves the unqualified name as the private synonym. (In this case,
you must specify owner.synonym to reference the public synonym.) If you use
DROP SYNONYM with the unqualified synonym identifier when your private
synonym and the public synonym of another user both have the same
identifier, only your private synonym is dropped. If you repeat the same
DROP SYNONYM statement, the database server drops the public synonym.

Chaining Synonyms

If you create a synonym for a table or view that is not in the current database,
and this table or view is dropped, the synonym stays in place. You can create
a new synonym for the dropped table or view with the name of the dropped
table or view as the synonym, which points to another external or remote
table or view. (Synonyms for external sequence objects are not supported.)

In this way, you can move a table or view to a new location and chain
synonyms together so that the original synonyms remain valid. (You can
chain up to 16 synonyms in this manner.)

ANSI
2-212 IBM Informix Guide to SQL: Syntax

CREATE SYNONYM
The following steps chain two synonyms together for the customer table,
which will ultimately reside on the zoo database server (the CREATE TABLE
statements are not complete):

1. In the stores_demo database on the database server that is called
training, issue the following statement:

CREATE TABLE customer (lname CHAR(15)...)

2. On the database server called accntg, issue the following statement:
CREATE SYNONYM cust FOR stores_demo@training:customer

3. On the database server called zoo, issue the following statement:
CREATE TABLE customer (lname CHAR(15)...)

4. On the database server called training, issue the following
statement:

DROP TABLE customer
CREATE SYNONYM customer FOR stores_demo@zoo:customer

The synonym cust on the accntg database server now points to the customer
table on the zoo database server.

The following steps show an example of chaining two synonyms together
and changing the table to which a synonym points:

1. On the database server called training, issue the following
statement:

CREATE TABLE customer (lname CHAR(15)...)

2. On the database server called accntg, issue the following statement:
CREATE SYNONYM cust FOR stores_demo@training:customer

3. On the database server called training, issue the following
statement:

DROP TABLE customer
CREATE TABLE customer (lastname CHAR(20)...)

The synonym cust on the accntg database server now points to a new version
of the customer table on the training database server.

Related Information
Related statement: DROP SYNONYM

For a discussion of concepts related to synonyms, see the IBM Informix
Database Design and Implementation Guide.
SQL Statements 2-213

2-214 IBM Informix Guide to SQL: Syntax

CREATE TABLE
CREATE TABLE
Use the CREATE TABLE statement to create a new table in the current
database, to place data-integrity constraints on columns, to designate where
the table should be stored, to indicate the size of its initial and subsequent
extents, and to specify how to lock the new table.

You can use the CREATE TABLE statement to create relational-database tables
or typed tables (object-relational tables). For information on how to create
temporary tables, see “CREATE Temporary TABLE” on page 2-261.

Syntax

Usage
When you create a new table, every column must have a data type associated
with it. The table name must be unique among all the names of tables, views,
sequences, and synonyms within the same database, but the names of
columns need only be unique among the column names of the same table.

Element Purpose Restrictions Syntax
table Name that you declare

here for the new table
Must be unique among names of tables, synonyms,
views, and sequences within the current database

Database Object
Name, p. 4-46

CREATE Table
Definition

table

,

Column Definition
p. 2-216

()Multiple-Column
Constraint Format

p. 2-231

Options
p. 2-235

,

,

TABLE

OPERATIONAL

STANDARD

OF TYPE Clause
p. 2-255

RAW STATIC

Table
Definition

+

IDS

XPS

CREATE TABLE
In an ANSI-compliant database, the combination owner.table must be unique
within the database. ♦

In DB-Access, using the CREATE TABLE statement outside the CREATE
SCHEMA statement generates warnings if you use the -ansi flag or set
DBANSIWARN. ♦

In ESQL/C, using the CREATE TABLE statement generates warnings if you use
the -ansi flag or set DBANSIWARN. ♦

For information about the DBANSIWARN environment variable, refer to the
IBM Informix Guide to SQL: Reference.

Logging Options

Use the Logging Type options to specify characteristics that can improve
performance in various bulk operations on the table. Other than the default
option (STANDARD) that is used for OLTP databases, these logging options
are used primarily to improve performance in data warehousing databases.

A table can have either of the following logging characteristics.

By using raw tables with Extended Parallel Server, you can take advantage of
light appends and avoid the overhead of logging, checking constraints, and
building indexes. ♦

Warning: Use raw tables for fast loading of data, but set the logging type to
STANDARD and perform a level-0 backup before you use the table in a transaction or
modify the data within the table. If you must use a raw table within a transaction,
either set the isolation level to Repeatable Read or lock the table in exclusive mode to
prevent concurrency problems.

Logging Type Description

STANDARD Logging table that allows rollback, recovery, and restoration from
archives. This type is the default. Use this type of table for all the
recovery and constraints functionality that OLTP databases require.

RAW Nonlogging table that cannot have indexes or referential constraints
but can be updated. Use this type of table for quickly loading data. .

ANSI

DB

E/C

XPS
SQL Statements 2-215

CREATE TABLE
Extended Parallel Server supports two additional logging type options.

For more information on these logging types of tables, refer to your
Administrator’s Guide.

Column Definition
Use the column definition portion of CREATE TABLE to list the name, data
type, default values, and constraints of a single column.

Because of the maximum row size limit of 32,767 bytes, no more than 195
columns in the table can be of the data types BYTE, TEXT, ROW, LVARCHAR,
NVARCHAR, VARCHAR, and varying-length UDTs. Similarly, no more than
97 columns can be of COLLECTION data types (SET, LIST, and MULTISET).

As with any SQL identifier, syntactic ambiguities can occur if the column
name is a keyword. For information on reserved words for Dynamic Server,
see Appendix A, “Reserved Words for IBM Informix Dynamic Server.”

Option Effect

OPERATIONAL Logging table that uses light appends; it cannot be restored from
archive. Use this type on tables that are refreshed frequently,
because light appends allow the quick addition of many rows.

STATIC Nonlogging table that can contain index and referential
constraints but cannot be updated. Use this type for read-only
operations, because no logging or locking overhead occurs. ♦

XPS

Element Purpose Restrictions Syntax
column Name of a column in the table Must be unique in this table. Identifier, p. 4-189

column

DEFAULT
Clause
p. 2-217

Data Type
p. 4-49

Column
Definition

Single-Column
Constraint Format

p. 2-220

Back to CREATE TABLE
p. 2-214
2-216 IBM Informix Guide to SQL: Syntax

CREATE TABLE
For more information on reserved words for Extended Parallel Server, see
Appendix B, “Reserved Words for IBM Informix Extended Parallel Server.”
For more information on the ambiguities that can occur, see “Using
Keywords as Column Names” on page 4-195.

If you define a column of a table to be of a named ROW type, the table does
not adopt any constraints of the named ROW. ♦

DEFAULT Clause
Use the DEFAULT clause to specify the default value for the database server
to insert into a column when no explicit value for the column is specified.

You cannot specify default values for SERIAL or SERIAL8 columns.

Using NULL as a Default Value

If you specify no default value for a column, the default is NULL unless you
place a NOT NULL constraint on the column. In this case, no default exists.

If you specify NULL as the default value for a column, you cannot specify a
NOT NULL constraint as part of the column definition. (For details of NOT
NULL constraints, see“Using the NOT NULL Constraint” on page 2-221.)

IDS

Element Purpose Restrictions Syntax
literal String of alphabetic or

numeric characters
Must be an appropriate data type for the column. See
“Using a Literal as a Default Value” on page 2-218.

Expression,
p. 4-67

DEFAULT
Clause

literal

DEFAULT

Back to Column Definition
p. 2-216

USER

SITENAME

DBSERVERNAME

TODAY

CURRENT DATETIME
Field Qualifier

p. 4-65

+

NULL
SQL Statements 2-217

CREATE TABLE
NULL is not a valid default value for a column that is part of a primary key.

If the column is BYTE or TEXT data type, NULL is the only valid default value.

If the column is BLOB or CLOB data type, NULL is the only valid default
value. ♦

Using a Literal as a Default Value

You can designate a literal value as a default value. A literal value is a string
of alphabetic or numeric characters. To use a literal value as a default value,
you must adhere to the syntax restrictions in the following table.

DATE literals must be of the format that the DBDATE (or else GL_DATE)
environment variable specifies. In the default locale, if neither DBDATE nor
GL_DATE is set, DATE literals must be of the mm/dd/yyyy format.

For Columns of Data Type Format of Default Value

BOOLEAN Use 't' or 'f' (respectively for
true or false) as a Quoted String,
p. 4-243

CHAR, CHARACTER VARYING, DATE,
VARCHAR, NCHAR, NVARCHAR

Quoted String, p. 4-243. See note that
follows for DATE.

DATETIME Literal DATETIME, p. 4-212

DECIMAL, MONEY, FLOAT,
SMALLFLOAT

Literal Number, p. 4-216 (DECIMAL)

INTEGER, SMALLINT, DECIMAL,
MONEY, FLOAT, SMALLFLOAT, INT8

Literal Number, p. 4-216 (INTEGER)

INTERVAL Literal INTERVAL, p. 4-214

Opaque data types (IDS only) Quoted String, p. 4-243 in Single-
Column Constraint format (p. 2-220)

IDS
2-218 IBM Informix Guide to SQL: Syntax

CREATE TABLE
Using a Built-in Function as a Default Value

You can specify a built-in function as the default column value. The following
table lists built-in functions that you can specify, the data type requirements,
and the recommended size (in bytes) for their corresponding columns.

These column sizes are recommended because, if the column length is too
small to store the default value during INSERT or ALTER TABLE operations,
the database server returns an error.

You cannot designate a built-in function (that is, CURRENT, USER, TODAY,
SITENAME, or DBSERVERNAME) as the default value for a column that holds
opaque or distinct data types. ♦

For descriptions of these functions, see “Constant Expressions” on page 4-95.

Built-In Function Data Type Requirement Recommended Size

CURRENT DATETIME column with
matching qualifier

Enough bytes to accom-
modate the longest
DATETIME value for
locale

DBSERVERNAME CHAR, VARCHAR, NCHAR,
NVARCHAR, or CHARACTER
VARYING column

128 bytes

SITENAME CHAR, VARCHAR, NCHAR,
NVARCHAR, or CHARACTER
VARYING column

128 bytes

TODAY DATE column Enough bytes to accom-
modate the longest DATE
value for locale

USER CHAR, VARCHAR, NCHAR,
NVARCHAR, or CHARACTER
VARYING column

32 bytes

IDS
SQL Statements 2-219

CREATE TABLE
The following example creates a table called accounts. In accounts, the
acc_num, acc_type, and acc_descr columns have literal default values. The
acc_id column defaults to the login name of the user.

CREATE TABLE accounts (
acc_num INTEGER DEFAULT 1,
acc_type CHAR(1) DEFAULT 'A',
acc_descr CHAR(20) DEFAULT 'New Account',
acc_id CHAR(32) DEFAULT USER)

Single-Column Constraint Format
Use the Single-Column Constraint format to associate one or more
constraints with a column, in order to perform any of the following tasks:

� Create one or more data-integrity constraints for a column.

� Specify a meaningful name for a constraint.

� Specify the constraint-mode that controls the behavior of a constraint
during INSERT, DELETE, and UPDATE operations.

The following example creates a standard table with two constraints: num, a
primary-key constraint on the acc_num column; and code, a unique
constraint on the acc_code column:

CREATE TABLE accounts (
acc_num INTEGER PRIMARY KEY CONSTRAINT num,
acc_code INTEGER UNIQUE CONSTRAINT code,
acc_descr CHAR(30))

The constraints used in this example are defined in the following sections.

Back to Column Definition
p. 2-216

UNIQUE

DISTINCT

PRIMARY KEY

REFERENCES
Clause
p. 2-223

CHECK Clause
p. 2-227

NOT NULL

Single-Column
Constraint Format

+

Constraint Definition
p. 2-228

+
Constraint
Definition
p. 2-228

+

2-220 IBM Informix Guide to SQL: Syntax

CREATE TABLE
Restrictions on Using the Single-Column Constraint Format

The single-column constraint format cannot specify a constraint that involves
more than one column. Thus, you cannot use the single-column constraint
format to define a composite key. For information on multiple-column
constraints, see “Multiple-Column Constraint Format” on page 2-231.

You cannot place unique, primary-key, or referential constraints on BYTE or
TEXT columns. You can, however, check for NULL or non-NULL values with
a check constraint.

You cannot place unique constraints, primary-key constraints, or referential
constraints on BLOB or CLOB columns. ♦

Using the NOT NULL Constraint

Use the NOT NULL keywords to require that a column receive a value during
insert or update operations. If you place a NOT NULL constraint on a column
(and no default value is specified), you must enter a value into this column
when you insert a row or update that column in a row. If you do not enter a
value, the database server returns an error, because no default value exists.

The following example creates the newitems table. In newitems, the column
manucode does not have a default value nor does it allow NULLs.

CREATE TABLE newitems (
newitem_num INTEGER,
manucode CHAR(3) NOT NULL,
promotype INTEGER,
descrip CHAR(20))

You cannot specify NULL as the explicit default value for a column and also
specify the NOT NULL constraint.

Using the UNIQUE or DISTINCT Constraints

Use the UNIQUE or DISTINCT keyword to require that a column or set of
columns accepts only unique data values. You cannot insert values that
duplicate the values of some other row into a column that has a unique
constraint. When you create a UNIQUE or DISTINCT constraint, the database
server automatically creates an internal index on the constrained column or
columns. (In this context, the keyword DISTINCT is a synonym for UNIQUE.)

IDS
SQL Statements 2-221

CREATE TABLE
You cannot place a unique constraint on a column that already has a primary-
key constraint.

You cannot place a unique constraint on a BYTE or TEXT column.

You cannot place a unique or primary-key constraint on a BLOB or CLOB
column.

Opaque data types support a unique constraint only where a secondary-
access method supports uniqueness for that type. The default secondary-
access method is a generic B-tree, which supports the equal() operator
function. Therefore, if the definition of the opaque type includes the equal()
function, a column of that opaque type can have a unique constraint. ♦

The following example creates a simple table that has a unique constraint on
one of its columns:

CREATE TABLE accounts
(acc_name CHAR(12),
 acc_num SERIAL UNIQUE CONSTRAINT acc_num)

For an explanation of the constraint name, refer to “Declaring a Constraint
Name” on page 2-229.

Using the PRIMARY KEY Constraint

A primary key is a column (or a set of columns, when you use the multiple-
column constraint format) that contains a non-NULL, unique value for each
row in a table. When you create a PRIMARY KEY constraint, the database
server automatically creates an internal index on the column or columns that
make up the primary key.

You can designate only one primary key for a table. If you define a single
column as the primary key, then it is unique by definition. You cannot
explicitly give the same column a unique constraint.

You cannot place a unique or primary-key constraint on a BLOB or CLOB
column.

Opaque types support a primary key constraint only where a secondary-
access method supports the uniqueness for that type. The default secondary-
access method is a generic B-tree, which supports the equal() function.
Therefore, if the definition of the opaque type includes the equal() function,
a column of that opaque type can have a primary-key constraint. ♦

IDS

IDS
2-222 IBM Informix Guide to SQL: Syntax

CREATE TABLE
You cannot place a primary-key constraint on a BYTE or TEXT column.

In the previous two examples, a unique constraint was placed on the column
acc_num. The following example creates this column as the primary key for
the accounts table:

CREATE TABLE accounts
(acc_name CHAR(12),
 acc_num SERIAL PRIMARY KEY CONSTRAINT acc_num)

REFERENCES Clause
Use the REFERENCES clause to establish a referential relationship:

� Within a table (that is, between two columns of the same table)

� Between two tables (in other words, create a foreign key)

The referencing column (the column being defined) is the column or set of
columns that refers to the referenced column or set of columns. The refer-
encing column(s) can contain NULL and duplicate values, but values in the
referenced column (or set of columns) must be unique.

The relationship between referenced and referencing columns is called a
parent-child relationship, where the parent is the referenced column (primary
key) and the child is the referencing column (foreign key). The referential
constraint establishes this parent-child relationship.

Element Purpose Restrictions Syntax
column Name of the referenced column

or columns
See “Restrictions on Referential
Constraints” on page 2-224.

Identifier, p.4-189

table Name of the referenced table Must reside in the same database
as the referencing table.

Database Object
Name, p. 4-46

REFERENCES
Clause

Back to Single-Column Constraint Format p. 2-220
Back to Multiple-Column Constraint Format p. 2-231

)

,

column

REFERENCES table

+

(ON DELETE CASCADE
SQL Statements 2-223

CREATE TABLE
When you create a referential constraint, the database server automatically
creates an internal index on the constrained column or columns.

Restrictions on Referential Constraints

You must have the References privilege to create a referential constraint.

When you use the REFERENCES clause, you must observe the following
restrictions:

� The referenced and referencing tables must be in the same database.

� The referenced column (or set of columns when you use the
multiple-column constraint format) must have a unique or primary-
key constraint.

� The data types of the referencing and referenced columns must be
identical.

The only exception is that a referencing column must be an integer
data type if the referenced column is a serial.

� You cannot place a referential constraint on a BYTE or TEXT column.

� When you use the single-column constraint format, you can
reference only one column.

� When you use the multiple-column constraint format, the maximum
number of columns in the REFERENCES clause is 16, and the total
length of the columns cannot exceed 380 bytes. ♦

� When you use the multiple-column constraint format, the maximum
number of columns in the REFERENCES clause is 16, and the total
length of the columns cannot exceed 390 bytes.

� You cannot place a referential constraint on a BLOB or CLOB
column. ♦

Default Values for the Referenced Column

If the referenced table is different from the referencing table, you do not need
to specify the referenced column; the default column is the primary-key
column (or columns) of the referenced table. If the referenced table is the
same as the referencing table, you must specify the referenced column.

XPS

IDS
2-224 IBM Informix Guide to SQL: Syntax

CREATE TABLE
Referential Relationships Within a Table

You can establish a referential relationship between two columns of the same
table. In the following example, the emp_num column in the employee table
uniquely identifies every employee through an employee number. The
mgr_num column in that table contains the employee number of the
manager who manages that employee. In this case, mgr_num references
emp_num. Duplicate values appear in the mgr_num column because
managers manage more than one employee.

CREATE TABLE employee
(
emp_num INTEGER PRIMARY KEY,
mgr_num INTEGER REFERENCES employee (emp_num)
)

Locking Implications of Creating a Referential Constraint

When you create a referential constraint, an exclusive lock is placed on the
referenced table. The lock is released when the CREATE TABLE statement is
finished. If you are creating a table in a database with transactions, and you
are using transactions, the lock is released at the end of the transaction.

Example That Uses the Single-Column Constraint Format

The following example uses the single-column constraint format to create a
referential relationship between the sub_accounts and accounts tables. The
ref_num column in the sub_accounts table references the acc_num column
(the primary key) in the accounts table.

CREATE TABLE accounts (
acc_num INTEGER PRIMARY KEY,
acc_type INTEGER,
acc_descr CHAR(20))

CREATE TABLE sub_accounts (
sub_acc INTEGER PRIMARY KEY,
ref_num INTEGER REFERENCES accounts (acc_num),
sub_descr CHAR(20))

When you use the single-column constraint format, you do not explicitly
specify the ref_num column as a foreign key. To use the FOREIGN KEY
keyword, use the “Multiple-Column Constraint Format” on page 2-231.
SQL Statements 2-225

CREATE TABLE
Using the ON DELETE CASCADE Option

Use the ON DELETE CASCADE option to specify whether you want rows
deleted in a child table when corresponding rows are deleted in the parent
table. If you do not specify cascading deletes, the default behavior of the
database server prevents you from deleting data in a table if other tables
reference it.

If you specify this option, later when you delete a row in the parent table, the
database server also deletes any rows associated with that row (foreign keys)
in a child table. The principal advantage to the cascading-deletes feature is
that it allows you to reduce the quantity of SQL statements you need to
perform delete actions.

For example, the all_candy table contains the candy_num column as a
primary key. The hard_candy table refers to the candy_num column as a
foreign key. The following CREATE TABLE statement creates the hard_candy
table with the cascading-delete option on the foreign key:

CREATE TABLE all_candy
(candy_num SERIAL PRIMARY KEY,
 candy_maker CHAR(25));

CREATE TABLE hard_candy
(candy_num INT,
 candy_flavor CHAR(20),
 FOREIGN KEY (candy_num) REFERENCES all_candy
 ON DELETE CASCADE)

Because the ON DELETE CASCADE option is specified for the child table,
when an item from the all_candy table is deleted, the delete cascades to the
corresponding rows of the hard_candy table.

For information about syntax restrictions and locking implications when you
delete rows from tables that have cascading deletes, see “Considerations
When Tables Have Cascading Deletes” on page 2-346.
2-226 IBM Informix Guide to SQL: Syntax

CREATE TABLE
CHECK Clause
Use the CHECK clause to designate conditions that must be met before data
can be assigned to a column during an INSERT or UPDATE statement.

The condition cannot include a user-defined function or procedure. ♦

During an insert or update, if the check constraint of a row evaluates to false,
the database server returns an error. The database server does not return an
error if a row evaluates to NULL for a check constraint. In some cases, you
might want to use both a check constraint and a NOT NULL constraint.

Using a Search Condition

You use search conditions to define check constraints. The search condition
cannot contain the following items: user-defined routines, subqueries, aggre-
gates, host variables, or rowids. In addition, the search condition cannot
contain the following built-in functions: CURRENT, USER, SITENAME,
DBSERVERNAME, or TODAY.

Warning: When you specify a date value in a search condition, make sure you specify
4 digits for the year, so that the DBCENTURY environment variable has no effect on
the condition. When you specify a 2-digit year, the DBCENTURY environment
variable can produce unpredictable results if the condition depends on an abbreviated
year value. For more information on the DBCENTURY environment variable, see the
“IBM Informix Guide to SQL: Reference.” More generally, the database server saves
the settings of environment variables from the time of creation of check constraints.
If any of these settings are subsequently changed in a way that can affect the evalu-
ation of a condition in a check constraint, the new settings are disregarded, and the
original environment variable settings are used when the condition is evaluated.

With a BYTE or TEXT column, you can check for NULL or not-NULL values.
This constraint is the only constraint allowed on a BYTE or TEXT column.

CHECK
Clause

()Condition
p. 4-24CHECK

Back to Single-Column Constraint Format p. 2-220
Back to Multiple-Column Constraint Format p. 2-231

IDS
SQL Statements 2-227

CREATE TABLE
Restrictions When Using the Single-Column Constraint Format

When you use the single-column constraint format to define a check
constraint, the check constraint cannot depend on values in other columns of
the table. The following example creates the my_accounts table that has two
columns with check constraints, each in the single-column constraint format:

CREATE TABLE my_accounts (
chk_id SERIAL PRIMARY KEY,
acct1 MONEY CHECK (acct1 BETWEEN 0 AND 99999),
acct2 MONEY CHECK (acct2 BETWEEN 0 AND 99999))

Both acct1 and acct2 are columns of MONEY data type whose values must be
between 0 and 99999. If, however, you want to test that acct1 has a larger
balance than acct2, you cannot use the single-column constraint format. To
create a constraint that checks values in more than one column, you must use
the “Multiple-Column Constraint Format” on page 2-231.

Constraint Definition
Use the constraint definition portion of CREATE TABLE for these purposes:

� To declare a name for the constraint

� To set a constraint to disabled, enabled, or filtering mode ♦IDS

Element Purpose Restrictions Syntax
constraint Name of constraint Must be unique among index names Database Object Name, p. 4-46

FILTERING

DISABLED

WITH ERROR

Constraint
Definition

ENABLED

WITHOUT ERROR

CONSTRAINT constraint

Back to Single-Column Constraint Format p. 2-220
Back to Multiple-Column Constraint Format p. 2-231

IDS
2-228 IBM Informix Guide to SQL: Syntax

CREATE TABLE
Declaring a Constraint Name

The database server implements the constraint as an index. Whenever you
use the single- or multiple-column constraint format to place a data
restriction on a column, but without declaring a constraint name, the database
server creates a constraint and adds a row for that constraint in the syscon-
straints system catalog table. The database server also generates an identifier
and adds a row to the sysindexes system catalog table for each new primary-
key, unique, or referential constraint that does not share an index with an
existing constraint. Even if you declare a name for a constraint, the database
server generates the name that appears in the sysindexes table.

If you want, you can specify a meaningful name for the constraint. The name
must be unique among the names of constraints and indexes in the database.

Constraint names appear in error messages having to do with constraint
violations. You can use this name when you use the DROP CONSTRAINT
clause of the ALTER TABLE statement.

In addition, you specify a constraint name when you change the mode of
constraint with the SET Database Object Mode statement or the SET Trans-
action Mode statement. ♦

When you create a constraint of any type, the combination of the owner name
and constraint name must be unique within the database. ♦

The system catalog table that holds information about indexes is the
sysindices table. ♦

Constraint Names That the Database Server Generates

If you do not specify a constraint name, the database server generates a
constraint name using the following template:

<constraint_type><tabid>_<constraintid>

In this template, constraint_type is the letter u for unique or primary-key
constraints, r for referential constraints, c for check constraints, and n for NOT
NULL constraints. In the template, tabid and constraintid are values from the
tabid and constrid columns of the systables and sysconstraints system
catalog tables, respectively. For example, the constraint name for a unique
constraint might look like ” u111_14” (with a leading blank space).

IDS

ANSI

IDS
SQL Statements 2-229

CREATE TABLE
If the generated name conflicts with an existing identifier, the database server
returns an error, and you must then supply an explicit constraint name.

The generated index name in sysindexes (or sysindices) has this format:

[blankspace]<tabid>_<constraintid>

For example, the index name might be something like “ 111_14 “ (with
quotation marks used here to show the blank space).

Choosing a Constraint-Mode Option

Use the constraint-mode options to control the behavior of constraints in
INSERT, DELETE, and UPDATE operations. These are the options.

If you choose filtering mode, you can specify the WITHOUT ERROR or WITH
ERROR options. The following list explains these options.

Mode Purpose

DISABLED Does not enforce the constraint during INSERT, DELETE, and
UPDATE operations.

ENABLED Enforces the constraint during INSERT, DELETE, and UPDATE
operations. If a target row causes a violation of the constraint, the
statement fails. This mode is the default.

FILTERING Enforces the constraint during INSERT, DELETE, and UPDATE
operations. If a target row causes a violation of the constraint, the
statement continues processing. The database server writes the row
in question to the violations table associated with the target table and
writes diagnostic information to the associated diagnostics table.

Error Option Purpose

WITHOUT ERROR Does not return an integrity-violation error when a filtering-
mode constraint is violated during an insert, delete, or update
operation. This is the default error option.

WITH ERROR Returns an integrity-violation error when a filtering-mode
constraint is violated during an insert, delete, or update
operation

IDS
2-230 IBM Informix Guide to SQL: Syntax

CREATE TABLE
To set the constraint mode after the table exists, see “SET Database Object
Mode” on page 2-652. For information about where the database server
stores rows that violate a constraint set to FILTERING, see “START VIOLA-
TIONS TABLE” on page 2-729.

Multiple-Column Constraint Format
Use the multiple-column constraint format to associate one or more columns
with a constraint. This alternative to the single-column constraint format
allows you to associate multiple columns with a constraint.

You can include a maximum of 16 columns in a constraint list. The total
length of all columns cannot exceed 380 bytes.

When you define a unique constraint (by using the UNIQUE or DISTINCT
keyword), a column cannot appear in the constraint list more than once.

Using the multiple-column constraint format, you can perform these tasks:

� Create data-integrity constraints for a set of one or more columns

� Specify a mnemonic name for a constraint

� Specify the constraint-mode option that controls the behavior of a
constraint during insert, delete, and update operations

Element Purpose Restrictions Syntax
column Columns on which to place constraint Not BYTE, TEXT, BLOB, nor CLOB Identifier, p.4-189

Multiple-Column
Constraint Format

Back to CREATE TABLE p. 2-214
Back to OF TYPE Clause p. 2-255

UNIQUE

FOREIGN KEY

REFERENCES
Clause
p. 2-223column)(

, Constraint
Definition
p. 2-228

CHECK Clause
p. 2-227

++

column)(

,

DISTINCT

PRIMARY KEY
SQL Statements 2-231

CREATE TABLE
When you use this format, you can create composite primary and foreign
keys, or define check constraints that compare data in different columns.

Restrictions with the Multiple-Column Constraint Format

When you use the multiple-column constraint format, you cannot define any
default values for columns. In addition, you cannot establish a referential
relationship between two columns of the same table.

To define a default value for a column or establish a referential relationship
between two columns of the same table, refer to “Single-Column Constraint
Format” on page 2-220 and “Referential Relationships Within a Table” on
page 2-225 respectively.

Using Large-Object Types in Constraints

You cannot place unique, primary-key, or referential (FOREIGN KEY)
constraints on BYTE or TEXT columns. You can, however, check for NULL or
non-NULL values with a check constraint.

You cannot place unique or primary-key constraints on BLOB or CLOB
columns. ♦

You can find detailed discussions of specific constraints in these sections.

Constraint For more information, see For an example, see

CHECK “CHECK Clause” on
page 2-227

“Defining Check Constraints
Across Columns” on page 2-233

DISTINCT “Using the UNIQUE or
DISTINCT Constraints” on
page 2-221

“Examples of the Multiple-
Column Constraint Format” on
page 2-233

FOREIGN KEY “Using the FOREIGN KEY
Constraint” on page 2-233

“Defining Composite Primary
and Foreign Keys” on page 2-234

PRIMARY KEY “Using the PRIMARY KEY
Constraint” on page 2-222

“Defining Composite Primary
and Foreign Keys” on page 2-234

UNIQUE “Using the UNIQUE or
DISTINCT Constraints” on
page 2-221

“Examples of the Multiple-
Column Constraint Format” on
page 2-233

IDS
2-232 IBM Informix Guide to SQL: Syntax

CREATE TABLE
Using the FOREIGN KEY Constraint

A foreign key joins and establishes dependencies between tables. That is, it
creates a referential constraint. (For more information on referential
constraints, see the “REFERENCES Clause” on page 2-223.)

A foreign key references a unique or primary key in a table. For every entry
in the foreign-key columns, a matching entry must exist in the unique or
primary-key columns if all foreign-key columns contain non-NULL values.

You cannot specify BYTE or TEXT columns as foreign keys.

You cannot specify BLOB or CLOB columns as foreign keys. ♦

Examples of the Multiple-Column Constraint Format

The following example creates a standard table, called accounts, with a
unique constraint, called acc_num, using the multiple-column constraint
format. (Nothing in this example, however, would prevent you from using
the single-column constraint format to define this constraint.)

CREATE TABLE accounts
(acc_name CHAR(12),
 acc_num SERIAL,
 UNIQUE (acc_num) CONSTRAINT acc_num)

For constraint names, see “Declaring a Constraint Name” on page 2-229.

Defining Check Constraints Across Columns

When you use the multiple-column constraint format to define check
constraints, a check constraint can apply to more than one column in the
same table. (You cannot, however, create a check constraint whose condition
uses a value from a column in another table.)

This example compares two columns, acct1 and acct2, in the new table:

CREATE TABLE my_accounts
(
chk_id SERIAL PRIMARY KEY,
acct1 MONEY,
acct2 MONEY,
CHECK (0 < acct1 AND acct1 < 99999),
CHECK (0 < acct2 AND acct2 < 99999),
CHECK (acct1 > acct2)
)

IDS
SQL Statements 2-233

CREATE TABLE
In this example, the acct1 column must be greater than the acct2 column, or
the insert or update fails.

Defining Composite Primary and Foreign Keys

When you use the multiple-column constraint format, you can create a
composite key. A composite key specifies multiple columns for a primary-key
or foreign-key constraint.

The next example creates two tables. The first table has a composite key that
acts as a primary key, and the second table has a composite key that acts as a
foreign key.

CREATE TABLE accounts (
acc_num INTEGER,
acc_type INTEGER,
acc_descr CHAR(20),
PRIMARY KEY (acc_num, acc_type))

CREATE TABLE sub_accounts (
sub_acc INTEGER PRIMARY KEY,
ref_num INTEGER NOT NULL,
ref_type INTEGER NOT NULL,
sub_descr CHAR(20),
FOREIGN KEY (ref_num, ref_type) REFERENCES accounts

(acc_num, acc_type))

In this example, the foreign key of the sub_accounts table, ref_num and
ref_type, references the composite key, acc_num and acc_type, in the
accounts table. If, during an insert or update, you tried to insert a row into
the sub_accounts table whose value for ref_num and ref_type did not
exactly correspond to the values for acc_num and acc_type in an existing row
in the accounts table, the database server would return an error.

A referential constraint must have a one-to-one relationship between refer-
encing and referenced columns. In other words, if the primary key is a set of
columns (a composite key), then the foreign key also must be a set of columns
that corresponds to the composite key.

Because of the default behavior of the database server, when you create the
foreign-key reference, you do not have to reference the composite-key
columns (acc_num and acc_type) explicitly. You can rewrite the references
section of the previous example as follows:

FOREIGN KEY (ref_num, ref_type) REFERENCES accounts
2-234 IBM Informix Guide to SQL: Syntax

CREATE TABLE
Options
The CREATE TABLE options let you specify storage locations, extent size,
locking modes, and user-defined access methods.

Using the WITH CRCOLS Option

Use the WITH CRCOLS keywords to create two shadow columns that Enter-
prise Replication uses for conflict resolution. The first column, cdrserver,
contains the identity of the database server where the last modification
occurred. The second column, cdrtime, contains the time stamp of the last
modification. You must add these columns before you can use time-stamp or
user-defined routine conflict resolution.

For most database operations, the cdrserver and cdrtime columns are
hidden. For example, if you include the WITH CRCOLS keywords when you
create a table, the cdrserver and cdrtime columns:

� Do not appear when you issue the statement
SELECT * from tablename

� Do not appear in DB-Access when you ask for information about the
columns of the table

� Are not included in the number of columns (ncols) in the systables
system catalog table entry for tablename

To view the contents of cdrserver and cdrtime, explicitly name the columns
in a SELECT statement, as the following example shows:

SELECT cdrserver, cdrtime from tablename

For more information about how to use this option, refer to the IBM Informix
Dynamic Server Enterprise Replication Guide.

Options Back to CREATE TABLE
p. 2-214

WITH CRCOLS

LOCK MODE
Options
p. 2-253

IDS
Storage
Options
p. 2-236

+ USING
Access-Method

Clause
p. 2-252

IDS
SQL Statements 2-235

CREATE TABLE
Storage Options
Use the storage-option portion of CREATE TABLE to specify the storage space
and the size of the extents for the table.

If you use the “USING Access-Method Clause” on page 2-252 to specify an
access method, that method must support the storage space.

You can specify a dbspace for the table that is different from the storage
location for the database, or you can fragment the table into several dbspaces.
If you do not specify the IN clause or a fragmentation scheme, the database
server stores the table in the dbspace where the current database resides.

You can use the PUT clause to specify storage options for smart large objects.
For more information, see “PUT Clause” on page 2-249.

Tip: If your table has columns that contain simple large objects (TEXT or BYTE), you
can specify a separate blobspace for each object. For information on storing simple
large objects, refer to “Large-Object Data Types” on page 4-57. ♦

Element Purpose Restrictions Syntax
dbslice Dbslice to store the table Must already exist. Identifier, p. 4-189
dbspace Dbspace to store the table Must already exist. Identifier, p. 4-189
extspace Name declared in the onspaces command to

a storage area outside the database server
Must already exist. See documentation for your

access method.

EXTENT SIZE
Options
p. 2-251

PUT Clause
p. 2-249

extspace

dbspace

Storage Options

dbsliceXPS

FRAGMENT BY Clause
p. 2-238

Back to Options
p. 2-235

IN IDS

IDS

IDS
2-236 IBM Informix Guide to SQL: Syntax

CREATE TABLE
Using the IN Clause

Use the IN clause to specify a storage space for a table. The storage space that
you specify must already exist.

Storing Data in a dbspace

You can use the IN clause to isolate a table. For example, if the history
database is in the dbs1 dbspace, but you want the family data placed in a
separate dbspace called famdata, use the following statements:

CREATE DATABASE history IN dbs1

CREATE TABLE family
(
id_num SERIAL(101) UNIQUE,
name CHAR(40),
nickname CHAR(20),
mother CHAR(40),
father CHAR(40)
)
IN famdata

For more information about how to store and manage your tables in separate
dbspaces, see your Administrator’s Guide.

Storing Data in a dbslice

If you are using Extended Parallel Server, the IN dbslice clause allows you to
fragment a table across a group of dbspaces that share the same naming
convention. The database server fragments the table by round-robin in the
dbspaces that make up the dbslice at the time the table is created.

To fragment a table across a dbslice, you can use either the IN dbslice syntax
or the FRAGMENT BY ROUND ROBIN IN dbslice syntax.

Storing Data in an extspace

In general, use the extspace storage option in conjunction with the “USING
Access-Method Clause” on page 2-252. For more information, refer to the
user documentation for your custom-access method.

XPS

IDS
SQL Statements 2-237

CREATE TABLE
FRAGMENT BY Clause
Use the FRAGMENT BY clause to create fragmented tables and specify their
distribution scheme .

Element Purpose Restrictions Syntax
column Column to which to apply the

fragmentation strategy
Must be a column within the table. Identifier,

p. 4-189
dbslice,
dbspace

Dbslice or dbspace to store the
table fragment

The dbslice must be defined. You can specify
no more than 2,048 dbspaces (but at least 2).

Identifier,
p. 4-189

expression Expression that defines a table
fragment using a range, hash, or
arbitrary rule

Columns can be from the current table only,
and data values can be from only a single row.
Value returned must be Boolean (true or false).

Expression,
p. 4-67

opclass No default operator class Must be defined and must be associated with
a B-tree index.

Identifier,
p. 4-189

ROUND ROBIN

,

IN dbsliceXPS

column

,

)(dbspace

,

IN dbslice

FRAGMENT BY
Clause for Tables

HYBRID

,

column()

XPS

EXPRESSION

,

expression IN dbspace

REMAINDER IN dbspace,

IN

IN

EXPRESSION

Back to Storage Options
p. 2-236

dbspace

WITH ROWIDS

FRAGMENT BY
IDS

HASH

,

expression IN ,dbspace

dbspace()

REMAINDER

expression

IN

dbslice

,

dbspace

dbspace

dbslice

,

IDS

USING opclass

RANGE
Method Clause

p. 2-244
()

,

,

2-238 IBM Informix Guide to SQL: Syntax

CREATE TABLE
When you fragment a table, the IN keyword introduces the storage space
where a table fragment is to be stored.

Using the WITH ROWIDS Option

Nonfragmented tables contain a hidden column called rowid, but by default,
fragmented tables have no rowid column. You can use the WITH ROWIDS
keywords to add the rowid column to a fragmented table. Each row is
automatically assigned a unique rowid value that remains stable for the life
of the row, and that the database server can use to find the physical location
of the row. Each row requires an additional 4 bytes to store the rowid.

Important: This is a deprecated feature. Use primary keys as an access method rather
than the rowid column.

You cannot use the WITH ROWIDS clause with typed tables.

Fragmenting by ROUND ROBIN

In a round-robin distribution scheme, specify at least two dbspaces where
you want the fragments to be placed. As records are inserted into the table,
they are placed in the first available dbspace. The database server balances
the load between the specified dbspaces as you insert records and distributes
the rows in such a way that the fragments always maintain approximately
the same number of rows. In this distribution scheme, the database server
must scan all fragments when it searches for a row.

With Extended Parallel Server, you can specify a dbslice to fragment a table
across a group of dbspaces that share the same naming convention. For a
syntax alternative to FRAGMENT BY ROUND ROBIN IN dbslice that achieves the
same results, see “Storing Data in a dbslice” on page 2-237. ♦

Use the PUT clause to specify round-robin fragmentation for smart large
objects. For more information, see the “PUT Clause” on page 2-249. ♦

Fragmenting by EXPRESSION

In an expression-based distribution scheme, each fragment expression in a rule
specifies a storage space. Each fragment expression in the rule isolates data
and aids the database server in searching for rows.

IDS

XPS

IDS
SQL Statements 2-239

CREATE TABLE
To fragment a table by expression, specify one of the following rules:

� Range rule

A range rule specifies fragment expressions that use a range to spec-
ify which rows are placed in a fragment, as the next example shows:

FRAGMENT BY EXPRESSION c1 < 100 IN dbsp1,
c1 >= 100 AND c1 < 200 IN dbsp2, c1 >= 200 IN dbsp3

� Arbitrary rule

An arbitrary rule specifies fragment expressions based on a pre-
defined SQL expression that typically uses OR clauses to group data,
as the following example shows:

FRAGMENT BY EXPRESSION
zip_num = 95228 OR zip_num = 95443 IN dbsp2,
zip_num = 91120 OR zip_num = 92310 IN dbsp4,
REMAINDER IN dbsp5

Warning: See the note about the DBCENTURY environment variable and date values
in fragment expressions in the section “Logging Options” on page 2-215.

The USING Opclass Option

With the USING option, you can specify a nondefault operator class for the
fragmentation strategy. The secondary-access method of the chosen operator
class must have a B-tree index structure.

In the following example, the abs_btree_ops operator class specifies several
user-defined strategy functions that order integers based on their absolute
values:

CREATE OPCLASS abs_btree_ops FOR btree
STRATEGIES (abs_lt, abs_lte, abs_eq, abs_gte, abs_gt)
SUPPORT (abs_cmp)

For the fragmentation strategy, you can specify the abs_btree_ops operator
class in the USING clause and use its strategy functions to fragment the table,
as follows:

FRAGMENT BY EXPRESSION USING abs_btree_ops
(abs_lt(x,345)) IN dbsp1,
(abs_gte(x,345) AND abs_lte(x,500)) IN dbsp2,
(abs_gt(x,500)) IN dbsp3

For information on how to create and extend an operator class, see
IBM Informix User-Defined Routines and Data Types Developer’s Guide.

IDS
2-240 IBM Informix Guide to SQL: Syntax

CREATE TABLE
User-Defined Functions in Fragment Expressions

For rows that include user-defined data types, you can use comparison
conditions or user-defined functions to define the range rules. In the
following example, comparison conditions define the range rules for the
long1 column, which contains an opaque data type:

FRAGMENT BY EXPRESSION
long1 < '3001' IN dbsp1,
long1 BETWEEN '3001' AND '6000' IN dbsp2,
long1 > '6000' IN dbsp3

An implicit, user-defined cast converts 3001 and 6000 to the opaque type.

Alternatively, you can use user-defined functions to define the range rules for
the opaque data type of the long1 column:

FRAGMENT BY EXPRESSION
(lessthan(long1,'3001')) IN dbsp1,
(greaterthanorequal(long1,'3001') AND
lessthanorequal(long,'6000')) IN dbsp2,
(greaterthan(long1,'6000')) IN dbsp3

Explicit user-defined functions require parentheses around the entire
fragment expression before the IN clause, as the previous example shows.

User-defined functions in a fragment expression can be written in SPL or in
the C or Java language. These functions must satisfy four requirements:

� They must evaluate to a Boolean value.

� They must be nonvariant.

� They must reside within the same database as the table.

� They must not generate OUT parameters.

For information on how to create user-defined functions for fragment expres-
sions, refer to IBM Informix User-Defined Routines and Data Types Developer’s
Guide.

Using the REMAINDER Keyword

Use the REMAINDER keyword to specify the storage space in which to store
valid values that fall outside the specified expression or expressions.

If you do not specify a remainder, and a row is inserted or updated such that
it no longer belongs to any dbspace, the database server returns an error.

IDS
SQL Statements 2-241

CREATE TABLE
Fragmenting by HASH

A hash-distribution scheme distributes the rows as you insert them, so that
the fragments maintain approximately the same number of rows. In this
distribution scheme, the database server can eliminate fragments when it
searches for a row because the hash is known internally. For example, if you
have a large database, as in a data-warehousing environment, you can
fragment your tables across disks that belong to different coservers. If you
expect to perform many queries that scan most of the data, a system-defined
hash-distribution scheme can balance the I/O processing. The following
example uses eight coservers with one dbspace defined on each coserver.

CREATE TABLE customer
(

 cust_id integer,
 descr char(45),
 level char(15),
 sale_type char(10),
 channel char(30),
 corp char(45),
 cust char(45),
 vert_mkt char(30),
 state_prov char(20),
 country char(15),
 org_cust_id char(20)
)
FRAGMENT BY HASH (cust_id) IN

customer1_spc,
customer2_spc,
customer3_spc,
customer4_spc,
customer5_spc,
customer6_spc,
customer7_spc,
customer8_spc

EXTENT SIZE 20 NEXT SIZE 16

You can also specify a dbslice. When you specify a dbslice, the database server
fragments the table across the dbspaces that make up the dbslice.

Serial Columns in HASH-Distribution Schemes

If you base table fragmentation on a SERIAL or SERIAL8 column, only a hash-
distribution scheme is valid. In addition, the serial column must be the only
column in the hashing key. (These restrictions apply only to table distribu-
tions. Fragmentation schemes for indexes that are based on SERIAL or SERIAL8
columns are not subject to these restrictions.)

XPS
2-242 IBM Informix Guide to SQL: Syntax

CREATE TABLE
The following excerpt is from a CREATE TABLE statement:

CREATE TABLE customer
(

 cust_id serial,
. . .

)
FRAGMENT BY HASH (cust_id) IN customer1_spc, customer2_spc

You might notice a difference between serial-column values in fragmented
and nonfragmented tables. The database server assigns serial values round-
robin across fragments, so a fragment might contain values from noncon-
tiguous ranges. For example, if there are two fragments, the first serial value
is placed in the first fragment, the second serial value is placed in the second
fragment, the third value is placed in the first fragment, and so on.

Fragmenting by HYBRID

The HYBRID clause allows you to apply two distribution schemes to the same
table. You can use a combination of hash- and expression-distribution
schemes or a combination of range-distribution schemes on a table. This
section discusses the hash and expression form of hybrid fragmentation. For
details of range fragmentation, see “RANGE Method Clause” on page 2-244.

In hybrid fragmentation, the EXPRESSION clause determines the base
fragmentation strategy of the table, associating an expression with a set of
dbspaces (dbspace, dbslice, or dbspacelist format) for data storage. The hash
column(s) determines the dbspace within the specified set of dbspaces.

When you specify a dbslice, the database server fragments the table across
the dbspaces that make up the dbslice. Similarly, if you specify a dbspace list,
the database server fragments the table across the dbspaces in that list. In the
next example, my_hybrid, distributes rows based on two columns of the
table. The value of col1 determines in which dbslice the row belongs.

The hash value of col2 determines in which dbspace (within the previously
determined dbslice) to insert into.

CREATE TABLE my_hybrid
(col1 INT, col2 DATE, col3 CHAR(10))

HYBRID (col2) EXPRESSION col1 < 100 IN dbslice1,
col1 >= 100 and col1 < 200 IN dbslice2,REMAINDER IN dbslice3

For more information on an expression-based distribution scheme, see
“Fragmenting by EXPRESSION” on page 2-239.

XPS
SQL Statements 2-243

CREATE TABLE
RANGE Method Clause
You can use a range-fragmentation method as a convenient alternative to
fragmenting by the EXPRESSION or HYBRID clauses. This provides a method
to implicitly and uniformly distribute data whose fragmentation column
values are dense or naturally uniform.

In a range-fragmented table, each dbspace stores a contiguous, completely
bound and non-overlapping range of integer values over one or two
columns. In other words, the database server implicitly clusters rows within
the fragments, based on the range of the values in the fragmentation column.

For hybrid strategies with two range definitions, the second column must be
different column name from the first. For hybrid strategies with exactly one
range definition, both occurrences of column must specify the same column.

If you list more than one dbslice, including a remainder dbslice, each dbslice
must contain the same number of dbspaces. Unless you are specifying the
dbspace in the REMAINDER option, you must specify at least two dbspaces.

XPS

Element Purpose Restrictions Syntax
column Column on which to apply the

fragmentation strategy
Must be in the current table and must be of
data type INT or SMALL INT.

Identifier,
p. 4-189

dbslice Dbslice that contains the dbspaces
where the table fragments reside

Must exist when you execute the statement. Identifier,
p.4-189

dbspace Dbspace that contains the table
fragment

Must exist when you execute the statement.
The maximum number of dbspaces is 2048.

Identifier,
p. 4-189

,

dbspaceRANGE

HYBRID ()

Back to FRAGMENT BY Clause
p. 2-238

dbslice

RANGE Method
Clause

REMAINDER IN dbspace

()column IN

()(RANGE) RANGE

Range
Definition
p. 2-245

Range IN
Clause
p. 2-245

HYBRID ()()(RANGE) RANGE

column column

column column
Range

Definition
p. 2-245

Range
Definition
p. 2-245

Range IN
Clause
p. 2-245
2-244 IBM Informix Guide to SQL: Syntax

CREATE TABLE
Range Definition

Use the range definition to specify the minimum and maximum values of the
entire range.

You do not need to specify a minimum value. The minimum and maximum
values define the exact range of values to allocate for each storage space.

Range IN Clause

Use the IN clause to specify the storage spaces in which to distribute the data.

Element Purpose Restrictions Syntax
max_val Maximum value in the

range
Must be an INT or SMALLINT greater than
or equal to the min_val if min_val is supplied.

Literal Number,
p. 4-216

min_val Minimum value in the
range; the default is 0.

Must be an INT or SMALLINT less than or
equal to max_val.

Literal Number,
p. 4-216

Back to RANGE Method Clause
p. 2-244

Range
Definition

min_valMIN

max_val

MAX

Element Purpose Restrictions Syntax
dbslice Dbslice that contains the dbspaces to store table fragments Must exist. Identifier, p.4-189
dbspace Dbspace to store the table fragment Must exist. Identifier, p. 4-189

Range IN
Clause

IN

,

dbslice

REMAINDER IN
,

dbspace()
dbslice

,

dbspace()

Back to RANGE Method Clause
p. 2-244
SQL Statements 2-245

CREATE TABLE
If you specify more than one dbslice, including a remainder dbslice, each
dbslice must contain the same number of dbspaces.

Unless you are specifying the dbspace in the REMAINDER option, the
minimum number of dbspaces that you can specify is two. The maximum
number of dbspaces that you can specify is 2,048.

When you use a range-fragmentation method, the number of integer values
between the minimum and maximum specified values must be equal to or
greater than the number of storage spaces specified so that the database
server can allocate non-overlapping contiguous ranges across the dbspaces.
For example, the following code returns an error, because the allocations for
the range cannot be distributed across all specified dbspaces:

CREATE TABLE Tab1 (Col1 INT...)
FRAGMENT BY RANGE (Col1 MIN 5 MAX 7)

IN db1, db2, db3, db4, db5, db6 -- returns an error

The error for this example occurs because the specified range contains three
values (5, 6, and 7), but six dbspaces are specified; three values cannot be
distributed across six dbspaces.

Using the REMAINDER Keyword

Use the REMAINDER keyword to specify the storage space in which to store
valid values that fall outside the specified expression or expressions.

If you do not specify a remainder and a row is inserted or updated such that
it no longer belongs to any storage space, the database server returns an error.

Restrictions

If you fragment a table with range fragmentation, you cannot perform the
following operations on the table after it is created:

� You cannot change the fragmentation strategy (ALTER FRAGMENT).

� You cannot rename the columns of the table (RENAME COLUMN).

� You cannot alter the table in any way except to change the table type
or to change the lock mode.

That is, the Usage-TYPE options and the Lock Mode clause are the only valid
options of ALTER TABLE for a table that has range fragmentation.
2-246 IBM Informix Guide to SQL: Syntax

CREATE TABLE
Examples

The following examples illustrate range fragmentation in its simple and
hybrid forms.

Simple Range-Fragmentation Strategy

The following example shows a simple range-fragmentation strategy:

CREATE TABLE Tab1 (Col1 INT...)
FRAGMENT BY RANGE (Col1 MIN 100 MAX 200)

IN db1, db2, db3, db4

In this example, the database server fragments the table according to the
following allocations.

The previous table shows allocations that can also be made with an
expression-based fragmentation scheme:

... FRAGMENT BY EXPRESSION
Col1 >= 100 AND Col1 < 125 IN db1
Col1 >= 125 AND Col1 < 150 IN db2
Col1 >= 150 AND Col1 < 175 IN db3
Col1 >= 175 AND Col1 < 200 IN db4

As the examples show, the range-fragmentation example requires much less
coding to achieve the same results. The same is true for the hybrid-range
fragmentation compared to hybrid-expression fragmentation methods.

Column-Major-Range Allocation

The following example demonstrates the syntax for column-major-range
allocation, a hybrid-range fragmentation strategy:

CREATE TABLE tab2 (col2 INT, colx char (5))
FRAGMENT BY HYBRID

(RANGE (col2 MIN 100 MAX 220))
RANGE (col2)
IN dbsl1, dbsl2, dbsl3

Storage Space Holds Values Storage Space Holds Values

db1 100 <= Col1 < 125 db3 150 <= Col1 < 175

db2 125 <= Col1 < 150 db4 175 <= Col1 < 200
SQL Statements 2-247

CREATE TABLE
This type of fragmentation creates a distribution across dbslices and provides
a further subdivision within each dbslice (across the dbspaces in the dbslice)
such that when a query specifies a value for col1 (for example, WHERE col1

= 127), the query uniquely identifies a dbspace. To take advantage of the
additional subdivision, you must specify more than one dbslice.

Row-Major-Range Allocation

The following example demonstrates the syntax for row-major-range
allocation, a hybrid-range fragmentation strategy:

CREATE TABLE tab3 (col3 INT, colx char (5))
FRAGMENT BY HYBRID

(RANGE (col3))
RANGE (col3 MIN 100 MAX 220)
IN dbsl1, dbsl2, dbsl3

This fragmentation strategy is the counterpart to the column-major-range
allocation. The advantages and restrictions are equivalent.

Independent-Range Allocation

The following example demonstrates the syntax for an independent-range
allocation, a hybrid-range fragmentation strategy:

CREATE TABLE tab4 (col4 INT, colx char (5), col5 INT)
FRAGMENT BY HYBRID

(RANGE (col4 MIN 100 MAX 200))
RANGE (col5 MIN 500 MAX 800)
IN dbsl1, dbsl2, dbsl3

In this type of range fragmentation, the two columns are independent, and
therefore the range allocations are independent. The range allocation for a
dbspace on both columns is the conjunctive combination of the range
allocation on each of the two independent columns.

This type of fragmentation does not provide subdivisions within either
column. With this type of fragmentation, a query that specifies values for
both columns (such as, WHERE col4 = 128 and col5 = 650) uniquely
identifies the dbspace at the intersection of the two dbslices identified by the
columns independently.
2-248 IBM Informix Guide to SQL: Syntax

CREATE TABLE
PUT Clause
Use the PUT clause to specify the storage spaces and characteristics for each
column that will contain smart large objects.

The column cannot be in the form column.field. That is, the smart large object
that you are storing cannot be one field of a ROW type.

A smart large object is contained in a single sbspace. The SBSPACENAME
configuration parameter specifies the system default in which smart large
objects are created unless you specify another area.

IDS

Element Purpose Restrictions Syntax
column Column to store in sbspace Must contain a user-defined, complex,

BLOB, or CLOB data type.
Identifier, p. 4-189

kbytes Number of kilobytes to allocate
for the extent size

Must be an integer value. Literal Number,
p. 4-216

sbspace Name of an area of storage Must exist. Identifier, p. 4-189

INcolumnPUT

EXTENT SIZE kbytes

KEEP ACCESS TIME

sbspace

PUT Clause

(

,

)

()

,

NO KEEP ACCESS TIME

HIGH INTEG

Back to Storage Options
p. 2-236

,

LOG

NO LOG
SQL Statements 2-249

CREATE TABLE
Specifying more than one sbspace distributes the smart large objects in a
round-robin distribution scheme, so that the number of smart large objects in
each space is approximately equal. The syscolattribs system catalog table
contains one row for each sbspace that you specify in the PUT clause.

When you fragment smart large objects across different sbspaces you can
work with smaller sbspaces. If you limit the size of an sbspace, backup and
archive operations can perform more quickly. For an example that uses the
PUT clause, see “Alternative to Full Logging” on page 2-251.

Six storage options are available to store BLOB and CLOB data:

If a user-defined or complex data type contains more than one large object,
the specified large-object storage options apply to all large objects in the type
unless the storage options are overridden when the large object is created.

Important: The PUT clause does not affect the storage of simple-large-object data
types (BYTE and TEXT). For information on how to store BYTE and TEXT data, see
“Large-Object Data Types” on page 4-57.

Option Purpose

EXTENT SIZE Specifies how many kilobytes in a smart-large-object extent.
The database server might round the EXTENT SIZE up so that the
extents are multiples of the sbspace page size.

HIGH INTEG Produces user-data pages that contain a page header and a page
trailer to detect incomplete writes and data corruption.
This is the default data-integrity behavior.

KEEP ACCESS
TIME

Records, in the smart-large-object metadata, the system time
when the smart large object was last read or written.

LOG Follows the logging procedure used with the current database log
for the corresponding smart large object. This option can generate
large amounts of log traffic and increase the risk of filling the
logical log. (See also “Alternative to Full Logging” on page 2-251.)

NO KEEP
ACCESS TIME

Does not record the system time when the smart large object was
last read or written. This provides better performance than the
KEEP ACCESS TIME option, and is the default tracking behavior.

NO LOG Turns off logging. This option is the default behavior.
2-250 IBM Informix Guide to SQL: Syntax

CREATE TABLE
Alternative to Full Logging

Instead of full logging, you can turn off logging when you load the smart
large object initially and then turn logging back on once the object is loaded.

Use the NO LOG option to turn off logging. If you use NO LOG, you can
restore the smart-large-object metadata later to a state in which no structural
inconsistencies exist. In most cases, no transaction inconsistencies will exist
either, but that result is not guaranteed.

The following statement creates the greek table. Data values for the table are
fragmented into the dbs1 and dbs2 dbspaces. The PUT clause assigns the
smart-large-object data in the gamma and delta columns to the sb1 and sb2
sbspaces, respectively. The TEXT data values in the eps column are assigned
to the blb1 blobspace.

CREATE TABLE greek
(alpha INTEGER,
beta VARCHAR(150),
gamma CLOB,
delta BLOB,
eps TEXT IN blb1)
FRAGMENT BY EXPRESSION
alpha <= 5 IN dbs1, alpha > 5 IN dbs2
PUT gamma IN (sb1), delta IN (sb2)

EXTENT SIZE Options
The EXTENT SIZE options can define the size of extents assigned to the table.

Element Purpose Restrictions Syntax
first_kilobytes Length in kilobytes of the first

extent for the table; default is 16.
Must return a positive number;
maximum is the chunk size.

Expression, p.4-67

next_kilobytes Length in kilobytes of each
subsequent extent; default is 16.

Must return a positive number;
maximum is the chunk size.

Expression, p.4-67

EXTENT SIZE Options

NEXT SIZE next_kilobytesEXTENT SIZE first_kilobytes

Back to Storage Options
p. 2-236
SQL Statements 2-251

CREATE TABLE
The minimum length of first_kilobytes (and of next_kilobytes) is four times the
disk-page size on your system. For example, if you have a 2-kilobyte page
system, the minimum length is 8 kilobytes.

The next example specifies a first extent of 20 kilobytes and allows the rest of
the extents to use the default size:

CREATE TABLE emp_info
(
f_name CHAR(20),
l_name CHAR(20),
position CHAR(20),
start_date DATETIME YEAR TO DAY,
comments VARCHAR(255)
)

EXTENT SIZE 20

If you need to revise the extent sizes of a table, you can modify the extent and
next-extent sizes in the generated schema files of an unloaded table. For
example, to make a database more efficient, you might unload a table, modify
the extent sizes in the schema files, and then create and load a new table. For
information about how to optimize extents, see your Administrator’s Guide.

USING Access-Method Clause
The USING Access Method clause can specify an access method.

IDS

Element Purpose Restrictions Syntax
config_keyword Configuration keyword associated

with the specified access method
No more than 18 bytes. The
access method must exist.

Literal keyword

config_value Value of the specified configuration
keyword

No more than 236 bytes. Must be
defined by the access method.

Quoted String,
p. 4-243

USING Access-Method
Clause

=

USING

' config_value '

,

config_ keyword

,

)(

Specific
Name

p. 4-274

Back to Options
p. 2-235
2-252 IBM Informix Guide to SQL: Syntax

CREATE TABLE
A primary-access method is a set of routines that perform all of the opera-
tions you need to make a table available to a database server, such as create,
drop, insert, delete, update, and scan. The database server provides a built-in
primary-access method.

You store and manage a virtual table either outside of the database server in
an extspace or inside the database server in an sbspace. (See “Storage
Options” on page 2-236.) You can access a virtual table with SQL statements.
Access to a virtual table requires a user-defined primary-access method.

DataBlade modules can provide other primary-access methods to access
virtual tables. When you access a virtual table, the database server calls the
routines associated with that access method rather than the built-in table
routines. For more information on these other primary-access methods, refer
to your access-method documentation.

You can retrieve a list of configuration values for an access method from a
table descriptor (mi_am_table_desc) using the MI_TAB_AMPARAM macro.
Not all keywords require configuration values.

The access method must already exist. For example, if an access method
called textfile exists, you can specify it with the following syntax:

CREATE TABLE mybook
(...)
IN myextspace
USING textfile (DELIMITER=':')

LOCK MODE Options
Use the LOCK MODE options to specify the locking granularity of the table.

You can subsequently change the lock mode of the table with the ALTER
TABLE statement.

LOCK MODE
Options

Back to Options
p. 2-235

LOCK MODE

TABLEXPS

ROW

PAGE
SQL Statements 2-253

CREATE TABLE
The following table describes the locking-granularity options available.

Precedence and Default Behavior

In Dynamic Server, you do not have to specify the lock mode each time you
create a new table. You can globally set the locking granularity of all new
tables in the following environments:

� Database session of an individual user

You can set the IFX_DEF_TABLE_LOCKMODE environment variable
to specify the lock mode of new tables during your current session.

� Database server (all sessions on the database server)

If you are a DBA, you can set the DEF_TABLE_LOCKMODE configura-
tion parameter in the ONCONFIG file to determine the lock mode of
all new tables in the database server.

If you are not a DBA, you can set the IFX_DEF_TABLE_LOCKMODE
environment variable for the database server, before you run oninit,
to determine the lock mode of all new tables in the database server.

Granularity Effect

PAGE Obtains and releases one lock on a whole page of rows

This is the default locking granularity. Page-level locking is especially
useful when you know that the rows are grouped into pages in the
same order that you are using to process all the rows. For example, if
you are processing the contents of a table in the same order as its
cluster index, page locking is appropriate.

ROW Obtains and releases one lock per row

Row-level locking provides the highest level of concurrency. If you
are using many rows at one time, however, the lock-management
overhead can become significant. You can also exceed the maximum
number of locks available, depending on the configuration of your
database server.

TABLE
(XPS only)

Places a lock on the entire table

This type of lock reduces update concurrency compared to row and
page locks. A table lock reduces the lock-management overhead for
the table With table locking, multiple read-only transactions can still
access the table.

IDS
2-254 IBM Informix Guide to SQL: Syntax

CREATE TABLE
The LOCK MODE setting in a CREATE TABLE statement takes precedence over
the settings of the IFX_DEF_TABLE_LOCKMODE environment variable and
the DEF_TABLE_LOCKMODE configuration parameter.

If CREATE TABLE specifies no LOCK MODE setting, the default mode depends
on the setting of the IFX_DEF_TABLE_LOCKMODE environment variable or
the DEF_TABLE_LOCKMODE configuration parameter. For information about
IFX_DEF_TABLE_LOCKMODE, refer to the IBM Informix Guide to SQL:
Reference. For information about the DEF_TABLES_LOCKMODE configuration
parameter, refer to the Administrator’s Reference.

OF TYPE Clause
Use the OF TYPE clause to create a typed table for an object-relational database.
A typed table is a table that has a named-row type assigned to it.

If you use the UNDER clause, the row_type must be derived from the row type
of the supertable. A type hierarchy must already exist in which the named-row
type of the new table is a subtype of the named-row type of the supertable.

Jagged rows are any set rows from a table hierarchy in which the number of
columns is not fixed among the typed tables within the hierarchy. Some APIs,
such as ESQL/C and JDBC, do not support queries that return jagged rows.

IDS

Element Purpose Restrictions Syntax
 row_type Name of the row type on which

this table is based
Must be a named-row data type
that exists in the database.

Data Type, p. 4-49;
Identifier, p. 4-189

supertable Name of the table from which
this table inherits its properties

Must already exist as a typed
table.

Database Object
Name, p. 4-46

OF TYPE Clause

OF TYPE row_type ()

UNDER supertable

Options
p. 2-235

Back to CREATE TABLE
p. 2-214

,
,

Field Definition
p. 2-201

,
Multiple-Column

Constraint Format
p. 2-231
SQL Statements 2-255

CREATE TABLE
When you create a typed table, the columns of the table are not named in the
CREATE TABLE statement. Instead, the columns are specified when you create
the row type. The columns of a typed table correspond to the fields of the
named-row type. You cannot add additional columns to a typed table.

For example, suppose you create a named-row type, student_t, as follows:

CREATE ROW TYPE student_t
(namee VARCHAR(30),
 average REAL,
 birthdate DATETIME YEAR TO DAY)

If a table is assigned the type student_t, the table is a typed table whose
columns are of the same name and data type (and in the same order) as the
fields of the type student_t. For example, the following CREATE TABLE
statement creates a typed table named students whose type is student_t:

CREATE TABLE students OF TYPE student_t

The students table has the following columns:

name VARCHAR(30)
average REAL
birthdate DATETIME

For more information about ROW types, refer to the CREATE ROW TYPE
statement on page 2-198.

Using Large-Object Data in Typed Tables

Use the BLOB or CLOB instead of BYTE or TEXT data types when you create a
typed table that contains columns for large objects. For backward compati-
bility, you can create a named-row type that contains BYTE or TEXT fields and
use that type to re-create an existing (untyped) table as a typed table.
Although you can use a row type that contains BYTE or TEXT fields to create
a typed table, you cannot use such a row type as a column. You can use a row
type that contains BLOB or CLOB fields in both typed tables and columns.

Using the UNDER Clause

Use the UNDER clause to specify inheritance (that is, define the table as a
subtable). The subtable inherits properties from the supertable which it is
under. In addition, you can define new properties specific to the subtable.
2-256 IBM Informix Guide to SQL: Syntax

CREATE TABLE
Continuing the example shown in “OF TYPE Clause” on page 2-255, the
following statements create+ a typed table, grad_students, that inherits all of
the columns of the students table, but also has columns for adviser and
field_of_study that correspond to fields in the grad_student_t row type.

CREATE ROW TYPE grad_student_t
(adviser CHAR(25),
 field_of_study CHAR(40)) UNDER student_t;

CREATE TABLE grad_students OF TYPE grad_student_t UNDER students;

When you use the UNDER clause, the subtable inherits these properties:

� All columns in the supertable

� All constraints defined on the supertable

� All indexes defined on the supertable

� Referential integrity

� The access method

� The storage option (including fragmentation strategy)

If a subtable defines no fragments, but if its supertable has fragments
defined, then the subtable inherits the fragments of the supertable.

� All triggers defined on the supertable

Tip: Any heritable attributes that are added to a supertable after subtables have been
created will automatically be inherited by existing subtables. You do not need to add
all heritable attributes to a supertable before you create its subtables.

Restrictions on Table Hierarchies

Inheritance occurs in one direction only, namely from supertable to subtable.
Properties of subtables are not inherited by supertables. The section “System
Catalog Information” on page 2-259 lists the inherited database objects for
which the system catalog maintains no information regarding subtables.

No two tables in a table hierarchy can have the same data type. For example,
the final line of the next code example is invalid, because the tables tab2 and
tab3 cannot have the same row type (rowtype2):

create row type rowtype1 (...);
create row type rowtype2 (...) under rowtype1;
create table tab1 of type rowtype1;
create table tab2 of type rowtype2 under tab1;

--Invalid -->create table tab3 of type rowtype2 under tab1;
SQL Statements 2-257

CREATE TABLE
Privileges on Tables

The privileges on a table describe both who can access the information in the
table and who can create new tables. For more information about privileges,
see “GRANT” on page 2-459.

In an ANSI-compliant database, no default table-level privileges exist. You
must grant these privileges explicitly. ♦

When set to yes, the environment variable NODEFDAC prevents default
privileges from being granted to PUBLIC on a new table in a database that is
not ANSI compliant.

For information about how to prevent privileges from being granted to
PUBLIC, see the NODEFDAC environment variable in the IBM Informix Guide
to SQL: Reference. For additional information about privileges, see the
IBM Informix Guide to SQL: Tutorial.

Default Index Creation Strategy for Constraints

When you create a table with unique or primary-key constraints, the
database server creates an internal, unique, ascending index for each
constraint.

When you create a table with a referential constraint, the database server
creates an internal, nonunique, ascending index for each column specified in
the referential constraint.

The database server stores this internal index in the same location that the
table uses. If you fragment the table, the database server stores the index
fragments in the same dbspaces as the table fragments or in some cases, the
database dbspace.

If you require an index fragmentation strategy that is independent of the
underlying table fragmentation, do not include the constraint when you
create the table. Instead, use the CREATE INDEX statement to create a unique
index with the desired fragmentation strategy. Then use the ALTER TABLE
statement to add the constraint. The new constraint uses the previously
defined index.

Important: In a database without logging, detached checking is the only kind of
constraint checking available. Detached checking means that constraint checking is
performed on a row-by-row basis.

ANSI
2-258 IBM Informix Guide to SQL: Syntax

CREATE TABLE
System Catalog Information

When you create a table, the database server adds basic information about
the table to the systables system catalog table and column information to
syscolumns system catalog table. The sysblobs system catalog table contains
information about the location of dbspaces and simple large objects. The
syschunks table in the sysmaster database contains information about the
location of smart large objects.

The systabauth, syscolauth, sysfragauth, sysprocauth, sysusers, and sysxt-
dtypeauth tables contain information about the privileges that various
CREATE TABLE options require. The systables, sysxtdtypes, and sysinherits
system catalog tables provide information about table types.

Constraints, indexes, and triggers are recorded in the system catalog for the
supertable, but not for subtables that inherit them. Fragmentation infor-
mation, however, is recorded for both supertables and subtables. For more
information about inheritance, refer to the IBM Informix Guide to SQL: Tutorial.

Related Information
Related statements: ALTER TABLE, CREATE INDEX, CREATE DATABASE,
CREATE EXTERNAL TABLE, CREATE ROW TYPE, CREATE Temporary TABLE,
DROP TABLE, SET Database Object Mode, and SET Transaction Mode

See also SET Default Table Type and SET Default Table Space. ♦

For discussions of database and table creation, including discussions on data
types, data-integrity constraints, and tables in hierarchies, see the
IBM Informix Database Design and Implementation Guide.

For information about the system catalog tables that store information about
objects in the database, see the IBM Informix Guide to SQL: Reference.

For information about the syschunks table (in the sysmaster database) that
contains information about the location of smart large objects, see your
Administrator’s Reference.

XPS
SQL Statements 2-259

CREATE TEMP TABLE
CREATE TEMP TABLE
Use the CREATE TEMP TABLE statement to create a temporary table in the
current database.

Syntax

Usage
The CREATE TEMP TABLE statement is a special case of the CREATE
Temporary TABLE statement. The CREATE Temporary TABLE statement can
also create a SCRATCH table in an Extended Parallel Server database.

The syntax of the CREATE TEMP TABLE statement is a subset of the syntax that
the CREATE TABLE statement supports.

For the complete syntax and semantics of the CREATE TEMP TABLE
statement, see “CREATE Temporary TABLE” on page 2-261.

Element Purpose Restrictions Syntax
table Name declared here for a table Must be unique in database. Database Object Name, p. 4-46

()

,

table

,

,

Column Definition
p. 2-263

Multiple-Column
Constraint Format

p. 2-264
WITH NO LOG

CREATE

Options
p. 2-266

Table
DefinitionTEMP TABLE

Table Definition
2-260 IBM Informix Guide to SQL: Syntax

CREATE Temporary TABLE
CREATE Temporary TABLE
Use the CREATE Temporary TABLE statement to create a temporary table in
the current database.

Syntax

Usage
You must have the Connect privilege on the database to create a temporary
table. The temporary table is visible only to the user who created it.

In DB-Access, using the CREATE Temporary TABLE statement outside the
CREATE SCHEMA statement generates warnings if you set DBANSIWARN. ♦

The CREATE Temporary TABLE statement generates warnings if you use the
-ansi flag or set the DBANSIWARN environment variable. ♦

Using the TEMP Option

Once you create a TEMP table, you can build indexes on the table.

Element Purpose Restrictions Syntax
table Name declared here for a table Must be unique in session. Database Object Name, p. 4-46

()

,

table

,

,

Column Definition
p. 2-263

Multiple-Column
Constraint Format

p. 2-264
WITH NO LOG

CREATE

Options
p. 2-266

SCRATCH

Table
Definition

TEMP TABLE

Table Definition

XPS

DB

E/C
SQL Statements 2-261

CREATE Temporary TABLE
Using the SCRATCH Option

Use the SCRATCH keyword to reduce the overhead of transaction logging. A
scratch table is a nonlogging temporary table that does not support indexes
or referential constraints. A scratch table is identical to a TEMP table created
with the WITH NO LOG option. Operations on scratch tables are not included
in transaction-log operations.

Naming a Temporary Table

A temporary table is associated with a session, not with a database. When
you create a temporary table, you cannot create another temporary table with
the same name (even for another database) until you drop the first temporary
table or end the session. The name must be different from the name of any
other table, view, or synonym in the current database, but it need not be
different from the temporary table names that are used by other users.

In an ANSI-compliant database, the combination owner.table must be unique
in the database. ♦

Using the WITH NO LOG Option

You should use a SCRATCH table rather than a TEMP…WITH NO LOG table.
The behavior of a temporary table that you create with the WITH NO LOG
option is the same as that of a SCRATCH table. ♦

Use the WITH NO LOG option to reduce the overhead of transaction logging.
If you specify WITH NO LOG, operations on the temporary table are not
included in the transaction-log operations. The WITH NO LOG option is
required on all temporary tables that you create in temporary dbspaces.

If you use the WITH NO LOG option in a database that does not use logging,
the WITH NO LOG keywords are ignored. If your database does not have
logging, any table behaves as if the WITH NO LOG option were specified. ♦

Once you turn off logging on a temporary table, you cannot turn it back on;
a temporary table is, therefore, always logged or never logged.

The following temporary table is not logged in a database that uses logging:

CREATE TEMP TABLE tab2 (fname CHAR(15), lname CHAR(15))
WITH NO LOG

XPS

ANSI

IDS
2-262 IBM Informix Guide to SQL: Syntax

CREATE Temporary TABLE
Column Definition

Use the column definition portion of CREATE Temporary TABLE to list the
name, data type, default value, and constraints of a single column.

This portion of the CREATE Temporary TABLE statement is almost identical to
the corresponding section in the CREATE TABLE statement. The difference is
that fewer types of constraints are allowed in a temporary table.

Single-Column Constraint Format

Use the single-column constraint format to create one or more data-integrity
constraints for a single column in a temporary table.

This is a subset of the syntax of “Single-Column Constraint Format” on
page 2-220 that the CREATE TABLE statement supports.

Element Purpose Restrictions Syntax

column Name of a column in the table Must be unique in its table. Identifier, p. 4-189

DEFAULT
Clause
p. 2-217

Column
Definition

Back to CREATE Temporary TABLE
p. 2-261

column Data Type
p. 4-49

Single-Column
Constraint Format

p. 2-263

PRIMARY KEY
CHECK Clause

p. 2-227

Single-Column
Constraint Format

DISTINCT

UNIQUE

Back to Column Definition
p. 2-263

NOT NULL +
SQL Statements 2-263

CREATE Temporary TABLE
You can find detailed discussions of specific constraints in these sections.

Constraints that you define on temporary tables are always enabled.

Multiple-Column Constraint Format

Use the multiple-column constraint format to associate one or more columns
with a constraint. This alternative to the single-column constraint format
allows you to associate multiple columns with a constraint.

This is a subset of the syntax of “Multiple-Column Constraint Format” on
page 2-231 that the CREATE TABLE statement supports.

Constraint For more information, see

CHECK “CHECK Clause” on page 2-227

DISTINCT “Using the UNIQUE or DISTINCT Constraints” on page 2-221

NOT NULL “Using the NOT NULL Constraint” on page 2-221

PRIMARY KEY “Using the PRIMARY KEY Constraint” on page 2-222

UNIQUE “Using the UNIQUE or DISTINCT Constraints” on page 2-221

Element Purpose Restrictions Syntax
column Name of the column or columns

on which the constraint is placed
Must be unique in a table, but the same name
can be in different tables of the same database.

Identifier,
p. 4-189

Multiple-Column
Constraint Format

Back to CREATE Temporary TABLE
p. 2-261

PRIMARY KEY

CHECK Clause
p. 2-227

DISTINCT

UNIQUE

+

,

column()
2-264 IBM Informix Guide to SQL: Syntax

CREATE Temporary TABLE
This alternative to the single-column constraint segment of CREATE
Temporary TABLE can associate multiple columns with a constraint.
Constraints that you define on temporary tables are always enabled.

The following table indicates where you can find detailed discussions of
specific constraints.

Options

The CREATE Temporary TABLE Options let you specify storage locations,
locking modes, and user-defined access methods. You cannot specify initial
and next extents for a temporary table. Extents for a temporary table are
always eight pages.

This is a subset of the syntax of “Options” on page 2-235 that the CREATE
TABLE statement supports.

Constraint For more information, see For an example, see

CHECK “CHECK Clause” on
page 2-227

“Defining Check Constraints
Across Columns” on page 2-233

DISTINCT “Using the UNIQUE or
DISTINCT Constraints” on
page 2-221

“Examples of the Multiple-
Column Constraint Format” on
page 2-233

PRIMARY KEY “Using the PRIMARY KEY
Constraint” on page 2-222

“Defining Composite Primary
and Foreign Keys” on page 2-234

UNIQUE “Using the UNIQUE or
DISTINCT Constraints” on
page 2-221

“Examples of the Multiple-
Column Constraint Format” on
page 2-233

Options Back to CREATE Temporary TABLE
p. 2-261

IDS +

WITH CRCOLS

Storage
Options
p. 2-266

LOCK MODE
Options
p. 2-253

USING
Access-Method

Clause
p. 2-252
SQL Statements 2-265

CREATE Temporary TABLE
Storage Options

Use the storage-option portion of the CREATE Temporary Table statement to
specify the distribution scheme for the table.

If you are using Extended Parallel Server, you can fragment a temporary
table across multiple dbspaces that different coservers manage. ♦

To create a fragmented, unique index on a temporary table, you must specify
an explicit expression-based distribution scheme for a temporary table in the
CREATE Temporary TABLE statement.

Where Temporary Tables are Stored

The distribution scheme that you specify with the CREATE Temporary TABLE
statement (either with the IN clause or the FRAGMENT BY clause) takes prece-
dence over the information that the DBSPACETEMP environment variable
and the DBSPACETEMP configuration parameter specify.

XPS

Element Purpose Restrictions Syntax
dbspace Dbspace in which to store the table. Default is the

dbspace that stores the current database
Must already exist Identifier, p. 4-189

dbslice Name of the dbslice in which to store the table Must already exist Identifier, p. 4-189
extspace Name that onspaces assigned to a storage area

outside the database server
Must already exist See documentation

for access method.

PUT Clause
p. 2-249

extspace

dbspace

Storage
Options

dbsliceXPS

FRAGMENT BY Clause
p. 2-238

IDS

Back to Options
p. 2-265

IN IDS+

EXTENT
SIZE

Options
p. 2-251

XPS
2-266 IBM Informix Guide to SQL: Syntax

CREATE Temporary TABLE
For temporary tables for which you do not specify an explicit distribution
scheme, each temporary table that you create round-robins to a dbspace that
the DBSPACETEMP environment variable or the DBSPACETEMP configu-
ration parameter specifies if the environment variable is not set.

For example, if you create three temporary tables, the first one goes into the
dbspace called tempspc1, the second one goes into tempspc2, and the third
one goes into tempspc3.

This behavior also applies to temporary tables that you create with
SELECT...INTO TEMP or SELECT...INTO SCRATCH.

For more information on the DBSPACETEMP environment variable, see the
IBM Informix Guide to SQL: Reference. For more information on the DBSPAC-
ETEMP configuration parameter, see your Administrator’s Reference.

The following example shows how to insert data into a temporary table
called result_tmp to output to a file the results of a user-defined function
(f_one) that returns multiple rows:

CREATE TEMP TABLE result_tmp(...);
INSERT INTO result_tmp EXECUTE FUNCTION f_one();
UNLOAD TO 'file' SELECT * FROM temp1;

In Extended Parallel Server, to re-create this example, use the CREATE
PROCEDURE statement instead of the CREATE FUNCTION statement. ♦

Differences between Temporary and Permanent Tables

Compared to permanent tables, temporary tables differ in these ways:

� They have fewer types of constraints available.

� They have fewer options that you can specify.

� They are not preserved.

For more information, see “Duration of Temporary Tables” on
page 2-268.

� They are not visible to other users or sessions.

� They do not appear in the system catalogs.

You can use the following data definition statements on a temporary table
from a secondary coserver: CREATE Temporary TABLE, CREATE INDEX,
CREATE SCHEMA, DROP TABLE, and DROP INDEX. ♦

XPS

XPS
SQL Statements 2-267

CREATE Temporary TABLE
The INFO statement and the Info Menu option of DB-Access cannot reference
temporary tables. ♦

Duration of Temporary Tables

The duration of a temporary table depends on whether or not it is logged.

A logged temporary table exists until one of the following situations occurs:

� The application disconnects.

� A DROP TABLE statement is issued on the temporary table.

� The database is closed.

When any of these events occur, the temporary table is deleted.

Nonlogging temporary tables include tables that were created using the
WITH NO LOG option of CREATE TEMP TABLE and all SCRATCH tables.

A nonlogging temporary table exists until one of the following events occurs:

� The application disconnects.

� A DROP TABLE statement is issued on the temporary table.

Because these tables do not disappear when the database is closed, you can
use a nonlogging temporary table to transfer data from one database to
another while the application remains connected.

Related Information
Related statements: ALTER TABLE, CREATE TABLE, CREATE DATABASE, DROP
TABLE, and SELECT

See also SET Default Table Type and SET Default Table Space. ♦

For additional information about the DBANSIWARN and DBSPACETEMP
environment variables, refer to the IBM Informix Guide to SQL: Reference.

For additional information about the ONCONFIG parameter DBSPACETEMP,
see your Administrator’s Guide.

DB

XPS
2-268 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
CREATE TRIGGER
Use the CREATE TRIGGER statement to define a trigger on a table or on a view.

Syntax

Usage
A trigger, unless disabled, automatically executes a specified set of SQL state-
ments, called the trigger action, when a specified trigger event occurs.

The trigger event that initiates the trigger action can be an INSERT, DELETE,
UPDATE, or (for triggers on IDS tables only) a SELECT statement. The event
must specify the table or view on which the trigger is defined. (SELECT or
UPDATE events for triggers on tables can also specify one or more columns.)

You can use the CREATE TRIGGER statement in two distinct ways:

� Define a trigger on a table in the current database.

� Define an INSTEAD OF trigger on a view in the current database. ♦

Any SQL statement that is an instance of the trigger event is called a triggering
statement. When the event occurs, triggers defined on tables and triggers
defined on views differ in whether the triggering statement is executed:

� For tables, the trigger event and the trigger action both execute.

� For views, only the trigger action executes, instead of the event. ♦

+

Element Purpose Restrictions Syntax
trigger Name that you declare here

for a new trigger
Must be unique among the names of
triggers in the current database

Identifier, p. 4-189

Trigger on a View
p. 2-270

trigger Trigger on a Table
p. 2-270

IDS

CREATE TRIGGER

DISABLED

ENABLED

INSTEAD OFOwner Name
p. 4-234

IDS

IDS

IDS
SQL Statements 2-269

CREATE TRIGGER
Defining a Trigger Event and Action
This syntax defines the event and action of a trigger on a table or on a view:

Element Purpose Restrictions Syntax
column The name of a column in the triggering table. Must exist Identifier, p. 4-189
new, old Old or new correlation name that you declare here. Unique in this trigger Identifier, p. 4-189
table,
view

Name or synonym of the triggering table or view.
The table or view can include an owner. qualifier..

Must exist in the
current database

Database Object
Name, p. 4-46

ON

Action Clause
p. 2-281table

table

DELETE

table

Correlated
Table
Action

p. 2-288

Back to CREATE TRIGGER
p. 2-269

Trigger on a Table

SELECTIDS

,

column

ON

OF

,

column

UPDATE OF

INSERT ON

NEW
Declaration

p. 2-285

ON

OLD
Declaration

p. 2-284

Action Clause
p. 2-281

OLD
Declaration

p. 2-284

REFERENCING

INSERT ON view

view

view

DELETE ON

Back to CREATE TRIGGER
p. 2-269

UPDATE ON

AS

old

INSTEAD OF
Triggered Action

p. 2-306

REFERENCING NEW

AS

new

FOR EACH ROW

AS

OLD

Trigger on a View

REFERENCING NEW

new

IDS

IDS
2-270 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
The left-hand portion of this diagram (including the table or view) defines the
trigger event (sometimes called the triggering event). The rest of the diagram
declares correlation names and defines the trigger action (sometimes called
the triggered action). (For triggers on tables, see “Action Clause” on page 2-281
and “Correlated Table Action” on page 2-288. For INSTEAD OF triggers on
views, see “The Action Clause of INSTEAD OF Triggers” on page 2-306.)

This diagram simplifies the syntax of correlation names in UPDATE events.
You can declare either the old or the new name first, and the REFERENCING
keyword is not repeated if both an old and a new correlation are declared.

Rules for Triggers

To create a trigger on a table or a view, you must own the table or view, or
have DBA status. For the relationship between privileges of the trigger owner
and of other users, see “Privileges to Execute Trigger Actions” on page 2-298.

The table on which you create a trigger must exist in the current database.
You cannot create a trigger on any of the following types of tables:

� a diagnostics table, a violations table, or a table in another database

� a raw table, a temporary table, or a system catalog table

You cannot create a trigger on a static table nor on a scratch table. When you
create a trigger on an operational table, the table cannot use light appends.
For more information on light appends, see the Administrator’s Guide. ♦

You must observe these rules when you define an INSTEAD OF trigger:

� You can define an INSTEAD OF trigger only on a view, not on a table.

� The view must be local to the current database.

� The view cannot be an updatable view WITH CHECK OPTION.

� No WHEN clause nor SELECT event is valid in an INSTEAD OF trigger,

� No BEFORE or AFTER action is valid in an INSTEAD OF trigger.

� No OF column clause is valid in an INSTEAD OF UPDATE trigger.

� Any INSTEAD OF triggered action must specify FOR EACH ROW.

� The triggered action cannot include EXECUTE PROCEDURE INTO.

If multiple tables underly the view, only its owner can create the trigger, but
that owner can grant DML privileges on the view to other users. ♦

XPS

IDS
SQL Statements 2-271

CREATE TRIGGER
In DB-Access, if you want to define a trigger as part of a schema, place the
CREATE TRIGGER statement inside a CREATE SCHEMA statement. ♦

If you are embedding the CREATE TRIGGER statement in an ESQL/C program,
you cannot use a host variable in the trigger definition. ♦

You can use the DROP TRIGGER statement to remove an existing trigger.
If you use DROP TABLE or DROP VIEW to remove triggering tables or views
from the database, all triggers on those tables or views are also dropped.

Trigger Modes
You can set a trigger mode to enable or disable a trigger when you create it.

You can create triggers on tables or on views in ENABLED or DISABLED mode.

� When a trigger is created in ENABLED mode, the database server
executes the trigger action when the trigger event is encountered.
(If you specify no mode, ENABLED is the default mode.)

� When a trigger is created in DISABLED mode, the trigger event does
not cause execution of the trigger action. In effect, the database server
ignores the trigger and its action, even though the systriggers system
catalog table maintains information about the disabled trigger.

You can use the SET TRIGGERS option of the Database Object Mode statement
to set an existing trigger to the ENABLED or DISABLED mode.

After a DISABLED trigger is enabled by the SET TRIGGERS statement, the
database server can execute the trigger action when the trigger event is
encountered, but the trigger does not perform retroactively. The database
server does not attempt to execute the trigger for rows that were inserted,
deleted, or updated while the trigger was disabled and before it was enabled.

Warning: Because the behavior of a trigger varies according to its ENABLED or
DISABLED mode, be cautious about disabling a trigger. If disabling a trigger will
eventually destroy the semantic integrity of the database, do not disable the trigger.

DB

E/C

IDS

Trigger Modes Back to CREATE TRIGGER
p. 2-269DISABLED

ENABLED
2-272 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
Triggers and SPL Routines

You cannot define a trigger in an SPL routine that is called inside a DML (data
manipulation language) statement. Thus, the following statement returns an
error if the sp_items procedure includes the CREATE TRIGGER statement:

INSERT INTO items EXECUTE PROCEDURE sp_items

(The DML statements are listed in “Data Manipulation Statements” on
page 1-10.) SPL variables are not valid in CREATE TRIGGER statements. An
SPL routine called by a trigger cannot perform INSERT, DELETE, or UPDATE
operations on any table or view that is not local to the current database.
See also “Rules for SPL Routines” on page 2-298 for additional restrictions on
SPL routines that are invoked in triggered actions.

Trigger Events
The trigger event specifies what DML statements can initiate the trigger. The
event can be an INSERT, DELETE, or UPDATE operation on the table or view, or
(for IDS tables only) a SELECT operation that manipulates the table. You must
specify exactly one trigger event. Any SQL statement that is an instance of the
trigger event is called a triggering statement.

For each table, you can define only one trigger that is activated by an INSERT
statement and only one trigger that is activated by a DELETE statement. The
same table, however, can have multiple triggers that are activated by UPDATE
or SELECT statements, provided that each trigger specifies a disjunct set of
columns in defining the UPDATE or SELECT event on the table.

The INSTEAD OF trigger replaces the trigger event with a triggered action.
A view can have no more than one INSTEAD OF trigger defined for each type
of event (INSERT, DELETE, or UPDATE). You can, however, define a trigger on
one or more other views, each with its own INSTEAD OF trigger. ♦

You cannot specify a DELETE event if the triggering table has a referential
constraint that specifies ON DELETE CASCADE.

You are responsible for guaranteeing that the triggering statement returns the
same result with and without the trigger action. See also the sections “Action
Clause” on page 2-281 and “Triggered-Action List” on page 2-288.

A triggering statement from an external database server can activate the
trigger.

IDS
SQL Statements 2-273

CREATE TRIGGER
As the following example shows, an insert trigger on newtab, managed by
dbserver1, is activated by an INSERT statement from dbserver2. The trigger
executes as if the insert originated on dbserver1.

-- Trigger on stores_demo@dbserver1:newtab
CREATE TRIGGER ins_tr INSERT ON newtab

REFERENCING new AS post_ins
FOR EACH ROW(EXECUTE PROCEDURE nt_pct (post_ins.mc));

-- Triggering statement from dbserver2
INSERT INTO stores_demo@dbserver1:newtab

SELECT item_num, order_num, quantity, stock_num, manu_code,
total_price FROM items;

Trigger Events with Cursors

For triggers on tables, if the triggering statement uses a cursor, each part of
the trigger action (including BEFORE, FOR EACH ROW, and AFTER, if these are
specified for the trigger) is activated for each row that the cursor processes.

This behavior differs from what occurs when a triggering statement does not
use a cursor and updates multiple rows. In this case, any BEFORE and AFTER
triggered actions execute only once, but the FOR EACH ROW action list is
executed for each row processed by the triggering statement. For additional
information about trigger actions, see “Action Clause” on page 2-281.

Privileges on the Trigger Event

You must have appropriate Insert, Delete, Update, or Select privilege on the
triggering table or view to execute a triggering INSERT, DELETE, UPDATE, or
SELECT statement as the trigger event. The triggering statement might still
fail, however, if you do not also have the privileges necessary to execute one
of the SQL statements in the trigger action. When the trigger actions are
executed, the database server checks your privileges for each SQL statement
in the trigger definition, as if the statement were being executed indepen-
dently of the trigger. For information on the privileges needed to execute the
trigger actions, see “Privileges to Execute Trigger Actions” on page 2-298.

Performance Impact of Triggers

The INSERT, DELETE, UPDATE, and SELECT statements that initiate triggers
might appear to execute slowly because they activate additional SQL state-
ments, and the user might not know that other actions are occurring.
2-274 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
The execution time for a trigger event depends on the complexity of the
trigger action and whether it initiates other triggers. The time increases as the
number of cascading triggers increases. For more information on triggers
that initiate other triggers, see “Cascading Triggers” on page 2-300.

INSERT Events and DELETE Events
INSERT and DELETE events on tables are defined by those keywords and by
the ON table clause, using the following syntax.

An insert trigger is activated when an INSERT statement includes the
specified table (or a synonym for table) in its INTO clause. Similarly, a delete
trigger is activated when a DELETE statement includes the specified table (or
a synonym for table) in its FROM clause.

For triggers on views, the INSTEAD OF keywords must immediately precede
the INSERT, DELETE, or UPDATE keyword that specifies the type of trigger
event, and the name or synonym of a view (rather than of a table) must follow
the ON keyword. The section “INSTEAD OF Triggers on Views” on
page 2-305 describes s the syntax for defining INSTEAD OF trigger events. ♦

No more than one insert trigger, and no more than one delete trigger, can be
defined on the same table.

If you define a trigger on a child table within a table hierarchy, and the child
table supports cascading deletes, then a DELETE operation on the parent table
activates the delete trigger on the child table.

See also the section “Re-Entrancy of Triggers” on page 2-294 for information
about dependencies and restrictions on the actions of insert triggers and
delete triggers.

Element Purpose Restrictions Syntax
table Name of the triggering table Must exist in the database Identifier, p. 4-189

INSERT

INSERT or DELETE
Event on a Table

Back to Trigger on a Table
p. 2-270

tableON

DELETE

IDS
SQL Statements 2-275

CREATE TRIGGER
UPDATE Event
UPDATE events (and SELECT events) can include an optional column list.

If you define more than one update trigger on the same table, the column list
is required, and the column lists for each trigger must be mutually exclusive.
If you omit the OF column list, updating any column activates the trigger.

The OF column clause is not valid for an INSTEAD OF trigger on a view. ♦

An UPDATE on the triggering table can activate the trigger in two cases:

� The UPDATE statement references any column in the column list.

� The UPDATE event definition has no OF column list specification.

Whether it updates one column or more than one column from the column
list, a triggering UPDATE statement activates the update trigger only once.

Defining Multiple Update Triggers

Multiple update triggers on the same table cannot include the same columns.
In the following example, trig3 is not valid on the items table because its
column list includes stock_num, which is a triggering column in trig1.

CREATE TRIGGER trig1 UPDATE OF item_num, stock_num ON items
REFERENCING OLD AS pre NEW AS post
FOR EACH ROW(EXECUTE PROCEDURE proc1());

CREATE TRIGGER trig2 UPDATE OF manu_code ON items
BEFORE(EXECUTE PROCEDURE proc2());

-- Illegal trigger: stock_num occurs in trig1
CREATE TRIGGER trig3 UPDATE OF order_num, stock_num ON items

BEFORE(EXECUTE PROCEDURE proc3());

Element Purpose Restrictions Syntax
column Column that activates the trigger Must exist in the triggering table Identifier, p. 4-189
table Name of the triggering table Must exist in the database Identifier, p. 4-189

,

columnUPDATE

UPDATE
Event

OF tableON

Back to Trigger on a Table
p. 2-270

IDS
2-276 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
When an UPDATE statement updates multiple columns that have different
triggers, the column numbers of the triggering columns determine the order
of trigger execution. Execution begins with the smallest triggering column
number and proceeds in order to the largest triggering column number. The
following example shows that table taba has four columns (a, b, c, d):

CREATE TABLE taba (a int, b int, c int, d int)

Define trig1 as an update on columns a and c, and define trig2 as an update
on columns b and d, as the following example shows:

CREATE TRIGGER trig1 UPDATE OF a, c ON taba
AFTER (UPDATE tabb SET y = y + 1);

CREATE TRIGGER trig2 UPDATE OF b, d ON taba
AFTER (UPDATE tabb SET z = z + 1);

The following example shows a triggering statement for the update trigger:

UPDATE taba SET (b, c) = (b + 1, c + 1)

Then trig1 for columns a and c executes first, and trig2 for columns b and d
executes next. In this case, the smallest column number in the two triggers is
column 1 (a), and the next is column 2 (b).

SELECT Event
DELETE and INSERT events are defined by those keywords (and the ON table
clause), but SELECT and UPDATE events also support an optional column list.

If you define more than one select trigger on the same table, the column list is
required, and the column lists for each trigger must be mutually exclusive.

IDS

Element Purpose Restrictions Syntax
column Column that activates the trigger Must exist in the triggering table Identifier, p. 4-189
table Name of the triggering table Must exist in the database Identifier, p. 4-189

,

columnSELECT

SELECT
Event

OF tableON

Back to Trigger on a Table
p. 2-270
SQL Statements 2-277

CREATE TRIGGER
A SELECT on the triggering table can activate the trigger in two cases:

� The SELECT statement references any column in the column list.

� The SELECT event definition has no OF column list specification.

(Sections that follow, however, describe additional circumstances that can
affect whether or not a SELECT statement activates a select trigger.)

Whether it specifies one column or more than one column from the column
list, a triggering SELECT statement activates the select trigger only once.

The action of a select trigger cannot include an UPDATE, INSERT, or DELETE
on the triggering table. The action of a select trigger can include UPDATE,
INSERT, and DELETE actions on tables other than the triggering table.
The following example defines a select trigger on one column of a table:

CREATE TRIGGER mytrig
SELECT OF cola ON mytab REFERENCING OLD AS pre
FOR EACH ROW (INSERT INTO newtab('for each action'))

You cannot specify a SELECT event for an INSTEAD OF trigger on a view.

Circumstances When a Select Trigger is Activated

A query on the triggering table activates a select trigger in these cases:

� The SELECT statement is a standalone SELECT statement.

� The SELECT statement occurs within a UDR called in a select list.

� The SELECT statement is a subquery in a select list.

� The SELECT statement occurs within a UDR called by EXECUTE
PROCEDURE or EXECUTE FUNCTION.

� The SELECT statement selects data from a supertable in a table
hierarchy. In this case the SELECT statement activates select triggers
for the supertable and all the subtables in the hierarchy. ♦

For information on SELECT statements that do not activate a select trigger, see
“Circumstances When a Select Trigger is Not Activated” on page 2-280.

Standalone SELECT Statements

A select trigger is activated if the triggering column appears in the select list
of the projection clause of a standalone SELECT statement.
2-278 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
For example, if a select trigger is defined to execute whenever column col1 of
table tab1 is selected, then both of the following standalone SELECT state-
ments activate the select trigger:

SELECT * FROM tab1;
SELECT col1 FROM tab1;

SELECT Statements Within UDRs in the Select List

A select trigger is activated by a UDR if the UDR contains a SELECT statement
within its statement block, and the UDR also appears in the select list of the
projection clause of a SELECT statement. For example, assume that a UDR
named my_rtn contains this SELECT statement in its statement block:

SELECT col1 FROM tab1

Now suppose that the following SELECT statement invokes the my_rtn UDR
in its select list:

SELECT my_rtn() FROM tab2

This SELECT statement activates the select trigger defined on column col1 of
table tab1 when the my_rtn UDR is executed.

UDRs That EXECUTE PROCEDURE and EXECUTE FUNCTION Call

A select trigger is activated by a UDR if the UDR contains a SELECT statement
within its statement block and the UDR is called by an EXECUTE PROCEDURE
or (for IDS triggers only) the EXECUTE FUNCTION statement. For example,
assume that the user-defined procedure named my_rtn contains the
following SELECT statement in its statement block:

SELECT col1 FROM tab1

Now suppose that the following statement invokes the my_rtn procedure:

EXECUTE PROCEDURE my_rtn()

This statement activates the select trigger defined on column col1 of table
tab1 when the SELECT statement within the statement block is executed.

Subqueries in the Select List

A select trigger can be activated by a subquery that appears in the select list
of the projection clause of a SELECT statement.
SQL Statements 2-279

CREATE TRIGGER
For example, if a select trigger was defined on col1 of tab1, the subquery in
the following SELECT statement activates that trigger:

SELECT (SELECT col1 FROM tab1 WHERE col1=1), colx, col y FROM tabz

Select Triggers in Table Hierarchies

A subtable inherits the select triggers that are defined on its supertable. When
you select from a supertable, the SELECT statement activates the select
triggers on the supertable and the inherited select triggers on the subtables in
the table hierarchy.

For example, assume that table tab1 is the supertable and table tab2 is the
subtable in a table hierarchy. If the select trigger trig1 is defined on table tab1,
a SELECT statement on table tab1 activates the select trigger trig1 for the rows
in table tab1 and the inherited select trigger trig1 for the rows in table tab2.

If you add a select trigger to a subtable, this select trigger can override the
select trigger that the subtable inherits from its supertable. For example, if the
select trigger trig1 is defined on column col1 in supertable tab1, the subtable
tab2 inherits this trigger. But if you define a select trigger named trig2 on
column col1 in subtable tab2, and a SELECT statement selects from col1 in
supertable tab1, this SELECT statement activates trigger trig1 for the rows in
table tab1 and trigger trig2 (not trigger trig1) for the rows in table tab2. In
other words, the trigger that you add to the subtable overrides the trigger
that the subtable inherits from the supertable.

Circumstances When a Select Trigger is Not Activated

A SELECT statement on the triggering table does not activate a select trigger
in certain circumstances:

� If a subquery or UDR that contains the triggering SELECT statement
appears in any clause of a SELECT statement other than the select list,
the select trigger is not activated.

For example, if the subquery or UDR appears in the WHERE clause or
HAVING clause of a SELECT statement, the SELECT statement within
the subquery or UDR does not activate the select trigger.

� If the trigger action of a select trigger calls a UDR that includes
a triggering SELECT statement, the select trigger on the SELECT in the
UDR is not activated. Cascading select triggers are not supported.

IDS

IDS
2-280 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
� If a SELECT statement contains a built-in aggregate or user-defined
aggregate in its select list, the select trigger is not activated. For
example, the following SELECT statement does not activate a select
trigger defined on col1 of tab1:

SELECT MIN(col1) FROM tab1

� A SELECT statement that includes the UNION or UNION ALL
operator does not activate a select trigger.

� The SELECT clause of INSERT does not activate a select trigger.

� If the select list of a SELECT includes the DISTINCT or UNIQUE
keywords, the SELECT statement does not activate a select trigger.

� Select triggers are not supported on scroll cursors.

� If a SELECT statement refers to a remote triggering table, the select
trigger is not activated on the remote database server.

� Columns in the ORDER BY list of a query activate no select triggers
(nor any other triggers) unless also listed in the Projection clause. ♦

Action Clause

The action clause defines trigger actions and can specify when they occur.
You must define at least one trigger action, using the keywords BEFORE, FOR
EACH ROW, or AFTER to indicate when the action occurs relative to execution
of the triggering statement.

You can specify actions for any or all of these three options on a single trigger,
but any BEFORE action list must be specified first, and any AFTER action list
must be specified last. For more information on the action clause when a
REFERENCING clause is also specified, see “Correlated Table Action” on
page 2-288.

BEFORE

Action
Clause

AFTER
Triggered
Action List
p. 2-288

Back to Trigger on a Table
p. 2-270

Triggered
Action List
p. 2-288

FOR EACH ROW
Triggered
Action List
p. 2-288
SQL Statements 2-281

CREATE TRIGGER
BEFORE Actions

The list of BEFORE trigger actions execute once before the triggering
statement executes. Even if the triggering statement does not process
any rows, the database server executes the BEFORE trigger actions.

FOR EACH ROW Actions

After a row of the triggering table is processed, the database server executes
all of the statements of the FOR EACH ROW trigger action list; this cycle is
repeated for every row that the triggering statement processes. (But if the
triggering statement does not insert, delete, update, or select any rows, the
database server does not execute the FOR EACH ROW trigger actions.)

You cannot define FOR EACH ROW actions on tables that have globally-
detached indexes. ♦

The FOR EACH ROW action list of a select trigger is executed once for each
instance of a row. For example, the same row can appear more than once in
the result of a query joining two tables. For more information on FOR EACH
ROW actions, see “Guaranteeing Row-Order Independence” on page 2-283.♦

AFTER Actions

The specified set of AFTER trigger actions executes once after the action of the
triggering statement is complete. If the triggering statement does not process
any rows, the AFTER trigger actions still execute.

Actions of Multiple Triggers

When an UPDATE statement activates multiple triggers, the trigger actions
merge. Assume that taba has columns a, b, c, and d, as this example shows:

CREATE TABLE taba (a int, b int, c int, d int)

Next, assume that you define trig1 on columns a and c, and trig2 on columns
b and d. If both triggers specify BEFORE, FOR EACH ROW, and AFTER actions,
then the trigger actions are executed in the following order:

1. BEFORE action list for trigger (a, c)

2. BEFORE action list for trigger (b, d)

XPS

IDS
2-282 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
3. FOR EACH ROW action list for trigger (a, c)

4. FOR EACH ROW action list for trigger (b, d)

5. AFTER action list for trigger (a, c)

6. AFTER action list for trigger (b, d)

The database server treats all the triggers that are activated by the same
triggering statement as a single trigger, and the trigger action is the merged-
action list. All the rules that govern a trigger action apply to the merged list
as one list, and no distinction is made between the two original triggers.

Guaranteeing Row-Order Independence

In a FOR EACH ROW triggered-action list, the result might depend on the
order of the rows being processed. You can ensure that the result is
independent of row order by following these suggestions:

� Avoid selecting the triggering table in the FOR EACH ROW section.

If the triggering statement affects multiple rows in the triggering
table, the result of the SELECT statement in the FOR EACH ROW sec-
tion varies as each row is processed. This condition also applies to
any cascading triggers. See “Cascading Triggers” on page 2-300.

� In the FOR EACH ROW section, avoid updating a table with values
derived from the current row of the triggering table.

If the trigger actions modify any row in the table more than once, the
final result for that row depends on the order in which rows from the
triggering table are processed.

� Avoid modifying a table in the FOR EACH ROW section that is
selected by another statement in the same FOR EACH ROW trigger
action, including any cascading trigger actions.

If FOR EACH ROW actions modify a table, the changes might not be complete
when a subsequent action of the trigger refers to the table. In this case, the
result might differ, depending on the order in which rows are processed.

The database server does not enforce rules to prevent these situations
because doing so would restrict the set of tables from which a trigger action
can select. Furthermore, the result of most trigger actions is independent of
row order. Consequently, you are responsible for ensuring that the results of
the trigger actions are independent of row order.
SQL Statements 2-283

CREATE TRIGGER
RERERENCING Clauses
The REFERENCING clause for any event declares a correlation name that can
be used to qualify column values in the triggering table. They enable FOR
EACH ROW actions to reference new values in the result of trigger events.

They also enable FOR EACH ROW actions to reference old column values that
existed in the triggering table prior to modification by trigger events.

REFERENCING Clause for Delete

The correlation is a qualifier for the column value in the triggering table before
the triggering statement executed. The correlation is in scope in the FOR EACH
ROW trigger action list. See “Correlated Table Action” on page 2-288.

To use a correlation name in a trigger action to refer to an old column value,
prefix the column name with the correlation name and a period (.) symbol.
For example, if the NEW correlation name is post, refer to the new value for
the column fname as post.fname.

If the trigger event is a DELETE statement, using the NEW correlation name as
a qualifier causes an error, because the column has no value after the row is
deleted. For the rules that govern the use of correlation names, see “Using
Correlation Names in Triggered Actions” on page 2-292.

You can use the REFERENCING clause for Delete only if you define a FOR
EACH ROW trigger action.

The OLD correlation value cannot be a BYTE or TEXT value. That is, it cannot
refer to a BYTE or TEXT column. ♦

Element Purpose Restrictions Syntax
correlation Name that you declare here for old column

value for use within the trigger action
Must be unique within this
CREATE TRIGGER statement.

Identifier,
p. 4-189

REFERENCING
Clause for Delete

Back to Trigger on a Table
p. 2-270

REFERENCING OLD correlation

AS

XPS
2-284 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
REFERENCING Clause for Insert

The correlation is a name for the new column value after the triggering
statement has executed. Its scope of reference is only the FOR EACH ROW
trigger action list; see “Correlated Table Action” on page 2-288. To use the
correlation name, precede the column name with the correlation name,
followed by a period (.) symbol. Thus, if the NEW correlation name is post,
refer to the old value for the column fname as post.fname.

If the trigger event is an INSERT statement, using the OLD correlation name as
a qualifier causes an error, because no value exists before the row is inserted.
For the rules that govern how to use correlation names, see “Using Corre-
lation Names in Triggered Actions” on page 2-292. You can use the INSERT
REFERENCING clause only if you define a FOR EACH ROW trigger action.

The following example illustrates use of the INSERT REFERENCING clause.
This example inserts a row into backup_table1 for every row that is inserted
into table1. The values that are inserted into col1 and col2 of backup_table1
are an exact copy of the values that were just inserted into table1.

CREATE TABLE table1 (col1 INT, col2 INT);
CREATE TABLE backup_table1 (col1 INT, col2 INT);
CREATE TRIGGER before_trig

INSERT ON table1 REFERENCING NEW AS new
FOR EACH ROW
(
INSERT INTO backup_table1 (col1, col2)
VALUES (new.col1, new.col2)
);

As the preceding example shows, the INSERT REFERENCING clause allows
you to refer to data values produced by the trigger action.

Element Purpose Restrictions Syntax
correlation Name that you declare here for a new column

value for use within the trigger action
Must be unique within this
CREATE TRIGGER statement.

Identifier,
p. 4-189

REFERENCING NEW correlation

REFERENCING
Clause for Insert

AS

Back to Trigger on a Table
p. 2-270
SQL Statements 2-285

CREATE TRIGGER
REFERENCING Clause for Update

The OLD correlation is the name of the value of the column in the triggering
table before execution of the triggering statement; the NEW correlation
identifies the corresponding value after the triggering statement executes.

The scope of reference of the correlation names that you declare here is only
within the FOR EACH ROW trigger action list. See “Correlated Table Action”
on page 2-288.

To refer to an old or new column value, prefix the column name with the
correlation name and a period (.) symbol. For example, if the NEW correlation
name is post, you can refer to the new value in column fname as post.fname.

If the trigger event is an UPDATE statement, you can define both OLD and
NEW correlation names to refer to column values before and after the
triggering UPDATE statement. For rules that govern the use of correlation
names, see “Using Correlation Names in Triggered Actions” on page 2-292.

You can use the UPDATE REFERENCING clause only if you define a FOR EACH
ROW trigger action.

The OLD correlation value cannot be a BYTE or TEXT value. That is, it cannot
refer to a BYTE or TEXT column. ♦

Element Purpose Restrictions Syntax
correlation Name that you declare here for old or new

column value for use within the trigger action
Must be unique within this
CREATE TRIGGER statement.

Identifier,
p. 4-189

REFERENCING
Clause for Update

REFERENCING

AS

OLD correlation

NEW1

1

Back to Trigger on a Table
p. 2-270

XPS
2-286 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
REFERENCING Clause for Select

This clause has the same syntax as the “REFERENCING Clause for Delete”
on page 2-284. The scope of reference of the correlation name that you declare
here is only within the FOR EACH ROW trigger action list. See “Correlated
Table Action” on page 2-288.

You use the correlation name to refer to an OLD column value by preceding
the column name with the correlation name and a period (.) symbol. For
example, if the OLD correlation name is pre, you can refer to the old value for
the column fname as pre.fname.

If the trigger event is a SELECT statement, using the NEW correlation name as
a qualifier causes an error because the column does not have a NEW value
after the column is selected. For the rules that govern the use of correlation
names, see “Using Correlation Names in Triggered Actions” on page 2-292.

You can use the SELECT REFERENCING clause only if you define a FOR EACH
ROW trigger action.

IDS

Element Purpose Restrictions Syntax
correlation Name that you declare here for old column

value for use within the trigger action
Must be unique within this
CREATE TRIGGER statement.

Identifier,
p. 4-189

REFERENCING
Clause for Select

Back to Trigger on a Table
p. 2-270

REFERENCING OLD correlation

AS
SQL Statements 2-287

CREATE TRIGGER
Correlated Table Action

If the CREATE TRIGGER statement contains an INSERT REFERENCING clause,
a DELETE REFERENCING clause, an UPDATE REFERENCING clause, or (for
Dynamic Server only) a SELECT REFERENCING clause, you must include a
FOR EACH ROW triggered-action list in the action clause. You can also include
BEFORE and AFTER triggered-action lists, but they are optional.

For information on the BEFORE, FOR EACH ROW, and AFTER triggered-action
lists, see “Action Clause” on page 2-281.

You cannot have FOR EACH ROW actions on tables that have globally-
detached indexes. ♦

Triggered-Action List

Triggered-
Action List
p. 2-288

BEFORE

FOR EACH ROW
Triggered-
Action List
p. 2-288

AFTER
Triggered-
Action List
p. 2-288

Correlated Table
Action

Back to CREATE TRIGGER
p. 2-269

XPS

,

Condition
p. 4-24WHEN

INSERT Statement
p. 2-489

UPDATE Statement
p. 2-762

EXECUTE
PROCEDURE

Statement
p. 2-414

Triggered
Action List

,

()

()

Back to Action Clause p. 2-281
Back to Correlated Table Action p. 2-288

DELETE Statement
p. 2-323

EXECUTE FUNCTION
Statement
p. 2-404

IDS
2-288 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
For a trigger on a table, the trigger action consists of an optional WHEN
condition and the action statements. You can specify a triggered-action list
for each WHEN clause, or you can specify a single list (of one or more trigger
actions) if you include no WHEN clause.

Database objects that are referenced explicitly in the trigger action or in the
definition of the trigger event, such as tables, columns, and UDRs, must exist
when the CREATE TRIGGER statement defines the new trigger.

Warning: When you specify a date expression in the WHEN condition or in an action
statement, make sure to specify 4 digits instead of 2 digits for the year. For more about
abbreviated years, see the description of DBCENTURY in the “IBM Informix Guide to
SQL: Reference,” which also describes how the behavior of some database objects can
be affected by environment variable settings. Like fragmentation expressions, check
constraints, and UDRs, triggers are stored in the system catalog with the creation-
time settings of environment variables that can affect the evaluation of expressions
like the WHEN(condition).The database server ignores any subsequent changes to
those settings when evaluating expressions in those database objects.

WHEN Condition

The WHEN condition makes the triggered action dependent on the outcome
of a test. When you include a WHEN condition in a triggered action, the state-
ments in the triggered action list execute only if the condition evaluates to
true. If the WHEN condition evaluates to false or unknown, then the state-
ments in the triggered action list are not executed.

If the triggered action is in a FOR EACH ROW section, its condition is evaluated
for each row. For example, the triggered action in the following trigger
executes only if the condition in the WHEN clause is true:

CREATE TRIGGER up_price
UPDATE OF unit_price ON stock
REFERENCING OLD AS pre NEW AS post
FOR EACH ROW WHEN(post.unit_price > pre.unit_price * 2)
(INSERT INTO warn_tab VALUES(pre.stock_num, pre.order_num,

pre.unit_price, post.unit_price, CURRENT))

An SPL routine that executes inside the WHEN condition carries the same
restrictions as a UDR that is called in a data-manipulation statement.That is,
the SPL routine cannot contain certain SQL statements. For information on
which statements are restricted, see “Restrictions on SPL Routines in Data-
Manipulation Statements” on page 4-279. ♦
SQL Statements 2-289

CREATE TRIGGER
Action Statements

The triggered-action statements can be INSERT, DELETE, UPDATE, EXECUTE
FUNCTION, or EXECUTE PROCEDURE statements. If the action list contains
multiple statements, and the WHEN condition is satisfied (or is absent), then
these statements execute in the order in which they appear in the list.

UDRs as Triggered Actions

User-defined functions and procedures can be triggered actions.

Use the EXECUTE FUNCTION statement to call any user-defined function. Use
the EXECUTE PROCEDURE statement to call any user-defined procedure. ♦

Use the EXECUTE PROCEDURE statement to execute any SPL routine. ♦

For restrictions on using SPL routines as triggered actions, see “Rules for SPL
Routines” on page 298 and “Rules for Triggers” on page 2-271.

Achieving a Consistent Result

To guarantee that the triggering statement returns the same result with and
without the triggered actions, make sure that the triggered actions in the
BEFORE and FOR EACH ROW sections do not modify any table referenced in
the following clauses:

� WHERE clause

� SET clause in the UPDATE statement

� SELECT clause

� EXECUTE PROCEDURE clause or EXECUTE FUNCTION clause in a
multiple-row INSERT statement

Using Reserved Words

If you use the INSERT, DELETE, UPDATE, or EXECUTE reserved words as an
identifier in any of the following clauses inside a triggered action list, you
must qualify them by the owner name, the table name, or both:

� FROM clause of a SELECT statement

� INTO clause of the EXECUTE PROCEDURE or EXECUTE FUNCTION
statement

IDS

XPS
2-290 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
� GROUP BY clause

� SET clause of the UPDATE statement

You get a syntax error if these keywords are not qualified when you use these
clauses inside a triggered action.

If you use the keyword as a column name, it must be qualified by the table
name; for example, table.update. If both the table name and the column
name are keywords, they must be qualified by the owner name (for example,
owner.insert.update). If the owner name, table name, and column name are
all keywords, the owner name must be in quotes; for example,
'delete'.insert.update. (These are general rules regarding reserved words as
identifiers, rather than special cases for triggers. Your code will be easier to
read and to maintain if you avoid using the keywords of SQL as identifiers.)

The only exception is when these keywords are the first table or column name
in the list, and you do not have to qualify them. For example, delete in the
following statement does not need to be qualified because it is the first
column listed in the INTO clause:

CREATE TRIGGER t1 UPDATE OF b ON tab1
FOR EACH ROW (EXECUTE PROCEDURE p2() INTO delete, d)

The following statements show examples in which you must qualify the
column name or the table name:

� FROM clause of a SELECT statement
CREATE TRIGGER t1 INSERT ON tab1

BEFORE (INSERT INTO tab2 SELECT * FROM tab3,
'owner1'.update)

� INTO clause of an EXECUTE PROCEDURE statement
CREATE TRIGGER t3 UPDATE OF b ON tab1

FOR EACH ROW (EXECUTE PROCEDURE p2() INTO
d, tab1.delete)

(Note that an INSTEAD OF trigger on a view cannot include the
EXECUTE PROCEDURE INTO statement among its trigger actions.) ♦

� GROUP BY clause of a SELECT statement
CREATE TRIGGER t4 DELETE ON tab1

BEFORE (INSERT INTO tab3 SELECT deptno, SUM(exp)
FROM budget GROUP BY deptno, budget.update)

� SET clause of an UPDATE statement
CREATE TRIGGER t2 UPDATE OF a ON tab1

BEFORE (UPDATE tab2 SET a = 10, tab2.insert = 5)

IDS
SQL Statements 2-291

CREATE TRIGGER
Using Correlation Names in Triggered Actions
These rules apply when you use correlation names in triggered actions:

� You can use the correlation names for the old and new column values
in SQL statements of the FOR EACH ROW triggered-action list and in
the WHEN condition.

� The old and new correlation names refer to all rows affected by the
triggering statement.

� You cannot use the correlation name to qualify a column name in the
GROUP BY, the SET, or the COUNT DISTINCT clause.

� The scope of reference of the correlation names is the entire trigger
definition. This scope is statically determined, meaning that it is
limited to the trigger definition; it does not encompass cascading
triggers or columns that are qualified by a table name in a UDR that
is a triggered action.

When to Use Correlation Names

In SQL statements of the FOR EACH ROW list, you must qualify all references
to columns in the triggering table with either the old or new correlation
name, unless the statement is valid independent of the triggered action.

In other words, if a column name inside a FOR EACH ROW triggered action
list is not qualified by a correlation name, even if it is qualified by the
triggering table name, it is interpreted as if the statement is independent of
the triggered action. No special effort is made to search the definition of the
triggering table for the non-qualified column name.

For example, assume that the following DELETE statement is a triggered
action inside the FOR EACH ROW section of a trigger:

DELETE FROM tab1 WHERE col_c = col_c2

For the statement to be valid, both col_c and col_c2 must be columns from
tab1. If col_c2 is intended to be a correlation reference to a column in the
triggering table, it must be qualified by either the old or the new correlation
name. If col_c2 is not a column in tab1 and is not qualified by either the old
or new correlation name, you get an error.

In a statement that is valid independent of the triggered action, a column
name with no correlation qualifier refers to the current value in the database.
2-292 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
In the triggered action for trigger t1 in the next example, mgr in the WHERE
clause of the correlated subquery is an unqualified column in the triggering
table. In this case, mgr refers to the current column value in empsal because
the INSERT statement is valid independent of the triggered action.

CREATE DATABASE db1;
CREATE TABLE empsal (empno INT, salary INT, mgr INT);
CREATE TABLE mgr (eno INT, bonus INT);
CREATE TABLE biggap (empno INT, salary INT, mgr INT);

CREATE TRIGGER t1 UPDATE OF salary ON empsal
AFTER (INSERT INTO biggap SELECT * FROM empsal WHERE salary <

(SELECT bonus FROM mgr WHERE eno = mgr));

In a triggered action, an unqualified column name from the triggering table
refers to the current column value, but only when the triggered statement is
valid independent of the triggered action.

Qualified Versus Unqualified Value

This table summarizes the value retrieved when the column name is
qualified by the old OR BY THE NEW correlation name.

Refer to the following key when you read the previous table.

Trigger Event old.col new.col

INSERT No value (error) Inserted value

UPDATE (column updated) Original value Current value (N)

UPDATE (column not updated) Original value Current value (U)

DELETE Original value No value (error)

Term Meaning

Original value Value before the triggering statement

Current value Value after the triggering statement

(N) Cannot be changed by triggered action

(U) Can be updated by triggered statements; value might be different
from original value because of preceding triggered actions
SQL Statements 2-293

CREATE TRIGGER
Outside a FOR EACH ROW triggered-action list, you cannot qualify a column
from the triggering table with either the old correlation name or the new
correlation name; it always refers to the current value in the database.

Statements in the trigger action list use whatever collating order was in effect
when the trigger was created, even if a diferent collation is in effect when the
trigger action is executed. See SET COLLATION for details of how to specify
a collating order different from what DB_LOCALE specifies. ♦

Re-Entrancy of Triggers
In some cases a trigger can be re-entrant. In these cases the triggered action
can reference the triggering table. In other words, both the trigger event and
the triggered action can operate on the same table. The following list summa-
rizes the situations in which triggers can be re-entrant and the situations in
which triggers cannot be re-entrant:

� The trigger action of an update trigger cannot be an INSERT or
DELETE of the table that the trigger event updated.

� Similarly, the trigger action of an update trigger cannot be an
UPDATE of a column that the trigger event updated. (But the trigger
action of an update trigger can update a column that was not
updated by the trigger event.)

For example, assume that the following UPDATE statement, which
updates columns a and b of tab1, is the triggering statement:

UPDATE tab1 SET (a, b) = (a + 1, b + 1)

Now consider the trigger actions in the following example. The first
UPDATE statement is a valid trigger action, but the second one is not,
because it updates column b again.

UPDATE tab1 SET c = c + 1; -- OK
UPDATE tab1 SET b = b + 1; -- INVALID

IDS
2-294 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
� If the trigger has an UPDATE event, the trigger action can be an
EXECUTE PROCEDURE or EXECUTE FUNCTION statement with an
INTO clause that references a column that was updated by the trigger
event or any other column in the triggering table.

When an EXECUTE PROCEDURE or EXECUTE FUNCTION statement is
the trigger action, the INTO clause for an UPDATE trigger is valid only
in FOR EACH ROW trigger actions, and column names that appear in
the INTO clause must be from the triggering table.

This statement illustrates the appropriate use of the INTO clause:
CREATE TRIGGER upd_totpr UPDATE OF quantity ON items

REFERENCING OLD AS pre_upd NEW AS post_upd
FOR EACH ROW(EXECUTE PROCEDURE

calc_totpr(pre_upd.quantity,post_upd.quantity,
pre_upd.total_price) INTO total_price)

The column that follows the INTO keyword must be in the triggering
table, but need not have been updated by the trigger event.

When the INTO clause appears in the EXECUTE PROCEDURE or EXE-
CUTE FUNCTION statement, the database server updates the
specified columns with values returned from the UDR, immediately
upon returning from the UDR.

� If the trigger has an INSERT event, the trigger action cannot be an
INSERT or DELETE statement that references the triggering table.

� If the trigger has an INSERT event, the trigger action can be an
UPDATE statement that references a column in the triggering table.
This column cannot, however, be a column for which a value was
supplied by the trigger event.

If the trigger has an INSERT event, and the trigger action updates the
triggering table, the columns in both statements must be mutually
exclusive. For example, assume that the triggering statement inserts
values for columns cola and colb of table tab1:

INSERT INTO tab1 (cola, colb) VALUES (1,10)

Now consider the following trigger actions. The first UPDATE is
valid, but the second one is not, because it updates column colb even
though the trigger event already supplied a value for column colb:

UPDATE tab1 SET colc=100; --OK
UPDATE tab1 SET colb=100; --INVALID
SQL Statements 2-295

CREATE TRIGGER
� If the trigger has an INSERT event, the trigger action can be an
EXECUTE PROCEDURE or EXECUTE FUNCTION statement with an
INTO clause that references a column that was supplied by the
trigger event or a column that was not supplied by the trigger event.

When an EXECUTE PROCEDURE or EXECUTE FUNCTION statement is
the trigger action, you can specify the INTO clause for an INSERT trig-
ger only when the trigger action occurs in the FOR EACH ROW list.
In this case, the INTO clause can contain only column names from the
triggering table.

The following statement illustrates the valid use of the INTO clause:
CREATE TRIGGER ins_totpr INSERT ON items

REFERENCING NEW AS new_ins
FOR EACH ROW (EXECUTE PROCEDURE calc_totpr

(0, new_ins.quantity, 0) INTO total_price).

The column that follows the INTO keyword can be a column in the
triggering table that was supplied by the trigger event, or a column
in the triggering table that was not supplied by the trigger event.

When the INTO clause appears in the EXECUTE PROCEDURE or (for
Dynamic Server only) the EXECUTE FUNCTION statement, the data-
base server immediately updates the specified columns with values
returned from the UDR.

� If the trigger action is a SELECT statement, the SELECT statement can
reference the triggering table. The SELECT statement can be a trigger
action in the following instances:

❑ The SELECT statement appears in a subquery in the WHEN clause
or in a trigger-action statement.

❑ The trigger action is a UDR, and the SELECT statement appears
inside the UDR.

Re-Entrancy and Cascading Triggers

The cases when a trigger cannot be re-entrant apply recursively to all
cascading triggers, which are considered part of the initial trigger. In
particular, this rule means that a cascading trigger cannot update any
columns in the triggering table that were updated by the original triggering
statement, including any nontriggering columns affected by that statement.
For example, assume this UPDATE statement is the triggering statement:

UPDATE tab1 SET (a, b) = (a + 1, b + 1)
2-296 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
In the cascading triggers of the next example, trig2 fails at runtime because it
references column b, which the triggering UPDATE statement updates:

CREATE TRIGGER trig1 UPDATE OF a ON tab1-- Valid
AFTER (UPDATE tab2 set e = e + 1);

CREATE TRIGGER trig2 UPDATE of e ON tab2-- Invalid
AFTER (UPDATE tab1 set b = b + 1);

Now consider the following SQL statements. When the final UPDATE
statement is executed, column a is updated and the trigger trig1 is activated.

The trigger action again updates column a with an EXECUTE PROCEDURE
INTO statement.

CREATE TABLE temp1 (a int, b int, e int);
INSERT INTO temp1 VALUES (10, 20, 30);

CREATE PROCEDURE proc(val int) RETURNING int,int;
RETURN val+10, val+20;

END PROCEDURE;

CREATE TRIGGER trig1 UPDATE OF a ON temp1
FOR EACH ROW (EXECUTE PROCEDURE proc(50) INTO a, e);

CREATE TRIGGER trig2 UPDATE OF e ON temp1
FOR EACH ROW (EXECUTE PROCEDURE proc(100) INTO a, e);

UPDATE temp1 SET (a,b) = (40,50);

In Extended Parallel Server, to re-create this example, use the CREATE
PROCEDURE statement instead of the CREATE FUNCTION statement. ♦

Several questions arise from this example of cascading triggers. First, should
the update of column a activate trigger trig1 again? The answer is no.
Because the trigger was activated, it is not activated a second time. If the
trigger action is an EXECUTE PROCEDURE INTO or EXECUTE FUNCTION INTO
statement, the only triggers that are activated are those that are defined on
columns that are mutually exclusive from the columns updated until then (in
the cascade of triggers) in that table. Other triggers are ignored.

Another question that arises from the example is whether trigger trig2
should be activated. The answer is yes. The trigger trig2 is defined on
column e. Until now, column e in table temp1 has not been modified. Trigger
trig2 is activated.

XPS
SQL Statements 2-297

CREATE TRIGGER
A final question that arises from the example is whether triggers trig1 and
trig2 should be activated after the trigger action in trig2 is performed. The
answer is no. Neither trigger is activated. By this time columns a and e have
been updated once, and triggers trig1 and trig2 have been executed once. The
database server ignores and does not activate these triggers. For more about
cascading triggers, see “Cascading Triggers” on page 2-300.

As noted earlier, an INSTEAD OF trigger on a view cannot include the
EXECUTE PROCEDURE INTO statement among its trigger actions. In addition,
an error results if two views each have INSERT INSTEAD OF triggers with
actions defined to perform insert operations on the other view. ♦

Rules for SPL Routines
In addition to the rules listed in “Re-Entrancy of Triggers” on page 2-294, the
following rules apply to an SPL routine that is specified as a trigger action:

� The SPL routine cannot be a cursor function (one that returns more
than one row) in a context where only one row is expected.

� You cannot use the old or new correlation name inside the SPL
routine. If you need to use the corresponding values in the routine,
you must pass them as parameters. The routine should be
independent of triggers, and the old or new correlation name does
not have any meaning outside the trigger.

When you use an SPL routine as a trigger action, the database objects that the
routine references are not checked until the routine is executed.

See also the SPL restrictions in “Rules for Triggers” on page 2-271.

Privileges to Execute Trigger Actions
If you are not the trigger owner, but the privileges of the owner include WITH
GRANT OPTION, you inherit the privileges of the owner (with grant option)
in addition to your own privileges for each triggered SQL statement. If the
trigger action is a UDR, you need Execute privilege on the UDR, or the trigger
owner must have Execute privilege with grant option.

IDS
2-298 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
While executing the UDR, you do not carry the privileges of the trigger
owner; instead you receive the privileges granted with the UDR, as follows:

1. Privileges for a DBA UDR

When a UDR is registered with the CREATE DBA keywords and you
are granted the Execute privilege on the UDR, the database server
automatically grants you temporary DBA privileges that are avail-
able only when you are executing the UDR.

2. Privileges for a UDR without DBA restrictions

If the UDR owner has the WITH GRANT OPTION right for the neces-
sary privileges on the underlying database objects, you inherit these
privileges when you are granted the Execute privilege.

For a UDR without DBA restrictions, all non-qualified database objects that
the UDR references are implicitly qualified by the name of the UDR owner.

If the UDR owner has no WITH GRANT OPTION privilege, you have your
original privileges on the underlying database objects when the UDR
executes. For more information on privileges on SPL routines, refer to the
IBM Informix Guide to SQL: Tutorial.

A view that has no INSTEAD OF trigger has only Select (with grant option)
privilege. If an INSTEAD OF trigger is created on it, however, then the view
has Insert (with grant option) privilege during creation of the trigger. The
view owner can now grant only Select and Insert privileges to others. This is
independent of the trigger action. It is not necessary to obtain Execute (with
grant option) privilege on the procedure or function. By default, Execute
(without grant option) privilege is granted on each UDR in the action list.

You can use roles with triggers. Role-related statements (CREATE ROLE,
DROP ROLE, and SET ROLE) and SET SESSION AUTHORIZATION statements
can appear within a UDR that the trigger action invokes. Privileges that
a user has acquired through enabling a role or through a SET SESSION
AUTHORIZATION statement are not relinquished when a trigger is executed.

On a complex view (with columns from more than one table), only the owner
or DBA can create an INSTEAD OF trigger. The owner receives Select privi-
leges when the trigger is created. Only after obtaining the required Execute
privileges can the view owner grant privileges to other users. When the
trigger on the complex view is dropped, all these privileges are revoked ♦

IDS
SQL Statements 2-299

CREATE TRIGGER
Creating a Trigger Action That Anyone Can Use

For a trigger to be executable by anyone who has the privileges to execute the
triggering statement, you can ask the DBA to create a DBA-privileged UDR
and grant you the Execute privilege with the WITH GRANT OPTION right.

You then use the DBA-privileged UDR as the trigger action. Anyone can
execute the trigger action because the DBA-privileged UDR carries the WITH
GRANT OPTION right. When you activate the UDR, the database server
applies privilege-checking rules for a DBA.

Cascading Triggers
In this section and in sections that follow, any references to nonlogging
databases do not apply to Extended Parallel Server. (In Extended Parallel
Server, all databases support transaction logging.) ♦

The database server allows triggers other than select triggers to cascade,
meaning that the trigger actions of one trigger can activate another trigger.
(For further information on the restriction against cascading select triggers,
see “Circumstances When a Select Trigger is Not Activated” on page 2-280.)

The maximum number of triggers in a cascading series is 61; the initial
trigger plus a maximum of 60 cascading triggers. When the number of
cascading triggers in a series exceeds the maximum, the database server
returns error number -748, with the following message:

Exceeded limit on maximum number of cascaded triggers.

XPS
2-300 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
The next example illustrates a series of cascading triggers that enforce refer-
ential integrity on the manufact, stock, and items tables in the stores_demo
database. When a manufacturer is deleted from the manufact table, the first
trigger, del_manu, deletes all the items of that manufacturer from the stock
table. Each DELETE in the stock table activates a second trigger, del_items,
that deletes all items of that manufacturer from the items table. Finally, each
DELETE in the items table triggers SPL routine log_order, creating a record of
any orders in the orders table that can no longer be filled.

CREATE TRIGGER del_manu
DELETE ON manufact REFERENCING OLD AS pre_del
FOR EACH ROW(DELETE FROM stock
WHERE manu_code = pre_del.manu_code);

CREATE TRIGGER del_stock
DELETE ON stock REFERENCING OLD AS pre_del
FOR EACH ROW(DELETE FROM items
WHERE manu_code = pre_del.manu_code);

CREATE TRIGGER del_items
DELETE ON items REFERENCING OLD AS pre_del
FOR EACH ROW(EXECUTE PROCEDURE log_order(pre_del.order_num));

When you are not using logging, referential integrity constraints on both the
manufact and stock tables prohibit the triggers in this example from
executing. When you use logging, however, the triggers execute successfully
because constraint checking is deferred until all the trigger actions are
complete, including the actions of cascading triggers. For more information
about how constraints are handled when triggers execute, see “Constraint
Checking” on page 2-302.

The database server prevents loops of cascading triggers by not allowing you
to modify the triggering table in any cascading trigger action, except an
UPDATE statement that does not modify any column that the triggering
UPDATE statement updated, or an INSERT statement. An INSERT trigger can
define UPDATE trigger actions on the same table.
SQL Statements 2-301

CREATE TRIGGER
Constraint Checking

When you use logging, the database server defers constraint checking on the
triggering statement until after the statements in the triggered-action list
execute. This is equivalent to executing a SET CONSTRAINTS ALL DEFERRED
statement before executing the triggering statement. After the trigger action
is completed, the database server effectively executes a SET CONSTRAINTS
constraint IMMEDIATE statement to check the constraints that were deferred.
This action allows you to write triggers so that the trigger action can resolve
any constraint violations that the triggering statement creates. For more
information, see “SET Database Object Mode” on page 2-652.

Consider the following example, in which the table child has constraint r1,
which references the table parent. You define trigger trig1 and activate it with
an INSERT statement. In the trigger action, trig1 checks to see if parent has a
row with the value of the current cola in child; if not, it inserts it.

CREATE TABLE parent (cola INT PRIMARY KEY);
CREATE TABLE child (cola INT REFERENCES parent CONSTRAINT r1);
CREATE TRIGGER trig1 INSERT ON child

REFERENCING NEW AS new
FOR EACH ROW
WHEN((SELECT COUNT (*) FROM parent

WHERE cola = new.cola) = 0)
-- parent row does not exist

(INSERT INTO parent VALUES (new.cola));

When you insert a row into a table that is the child table in a referential
constraint, the row might not exist in the parent table. The database server
does not immediately return this error on a triggering statement. Instead, it
allows the trigger action to resolve the constraint violation by inserting the
corresponding row into the parent table. As the previous example shows,
you can check within the trigger action to see whether the parent row exists,
and if so, you can provide logic to bypass the INSERT action.

For a database without logging, the database server does not defer constraint
checking on the triggering statement. In this case, the database server
immediately returns an error if the triggering statement violates a constraint.

You cannot use the SET Transaction Mode statement in a trigger action. The
database server checks this restriction when you activate a trigger, because
the statement could occur inside a UDR.

Rows that cause constraint violations might appear in the violations table
even if a later trigger action corrects the violation. ♦

XPS
2-302 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
Preventing Triggers from Overriding Each Other

When you activate multiple triggers with an UPDATE statement, a trigger can
possibly override the changes that an earlier trigger made. If you do not want
the trigger actions to interact, you can split the UPDATE statement into
multiple UPDATE statements, each of which updates an individual column.

As another alternative, you can create a single update trigger for all columns
that require a trigger action. Then, inside the trigger action, you can test for
the column being updated and apply the actions in the desired order. This
approach, however, is different than having the database server apply the
actions of individual triggers, and it has the following disadvantages:

� If the triggering UPDATE statement sets a column to the current
value, you cannot detect the UPDATE, so the trigger action is skipped.
You might wish to execute the trigger action, even though the value
of the column has not changed.

� If the trigger has a BEFORE action, it applies to all columns, because
you cannot yet detect whether a column has changed.

External Tables
The trigger action can affect tables of other database servers. The following
example shows an update trigger on dbserver1, which triggers an UPDATE
to items on dbserver2:

CREATE TRIGGER upd_nt UPDATE ON newtab
REFERENCING new AS post
FOR EACH ROW(UPDATE stores_demo@dbserver2:items

SET quantity = post.qty WHERE stock_num = post.stock
AND manu_code = post.mc)

If, however, a statement from an external database server initiates a trigger
whose action affects tables in an external database, the trigger actions fail.
SQL Statements 2-303

CREATE TRIGGER
For example, the following combination of trigger action and triggering
statement results in an error when the triggering statement executes:

-- Trigger action from dbserver1 to dbserver3:

CREATE TRIGGER upd_nt UPDATE ON newtab
REFERENCING new AS post
FOR EACH ROW(UPDATE stores_demo@dbserver3:items

SET quantity = post.qty WHERE stock_num = post.stock
AND manu_code = post.mc);

-- Triggering statement from dbserver2:

UPDATE stores_demo@dbserver1:newtab
SET qty = qty * 2 WHERE s_num = 5
AND mc = 'ANZ';

Logging and Recovery
You can create triggers for databases, with and without logging. If the trigger
fails in a database that has transaction logging, the triggering statement and
trigger actions are rolled back, as if the actions were an extension of the
triggering statement, but the rest of the transaction is not rolled back.

In a database that does not have transaction logging, however, you cannot
roll back when the triggering statement fails. In this case, you are responsible
for maintaining data integrity in the database. The UPDATE, INSERT, or
DELETE action of the triggering statement occurs before the trigger actions in
the FOR EACH ROW section. If the trigger action fails for a database without
logging, the application must restore the row that was changed by the
triggering statement to its previous value.

If a trigger action calls a UDR, but the UDR terminates in an exception-
handling section, any actions that modify data inside that section are rolled
back with the triggering statement. In the following partial example, when
the exception handler traps an error, it inserts a row into the table logtab:

ON EXCEPTION IN (-201)
INSERT INTO logtab values (errno, errstr);
RAISE EXCEPTION -201

END EXCEPTION

When the RAISE EXCEPTION statement returns the error, however, the
database server rolls back this INSERT because it is part of the trigger actions.
If the UDR is executed outside a trigger action, the INSERT is not rolled back.
2-304 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
The UDR that implements a trigger action cannot contain any BEGIN WORK,
COMMIT WORK, or ROLLBACK WORK statements. If the database has trans-
action logging, you must either begin an explicit transaction before the
triggering statement, or the statement itself must be an implicit transaction.
In any case, no other transaction-related statement is valid inside the UDR.

You can use triggers to enforce referential actions that the database server
does not currently support. In a database without logging, you are respon-
sible for maintaining data integrity when the triggering statement fails.

INSTEAD OF Triggers on Views
Use INSTEAD OF triggers to perform a specified trigger action on a view,
rather than execute the triggering INSERT, DELETE, or UPDATEevent.

IDS

Element Purpose Restrictions Syntax
new Name for old value in view column Must be unique within this statement Identifier, p. 4-189
old Name for new value in view column. Must be unique within this statement Identifier, p. 4-189

REFERENCING

INSERT ON view

view

view

DELETE ON

UPDATE ON

AS

new

old

INSTEAD OF
Triggered Action

p. 2-306

REFERENCING NEW

AS

new

FOR EACH ROW

AS

OLD

Trigger on a View

REFERENCING NEW

CREATE TRIGGER

DISABLED

ENABLEDTrigger on
a Viewtrigger INSTEAD OF
SQL Statements 2-305

CREATE TRIGGER
You can use the trigger action to update the table(s) underlying the view, in
some cases updating an otherwise “non-updatable” view. You can also use
INSTEAD OF triggers to substitute other actions when INSERT, DELETE, or
UPDATE statements reference specific columns within the database.

In the optional REFERENCING clause of an INSTEAD OF UPDATE trigger, the
new correlation name can appear before or after the old correlation name.

The specified view is sometimes called the triggering view. The left-hand
portion of this diagram (including the view specification) defines the trigger
event. The rest of the diagram defines correlation names and the trigger action.

The Action Clause of INSTEAD OF Triggers

When the trigger event for the specified view is encountered, the SQL state-
ments of the trigger action are executed, instead of the triggering statement.
Triggers defined on a view support the following syntax in the action clause.

trigger Name declared here for the trigger Must be unique among the names of
triggers in the database

Database Object
Name, p. 4-46

view Name or synonym of the triggering
view. Can include owner. qualifier.

The view or synonym must exist in
the current database.

Database Object
Name, p. 4-46

Element Purpose Restrictions Syntax

IDS

,

INSERT Statement
p. 2-489

UPDATE Statement
p. 2-762

EXECUTE
PROCEDURE

Statement
p. 2-414

INSTEAD OF
Triggered Action

()

Back to Trigger on a View
p. 2-305

DELETE Statement
p. 2-323

EXECUTE
FUNCTION
Statement
p. 2-404
2-306 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
This is not identical to the syntax of the trigger action for a trigger on a table,
as described in the section “Triggered-Action List” on page 288. Because no
WHEN (condition) is supported, the same trigger action is executed whenever
the INSTEAD OF trigger event is encountered, and only one action list can be
specified, rather than a separate list for each condition.

Rules for INSTEAD OF Triggers on Views

You must be either the owner of the view or have the DBA status to create an
INSTEAD OF trigger on a view. The owner of a simple view (based on one
table) has Insert, Update, ans Delete privileges. For information about the
relationship between the privileges of the trigger owner and the privileges of
other users, see “Privileges to Execute Trigger Actions” on page 2-298.

An INSTEAD OF trigger defined on a view cannot violate the “Rules for
Triggers” on page 2-271, and must observe the following additional rules:

� You can define an INSTEAD OF trigger only on a view, not on a table.

� The view must be local to the current database.

� The view cannot be an updatable view WITH CHECK OPTION.

� No SELECT event or WHEN clause is valid in an INSTEAD OF trigger,

� No BEFORE nor AFTER action is valid in an INSTEAD OF trigger.

� No OF column clause is valid in an INSTEAD OF UPDATE trigger.

� Every INSTEAD OF trigger must specify FOR EACH ROW.

� The triggered action cannot include EXECUTE PROCEDURE INTO.

A view can have no more than one INSTEAD OF trigger defined for each type
of event (INSERT, DELETE, or UPDATE). It is possible, however, to define a
trigger on one or more other views, each with its own INSTEAD OF trigger.

Updating Views

INSERT, DELETE, or UPDATE statements can directly modify a view only if all
of the following are true of the SELECT statement that defines the view:

� All of the columns in the view are from a single table.

� No columns in the projection list are aggregate values.

� No UNIQUE or DISTINCT keyword in the SELECT projection list

IDS
SQL Statements 2-307

CREATE TRIGGER
� No GROUP BY clause nor UNION operator in the view definition

� The query selects no calculated values and no literal values

By using INSTEAD OF triggers, however, you can circumvent these restric-
tions on the view, if the trigger action modifies the base table(s).

Example of an INSTEAD OF Trigger on a View

Suppose that dept and emp are tables that list departments and employees:

CREATE TABLE dept (
deptno INTEGER PRIMARY KEY,
deptname CHAR(20),
manager_num INT

);
CREATE TABLE emp (

empno INTEGER PRIMARY KEY,
empname CHAR(20),
deptno INTEGER REFERENCES dept(deptno),
startdate DATE

);
ALTER TABLE dept ADD CONSTRAINT(FOREIGN KEY (manager_num)

REFERENCES emp(empno));

The next statement defines manager_info, a view of columns in the dept and
emp tables that includes all the managers of each department:

CREATE VIEW manager_info AS
SELECT d.deptno, d.deptname, e.empno, e.empname

FROM emp e, dept d WHERE e.empno = d.manager_num;

The following CREATE TRIGGER statement creates manager_info_insert, an
INSTEAD OF trigger that is designed to insert rows into the dept and emp
tables through the manager_info view:

CREATE TRIGGER manager_info_insert
INSTEAD OF INSERT ON manager_info --defines trigger event

REFERENCING NEW AS n --new manager data
FOR EACH ROW --defines trigger action

(EXECUTE PROCEDURE instab(n.deptno, n.empno));

CREATE PROCEDURE instab (dno INT, eno INT)
INSERT INTO dept(deptno, manager_num) VALUES(dno, eno);
INSERT INTO emp (empno, deptno) VALUES (eno. dno);emp(empno));

END PROCEDURE;
2-308 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER
After the tables, view, trigger, and SPL routine have been created, the
database server treats the following INSERT statement as a triggering event:

INSERT INTO manager_info(deptno, empno) VALUES (08, 4232);

This triggering INSERT statement is not executed, but this event causes
the trigger action to be executed instead, invoking the instab() SPL routine.
The INSERT statements in the SPL routine insert new values into both the emp
and dept base tables of the manager_info view.

Related Information

Related statements: CREATE PROCEDURE, CREATE VIEW, DROP TRIGGER,
EXECUTE PROCEDURE, and SET Database Object Mode

For a task-oriented discussion of triggers, and for examples of INSTEAD OF
DELETE (and UPDATE) triggers on views, see the IBM Informix Guide to SQL:
Tutorial. For performance implications of triggers, see your Performance Guide.
SQL Statements 2-309

CREATE VIEW
CREATE VIEW
Use the CREATE VIEW statement to create a new view that is based on one or
more existing tables and views in the database.

Syntax

Usage
A view is a virtual table, defined by a SELECT statement. Except for the state-
ments in the following list, you can specify the name or synonym of a view
in any SQL statement where the name of a table is syntactically valid:

“Updating Through Views” on page 2-315 prohibits “non-updatable” views
in INSERT, DELETE, or UPDATE statements (where other views are valid).

Element Purpose Restrictions Syntax
column A column in the view See “Naming View Columns” p. 2-313. Identifier, p. 4-189
row_type Named-row type for typed view Must exist before you assign it to a view. Data Type, p. 4-49
view Name that you declare here for

the view
Must be unique among view, table, and
synonym names in the database.

Database Object
Name, p. 4-46

column

CREATE VIEW

)(

,

AS
Subset of
SELECT

Statement
p. 2-312

view

WITH CHECK OPTION

IDS OF TYPE row_type

ALTER FRAGMENT CREATE TRIGGER START VIOLATIONS TABLE

CREATE INDEX RENAME TABLE STOP VIOLATIONS TABLE

CREATE TABLE UPDATE STATISTICS
2-310 IBM Informix Guide to SQL: Syntax

CREATE VIEW
To create a view, you must have the Select privilege on all columns from
which the view is derived.You can query a view as if it were a table, and in
some cases, you can update it as if it were a table; but a view is not a table.

The view consists of the set of rows and columns that the SELECT statement
in the view definition returns each time you refer to the view in a query.

In some cases, the database server merges the SELECT statement of the user
with the SELECT statement defining the view, and executes the combined
statements. In other cases, a query against a view might execute more slowly
than expected, if the complexity of the view definition causes the database
server to create a temporary table (referred to as a “materialized view”).
For more information on materialized views, see the Performance Guide.

The view reflects changes to the underlying tables with one exception. If a
SELECT * specification defines the view, the view has only the columns that
existed in the underlying tables at the time when the view was defined by
CREATE VIEW. Any new columns that are subsequently added to the under-
lying tables with the ALTER TABLE statement do not appear in the view.

The view inherits the data types of the columns in the tables from which the
view is derived. The database server determines data types of virtual
columns from the nature of the expression.

The SELECT statement is stored in the sysviews system catalog table. When
you subsequently refer to a view in another statement, the database server
performs the defining SELECT statement while it executes the new statement.

In DB-Access, if you create a view outside the CREATE SCHEMA statement,
you receive warnings if you use the -ansi flag or set the DBANSIWARN
environment variable. ♦

The following statement creates a view that is based on the person table.
When you create a view like this, which has no OF TYPE clause, the view is
referred to as an untyped view.

CREATE VIEW v1 AS SELECT * FROM person

Typed Views

You can create typed views if you have Usage privileges on the named-ROW
type or if you are its owner or the DBA. If you omit the OF TYPE clause, rows
in the view are considered untyped, and default to an unnamed-ROW type.

DB
SQL Statements 2-311

CREATE VIEW
Typed views, like typed tables, are based on a named-ROW type. Each
column in the view corresponds to a field in the named-ROW type. The
following statement creates a typed view that is based on the table person.

CREATE VIEW v2 OF TYPE person_t AS SELECT * FROM person

To create a typed view, you must include an OF TYPE clause. When you create
a typed view, the named-ROW type that you specify immediately after the OF
TYPE keywords must already exist.

Subset of SELECT Statements Valid in View Definitions

You cannot create a view on a temporary table. The FROM clause of the
SELECT statement cannot contain the name of a temporary table.

If Select privileges are revoked from a user for a table that is referenced in the
SELECT statement defining a view that the same user owns, then that view is
dropped, unless it also includes columns from tables in another database.

You cannot create a view on typed tables (including any table that is part of
a table hierarchy) in a remote database. ♦

Do not use display labels in the select list of the projection clause. Display
labels in the select list are interpreted as column names.

The SELECT statement in CREATE VIEW cannot include the FIRST, the INTO
TEMP, or the ORDER BY clauses. For complete information about SELECT
statement syntax and usage, see “SELECT” on page 2-581.

Union Views

A view that contains a UNION or UNION ALL operator in its SELECT
statement is known as a union view. Certain restrictions apply to union views:

� If a CREATE VIEW statement defines a union view, you cannot specify
the WITH CHECK OPTION keywords in the CREATE VIEW statement.

� All restrictions that apply to UNION or UNION ALL operations in
standalone SELECT statements also apply to UNION and UNION ALL
operations in the SELECT statement of a union view.

For a list of these restrictions, see “Restrictions on a Combined SELECT” on
page 2-637. For an example of a CREATE VIEW statement that defines a union
view, see “Naming View Columns.”

IDS
2-312 IBM Informix Guide to SQL: Syntax

CREATE VIEW
Naming View Columns

The number of columns that you specify in the column list must match the
number of columns returned by the SELECT statement that defines the view.
If you do not specify a list of columns, the view inherits the column names of
the underlying tables. In the following example, the view herostock has the
same column names as the ones in the SELECT statement:

CREATE VIEW herostock AS
SELECT stock_num, description, unit_price, unit, unit_descr

FROM stock WHERE manu_code = 'HRO'

You must specify at least one column name in the following circumstances:

� If you provide names for some of the columns in a view, then you
must provide names for all the columns. That is, the column list must
contain an entry for every column that appears in the view.

� If the SELECT statement returns an expression, the corresponding
column in the view is called a virtual column. You must provide a
name for virtual columns. In the following example, the user must
specify the column parameter because the select list of thr projection
clause of the SELECT statement contains an aggregate expression:

CREATE VIEW newview (firstcol, secondcol) AS
SELECT sum(cola), colb FROM oldtab

� You must also specify a column name in cases where the selected
columns have duplicate column names without the table qualifiers.
For example, if both orders.order_num and items.order_num
appear in the SELECT statement, the CREATE VIEW statement, must
provide two separate column names to label them:

CREATE VIEW someorders (custnum,ocustnum,newprice) AS
SELECT orders.order_num,items.order_num,

items.total_price*1.5
FROM orders, items
WHERE orders.order_num = items.order_num
AND items.total_price > 100.00

Here custnum and ocustnum replace the identical column names.

� The CREATE VIEW statement must also provide column names in the
column list when the SELECT statement includes a UNION or UNION
ALL operator and the names of the corresponding columns in the
SELECT statements are not identical.
SQL Statements 2-313

CREATE VIEW
� Code in the following example must specify the column list because
the second column in the first SELECT statement has a different name
from the second column in the second SELECT statement:

CREATE VIEW myview (cola, colb) AS
SELECT colx, coly from firsttab
UNION
SELECT colx, colz from secondtab

Using a View in the SELECT Statement

You can define a view in terms of other views, but you must abide by the
restrictions on creating views that are discussed in the IBM Informix Database
Design and Implementation Guide.

WITH CHECK OPTION Keywords

The WITH CHECK OPTION keywords instruct the database server to ensure
that all modifications that are made through the view to the underlying tables
satisfy the definition of the view.

The following example creates a view that is named palo_alto, which uses all
the information in the customer table for customers in the city of Palo Alto.
The database server checks any modifications made to the customer table
through palo_alto because the WITH CHECK OPTION is specified.

CREATE VIEW palo_alto AS
SELECT * FROM customer WHERE city = 'Palo Alto'

WITH CHECK OPTION

You can insert into a view a row that does not satisfy the conditions of the
view (that is, a row that is not visible through the view). You can also update
a row of a view so that it no longer satisfies the conditions of the view.
For example, if the view was created without the WITH CHECK OPTION
keywords, you could insert a row through the view where the city is Los
Altos, or you could update a row through the view by changing the city from
Palo Alto to Los Altos.

To prevent such inserts and updates, you can add the WITH CHECK OPTION
keywords when you create the view. These keywords ask the database server
to test every inserted or updated row to ensure that it meets the conditions
that are set by the WHERE clause of the view. The database server rejects the
operation with an error if the row does not meet the conditions.
2-314 IBM Informix Guide to SQL: Syntax

CREATE VIEW
Even if the view was created with the WITH CHECK OPTION keywords,
however, you can perform inserts and updates through the view to change
columns that are not part of the view definition. A column is not part of the
view definition if it does not appear in the WHERE clause of the SELECT
statement that defines the view.

Updating Through Views

If a view is built on a single table, the view is updatable if the SELECT statement
that defined the view did not contain any of the following elements:

� Columns in the select list that are aggregate values

� Columns in the select list that use the UNIQUE or DISTINCT keyword

� A GROUP BY clause

� A UNION operator

� The query selects calculated values or literal values

(You can DELETE from a view that selects calculated values from a single
table, but INSERT and UPDATE are not valid operations on such views.)

In an updatable view, you can update the values in the underlying table by
inserting values into the view. If a view is built on a table that has a derived
value for a column, however, that column is not updatable through the view,
but other columns in the view can be updated.

See also “Updating Views” on page 2-307 for information about using
INSTEAD OF triggers to update views that are based on more than one table,
or that include columns containing aggregates or other calculated values.

Important: You cannot update or insert rows in a remote table through views that
were created using the WITH CHECK OPTION keywords.

Related Information
Related statements: CREATE TABLE, CREATE TRIGGER, DROP VIEW, GRANT,
SELECT, and SET SESSION AUTHORIZATION

For a discussion of views, see the IBM Informix Database Design and Implemen-
tation Guide.
SQL Statements 2-315

2-316 IBM Informix Guide to SQL: Syntax

DATABASE
DATABASE
Use the DATABASE statement to open an accessible database as the current
database.

Syntax

Usage
You can use the DATABASE statement to select any database on your database
server. To select a database on another database server, specify the name of
the database server with the database name.

If you include the name of the current (or another) database server with the
database name, the database server name cannot be uppercase. (See “Database
Name” on page 4-44 for the syntax of specifying the database server name.)

Issuing a DATABASE statement when a database is already open closes the
current database before opening the new one. Closing the current database
releases any cursor resources that the database server holds, invalidating any
cursors that you have declared up to that point. If the user specification was
changed through a SET SESSION AUTHORIZATION statement, the original
user name is restored when the new database is opened.

The current user (or PUBLIC) must have the Connect privilege on the
database that is specified in the DATABASE statement. The current user
cannot have the same user name as an existing role in the database.

DATABASE is not a valid statement in multistatement PREPARE operations.

+

Element Purpose Restrictions Syntax
database Name of the database to select The database must exist Database Name, p. 4-44

DATABASE

EXCLUSIVE

database

DATABASE
SQLCA.SQLWARN Settings Immediately after DATABASE Executes

Immediately after DATABASE executes, you can identify characteristics of the
specified database by examining warning flags in the sqlca structure.

� If the first field of sqlca.sqlwarn is blank, no warnings were issued.

� The second sqlca.sqlwarn field is set to the letter W if the database that
was opened supports transaction logging.

� The third field is set to W if database is an ANSI-compliant database. ♦
� The fourth field is set to W if database is a Dynamic Server database.

� The fifth field is set to W if database converts all floating-point data to
DECIMAL format. (System lacks FLOAT and SMALLFLOAT support.)

� The seventh field is set to W if database is the secondary server (that is,
running in read-only mode) in a data-replication pair.

� The eighth field is set to W if database has DB_LOCALE set to a locale
different from the DB_LOCALE setting on the client system. ♦

EXCLUSIVE Keyword

The EXCLUSIVE keyword opens the database in exclusive mode and prevents
access by anyone but the current user. To allow others access to the database,
you must first execute the CLOSE DATABASE statement and then reopen the
database without the EXCLUSIVE keyword. The following statement opens
the stores_demo database on the training database server in exclusive mode:

DATABASE stores_demo@training EXCLUSIVE

If another user has already opened the database, exclusive access is denied,
an error is returned, and no database is opened.

Related Information
Related statements: CLOSE DATABASE, CONNECT, DISCONNECT, and SET
CONNECTION

For discussions of how to use different data models to design and implement
a database, see the IBM Informix Database Design and Implementation Guide.

For descriptions of the sqlca structure, see the IBM Informix Guide to SQL:
Tutorial or the IBM Informix ESQL/C Programmer’s Manual.

E/C

ANSI

GLS
SQL Statements 2-317

DEALLOCATE COLLECTION
DEALLOCATE COLLECTION
Use the DEALLOCATE COLLECTION statement to release memory for a
collection variable that was previously allocated with the ALLOCATE
COLLECTION statement. Use this statement with ESQL/C.

Syntax

Usage
The DEALLOCATE COLLECTION statement frees all the memory that is
associated with the ESQL/C collection variable that variable identifies.
You must explicitly release memory resources for a collection variable with
DEALLOCATE COLLECTION. Otherwise, deallocation occurs automatically at
the end of the program.

The DEALLOCATE COLLECTION statement releases resources for both typed
and untyped collection variables.

Tip: The DEALLOCATE COLLECTION statement deallocates memory for an ESQL/C
collection variable only. To deallocate memory for an ESQL/C row variable, use the
DEALLOCATE ROW statement.

If you deallocate a nonexistent collection variable or a variable that is not an
ESQL/C collection variable, an error results. Once you deallocate a collection
variable, you can use the ALLOCATE COLLECTION to reallocate resources and
you can then reuse a collection variable.

+

IDS

E/C

Element Purpose Restrictions Syntax
variable Name that identifies a typed or

untyped collection variable for
which to deallocate memory

Must be the name of an ESQL/C
collection variable that has
already been allocated

Name must conform to
language-specific rules for
names of variables

: variableDEALLOCATE COLLECTION
2-318 IBM Informix Guide to SQL: Syntax

DEALLOCATE COLLECTION
Example

This example shows how to deallocate resources with the DEALLOCATE
COLLECTION statement for the untyped collection variable, a_set:

EXEC SQL BEGIN DECLARE SECTION;
client collection a_set;

EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL allocate collection :a_set;
. . .
EXEC SQL deallocate collection :a_set;

Related Information
Related example: refer to the collection variable example in PUT.

Related statements: ALLOCATE COLLECTION and DEALLOCATE ROW

For a discussion of collection data types, see the IBM Informix ESQL/C
Programmer’s Manual.
SQL Statements 2-319

DEALLOCATE DESCRIPTOR
DEALLOCATE DESCRIPTOR
Use the DEALLOCATE DESCRIPTOR statement to free a previously allocated,
system-descriptor area. Use this statement with ESQL/C.

Syntax

Usage
The DEALLOCATE DESCRIPTOR statement frees all the memory that is
associated with the system-descriptor area that descriptor or descriptor_var
identifies. It also frees all the item descriptors (including memory for data
items in the item descriptors).

You can reuse a descriptor or descriptor variable after it is deallocated.
Otherwise, deallocation occurs automatically at the end of the program.

If you deallocate a nonexistent descriptor or descriptor variable, an error
results.

You cannot use the DEALLOCATE DESCRIPTOR statement to deallocate an
sqlda structure. You can use it only to free the memory that is allocated for a
system-descriptor area.

+

E/C

Element Purpose Restrictions Syntax
descriptor Name of a system-

descriptor area
Use single quotes. System-descriptor
area must already be allocated

Quoted String,
p. 4-243

descriptor_var Host variable that
contains the name of a
system-descriptor area

System-descriptor area must already
be allocated, and the variable must
already have been declared

Name must conform
to language-specific
rules for names

DEALLOCATE DESCRIPTOR 'descriptor '

descriptor_var
2-320 IBM Informix Guide to SQL: Syntax

DEALLOCATE DESCRIPTOR
The following examples show valid DEALLOCATE DESCRIPTOR statements.
The first line uses an embedded-variable name, and the second line uses a
quoted string to identify the allocated system-descriptor area.

EXEC SQL deallocate descriptor :descname;

EXEC SQL deallocate descriptor 'desc1';

Related Information
Related statements: ALLOCATE DESCRIPTOR, DECLARE, DESCRIBE, EXECUTE,
FETCH, GET DESCRIPTOR, OPEN, PREPARE, PUT, and SET DESCRIPTOR

For more information on system-descriptor areas, refer to the IBM Informix
ESQL/C Programmer’s Manual.
SQL Statements 2-321

DEALLOCATE ROW
DEALLOCATE ROW
Use the DEALLOCATE ROW statement to release memory for a ROW variable.
Use this statement with ESQL/C.

Syntax

Usage
DEALLOCATE ROW frees all the memory that is associated with the ESQL/C
typed or untyped row variable that variable identifies. If you do not explicitly
release memory resources with DEALLOCATE ROW. deallocation occurs
automatically at the end of the program. To deallocate memory for an
ESQL/C collection variable, use the DEALLOCATE COLLECTION statement.

After you deallocate a ROW variable, you can use the ALLOCATE ROW
statement to reallocate resources, and you can then reuse a ROW variable. The
following example shows how to deallocate resources for the ROW variable,
a_row, using the DEALLOCATE ROW statement:

EXEC SQL BEGIN DECLARE SECTION; row (a int, b int) a_row;
EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL allocate row :a_row;
. . .
EXEC SQL deallocate row :a_row;

Related Information
Related statements: ALLOCATE ROW and DEALLOCATE COLLECTION

For a discussion of ROW data types, see the IBM Informix Guide to SQL: Tutorial.
For complex data types, see the IBM Informix ESQL/C Programmer’s Manual.

+

IDS

E/C

Element Purpose Restrictions Syntax
variable Typed or untyped row variable Must be declared and allocated Language specific

: variableDEALLOCATE ROW
2-322 IBM Informix Guide to SQL: Syntax

DECLARE
DECLARE
Use the DECLARE statement to associate a cursor with a set of rows. Use this
statement with ESQL/C.

Syntax

E/C

Element Purpose Restrictions Syntax
column Column to update with cursor Must exist, but need not be listed in

the Select list of Projection clause
Identifier, p. 4-189

cursor_id Name declared here for cursor Must be unique among names of
cursors and prepared objects

Identifier, p. 4-189

cursor_id_var Variable holding cursor_id Must have a character data type Language specific
statement_id Name of prepared statement Declared in PREPARE statement Identifier, p. 4-189
statement_id_var Variable holding statement_id Must have a character data type Language specific

cursor_id_var

SELECT Statement
p. 2-581

statement_idWITH HOLD

SCROLL CURSOR

cursor_id CURSOR FOR
Subset of
INSERT

Statement
p. 2-330

statement_id_var

FOR

FOR READ ONLY
Subset of
SELECT

Statement
p. 2-336

DECLARE

,

columnOF

WITH HOLD

FOR UPDATE

SELECT with
Collection-Derived

Table
p. 2-339

INSERT with
Collection-Derived

Table
p. 2-341

CURSOR FOR
EXECUTE

PROCEDURE
Statement
p. 2-414

+
+

+

+

+

EXECUTE
FUNCTION
Statement
p. 2-414

IDS

IDS

+

SQL Statements 2-323

DECLARE
Usage
A cursor is an identifier that you associate with a group of rows. DECLARE
associates the cursor with one of the following database objects:

� With an SQL statement, such as SELECT, EXECUTE FUNCTION (or
EXECUTE PROCEDURE), or INSERT

Each of these SQL statements creates a different type of cursor. For
more information, see “Overview of Cursor Types” on page 2-325.

� With the statement identifier (statement id or statement id variable) of a
prepared statement

You can prepare one of the previous SQL statements and associate the
prepared statement with a cursor. For more information, see “Asso-
ciating a Cursor with a Prepared Statement” on page 2-338.

� With a collection variable in an ESQL/C program

The name of the collection variable appears in the FROM clause of a
SELECT or the INTO clause of an INSERT. For more information, see
“Associating a Cursor with a Collection Variable” on page 2-339. ♦

DECLARE assigns an identifier to the cursor, specifies its uses, and directs the
ESQL/C preprocessor to allocate storage for it. DECLARE must precede any
other statement that refers to the cursor during program execution.

The maximum length of a DECLARE statement is 64 kilobytes. The number of
cursors and prepared objects that can exist concurrently in a single program
is limited by the available memory. To avoid exceeding the limit, use the FREE
statement to release some prepared statements or cursors.

A program can consist of one or more source-code files. By default, the scope
of reference of a cursor is global to a program, so a cursor that was declared
in one source file can be referenced from a statement in another file. In a
multiple-file program, if you want to limit the scope of cursor names to the
files in which they are declared, you must preprocess all of the files with the
-local command-line option.

Multiple cursors can be declared for the same prepared statement identifier.
For example, the following ESQL/C example does not return an error:

EXEC SQL prepare id1 from 'select * from customer';
EXEC SQL declare x cursor for id1;
EXEC SQL declare y scroll cursor for id1;
EXEC SQL declare z cursor with hold for id1;

IDS
2-324 IBM Informix Guide to SQL: Syntax

DECLARE
If you include the -ansi compilation flag (or if DBANSIWARN is set),
warnings are generated for statements that use dynamic cursor names or
dynamic statement identifiers, and (for Dynamic Server only) statements that
use collection-derived tables. Some error checking is performed at runtime,
such as these typical checks:

� Invalid use of sequential cursors as scroll cursors

� Use of undeclared cursors

� Invalid cursor names or statement names (empty)

Checks for multiple declarations of a cursor of the same name are performed
at compile time only if the cursor or statement is specified as an identifier.
The following example uses a host variable to store the cursor name:

EXEC SQL declare x cursor for select * from customer;
. . .
stcopy("x", s);
EXEC SQL declare :s cursor for select * from customer;

A cursor uses the collating order of the session when the cursor was declared,
even if this is different from the collation of the session at runtime. ♦

Overview of Cursor Types
Cursors are typically required for data manipulation language (DML) opera-
tions on more than one row of data (or on an ESQL/C collection variable). You
can declare the following types of cursors with the DECLARE statement:

� A select cursor is a cursor associated with A SELECT statement.

� A function cursor is a cursor associated with an EXECUTE FUNCTION
(OR EXECUTE PROCEDURE) statement.

� An insert cursor is a cursor associated with an INSERT statement.

Sections that follow describe each of these cursor types. Cursors can also
have sequential, scroll, and hold characteristics (but an insert cursor cannot be
a scroll cursor). These characteristics determine the structure of the cursor;
see “Cursor Characteristics” on page 2-332. In addition, a select or function
cursor can specify read-only or update mode. For more information, see “Select
Cursor or Function Cursor” on page 2-326.

Tip: Function cursors behave the same as select cursors that are enabled as update
cursors.

IDS
SQL Statements 2-325

DECLARE
A cursor that is associated with a statement identifier can be used with an
INSERT, SELECT, EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement
that is prepared dynamically, and to use different statements with the same
cursor at different times. In this case, the type of cursor depends on the
statement that is prepared at the time the cursor is opened. (See “Associating
a Cursor with a Prepared Statement” on page 2-338.)

Select Cursor or Function Cursor
When an SQL statement returns more than one group of values to an ESQL/C
program, you must declare a cursor to save the multiple groups, or rows, of
data and to access these rows one at a time. You must associate the following
SQL statements with cursors:

� If you associate a SELECT statement with a cursor, the cursor is called
a select cursor.

A select cursor is a data structure that represents a specific location
within the active set of rows that the SELECT statement retrieved.

� If you associate an EXECUTE FUNCTION (or EXECUTE PROCEDURE)
statement with a cursor, the cursor is called a function cursor.

The function cursor represents the columns or values that a user-
defined function returns. Function cursors behave the same as select
cursors that are enabled as update cursors.

In Extended Parallel Server, to create a function cursor, you must use the
EXECUTE PROCEDURE statement. Extended Parallel Server does not support
the EXECUTE FUNCTION statement. ♦

In Dynamic Server, for backward compatibility, if an SPL function was
created with the CREATE PROCEDURE statement, you can create a function
cursor with the EXECUTE PROCEDURE statement. With external functions,
you must use the EXECUTE FUNCTION statement. ♦

When you associate a SELECT or EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement with a cursor, the statement can include an INTO
clause. However, if you prepare the SELECT or EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement, you must omit the INTO clause in the
PREPARE statement and use the INTO clause of the FETCH statement to
retrieve the values from the collection cursor.

XPS

IDS
2-326 IBM Informix Guide to SQL: Syntax

DECLARE
A select or function cursor can scan returned rows of data and to move data
row by row into a set of receiving variables, as the following steps describe:

1. DECLARE

Use DECLARE to define a cursor and associate it with a statement.

2. OPEN

Use OPEN to open the cursor. The database server processes the
query until it locates or constructs the first row of the active set.

3. FETCH

Use FETCH to retrieve successive rows of data from the cursor.

4. CLOSE

Use CLOSE to close the cursor when its active set is no longer needed.

5. FREE

Use FREE to release the resources that are allocated for the cursor.

Using the FOR READ ONLY Option

Use the FOR READ ONLY keywords to define a cursor as a read-only cursor.
A cursor declared to be read-only cannot be used to update (or delete) any
row that it fetches.

The need for the FOR READ ONLY keywords depends on whether your
database is ANSI compliant or not ANSI compliant.

In a database that is not ANSI compliant, the cursor that the DECLARE
statement defines is a read-only cursor by default, so you do not need to
specify the FOR READ ONLY keywords if you want the cursor to be a read-
only cursor. The only advantage of specifying the FOR READ ONLY keywords
explicitly is for better program documentation.

In an ANSI-compliant database, the cursor associated with a SELECT
statement through the DECLARE statement is an update cursor by default,
provided that the SELECT statement conforms to all of the restrictions for
update cursors listed in “Subset of SELECT Statement Associated with
Cursors” on page 2-336. If you want a select cursor to be read only, you must
use the FOR READ ONLY keywords when you declare the cursor. ♦

The database server can use less stringent locking for a read-only cursor than
for an update cursor.

ANSI
SQL Statements 2-327

DECLARE
The following example creates a read-only cursor:

EXEC SQL declare z_curs cursor for
select * from customer_ansi
for read only;

Using the FOR UPDATE Option

Use the FOR UPDATE option to declare an update cursor. You can use the
update cursor to modify (update or delete) the current row.

In an ANSI-compliant database, you can use a select cursor to update or
delete data if the cursor was not declared with the FOR READ ONLY keywords
and it follows the restrictions on update cursors that are described in “Subset
of SELECT Statement Associated with Cursors” on page 2-336. You do not
need to use the FOR UPDATE keywords when you declare the cursor. ♦

The following example declares an update cursor:

EXEC SQL declare new_curs cursor for
select * from customer_notansi
for update;

In an update cursor, you can update or delete rows in the active set. After you
create an update cursor, you can update or delete the currently selected row
by using an UPDATE or DELETE statement with the WHERE CURRENT OF
clause. The words CURRENT OF refer to the row that was most recently
fetched; they take the place of the usual test expressions in the WHERE clause.

An update cursor lets you perform updates that are not possible with the
UPDATE statement because the decision to update and the values of the new
data items can be based on the original contents of the row. Your program can
evaluate or manipulate the selected data before it decides whether to update.
The UPDATE statement cannot interrogate the table that is being updated.

You can specify particular columns that can be updated. The columns need
not appear in the Select list of the Projection clause.

Using FOR UPDATE with a List of Columns

When you declare an update cursor, you can limit the update to specific
columns by including the OF keyword and a list of columns. You can modify
only those named columns in subsequent UPDATE statements. The columns
need not be in the select list of the SELECT clause.

ANSI
2-328 IBM Informix Guide to SQL: Syntax

DECLARE
The next example declares an update cursor and specifies that this cursor can
update only the fname and lname columns in the customer_notansi table:

EXEC SQL declare name_curs cursor for
select * from customer_notansi
for update of fname, lname;

By default, unless declared as FOR READ ONLY, a select cursor in a database
that is ANSI compliant is an update cursor, so the FOR UPDATE keywords are
optional. If you want an update cursor to be able to modify only some of the
columns in a table, however, you must specify these columns in the FOR
UPDATE OF column list. ♦

The principal advantage to specifying columns is documentation and
preventing programming errors. (The database server refuses to update any
other columns.) An additional advantage is improved performance, when
the SELECT statement meets the following criteria:

� The SELECT statement can be processed using an index.

� The columns that are listed are not part of the index that is used to
process the SELECT statement.

If the columns that you intend to update are part of the index that is used to
process the SELECT statement, the database server keeps a list of each
updated row, to ensure that no row is updated twice. If the OF keyword
specifies which columns can be updated, the database server determines
whether or not to keep the list of updated rows. If the database server deter-
mines that the work of keeping the list is unnecessary, performance
improves. If you do not use the OF column list, the database server always
maintains a list of updated rows, although the list might be unnecessary.

The following example contains ESQL/C code that uses an update cursor
with a DELETE statement to delete the current row.

Whenever the row is deleted, the cursor remains between rows. After you
delete data, you must use a FETCH statement to advance the cursor to the
next row before you can refer to the cursor in a DELETE or UPDATE statement.

EXEC SQL declare q_curs cursor for
select * from customer where lname matches :last_name for update;

EXEC SQL open q_curs;
for (;;)
{

EXEC SQL fetch q_curs into :cust_rec;
if (strncmp(SQLSTATE, "00", 2) != 0)

break;

ANSI
SQL Statements 2-329

DECLARE
/* Display customer values and prompt for answer */
printf("\n%s %s", cust_rec.fname, cust_rec.lname);
printf("\nDelete this customer? ");
scanf("%s", answer);

if (answer[0] == 'y')
EXEC SQL delete from customer where current of q_curs;

if (strncmp(SQLSTATE, "00", 2) != 0)
break;

}
printf("\n");
EXEC SQL close q_curs;

Locking with an Update Cursor

The FOR UPDATE keywords notify the database server that updating is
possible and cause it to use more stringent locking than with a select cursor.
You declare an update cursor to let the database server know that the
program might update (or delete) any row that it fetches as part of the
SELECT statement. The update cursor employs promotable locks for rows that
the program fetches. Other programs can read the locked row, but no other
program can place a promotable lock (also called a write lock). Before the
program modifies the row, the row lock is promoted to an exclusive lock.

It is possible to declare an update cursor with the WITH HOLD keywords, but
the only reason to do so is to break a long series of updates into smaller trans-
actions. You must fetch and update a particular row in the same transaction.

If an operation involves fetching and updating a large number of rows, the
lock table that the database server maintains can overflow. The usual way to
prevent this overflow is to lock the entire table that is being updated. If this
action is impossible, an alternative is to update through a hold cursor and to
execute COMMIT WORK at frequent intervals. You must plan such an appli-
cation carefully, however, because COMMIT WORK releases all locks, even
those that are placed through a hold cursor.

Subset of INSERT Statement Associated with a Sequential Cursor

As indicated in the diagram for “DECLARE” on page 2-323, to create an
insert cursor, you associate a sequential cursor with a restricted form of the
INSERT statement. The INSERT statement must include a VALUES clause; it
cannot contain an embedded SELECT statement.
2-330 IBM Informix Guide to SQL: Syntax

DECLARE
The following example contains ESQL/C code that declares an insert cursor:

EXEC SQL declare ins_cur cursor for
insert into stock values
(:stock_no,:manu_code,:descr,:u_price,:unit,:u_desc);

The insert cursor simply inserts rows of data; it cannot be used to fetch data.
When an insert cursor is opened, a buffer is created in memory. The buffer
receives rows of data as the program executes PUT statements. The rows are
written to disk only when the buffer is full. You can flush the buffer (that is,
to write its contents into the database) when it is less than full, using the
CLOSE, FLUSH, or COMMIT WORK statements. This topic is discussed further
under the CLOSE, FLUSH, and PUT statements.

You must close an insert cursor to insert any buffered rows into the database
before the program ends. You can lose data if you do not close the cursor
properly. For a complete description of INSERT syntax and usage, see
“INSERT” on page 2-489.

Insert Cursor

When you associate an INSERT statement with a cursor, the cursor is called an
insert cursor. An insert cursor is a data structure that represents the rows that
the INSERT statement is to add to the database. The insert cursor simply
inserts rows of data; it cannot be used to fetch data. To create an insert cursor,
you associate a cursor with a restricted form of the INSERT statement. The
INSERT statement must include a VALUES clause; it cannot contain an
embedded SELECT statement.

Create an insert cursor if you want to add multiple rows to the database in an
INSERT operation. An insert cursor allows bulk insert data to be buffered in
memory and written to disk when the buffer is full, as these steps describe:

1. Use DECLARE to define an insert cursor for the INSERT statement.

2. Open the cursor with the OPEN statement. The database server
creates the insert buffer in memory and positions the cursor at the
first row of the insert buffer.

3. Copy successive rows of data into the insert buffer with the PUT
statement.
SQL Statements 2-331

DECLARE
4. The database server writes the rows to disk only when the buffer is
full. You can use the CLOSE, FLUSH, or COMMIT WORK statement to
flush the buffer when it is less than full. This topic is discussed
further under the PUT and CLOSE statements.

5. Close the cursor with the CLOSE statement when the insert cursor is
no longer needed. You must close an insert cursor to insert any
buffered rows into the database before the program ends. You can
lose data if you do not close the cursor properly.

6. Free the cursor with the FREE statement. The FREE statement releases
the resources that are allocated for an insert cursor.

Using an insert cursor is more efficient than embedding the INSERT statement
directly. This process reduces communication between the program and the
database server and also increases the speed of the insertions.

In addition to select and function cursors, insert cursors can also have the
sequential cursor characteristic. To create an insert cursor, you associate a
sequential cursor with a restricted form of the INSERT statement. (For more
information, see “Insert Cursor” on page 2-331.) The following example
contains IBM Informix ESQL/C code that declares a sequential insert cursor:

EXEC SQL declare ins_cur cursor for
insert into stock values
(:stock_no,:manu_code,:descr,:u_price,:unit,:u_desc);

Cursor Characteristics
You can declare a cursor as a sequential cursor (the default), a scroll cursor
(by using the SCROLL keyword), or a hold cursor (by using the WITH HOLD
keywords). The SCROLL and WITH HOLD keywords are not mutually
exclusive. Sections that follow explain these structural characteristics.

A select or function cursor can be either a sequential or a scroll cursor. An
insert cursor can only be a sequential cursor. Select, function, and insert
cursors can optionally be hold cursors.

Creating a Sequential Cursor by Default

If you use only the CURSOR keyword, you create a sequential cursor, which
can fetch only the next row in sequence from the active set. The sequential
cursor can read through the active set only once each time it is opened.
2-332 IBM Informix Guide to SQL: Syntax

DECLARE
If you are using a sequential cursor for a select cursor, on each execution of
the FETCH statement, the database server returns the contents of the current
row and locates the next row in the active set.

The following example creates a read-only sequential cursor in a database
that is not ANSI compliant and an update sequential cursor in an ANSI-
compliant database:

EXEC SQL declare s_cur cursor for
select fname, lname into :st_fname, :st_lname
from orders where customer_num = 114;

In addition to select and function cursors, insert cursors can also have the
sequential cursor characteristic. To create an insert cursor, you associate a
sequential cursor with a restricted form of the INSERT statement. (For more
information, see “Insert Cursor” on page 2-331.) The following example
declares a sequential insert cursor:

EXEC SQL declare ins_cur cursor for
insert into stock values
(:stock_no,:manu_code,:descr,:u_price,:unit,:u_desc);

Using the SCROLL Keyword to Create a Scroll Cursor

Use the SCROLL keyword to create a scroll cursor, which can fetch rows of the
active set in any sequence.

The database server retains the active set of the cursor as a temporary table
until the cursor is closed. You can fetch the first, last, or any intermediate
rows of the active set as well as fetch rows repeatedly without having to close
and reopen the cursor. (See FETCH.)

On a multiuser system, the rows in the tables from which the active-set rows
were derived might change after the cursor is opened and a copy is made in
the temporary table. If you use a scroll cursor within a transaction, you can
prevent copied rows from changing either by setting the isolation level to
Repeatable Read or by locking the entire table in share mode during the
transaction. (See SET ISOLATION and LOCK TABLE.)

The following example creates a scroll cursor for a SELECT statement:

DECLARE sc_cur SCROLL CURSOR FOR SELECT * FROM orders

You can create scroll cursors for select and function cursors but not for insert
cursors. Scroll cursors cannot be declared as FOR UPDATE.
SQL Statements 2-333

DECLARE
Using the WITH HOLD Keywords to Create a Hold Cursor

Use the WITH HOLD keywords to create a hold cursor. A hold cursor allows
uninterrupted access to a set of rows across multiple transactions. Ordinarily,
all cursors close at the end of a transaction. A hold cursor does not close; it
remains open after a transaction ends.

A hold cursor can be either a sequential cursor or a scroll cursor.

You can use the WITH HOLD keywords to declare select and function cursors
(sequential and scroll), and insert cursors. These keywords follow the
CURSOR keyword in the DECLARE statement. The following example creates
a sequential hold cursor for a SELECT:

DECLARE hld_cur CURSOR WITH HOLD FOR
SELECT customer_num, lname, city FROM customer

You can use a select hold cursor as the following ESQL/C code example
shows. This code fragment uses a hold cursor as a master cursor to scan one
set of records and a sequential cursor as a detail cursor to point to records that
are located in a different table. The records that the master cursor scans are
the basis for updating the records to which the detail cursor points. The
COMMIT WORK statement at the end of each iteration of the first WHILE loop
leaves the hold cursor c_master open but closes the sequential cursor c_detail
and releases all locks. This technique minimizes the resources that the
database server must devote to locks and unfinished transactions, and it
gives other users immediate access to updated rows.
2-334 IBM Informix Guide to SQL: Syntax

DECLARE
EXEC SQL BEGIN DECLARE SECTION;
int p_custnum, int save_status; long p_orddate;

EXEC SQL END DECLARE SECTION;

EXEC SQL prepare st_1 from
'select order_date from orders where customer_num = ? for update';

EXEC SQL declare c_detail cursor for st_1;
EXEC SQL declare c_master cursor with hold for

select customer_num from customer where city = 'Pittsburgh';

EXEC SQL open c_master;
if(SQLCODE==0) /* the open worked */

EXEC SQL fetch c_master into :p_custnum; /* discover first customer */
while(SQLCODE==0) /* while no errors and not end of pittsburgh customers */

{
EXEC SQL begin work; /* start transaction for customer p_custnum */
EXEC SQL open c_detail using :p_custnum;
if(SQLCODE==0) /* detail open succeeded */

EXEC SQL fetch c_detail into :p_orddate; /* get first order */
while(SQLCODE==0) /* while no errors and not end of orders */

{
EXEC SQL update orders set order_date = '08/15/94'

where current of c_detail;
if(status==0) /* update was ok */

EXEC SQL fetch c_detail into :p_orddate; /* next order */
}

if(SQLCODE==SQLNOTFOUND) /* correctly updated all found orders */
EXEC SQL commit work; /* make updates permanent, set status */

else /* some failure in an update */
{

save_status = SQLCODE; /* save error for loop control */
EXEC SQL rollback work;
SQLCODE = save_status; /* force loop to end */
}

if(SQLCODE==0) /* all updates, and the commit, worked ok */
EXEC SQL fetch c_master into :p_custnum; /* next customer? */

}
EXEC SQL close c_master;

Use either the CLOSE statement to close the hold cursor explicitly or the
CLOSE DATABASE or DISCONNECT statements to close it implicitly. The
CLOSE DATABASE statement closes all cursors.

Releases earlier than Version 9.40 of Dynamic Server) do not support the
PDQPRIORITY feature with cursors that were declared WITH HOLD. ♦

IDS
SQL Statements 2-335

DECLARE
Using an Insert Cursor with Hold

If you associate a hold cursor with an INSERT statement, you can use transac-
tions to break a long series of PUT statements into smaller sets of PUT
statements. Instead of waiting for the PUT statements to fill the buffer and
cause an automatic write to the database, you can execute a COMMIT WORK
statement to flush the row buffer. With a hold cursor, COMMIT WORK
commits the inserted rows but leaves the cursor open for further inserts. This
method can be desirable when you are inserting a large number of rows,
because pending uncommitted work consumes database server resources.

Subset of SELECT Statement Associated with Cursors

As indicated in the syntax diagram for “DECLARE” on page 2-323, not all
SELECT statements can be associated with a read-only or update cursor.

If the DECLARE statement includes one of these options, you must observe
certain restrictions on the SELECT statement that is included in the DECLARE
statement (either directly or as a prepared statement).

If the DECLARE statement includes the FOR READ ONLY option, the SELECT
statement cannot have a FOR READ ONLY nor FOR UPDATE option. (For a
description of SELECT syntax and usage, see “SELECT” on page 2-581.)

If the DECLARE statement includes the FOR UPDATE option, the SELECT
statement must conform to the following restrictions:

� The statement can select data from only one table.

� The statement cannot include any aggregate functions.

� The statement cannot include any of the following clauses or
keywords: DISTINCT, FOR READ ONLY, FOR UPDATE, GROUP BY,
INTO TEMP, ORDER BY, UNION, or UNIQUE.

� In Extended Parallel Server, the statement cannot include the INTO
EXTERNAL and INTO SCRATCH clauses. ♦

XPS
2-336 IBM Informix Guide to SQL: Syntax

DECLARE
Examples of Cursors in Non-ANSI Compliant Databases

In a database that is not ANSI compliant, a cursor associated with a SELECT
statement is a read-only cursor by default. The following example declares a
read-only cursor in a non-ANSI compliant database:

EXEC SQL declare cust_curs cursor for
select * from customer_notansi;

If you want to make it clear in the program code that this cursor is a read-only
cursor, specify the FOR READ ONLY option as the following example shows:

EXEC SQL declare cust_curs cursor for
select * from customer_notansi for read only;

If you want this cursor to be an update cursor, specify the FOR UPDATE
option in your DECLARE statement. This example declares an update cursor:

EXEC SQL declare new_curs cursor for
select * from customer_notansi for update;

If you want an update cursor to be able to modify only some columns in a
table, you must specify those columns in the FOR UPDATE clause. The
following example declares an update cursor that can update only the fname
and lname columns in the customer_notansi table:

EXEC SQL declare name_curs cursor for
select * from customer_notansi for update of fname, lname;

Examples of Cursors in ANSI-Compliant Databases

In an ANSI-compliant database, a cursor associated with a SELECT statement
is an update cursor by default.

The following example declares an update cursor in an ANSI-compliant
database:

EXEC SQL declare x_curs cursor for select * from customer_ansi;

To make it clear in the program documentation that this cursor is an update
cursor, you can specify the FOR UPDATE option as in this example:

EXEC SQL declare x_curs cursor for
select * from customer_ansi for update;

ANSI
SQL Statements 2-337

DECLARE
If you want an update cursor to be able to modify only some of the columns
in a table, you must specify these columns in the FOR UPDATE option. The
following example declares an update cursor and specifies that this cursor
can update only the fname and lname columns in the customer_ansi table:

EXEC SQL declare y_curs cursor for
select * from customer_ansi for update of fname, lname;

If you want a cursor to be a read-only cursor, you must override the default
behavior of the DECLARE statement by specifying the FOR READ ONLY
option in your DECLARE statement. The following example declares a
read-only cursor:

EXEC SQL declare z_curs cursor for
select * from customer_ansi for read only;

Associating a Cursor with a Prepared Statement
The PREPARE statement lets you assemble the text of an SQL statement at
runtime and pass the statement text to the database server for execution. If
you anticipate that a dynamically prepared SELECT, EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement that returns values could produce more
than one row of data, the prepared statement must be associated with a
cursor. (See PREPARE.)

The result of a PREPARE statement is a statement identifier (statement id or id
variable), which is a data structure that represents the prepared statement text.
To declare a cursor for the statement text, associate a cursor with the
statement identifier.

You can associate a sequential cursor with any prepared SELECT or EXECUTE
FUNCTION (or EXECUTE PROCEDURE) statement. You cannot associate a
scroll cursor with a prepared INSERT statement or with a SELECT statement
that was prepared to include a FOR UPDATE clause.

After a cursor is opened, used, and closed, a different statement can be
prepared under the same statement identifier. In this way, it is possible to use
a single cursor with different statements at different times. The cursor must
be redeclared before you use it again.
2-338 IBM Informix Guide to SQL: Syntax

DECLARE
The following example contains ESQL/C code that prepares a SELECT
statement and declares a sequential cursor for the prepared statement text.
The statement identifier st_1 is first prepared from a SELECT statement that
returns values; then the cursor c_detail is declared for st_1.

EXEC SQL prepare st_1 from
'select order_date

from orders where customer_num = ?';
EXEC SQL declare c_detail cursor for st_1;

If you want to use a prepared SELECT statement to modify data, add a FOR
UPDATE clause to the statement text that you want to prepare, as the
following ESQL/C example shows:

EXEC SQL prepare sel_1 from
'select * from customer for update';

EXEC SQL declare sel_curs cursor for sel_1;

Associating a Cursor with a Collection Variable
The DECLARE statement allows you to declare a cursor for an ESQL/C
collection variable. Such a cursor is called a collection cursor. You use a
collection variable to access the elements of a collection (SET, MULTISET, LIST)
column. Use a cursor when you want to access one or more elements in a
collection variable.

The Collection-Derived Table segment identifies the collection variable for
which to declare the cursor. For more information, see “Collection-Derived
Table” on page 4-7.

Select with a Collection-Derived Table

The diagram for “DECLARE” on page 2-323 refers to this section.

To declare a select cursor for a collection variable, include the Collection-
Derived Table segment with the SELECT statement that you associate with the
collection cursor. A select cursor allows you to select one or more elements
from the collection variable. (For a description of SELECT syntax and usage,
see “SELECT” on page 2-581.)

IDS
SQL Statements 2-339

DECLARE
When you declare a select cursor for a collection variable, the DECLARE
statement has the following restrictions:

� It cannot include the FOR READ ONLY keywords as cursor mode.

The select cursor is an update cursor.

� It cannot include the SCROLL or WITH HOLD keywords.

The select cursor must be a sequential cursor.

In addition, the SELECT statement that you associate with the collection
cursor has the following restrictions:

� It cannot include the following clauses or options: WHERE, GROUP
BY, ORDER BY, HAVING, INTO TEMP, and WITH REOPTIMIZATION.

� It cannot contain expressions in the select list.

� If the collection contains elements of opaque, distinct, built-in, or
other collection data types, the select list must be an asterisk (*).

� Column names in the select list must be simple column names.

These columns cannot use the following syntax:
database@server:table.column --INVALID SYNTAX

� It must specify the name of the collection variable in the FROM clause.

You cannot specify an input parameter (the question-mark (?) sym-
bol) for the collection variable. Likewise you cannot use the virtual
table format of the Collection-Derived Table segment.

Using a SELECT Cursor with a Collection Variable

A collection cursor that includes a SELECT statement with the Collection-
Derived Table clause provides access to the elements in a collection variable.

To select more than one element

1. Create a client collection variable in your ESQL/C program.

2. Declare the collection cursor for the SELECT statement with the
DECLARE statement.

To modify elements of the collection variable, declare the select cur-
sor as an update cursor with the FOR UPDATE keywords. You can
then use the WHERE CURRENT OF clause of the DELETE and UPDATE
statements to delete or update elements of the collection.
2-340 IBM Informix Guide to SQL: Syntax

DECLARE
3. Open this cursor with the OPEN statement.

4. Fetch the elements from the collection cursor with the FETCH
statement and the INTO clause.

5. If necessary, perform any updates or deletes on the fetched data and
save the modified collection variable in the collection column.

Once the collection variable contains the correct elements, use the
UPDATE or INSERT statement to save the contents of the collection
variable in the actual collection column (SET, MULTISET, or LIST).

6. Close the collection cursor with the CLOSE statement.

This DECLARE statement declares a select cursor for a collection variable:

EXEC SQL BEGIN DECLARE SECTION;
client collection set(integer not null) a_set;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL declare set_curs cursor for select * from table(:a_set);

For an extended code example that uses a collection cursor for a SELECT
statement, see “Fetching from a Collection Cursor” on page 2-432.

Insert with a Collection-Derived Table

To declare an insert cursor for a collection variable, include the Collection-
Derived Table segment in the INSERT statement associated with the collection
cursor. An insert cursor can insert one or more elements in the collection. For
a description of INSERT syntax and usage, see “INSERT” on page 2-489.

The insert cursor must be a sequential cursor. That is, the DECLARE statement
cannot specify the SCROLL keyword.

When you declare an insert cursor for a collection variable, the Collection-
Derived Table clause of the INSERT statement must contain the name of the
collection variable. You cannot specify an input parameter (the question-
mark (?) symbol) for the collection variable. However, you can use an input
parameter in the VALUES clause of the INSERT statement. This parameter
indicates that the collection element is to be provided later by the FROM
clause of the PUT statement.

A collection cursor that includes an INSERT statement with the Collection-
Derived Table clause allows you to insert more than one element into a
collection variable.
SQL Statements 2-341

DECLARE
To insert more than one element

1. Create a client collection variable in your ESQL/C program.

2. Declare the collection cursor for the INSERT statement with the
DECLARE statement.

3. Open the cursor with the OPEN statement.

4. Put the elements into the collection cursor with the PUT statement
and the FROM clause.

5. Once the collection variable contains all the elements, use the
UPDATE statement or the INSERT statement on a table name to save
the contents of the collection variable in a collection column (SET,
MULTISET, or LIST).

6. Close the collection cursor with the CLOSE statement.

This example declares an insert cursor for the a_set collection variable:

EXEC SQL BEGIN DECLARE SECTION;
client collection multiset(smallint not null) a_mset;
int an_element;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL declare mset_curs cursor for

insert into table(:a_mset) values (?);
EXEC SQL open mset_curs;
while (1)
{
...

EXEC SQL put mset_curs from :an_element;
...
}

To insert the elements into the collection variable, use the PUT statement with
the FROM clause. For a code example that uses a collection cursor for an
INSERT statement, see “Inserting into a Collection Cursor” on page 2-544.

Using Cursors with Transactions
To roll back a modification, you must perform the modification within a
transaction. A transaction in a database that is not ANSI compliant begins
only when the BEGIN WORK statement is executed.

In an ANSI-compliant database, transactions are always in effect. ♦ANSI
2-342 IBM Informix Guide to SQL: Syntax

DECLARE
The database server enforces these guidelines for select and update cursors
to ensure that modifications can be committed or rolled back properly:

� Open an insert or update cursor within a transaction.

� Include PUT and FLUSH statements within one transaction.

� Modify data (update, insert, or delete) within one transaction.

The database server lets you open and close a hold cursor for an update
outside a transaction; however, you should fetch all the rows that pertain to
a given modification and then perform the modification all within a single
transaction. You cannot open and close a hold cursor or an update cursor
outside a transaction.

The following example uses an update cursor within a transaction:

EXEC SQL declare q_curs cursor for
select customer_num, fname, lname from customer
where lname matches :last_name for update;

EXEC SQL open q_curs;
EXEC SQL begin work;
EXEC SQL fetch q_curs into :cust_rec; /* fetch after begin */
EXEC SQL update customer set lname = 'Smith'

where current of q_curs;
/* no error */
EXEC SQL commit work;

When you update a row within a transaction, the row remains locked until
the cursor is closed or the transaction is committed or rolled back. If you
update a row when no transaction is in effect, the row lock is released when
the modified row is written to disk. If you update or delete a row outside a
transaction, you cannot roll back the operation.

In a database that uses transactions, you cannot open an insert cursor outside
a transaction unless it was also declared with the WITH HOLD keywords.

Related Information
Related statements: CLOSE, DELETE, EXECUTE PROCEDURE, FETCH, FREE,
INSERT, OPEN, PREPARE, PUT, SELECT, and UPDATE

For discussions of cursors and data modification, see the IBM Informix Guide
to SQL: Tutorial.

For more advanced issues related to cursors or using cursors with collection
variables, see the IBM Informix ESQL/C Programmer’s Manual.
SQL Statements 2-343

DELETE
DELETE
Use the DELETE statement to delete one or more rows from a table, or one or
more elements in an SPL or ESQL/C collection variable.

Syntax

Usage
If you use DELETE without a WHERE clause (to specify either a condition or
the active set of the cursor), all rows in the table are deleted.

In a database with explicit transaction logging, any DELETE statement that
you execute outside a transaction is treated as a single transaction.

If you specify a view name, the view must be updatable. For an explanation
of an updatable view, see “Updating Through Views” on page 2-315.

Element Purpose Restrictions Syntax
alias Temporary name for a table You cannot use an alias for an indexed table Identifier, p. 4-189
cursor_id Previously declared cursor Must have been declared FOR UPDATE. Identifier, p. 4-189
synonym,
table, view

Table, view, or synonym
with row(s) to be deleted

The table or view (or the synonym and the
table or view to which it points) must exist

Database Object
Name, p. 4-46

Optimizer
Directives
p. 4-222

Condition
p. 4-24

DELETE

WHEREview

synonym

table

+
IDS

Collection-
Derived
Table
p. 4-7

ONLY (synonym)

view

synonym

table

,

alias

FROM

(table)

E/C

SPL
WHERE CURRENT OF cursor_id

table

USING

FROM

IDS
+

IDS

+

+

XPS
2-344 IBM Informix Guide to SQL: Syntax

DELETE
The database server locks each row affected by a DELETE statement within a
transaction for the duration of the transaction. The type of lock that the
database server uses is determined by the lock mode of the table, as set by a
CREATE TABLE or ALTER TABLE statement, as follows:

� If the lock mode is ROW, the database server acquires one lock for
each row affected by the delete.

� In Extended Parallel Server, if the lock mode is PAGE, the database
server acquires one lock for each page affected by the delete. ♦

If the number of rows affected is very large and the lock mode is ROW, you
might exceed the limits your operating system places on the maximum
number of simultaneous locks. If this occurs, you can either reduce the scope
of the DELETE statement or lock the table in exclusive mode before you
execute the statement.

If you omit the WHERE clause while working at the SQL menu, DB-Access
prompts you to verify that you want to delete all rows from a table. You do
not receive a prompt if you run execute DELETE within a command file. ♦

In an ANSI-compliant database, data manipulation language (DML) state-
ments are always in a transaction. You cannot execute a DELETE statement
outside a transaction. ♦

On Dynamic Server, the FROM keyword that immediately follows DELETE
can be omitted if the DELIMIDENT environment variable has been set. ♦

Using the ONLY Keyword

If you use DELETE to remove rows of a supertable, rows from both the
supertable and its subtables can be deleted. To delete rows from the
supertable only, specify the ONLY keyword before the table name.

DELETE FROM ONLY(super_tab)
WHERE name = "johnson"

Warning: If you use the DELETE statement on a supertable and omit the ONLY
keyword and WHERE clause, all rows of the supertable and its subtables are deleted.

You cannot specify the ONLY keyword if you plan to use the WHERE CURRENT OF
clause to delete the current row of the active set of a cursor.

XPS

DB

ANSI

IDS

IDS
SQL Statements 2-345

DELETE
Considerations When Tables Have Cascading Deletes

When you use the ON DELETE CASCADE option of the REFERENCES clause of
either the CREATE TABLE or ALTER TABLE statement, you specify that you
want deletes to cascade from one table to another. For example, in the
stores_demo database, the stock table contains the column stock_num as a
primary key. The catalog and items tables each contain the column
stock_num as foreign keys with the ON DELETE CASCADE option specified.
When a delete is performed from the stock table, rows are also deleted in the
catalog and items tables, which are referenced through the foreign keys.

To have DELETE actions cascade to a table that has a referential constraint on
a parent table, you need the Delete privilege only on the parent table that you
reference in the DELETE statement.

If a DELETE without a WHERE clause is performed on a table that one or more
child tables reference with cascading deletes, the database server deletes all
rows from that table and from any affected child tables.

For an example of how to create a referential constraint that uses cascading
deletes, see “Using the ON DELETE CASCADE Option” on page 2-226.

Restrictions on DELETE When Tables Have Cascading Deletes

You cannot use a child table in a correlated subquery to delete a row from a
parent table. If two child tables reference the same parent table, and one child
specifies cascading deletes but the other child does not, then if you attempt
to delete a row that applies to both child tables from the parent table, the
DELETE fails, and no rows are deleted from the parent or child tables.

Locking and Logging Implications of Cascading Deletes

During deletes, the database server places locks on all qualifying rows of the
referenced and referencing tables.

Transaction logging is required for cascading deletes. If logging is turned off
in a database that is not ANSI-compliant, even temporarily, deletes do not
cascade, because you cannot roll back any actions. For example, if a parent
row is deleted, but the system fails before the child rows are deleted, the
database will have dangling child records, in violation of referential integrity.
After logging is turned back on, however, subsequent deletes cascade. ♦

IDS
2-346 IBM Informix Guide to SQL: Syntax

DELETE
Using the WHERE Keyword to Introduce a Condition

Use the WHERE condition clause to specify which rows you want to delete
from the table. The condition after the WHERE keyword is equivalent to the
condition in the SELECT statement. For example, the next statement deletes all
the rows of the items table where the order number is less than 1034:

DELETE FROM items WHERE order_num < 1034

If you include a WHERE clause that selects all rows in the table, DB-Access
gives no prompt and deletes all rows. ♦

If you are deleting from a supertable in a table hierarchy, a subquery in the
WHERE clause cannot reference a subtable.

When deleting from a subtable, a subquery in the WHERE clause can
reference the supertable only in SELECT…FROM ONLY (supertable)... syntax. ♦

Using the WHERE CURRENT OF Keywords

The WHERE CURRENT OF clause deletes the current row of the active set of a
cursor. When you include this clause, the DELETE statement removes the row
of the active set at the current position of the cursor. After the deletion, no
current row exists; you cannot use the cursor to delete or update a row until
you reposition the cursor with a FETCH statement.

You access the current row of the active set of a cursor with an update cursor.
Before you can use the WHERE CURRENT OF clause, you must first create an
update cursor by using the FOREACH statement (SPL) or the DECLARE
statement with the FOR UPDATE clause (ESQL/C).

Unless they are declared with the FOR READ ONLY keywords, all select
cursors are potentially update cursors in an ANSI-compliant database. You
can use the WHERE CURRENT OF clause with any select cursor that was not
declared with the FOR READ ONLY keywords. ♦

You cannot use WHERE CURRENT OF if you are selecting from only one table
in a table hierarchy. That is, this clause is not valid with the ONLY keyword.

The WHERE CURRENT OF clause can be used to delete an element from a
collection by deleting the current row of the collection-derived table that a
collection variable holds. For more information, see “Collection-Derived
Table” on page 4-7. ♦

DB

IDS

E/C

SPL

ANSI

IDS
SQL Statements 2-347

DELETE
Using the USING or FROM Keyword to Introduce a Join Condition

To delete information from a table based on information contained in one or
more other tables, use the USING keyword or a second FROM keyword to
introduce the list of tables that you want to join in the WHERE clause. When
you use this syntax, the WHERE clause can include any complex join.

If you do not list a join in the WHERE clause, the database server ignores the
tables listed after the introductory keyword (either USING or FROM). That is,
the query performs as if the list of tables was not included.

You can use a second FROM keyword to introduce the list of tables, but your
code will be easier to read if you use the USING keyword instead.

When you use a delete join, the entire operation occurs as a single transaction.
For example, if a delete join query is supposed to delete 100 rows and an error
occurs after the 50th row, the first 50 rows that are already deleted will
reappear in the table. ♦

When you introduce a list of tables that you want to join in the WHERE clause,
the following restrictions for the DELETE statement exist:

� You must list the target table (the one from which rows are to be
deleted) and any table that will be part of a join after the USING (or
second FROM) keyword.

� The WHERE clause cannot contain outer joins.

� The target table cannot be a static or external table.

� The statement cannot contain cursors.

� If the target table is a view, the view must be updatable.

That implies that the SELECT statement that defines the view cannot
contain any of the following syntax elements:

❑ Aggregate expressions

❑ UNIQUE or DISTINCT keywords

❑ UNION operator

❑ GROUP BY keywords

The next example deletes the rows from the lineitem table whose corre-
sponding rows in the order table show a qty of less than one.

DELETE FROM lineitem USING order o, lineitem l
WHERE o.qty < 1 AND o.order_num = l.order_num

+

XPS

E/C
2-348 IBM Informix Guide to SQL: Syntax

DELETE
A delete join makes it easier to incorporate new data into a database. For
example, you can:

1. Store new values in a temporary table.

2. Use a delete join (DELETE...USING statement) to remove any records
from the temporary table that already exist in the table into which
you want to insert the new records.

3. Insert the remaining records into the table.

In addition, you can use this syntax instead of deleting from the results of a
SELECT statement that includes a join.

Deleting Rows That Contain Opaque Data Types

Some opaque data types require special processing when they are deleted.
For example, if an opaque data type contains spatial or multirepresentational
data, it might provide a choice of how to store the data: inside the internal
structure or, for large objects, in a smart large object.

To accomplish this process, call a user-defined support function called
destroy(). When you use DELETE to remove a row that contains one of these
opaque types, the database server automatically invokes destroy() for the
opaque type. This function decides how to remove the data, regardless of
where it is stored. For more information on the destroy() support function,
see IBM Informix User-Defined Routines and Data Types Developer’s Guide.

Deleting Rows That Contain Collection Data Types

When a row contains a column that is a collection data type (LIST, MULTISET,
or SET), you can search for a particular element in the collection, and delete
the row or rows in which the element is found.

For example, the following statement deletes any rows from the new_tab
table in which the set_col column contains the element jimmy smith:

DELETE FROM new_tab WHERE 'jimmy smith' IN set_col

You can also use a collection variable to delete values in a collection column
by deleting one or more individual elements in a collection. For more infor-
mation, see “Collection-Derived Table” on page 4-7, and the examples in
“Example of Deleting from a Collection in ESQL/C” on page 4-17 and
“Example of Deleting from a Collection” on page 4-18. ♦

IDS

E/C

SPL
SQL Statements 2-349

DELETE
SQLSTATE Values in an ANSI-Compliant Database

If no rows satisfy the WHERE clause of a DELETE operation on a table in an
ANSI-compliant database, the database server issues a warning. You can
detect this warning condition in either of the following ways:

� The GET DIAGNOSTICS statement sets the RETURNED_SQLSTATE
field to the value 02000. In an SQL API application, the SQLSTATE
variable contains this same value.

� In an SQL API application, the sqlca.sqlcode and SQLCODE variables
contain the value 100.

The database server also sets SQLSTATE and SQLCODE to these values if the
DELETE . . . WHERE statement is part of a multistatement prepared object, and
the database server returns no rows.

SQLSTATE Values in a Database That Is Not ANSI-Compliant

In a database that is not ANSI compliant, the database server does not return
a warning when it finds no rows satisfying the WHERE clause of a DELETE
statement. In this case, the SQLSTATE code is 00000 and the SQLCODE code
is zero (0). If the DELETE . . . WHERE is part of a multistatement prepared
object, however, and no rows are returned, the database server does issue a
warning. It sets SQLSTATE to 02000 and sets the SQLCODE value to 100.

Related Information
Related Statements: DECLARE, FETCH, GET DIAGNOSTICS, INSERT, OPEN,
SELECT, and UPDATE

For discussions of the DELETE statement, SPL routines, statement modifi-
cation, cursors, and the SQLCODE code, see the IBM Informix Guide to SQL:
Tutorial.

For information on how to access row and collections with ESQL/C host
variables, see the chapter on complex data types in the IBM Informix ESQL/C
Programmer’s Manual.

For a discussion of the GLS aspects of the DELETE statement, see the
IBM Informix GLS User’s Guide.

ANSI
2-350 IBM Informix Guide to SQL: Syntax

DESCRIBE
DESCRIBE
Use the DESCRIBE statement to obtain information about output parameters
and other features of a prepared statement before you execute it. Use this
statement with ESQL/C. (See also “DESCRIBE INPUT” on page 2-359.)

Syntax

+

E/C

Element Purpose Restrictions Syntax
descriptor Name of a system-

descriptor area
System-descriptor area must
already be allocated

Quoted String, p. 4-243

descriptor_var Host variable that identifies
a system-descriptor area

Must contain the name of an
allocated system-descriptor area

Language-specific rules
for names

sqlda_pointer Pointer to an sqlda
structure

Cannot begin with dollar ($) sign
nor colon (:). An sqlda structure is
required if dynamic SQL is used.

See the sqlda structure in
the IBM Informix ESQL/C
Programmer’s Manual

statement_id Statement identifier for a
prepared SQL statement

Must be defined in a previous
PREPARE statement

PREPARE, p. 2-527;
Identifier, p. 4-189

statement
_id_var

Host variable that contains
the value of statement_id

Must be declared in a previous
PREPARE statement

Language-specific rules
for names

DESCRIBE USING

INTO

statement _id_var

statement_id

SQL DESCRIPTOR descriptor _var

'descriptor '

OUTPUT sqlda_pointer
SQL Statements 2-351

DESCRIBE
Usage
DESCRIBE can provide information at runtime about a prepared statement:

� The type of SQL statement that was prepared.

� Whether an UPDATE or DELETE statement contains a WHERE clause.

� For a SELECT, EXECUTE FUNCTION (or EXECUTE PROCEDURE),
INSERT, or UPDATE statement, the DESCRIBE statement also returns
the number, data types, and size of the values, and the name of the
column or expression that the query returns. ♦

� For a SELECT, EXECUTE PROCEDURE, or INSERT statement, DESCRIBE
also returns the number, data types, and size of the values, and the
name of the column or expression that the query returns. ♦

With this information, you can write code to allocate memory to hold
retrieved values and display or process them after they are fetched.

The OUTPUT Keyword

The OUTPUT keyword specifies that only information about output param-
eters of the prepared statement are stored in the sqlda descriptor area. If you
omit this keyword, DESCRIBE can return input parameters, but only for
INSERT statements (and for UPDATE, if the IFX_UPDESC environment
variable is set in the environment where the database server is initialized).

Describing the Statement Type

The DESCRIBE statement takes a statement identifier from a PREPARE
statement as input. When the DESCRIBE statement executes, the database
server sets the value of the SQLCODE field of the sqlca to indicate the
statement type (that is, the keyword with which the statement begins). If the
prepared statement text contains more than one SQL statement, the DESCRIBE
statement returns the type of the first statement in the text.

SQLCODE is set to zero to indicate a SELECT statement without an INTO TEMP
clause. This situation is the most common. For any other SQL statement,
SQLCODE is set to a positive integer. You can test the number against the
constant names that are defined. In ESQL/C, the constant names are defined
in the sqlstypes.h header file.

IDS

XPS
2-352 IBM Informix Guide to SQL: Syntax

DESCRIBE
The DESCRIBE statement (and the DESCRIBE INPUT statement) use the
SQLCODE field differently from any other statement, possibly returning a
nonzero value when it executes successfully. You can revise standard error-
checking routines to accommodate this behavior, if desired.

Checking for the Existence of a WHERE Clause

If the DESCRIBE statement detects that a prepared statement contains an
UPDATE or DELETE statement without a WHERE clause, the DESCRIBE
statement sets the sqlca.sqlwarn.sqlwarn4 variable to W.

When you do not specify a WHERE clause in either a DELETE or UPDATE
statement, the database server performs the delete or update operation
on the entire table. Check the sqlca.sqlwarn.sqlwarn4 variable to avoid
unintended global changes to your table.

Describing a Statement with Runtime Parameters

If the prepared statement contains parameters for which the number of
parameters or parameter data types is to be supplied at runtime, you can
describe these input values. If the prepared statement text includes one of the
following statements, the DESCRIBE statement returns a description of each
column or expression that is included in the list:

� EXECUTE FUNCTION (or EXECUTE PROCEDURE)

� INSERT

� SELECT (without an INTO TEMP clause)

� UPDATE

The IFX_UPDDESC environment variable must be set before you can
usn DESCRIBE to obtain information about an UPDATE statement. For
more information, see the IBM Informix Guide to SQL: Reference. ♦

The description includes the following information:

� The data type of the column, as defined in the table

� The length of the column, in bytes

� The name of the column or expression

IDS
SQL Statements 2-353

DESCRIBE
For a prepared INSERT or UPDATE statement, DESCRIBE returns only the
dynamic parameters (those expressed with a question mark (?) symbol).
Using the OUTPUT keyword, however, prevents these from being returned.

You can specify a destination for the returned informations as a new or
existing system-descriptor area, or as a pointer to an sqlda structure.

A system-descriptor area conforms to the X/Open standards. ♦

Using the SQL DESCRIPTOR Keywords

Use the USING SQL DESCRIPTOR clause to store the description of a prepared
statement list in a previously allocated system-descriptor area.

Use the INTO SQL DESCRIPTOR clause to create a new system-descriptor
structure and store the description of a statement list in that structure.

To describe one of the previously mentioned statements into a system-
descriptor area, DESCRIBE updates the system-descriptor area in these ways:

� It sets the COUNT field in the system-descriptor area to the number
of values in the statement list. An error results if COUNT is greater
than the number of item descriptors in the system-descriptor area.

� It sets the TYPE, LENGTH, NAME, SCALE, PRECISION, and NULLABLE
fields in the system-descriptor area.

If the column has an opaque data type, the database server sets the
EXTYPEID, EXTYPENAME, EXTYPELENGTH, EXTYPEOWNER-
LENGTH, and EXTYPEOWNERNAME fields of the item descriptor. ♦

� It allocates memory for the DATA field for each item descriptor, based
on the TYPE and LENGTH information.

After a DESCRIBE statement is executed, the SCALE and PRECISION fields
contain the scale and precision of the column, respectively. If SCALE and
PRECISION are set in the SET DESCRIPTOR statement, and TYPE is set to
DECIMAL or MONEY, the LENGTH field is modified to adjust for the scale and
precision of the decimal value. If TYPE is not set to DECIMAL or MONEY, the
values for SCALE and PRECISION are not set, and LENGTH is unaffected.

You must modify system-descriptor-area information with SET DESCRIPTOR
statements to show the address in memory that is to receive the described
value. You can change the data type to another compatible type. This change
causes data conversion to take place when data values are fetched.

X/O

IDS
2-354 IBM Informix Guide to SQL: Syntax

DESCRIBE
You can use the system-descriptor area in prepared statements that support
a USING SQL DESCRIPTOR clause, such as EXECUTE, FETCH, OPEN, and PUT.

The following examples show the use of a system descriptor in a DESCRIBE
statement. In the first example, the system descriptor is a quoted string; in the
second example, it is an embedded variable name.

main()
{
. . .
EXEC SQL allocate descriptor 'desc1' with max 3;
EXEC SQL prepare curs1 FROM 'select * from tab';
EXEC SQL describe curs1 using sql descriptor 'desc1';
}
EXEC SQL describe curs1 using sql descriptor :desc1var;

Using the INTO sqlda Pointer Clause

Use the INTO sqlda_pointer clause to allocate memory for an sqlda structure
and store its address in an sqlda pointer. The DESCRIBE statement fills in the
allocated memory with descriptive information. Unlike the USING clause, the
INTO clause creates new sqlda structures to store the output from DESCRIBE.

The DESCRIBE statement sets the sqlda.sqld field to the number of values in
the statement list. The sqlda structure also contains an array of data
descriptors (sqlvar structures), one for each value in the statement list. After
a DESCRIBE statement is executed, the sqlda.sqlvar structure has the sqltype,
sqllen, and sqlname fields set.

If the column has an opaque data type, DESCRIBE...INTO sets the sqlxid,
sqltypename, sqltypelen, sqlownerlen, and sqlownername fields of the
item descriptor. ♦

The DESCRIBE statement allocates memory for an sqlda pointer once it is
declared in a program. The application program, however, must designate
the storage area of the sqlda.sqlvar.sqldata fields.

IDS
SQL Statements 2-355

DESCRIBE
Describing a Collection Variable

The DESCRIBE statement can provide information about a collection variable
when you use the USING SQL DESCRIPTOR or INTO clause.

You must perform the DESCRIBE statement after you open the select or insert
cursor. Otherwise, DESCRIBE cannot get information about the collection
variable because it is the OPEN...USING statement that specifies the name of
the collection variable to use.

IDS
2-356 IBM Informix Guide to SQL: Syntax

DESCRIBE
The next ESQL/C code fragment dynamically selects the elements of the
:a_set collection variable into a system-descriptor area called desc1:

EXEC SQL BEGIN DECLARE SECTION;
client collection a_set;
int i, set_count;
int element_type, element_value;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_set;
EXEC SQL allocate descriptor 'desc1';
EXEC SQL select set_col into :a_set from table1;
EXEC SQL prepare set_id from

'select * from table(?)'

EXEC SQL declare set_curs cursor for set_id;
EXEC SQL open set_curs using :a_set;
EXEC SQL describe set_id using sql descriptor 'desc1';

do
{

EXEC SQL fetch set_curs using sql descriptor 'desc1';
...
EXEC SQL get descriptor 'desc1' :set_count = count;
for (i = 1; i <= set_count; i++)
{

EXEC SQL get descriptor 'desc1' value :i
:element_type = TYPE;

switch
{

case SQLINTEGER:
EXEC SQL get descriptor 'desc1' value :i

:element_value = data;
...

} /* end switch */
} /* end for */

} while (SQLCODE == 0);

EXEC SQL close set_curs;
EXEC SQL free set_curs;
EXEC SQL free set_id;
EXEC SQL deallocate collection :a_set;
EXEC SQL deallocate descriptor 'desc1';

Related Information
Related statements: ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR,
DECLARE, DESCRIBE INPUT, EXECUTE, FETCH, GET DESCRIPTOR, OPEN,
PREPARE, PUT, and SET DESCRIPTOR
SQL Statements 2-357

DESCRIBE
For a task-oriented discussion of the DESCRIBE statement, see the
IBM Informix Guide to SQL: Tutorial.

For more information about how to use a system-descriptor area and sqlda,
refer to the IBM Informix ESQL/C Programmer’s Manual.
2-358 IBM Informix Guide to SQL: Syntax

DESCRIBE INPUT
DESCRIBE INPUT
Use the DESCRIBE INPUT statement to return input parameter information
before a prepared statement is executed. Use this statement with ESQL/C.

Syntax

Usage
The DESCRIBE INPUT and the DESCRIBE OUTPUT statements can return infor-
mation about a prepared statement to an SQL Descriptor Area (sqlda):

� For a SELECT, EXECUTE FUNCTION (or PROCEDURE), INSERT, or
UPDATE statement, the DESCRIBE statement (with no INPUT
keyword) returns the number, data types, and size of the returned
values, and the name of the column or expression.

� For a SELECT, EXECUTE FUNCTION, EXECUTE PROCEDURE, DELETE,
INSERT, or UPDATE statement, the DESCRIBE INPUT statement
returns all the input parameters of a prepared statement.

IDS

E/C

Element Purpose Restrictions Syntax
descriptor Name of a system-

descriptor area
System-descriptor area must
already be allocated

Quoted String, p. 4-243

descriptor_var Host variable that identifies
a system-descriptor area

Must contain the name of an
allocated system-descriptor area

Language-specific rules
for names

sqlda_pointer Pointer to an sqlda
structure

Cannot begin with dollar ($) sign
or colon (:). An sqlda structure is
required if dynamic SQL is used

See the sqlda structure in
the IBM Informix ESQL/C
Programmer’s Manual.

statement_id Statement identifier for a
prepared SQL statement

Must be defined in a previously
executed PREPARE statement

PREPARE, p. 2-527;
Identifier, p. 4-189

statement_var Host variable that contains
the value of statement_id

Variable and statement_id both
must be declared

Language-specific rules
for names

USING 'descriptor 'SQL DESCRIPTOR

descriptor_var

statement _var

statement_id INTO

sqlda_pointer+

DESCRIBE INPUT
SQL Statements 2-359

DESCRIBE INPUT
Tip: Dynamic Server versions earlier than 9.40 do not support the INPUT keyword.
For compatibility with legacy applications, DESCRIBE without INPUT is supported.
In new applications, you should use DESCRIBE INPUT statements to provide infor-
mation about dynamic parameters in the WHERE clause, in subqueries, and in other
syntactic contexts where the old form of DESCRIBE cannot provide information.

With this information, you can write code to allocate memory to hold
retrieved values that you can display or process after they are fetched.

The IFX_UPDDESC environment variable does not need to be set before you
can use DESCRIBE INPUT to obtain information about an UPDATE statement.

Describing the Statement Type

This statement takes a statement identifier from a PREPARE statement as
input. After DESCRIBE INPUT executes, the SQLCODE field of the sqlca
indicates the statement type (that is, the keyword with which the statement
begins). If a prepared object contains more than one SQL statement, DESCRIBE
INPUT returns the type of the first statement in the prepared text.

SQLCODE is set to zero to indicate a SELECT statement without an INTO TEMP
clause. This situation is the most common. For any other SQL statement,
SQLCODE is set to a positive integer. You can compare the number with the
named constants that are defined in the sqlstypes.h header file.

The DESCRIBE and DESCRIBE INPUT statements use SQLCODE differently
from other statements, under some circumstances returning a nonzero value
after successful execution. You can revise standard error-checking routines to
accommodate this behavior, if desired.

Checking for Existence of a WHERE Clause

If the DESCRIBE INPUT statement detects that a prepared object contains an
UPDATE or DELETE statement without a WHERE clause, the database server
sets the sqlca.sqlwarn.sqlwarn4 variable to W.

When you do not specify a WHERE clause in either a DELETE or UPDATE
statement, the database server performs the delete or update action on the
entire table. Check the sqlca.sqlwarn.sqlwarn4 variable after DESCRIBE
INPUT executes to avoid unintended global changes to your table.
2-360 IBM Informix Guide to SQL: Syntax

DESCRIBE INPUT
Describing a Statement with Dynamic Runtime Parameters

If the prepared statement specifies a set of parameters whose cardinality or
data types must be supplied at runtime, you can describe these input values.
If the prepared statement text includes one of the following statements,
the DESCRIBE INPUT statement returns a description of each column or
expression that is included in the list:

� EXECUTE FUNCTION (or EXECUTE PROCEDURE)

� INSERT or SELECT

� UPDATE or DELETE

The description includes the following information:

� The data type of the column, as defined in the table

� The length of the column, in bytes

� The name of the column or expression

� Information about dynamic parameters (parameters that are expressed
as question (?) mark symbols within the prepared statement).

If the database server cannot infer the data type of an expression parameter,
the DESCRIBE INPUT statement returns SQLUNKNOWN as the data type.

You can specify a destination for the returned informations as a new or
existing system-descriptor area, or as a pointer to an sqlda structure.
SQL Statements 2-361

DESCRIBE INPUT
Using the SQL DESCRIPTOR Keywords

Specify INTO SQL DESCRIPTOR to create a new system-descriptor structure
and store the description of a prepared statement list in that structure.

Use the USING SQL DESCRIPTOR clause to store the description of a prepared
statement list in a previously allocated system-descriptor area. Executing the
DESCRIBE INPUT . . . USING SQL DESCRIPTOR statement updates an existing
system-descriptor area in the following ways:

� It allocates memory for the DATA field for each item descriptor, based
on the TYPE and LENGTH information.

� It sets the COUNT field in the system-descriptor area to the number
of values in the statement list. An error results if COUNT is greater
than the number of item descriptors in the system-descriptor area.

� It sets the TYPE, LENGTH, NAME, SCALE, PRECISION, and NULLABLE
fields in the system-descriptor area.

For columns of opaque data types, the DESCRIBE INPUT statement sets
the EXTYPEID, EXTYPENAME, EXTYPELENGTH, EXTYPEOWNERLENGTH, and
EXTYPEOWNERNAME fields of the item descriptor.

After a DESCRIBE INPUT statement executes, the SCALE and PRECISION fields
contain the scale and precision of the column, respectively. If SCALE and
PRECISION are set in the SET DESCRIPTOR statement, and TYPE is set to
DECIMAL or MONEY, the LENGTH field is modified to adjust for the decimal
scale and precision. If TYPE is not set to DECIMAL or MONEY, the values for
SCALE and PRECISION are not set, and LENGTH is unaffected.

You must modify the system-descriptor-area information with the SET
DESCRIPTOR statement to specify the address in memory that is to receive the
described value. You can change the data type to another compatible type.
This causes data conversion to take place when the data values are fetched.

You can also use the system-descriptor area in other statements that support
a USING SQL DESCRIPTOR clause, such as EXECUTE, FETCH, OPEN, and PUT.
2-362 IBM Informix Guide to SQL: Syntax

DESCRIBE INPUT
The following examples show the use of a system descriptor in a DESCRIBE
statement. In the first example, the system descriptor is a quoted string; in the
second example, it is an embedded variable name.

main()
{
. . .
EXEC SQL allocate descriptor 'desc1' with max 3;
EXEC SQL prepare curs1 FROM 'select * from tab';
EXEC SQL describe curs1 using sql descriptor 'desc1';
}
EXEC SQL describe curs1 using sql descriptor :desc1var;

A system-descriptor area conforms to the X/Open standards. ♦

Using the INTO sqlda Pointer Clause

The INTO sqlda_pointer clause allocates memory for an sqlda structure and
store its address in an sqlda pointer. The DESCRIBE INPUT statement fills in
the allocated memory with descriptive information.

The DESCRIBE INPUT statement sets the sqlda.sqld field to the number of
values in the statement list. The sqlda structure also contains an array of data
descriptors (sqlvar structures), one for each value in the statement list. After
a DESCRIBE statement is executed, the sqlda.sqlvar structure has the sqltype,
sqllen, and sqlname fields set.

If the column has an opaque data type, DESCRIBE INPUT . . . INTO sets the
sqlxid, sqltypename, sqltypelen, sqlownerlen, and sqlownername fields of
the item descriptor. ♦

The DESCRIBE INPUT statement allocates memory for an sqlda pointer once
it is declared in a program. The application program, however, must
designate the storage area of the sqlda.sqlvar.sqldata fields.

Describing a Collection Variable

The DESCRIBE INPUT statement can provide information about a collection
variable if you use the INTO or USING SQL DESCRIPTOR clause.

You must execute the DESCRIBE INPUT statement after you open the select or
insert cursor. Otherwise, DESCRIBE INPUT cannot get information about the
collection variable because it is the OPEN . . . USING statement that specifies
the name of the collection variable to use.

X/O
SQL Statements 2-363

DESCRIBE INPUT
The next ESQL/C program fragment dynamically selects the elements of the
:a_set collection variable into a system-descriptor area called desc1:

EXEC SQL BEGIN DECLARE SECTION;
client collection a_set;
int i, set_count;
int element_type, element_value;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_set;
EXEC SQL allocate descriptor 'desc1';
EXEC SQL select set_col into :a_set from table1;
EXEC SQL prepare set_id from

'select * from table(?)'

EXEC SQL declare set_curs cursor for set_id;
EXEC SQL open set_curs using :a_set;
EXEC SQL describe set_id using sql descriptor 'desc1';

do
{

EXEC SQL fetch set_curs using sql descriptor 'desc1';
...
EXEC SQL get descriptor 'desc1' :set_count = count;
for (i = 1; i <= set_count; i++)
{

EXEC SQL get descriptor 'desc1' value :i
:element_type = TYPE;

switch
{

case SQLINTEGER:
EXEC SQL get descriptor 'desc1' value :i

:element_value = data;
...

} /* end switch */
} /* end for */

} while (SQLCODE == 0);

EXEC SQL close set_curs;
EXEC SQL free set_curs;
EXEC SQL free set_id;
EXEC SQL deallocate collection :a_set;
EXEC SQL deallocate descriptor 'desc1';

Related Information
Related statements: ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR,
DECLARE, DESCRIBE, EXECUTE, FETCH, GET DESCRIPTOR, OPEN, PREPARE,
PUT, and SET DESCRIPTOR
2-364 IBM Informix Guide to SQL: Syntax

DESCRIBE INPUT
For a task-oriented discussion of the DESCRIBE statement, see the
IBM Informix Guide to SQL: Tutorial.

For more information about how to use a system-descriptor area and sqlda,
refer to the IBM Informix ESQL/C Programmer’s Manual.
SQL Statements 2-365

DISCONNECT
DISCONNECT
Use the DISCONNECT statement to terminate a connection between an appli-
cation and a database server.

Syntax

Usage
DISCONNECT terminates a connection to a database server. If a database is
open, it closes before the connection drops. Even if you made a connection to
a specific database only, the connection to the database server is terminated
by DISCONNECT. If DISCONNECT does not terminate the current connection,
the connection context of the current environment is not changed.

DISCONNECT is not valid as statement text in a PREPARE statement.

If you disconnect with connection or connection_var, DISCONNECT generates
an error if the specified connection is not a current or dormant connection. ♦

DEFAULT Option

DISCONNECT DEFAULT disconnects the default connection.

+

Element Purpose Restrictions Syntax
connection String that specifies a

connection to terminate
Connection name that the CONNECT
statement assigned

Quoted String,
p. 4-243

connection_var Host variable that holds
the name of a connection

Must be a fixed-length character data
type

Language specific

DISCONNECT CURRENT

E/C ALL

DEFAULT 'connection '

connection_var

E/C
2-366 IBM Informix Guide to SQL: Syntax

DISCONNECT
The default connection is one of the following connections:

� A connection established by the CONNECT TO DEFAULT statement

� An implicit default connection established by the DATABASE or
CREATE DATABASE statement

You can use DISCONNECT to disconnect the default connection. If the
DATABASE statement does not specify a database server, as in the following
example, the default connection is made to the default database server:

EXEC SQL database 'stores_demo';
. . .
EXEC SQL disconnect default;

If the DATABASE statement specifies a database server, as the following
example shows, the default connection is made to that database server:

EXEC SQL database 'stores_demo@mydbsrvr';
. . .
EXEC SQL disconnect default;

In either case, the DEFAULT option of DISCONNECT disconnects this default
connection. For more information, see “DEFAULT Option” on page 2-94.

Specifying the CURRENT Keyword

The DISCONNECT CURRENT statement terminates the current connection.
For example, the DISCONNECT statement in the following program fragment
terminates the current connection to the database server mydbsrvr:

CONNECT TO 'stores_demo@mydbsrvr'
. . .
DISCONNECT CURRENT

When a Transaction is Active

DISCONNECT generates an error during a transaction. The transaction
remains active, and the application must explicitly commit it or roll it back. If
an application terminates without issuing DISCONNECT (because of a system
failure or program error, for example), active transactions are rolled back.

In an ANSI-compliant database, however, if no error is encountered while
you exit from DB-Access in non-interactive mode without issuing the CLOSE
DATABASE, COMMIT WORK, or DISCONNECT statement, the database server
automatically commits any open transaction. ♦

DB-Access
SQL Statements 2-367

DISCONNECT
Disconnecting in a Thread-Safe Environment

If you issue the DISCONNECT statement in a thread-safe ESQL/C application,
keep in mind that an active connection can only be disconnected from within
the thread in which it is active. Therefore, one thread cannot disconnect the
active connection of another thread. The DISCONNECT statement generates
an error if such an attempt is made.

Once a connection becomes dormant, however, any other thread can
disconnect it unless an ongoing transaction is associated with the dormant
connection that was established with the WITH CONCURRENT TRANS-
ACTION clause of CONNECT. If the dormant connection was not established
with the WITH CONCURRENT TRANSACTION clause, DISCONNECT
generates an error when it tries to disconnect it.

For an explanation of connections in a thread-safe ESQL/C application, see
“SET CONNECTION” on page 2-646.

Specifying the ALL Option

Use the keyword ALL to terminate all connections established by the appli-
cation up to that time. For example, the following DISCONNECT statement
disconnects the current connection as well as all dormant connections:

DISCONNECT ALL

In ESQL/C, the ALL keyword has the same effect on multithreaded applica-
tions that it has on single-threaded applications. Execution of the
DISCONNECT ALL statement causes all connections in all threads to be termi-
nated. However, the DISCONNECT ALL statement fails if any of the
connections is in use or has an ongoing transaction associated with it. If either
of these conditions is true, none of the connections is disconnected. ♦

Related Information
Related statements: CONNECT, DATABASE, and SET CONNECTION

For information on multithreaded applications, see the IBM Informix ESQL/C
Programmer’s Manual.

E/C

E/C
2-368 IBM Informix Guide to SQL: Syntax

DROP ACCESS_METHOD
DROP ACCESS_METHOD
Use the DROP ACCESS_METHOD statement to remove a previously defined
access method from the database.

Syntax

Usage
The RESTRICT keyword is required. You cannot drop an access method if
virtual tables or indexes exist that use the access method. You must be the
owner of the access method or have DBA privileges to drop an access method.

If a transaction is in progress, the database server waits to drop the access
method until the transaction is committed or rolled back. No other users can
execute the access method until the transaction has completed.

Related Information
Related statements: ALTER ACCESS_METHOD and CREATE ACCESS_METHOD

For a description of the RESTRICT keyword, see “Specifying RESTRICT
Mode” on page 2-389. For more information on primary-access methods, see
the IBM Informix Virtual-Table Interface Programmer’s Guide.

For more information on secondary-access methods, see the IBM Informix
Virtual-Index Interface Programmer’s Guide. For a discussion of privileges, see
the GRANT statement or the IBM Informix Database Design and Implementation
Guide.

+

IDS

Element Purpose Restrictions Syntax
access_method Name of access

method to drop
Must be registered in the sysams system catalog table
by a prior CREATE ACCESS_METHOD statement.

Database Object
Name, p. 4-46

DROP ACCESS_METHOD RESTRICTaccess_method
SQL Statements 2-369

DROP AGGREGATE
DROP AGGREGATE
Use the DROP AGGREGATE statement to drop a user-defined aggregate that
you created with the CREATE AGGREGATE statement.

Syntax

Usage
Dropping a user-defined aggregate does not drop the support functions that
you defined for the aggregate in the CREATE AGGREGATE statement. The
database server does not track dependency of SQL statements on user-
defined aggregates that you use in the statements. For example, you can drop
a user-defined aggregate that is used in an SPL routine. In the following
example, the user drops the aggregate named my_avg:

DROP AGGREGATE my_avg

Related Information
Related statements: CREATE AGGREGATE

For information about how to invoke a user-defined aggregate, see the
discussion of user-defined aggregates in the Expression segment. For a
description of the sysaggregates system catalog table that holds information
about user-defined aggregates, see the IBM Informix Guide to SQL: Reference.
For a discussion of user-defined aggregates, see IBM Informix User-Defined
Routines and Data Types Developer’s Guide.

+

IDS

Element Purpose Restrictions Syntax
aggregate Name of the user-defined

aggregate to be dropped
Must have been previously created with the CREATE
AGGREGATE statement.

Identifier,
p. 4-189

DROP AGGREGATE aggregate

Owner Name
p. 4-234

.

2-370 IBM Informix Guide to SQL: Syntax

DROP CAST
DROP CAST
Use the DROP CAST statement to remove an existing cast from the database.

Syntax

Usage
You must be owner of the cast or have the DBA privilege to use DROP CAST.
Dropping a cast removes its definition from the syscasts catalog table, so the
cast cannot be invoked explicitly or implicitly. Dropping a cast has no effect
on the user-defined function associated with the cast. Use the DROP
FUNCTION statement to remove the user-defined function from the database.

Warning: Do not drop the built-in casts, which user informix owns. The database
server uses built-in casts for automatic conversions between built-in data types.

A cast defined on a given data type can also be used on any DISTINCT types
created from that source type. If you drop the cast, you can no longer invoke
it for the DISTINCT types, but dropping a cast that is defined for a DISTINCT
type has no effect on casts for its source type. When you create a DISTINCT
type, the database server automatically defines an explicit cast from the
DISTINCT type to its source type and another explicit cast from the source
type to the DISTINCT type. When you drop the DISTINCT type, the database
server automatically drops these two casts.

Related Information
Related statements: CREATE CAST and DROP FUNCTION. For more infor-
mation about data types, refer to the IBM Informix Guide to SQL: Reference.

+

IDS

Element Purpose Restrictions Syntax
source_type Data type on which the cast operates Must exist Identifier, p. 4-189
target_type Data type that results when the cast is invoked Must exist Identifier, p. 4-189

DROP CAST target_typesource_type AS((
SQL Statements 2-371

DROP DATABASE
DROP DATABASE
Use the DROP DATABASE statement to delete an entire database, including all
system catalog tables, indexes, and data.

Syntax

Usage
This statement is an extension to ANSI-standard syntax. The ANSI/ISO
standard for SQL does not provide syntax for the destruction of a database.

You must have the DBA privilege or be user informix to run the DROP
DATABASE statement successfully. Otherwise, the database server issues an
error message and does not drop the database.

You cannot drop the current database or a database that is being used by
another user. All the current users of the database must first execute the
CLOSE DATABASE statement before DROP DATABASE can be successful.

The DROP DATABASE statement cannot appear in a multistatement PREPARE
statement.

During a DROP DATABASE operation, the database server acquires a lock on
each table in the database and holds the locks until the entire operation is
complete. Configure your database server with enough locks to accom-
modate this fact.

For example, if the database to be dropped has 2500 tables, but fewer than
2500 locks were configured for your database server, the DROP DATABASE
statement will fail. For more information on how to configure the number of
locks available to the database server, see the discussion of the LOCKS config-
uration parameter in your Administrator’s Reference.

The following statement drops the stores_demo database:

DROP DATABASE stores_demo

+

DROP DATABASE Database Name
p. 4-44
2-372 IBM Informix Guide to SQL: Syntax

DROP DATABASE
In DB-Access, use this statement with caution. DB-Access does not prompt
you to verify that you want to delete the entire database. ♦

You can use a simple database name in a program or host variable, or you can
use the full database server and database name. For more information, see
“Database Name” on page 4-44. ♦

Related Information
Related statements: CLOSE DATABASE, CREATE DATABASE, and CONNECT

DB

E/C
SQL Statements 2-373

DROP DUPLICATE
DROP DUPLICATE
Use the DROP DUPLICATE statement to remove from the database all
duplicate copies of a specified existing table that the CREATE DUPLICATE
statement created in a specified dbslice or in specified dbspaces across
coservers. The original table is not affected by DROP DUPLICATE.

Syntax

Usage
To drop all duplicate copies of a duplicated table and leave only the original
table, enter the DROP DUPLICATE statement. Because duplicate tables are
read-only, to update a duplicated table, you must first drop all duplicate
copies.

Attached indexes on the copies of the duplicate table are also dropped when
DROP DUPLICATE is successfully executed.

Related Statement
CREATE DUPLICATE

+

XPS

Element Description Restrictions Syntax
table Name of the table for which you

want to remove all duplicates
Must exist and must be a dupli-
cated table.

Database Object
Name

DROP DUPLICATE OF TABLE table
2-374 IBM Informix Guide to SQL: Syntax

DROP FUNCTION
DROP FUNCTION
Use the DROP FUNCTION statement to remove a user-defined function from
the database.

Syntax

Usage
Dropping a user-defined function removes the text and executable versions
of the function from the database.

If you do not know if a UDR is a user-defined function or a user-defined
procedure, you can drop the UDR by using the DROP ROUTINE statement.

To use the DROP FUNCTION statement, you must be the owner of the user-
defined function or have the DBA privilege.

+

IDS

Element Purpose Restrictions Syntax
function Name of the user-

defined function to
drop

Must exist (that is, be registered) in the database.
If the name does not uniquely identify a function,
you must enter one or more appropriate values
for parameter_type.

Database
Object Name,
p. 4-46

parameter_type Data type of the
parameter

The data type (or list of data types) must be the
same data types (and specified in the same order)
as those specified in the CREATE FUNCTION
statement when the function was created.

Identifier,
p. 4-189

,

SPECIFIC FUNCTION

)

functionDROP FUNCTION

Specific Name
p. 4-274

parameter_type(

IDS

IDS
SQL Statements 2-375

DROP FUNCTION
If the function name is not unique within the database, you must specify
enough parameter_type information to disambiguate the name. If the database
server cannot resolve an ambiguous function name whose signature differs
from that of another function only in an unnamed ROW type parameter, an
error is returned. (This error cannot be anticipated by the database server at
the time when the ambiguous function is defined.)

Examples

If you use parameter data types to identify a user-defined function, they
follow the function name, as in the following example:

DROP FUNCTION compare(int, int)

If you use the specific name for the user-defined function, you must use the
keyword SPECIFIC, as in the following example:

DROP SPECIFIC FUNCTION compare_point

Dropping SPL Functions

The Informix implementation of the SQL language does not support ALTER
PROCEDURE, ALTER ROUTINE, or ALTER FUNCTION statements. To change
the text of an SPL function, you must drop it and then re-create it. Make sure
to keep a copy of the SPL function text somewhere outside the database, in
case you need to re-create a function after it is dropped.

You cannot drop an SPL function from within the same SPL function.

Related Information
Related statements: ALTER FUNCTION, CREATE FUNCTION, CREATE
FUNCTION FROM, DROP FUNCTION, DROP PROCEDURE, DROP ROUTINE,
and EXECUTE FUNCTION

SPL
2-376 IBM Informix Guide to SQL: Syntax

DROP INDEX
DROP INDEX
Use the DROP INDEX statement to remove an index.

Syntax

Usage
You must be the owner of the index or have the DBA privilege to use the
DROP INDEX statement. The following example drops the index o_num_ix
that joed owns. The stores_demo database must be the current database.

DROP INDEX stores_demo:joed.o_num_ix

You cannot use DROP INDEX to drop a unique constraint; you must use
ALTER TABLE to drop indexes that implement constraints that CREATE TABLE
(or ALTER TABLE) created. The index is not actually dropped if it is shared by
constraints. Instead, it is renamed in the sysindexes system catalog table with
the following format:

[space]<tabid>_<constraint_id>

Here tabid and constraint_id are from the systables and sysconstraints system
catalog tables, respectively. The sysconstraints.idxname column is then
updated to reflect this change. Thus, the updated name might be something
like: “ 121_13” (where quotes have been used to show the blank space).
If this index is a unique index with only referential constraints sharing it, the
index is downgraded to a duplicate index after it is renamed.

Related Information
Related statements: ALTER TABLE, CREATE INDEX, and CREATE TABLE. For
the performance characteristics of indexes, see your Performance Guide.

+

Element Purpose Restrictions Syntax
index Name of the index to be dropped Must exist Database Object Name, p. 4-46

indexDROP INDEX
SQL Statements 2-377

DROP OPCLASS
DROP OPCLASS
Use the DROP OPCLASS statement to remove an existing operator class from
the database.

Syntax

Usage
You must be the owner of the operator class or have the DBA privilege to use
the DROP OPCLASS statement.

The RESTRICT keyword causes DROP OPCLASS to fail if the database contains
indexes defined on the operator class you plan to drop. Therefore, before you
drop the operator class, you must use DROP INDEX to drop dependent
indexes.

The following DROP OPCLASS statement drops an operator class called
abs_btree_ops:

DROP OPCLASS abs_btree_ops RESTRICT

Related Information
Related statement: CREATE OPCLASS

For information on how to create or extend an operator class, see IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

+

IDS

Element Purpose Restrictions Syntax
opclass Name of operator

class to be dropped
Must have been created by a previous CREATE OPCLASS
statement.

Identifier,
p. 4-189

opclassDROP OPCLASS RESTRICT
2-378 IBM Informix Guide to SQL: Syntax

DROP PROCEDURE
DROP PROCEDURE
Use the DROP PROCEDURE statement to remove a user-defined procedure
from the database.

Syntax

Usage
Dropping a user-defined procedure removes the text and executable versions
of the procedure.

To use the DROP PROCEDURE statement, you must be the owner of the
procedure or have the DBA privilege.

In Extended Parallel Server, use the DROP PROCEDURE statement to drop
any SPL routine. Extended Parallel Server does not support the DROP
FUNCTION statement. ♦

+

Element Purpose Restrictions Syntax
function Name of SPL function

to drop
Must exist (that is, be registered) in the
database.

Database Object
Name, p.4-46

parameter_type The data type of the
parameter

The data type (or list of data types) must be the
same types (and specified in the same order) as
those specified in the CREATE PROCEDURE
statement when the procedure was created.

Identifier,
p. 4-189

procedure Name of user-defined
procedure to drop

Must exist (that is, be registered) in the
database.

Database Object
Name, p.4-46

,

SPECIFIC PROCEDURE

DROP

Specific Name
p. 4-274

IDS

PROCEDURE procedure

SPL

procedure

function

IDS

parameter_type)(

XPS
SQL Statements 2-379

DROP PROCEDURE
In Dynamic Server, for backward compatibility, you can use the DROP
PROCEDURE statement to drop an SPL function that was created with the
CREATE PROCEDURE statement.

If the function or procedure name is not unique within the database, you must
specify enough parameter_type information to disambiguate the name. If the
database server cannot resolve an ambiguous UDR name whose signature
differs from that of another UDR only in an unnamed ROW type parameter,
an error is returned. (This error cannot be anticipated by the database server
at the time when the ambiguous function or procedure is defined.)

If you do not know whether a UDR is a user-defined procedure or a user-
defined function, you can use the DROP ROUTINE statement. For more infor-
mation, see “DROP ROUTINE” on page 2-382. ♦

The Informix implementation of the SQL language does not support ALTER
PROCEDURE, ALTER ROUTINE, or ALTER FUNCTION statements. To change
the text of an SPL procedure, you must drop it and then re-create it. Make sure
to keep a copy of the SPL procedure text somewhere outside the database, in
case you need to re-create the procedure after it is dropped.

You cannot drop an SPL procedure within the same SPL procedure. ♦

For backward compatibility, you can use this statement to drop an SPL
function that was created with the CREATE PROCEDURE statement. ♦

Examples

If you use parameter data types to identify a user-defined procedure, they
follow the procedure name, as in the following example:

DROP PROCEDURE compare(int, int)

If you use the specific name for the user-defined procedure, you must use the
keyword SPECIFIC, as in the following example:

DROP SPECIFIC PROCEDURE compare_point

Related Information
Related statements: CREATE PROCEDURE, CREATE PROCEDURE FROM, DROP
FUNCTION, DROP ROUTINE, and EXECUTE PROCEDURE

IDS

SPL

IDS
2-380 IBM Informix Guide to SQL: Syntax

DROP ROLE
DROP ROLE
Use the DROP ROLE statement to remove a previously created role.

Syntax

Usage
Either the DBA or a user to whom the role was granted with the WITH GRANT
OPTION can issue the DROP ROLE statement.

After a role is dropped, the privileges associated with that role, such as table-
level privileges or routine-level privileges, are dropped, and a user cannot
grant or enable a role. If a user is using the privileges of a role when the role
is dropped, the user automatically loses those privileges.

The following statement drops the role engineer:

DROP ROLE engineer

Related Information
Related statements: CREATE ROLE, GRANT, REVOKE, and SET ROLE

For a discussion on how to use roles, see the IBM Informix Guide to SQL:
Tutorial.

+

Element Purpose Restrictions Syntax
role Name of the role to drop Must have been created with the CREATE

ROLE statement. When a role name is enclosed
in quotation marks, it is case sensitive.

Identifier, p. 4-189

DROP ROLE role

' role '
SQL Statements 2-381

DROP ROUTINE
DROP ROUTINE
Use the DROP ROUTINE statement to remove a user-defined routine (UDR)
from the database.

Syntax

Usage
Dropping a UDR removes the text and executable versions of the UDR from
the database. If you do not know whether a UDR is a user-defined function or
a user-defined procedure, this statement instructs the database server to drop
the specified user-defined function or user-defined procedure.

To use the DROP ROUTINE statement, you must be the owner of the UDR or
have the DBA privilege.

Restrictions

When you use this statement, the type of UDR cannot be ambiguous. The
UDR that you specify must refer to either a user-defined function or a user-
defined procedure.

+

IDS

Element Purpose Restrictions Syntax
parameter_type Data type of the parameter The data type (or list of data types) must

be the same type (and specified in the
same order) as in the UDR definition.

Identifier,
p. 4-189

routine Name of the UDR to drop The UDR must exist (that is, be registered)
in the database.

Database Object
Name, p. 4-46

,

SPECIFIC ROUTINE

)

routineDROP ROUTINE

Specific Name
p. 4-274

parameter_type(
2-382 IBM Informix Guide to SQL: Syntax

DROP ROUTINE
If either of the following conditions exist, the database server returns an
error:

� The name (and parameters) that you specify apply to both a user-
defined procedure and a user-defined function

� The specific name that you specify applies to both a user-defined
procedure and a user-defined function

If the routine name is not unique within the database, you must specify
enough parameter_type information to disambiguate the name. If the database
server cannot resolve an ambiguous routine name whose signature differs
from that of another routine only in an unnamed ROW type parameter, an
error is returned. (This error cannot be anticipated by the database server at
the time when the ambiguous routine is defined.)

Examples

If you use parameter data types to identify a UDR, they follow the UDR name,
as in the following example:

DROP ROUTINE compare(int, int)

If you use the specific name for the UDR, you must use the keyword SPECIFIC,
as in the following example:

DROP SPECIFIC ROUTINE compare_point

Dropping SPL Routines

Because you cannot change the text of an SPL routine, you must drop it and
then re-create it. Make sure that you have a copy of the SPL function text
somewhere outside the database, in case you want to re-create it after it is
dropped.

You cannot drop an SPL routine from within the same SPL routine.

Related Information
Related statements: CREATE FUNCTION, CREATE PROCEDURE, DROP
FUNCTION, DROP PROCEDURE, EXECUTE FUNCTION, and EXECUTE
PROCEDURE

SPL
SQL Statements 2-383

DROP ROW TYPE
DROP ROW TYPE
Use the DROP ROW TYPE statement to remove an existing named-ROW type
from the database.

Syntax

 Usage
You must be the owner of the named-ROW type or have the DBA privilege to
use the DROP ROW TYPE statement.

You cannot drop a named-ROW type if its name is in use. You cannot drop a
named-ROW type when any of the following conditions are true:

� Any existing tables or columns are using the named-ROW type.

� The named-ROW type is a supertype in an inheritance hierarchy.

� A view is defined on a column of the named ROW type.

To drop a named-ROW type column from a table, use ALTER TABLE.

The DROP ROW TYPE statement cannot drop unnamed-ROW types.

+

IDS

Element Purpose Restrictions Syntax
row_type Name of an existing named-

ROW type to be dropped
Must exist. See also the Usage
section that follows.

Identifier, p. 4-189

row_type RESTRICTDROP ROW TYPE

Owner Name
p. 4-234

.

2-384 IBM Informix Guide to SQL: Syntax

DROP ROW TYPE
The RESTRICT Keyword

The RESTRICT keyword is required with the DROP ROW TYPE statement.
RESTRICT causes DROP ROW TYPE to fail if dependencies on that named-
ROW type exist.

The DROP ROW TYPE statement fails and returns an error message if any of
the following conditions is true:

� The named-ROW type is used for an existing table or column

Check the systables and syscolumns system catalog tables to find
out whether any tables or types use the named-ROW type.

� The named-ROW type is the supertype in an inheritance hierarchy

Look in the sysinherits system catalog table to see which named-
ROW types have child types.

The following statement drops the ROW type named employee_t:

DROP ROW TYPE employee_t RESTRICT

Related Information
Related statement: CREATE ROW TYPE

For a description of the system catalog tables, see the IBM Informix Guide to
SQL: Reference.

For a discussion of named-ROW data types, see the IBM Informix Guide to SQL:
Tutorial.
SQL Statements 2-385

DROP SEQUENCE
DROP SEQUENCE
Use the DROP SEQUENCE statement to remove a sequence from the database.

Syntax

Usage
To drop a sequence, you must be the owner of the sequence or have the DBA
privilege on the database.

You cannot use a synonym to specify the identifier of the sequence in the DROP
SEQUENCE statement.

If you drop a sequence, any synonyms for the name of the sequence are also
dropped automatically by the database server.

In an ANSI-compliant database, you must qualify the name the sequence
with the name of its owner (owner.sequence) if you are not the owner. ♦

Related Information
Related statements: ALTER SEQUENCE, CREATE SEQUENCE, RENAME
SEQUENCE, CREATE SYNONYM, DROP SYNONYM, GRANT, REVOKE, INSERT,
UPDATE, and SELECT

For information about generating values from a sequence, see “NEXTVAL
and CURRVAL Operators” on page 4-102.

+

IDS

Element Purpose Restrictions Syntax
sequence Name of a sequence Must exist in the current database Identifier, p. 4-189

sequenceDROP SEQUENCE

Owner Name
p. 4-234

.

ANSI
2-386 IBM Informix Guide to SQL: Syntax

DROP SYNONYM
DROP SYNONYM
Use the DROP SYNONYM statement to remove an existing synonym.

Syntax

Usage
You must be the owner of the synonym or have the DBA privilege to use the
DROP SYNONYM statement.

The following statement drops the synonym nj_cust, which cathyg owns:

DROP SYNONYM cathyg.nj_cust

If a table, view, or sequence is dropped, any synonyms that are in the same
database and that refer to that table, view, or sequence are also dropped.

If a synonym refers to an external table or view that is dropped, the synonym
remains in place until you explicitly drop it using DROP SYNONYM. You can
create another table, view, or synonym in place of the dropped table or view
and give the new database object the name of the dropped table or view.
The old synonym then refers to the new database object. For a complete
discussion of synonym chaining, see the CREATE SYNONYM statement.

Related Information
Related statement: CREATE SYNONYM

For a discussion of synonyms, see the IBM Informix Guide to SQL: Tutorial.

+

Element Purpose Restrictions Syntax
synonym Name of a synonym

to drop
The synonym and the table or view to which the
synonym points must exist.

Database Object
Name, p. 4-46

synonymDROP SYNONYM
SQL Statements 2-387

DROP TABLE
DROP TABLE
Use the DROP TABLE statement to remove a table with its associated indexes
and data.

Syntax

Usage
You must be the owner of the table or have the DBA privilege to use the DROP
TABLE statement.

You cannot drop an Extended Parallel Server table that includes a dependent
GK index unless that index is entirely dependent on the affected table. ♦

If you issue a DROP TABLE statement, DB-Access does not prompt you to
verify that you want to delete an entire table. ♦

Effects of the DROP TABLE Statement

Use the DROP TABLE statement with caution. When you remove a table, you
also delete the data stored in it, the indexes or constraints on the columns
(including all the referential constraints placed on its columns), any local
synonyms assigned to it, any triggers created on it, and any authorizations
granted on the table. You also drop all views based on the table and any viola-
tions and diagnostics tables associated with the table.

+

Element Purpose Restrictions Syntax
synonym Local synonym for a table

that is to be dropped
The synonym and its table must exist, and
USETABLENAME must not be set to 1

Database Object
Name, p. 4-46

table Name of a table to drop The table must exist Database Object
Name, p. 4-46

RESTRICT

DROP TABLE

synonym

table CASCADE

XPS

DB
2-388 IBM Informix Guide to SQL: Syntax

DROP TABLE
DROP TABLE does not remove any synonyms for the table that were created
in an external database. To remove external synonyms for the dropped table,
you must do so explicitly with the DROP SYNONYM statement.

You can prevent users from specifying a synonym in the DROP TABLE
statement by setting the USETABLENAME environment variable. When
USETABLENAME is set, the database server issues an error if any user
attempts to specify DROP TABLE synonym.

Specifying CASCADE Mode

The CASCADE keyword in DROP TABLE removes related database objects,
including referential constraints built on the table, views defined on the table,
and any violations and diagnostics tables associated with the table.

If the table is the supertable in an inheritance hierarchy, CASCADE drops all
of the subtables as well as the supertable. ♦

The CASCADE mode is the default mode of the DROP TABLE statement. You
can also specify this mode explicitly with the CASCADE keyword.

Specifying RESTRICT Mode

The RESTRICT keyword can control the drop operation for supertables, for
tables that have referential constraints and views defined on them, or for
tables that have violations and diagnostics tables associated them. Using the
RESTRICT option causes the drop operation to fail and an error message to be
returned if any of the following conditions are true:

� Existing referential constraints reference table.

� Existing views are defined on table.

� Any violations tables or diagnostics tables are associated with table.

� The table is the supertable in an inheritance hierarchy. ♦

Dropping a Table with Rows That Contain Opaque Data Types

Some opaque data types require special processing when they are deleted.
For example, if an opaque type contains spatial or multi-representational
data, it might provide a choice of how to store the data: inside the internal
structure or, for large objects, in a smart large object.

IDS

IDS

IDS
SQL Statements 2-389

DROP TABLE
The database server removes opaque types by calling a user-defined support
function called destroy(). When you execute the DROP TABLE statement on
a table whose rows contain an opaque type, the database server automati-
cally invokes the destroy() function for the type. The destroy() function can
perform certain operations on columns of the opaque data type before the
table is dropped. For more information about the destroy() support function,
see IBM Informix User-Defined Routines and Data Types Developer’s Guide.

Tables That Cannot Be Dropped

Observe the following restrictions on the types of tables that you can drop:

� You cannot drop any system catalog tables.

� You cannot drop a table that is not in the current database.

� You cannot drop a violations table or diagnostics table.

Before you can drop such a table, you must first issue a STOP VIOLA-
TIONS TABLE statement on the base table with which the violations
and diagnostics tables are associated.

� If you are using Extended Parallel Server, you cannot drop a table
that appears in the FROM clause of a GK index. ♦

Examples of Dropping a Table

The following example deletes two tables. Both tables are within the current
database and are owned by the current user. Neither table has a violations or
diagnostics table associated with it. Neither table has a referential constraint
or view defined on it.

DROP TABLE customer;
DROP TABLE stores_demo@accntg:joed.state;

Related Information
Related statements: CREATE TABLE and DROP DATABASE

For a discussion on the data integrity of tables, see the IBM Informix Guide to
SQL: Tutorial.

For a discussion on how to create a table, see the IBM Informix Database Design
and Implementation Guide.

XPS
2-390 IBM Informix Guide to SQL: Syntax

DROP TRIGGER
DROP TRIGGER
Use the DROP TRIGGER statement to remove a trigger definition from a
database.

Syntax

Usage
You must be the owner of the trigger or have the DBA privilege to drop the
trigger. Dropping a trigger removes the text of the trigger definition and the
executable trigger from the database. The row describing the specified trigger
is deleted from the systriggers system catalog table.

Dropping an INSTEAD OF trigger on a complex view (a view with columns
from more than one table) revokes any privileges on the view that the owner
of the trigger received automatically when creating the trigger, and also
revokes any privileges that the owner of the trigger granted to other users.
(Dropping a trigger on a simple view does not revoke any privileges.) ♦

The following statement drops the items_pct trigger:

DROP TRIGGER items_pct

If a DROP TRIGGER statement appears inside an SPL routine that is called by
a data manipulation (DML) statement, the database server returns an error.

Related Information
Related statements: CREATE TRIGGER

+

Element Purpose Restrictions Syntax
trigger Name of the trigger to drop The trigger must exist. Identifier, p. 4-189

DROP TRIGGER

Owner Name
p. 4-234

.

trigger

IDS
SQL Statements 2-391

DROP TYPE
DROP TYPE
Use the DROP TYPE statement to remove an existing distinct or opaque data
type from the database. (You cannot use this to drop a built-in data type.)

Syntax

Usage
To drop a distinct or opaque data type with the DROP TYPE statement, you
must be the owner of the data type or have the DBA privilege. When you use
this statement, you remove the type definition from the database (in the
sysxtdtypes system catalog table). In general, this statement does not remove
any definitions for casts or support functions associated with that data type.

Important: When you drop a distinct type, the database server automatically drops
the two explicit casts between the distinct type and the type on which it is based.

You cannot drop a distinct or opaque type if the database contains any casts,
columns, or user-defined functions whose definitions reference the type.

The following statement drops the new_type data type:

DROP TYPE new_type RESTRICT

Related Information
Related statements: CREATE DISTINCT TYPE, CREATE OPAQUE TYPE, CREATE
ROW TYPE, DROP ROW TYPE, and CREATE TABLE

+

IDS

Element Purpose Restrictions Syntax
data_type Distinct or opaque data

type to be removed
Must be an existing distinct or opaque type;
must not be a built-in data type

Identifier, p. 4-189

data_type RESTRICTDROP TYPE

Owner Name
p. 4-234

.

2-392 IBM Informix Guide to SQL: Syntax

DROP VIEW
DROP VIEW
Use the DROP VIEW statement to remove a view from the database.

Syntax

Usage
To drop a view, you must be the owner or have the DBA privilege.

When you drop a view or its synonym, you also drop any other views and
INSTEAD OF triggers whose definitions depend on that view. (You can also
specify this default behavior explicitly with the CASCADE keyword.)

When you use the RESTRICT keyword in the DROP VIEW statement, the drop
operation fails if any other existing views are defined on view; otherwise,
these would be abandoned in the drop operation.

You can query the sysdepend system catalog table to determine which views,
if any, depend on another view.

The following statement drops the view that is named cust1:

DROP VIEW cust1

Related Information
Related statements: CREATE VIEW and DROP TABLE

For a discussion of views, see the IBM Informix Guide to SQL: Tutorial.

+

Element Purpose Restrictions Syntax
synonym Name of a synonym to drop The synonym and the view to

which it points must exist.
Database Object Name, p. 4-46

view Name of a view to drop The view must exist. Database Object Name, p. 4-46

DROP VIEW view

synonym

CASCADE

RESTRICT
SQL Statements 2-393

2-394 IBM Informix Guide to SQL: Syntax

EXECUTE
EXECUTE
Use the EXECUTE statement to run a previously prepared statement or set of
statements. Use this statement with ESQL/C.

Syntax

Usage
The EXECUTE statement passes a prepared SQL statement to the database
server for execution. The following example shows an EXECUTE statement
within an ESQL/C program:

EXEC SQL PREPARE del_1 FROM
'DELETE FROM customer

WHERE customer_num = 119';
EXEC SQL EXECUTE del_1;

Once prepared, an SQL statement can be executed as often as needed.

After you release the database server resources (using a FREE statement), you
cannot use the statement identifier with a DECLARE cursor or with the
EXECUTE statement until you prepare the statement again.

If the statement contained question mark (?) placeholders, use the USING
clause to provide specific values for them before execution. For more infor-
mation, see the “USING Clause” on page 2-401.

E/C

IDS

Element Purpose Restrictions Syntax
statement_id Identifier of a prepared

SQL statement
Must have been defined in a previous PREPARE
statement.

PREPARE,
p. 2-527

statement_id_var Host variable that
contains an SQL
statement

Must have been defined in a previous PREPARE
statement and must be a character data type.

PREPARE,
p. 2-527

EXECUTE

USING Clause
p. 2-401statement_id_var

statement_id

INTO Clause
p. 2-395

EXECUTE
You can execute any prepared statement except those in the following list:

� A prepared SELECT statement that returns more than one row

When you use a prepared SELECT statement to return multiple rows
of data, you must use a cursor to retrieve the data rows. As an alter-
native, you can EXECUTE a prepared SELECT INTO TEMP statement
to achieve the same result.

For more information on cursors, see “DECLARE” on page 2-323.

� A prepared EXECUTE FUNCTION (or EXECUTE PROCEDURE)
statement for an SPL function that returns more than one row

When you prepare an EXECUTE FUNCTION (or EXECUTE PROCE-
DURE) statement for an SPL function that returns multiple rows, you
must use a cursor to retrieve the data rows.

For more information on how to execute a SELECT or an EXECUTE
FUNCTION (or EXECUTE PROCEDURE) statement, see “PREPARE” on
page 2-527.

If you create or drop a trigger after you prepare a triggering INSERT, DELETE,
or UPDATE statement, the prepared statement returns an error when you
execute it.

Scope of Statement Identifiers

A program can consist of one or more source-code files. By default, the scope
of reference of a statement identifier is global to the program. A statement
identifier created in one file can be referenced from another file.

In a multiple-file program, if you want to limit the scope of reference of a
statement identifier to the file in which it is executed, you can preprocess all
the files with the -local command-line option.

INTO Clause
Use the INTO clause to save the returned values of these SQL statements:

� A prepared singleton SELECT statement that returns only one row of
column values for the columns in the select list

� A prepared EXECUTE FUNCTION (or EXECUTE PROCEDURE)
statement for an SPL function that returns only one set of values
SQL Statements 2-395

EXECUTE
The INTO clause of the EXECUTE statement has the following syntax:

This closely resembles the syntax of the “USING Clause” on page 2-401.

The INTO clause provides a concise and efficient alternative to more compli-
cated and lengthy syntax. In addition, by placing values into variables that
can be displayed, the INTO clause simplifies and enhances your ability to
retrieve and display data values. For example, if you use the INTO clause, you
do not have to use a cursor to retrieve values from a table.

You can store the returned values in output variables, in output SQL
descriptors, or in output sqlda pointers.

Element Purpose Restrictions Syntax
descriptor Quoted string that identifies a system-

descriptor area
Must already be allocated. Use
single (') quotation marks.

Quoted String,
p. 4-243

descriptor_var Host variable that identifies a system-
descriptor area

System-descriptor area must
already be allocated.

Language
specific

indicator_var Host variable that receives a return
code if corresponding parameter_var is
NULL value, or if truncation occurs

Cannot be DATETIME or
INTERVAL data type.

Language
specific

output_var Host variable whose contents replace a
question-mark (?) placeholder in a
prepared statement

Must be a character data type. Language
specific

sqlda_pointer Pointer to an sqlda structure that
defines data type and memory location
of values to replace a question-mark
(?) placeholder in a prepared object

Cannot begin with a dollar sign
($) or a colon (:) symbol. An
sqlda structure is required with
dynamic SQL.

DESCRIBE,
p. 2-351

USING
Clause

INTO output_var

Back to EXECUTE
p. 2-394

DESCRIPTOR

,

SQL DESCRIPTOR

INDICATOR

+ :

sqlda_pointer

 indicator_var

'descriptor '

 descriptor_var
2-396 IBM Informix Guide to SQL: Syntax

EXECUTE
Restrictions with the INTO Clause

If you execute a prepared SELECT statement that returns more than one row
or a prepared EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement for
an SPL function that returns more than one group of return values, you
receive an error message. In addition, if you prepare and declare a statement
and then attempt to execute that statement, you receive an error message.

You cannot select a null value from a table column and place that value into
an output variable. If you know in advance that a table column contains a
null value, after you select the data, check the indicator variable that is
associated with the column to determine if the value is null.

To use the INTO clause with the EXECUTE statement

1. Declare the output variables that the EXECUTE statement uses.

2. Use PREPARE to prepare your SELECT statement or to prepare your
EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement.

3. Use the EXECUTE statement, with the INTO clause, to execute your
SELECT statement or to execute your EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement.

Storage Location for Returned Values

You can specify any of the following items to replace the question-mark
placeholders in a statement before you execute it:

� A host variable name (if the number and data type of the question
marks are known at compile time)

� A system descriptor that identifies a system

� A descriptor that is a pointer to an sqlda structure

Saving Values In Host or Program Variables

If you know the number of return values to be supplied at runtime and their
data types, you can define the values that the SELECT or EXECUTE FUNCTION
(or EXECUTE PROCEDURE) statement returns as host variables in your
program. Use these host variables with the INTO keyword, followed by the
names of the variables. These variables are matched with the return values in
a one-to-one correspondence, from left to right.
SQL Statements 2-397

EXECUTE
You must supply one variable name for each value that the SELECT or
EXECUTE FUNCTION (or EXECUTE PROCEDURE) returns. The data type of
each variable must be compatible with the corresponding returned value
from the prepared statement.

Saving Values in a System-Descriptor Area

If you do not know the number of return values to be supplied at runtime or
their data types, you can associate output values with a system-descriptor
area. A system-descriptor area describes the data type and memory location
of one or more values.

A system-descriptor area conforms to the X/Open standards. ♦

To specify a system-descriptor area as the location of output values, use the
INTO SQL DESCRIPTOR clause of the EXECUTE statement. Each time that the
EXECUTE statement is run, the values that the system-descriptor area
describes are stored in the system-descriptor area.

The following example shows how to use the system-descriptor area to
execute prepared statements in IBM Informix ESQL/C:

EXEC SQL allocate descriptor 'desc1';
...
sprintf(sel_stmt, "%s %s %s",

"select fname, lname from customer",
"where customer_num =",
cust_num);

EXEC SQL prepare sel1 from :sel_stmt;
EXEC SQL execute sel1 into sql descriptor 'desc1';

The COUNT field corresponds to the number of values that the prepared
statement returns. The value of COUNT must be less than or equal to the
value of the occurrences that were specified when the system-descriptor area
was allocated with the ALLOCATE DESCRIPTOR statement.

You can obtain the value of a field with the GET DESCRIPTOR statement and
set the value with the SET DESCRIPTOR statement.

For more information, refer to the discussion of the system-descriptor area in
the IBM Informix ESQL/C Programmer’s Manual.

X/O
2-398 IBM Informix Guide to SQL: Syntax

EXECUTE
Saving Values in an sqlda Structure

If you do not know the number of output values to be returned at runtime or
their data types, you can associate output values from an sqlda structure. An
sqlda structure lists the data type and memory location of one or more return
values. To specify an sqlda structure as the location of return values, use the
INTO DESCRIPTOR clause of the EXECUTE statement. Each time the EXECUTE
statement is run, the database server places the returns values that the sqlda
structure describes into the sqlda structure.

The following example shows how to use an sqlda structure to execute a
prepared statement in IBM Informix ESQL/C:

struct sqlda *pointer2;
...
sprintf(sel_stmt, "%s %s %s",

"select fname, lname from customer",
"where customer_num =",
cust_num);

EXEC SQL prepare sel1 from :sel_stmt;
EXEC SQL describe sel1 into pointer2;
EXEC SQL execute sel1 into descriptor pointer2;

The sqld value specifies the number of output values that are described in
occurrences of sqlvar. This number must correspond to the number of values
that the SELECT or EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement
returns.

For more information, refer to the sqlda discussion in the IBM Informix
ESQL/C Programmer’s Manual.

This example uses the INTO clause with an EXECUTE statement in ESQL/C:

EXEC SQL prepare sel1 from 'select fname, lname from customer
where customer_num =123';

EXEC SQL execute sel1 into :fname, :lname using :cust_num;

E/C
SQL Statements 2-399

EXECUTE
The next example uses the INTO clause to return multiple rows of data:

EXEC SQL BEGIN DECLARE SECTION;
int customer_num =100;
char fname[25];
EXEC SQL END DECLARE SECTION;

EXEC SQL prepare sel1 from 'select fname from customer
where customer_num=?';

for (;customer_num < 200; customer_num++)
{
EXEC SQL execute sel1 into :fname using customer_num;
printf("Customer number is %d\n", customer_num);
printf("Customer first name is %s\n\n", fname);
}

The sqlca Record and EXECUTE

Following an EXECUTE statement, the sqlca can reflect two results:

� The sqlca can reflect an error within the EXECUTE statement.

For example, when an UPDATE …WHERE statement in a prepared
statement processes zero rows, the database server sets sqlca to 100.

� The sqlca can reflect the success or failure of the executed statement.

Error Conditions with EXECUTE

If a prepared statement fails to access any rows, the database server returns
zero (0). In a multistatement prepare, if any statement in the following list
fails to access rows, the database server returns SQLNOTFOUND (100):

� INSERT INTO table SELECT … WHERE

� SELECT INTO TEMP…WHERE

� DELETE … WHERE

� UPDATE … WHERE

In an ANSI-compliant database, if you prepare and execute any of the state-
ments in the preceding list, and no rows are returned, the database server
returns SQLNOTFOUND (= 100). ♦

ANSI
2-400 IBM Informix Guide to SQL: Syntax

EXECUTE
USING Clause
Use the USING clause to specify the values that are to replace question-mark
(?) placeholders in the prepared statement. Providing values in the EXECUTE
statement that replace the question-mark placeholders in the prepared
statement is sometimes called parameterizing the prepared statement.

This closely resembles the syntax of the “INTO Clause” on page 2-395.

Element Purpose Restrictions Syntax
descriptor Quoted string that identifies a system-

descriptor area
System-descriptor area must
already be allocated. Use
single (') quotation marks.

Quoted String,
p. 4-243

descriptor_var Host variable that identifies a system-
descriptor area

System-descriptor area must
already be allocated.

Language specific

indicator_var Host variable that receives a return
code if corresponding parameter_var is
NULL value, or if truncation occurs

Cannot be DATETIME or
INTERVAL data type.

Language specific

parameter_var Host variable whose contents replace a
question-mark (?) placeholder in a
prepared statement

Must be a character data type. Language specific

sqlda_pointer Pointer to an sqlda structure that
defines data type and memory location
of values tot replace question-mark
(?) placeholder in a prepared object

Cannot begin with a dollar
sign ($) or a colon (:). An
sqlda structure is required
with dynamic SQL.

DESCRIBE,
p. 2-351

USING
Clause

USING parameter_var

Back to EXECUTE
p. 2-394

DESCRIPTOR

,

SQL DESCRIPTOR

INDICATOR

+ :

sqlda_pointer

 indicator_var

'descriptor '

 descriptor_var
SQL Statements 2-401

EXECUTE
If you know the number of parameters to be supplied at runtime and their
data types, you can define the parameters that are needed by the EXECUTE
statement as host variables in your program.

If you do not know the number of parameters to be supplied at runtime or
their data types, you can associate input values from a system-descriptor area
or an sqlda structure. Both of these descriptor structures describe the data
type and memory location of one or more values to replace question-mark (?)
placeholders.

Supplying Parameters Through Host or Program Variables

You pass parameters to the database server by opening the cursor with the
USING keyword, followed by the names of the variables. These variables are
matched with prepared statement question-mark (?) placeholders in a one-
to-one correspondence, from left to right. You must supply one storage-
parameter variable for each placeholder. The data type of each variable must
be compatible with the corresponding value that the prepared statement
requires.

The following example executes the prepared UPDATE statement in ESQL/C:

stcopy ("update orders set order_date = ?
where po_num = ?", stm1);

EXEC SQL prepare statement_1 from :stm1;
EXEC SQL execute statement_1 using :order_date, :po_num;

Supplying Parameters Through a System Descriptor

You can create a system-descriptor area that describes the data type and
memory location of one or more values and then specify the descriptor in the
USING SQL DESCRIPTOR clause of the EXECUTE statement.

Each time that the EXECUTE statement is run, the values that the system-
descriptor area describes are used to replace question-mark (?) placeholders
in the PREPARE statement.

The COUNT field corresponds to the number of dynamic parameters in the
prepared statement. The value of COUNT must be less than or equal to the
number of item descriptors that were specified when the system-descriptor
area was allocated with the ALLOCATE DESCRIPTOR statement.
2-402 IBM Informix Guide to SQL: Syntax

EXECUTE
The following example shows how to use system descriptors to execute a
prepared statement in ESQL/C:

EXEC SQL execute prep_stmt using sql descriptor 'desc1';

Supplying Parameters Through an sqlda Structure

You can specify the sqlda pointer in the USING DESCRIPTOR clause of the
EXECUTE statement.

Each time the EXECUTE statement is run, the values that the descriptor
structure describes are used to replace question-mark (?) placeholders in the
PREPARE statement.

The sqld value specifies the number of input values that are described in
occurrences of sqlvar. This number must correspond to the number of
dynamic parameters in the prepared statement.

The following example shows how to use an sqlda structure to execute a
prepared statement in ESQL/C:

EXEC SQL execute prep_stmt using descriptor pointer2

Related Information
Related statements: ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR,
DECLARE, EXECUTE IMMEDIATE, FETCH, GET DESCRIPTOR, PREPARE, PUT,
and SET DESCRIPTOR

For a task-oriented discussion of the EXECUTE statement, see the IBM Informix
Guide to SQL: Tutorial.

For more information about concepts that relate to the EXECUTE statement,
see the IBM Informix ESQL/C Programmer’s Manual.

E/C
SQL Statements 2-403

EXECUTE FUNCTION
EXECUTE FUNCTION
Use the EXECUTE FUNCTION statement to execute a user-defined function.

Syntax

Usage
The EXECUTE FUNCTION statement invokes a user-defined function, with
arguments, and specifies where the results are to be returned.

An external function returns exactly one value.

An SPL function can return one or more values.

You cannot use the EXECUTE FUNCTION statement to execute any type of
user-defined procedure that returns no value. Instead, use the EXECUTE
PROCEDURE or EXECUTE ROUTINE statement to execute procedures.

You must have the Execute privilege on the user-defined function.

+

Element Purpose Restrictions Syntax
function Name of a user-defined

function to execute
Must exist. Database Object

Name, p. 4-46
SPL_var Variable that contains the

name of an SPL routine to
be executed

Must be a CHAR, VARCHAR, NCHAR, or
NVARCHAR data type that contains the non-
NULL name of an existing SPL function.

Identifier, p. 4-189

,
SPL

EXECUTE FUNCTION

Argument
p. 4-5

INTO Clause
p. 2-406

SPL_var

SPL

E/C
function ()

IFX_REPLACE_MODULE Function
p. 4-132

IDS

C

jvpcontrol Function
p. 2-409

IDS

Java
2-404 IBM Informix Guide to SQL: Syntax

EXECUTE FUNCTION
If a user-defined function has a companion function, any user who executes
the function must have the Execute privilege on both the function and its
companion. For example, if a function has a negator function, any user who
executes the function must have the Execute privilege on both the function
and its negator.

For more information, see “GRANT” on page 2-459.

How the EXECUTE FUNCTION Statement Works

For a user-defined function to be executed with the EXECUTE FUNCTION
statement, the following conditions must exist:

� The qualified function name or the function signature (the function
name with its parameter list) must be unique within the name space
or database.

� The function must exist.

� The function must not have any OUT parameters.

If EXECUTE FUNCTION specifies fewer arguments than the user-defined
function expects, the unspecified arguments are said to be missing. Missing
arguments are initialized to their corresponding parameter default values, if
these were defined. The syntax of specifying default values for parameters is
described in “Routine Parameter List” on page 4-266.

EXECUTE FUNCTION returns an error under the following conditions:

� It specifies more arguments than the user-defined function expects.

� One or more arguments are missing and do not have default values.

In this case, the arguments are initialized to the value of UNDEFINED.

� The fully qualified function name or the signature is not unique.

� No function with the specified name or signature that you specify is
found.

� You use it to try to execute a user-defined procedure.

If the function name is not unique within the database, you must specify
enough parameter_type information to disambiguate the name.
SQL Statements 2-405

EXECUTE FUNCTION
If the database server cannot resolve an ambiguous function name whose
signature differs from that of another routine only in an unnamed-ROW type
parameter, an error is returned. (This error cannot be anticipated by the
database server at the time when the ambiguous function is defined.)

INTO Clause

You must include an INTO clause with EXECUTE FUNCTION to specify the
variables that receive the values that a user-defined function returns. If the
function returns more than one value, the values are returned into the list of
variables in the order in which you specify them.

Element Purpose Restrictions Syntax
data_structure Structure that was declared as a

host variable
Individual elements of structure
must be compatible with the data
types of the returned values.

Language specific

data_var Variable to receive the value that
a user-defined function returns

See “Data Variables” on
page 2-407.

Language specific

indicator_var Program variable to store a
return code if the corresponding
data_var receives a NULL value

Use an indicator variable if the
value of the corresponding
data_var might be NULL.

Language specific

$

,

INDICATOR

:E/C

Back to EXECUTE FUNCTION
p. 2-404

INTO Clause

INTO data_var

data_structure

indicator_var

+

2-406 IBM Informix Guide to SQL: Syntax

EXECUTE FUNCTION
If the EXECUTE FUNCTION statement stands alone (that is, it is not part of a
DECLARE statement and does not use the INTO clause), it must execute a
noncursor function. A noncursor function returns only one row of values.
The following example shows a SELECT statement in IBM Informix ESQL/C:

EXEC SQL execute function cust_num(fname, lname, company_name)
into :c_num;

Data Variables

If you issue the EXECUTE FUNCTION statement within an ESQL/C program,
data_var must be a host variable. Within an SPL routine, data_var must be an
SPL variable.

If you issue the EXECUTE FUNCTION statement within a CREATE TRIGGER
statement, data_var must be column names within the triggering table or
another table.

INTO Clause with Indicator Variables

You should use an indicator variable if the possibility exists that data
returned from the user-defined function statement is null. For more infor-
mation about indicator variables, see the IBM Informix ESQL/C Programmer’s
Manual.

INTO Clause with Cursors

If the EXECUTE FUNCTION statement executes a user-defined function that
returns more than one row of values, it must execute a cursor function. A
cursor function can return one or more rows of values and must be associated
with a function cursor to execute.

If the SPL function returns more than one row or a collection data type, you
must access the rows or collection elements with a cursor.

To return more than one row of values, an external function must be defined
as an iterator function. For more information on how to write iterator
functions, see the IBM Informix DataBlade API Programmer’s Guide. ♦

To return more than one row of values, an SPL function must include the
WITH RESUME keywords in its RETURN statement. For more information on
how to write SPL functions, see the IBM Informix Guide to SQL: Tutorial. ♦

E/C

Ext

SPL
SQL Statements 2-407

EXECUTE FUNCTION
In an IBM Informix ESQL/C program, the DECLARE statement can declare a
function cursor and the FETCH statement can return rows individually from
the cursor. You can put the INTO clause in the FETCH or in the EXECUTE
FUNCTION statement, but you cannot put it in both. The following
IBM Informix ESQL/C code examples show different ways you can use the
INTO clause:

� Using the INTO clause in the EXECUTE FUNCTION statement:
EXEC SQL declare f_curs cursor for

execute function get_orders(customer_num)
into :ord_num, :ord_date;

EXEC SQL open f_curs;
while (SQLCODE == 0)

EXEC SQL fetch f_curs;
EXEC SQL close f_curs;

� Using the INTO clause in the FETCH statement:
EXEC SQL declare f_curs cursor for

execute function get_orders(customer_num);
EXEC SQL open f_curs;
while (SQLCODE == 0)

EXEC SQL fetch f_curs into :ord_num, :ord_date;
EXEC SQL close f_curs;

♦

In an SPL routine, if a SELECT returns more than one row, you must use the
FOREACH statement to access the rows individually. The INTO clause of the
SELECT statement can store the fetched values. For more information, see
“FOREACH” on page 3-27. ♦

Alternatives to PREPARE ... EXECUTE FUNCTION ... INTO

You cannot prepare an EXECUTE FUNCTION statement that includes the INTO
clause. For similar functionality, however, you can follow these steps:

1. Prepare the EXECUTE FUNCTION statement with no INTO clause.

2. Declare a function cursor for the prepared statement.

3. Open the cursor.

4. Execute the FETCH statement with an INTO clause to fetch the
returned values into program variables.

E/C

SPL

E/C
2-408 IBM Informix Guide to SQL: Syntax

EXECUTE FUNCTION
Alternatively, you can do the following:

1. Declare a cursor for the EXECUTE FUNCTION statement without first
preparing the statement, and include the INTO clause in the
EXECUTE FUNCTION when you declare the cursor.

2. Open the cursor.

3. Fetch the returned values from the cursor without using the INTO
clause of the FETCH statement. ♦

Dynamic Routine-Name Specification of SPL Functions

Dynamic routine-name specification simplifies the writing of an SPL function
that calls another SPL routine whose name is not known until runtime. To
specify the name of an SPL routine in the EXECUTE FUNCTION statement,
instead of listing the explicit name of an SPL routine, you can use an SPL
variable to hold the routine name. For more information about how to
execute SPL functions dynamically, see the IBM Informix Guide to SQL: Tutorial.

The jvpcontrol Function

The jvpcontrol() function is a built-in iterative function that you can use to
obtain information about a Java Virtual Processor (JVP) class.

You must associate this function with the equivalent of a cursor in the Java
language.

SPL

Java

Element Purpose Restrictions Syntax
jvp_id Name of the Java Virtual Processor (JVP) class for

which you want information
The specified Java Virtual
Processor class must exist.

Identifier,
p. 4-189

informix.jvpcontrol jvp_id

The jvpcontrol Function

"

Back to EXECUTE FUNCTION
p. 2-404

" MEMORY

THREADS

()
SQL Statements 2-409

EXECUTE FUNCTION
Using the MEMORY Keyword

When you specify the MEMORY keyword, the jvpcontrol function returns the
memory usage on the JVP class that you specify. The following example
requests information about the memory usage of the JVP class named 4:

EXECUTE FUNCTION INFORMIX.JVPCONTROL ("MEMORY 4");

Using the THREADS Keyword

When you specify the THREADS keyword, the jvpcontrol function returns a
list of the threads running on the JVP class that you specify. The following
example requests information about the threads running on the JVP class
named 4:

EXECUTE FUNCTION INFORMIX.JVPCONTROL ("THREADS 4");

Related Information
Related statements: CALL, CREATE FUNCTION, CREATE FUNCTION FROM,
DROP FUNCTION, DROP ROUTINE, EXECUTE PROCEDURE, and FOREACH
2-410 IBM Informix Guide to SQL: Syntax

EXECUTE IMMEDIATE
EXECUTE IMMEDIATE
Use the EXECUTE IMMEDIATE statement to perform the functions of the
PREPARE, EXECUTE, and FREE statements.

Use this statement with ESQL/C.

Syntax

Usage
The EXECUTE IMMEDIATE statement makes it easy to execute dynamically a
single simple SQL statement that is constructed during program execution.
For example, you can obtain the name of a database from program input,
construct the DATABASE statement as a program variable, and then use
EXECUTE IMMEDIATE to execute the statement, which opens the database.

The quoted string that includes one or more SQL statements, or the contents
of statement_var, is parsed and executed if correct; then all data structures and
memory resources are released immediately. In the usual method of dynamic
execution, these operations require separate PREPARE, EXECUTE, and FREE
statements.

The maximum length of an EXECUTE IMMEDIATE statement is 64 kilobytes.

+

E/C

Element Purpose Restrictions Syntax
statement A valid SQL statement See the same sections of Usage that are listed below

for statement_var.
See this
chapter.

statement_var Host variable that
contains a character
string of one or more
SQL statements

Must be a previously declared character-type
variable. See “EXECUTE IMMEDIATE and
Restricted Statements” on page 2-412 and “Restric-
tions on Allowed Statements” on page 2-412.

Language
specific

statement_var

EXECUTE IMMEDIATE statement

;

''
SQL Statements 2-411

EXECUTE IMMEDIATE
EXECUTE IMMEDIATE and Restricted Statements

You cannot use the EXECUTE IMMEDIATE statement to execute the following
SQL statements. Although the EXECUTE PROCEDURE statement appears on
this list, the restriction applies only to EXECUTE PROCEDURE statements that
return values.

In addition, you cannot use the EXECUTE IMMEDIATE statement to execute
the following statements in text that contains multiple statements that are
separated by semicolons:

Use a PREPARE and either a cursor or the EXECUTE statement to execute a
dynamically constructed SELECT statement.

Restrictions on Allowed Statements

The following restrictions apply to the statement that is contained in the
quoted string or in the statement variable:

� The statement cannot contain a host-language comment.

� Names of host-language variables are not recognized as such in
prepared text.

The only identifiers that you can use are names defined in the
database, such as table names and columns.

CLOSE
CONNECT
DECLARE
DISCONNECT
EXECUTE
EXECUTE FUNCTION
EXECUTE PROCEDURE
FETCH
GET DESCRIPTOR
GET DIAGNOSTICS

OPEN
OUTPUT
PREPARE
SELECT
SET AUTOFREE
SET CONNECTION
SET DEFERRED_PREPARE
SET DESCRIPTOR
WHENEVER

CLOSE DATABASE
CREATE DATABASE
DATABASE

DROP DATABASE
SELECT
(except SELECT INTO TEMP)
2-412 IBM Informix Guide to SQL: Syntax

EXECUTE IMMEDIATE
� The statement cannot reference a host-variable list or a descriptor; it
must not contain any question-mark (?) placeholders, which are
allowed with a PREPARE statement.

� The text must not include any embedded SQL statement prefix, such
as the dollar sign ($) or the keywords EXEC SQL.

Although it is not required, the SQL statement terminator (;) can be
included in the statement text.

� A SELECT or INSERT statement cannot contain a Collection-Derived
Table clause.

EXECUTE IMMEDIATE cannot process input host variables, which are
required for a collection variable. Use the EXECUTE statement or a
cursor to process prepared accesses to collection variables. ♦

Examples of the EXECUTE IMMEDIATE Statement

The following examples show EXECUTE IMMEDIATE statements in ESQL/C.
Both examples use host variables that contain a CREATE DATABASE
statement. The first example uses the SQL statement terminator (;) inside the
quoted string.

sprintf(cdb_text1, "create database %s;", usr_db_id);
EXEC SQL execute immediate :cdb_text;

sprintf(cdb_text2, "create database %s", usr_db_id);
EXEC SQL execute immediate :cdb_text;

Related Information
Related statements: EXECUTE, FREE, and PREPARE

For a discussion of quick execution, see the IBM Informix Guide to SQL: Tutorial.

IDS
SQL Statements 2-413

EXECUTE PROCEDURE
EXECUTE PROCEDURE
Use the EXECUTE PROCEDURE statement to invoke a user-defined procedure.

Syntax

Usage
The EXECUTE PROCEDURE statement invokes the named user-defined
procedure and specifies its arguments.

In Dynamic Server, for backward compatibility, you can use the EXECUTE
PROCEDURE statement to execute an SPL function that you created with the
CREATE PROCEDURE statement. ♦

+

Element Purpose Restrictions Syntax
function SPL function to execute Must exist. Database Object

Name, p. 4-46
output_var Host variable or program

variable that receives the
returned value from UDR

In the context of a CREATE TRIGGER
statement, must contain column names in
the triggering table or in another table.

Language specific

procedure User-defined procedure to
execute

Must exist. Database Object
Name, p. 4-46

SPL_var Variable that contains the
name of the SPL routine to
execute

Must be a character data type that
contains the non-NULL name of an SPL
routine.

Identifier, p. 4-189

output_var

EXECUTE PROCEDURE procedure

SPL

function

SPL_var

,
()

Argument
p. 4-5

,

INTO

SPL

SQLJ Built-In Procedures
p. 2-417

IDS

Java

IFX_UNLOAD_MODULE Procedure
p. 2-416

IDS

C

IDS
2-414 IBM Informix Guide to SQL: Syntax

EXECUTE PROCEDURE
In Extended Parallel Server, use the EXECUTE PROCEDURE statement to
execute any SPL routine. Extended Parallel Server does not support the
EXECUTE FUNCTION statement. ♦

In ESQL/C, if the EXECUTE PROCEDURE statement returns more than one
row, it must be enclosed within an SPL FOREACH loop or accessed through a
cursor. ♦

Causes of Errors

EXECUTE PROCEDURE returns an error under the following conditions:

� It has more arguments than the called procedure expects.

� One or more arguments are missing and do not have default values.
In this case the arguments are initialized to the value of UNDEFINED.

� The fully qualified procedure name or the signature is not unique.

� No procedure with the specified name or signature is found.

Using the INTO Clause

Use the INTO clause to specify where to store the values that the SPL function
returns.

If an SPL function returns more than one value, the values are returned into
the list of variables in the order in which you specify them. If an SPL function
returns more than one row or a collection data type, you must access the rows
or collection elements with a cursor.

You cannot prepare an EXECUTE PROCEDURE statement that has an INTO
clause. For more information, see “Alternatives to PREPARE ... EXECUTE
FUNCTION ... INTO” on page 2-408.

Dynamic Routine-Name Specification of SPL Procedures

Dynamic routine-name specification simplifies the writing of an SPL routine that
calls another SPL routine whose name is not known until runtime. To specify
the name of an SPL routine in the EXECUTE PROCEDURE statement, instead of
listing the explicit name of an SPL routine, you can use an SPL variable to hold
the routine name.

XPS

E/C

SPL

SPL
SQL Statements 2-415

EXECUTE PROCEDURE
If the SPL variable names an SPL routine that returns a value (an SPL
function), include the INTO clause of EXECUTE PROCEDURE to specify a
receiving variable (or variables) to hold the value (or values) that the SPL
function returns. For more information on how to execute SPL procedures
dynamically, see the IBM Informix Guide to SQL: Tutorial.

IFX_UNLOAD_MODULE Procedure
The IFX_UNLOAD_MODULE procedure unloads a shared-object file from
memory.

The IFX_UNLOAD_MODULE procedure can only unload an unused shared-
object file; that is, when no executing SQL statements (in any database) are
using any UDRs in the specified shared-object file. If any UDR in the shared-
object file is currently in use, then IFX_UNLOAD_MODULE raises an error.

For example, suppose you want to unload the circle.so shared library, which
contains C UDRs. If this library resides in the /usr/apps/opaque_types
directory, you can use the following EXECUTE PROCEDURE statement to
execute the IFX_UNLOAD_MODULE procedure:

EXECUTE PROCEDURE ifx_unload_module(
“/usr/apps/opaque_types/circle.so”, “C”);

♦

IDS

C

Element Purpose Restrictions Syntax
module_name Full pathname of file

to unload
Shared-object file must exist and be unused.
Pathname can be up to 255 characters long.

Quoted String,
p. 4-243

Back to EXECUTE PROCEDURE
p. 2-414

IFX_UNLOAD_MODULE
Procedure

(module_name C,IFX_UNLOAD_MODULE)" "

UNIX
2-416 IBM Informix Guide to SQL: Syntax

EXECUTE PROCEDURE
For example, suppose you want to unload the circle.dll dynamic link library,
which contains C UDRs. If this library is in the C:\usr\apps\opaque_types
directory, you can use the following EXECUTE PROCEDURE statement to
execute the IFX_UNLOAD_MODULE procedure:

EXECUTE PROCEDURE ifx_unload_module(
“C:\usr\apps\opaque_types\circle.dll”, “C”);

♦

For more information on how to use IFX_UNLOAD_MODULE to unload a
shared-object file, see the chapter on how to design a UDR in IBM Informix
User-Defined Routines and Data Types Developer’s Guide. For information on
how to use the IFX_REPLACE_MODULE function, see
“IFX_REPLACE_MODULE Function” on page 4-132.

SQLJ Driver Built-In Procedures
Use the SQLJ Driver built-in procedures for one of the following tasks:

� To install, replace, or remove a set of Java classes

� To specify a path for Java class resolution for Java classes that are
included in a JAR file

� To map or remove the mapping between a user-defined type and the
Java type to which it corresponds

Windows

IDS

Java

SQLJ Driver
Built-In Procedures

Back to EXECUTE PROCEDURE
p. 2-414

sqlj.install_JAR
p. 2-418

sqlj.replace_jar
p. 2-419

sqlj.remove_JAR
p. 2-420

sqlj.alter_java_path
p. 2-421

sqlj.SetUDTExtName
p. 2-422

sqlj.unsetUDTExtName
p. 2-423
SQL Statements 2-417

EXECUTE PROCEDURE
The SQLJ built-in procedures are stored in the sysprocedures system catalog
table. They are grouped under the sqlj schema.

Tip: For any Java static method, the first built-in procedure that you execute must be
the sqlj.install_jar() procedure. You must install the jar file before you can create a
UDR or map a user-defined data type to a Java type. Similarly, you cannot use any of
the other SQLJ built-in procedures until you have used sqlj.install_jar().

sqlj.install_jar

Use the sqlj.install_jar() procedure to install a Java jar file in the current
database and assign it a jar identifier.

For example, consider a Java class Chemistry that contains the following
static method explosiveReaction():

public static int explosiveReaction(int ingredient);

Here the Chemistry class resides in this jar file on the server computer:

/students/data/Courses.jar

You can install all classes in the Courses.jar jar file in the current database
with the following call to the sqlj.install_jar() procedure:

EXECUTE PROCEDURE
sqlj.install_jar("file://students/data/Courses.jar",
"course_jar")

Element Purpose Restrictions Syntax
deploy Integer that causes the procedure to search for

deployment descriptor files in the jar file
None. Literal Number,

p. 4-216
jar_file URL of the jar file that contains the UDR written in

Java
Maximum length of
the URL is 255 bytes.

Quoted String,
p. 4-243

()sqlj.install_jar jar_file , ,

sqlj.install_jar Back to SQLJ Built-In Procedures
p. 2-417

Jar Name
p. 4-207

deploy

0

2-418 IBM Informix Guide to SQL: Syntax

EXECUTE PROCEDURE
The sqlj.install_jar() procedure assigns the jar ID, course_jar, to the
Courses.jar file that it has installed in the current database.

After you define a jar ID in the database, you can use that jar ID when you
create and execute a UDR written in Java.

When you specify a nonzero number for the third argument, the database
server searches through any included deployment descriptor files. For
example, you might want to include descriptor files that include SQL state-
ments to register and grant privileges on UDRs in the jar file.

sqlj.replace_jar

Use the sqlj.replace_jar() procedure to replace a previously installed jar file
with a new version. When you use this syntax, you provide only the new jar
file and assign it to the jar ID for which you want to replace the file.

If you attempt to replace a jar file that is referenced by one or more UDRs, the
database server generates an error. You must drop the referencing UDRs
before replacing the jar file.

For example, the following call replaces the Courses.jar file, which had previ-
ously been installed for the course_jar identifier, with the Subjects.jar file:

EXECUTE PROCEDURE
sqlj.replace_jar("file://students/data/Subjects.jar",
"course_jar")

Before you replace the Course.jar file, you must drop the user-defined
function sql_explosive_reaction() with the DROP FUNCTION (or DROP
ROUTINE) statement.

Element Purpose Restrictions Syntax
jar_file URL of the jar file that contains the

UDR written in Java
The maximum length of the URL is
255 bytes.

Quoted String,
p. 4-243

sqlj.replace_jar (jar_file ,)Jar Name
p. 4-207

sqlj.replace_jar Back to SQLJ Built-In Procedures
p. 2-417
SQL Statements 2-419

EXECUTE PROCEDURE
sqlj.remove_jar

Use the sqlj.remove_jar() procedure to remove a previously installed jar file
from the current database.

If you attempt to remove a jar file that is referenced by one or more UDRs, the
database server generates an error. You must drop the referencing UDRs
before you replace the jar file. For example, the following SQL statements
remove the jar file associated with the course_jar jar id:

DROP FUNCTION sql_explosive_reaction;
EXECUTE PROCEDURE sqlj.remove_jar("course_jar")

When you specify a nonzero number for the second argument, the database
server searches through any included deployment descriptor files. For
example, you might want to include descriptor files that include SQL state-
ments that revoke privileges on the UDRs in the associated jar file and to drop
them from the database.

Element Purpose Restrictions Syntax
deploy Integer that causes the procedure to search for

deployment descriptor files in the jar file
None. Literal Number,

p. 4-216

sqlj.remove_jar (),Jar Name
p. 4-207

sqlj.remove_jar Back to SQLJ Built-In Procedures
p. 2-417

deploy

0

2-420 IBM Informix Guide to SQL: Syntax

EXECUTE PROCEDURE
sqlj.alter_java_path

Use the sqlj.alter_java_path() procedure to specify the jar-file path to use
when the routine manager resolves related Java classes for the jar file of a
UDR written in Java.

The jar IDs that you specify, namely the jar ID for which you are altering the
jar-file path and the resolution jar ID, both must have been installed with the
sqlj.install_jar procedure. When you invoke a UDR written in the Java
language, the routine manager attempts to load the Java class in which the
UDR resides. At this time, it must resolve the references that this Java class
makes to other Java classes.

The three types of such class references are these:

1. References to Java classes that the JVPCLASSPATH configuration
parameter specifies (such as Java system classes like java.util.Vector)

2. References to classes that are in the same jar file as the UDR

3. References to classes that are outside the jar file that contains the UDR

The routine manager implicitly resolves classes of type 1 and 2 in the
preceding list. To resolve type 3 references, it examines all the jar files in the
jar-file path that the latest call to sqlj.alter_java_path() specified.

The routine manager throws an exception if it cannot resolve a class
reference. The routine manager checks the jar-file path for class references
after it performs the implicit type 1 and type 2 resolutions.

Element Purpose Restrictions Syntax
class_id Java class that contains

method to implement the UDR
The Java class must exist in the jar file that jar_id
identifies. Identifier must not exceed 255 bytes.

Language
specific

package_id Name of the package that
contains the Java class

The fully qualified identifier of
package_id.class_id must not exceed 255 bytes.

Language
specific

, (sqlj.alter_java_path ()package_id . *

sqlj.alter_java_path Back to SQLJ Driver Built-In Procedures
p. 2-417

Jar Name
p. 4-207

Jar Name
p. 4-207

),

class_id
SQL Statements 2-421

EXECUTE PROCEDURE
If you want a Java class to be loaded from the jar file that the jar-file path
specifies, make sure the Java class is not present in the JVPCLASSPATH config-
uration parameter. Otherwise, the system loader picks up that Java class first,
which might result in a different class being loaded than what you expect.

Suppose that the sqlj.install_jar() procedure and CREATE FUNCTION have
been executed as the preceding sections describe. The following SQL
statement invokes sql_explosive_reaction() function in the course_jar jar
file:

EXECUTE PROCEDURE alter_java_path("course_jar",
"(professor/*, prof_jar)");

EXECUTE FUNCTION sql_explosive_reaction(10000)

The routine manager attempts to load the class Chemistry. It uses the path
that the call to sqlj.alter_java_path() specifies to resolve any class references.
Therefore, it checks the classes that are in the professor package of the jar file
that prof_jar identifies.

sqlj.setUDTExtName

Use the sqlj.setUDTExtName() procedure to define the mapping between a
user-defined data type and a Java class.

Element Purpose Restrictions Syntax
class_id Java class that contains the

Java data type
Qualified name package_id.class_id
must not exceed 255 bytes.

Language-specific rules
for Java identifiers

data_type User-defined type for which
to create a mapping

Name must not exceed 255 bytes. Identifier, p. 4-189

package_id Name of package that
contains the class_id Java
class

Same length restrictions as class_id. Language-specific rules
for Java identifiers

sqlj.SetUDTextName (),

sqlj.SetUDTextName Back to SQLJ Driver
Built-In Procedures

p. 2-417

package_id . class_iddata_type
2-422 IBM Informix Guide to SQL: Syntax

EXECUTE PROCEDURE
You must have registered the user-defined data type in the CREATE DISTINCT
TYPE, CREATE OPAQUE TYPE, or CREATE ROW TYPE statement.

To look up the Java class for a user-defined data type, the database server
searches in the jar-file path, which the sqlj.alter_java_path() procedure has
specified. For more information on the jar-file path, see “sqlj.alter_java_path”
on page 2-421.

On the client side, the driver looks into the CLASSPATH path on the client
environment before it asks the database server for the name of the Java class.

The setUDTExtName procedure is an extension to the SQLJ:SQL Routines using
the Java Programming Language specification.

sqlj.unsetUDTExtName

Use the sqlj.unsetUDTExtName() procedure to remove the mapping from a
user-defined data type to a Java class.

This procedure removes the SQL-to-Java mapping, and consequently
removes any cached copy of the Java class from database server shared
memory.

The unsetUDTExtName procedure is an extension to the SQLJ:SQL Routines
Using the Java Programming Language specification.

Related Information
Related statements: CREATE FUNCTION, CREATE PROCEDURE, EXECUTE
FUNCTION, GRANT, CALL, FOREACH, and LET

Element Purpose Restrictions Syntax
data_type User-defined data type for which to remove the mapping Must exist. Identifier, p. 4-189

sqlj.unsetUDTExtName ()

sqlj.unsetUDTExtName Back to SQLJ Built-In Procedures
p. 2-417

data_type
SQL Statements 2-423

2-424 IBM Informix Guide to SQL: Syntax

FETCH
FETCH
Use the FETCH statement to move a cursor to a new row in the active set and
to retrieve the row values from memory. Use this statement with ESQL/C.

Syntax

E/C

Element Purpose Restrictions Syntax
cursor_id Cursor to retrieve rows Must be declared and open Identifier, p. 4-189
cursor_id_var Host variable storing cursor_id Must be character data type Language specific
data_structure Structure as a host variable Must store fetched values Language specific
descriptor System-descriptor area Must have been allocated Quoted String, p. 4-243
descriptor_var Host variable storing descriptor Must be allocated. Language specific
indicator_var Host variable for return code if

output_var can be NULL value
See “Using Indicator
Variables” on page 428.

Language specific

output_var Host variable for fetched value Must store value from row Language specific
position_num Position relative to current row Value 0 fetches current row Literal Number, p. 4-216
position_num_var Host variable (= position_num) Value 0 fetches current row Language specific
row_position Ordinal position in active set Must be an integer >1 Literal Number, p. 4-216
row_position_var Host variable (= row_ position) Must be 1 or greater Language specific
sqlda_pointer Pointer to an sqlda structure Cannot begin with $ nor : See ESQL/C manual.

NEXT

,

RELATIVE

ABSOLUTE

position_num-

PREVIOUS

FIRST

LAST

CURRENT

data_structure

INTO output_var

+

indicator_var

FETCH

+

+

:

position_num_var

+

INDICATOR

+

cursor_id

SQL DESCRIPTOR

DESCRIPTOR

USING

PRIOR

cursor_id_var

row_position

row_position_var

sqlda_pointer

descriptor_var

' descriptor '

FETCH
Usage
How the database server creates, stores, and fetches members of the active set
rows depends on whether the cursor is a sequential cursor or a scroll cursor.

In X/Open mode, if a cursor-direction value (such as NEXT or RELATIVE) is
specified, a warning message is issued, indicating that the statement does not
conform to X/Open standards. ♦

FETCH with a Sequential Cursor

A sequential cursor can fetch only the next row in sequence from the active
set. The sole cursor-position option that is available to a sequential cursor is
the default value, NEXT. A sequential cursor can read through a table only
once each time it is opened. The following ESQL/C example illustrates the
FETCH statement with a sequential cursor:

EXEC SQL FETCH seq_curs into :fname, :lname;
EXEC SQL FETCH NEXT seq_curs into ;fname, :lname;

When the program opens a sequential cursor, the database server processes
the query to the point of locating or constructing the first row of data. The
goal of the database server is to tie up as few resources as possible.

Because the sequential cursor can retrieve only the next row, the database
server can frequently create the active set one row at a time.

On each FETCH operation, the database server returns the contents of the
current row and locates the next row. This one-row-at-a-time strategy is not
possible if the database server must create the entire active set to determine
which row is the first row (as would be the case if the SELECT statement
included an ORDER BY clause).

FETCH with a Scroll Cursor

These ESQL/C examples illustrate the FETCH statement with a scroll cursor:

EXEC SQL fetch previous q_curs into :orders;
EXEC SQL fetch last q_curs into :orders;
EXEC SQL fetch relative -10 q_curs into :orders;
printf("Which row? ");
scanf("%d",row_num);
EXEC SQL fetch absolute :row_num q_curs into :orders;

X/O
SQL Statements 2-425

FETCH
A scroll cursor can fetch any row in the active set, either by specifying an
absolute row position or a relative offset. Use the following cursor-position
options to specify a particular row that you want to retrieve.

Tip: Do not confuse row-position values with rowid values. A rowid value is based
on the position of a row in its table and remains valid until the table is rebuilt. A row-
position value (a value that the ABSOLUTE keyword introduced) is based on the
position of the row in the current active set of the cursor; the next time the cursor is
opened, different rows might be selected.

How the Database Server Stores Rows

The database server must retain all the rows in the active set for a scroll cursor
until the cursor closes, because it cannot anticipate which row the program
will ask for next. When a scroll cursor opens, the database server implements
the active set as a temporary table, although it might not populate this table
immediately.

The first time a row is fetched, the database server copies it into the
temporary table as well as returning it to the program.

Keyword Purpose

NEXT Retrieves next row in active set

PREVIOUS Retrieves previous row in active set

PRIOR Retrieves previous row in active set (Synonymous with PREVIOUS.)

FIRST Retrieves the first row in active set

LAST Retrieves the last row in active set

CURRENT Retrieves the current row in active set (the same row as returned by
the previous FETCH statement from the scroll cursor)

RELATIVE Retrieves nth row, relative to the current cursor position in the active
set, where position_num (or position_num_var) supplies n. A negative
value indicates the nth row prior to the current cursor position.
If position_num = 0, the current row is fetched.

ABSOLUTE Retrieves nth row in active set, where row_position_var (or
row_position) = n . Absolute row positions are numbered from 1.
2-426 IBM Informix Guide to SQL: Syntax

FETCH
When a row is fetched for the second time, it can be taken from the temporary
table. This scheme uses the fewest resources in case the program abandons
the query before it fetches all the rows. Rows that are never fetched are
usually not created or are saved in a temporary table.

Specifying Where Values Go in Memory

Each value from the select list of the query or the output of the executed user-
defined function must be returned into a memory location. You can specify
these destinations in one of the following ways:

� Use the INTO clause of a SELECT statement.

� Use the INTO clause of an EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement.

� Use the INTO clause of a FETCH statement.

� Use a system-descriptor area.

� Use an sqlda structure.

Using the INTO Clause

If you associate a SELECT or EXECUTE FUNCTION (or EXECUTE PROCEDURE)
statement with a function cursor, the statement can contain an INTO clause to
specify variables to receive the returned values. You can use this method only
when you write the SELECT, EXECUTE FUNCTION, or EXECUTE PROCEDURE
statement as part of the cursor declaration; see “DECLARE” on page 2-323.
In this case, the FETCH statement cannot contain an INTO clause.

The following example uses the INTO clause of the SELECT statement to
specify program variables in ESQL/C:

EXEC SQL declare ord_date cursor for
select order_num, order_date, po_num

into :o_num, :o_date, :o_po;
EXEC SQL open ord_date;
EXEC SQL fetch next ord_date;

If you prepare a SELECT statement, the SELECT cannot include the INTO clause
so you must use the INTO clause of the FETCH statement.

When you create a SELECT statement dynamically, you cannot use an INTO
clause because you cannot name host variables in a prepared statement.
SQL Statements 2-427

FETCH
If you are certain of the number and data type of values in the select list, you
can use an INTO clause in the FETCH statement. If user input generated the
query, however, you might not be certain of the number and data type of
values that are being selected. In this case, you must use a system descriptor
or sqlda pointer structure.

Using Indicator Variables

Use an indicator variable if the returned data might be NULL.

The indicator_var parameter is optional, but use an indicator variable if the
possibility exists that the value of output_var is NULL.

If you specify the indicator variable without the INDICATOR keyword, you
cannot put a blank space between output_var and indicator_var.

For information about rules for placing a prefix before the indicator_var, see
the IBM Informix ESQL/C Programmer’s Manual.

The host variable cannot be a DATETIME or INTERVAL data type.

Using the INTO Clause of FETCH

When SELECT or EXECUTE FUNCTION (or EXECUTE PROCEDURE) omits the
INTO clause, you must specify a data destination when a row is fetched.

For example, to dynamically execute a SELECT or EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement, the SELECT or EXECUTE FUNCTION (or
EXECUTE PROCEDURE) cannot include its INTO clause in the PREPARE
statement. Therefore, the FETCH statement must include an INTO clause to
retrieve data into a set of variables. This method lets you store different rows
in different memory locations.

You can fetch into a program-array element only by using an INTO clause in
the FETCH statement. If you use a program array, you must list both the array
name and a specific element of the array in data_structure. When you are
declaring a cursor, do not refer to an array element within the SQL statement.

Tip: If you are certain of the number and data type of values in the select list of the
Projection clause, you can use an INTO clause in the FETCH statement.
2-428 IBM Informix Guide to SQL: Syntax

FETCH
In the following ESQL/C example, a series of complete rows is fetched into a
program array. The INTO clause of each FETCH statement specifies an array
element as well as the array name.

EXEC SQL BEGIN DECLARE SECTION;
char wanted_state[2];
short int row_count = 0;
struct customer_t{
{

int c_no;
char fname[15];
char lname[15];

} cust_rec[100];
EXEC SQL END DECLARE SECTION;

main()
{

EXEC SQL connect to'stores_demo';
printf("Enter 2-letter state code: ");
scanf ("%s", wanted_state);
EXEC SQL declare cust cursor for

select * from customer where state = :wanted_state;
EXEC SQL open cust;
EXEC SQL fetch cust into :cust_rec[row_count];
while (SQLCODE == 0)
{

printf("\n%s %s", cust_rec[row_count].fname,
cust_rec[row_count].lname);

row_count++;
EXEC SQL fetch cust into :cust_rec[row_count];

}
printf ("\n");
EXEC SQL close cust;
EXEC SQL free cust;

}

Using a System-Descriptor Area

You can use a system-descriptor area to store output values when you do not
know the number of return values or their data types that a SELECT or
EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement returns at
runtime. A system-descriptor area describes the data type and memory
location of one or more return values.

The keywords USING SQL DESCRIPTOR introduce the name of the system-
descriptor area into which you fetch the contents of a row or the return values
of a user-defined function. You can then use the GET DESCRIPTOR statement
to transfer the values that the FETCH statement returns from the system-
descriptor area into host variables.

X/O
SQL Statements 2-429

FETCH
This example shows a valid FETCH…USING SQL DESCRIPTOR statement:

EXEC SQL allocate descriptor 'desc';
...

EXEC SQL declare selcurs cursor for
select * from customer where state = 'CA';

EXEC SQL describe selcurs using sql descriptor 'desc';
EXEC SQL open selcurs;
while (1)

{
EXEC SQL fetch selcurs using sql descriptor 'desc';

You can also use an sqlda structure to dynamically supply parameters.
A system-descriptor area conforms to the X/Open standards.

Using sqlda Structures

You can use a pointer to an sqlda structure to stores output values when you
do not know the number of return values or their data types that a SELECT or
EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement returns.

This structure contains data descriptors that specify the data type and
memory location for one selected value. The keywords USING DESCRIPTOR
introduce the name of the sqlda pointer structure.

Tip: If you are certain of the number and data type of values in the select list, you can
use an INTO clause in the FETCH statement. For more information, see “Using the
INTO Clause of FETCH” on page 2-428.

To specify an sqlda structure as the location of parameters

1. Declare an sqlda pointer variable.

2. Use the DESCRIBE statement to fill in the sqlda structure.

3. Allocate memory to hold the data values.

4. Use the USING DESCRIPTOR clause of FETCH to specify the sqlda
structure as the location into which you fetch the returned values.
2-430 IBM Informix Guide to SQL: Syntax

FETCH
The following example shows a FETCH USING DESCRIPTOR statement:

struct sqlda *sqlda_ptr;
...
EXEC SQL declare selcurs2 cursor for

select * from customer where state = 'CA';
EXEC SQL describe selcurs2 into sqlda_ptr;
...
EXEC SQL open selcurs2;
while (1)

{
EXEC SQL fetch selcurs2 using descriptor sqlda_ptr;
...

The sqld value specifies the number of output values that are described in
occurrences of the sqlvar structures of the sqlda structure. This number must
correspond to the number of values returned from the prepared statement.

Fetching a Row for Update

The FETCH statement does not ordinarily lock a row that is fetched. Thus,
another process can modify (update or delete) the fetched row immediately
after your program receives it. A fetched row is locked in the following cases:

� When you set the isolation level to Repeatable Read, each row you
fetch is locked with a read lock until the cursor closes or the current
transaction ends. Other programs can also read the locked rows.

� When you set the isolation level to Cursor Stability, the current row
is locked.

� In an ANSI-compliant database, an isolation level of Repeatable Read
is the default; you can set it to something else. ♦

� When you are fetching through an update cursor (one that is
declared FOR UPDATE), each row you fetch is locked with a
promotable lock. Other programs can read the locked row, but no
other program can place a promotable or write lock; therefore, the
row is unchanged if another user tries to modify it using the WHERE
CURRENT OF clause of an UPDATE or DELETE statement.

ANSI
SQL Statements 2-431

FETCH
When you modify a row, the lock is upgraded to a write lock and remains
until the cursor is closed or the transaction ends. If you do not modify the
row, the behavior of the database server depends on the isolation level you
have set. The database server releases the lock on an unchanged row as soon
as another row is fetched, unless you are using Repeatable Read isolation (see
“SET ISOLATION” on page 2-691).

Important: You can hold locks on additional rows even when Repeatable Read
isolation is not in use or is unavailable. Update the row with unchanged data to hold
it locked while your program is reading other rows. You must evaluate the effect of
this technique on performance in the context of your application, and you must be
aware of the increased potential for deadlock.

When you use explicit transactions, be sure that a row is both fetched and
modified within a single transaction; that is, both the FETCH statement and
the subsequent UPDATE or DELETE statement must fall between a BEGIN
WORK statement and the next COMMIT WORK statement.

Fetching from a Collection Cursor

A collection cursor allows you to access the individual elements of an
ESQL/C collection variable. To declare a collection cursor, use the DECLARE
statement and include the Collection-Derived-Table segment in the SELECT
statement that you associate with the cursor. After you open the collection
cursor with the OPEN statement, the cursor allows you to access the elements
of the collection variable.

To fetch elements, one at a time, from a collection cursor, use the FETCH
statement and the INTO clause. The FETCH statement identifies the collection
cursor that is associated with the collection variable. The INTO clause
identifies the host variable that holds the element value that is fetched from
the collection cursor. The data type of the host variable in the INTO clause
must match the element type of the collection.

Suppose you have a table called children with the following structure:

CREATE TABLE children
(

age SMALLINT,
name VARCHAR(30),
fav_colorsSET(VARCHAR(20) NOT NULL),

)

IDS
2-432 IBM Informix Guide to SQL: Syntax

FETCH
The following ESQL/C code fragment shows how to fetch elements from the
child_colors collection variable:

EXEC SQL BEGIN DECLARE SECTION;
client collection child_colors;
varchar one_favorite[21];
char child_name[31] = "marybeth";

EXEC SQL END DECLARE SECTION;
EXEC SQL allocate collection :child_colors;
/* Get structure of fav_colors column for untyped
* child_colors collection variable */

EXEC SQL select fav_colors into :child_colors
from children
where name = :child_name;

/* Declare select cursor for child_colors collection
* variable */

EXEC SQL declare colors_curs cursor for
select * from table(:child_colors);

EXEC SQL open colors_curs;
do
{

EXEC SQL fetch colors_curs into :one_favorite;
...

} while (SQLCODE == 0)
EXEC SQL close colors_curs;
EXEC SQL free colors_curs;
EXEC SQL deallocate collection :child_colors;

After you fetch a collection element, you can modify the element with the
UPDATE or DELETE statements. For more information, see the UPDATE and
DELETE statements in this manual. You can also insert new elements into the
collection variable with an INSERT statement. For more information, see the
INSERT statement.

Checking the Result of FETCH

You can use the SQLSTATE variable to check the result of each FETCH
statement. The database server sets the SQLSTATE variable after each SQL
statement. If a row is returned successfully, the SQLSTATE variable contains
the value 00000. If no row is found, the database server sets the SQLSTATE
code to 02000, which indicates no data found, and the current row is
unchanged. The following conditions set the SQLSTATE code to 02000,
indicating no data found:

� The active set contains no rows.

� You issue a FETCH NEXT statement when the cursor points to the last
row in the active set or points past it.
SQL Statements 2-433

FETCH
� You issue a FETCH PRIOR or FETCH PREVIOUS statement when the
cursor points to the first row in the active set.

� You issue a FETCH RELATIVE n statement when no nth row exists in
the active set.

� You issue a FETCH ABSOLUTE n statement when no nth row exists in
the active set.

The database server copies the SQLSTATE code from the
RETURNED_SQLSTATE field of the system-diagnostics area. You can use the
GET DIAGNOSTICS statement to examine the RETURNED_SQLSTATE field
directly. The system-diagnostics area can also contain additional error
information.

You can also use SQLCODE of sqlca to determine the same results.

Related Information
Related statements: ALLOCATE DESCRIPTOR, CLOSE, DEALLOCATE
DESCRIPTOR, DECLARE, DESCRIBE, GET DESCRIPTOR, OPEN, PREPARE, SET
DEFERRED_PREPARE, and SET DESCRIPTOR

For a task-oriented discussion of the FETCH statement, see the IBM Informix
Guide to SQL: Tutorial.

For more information about concepts that relate to the FETCH statement, see
the IBM Informix ESQL/C Programmer’s Manual.
2-434 IBM Informix Guide to SQL: Syntax

FLUSH
FLUSH
Use the FLUSH statement to force rows that a PUT statement buffered to be
written to the database. Use this statement with ESQL/C.

Syntax

Usage
The PUT statement adds a row to a buffer, and the buffer is written to the
database when it is full. Use the FLUSH statement to force the insertion when
the buffer is not full.

If the program terminates without closing the cursor, the buffer is left
unflushed. Rows placed into the buffer since the last flush are lost. Do not
expect the end of the program to close the cursor and flush the buffer
automatically. The following example shows a FLUSH statement:

FLUSH icurs

Error Checking FLUSH Statements

The sqlca structure contains information on the success of each FLUSH
statement and the number of rows that are inserted successfully. The result of
each FLUSH statement is contained in the fields of the sqlca: sqlca.sqlcode,
SQLCODE, and sqlca.sqlerrd[2].

+

E/C

Element Purpose Restrictions Syntax
cursor_id Name of a cursor Must have been declared. Identifier, p. 4-189
cursor_id_var Host variable that holds the

value of cursor_id
Host variable must be a
character data type.

Language specific

FLUSH cursor_id

cursor_id_var
SQL Statements 2-435

FLUSH
When you use data buffering with an insert cursor, you do not discover errors
until the buffer is flushed. For example, an input value that is incompatible
with the data type of the column for which it is intended is discovered only
when the buffer is flushed. When an error is discovered, rows in the buffer
that are located after the error are not inserted; they are lost from memory.

The SQLCODE field is set either to an error code or to zero (0) if no error
occurs. The third element of the SQLERRD array is set to the number of rows
that are successfully inserted into the database:

� If a block of rows is successfully inserted into the database,
SQLCODE is set to zero (0) and SQLERRD to the count of rows.

� If an error occurs while the FLUSH statement is inserting a block of
rows, SQLCODE shows which error, and SQLERRD contains the
number of rows that were successfully inserted. (Uninserted rows
are discarded from the buffer.)

Tip: When you encounter an SQLCODE error, a corresponding SQLSTATE error
value also exists. For information about how to get the message text, check the GET
DIAGNOSTICS statement.

To count the number of rows actually inserted into the database as well as the
number not yet inserted

1. Prepare two integer variables, for example, total and pending.

2. When the cursor opens, set both variables to 0.

3. Each time a PUT statement executes, increment both total and
pending.

4. Whenever a FLUSH statement executes or the cursor is closed,
subtract the third field of the SQLERRD array from pending.

Related Information
Related statements: CLOSE, DECLARE, OPEN, and PREPARE

For a task-oriented discussion of FLUSH, see the IBM Informix Guide to SQL:
Tutorial.

For information about the sqlca structure, see the IBM Informix ESQL/C
Programmer’s Manual.
2-436 IBM Informix Guide to SQL: Syntax

FREE
FREE
Use the FREE statement to release resources that are allocated to a prepared
statement or to a cursor. Use this statement with ESQL/C.

Syntax

Usage
FREE releases the resources that the database server and application-devel-
opment tool allocated for a prepared statement or for a declared cursor.

If you declared a cursor for a prepared statement, FREE statement_id (or
statement_id_var) releases only the resources in the application development
tool; the cursor can still be used. The resources in the database server are
released only when you free the cursor.

If you prepared a statement (but did not declare a cursor for it), FREE
statement_id (or FREE statement_id_var) releases the resources in both the
application development tool and the database server.

+

E/C

Element Purpose Restrictions Syntax
cursor_id Name of a cursor Must have been declared. Identifier, p. 4-189
cursor_id_var Host variable that holds the

value of cursor_id
Must be a character data type. Language specific

statement_id String that identifies an SQL
statement

Must be defined in a previous
PREPARE statement.

PREPARE, p. 2-527

statement_id_var Host variable that identifies an
SQL statement

Same restrictions as statement_id.
Must be a character data type.

PREPARE, p. 2-527

statement_id_var

statement_id

FREE

cursor_id_var

cursor_id
SQL Statements 2-437

FREE
After you free a statement, you cannot execute it or declare a cursor for it until
you prepare it again.

The following ESQL/C example shows the sequence of statements that is
used to free an implicitly prepared statement:

EXEC SQL prepare sel_stmt from 'select * from orders';
...
EXEC SQL free sel_stmt;

The following ESQL/C example shows the sequence of statements that are
used to release the resources of an explicitly prepared statement. The first
FREE statement in this example frees the cursor. The second FREE statement
in this example frees the prepared statement.

sprintf(demoselect, "%s %s",
"select * from customer ",
"where customer_num between 100 and 200");

EXEC SQL prepare sel_stmt from :demoselect;
EXEC SQL declare sel_curs cursor for sel_stmt;
EXEC SQL open sel_curs;
...
EXEC SQL close sel_curs;
EXEC SQL free sel_curs;
EXEC SQL free sel_stmt;

If you declared a cursor for a prepared statement, freeing the cursor releases
only the resources in the database server. To release the resources for the
statement in the application-development tool, use FREE statement_id (or
FREE statement_id_var).

If a cursor is not declared for a prepared statement, freeing it releases the
resources in both the application-development tool and the database server.

After a cursor is freed, it cannot be opened until it is declared again. The
cursor should be explicitly closed before it is freed.

For an example of a FREE statement that frees a cursor, see the previous
example.

Related Information
Related statements: CLOSE, DECLARE, EXECUTE, EXECUTE IMMEDIATE,
OPEN, PREPARE, and SET AUTOFREE

For a task-oriented discussion of the FREE statement, see the IBM Informix
Guide to SQL: Tutorial.
2-438 IBM Informix Guide to SQL: Syntax

GET DESCRIPTOR
GET DESCRIPTOR
Use the GET DESCRIPTOR statement to read from a system descriptor area.
Use this statement with ESQL/C.

Syntax

+

E/C

Element Purpose Restrictions Syntax
descriptor Quoted string that identifies a

system-descriptor area (SDA)
System-descriptor area must
already have been allocated

Quoted String,
p. 4-243

descriptor_var Variable that stores descriptor value Same restrictions as descriptor Language specific
field_var Host variable to receive the

contents of a field from an SDA
Must be of type that can receive
value of a specified SDA field.

Language specific

item_num Unsigned ordinal number of an
item described in the SDA

0 ≤ item_num ≤ (number of item
descriptors in the SDA)

Literal Number,
p. 4-216

item_num_ var Host variable storing item_num Must be an integer data type Language specific
total_items_var Host variable storing the number

of items described in the SDA
Must be an integer data type Language specific

'descriptor ' ,VALUE

Described Item
Information

field_var = TYPE

LENGTH

PRECISION

SCALE

NULLABLE

INDICATOR

NAME

DATA

IDATA

ITYPE

ILENGTH

GET DESCRIPTOR descriptor_var

item_num

 COUNT

item_num_var

total_items_var =

EXTYPEID

EXTYPEOWNERLENGTH

EXTYPEOWNERNAME

EXTYPENAME

EXTYPELENGTH

SOURCETYPE

SOURCEID

+

IDS

Described Item
Information
SQL Statements 2-439

GET DESCRIPTOR
Usage
Use GET DESCRIPTOR to accomplish any of the following tasks:

� Determine how many items are described in a system-descriptor
area

� Determine the characteristics of each column or expression that is
described in the system-descriptor area

� Copy a value from the system-descriptor area into a host variable
after a FETCH statement

Use the GET DESCRIPTOR statement after you describe EXECUTE FUNCTION,
INSERT, SELECT, or UPDATE statements with the DESCRIBE...USING SQL
DESCRIPTOR statement. ♦

Use the GET DESCRIPTOR statement after you describe EXECUTE
PROCEDURE, INSERT, or SELECT statements with the DESCRIBE...USING SQL
DESCRIPTOR statement. ♦

The host variables that are used in the GET DESCRIPTOR statement must be
declared in the BEGIN DECLARE SECTION of a program.

If an error occurs during the assignment to any identified host variable, the
contents of the host variable are undefined.

IDS

XPS
2-440 IBM Informix Guide to SQL: Syntax

GET DESCRIPTOR
Using the COUNT Keyword

Use the COUNT keyword to determine how many items are described in the
system-descriptor area.

The following ESQL/C example shows how to use a GET DESCRIPTOR
statement with a host variable to determine how many items are described in
the system-descriptor area called desc1:

main()
{
EXEC SQL BEGIN DECLARE SECTION;
int h_count;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate descriptor 'desc1' with max 20;

/* This section of program would prepare a SELECT or INSERT
 * statement into the s_id statement id.
*/
EXEC SQL describe s_id using sql descriptor 'desc1';

EXEC SQL get descriptor 'desc1' :h_count = count;
...
}

Using the VALUE Clause

Use the VALUE clause to obtain information about a described column or
expression or to retrieve values that the database server returns in a system
descriptor area.

The item_num must be greater than zero (0) and less than the number of item
descriptors that were specified when the system-descriptor area was
allocated with the ALLOCATE DESCRIPTOR statement.
SQL Statements 2-441

GET DESCRIPTOR
Using the VALUE Clause After a DESCRIBE

After you describe a SELECT, EXECUTE FUNCTION (or EXECUTE
PROCEDURE), INSERT, or UPDATE statement, the characteristics of each
column or expression in the select list of the SELECT statement, the character-
istics of the values returned by the EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement, or the characteristics of each column in a INSERT or
UPDATE statement are returned to the system-descriptor area. Each value in
the system-descriptor area describes the characteristics of one returned
column or expression.

The following ESQL/C example shows how to use a GET DESCRIPTOR
statement to obtain data type information from the demodesc system-
descriptor area:

EXEC SQL get descriptor 'demodesc' value :index
 :type = TYPE,
 :len = LENGTH,
 :name = NAME;

printf("Column %d: type = %d, len = %d, name = %s\n",
index, type, len, name);

The value that the database server returns into the TYPE field is a defined
integer. To evaluate the data type that is returned, test for a specific integer
value. For additional information about integer data type values, see “Setting
the TYPE or ITYPE Field” on page 2-673.

In X/Open mode, the X/Open code is returned to the TYPE field. You cannot
mix the two modes because errors can result. For example, if a particular data
type is not defined under X/Open mode but is defined for IBM Informix
products, executing a GET DESCRIPTOR statement can result in an error.

In X/Open mode, a warning message appears if ILENGTH, IDATA, or ITYPE is
used. It indicates that these fields are not standard X/Open fields for a
system-descriptor area. ♦

If the TYPE of a fetched value is DECIMAL or MONEY, the database server
returns the precision and scale information for a column into the PRECISION
and SCALE fields after a DESCRIBE statement is executed. If the TYPE is not
DECIMAL or MONEY, the SCALE and PRECISION fields are undefined.

X/O
2-442 IBM Informix Guide to SQL: Syntax

GET DESCRIPTOR
Using the VALUE Clause After a FETCH

Each time your program fetches a row, it must copy the fetched value into
host variables so that the data can be used. To accomplish this task, use a GET
DESCRIPTOR statement after each fetch of each value in the select list. If three
values exist in the select list, you need to use three GET DESCRIPTOR state-
ments after each fetch (assuming you want to read all three values). The item
numbers for each of the three GET DESCRIPTOR statements are 1, 2, and 3.

The following ESQL/C example shows how you can copy data from the DATA
field into a host variable (result) after a fetch. For this example, it is predeter-
mined that all returned values are the same data type.

EXEC SQL get descriptor 'demodesc' :desc_count = count;
.. .
EXEC SQL fetch democursor using sql descriptor 'demodesc';
for (i = 1; i <= desc_count; i++)

{
if (sqlca.sqlcode != 0) break;
EXEC SQL get descriptor 'demodesc' value :i :result = DATA;
printf("%s ", result);
}

printf("\n");

Fetching a NULL Value

When you use GET DESCRIPTOR after a fetch, and the fetched value is NULL,
the INDICATOR field is set to -1 (NULL). The value of DATA is undefined if
INDICATOR indicates a NULL value. The host variable into which DATA is
copied has an unpredictable value.

Using LENGTH or ILENGTH

If your DATA or IDATA field contains a character string, you must specify a
value for LENGTH. If you specify LENGTH=0, LENGTH is automatically set to
the maximum length of the string. The DATA or IDATA field might contain a
literal character string or a character string that is derived from a character
variable of CHAR or VARCHAR data type. This provides a method to
determine the length of a string in the DATA or IDATA field dynamically.

If a DESCRIBE statement precedes a GET DESCRIPTOR statement, LENGTH is
automatically set to the maximum length of the character field that is
specified in your table.
SQL Statements 2-443

GET DESCRIPTOR
This information is identical for ILENGTH. Use ILENGTH when you create a
dynamic program that does not comply with the X/Open standard.

Describing an Opaque-Type Column

The DESCRIBE statement sets the following item-descriptor fields when the
column to fetch has an opaque type as its data type:

� The EXTYPEID field stores the extended ID for the opaque type.
This integer corresponds to a value in the extended_id column of the
sysxtdtypes system catalog table.

� The EXTYPENAME field stores the name of the opaque type.
This character value corresponds to a value in the name column of
the row with the matching extended_id value in the sysxtdtypes
system catalog table.

� The EXTYPELENGTH field stores the length of the opaque-type name.
This integer is the length of the data type name (in bytes).

� The EXTYPEOWNERNAME field stores the name of the opaque-type
owner. This character value corresponds to a value in the owner
column of the row with the matching extended_id value in the
sysxtdtypes system catalog table.

� The EXTYPEOWNERLENGTH field stores the length of the value in
the EXTTYPEOWNERNAME field. This integer is the length, in bytes,
of the name of the owner of the opaque type.

Use these field names with the GET DESCRIPTOR statement to obtain infor-
mation about an opaque column.

IDS
2-444 IBM Informix Guide to SQL: Syntax

GET DESCRIPTOR
Describing a Distinct-Type Column

The DESCRIBE statement sets the following item-descriptor fields when the
column to fetch has a distinct type as its data type:

� The SOURCEID field stores the extended identifier for the source data
type.

This integer value corresponds to a value in the source column for
the row of the sysxtdtypes system catalog table whose extended_id
value matches that of the distinct data type. This field is only set if
the source data type is an opaque data type.

� The SOURCETYPE field stores the data type constant for the source
data type.

This value is the data type constant (from the sqlstypes.h file) for the
data type of the source type for the distinct type. The codes for the
SOURCETYPE field are listed in the description of the TYPE field in the
SET DESCRIPTOR statement. (For more information, see “Setting the
TYPE or ITYPE Field” on page 2-673). This integer value must corre-
spond to the value in the type column for the row of the sysxtdtypes
system catalog table whose extended_id value matches that of the
distinct data type.

Use these field names with the GET DESCRIPTOR statement to obtain infor-
mation about a distinct-type column.

Related Information
Related statements: ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR,
DECLARE, DESCRIBE, EXECUTE, FETCH, OPEN, PREPARE, PUT, and SET
DESCRIPTOR

For more information on concepts that relate to the GET DESCRIPTOR
statement, see the IBM Informix ESQL/C Programmer’s Manual.

For more information on the sysxtdtypes system catalog table, see the
IBM Informix Guide to SQL: Reference.

IDS
SQL Statements 2-445

GET DIAGNOSTICS
GET DIAGNOSTICS
Use the GET DIAGNOSTICS statement to return diagnostic information about
executing an SQL statement. The GET DIAGNOSTICS statement uses one of the
following two clauses:

� The Statement clause returns count and overflow information about
errors and warnings that the most recent SQL statement generates.

� The EXCEPTION clause provides specific information about errors
and warnings that the most recent SQL statement generates.

Use this statement with ESQL/C.

Syntax

Usage
The GET DIAGNOSTICS statement retrieves specified status information from
the SQL diagnostics area (SQLDA) and retrieves either count and overflow
information or other specified information on an exception. Using GET
DIAGNOSTICS does not change the contents of the diagnostics area.

Using the SQLSTATE Error Status Code

When an SQL statement executes, an error status code is automatically
generated. This code represents success, failure, warning, or no data
found. This error status code is stored in a variable called SQLSTATE.

Class and Subclass Codes

The SQLSTATE status code is a five-character string that can contain only
digits and uppercase letters.

+

E/C

GET DIAGNOSTICS
Statement Clause

p. 2-451

EXCEPTION Clause
p. 2-452
2-446 IBM Informix Guide to SQL: Syntax

GET DIAGNOSTICS
The first two characters of the SQLSTATE status code indicate a class. The last
three characters of the SQLSTATE code indicate a subclass. Figure 2-1 shows
the structure of the SQLSTATE code. This example uses the value 08001,
where 08 is the class code and 001 is the subclass code. The value 08001
represents the error unable to connect with database environment.

The following table is a quick reference for interpreting class code values.

Support for the ANSI/ISO Standard for SQL

All status codes returned to the SQLSTATE variable are ANSI-compliant
except in the following cases:

� SQLSTATE codes with a class code of 01 and a subclass code that
begins with an I are Informix-specific warning messages.

� SQLSTATE codes with a class code of IX and any subclass code are
Informix-specific error messages.

� SQLSTATE codes whose class code begins with a digit in the range 5
to 9 or with an uppercase letter in the range I to Z indicate conditions
that are currently undefined by the ANSI/ISO standard for SQL. The
only exception is that SQLSTATE codes whose class code is IX are
Informix-specific error messages.

Figure 2-1
Structure of the

SQLSTATE Code

SQLSTATE Class Code Value Outcome

00 Success

01 Success with warning

02 No data found

> 02 Error or warning

Class
code

Subclass code

0 8 0 0 1
SQL Statements 2-447

GET DIAGNOSTICS
List of SQLSTATE Codes

This table describes the class codes, subclass codes, and the meaning of all
valid warning and error codes associated with the SQLSTATE variable.

Class Subclass Meaning

00 000 Success

01

01

01

01

01

01

01

000

002

003

004

005

006

007

Success with warning

Disconnect error. Transaction rolled back

NULL value eliminated in set function

String data, right truncation

Insufficient item descriptor areas

Privilege not revoked

Privilege not granted

01

01

01

01

01

01

01

01

01

01

I01

I03

I04

I05

I06

I07

I08

I09

I10

I11

Database has transactions

ANSI-compliant database selected

IBM Informix database server selected

Float to decimal conversion was used

Informix extension to ANSI-compliant standard syntax

UPDATE or DELETE statement does not have a WHERE clause

An ANSI keyword was used as a cursor name

Number of Select list items is not equal to the number in INTO list

Database server running in secondary mode

Dataskip is turned on

02 000 No data found

07 000 Dynamic SQL error

07 001 USING clause does not match dynamic parameters

07 002 USING clause does not match target specifications

07 003 Cursor specification cannot be executed

07 004 USING clause is required for dynamic parameters

07 005 Prepared statement is not a cursor specification

07 006 Restricted data type attribute violation

07 008 Invalid descriptor count

(1 of 3)
2-448 IBM Informix Guide to SQL: Syntax

GET DIAGNOSTICS
07 009 Invalid descriptor index

08

08

08

08

08

08

08

08

000

001

002

003

004

006

007

S01

Connection exception

Database server rejected the connection

Connection name in use

Connection does not exist

Client unable to establish connection

Transaction rolled back

Transaction state unknown

Communication failure

0A

0A

000

001

Feature not supported

Multiple server transactions

21

21

21

000

S01

S02

Cardinality violation

Insert value list does not match column list

Degree of derived table does not match column list

22

22

22

22

22

22

22

22

22

22

000

001

002

003

005

027

012

019

024

025

Data exception

String data, right truncation

NULL value, no indicator parameter

Numeric value out of range

Error in assignment

Data exception trim error

Division by zero (0)

Invalid escape character

Unterminated string

Invalid escape sequence

23 000 Integrity constraint violation

24 000 Invalid cursor state

25 000 Invalid transaction state

2B 000 Dependent privilege descriptors still exist

2D 000 Invalid transaction termination

26 000 Invalid SQL statement identifier

Class Subclass Meaning

(2 of 3)
SQL Statements 2-449

GET DIAGNOSTICS
Using SQLSTATE in Applications

You can use a built-in variable, called SQLSTATE, that you do not have to
declare in your program. SQLSTATE contains the status code, essential for
error handling, that is generated every time your program executes an SQL
statement. SQLSTATE is created automatically. You can examine the SQLSTATE
variable to determine whether an SQL statement was successful. If the
SQLSTATE variable indicates that the statement failed, you can execute a GET
DIAGNOSTICS statement to obtain additional error information.

For an example of how to use an SQLSTATE variable in a program, see “Using
GET DIAGNOSTICS for Error Checking” on page 2-457.

2E 000 Invalid connection name

28 000 Invalid user-authorization specification

33 000 Invalid SQL descriptor name

34 000 Invalid cursor name

35 000 Invalid exception number

37 000 Syntax error or access violation in PREPARE or EXECUTE
IMMEDIATE

3C 000 Duplicate cursor name

40

40

000

003

Transaction rollback

Statement completion unknown

42 000 Syntax error or access violation

S0

S0

S0

S0

S0

000

001

002

011

021

Invalid name

Base table or view table already exists

Base table not found

Index already exists

Column already exists

S1 001 Memory allocation failure

IX 000 Informix reserved error message

Class Subclass Meaning

(3 of 3)
2-450 IBM Informix Guide to SQL: Syntax

GET DIAGNOSTICS
Statement Clause

When retrieving count and overflow information, GET DIAGNOSTICS can
deposit the values of the three statement fields into a corresponding host
variable. The host-variable data type must be the same as that of the
requested field. The following keywords represent these three fields.

Using the MORE Keyword

Use the MORE keyword to determine if the most recently executed SQL
statement performed the following actions:

� Stored all the exceptions that it detected in the SQLDA diagnostics
area. If so, GET DIAGNOSTICS returns a value of N.

� Detected more exceptions than it stored in the SQLDA diagnostics
area. If so, GET DIAGNOSTICS returns a value of Y. (The value of
MORE is always N.)

Element Purpose Restrictions Syntax
status_var Host variable to receive status information about the most

recent SQL statement for the specified status field name
Must match data
type of the field.

Language
specific

MORE

NUMBER

status_var

,
Statement

Clause

=

Back to GET DIAGNOSTICS
p. 2-446

ROW_COUNT

Field Name Keyword Field Data Type Field Contents

ESQL/C
Host Variable
Data Type

MORE Character Y or N char[2]

NUMBER Integer 1 to 35,000 int

ROW_COUNT Integer 0 to 999,999,999 int
SQL Statements 2-451

GET DIAGNOSTICS
Using the ROW_COUNT Keyword

The ROW_COUNT keyword returns the number of rows the most recently
executed DML statement processed. ROW_COUNT counts these rows:

� Inserted into a table

� Updated in a table

� Deleted from a table

Using the NUMBER Keyword

The NUMBER keyword returns the number of exceptions that the most
recently executed SQL statement raised. The NUMBER field can hold a value
from 1 to 35,000, depending on how many exceptions are counted.

EXCEPTION Clause

Element Purpose Restrictions Syntax
exception_num Number of exceptions Integer from 1 to 35,000 Literal number, p. 4-216
exception_var Variable storing exception_num Must be SMALLINT or INT Language specific
information Host variable to receive the value

of a specified exception field
Data type must match
that of requested field

Language specific

CLASS_ORIGIN

RETURNED_SQLSTATE

SERVER_NAME

exception_var

exception_num information =

,

EXCEPTION

SUBCLASS_ORIGIN

MESSAGE_TEXT

CONNECTION_ALIAS

MESSAGE_LENGTH

Exception
Clause

Back to GET DIAGNOSTICS
p. 2-446
2-452 IBM Informix Guide to SQL: Syntax

GET DIAGNOSTICS
The exception_num literal indicates one of the exception values from the
number of exceptions that the NUMBER field in the Statement clause returns.

When retrieving exception information, GET DIAGNOSTICS writes the values
of each of the seven fields into corresponding host variables. These fields are
located in the diagnostics area and are derived from an exception raised by
the most recent SQL statement.

The host-variable data type must be the same as that of the requested field.
The following table describes the seven exception information fields.

The application specifies the exception by number, using either an unsigned
integer or an integer host variable (an exact numeric with a scale of 0). An
exception with a value of 1 corresponds to the SQLSTATE value set by the
most recent SQL statement other than GET DIAGNOSTICS. The association
between other exception numbers and other exceptions raised by that SQL
statement is undefined. Thus, no set order exists in which the diagnostic area
can be filled with exception values. You always get at least one exception,
even if the SQLSTATE value indicates success.

If an error occurs within the GET DIAGNOSTICS statement (that is, if an
invalid exception number is requested), the Informix internal SQLCODE and
SQLSTATE variables are set to the value of that exception. In addition, the GET
DIAGNOSTICS fields are undefined.

Field Name Keyword Field Data Type Field Contents

ESQL/C
Host Variable
Data Type

RETURNED_SQLSTATE Character SQLSTATE value char[6]

CLASS_ORIGIN Character String char[255]

SUBCLASS_ORIGIN Character String char[255]

MESSAGE_TEXT Character String char[255]

MESSAGE_LENGTH Integer Numeric value int

SERVER_NAME Character String char[255]

CONNECTION_NAME Character String char[255]
SQL Statements 2-453

GET DIAGNOSTICS
Using the RETURNED_SQLSTATE Keyword

The RETURNED_SQLSTATE keyword returns the SQLSTATE value that
describes the exception.

Using the CLASS_ORIGIN Keyword

Use the CLASS_ORIGIN keyword to retrieve the class portion of the
RETURNED_SQLSTATE value. If the International Standards Organization
(ISO) standard defines the class, the value of CLASS_ORIGIN is equal to ISO
9075. Otherwise, the value returned by CLASS_ORIGIN is defined by Informix
and cannot be ISO 9075. ANSI SQL and ISO SQL are synonymous.

Using the SUBCLASS_ORIGIN Keyword

The SUBCLASS_ORIGIN keyword returns data on the RETURNED_SQLSTATE
subclass. (This value is ISO 9075 if the ISO standard defines the subclass.)

Using the MESSAGE_TEXT Keyword

The MESSAGE_TEXT keyword returns the message text of the exception (for
example, an error message).

Using the MESSAGE_LENGTH Keyword

The MESSAGE_LENGTH keyword returns the length in bytes of the current
message text string.

Using the SERVER_NAME Keyword

The SERVER_NAME keyword returns ne the name of the database server
associated with a CONNECT or DATABASE statement. GET DIAGNOSTICS
updates the SERVER_NAME field when any of the following events occur:

� A CONNECT statement successfully executes

� A SET CONNECTION statement successfully executes

� A DISCONNECT statement successfully terminates the current
connection

� A DISCONNECT ALL statement fails
2-454 IBM Informix Guide to SQL: Syntax

GET DIAGNOSTICS
The SERVER_NAME field is not updated, however, after these events:

� A CONNECT statement fails

� A DISCONNECT statement fails (but this does not include the
DISCONNECT ALL statement)

� A SET CONNECTION statement fails

The SERVER_NAME field retains the value set in the previous SQL statement.
If any of the preceding conditions occur on the first SQL statement that
executes, the SERVER_NAME field is blank.

The Contents of the SERVER_NAME Field

The SERVER_NAME field contains different information after you execute the
following statements.

If CONNECT succeeds, SERVER_NAME is set to one of the following values:

� The INFORMIXSERVER value (if the connection is to a default
database server; that is, if CONNECT specified no database server).

� The name of the database server (if the connection is to a specific
database server).

Executed
Statement SERVER_NAME Field Contents

CONNECT Contains the name of the database server to which you connect
or fail to connect. Field is blank if you do not have a current
connection or if you make a default connection.

SET
CONNECTION

Contains the name of the database server to which you switch or
fail to switch.

DISCONNECT Contains the name of the database server from which you
disconnect or fail to disconnect. If you disconnect and then you
execute a DISCONNECT statement for a connection that is not
current, the SERVER_NAME field remains unchanged.

DISCONNECT
ALL

Sets the field to blank if the statement executes successfully. If
the statement fails, SERVER_NAME contains the names of all
the database servers from which you did not disconnect. (This
information does not mean that the connection still exists.)
SQL Statements 2-455

GET DIAGNOSTICS
The DATABASE Statement

When you execute a DATABASE statement, the SERVER_NAME field contains
the name of the database server on which the database resides.

Using the CONNECTION_NAME Keyword

Use the CONNECTION_NAME keyword to specify a name for the connection
used in your CONNECT or DATABASE statement.

When the CONNECTION_NAME Keyword Is Updated

GET DIAGNOSTICS updates the CONNECTION_NAME field when the
following situations occur:

� A CONNECT statement successfully executes

� A SET CONNECTION statement successfully executes

� A DISCONNECT statement successfully executes at the current
connection

GET DIAGNOSTICS fills the CONNECTION_NAME field with blanks
because no current connection exists.

� A DISCONNECT ALL statement fails

When the CONNECTION_NAME Is Not Updated

The CONNECTION_NAME field is not updated in the following cases:

� A CONNECT statement fails

� A DISCONNECT statement fails (but this does not include the
DISCONNECT ALL statement)

� A SET CONNECTION statement fails

The CONNECTION_NAME field retains the value set in the previous SQL
statement. If any of the preceding conditions occur on the first SQL statement
that executes, the CONNECTION_NAME field is blank.

DATABASE Statement

After a DATABASE statement, the CONNECTION_NAME field is blank.
2-456 IBM Informix Guide to SQL: Syntax

GET DIAGNOSTICS
The Contents of the CONNECTION_NAME Field

The CONNECTION_NAME field contains different information after you
execute the following statements.

If CONNECT is successful, CONNECTION_NAME takes one of these values:

� The name of the database environment as specified in the CONNECT
statement if the CONNECT does not include the AS clause

� The name of the connection (identifier after the AS keyword) if the
CONNECT includes the AS clause

Using GET DIAGNOSTICS for Error Checking
GET DIAGNOSTICS returns values from SQLDA fields. For each field that you
want to access, you must supply a host variable with a compatible data type.

The following example illustrates how to use the GET DIAGNOSTICS
statement to display error information. The example shows an ESQL/C error
display routine called disp_sqlstate_err().

Executed Statement CONNECTION_NAME Field Contents

CONNECT Contains connection name specified in the CONNECT
statement, to which you connect or fail to connect. The field
is blank for no current connection or a default connection.

SET CONNECTION Contains the connection name specified in the CONNECT
statement, to which you switch or fail to switch

DISCONNECT Contains the connection name specified in the CONNECT
statement, from which you disconnect or fail to disconnect.
If you disconnect, and then execute a DISCONNECT
statement for a connection that is not current, the
CONNECTION_NAME field remains unchanged.

DISCONNECT ALL Contains no information if the statement executes success-
fully. If the statement does not execute successfully, the
CONNECTION_NAME field contains the names of all the
connections, specified in your CONNECT statement, from
which you did not disconnect. However, this information
does not mean that the connection still exists.
SQL Statements 2-457

GET DIAGNOSTICS
void disp_sqlstate_err()
{
int j;
EXEC SQL BEGIN DECLARE SECTION;
 int exception_count;
 char overflow[2];
 int exception_num=1;
 char class_id[255];
 char subclass_id[255];
 char message[255];
 int messlen;
 char sqlstate_code[6];
 int i;
EXEC SQL END DECLARE SECTION;
 printf("---------------------------------");
 printf("-------------------------\n");
 printf("SQLSTATE: %s\n",SQLSTATE);
 printf("SQLCODE: %d\n", SQLCODE);
 printf("\n");
 EXEC SQL get diagnostics :exception_count = NUMBER,
 :overflow = MORE;
 printf("EXCEPTIONS: Number=%d\t", exception_count);
 printf("More? %s\n", overflow);
 for (i = 1; i <= exception_count; i++)
 {
 EXEC SQL get diagnostics exception :i
 :sqlstate_code = RETURNED_SQLSTATE,
 :class_id = CLASS_ORIGIN, :subclass_id = SUBCLASS_ORIGIN,
 :message = MESSAGE_TEXT, :messlen = MESSAGE_LENGTH;
 printf("- - - - - - - - - - - - - - - - - - - -\n");
 printf("EXCEPTION %d: SQLSTATE=%s\n", i,
 sqlstate_code);
 message[messlen-1] ='\0';
 printf("MESSAGE TEXT: %s\n", message);
 j = stleng(class_id);
 while((class_id[j] == '\0') ||
 (class_id[j] == ' '))
 j--;
 class_id[j+1] = '\0';
 printf("CLASS ORIGIN: %s\n",class_id);
 j = stleng(subclass_id);
 while((subclass_id[j] == '\0') ||
 (subclass_id[j] == ' '))
 j--;
 subclass_id[j+1] = '\0';
 printf("SUBCLASS ORIGIN: %s\n",subclass_id);
 }
 printf("---------------------------------");
 printf("-------------------------\n");
}

Related Information
For a task-oriented discussion of error handling and the SQLSTATE variable,
see the IBM Informix Guide to SQL: Tutorial. For a discussion of concepts related
to the GET DIAGNOSTICS statement and the SQLSTATE variable, see the
IBM Informix ESQL/C Programmer’s Manual.
2-458 IBM Informix Guide to SQL: Syntax

GRANT
GRANT
The GRANT statement can assign privileges to users of the database.

Syntax

Usage
The GRANT statement extends privileges to other users that would normally
accrue only to the DBA or to the creator of an object. Subsequent GRANT state-
ments do not affect privileges that have already been granted to a user.

You can use the GRANT statement for operations like the following:

� Authorize others to use or administrate a database that you create

� Allow others to view, alter, or drop a table, synonym, view or (for
Dynamic Server only) a sequence object that you create

Element Purpose Restrictions Syntax
grantor Name of user who can use REVOKE to undo the effects of this

GRANT statement. If the AS clause is omitted, the default is the
login name of the user who executes the GRANT statement.

Must be a valid
authorization
identifier.

Owner Name,
p. 4-234.

Database-Level Privileges
p. 2-460 TO

TO

GRANT User List
p. 2-474

User List
p. 2-474

grantor

+

Role Name
p. 2-475

AS

WITH GRANT OPTION 'grantor '

+

Table-Level
Privileges
p. 2-463

Language-
Level

Privileges
p. 2-472

IDS

Type-Level
Privileges
p. 2-468

Role Name
p. 2-475

+

Routine-Level
Privileges
p. 2-470

Sequence-Level
Privileges
p. 2-473
SQL Statements 2-459

GRANT
� Allow others to use a data type or the SPL language, or (for Dymanic
Server only) to execute a user-defined routine (UDR) that you create

� Give a role name and its privileges to one or more users

You can grant privileges to a previously created role. You can grant a role to
individual users or to another role.

Privileges that you grant remain in effect until you cancel them with a
REVOKE statement. Only the grantor of a privilege can revoke that privilege.
The grantor is the person who issues the GRANT statement, unless the AS
grantor clause transfers the right to revoke to e another user.

Only the owner of an object or a user who has been explicitly granted
permission WITH GRANT OPTION can grant permissions on an object.
Having DBA privileges is not sufficient. As DBA, however, one can grant a
privilege on behalf of another user by using AS clause. For database objects
whose owner is not a user recognized by the operating system (for example,
the informix authorization identifier), the AS clause is useful.

The keyword PUBLIC extends a GRANT to all users. If you want to restrict to
a particular user the privileges that PUBLIC already holds, you must first
revoke the right of PUBLIC to those privileges.

When database-level privileges conflict with table-level privileges, the more
restrictive privileges take precedence.

To grant privileges on one or more fragments of a table that has been
fragmented by expression, see “GRANT FRAGMENT” on page 2-480.

Database-Level Privileges

When you create a database with the CREATE DATABASE statement, you are
the owner. and automatically receive all database-level privileges.

Back to GRANT
p. 2-459

Database-Level Privileges

CONNECT

RESOURCE

DBA
2-460 IBM Informix Guide to SQL: Syntax

GRANT
The database remains inaccessible to other users until you, as DBA, grant
database privileges.

As database owner, you also automatically receive table-level privileges on
all tables in the database. For more information about table-level privileges,
see “Table-Level Privileges” on page 2-463.

Warning: Although user informix and DBAs can modify most system catalog tables
(only user informix can modify systables), it is strongly recommended that you do
not update, delete, or alter any rows in them. Modifying the system catalog tables can
destroy the integrity of the database. The use of the ALTER TABLE statement to
modify the size of the next extent of system catalog tables is not supported.

Database access levels are, from lowest to highest, Connect, Resource, and
DBA. Use the corresponding keyword to grant a level of access privilege.

Privilege Functions

CONNECT Lets you query and modify data

You can modify the database schema if you own the database object
you want to modify. Any user with the Connect privilege can
perform the following functions:

� Connect to the database with the CONNECT statement or another
connection statement

� Execute SELECT, INSERT, UPDATE, and DELETE statements,
provided the user has the necessary table-level privileges

� Create views, provided the user has the Select privilege on the
underlying tables

� Create synonyms

� Create temporary tables and create indexes on the temporary
tables

� Alter or drop a table or an index, provided the user owns the table
or index (or has Alter, Index, or References privileges on the table)

� Grant privileges on a table or view, provided the user owns the
table (or was given privileges on the table with the WITH GRANT
OPTION keyword)

(1 of 2)
SQL Statements 2-461

GRANT
User informix has the privilege required to alter tables in the system catalog,
including the systables table.

RESOURCE Lets you extend the structure of the database. In addition to the
capabilities of the Connect privilege, the holder of the Resource
privilege can perform the following functions:

� Create new tables

� Create new indexes

� Create new UDRs

� Create new data types

DBA Has all the capabilities of the Resource privilege and can perform the
following additional operations:

� Grant any database-level privilege, including the DBA privilege,
to another user

� Grant any table-level privilege to another user or to a role

� Grant a role to a user or to another role

� Revoke a privilege whose grantor you specify as the revoker in the
AS clause of the REVOKE statement.

� Restrict the Execute privilege to DBAs when registering a UDR

� Execute the SET SESSION AUTHORIZATION statement

� Use the NEXT SIZE keywords to alter extent sizes in the system
catalog tables

� Create any database object

� Create tables, views, and indexes, designating another user as
owner of these objects

� Alter, drop, or rename database objects, regardless of who owns
them

� Execute the DROP DISTRIBUTIONS option of the UPDATE
STATISTICS statement

� Execute DROP DATABASE and RENAME DATABASE
statements

� Insert, delete, or update rows of any system catalog table except
systables

Privilege Functions

(2 of 2)
2-462 IBM Informix Guide to SQL: Syntax

GRANT
The following example uses the PUBLIC keyword to grant the Connect
privilege on the currently active database to all users:

GRANT CONNECT TO PUBLIC

Table-Level Privileges
When you create a table with the CREATE TABLE statement, you are the table
owner and automatically receive all table-level privileges. You cannot
transfer ownership to another user, but you can grant table-level privileges
to another user or to a role. (See, however, “RENAME TABLE” on page 2-554,
which can change both the name and the ownership of a table.)

A person with the database-level DBA privilege automatically receives all
table-level privileges on every table in that database.

Element Purpose Restrictions Syntax
column Column on which a Select, Update, or References privilege is granted.

If you omit column, the default scope is all columns in the specified
table.

Must exist. Identifier,
p. 4-189

ALL

DELETE

UPDATE

REFERENCES

INDEX

INSERT

,

,

column()

ON Table
Reference
p. 2-466

Back to GRANT
p. 2-459

Table-Level Privileges

UNDER

+

IDS

+SELECT

PRIVILEGES

ALTER
SQL Statements 2-463

GRANT
The table that follows lists keywords for granting table-level privileges.

Privilege Purpose

ALTER Lets you add or delete columns, modify column data types, add or
delete constraints, change the locking mode of the table from
PAGE to ROW, or add or drop a corresponding ROW type name
for your table. It also lets you set the database object mode of
unique indexes and constraints to the enabled, disabled, or
filtering mode. In addition, this privilege lets you set the database
object mode of nonunique indexes and triggers to the enabled or
disabled modes.

You must have the Resource privilege to use the Alter privilege. In
addition, you also need the Usage privilege for any user-defined
data type affected by the ALTER TABLE statement.

INSERT Lets you insert rows

DELETE Lets you delete rows

SELECT Lets you name any column in SELECT statements. You can restrict
the Select privilege to one or more columns by listing them.

UPDATE Lets you name any column in UPDATE statements. You can
restrict this privilege to one or more columns by listing them.

REFERENCES Lets you reference columns in referential constraints.

You must have the Resource privilege to take advantage of the
References privilege. (You can add, however, a referential
constraint during an ALTER TABLE statement. This action does
not require the Resource privilege on the database.) You can
restrict the References privilege to one or more columns by listing
the columns explicitly. You need only the References privilege to
indicate cascading deletes. You do not need the Delete privilege to
place cascading deletes on a table.

INDEX Lets you create permanent indexes. You must have the Resource
privilege to use the Index privilege. (Any user with the Connect
privilege can create an index on temporary tables.)

UNDER
(IDS only)

Lets you create subtables under a typed table

ALL Provides all privileges. The PRIVILEGES keyword is optional.
2-464 IBM Informix Guide to SQL: Syntax

GRANT
You can narrow the scope of a Select, Update, or References privilege by
specifying the columns to which the privilege applies.

Specify the keyword PUBLIC as user if you want a GRANT statement to apply
to all users.

Some simple examples that follow can help illustrate how table-level privi-
leges are granted with the GRANT statement.

The following statement grants the privilege to delete and select values in
any column in the table customer to users mary and john. It also grants the
Update privilege, but only for columns customer_num, fname, and lname.

GRANT DELETE, SELECT, UPDATE (customer_num, fname, lname)
ON customer TO mary, john

To grant the same privileges as those above to all authorized users, use the
keyword PUBLIC as the following example shows:

GRANT DELETE, SELECT, UPDATE (customer_num, fname, lname)
ON customer TO PUBLIC

Suppose a user named mary has created a typed table named tab1. By
default, only user mary can create subtables under the tab1 table. If mary
wants to grant the ability to create subtables under the tab1 table to a user
named john, mary must enter the following GRANT statement:

GRANT UNDER ON tab1 TO john

After receiving the Under privilege on table tab1, user john can create one or
more subtables under tab1. ♦

Effect of the ALL Keyword

The ALL keyword grants all possible table-level privileges to the specified
user. If any or all of the table-level privileges do not exist for the grantor, the
GRANT statement with the ALL keyword succeeds (in the sense of SQLCODE
being set to zero, even if the “possible” privileges are an empty set for the
grantor on the table). In this case, however, the following SQLSTATE warning
is returned:

01007 - Privilege not granted.

For example, assume that user ted has the Select and Insert privileges on the
customer table with the authority to grant those privileges to other users.

IDS
SQL Statements 2-465

GRANT
User ted wants to grant all table-level privileges to user tania. So user ted
issues the following GRANT statement:

GRANT ALL ON customer TO tania

This statement executes successfully but returns SQLSTATE code 01007 for
the following reasons:

� The statement succeeds in granting the Select and Insert privileges to
user tania because user ted has those privileges and the right to grant
those privileges to other users.

� The other privileges implied by the ALL keyword were not grantable
by user ted and, therefore, were not granted to user tania.

With Dynamic Server, if you grant all table-level privileges with the ALL
keyword, the privileges includes the Under privilege only if the table is a
typed table. The grant of ALL privileges does not include the Under privilege
if the table is not based on a ROW type.

If the table owner grants ALL privileges on a traditional relational table and
later changes that table to a typed table, the table owner must explicitly grant
the Under privilege to allow other users to create subtables under it. ♦

Table Reference
You grant table-level privileges directly by referencing the table name or an
existing synonym. You can also grant table-level privileges on a view.

The object on which you grant privileges must reside in the current database.

IDS

Element Purpose Restrictions Syntax
synonym,
table, view

Synonym, table, or view on
which privileges are granted

The table, view, or synonym
must exist.

Database Object
Name, p. 4-46

Back to Table-Level Privileges
p. 2-463

Table Reference

synonym

table

view
2-466 IBM Informix Guide to SQL: Syntax

GRANT
Privileges on Table Name and Synonym Name

Normally, when you create a table in a database that is not ANSI compliant,
public receives Select, Insert, Delete, Under, and Update privileges for that
table and its synonyms. (The NODEFDAC environment variable, when set to
yes, prevents public from automatically receiving table-level privileges.)

To allow access to only certain users, explicitly revoke those privileges public
automatically receives and then grant only those you want, as the following
example shows:

REVOKE ALL ON customer FROM PUBLIC;
GRANT ALL ON customer TO john, mary;
GRANT SELECT (fname, lname, company, city)

ON customer TO PUBLIC

In an ANSI-compliant database, if you create a table, only you, its owner, have
any table-level privileges until you explicitly grant them to others. ♦

As explained in the next section, “Privileges on a View,” public does not
automatically receive any privileges for a view that you create.

Privileges on a View

You must have at least the Select privilege on a table or columns to create a
view on that table.

For views that reference only tables in the current database, if the owner of a
view loses the Select privilege on any table underlying the view, the view is
dropped.

You have the same privileges for the view that you have for the table or tables
contributing data to the view. For example, if you create a view from a table
to which you have only Select privileges, you can select data from your view
but you cannot delete or update data.

For detailed information on how to create a view, see “CREATE VIEW” on
page 2-310.

When you create a view, only you have access to table data through that view.
Even users who have privileges on the base table of the view do not automat-
ically receive privileges for the view.

ANSI
SQL Statements 2-467

GRANT
You can grant (or revoke) privileges on a view only if you are the owner of
the underlying tables or if you received these privileges on the table with the
right to grant them (the WITH GRANT OPTION keyword). You must explicitly
grant those privileges within your authority; public does not automatically
receive privileges on a view.

The creator of a view can explicitly grant Select, Insert, Delete, and Update
privileges for the view to other users or to a role name. You cannot grant
Index, Alter, Under, or References privileges on a view (or the All privilege
because All includes Index, References, and Alter).

Type-Level Privileges
You can specify two privileges on data types:

� The Usage privilege on a user-defined data type

� The Under privilege on a named ROW type.

To find out what privileges exist on a data type, check the sysxtdtypes system
catalog table for the owner name and the sysxtdtypeauth system catalog
table for additional type privileges that might have been granted. For more
information on system catalog tables, see the IBM Informix Guide to SQL:
Reference.

IDS

Element Purpose Restrictions Syntax
row_type_name Named row type on which the

Under privilege is granted
Named ROW data type must
exist.

Data Type, p. 4-49

type_name User-defined data type on which
the Usage privilege is granted

User-defined data type must
exist.

Data Type, p. 4-49

USAGE ON TYPE type_name

Back to GRANT
p. 2-459

Type-Level Privileges

UNDER ON TYPE row_type_name
2-468 IBM Informix Guide to SQL: Syntax

GRANT
USAGE Privilege

You own any user-defined data type (UDT) that you create. As owner, you
automatically receive the Usage privilege on that data type and can grant the
Usage privilege to others so that they can reference the type name or
reference data of that type in SQL statements. DBAs can also grant the Usage
privilege for user-defined data types.

If you grant the Usage privilege to a user or role that has Alter privileges, that
person can add a column to the table that contains values of your UDT.

Without privileges from the GRANT statement, any user can issue SQL state-
ments that reference built-in data types. In contrast, a user must receive an
explicit Usage privilege from a GRANT statement to use a distinct data type,
even if the distinct type is based on a built-in type.

For more information about user-defined types, see “CREATE OPAQUE
TYPE” on page 2-169, “CREATE DISTINCT TYPE” on page 2-115, the
discussion of data types in the IBM Informix Guide to SQL: Reference and the
IBM Informix Database Design and Implementation Guide.

UNDER Privilege

You own any named ROW type that you create. If you want other users to be
able to create subtypes under this named ROW type, you must grant these
users the Under privilege on your named ROW type.

For example, suppose that you create a ROW type named rtype1:

CREATE ROW TYPE rtype1 (cola INT, colb INT)

If you want another user named kathy to be able to create a subtype under
this named ROW type, you must grant the Under privilege on this named
ROW type to user kathy:

GRANT UNDER on rtype1 to kathy

Now user kathy can create another ROW type under the rtype1 ROW type
even though kathy is not the owner of the rtype1 ROW type:

CREATE ROW TYPE rtype2 (colc INT, cold INT) UNDER rtype1

For more about named ROW types, see “CREATE ROW TYPE” on page 2-198,
and the discussion of data types in the IBM Informix Guide to SQL: Reference and
the IBM Informix Database Design and Implementation Guide.
SQL Statements 2-469

GRANT
Routine-Level Privileges
When you create a user-defined routine (UDR) with the CREATE FUNCTION
or CREATE PROCEDURE statement, you own, and automatically receive the
Execute privilege on that UDR.

The Execute privilege allows you to invoke the UDR with an EXECUTE
FUNCTION or EXECUTE PROCEDURE statement, whichever is appropriate, or
with a CALL statement in an SPL routine. The Execute privilege also allows
you to use a user-defined function in an expression, as in this example:

SELECT * FROM table WHERE in_stock(partnum) < 20

Element Purpose Restrictions Syntax
routine A user-defined routine Must exist. Database Object Name, p. 4-46
SPL_routine An SPL routine Must be unique in the database. Database Object Name, p. 4-46

Routine-Level Privileges Back to GRANT
p. 2-459

GRANT ON

()

Routine Parameter List
p. 4-266

routinePROCEDURE

ROUTINE

FUNCTION

SPL_routine

Specific Name
p. 4-274SPECIFIC PROCEDURE

ROUTINE

FUNCTION

IDS
2-470 IBM Informix Guide to SQL: Syntax

GRANT
Whether you must grant the Execute privilege explicitly depends on the
following conditions:

� If you have DBA-level privileges, you can use the DBA keyword of
CREATE FUNCTION or CREATE PROCEDURE to restrict the default
Execute privilege to users with the DBA database-level privilege. You
must explicitly grant the Execute privilege on that UDR to users who
do not have the DBA privilege.

� If you have the Resource database-level privilege but not the DBA
privilege, you cannot use the DBA keyword when you create a UDR:

❑ When you create a UDR in a database that is not ANSI compliant,
public can execute that UDR. You do not need to issue a GRANT
statement for the Execute privilege.

❑ The NODEFDAC environment variable, when set to yes,
prevents public from executing your UDR until you explicitly
grant the Execute privilege.

� In an ANSI-compliant database, the creator of a UDR must explicitly
grant the Execute privilege on that UDR. ♦

Because of routine overloading, you can grant the Execute privilege on more
than one UDR at a time. The following table explains the purpose of the
keywords that you specify.

Keyword Purpose

SPECIFIC Grants the Execute privilege for the UDR that specific name
identifies

FUNCTION Grants the Execute privilege for all user-defined functions with the
specified routine name (and parameter types that match routine
parameter list, if supplied)

PROCEDURE Grants the Execute privilege for all user-defined procedures with
the specified routine name (and parameter types that match routine
parameter list, if supplied)

ROUTINE Grants the Execute privilege for all user-defined functions and all
user-defined procedures with the specified routine name (and
parameter types that match routine parameter list, if supplied)

ANSI

IDS
SQL Statements 2-471

GRANT
If both a user-defined function and a user-defined procedure have the same
name and list of parameter types, you can grant the Execute privilege to both
with the keyword ROUTINE.

To limit the Execute privilege to one version of the same routine name, use
the FUNCTION, PROCEDURE, or SPECIFIC keyword.

To limit the Execute privilege to a UDR that accepts certain data types as
arguments, include the routine parameter list or use the SPECIFIC keyword to
introduce the specific name of a UDR.

Tip: If an external function has a negator function, you must grant the Execute
privilege on both the external function and its negator function before users can
execute the external function. ♦

Language-Level Privileges
A user must have the Usage privilege on a language to register a user-defined
routine (UDR) that is written in that language.

In this release of Dynamic Server, only the SPL keyword is supported within
the USAGE ON LANGUAGE clause.

When a user executes a CREATE FUNCTION or CREATE PROCEDURE
statement to register a UDR that is written in SPL, the database server verifies
that the user has the Usage privilege on the language in which the UDR is
written. (In this release of Dynamic Server, the C language and the Java
language do not require Usage privilege.) For information on other privileges
that these statements require, see “CREATE FUNCTION” on page 2-133 and
“CREATE PROCEDURE” on page 2-182.

IDS

Language-Level
Privileges

Back to GRANT
p. 2-459

USAGE ON LANGUAGE SPL
2-472 IBM Informix Guide to SQL: Syntax

GRANT
Usage Privilege in Stored Procedure Language

The Usage privilege on SPL is granted to PUBLIC by default. Only user
informix, the DBA, or a user who was granted the Usage privilege WITH
GRANT OPTION can grant the Usage privilege in SPL to another user.

In the following example, assume that the default Usage privilege in SPL was
revoked from PUBLIC and the DBA wants to grant the Usage privilege in SPL
to the role named developers:

GRANT USAGE ON LANGUAGE SPL TO developers

Sequence-Level Privileges
Although a sequence is implemented as a table, only a subset of the table
privileges (page 2-463) can be granted on a sequence. You can grant the Select
or Alter privileges (or both) on a sequence:

The sequence must reside in the current database. You can qualify the
sequence or synonym identifier with a valid owner name, but the name
of a remote database (or database@server) is not valid as a qualifier.

You can also use the WITH GRANT option when you specify ALTER, SELECT,
or ALL to specify privileges that you are granting on a sequence object.

IDS

Element Purpose Restrictions Syntax
owner Owner of the sequence Must own sequence Owner Name, p. 4-234
sequence Sequence on which to grant privileges Must exist Identifier, p. 4-189
synonym Synonym for sequence on which to grant privileges Must exist Identifier, p. 4-189

Sequence-Level Privileges Back to GRANT
p. 2-459

SELECT ON sequence

synonymALL+

ALTER+

owner .
SQL Statements 2-473

GRANT
Alter Privilege

You can grant the Alter privilege on a sequence to another user or to a role.
The Alter privilege enables a specified user or role to modify the definition of
a sequence with the ALTER SEQUENCE statement or to rename the sequence
with the RENAME SEQUENCE statement.

Select Privilege

You can grant the Select privilege on a sequence to another user or to a role.
The Select privilege enables a specified user or role to use sequence.CURRVAL
and sequence.NEXTVAL expressions in SQL statements to read and to
increment (respectively) the values of a sequence.

ALL Keyword

You can use the ALL keyword to grant both Alter and Select privileges on a
sequence object to another user or to a role.

User List
You can grant privileges to an individual user or to a list of users. You can also
specify the PUBLIC keyword to grant privileges to all users.

Element Purpose Restrictions Syntax
user Login name of the user

who receives the role or
privilege

Put quotes around user to preserve the lettercase of
the name of the user. The single keyword PUBLIC
grants a role or a privilege to all authorized users.

Owner
Name,
p. 4-234

,

user

PUBLIC

Back to GRANT
p. 2-459

User List

'user '
2-474 IBM Informix Guide to SQL: Syntax

GRANT
The following example grants the table-level privilege Insert on table1 to the
user named mary in a database that is not ANSI-compliant:

GRANT INSERT ON table1 TO mary

In an ANSI-compliant database, if you do not use quotes around user, the
name of the user is stored in uppercase letters. ♦

Role Name
You can identify one or more users by a name that describes their function,
or role. You create the role, then grant the role to one or more users. You can
also grant a role to another role.

After you create and grant a role, you can grant certain privileges to the one
or more users associated with that role name.

Granting a Role to a User or Another Role

You must add a role to the database before the role can be used in a GRANT
statement. For more information, see “CREATE ROLE” on page 2-194.

A DBA has the authority to grant a new role to another user. If a user receives
a role WITH GRANT OPTION, that user can grant the role to other users or to
another role. Users keep a role granted to them until a REVOKE statement
breaks the association between their login names and the role name.

Important: CREATE ROLE and GRANT do not activate the role. A role has no effect
until SET ROLE enables it. A role grantor or a role grantee can issue the SET ROLE.

ANSI

Element Purpose Restrictions Syntax
role Name of a role that is granted, or to which

a privilege or another role is granted
Must exist. If enclosed between
quotation marks, role is case sensitive.

Identifier,
p. 4-189

' role '

Back to GRANT
p. 2-459

Role Name

role
SQL Statements 2-475

GRANT
The following example shows the actions required to grant and activate the
role payables to a group of employees who perform account payables
functions. First the DBA creates role payables, then grants it to maryf.

CREATE ROLE payables;
GRANT payables TO maryf WITH GRANT OPTION

The DBA or maryf can activate the role with the following statement:

SET ROLE payables

User maryf has the WITH GRANT OPTION authorization to grant payables to
other employees who pay accounts.

GRANT payables TO charly, gene, marvin, raoul

If you grant privileges for one role to another role, the recipient role has a
combined set of privileges. The following example grants the role petty_cash
to the role payables:

CREATE ROLE petty_cash;
SET ROLE petty_cash;
GRANT petty_cash TO payables

If you attempt to grant a role to itself, either directly or indirectly, the
database server generates an error.

Granting a Privilege to a Role

You can grant table- and routine-level privileges to a role if you have the
authority to grant these same privileges to login names or PUBLIC. A role
cannot have database-level privileges.

You can also grant type-level privileges to a role. ♦

When you grant a privilege to a role:

� You can specify the AS grantor clause.

In this way, whomever has the role can revoke these same privileges.
For more information, see “AS grantor Clause” on page 2-478.

� You cannot include the WITH GRANT OPTION clause.

A role cannot, in turn, grant the same table-, type-, or routine-level
privileges to another user.

IDS
2-476 IBM Informix Guide to SQL: Syntax

GRANT
The following example grants the table-level privilege Insert on the supplier
table to the role payables:

GRANT INSERT ON supplier TO payables

Anyone granted the role of payables can now insert into supplier.

WITH GRANT OPTION Keywords
The WITH GRANT OPTION keywords convey the specified privilege to user
with the right to grant the same privileges to other users. You create a chain
of privileges that begins with you and extends to user as well as to whomever
user subsequently conveys the right to grant privileges. If you use WITH
GRANT OPTION, you can no longer control the dissemination of privileges.

If you revoke from user the privilege that you granted using the WITH GRANT
OPTION keyword, you sever the chain of privileges. That is, when you revoke
privileges from user, you automatically revoke the privileges of all users who
received privileges from user or from the chain that user created (unless user,
or the users who received privileges from user, were granted the same set of
privileges by someone else).

The following examples illustrate this situation. You, as the owner of the table
items, issue the following statements to grant access to user mary:

REVOKE ALL ON items FROM PUBLIC;
GRANT SELECT, UPDATE ON items TO mary WITH GRANT OPTION

User mary uses her privilege to grant users cathy and paul access to the table.

GRANT SELECT, UPDATE ON items TO cathy;
GRANT SELECT ON items TO paul

Later you issue the following statement to cancel access privileges for user
mary on the items table:

REVOKE SELECT, UPDATE ON items FROM mary

This single statement effectively revokes all privileges on the items table
from users mary, cathy, and paul. If you want to create a chain of privileges
with another user as the source of the privilege, use the AS grantor clause.
SQL Statements 2-477

GRANT
AS grantor Clause
When you grant privileges, by default, you are the one who can revoke those
privileges. The AS grantor clause lets you establish another user as the source
of the privileges you are granting. When you use this clause, the login
provided in the AS grantor clause replaces your login in the appropriate
system catalog table.

You can use this clause only if you have the DBA privilege on the database.

After you use this clause, only the specified grantor can REVOKE the effects of
the current GRANT. Even a DBA cannot revoke a privilege unless that DBA is
listed in the system catalog table as the source who granted the privilege.

The following example illustrates this situation. You are the DBA and you
grant all privileges on the items table to user tom with the right to grant all
privileges:

REVOKE ALL ON items FROM PUBLIC;
GRANT ALL ON items TO tom WITH GRANT OPTION

The following example illustrates a different situation. You also grant Select
and Update privileges to user jim, but you specify that the grant is made as
user tom. (The records of the database server show that user tom is the
grantor of the grant in the systabauth system catalog table, rather than you.)

GRANT SELECT, UPDATE ON items TO jim AS tom

Later, you decide to revoke privileges on the items table from user tom, so
you issue the following statement:

REVOKE ALL ON items FROM tom

When you try to revoke privileges from user jim with a similar statement,
however, the database server returns an error, as the next example shows:

REVOKE SELECT, UPDATE ON items FROM jim

580: Cannot revoke permission.

You get an error because the database server record shows the original
grantor as user tom, and you cannot revoke the privilege. Although you are
the DBA, you cannot revoke a privilege that another user granted.
2-478 IBM Informix Guide to SQL: Syntax

GRANT
Related Information
Related statements: GRANT FRAGMENT, REVOKE, and REVOKE FRAGMENT

For information about roles, see the following statements: CREATE ROLE,
DROP ROLE, and SET ROLE.

In the IBM Informix Database Design and Implementation Guide, see the
discussion of privileges.

For a discussion of how to embed GRANT and REVOKE statements in
programs, see the IBM Informix Guide to SQL: Tutorial.
SQL Statements 2-479

GRANT FRAGMENT
GRANT FRAGMENT
Use the GRANT FRAGMENT statement to grant Insert, Update, and Delete
privileges to users on individual fragments of a fragmented table that has
been fragmented by expression.

Syntax

Usage
The GRANT FRAGMENT statement is similar to the GRANT statement. Both
statements grant privileges to users, but GRANT ASSIGNS privileges on a
table, but GRANT FRAGMENT assigns privileges on table fragments. GRANT
FRAGMENT is valid only for tables that are fragmented according to an
expression-based distribution scheme. For an explanation of expression-
based fragmentation, see “Expression Distribution Scheme” on page 2-25.

In the TO clause, if you enclose user in quotation marks, the name of the user
designated as grantee is case sensitive and is stored exactly as you typed it.

+

IDS

Element Purpose Restrictions Syntax
dbspace dbspace that stores the fragment(s)

on which privileges are to be granted
Must exist. You must specify
at least one.

Identifier, p. 4-189

grantor User who can revoke the privileges Same as for user.. Same as for user.
table Table that contains fragment(s) on

which privileges are granted
Must exist and must be
fragmented by expression.

Database Object Name,
p. 4-46

user User(s) to whom the specified
privileges are to be granted

Must be a valid authori-
zation identifier.

Must conform to the rules
of your operating system.

ON dbspace()table

,

user

,

'user '

TO

WITH GRANT OPTION AS grantor

GRANT FRAGMENT

Fragment-Level
Privileges
p. 2-481
2-480 IBM Informix Guide to SQL: Syntax

GRANT FRAGMENT
In an ANSI-compliant database, if you do not use quotes around user, the
name of the user is stored in uppercase letters. ♦

The user specified in the AS clause is listed as the grantor of the privileges in
the grantor column of the sysfragauth system catalog table. If the AS clause
is omitted, the user who issues the GRANT FRAGMENT statement is the
default grantor of the privileges.

Fragment-Level Privileges

The following table defines each of the fragment-level privileges.

Definition of Fragment-Level Authorization

In an ANSI-compliant database, the owner implicitly receives all table-level
privileges on a newly created table, but no other users receive privileges. ♦

A user who has table privileges on a fragmented table has the privileges
implicitly on all fragments of the table. These privileges are not recorded in
the sysfragauth system catalog table.

ANSI

INSERT

UPDATE

,

DELETE

Fragment-Level
Privileges

Back to GRANT FRAGMENT
p. 2-480

ALL

Privilege Effect

ALL Provides Insert, Delete, and Update privileges on a fragment

INSERT Can insert rows in the fragment

DELETE Can delete rows in the fragment

UPDATE Can update rows in the fragment and in any column in UPDATE
actions.

ANSI
SQL Statements 2-481

GRANT FRAGMENT
When a fragmented table is created in a database that is not ANSI compliant,
the table owner implicitly receives all table-level privileges on the table, and
other users (that is, PUBLIC) receive the following default set of privileges on
the table: Select, Update, Insert, Delete, and Index. The privileges granted to
PUBLIC are explicitly recorded in the systabauth system catalog table.

Whether or not the database is ANSI compliant, you can use the GRANT
FRAGMENT statement to grant explicit Insert, Update, and Delete privileges
on one or more fragments of a table that is fragmented by expression. The
privileges that the GRANT FRAGMENT statement grants are explicitly
recorded in the sysfragauth system catalog table.

The Insert, Update, and Delete privileges that are conferred on table
fragments by the GRANT FRAGMENT statement are collectively known as
fragment-level privileges or fragment-level authority.

Role of Fragment-Level Authority in Command Validation

Fragment-level privilege enables users to execute INSERT, DELETE, and
UPDATE statements on table fragments even if they lack Insert, Update, and
Delete privileges on the table as a whole. Users who lack privileges at the
table level can insert, delete, and update rows in authorized fragments
because of the algorithm by which the database server validates commands.
This algorithm consists of the following checks:

1. When a user executes an INSERT, DELETE, or UPDATE statement, the
database server first checks whether the user has the table privileges
necessary for the operation attempted. If the table privileges exist,
the statement continues processing.

2. If the table privileges do not exist, the database server checks
whether the table is fragmented by expression. If the table is not
fragmented by expression, the database server returns an error to the
user. This error indicates that the user does not have the privilege to
execute the command.

3. If the table is fragmented by expression, the database server checks
whether the user has the fragment privileges necessary for the
operation attempted. If the fragment privileges exists, the command
continues processing. If the fragment privileges do not exist, the
database server returns an error to the user. This error indicates that
the user does not have the privilege to execute the command.
2-482 IBM Informix Guide to SQL: Syntax

GRANT FRAGMENT
Duration of Fragment-Level Privileges

The duration of fragment-level privileges is tied to the duration of the
fragmentation strategy for the table as a whole.

If you drop a fragmentation strategy by means of a DROP TABLE statement or
the INIT, DROP, or DETACH clauses of an ALTER FRAGMENT statement, you
also drop any privileges that exist for the affected fragments. Similarly, if you
drop a dbspace, you also drop any privileges that exist for the fragment that
resides in that dbspace.

Tables that are created as a result of a DETACH or INIT clause of an ALTER
FRAGMENT statement do not keep the privileges that the former fragment or
fragments had when they were part of the fragmented table. Instead, such
tables assume the default table privileges.

If a table with fragment privileges defined on it is changed to a table with a
round-robin strategy or some other expression strategy, the fragment privi-
leges are also dropped, and the table assumes the default table privileges.

You can grant fragment-level privileges on one fragment of a table or on a list
of fragments.

Granting Privileges on One Fragment

The following statement grants the Insert, Update, and Delete privileges on
the fragment of the customer table in dbsp1 to user larry:

GRANT FRAGMENT ALL ON customer (dbsp1) TO larry

Granting Privileges on More Than One Fragment

The following statement grants the Insert, Update, and Delete privileges on
the fragments of the customer table in dbsp1 and dbsp2 to user millie:

GRANT FRAGMENT ALL ON customer (dbsp1, dbsp2) TO millie

Granting Privileges on All Fragments of a Table

To grant privileges on all fragments of a table to the same user or users, you
can use the GRANT statement instead of the GRANT FRAGMENT statement.
You can also use the GRANT FRAGMENT statement for this purpose.
SQL Statements 2-483

GRANT FRAGMENT
Assume that the customer table is fragmented by expression into three
fragments, and these fragments reside in the dbspaces named dbsp1, dbsp2,
and dbsp3. You can use either of the following statements to grant the Insert
privilege on all fragments of the table to user helen:

GRANT FRAGMENT INSERT ON customer (dbsp1, dbsp2, dbsp3)
TO helen;

GRANT INSERT ON customer TO helen;

Granting Privileges to One User or a List of Users
You can grant fragment-level privileges to a single user or to a list of users.

Granting Privileges to One User

The following statement grants the Insert, Update, and Delete privileges on
the fragment of the customer table in dbsp3 to user oswald:

GRANT FRAGMENT ALL ON customer (dbsp3) TO oswald

Granting Privileges to a List of Users

The following statement grants the Insert, Update, and Delete privileges on
the fragment of the customer table in dbsp3 to users jerome and hilda:

GRANT FRAGMENT ALL ON customer (dbsp3) TO jerome, hilda

Granting One Privilege or a List of Privileges
When you specify fragment-level privileges in a GRANT FRAGMENT
statement, you can specify one privilege, a list of privileges, or all privileges.

Granting One Privilege

The following statement grants the Update privilege on the fragment of the
customer table in dbsp1 to user ed:

GRANT FRAGMENT UPDATE ON customer (dbsp1) TO ed
2-484 IBM Informix Guide to SQL: Syntax

GRANT FRAGMENT
Granting a List of Privileges

The following statement grants the Update and Insert privileges on the
fragment of the customer table in dbsp1 to user susan:

GRANT FRAGMENT UPDATE, INSERT ON customer (dbsp1) TO susan

Granting All Privileges

The following statement grants the Insert, Update, and Delete privileges on
the fragment of the customer table in dbsp1 to user harry:

GRANT FRAGMENT ALL ON customer (dbsp1) TO harry

WITH GRANT OPTION Clause
By including the WITH GRANT OPTION clause in the GRANT FRAGMENT
statement, you convey the specified fragment-level privileges to a user and
the right to grant those same privileges to other users.

The following statement grants the Update privilege on the fragment of the
customer table in dbsp3 to user george and gives this user the right to grant
the Update privilege on the same fragment to other users:

GRANT FRAGMENT UPDATE ON customer (dbsp3) TO george
WITH GRANT OPTION

AS grantor Clause
The AS grantor clause is optional in a GRANT FRAGMENT statement. Use this
clause to specify the grantor of the privilege.

When you include the AS grantor clause in the GRANT FRAGMENT statement,
you specify that the user who is named as grantor is listed as the grantor of
the privilege in the grantor column of the sysfragauth system catalog table.

In the next example, the DBA grants the Delete privilege on the fragment of
the customer table in dbsp3 to user martha. In the GRANT FRAGMENT
statement, the DBA uses the AS grantor clause to specify that user jack is listed
as the grantor of the privilege in the sysfragauth system catalog table.

GRANT FRAGMENT DELETE ON customer (dbsp3) TO martha AS jack
SQL Statements 2-485

GRANT FRAGMENT
Omitting the AS grantor Clause

When GRANT FRAGMENT does not include the AS grantor clause, the user
who issues the statement is the default grantor of the specified privileges.

In the next example, the user grants the Update privilege on the fragment of
the customer table in dbsp3 to user fred. Because this statement does not
specify the AS grantor clause, the user who issues the statement is listed by
default as the grantor of the privilege in the sysfragauth system catalog table.

GRANT FRAGMENT UPDATE ON customer (dbsp3) TO fred

If you omit the AS grantor clause of GRANT FRAGMENT, or if you specify your
own login name as the grantor, you can later use the REVOKE FRAGMENT
statement to revoke the privilege that you granted to the specified user.

In Extended Parallel Server, however, if you specify someone other than
yourself as the grantor of the specified privilege to the specified user, only
that grantor can revoke the privilege from the user. ♦

For example, if you grant the Delete privilege on the fragment of the
customer table in dbsp3 to user martha but specify user jack as the grantor
of the privilege, user jack can revoke that privilege from user martha, but you
cannot revoke that privilege from user martha.

For Dynamic Server, the DBA, or the owner of the fragment, can use the AS
clause of GRANT FRAGMENT to revoke privileges on the fragment.

Related Information
Related statements: GRANT and REVOKE FRAGMENT

For a discussion of fragment-level and table-level privileges, see the
IBM Informix Database Design and Implementation Guide.

XPS
2-486 IBM Informix Guide to SQL: Syntax

INFO
INFO
Use the INFO statement to display information about databases tables. Use
this statement with DB-Access.

Syntax

Usage
Keywords of the INFO statement can display the following information.

+

DB

Element Purpose Restrictions Syntax
 table Table about which you seek information Must exist. Database Object Name, p. 4-46

INFO TABLES

COLUMNS

INDEXES

FOR table

ACCESS

PRIVILEGES

REFERENCES

STATUS FRAGMENTS

INFO Keyword Information Displayed

TABLES Table names in the current database

COLUMNS Column information for a specified table

INDEXES Index information for a specified table

FRAGMENTS Fragmentation strategy for a specified table

ACCESS or
PRIVILEGES

Access privileges for a specified table. (The ACCESS
and PRIVILEGES keywords are synonyms.)

REFERENCES References privileges for columns of a specified table

STATUS Status information for a specified table
SQL Statements 2-487

INFO
� TABLES Keyword

Use TABLES to display a list of the tables in the current database, not
including system catalog table s, in one of the following formats:

❑ If you are the owner of the cust_calls table, it appears as
cust_calls.

❑ If you are not the owner of the cust_calls table, the name of the
owner precedes the table name, such as 'june'.cust_calls.

� COLUMNS Keyword

Use COLUMNS to display the names and data types of the columns
in a specified table and whether NULL values are allowed.

� INDEXES Keyword

Use INDEXES to display the name, owner, and type of each index in
a specified table, the clustered status, and the indexed columns.

� FRAGMENTS Keyword

Use FRAGMENTS to display the names of dbspaces storing fragments
of a table. If the table is fragmented with an expression-based distri-
bution scheme, the INFO statement also shows the expressions.

� ACCESS or PRIVILEGES Keyword

Use ACCESS or PRIVILEGES to display user-access privileges for a
specified table. (These two keywords are synonyms in this context.)

� REFERENCES Keyword

Use REFERENCES to display the References privilege for users for the
columns of a specified table. For database-level privileges, use a
SELECT statement to query the sysusers system catalog table.

� STATUS Keyword

Use STATUS to display information about the owner, row length,
number of rows and columns, creation date, and status of audit trails
for a specified table.

Related Information
Related statements: GRANT and REVOKE

For a description of the Info option on the SQL menu or the TABLE menu in
DB-Access, see the IBM Informix DB-Access User’s Guide.
2-488 IBM Informix Guide to SQL: Syntax

INSERT
INSERT
Use the INSERT statement to insert one or more new rows into a table or view
or one or more elements into an SPL or ESQL/C collection variable.

Syntax

Element Purpose Restrictions Syntax
column Column to receive new value See “Specifying Columns” on

page 2-490.
Identifier, p. 4-189

external External table into which to
insert data

Must exist. Database Object
Name, p. 4-46

field Field of a named or unnamed
row type

Must already be defined in the
database.

“Field Definition” on
page 2-201

position Position at which to insert an
element of a LIST data type

Literal number or an INT or
SMALLINT type SPL variable.

Literal Number,
p. 4-216

synonym, table,
view

Table, view, or synonym in
which to insert data

Synonym and the table to which it
points must exist.

Database Object
Name, p. 4-46

 AT position

,

column()

INSERT

Subset of SELECT Statement
p. 2-500

VALUES Clause
p. 2-494

,

external

XPS

view

synonym

EXECUTE Routine Clause
p. 2-501

Subset of
SELECT

Statement
p. 2-500

Collection-
Derived
Table
p. 4-7

 INTO

,

field

INTO

+

E/C

IDS

SPL

column()

table

VALUES Clause
p. 2-494
SQL Statements 2-489

INSERT
Usage
To insert data into a table, you must either own the table or have the Insert
privilege for the table (see “GRANT” on page 2-459). To insert data into a
view, you must have the required Insert privilege, and the view must meet
the requirements explained in “Inserting Rows Through a View” on
page 2-491.

If you insert data into a table that has data integrity constraints associated
with it, the inserted data must meet the constraint criteria. If it does not, the
database server returns an error.

If you are using effective checking, and the checking mode is set to
IMMEDIATE, all specified constraints are checked at the end of each INSERT
statement. If the checking mode is set to DEFERRED, all specified constraints
are not checked until the transaction is committed.

Specifying Columns

If you do not explicitly specify one or more columns, data is inserted into
columns using the column order that was established when the table was
created or last altered. The column order is listed in the syscolumns system
catalog table.

In ESQL/C, you can use the DESCRIBE statement with an INSERT statement to
determine the column order and the data type of the columns in a table. ♦

The number of columns specified in the INSERT INTO clause must equal the
number of values supplied in the VALUES clause or by the SELECT statement,
either implicitly or explicitly. If you specify a column list, the columns receive
data in the order in which you list the columns. The first value following the
VALUES keyword is inserted into the first column listed, the second value is
inserted into the second column listed, and so on.

If you omit a column from the column list, and the column does not have a
default value associated with it, the database server places a NULL value in
the column when the INSERT statement is executed.

E/C
2-490 IBM Informix Guide to SQL: Syntax

INSERT
Using the AT Clause

Use the AT clause to insert LIST elements at a specified position in a collection
variable. By default, Dynamic Server adds a new element at the end of a LIST
collection.

If you specify a position greater than the number of elements in the list, the
database server adds the element to the end of the list. You must specify a
position value of at least 1 because the first element in the list is at position 1.

The following SPL example inserts a value at a specific position in a list:

CREATE PROCEDURE test3()
DEFINE a_list LIST(SMALLINT NOT NULL);
SELECT list_col INTO a_list FROM table1 WHERE id = 201;
INSERT AT 3 INTO TABLE(a_list) VALUES(9);
UPDATE table1 VALUES list_col = a_list WHERE id = 201;

END PROCEDURE;

Suppose that before this INSERT, a_list contained the elements {1,8,4,5,2}.
After this INSERT, a_list contains the elements {1,8,9,4,5,2}. The new
element 9 was inserted at position 3 in the list. For more information on
inserting values into collection variables, see “Collection-Derived Table” on
page 4-7.

Inserting Rows Through a View

You can insert data through a single-table view if you have the Insert privilege
on the view. To do this, the defining SELECT statement can select from only
one table, and it cannot contain any of the following components:

� DISTINCT keyword

� GROUP BY clause

� Derived value (also referred to as a virtual column)

� Aggregate value

Columns in the underlying table that are unspecified in the view receive
either a default value or a NULL value if no default is specified. If one of these
columns does not specify a default value, and a NULL value is not allowed,
the insert fails.

You can use data-integrity constraints to prevent users from inserting values
into the underlying table that do not fit the view-defining SELECT statement.

E/C

IDS

SPL
SQL Statements 2-491

INSERT
For further information, see “WITH CHECK OPTION Keywords” on
page 2-314.

If several users are entering sensitive information into a single table, the built-
in USER function can limit their view to only the specific rows that each user
inserted. The following example contains a view and an INSERT statement
that achieve this effect:

CREATE VIEW salary_view AS
SELECT lname, fname, current_salary

FROM salary
WHERE entered_by = USER

INSERT INTO salary
VALUES ('Smith', 'Pat', 75000, USER)

Inserting Rows with a Cursor

In ESQL/C, if you associate a cursor with an INSERT statement, you must use
the OPEN, PUT, and CLOSE statements to carry out the INSERT operation. For
databases that have transactions but are not ANSI-compliant, you must issue
these statements within a transaction.

If you are using a cursor that is associated with an INSERT statement, the rows
are buffered before they are written to the disk. The insert buffer is flushed
under the following conditions:

� The buffer becomes full.

� A FLUSH statement executes.

� A CLOSE statement closes the cursor.

� In a database that is not ANSI-compliant, an OPEN statement
implicitly closes and then reopens the cursor.

� A COMMIT WORK statement ends the transaction.

When the insert buffer is flushed, the client processor performs appropriate
data conversion before it sends the rows to the database server. When the
database server receives the buffer, it converts any user-defined data types
and then begins to insert the rows one at a time into the database. If an error
is encountered while the database server inserts the buffered rows into the
database, any buffered rows that follow the last successfully inserted rows
are discarded.

E/C
2-492 IBM Informix Guide to SQL: Syntax

INSERT
Inserting Rows into a Database Without Transactions

If you are inserting rows into a database with no transaction logging, you
must take explicit action to restore inserted rows if the operation fails. For
example, if INSERT fails after entering some rows, the successfully inserted
rows remain in the table. You cannot recover automatically from a failed
INSERT into a database for which no transaction log exists

Inserting Rows into a Database with Transactions

If you are inserting rows into a database with transactions, and you are using
explicit transactions, use the ROLLBACK WORK statement to undo the
insertion. If you do not execute BEGIN WORK before the insert, and the insert
fails, the database server automatically rolls back any database modifications
made since the beginning of the insert.

If you are inserting rows into an ANSI-compliant database, transactions are
implicit, and all database modifications take place within a transaction. In
this case, if an INSERT statement fails, use the ROLLBACK WORK statement to
undo the insertions.

If you are using an explicit transaction, and the update fails, the database
server automatically undoes the effects of the update. ♦

Tables that you create with the RAW logging type are never logged. Thus, raw
tables are not recoverable, even if the database uses logging. For information
about raw tables, refer to the IBM Informix Guide to SQL: Reference.

Rows that you insert with a transaction remain locked until the end of the
transaction. The end of a transaction is either a COMMIT WORK statement,
where all modifications are made to the database, or a ROLLBACK WORK
statement, where none of the modifications are made to the database. If many
rows are affected by a single INSERT statement, you can exceed the maximum
number of simultaneous locks permitted. To prevent this situation, either
insert fewer rows per transaction or lock the page (or the entire table) before
you execute the INSERT statement.

ANSI
SQL Statements 2-493

INSERT
VALUES Clause
The VALUES clause can specify values to insert into one or more columns.
When you use the VALUES clause, you can insert only one row at a time.

Each value that follows the VALUES keyword is assigned to the corre-
sponding column listed in the INSERT INTO clause (or in column order, if a
list of columns is not specified). If you are inserting a quoted string into a
column, the maximum length that can be inserted without error is 256 bytes.

Element Purpose Restrictions Syntax
indicator_var Variable to show if SQL statement

returns NULL to input_var
See the IBM Informix ESQL/C
Programmer’s Manual.

Language specific

input_var Variable that holds value to insert.
Can be a COLLECTION variable.

Can contain any value option of
VALUES clause.

Language specific

literal_opaque Literal representation for an
opaque data type

Must be recognized by the input
support function of opaque type.

See documentation
for the opaque type.

literal_Boolean Literal representation of a Boolean
value as a single character

Either 't' (TRUE)
or 'f' (FALSE)

Quoted String,
p. 4-243

Quoted String
p. 4-243

Literal Number
p. 4-216

input_varVALUES

indicator_var

indicator_var

)(

,

$

:

+

+

E/C

Literal
Collection
p. 4-208

' literal_Boolean '

literal_opaqueIDS

USER

NULL

Literal
Row

p. 4-218

VALUES Clause Back to INSERT
p. 2-489

Expression
p. 4-67

Constant
Expression

p. 4-95

Column Expression
p. 4-82
2-494 IBM Informix Guide to SQL: Syntax

INSERT
In ESQL/C, if you use an input_var variable to specify the value, you can insert
character strings longer than 256 bytes into a table. ♦

For the keywords and the types of literal values that are valid in the VALUES
clause, refer to “Constant Expressions” on page 4-95.

Considering Data Types

The value that the INSERT statement puts into a column does not need to be
of the same data type as the column that receives it. These two data types,
however, must be compatible. Two data types are compatible if the database
server has some way to cast one data type to another. A cast is the mechanism
by which the database server converts one data type to another.

The database server makes every effort to perform data conversion. If the
data cannot be converted, the INSERT operation fails. Data conversion also
fails if the target data type cannot hold the value that is specified. For
example, you cannot insert the integer 123456 into a column defined as a
SMALLINT data type because this data type cannot hold a number that large.

For a summary of the casting that the database server provides, see the
IBM Informix Guide to SQL: Reference. For information on how to create a user-
defined cast, see the CREATE CAST statement in this manual and IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

Inserting Values into Serial Columns

You can insert consecutive numbers, explicit values, or explicit values that
reset the serial sequence value in a serial column:

� To insert a consecutive serial value. Specify a zero (0) for the serial
column in the INSERT statement. In this case, the database server
assigns the next highest value.

� To insert an explicit value. Specify the nonzero value after first
verifying that it does not duplicate one already in the table. If the
serial column is uniquely indexed or has a unique constraint, and
you r value duplicates one already in the table, an error results. If the
value is greater than the current maximum value, you will create a
gap in the series.

E/C
SQL Statements 2-495

INSERT
� To create a gap in the series (reset the serial value). Specify a positive
value that is greater than the current maximum value in the column.

Alternatively, you can use the MODIFY clause of the ALTER TABLE
statement to reset the next value of a serial column.

For more information, see “Altering the Next Serial Number” on page 2-67.

NULL values are not allowed in serial columns.

Inserting a serial value into a table that is part of a table hierarchy updates all
tables in the hierarchy that contain the serial counter with the value that you
insert (either a zero (0) for the next highest value or a specific number). ♦

Inserting Values into Opaque-Type Columns

Some opaque data types require special processing when they are inserted.
For example, if an opaque data type contains spatial or multirepresentational
data, it might provide a choice of how to store the data: inside the internal
structure or, for large objects, in a smart large object.

This is accomplished by calling a user-defined support function called
assign(). When you execute INSERT on a table whose rows contains one of
these opaque types, the database server automatically invokes the assign()
function for the type. The assign() function can make the decision of how to
store the data. For more information about the assign() support function, see
IBM Informix User-Defined Routines and Data Types Developer’s Guide.

Inserting Values into Collection Columns

You can use the VALUES clause to insert values into a collection column. For
more information, see “Collection Constructors” on page 4-108.

For example, suppose you define the tab1 table as follows:

CREATE TABLE tab1
(

int1 INTEGER,
list1 LIST(ROW(a INTEGER, b CHAR(5)) NOT NULL),
dec1 DECIMAL(5,2)

)

IDS

IDS

IDS
2-496 IBM Informix Guide to SQL: Syntax

INSERT
The following INSERT statement inserts a row into tab1:

INSERT INTO tab1 VALUES
(
10,
LIST{ROW(1,'abcde'),

ROW(POW(3,3), '=27'),
ROW(ROUND(ROOT(126)), '=11')},

100
)

The collection column, list1, in this example has three elements. Each element
is an unnamed row type with an INTEGER field and a CHAR(5) field. The first
element is composed of two literal values, an integer (1) and a quoted string
(abcde). The second and third elements also use a quoted string to indicate
the second field, but specify the value for the first field with an expression.

Regardless of what method you use to insert values into a collection column,
you cannot insert NULL elements into the column. Thus expressions that you
use cannot evaluate to NULL. If the collection that you are attempting to
insert contains a NULL element, the database server returns an error.

You can also use a collection variable to insert the values of one or more
collection elements into a collection column. For more information, see
“Collection-Derived Table” on page 4-7. ♦

Inserting Values into ROW-Type Columns

The VALUES clause to insert literal and nonliteral values in a named or
unnamed ROW type column, as in the following example:

CREATE ROW TYPE address_t
(

street CHAR(20),
city CHAR(15),
state CHAR(2),
zipcode CHAR(9)

);
CREATE TABLE employee
(

name ROW (fname CHAR(20), lname CHAR(20)),
address address_t

);

E/C

SPL

IDS
SQL Statements 2-497

INSERT
The next example inserts literal values in the name and address columns:

INSERT INTO employee VALUES
(

ROW('John', 'Williams'),
ROW('103 Baker St', 'Tracy','CA', 94060)::address_t

)

INSERT uses ROW constructors to generate values for the name column (an
unnamed ROW data type) and the address column (a named ROW data type).
When you specify a value for a named ROW data type, you must use the CAST
AS keywords or the double colon (::) operator, with the name of the ROW
data type, to cast the value to the named ROW data type.

For the syntax for ROW constructors, see “Constructor Expressions” on
page 4-106 in the Expression segment. For information on literal values for
named r and unnamed ROW data types, see “Literal Row” on page 4-218.

You can use ESQL/C host variables to insert nonliteral values in two ways:

� An entire ROW type into a column. Use a row variable in the VALUES
clause to insert values for all fields in a ROW column at one time.

� Individual fields of a ROW type. To insert nonliteral values in a ROW-
type column, insert the elements into a row variable and then specify
the collection variable in the SET clause of an UPDATE statement.

When you use a ROW variable in the VALUES clause, the ROW variable must
contain values for each field value. For information on how to insert values
in a ROW variable, see “Inserting into a Row Variable” on page 2-502. ♦

Using Expressions in the VALUES Clause

With IBM Informix Dynamic Server, you can insert any type of expression
except a column expression into a column. For example, you can insert built-
in functions that return the current date, date and time, login name of the
current user, or database server name where the current database resides.

E/C

IDS
2-498 IBM Informix Guide to SQL: Syntax

INSERT
The TODAY keyword returns the system date. The CURRENT keyword
returns the system date and time. The USER keyword returns a string that
contains the login account name of the current user. The SITENAME or
DBSERVERNAME keyword returns the database server name where the
current database resides. This example uses built-in functions to insert data:

INSERT INTO cust_calls (customer_num, call_dtime, user_id,
call_code, call_descr)

VALUES (212, CURRENT, USER, 'L', '2 days')

For more information, see “Expression” on page 4-67.

Inserting NULL Values

When you execute the INSERT statement, it inserts a NULL value i into any
column for which you provide no value, as well as for all columns that have
no associated default values and that are not listed explicitly.

You also can specify the NULL keyword in the VALUES clause to indicate that
a column should be assigned a NULL value.

The following example inserts values into three columns of the orders table:

INSERT INTO orders (orders_num, order_date, customer_num)
VALUES (0, NULL, 123)

In this example, a NULL value is explicitly entered in the order_date column,
and all other columns of the orders table that are not explicitly listed in the
INSERT INTO clause are also filled with NULL values.

Truncated CHAR Values

If you assign a value to a CHAR(n) column or variable and the length of that
value exceeds n characters, the database server truncates the last characters
without raising an error. For example, suppose that you define this table:

CREATE TABLE tab1 (col_one CHAR(2)

The database server truncates the data values in the following INSERT state-
ments to "jo" and "sa" respectively, but does not return a warning:

INSERT INTO tab1 VALUES ("john");
INSERT INTO tab1 VALUES ("sally");
SQL Statements 2-499

INSERT
Thus the semantic integrity of data for a CHAR(n) column or variable is not
enforced when the value inserted or updated exceeds length n.

Subset of SELECT Statement

As indicated in the diagram for “INSERT” on page 2-489, not all clauses and
options of the SELECT statement are available for you to use in an INSERT
statement. The following SELECT clauses and options are not supported:

� FIRST and INTO TEMP

� ORDER BY and UNION ♦

If this statement has a WHERE clause that does not return rows, sqlca returns
SQLNOTFOUND (100) for ANSI-compliant databases. ♦

If an insert that is part of a multistatement prepare inserts no rows,
sqlca returns SQLNOTFOUND (100) for both ANSI-compliant databases and
databases that are not ANSI-compliant. In databases that are not ANSI-
compliant, sqlca returns zero (0) if no rows satisfy the WHERE clause.

If you are inserting values into a supertable in a table hierarchy, the subquery
can reference a subtable. If you are inserting values into a subtable in a table
hierarchy, the subquery can reference the supertable if it references only the
supertable. That is, the subquery must use the SELECT…FROM ONLY
(supertable)…syntax. ♦

Using External Tables

In Extended Parallel Server, a SELECT statement that is a part of a load or
unload operation involving an external table is subject to these restrictions:

� Only one external table is allowed in the FROM clause.

� The SELECT subquery cannot contain an INTO clause, but it can
include any valid SQL expression.

When you move data from a database into an external table, the SELECT
statement must define all columns in the external table. The SELECT
statement must not contain a FIRST, FOR UPDATE, INTO, INTO SCRATCH, or
INTO TEMP clause. You can use an ORDER BY clause, however, to produce
files that are ordered within themselves.

IDS

ANSI

IDS

XPS
2-500 IBM Informix Guide to SQL: Syntax

INSERT
EXECUTE Routine Clause
You can specify the EXECUTE FUNCTION (or EXECUTE PROCEDURE)
statement to insert values that a user-defined function returns.

When you use a user-defined function to insert column values, the return
values of the function must have a one-to-one correspondence with the listed
columns. That is, each value that the function returns must be of the data type
expected by the corresponding column in the column list.

For backward compatibility, you can use the EXECUTE PROCEDURE
keywords to execute an SPL function that was created with the CREATE
PROCEDURE statement. ♦

If the called SPL routine scans or updates the target table of the insert, the
database returns an error. That is, the SPL routine cannot select data from the
table into which you are inserting rows.

If a called SPL routine contains certain SQL statements, the database server
returns an error. For information on which SQL statements cannot be used in
an SPL routine that is called within a data manipulation statement, see
“Restrictions on SPL Routines in Data-Manipulation Statements” on
page 4-279.

Element Purpose Restrictions Syntax
function,
procedure

User-defined function or procedure to insert the
data

Must exist. Database Object
Name, p. 4-46

 EXECUTE
,

Argument
p. 4-5

)(

 FUNCTION

 PROCEDURE procedure

function

EXECUTE Routine
Clause

Back to INSERT
p. 2-489

IDS

IDS
SQL Statements 2-501

INSERT
Number of Allowed Return Values

An SPL function can return one or more values. Make sure that the number
of values that the function returns matches the number of columns in the
table or the number of columns that you list in the column list of the INSERT
statement. The columns into which you insert the values must have
compatible data types with the values that the SPL function returns. ♦

An external function can only return one value. Make sure that you specify
only one column in the column list of the INSERT statement. This column
must have a compatible data type with the value that the external function
returns.The external function can be an iterator function. ♦

The following example shows how to insert data into a temporary table
called result_tmp in order to output to a file the results of a user-defined
function (f_one) that returns multiple rows.

CREATE TEMP TABLE result_tmp(...);
INSERT INTO result_tmp EXECUTE FUNCTION f_one();
UNLOAD TO 'file' SELECT * FROM foo_tmp;

Inserting into a Row Variable

The INSERT statement does not support a row variable in the Collection-
Derived-Table segment. You can use the UPDATE statement, however, to
insert new field values into a row variable. For example, the following
ESQL/C code fragment inserts a new row into the rectangles table (which
“Inserting Values into ROW-Type Columns” on page 2-497 defines):

EXEC SQL BEGIN DECLARE SECTION;
row (x int, y int, length float, width float) myrect;

EXEC SQL END DECLARE SECTION;

...
EXEC SQL update table(:myrect)

set x=7, y=3, length=6, width=2;
EXEC SQL insert into rectangles values (12, :myrect);

For more information, see “Updating a Row Variable” on page 2-775.

SPL

Ext

E/C

IDS

SPL
2-502 IBM Informix Guide to SQL: Syntax

INSERT
Using INSERT as a Dynamic Management Statement

In ESQL/C, you can use the INSERT statement to handle situations where you
need to write code that can insert data whose structure is unknown at the
time you compile. For more information, refer to the dynamic management
section of the IBM Informix ESQL/C Programmer’s Manual.

Related Information
Related statements: CLOSE, CREATE EXTERNAL TABLE, DECLARE, DESCRIBE,
EXECUTE, FLUSH, FOREACH, OPEN, PREPARE, PUT, and SELECT

For a task-oriented discussion of inserting data into tables and for infor-
mation on how to access row and collections with SPL variables, see the
IBM Informix Guide to SQL: Tutorial.

For a discussion of the GLS aspects of the INSERT statement, see the
IBM Informix GLS User’s Guide.

For information on how to access row and collections with ESQL/C host
variables, see the chapter on complex types in the IBM Informix ESQL/C
Programmer’s Manual.

E/C
SQL Statements 2-503

LOAD
LOAD
Use the LOAD statement to insert data from an operating-system file into an
existing table or view. Use this statement with DB-Access and the SQL Editor.

Syntax

Usage
The LOAD statement appends new rows to the table. It does not overwrite
existing data. You cannot add a row that has the same key as an existing row.

To use the LOAD statement, you must have Insert privileges for the table
where you want to insert data. For information on database-level and table-
level privileges, see the GRANT statement.

+

DB

SQLE

Element Purpose Restrictions Syntax
column Column to receive data values from

filename
See “INSERT INTO Clause”
on page 2-511.

Identifier, p. 4-189

delimiter Character to separate data values in
each line of the load file. Default
delimiter is the pipe (|) symbol.

See “DELIMITER Clause” on
page 2-511.

Quoted String,
p. 4-243

filename Path and filename of file to read. Default
pathname is current directory

See “LOAD FROM File” on
page 2-505.

Conform to operating
system rules

synonym,
table, view

Synonym for the table in which to insert
data from filename

Synonym and table or view to
which it points must exist.

Database Object
Name, p. 4-46

DELIMITER 'delimiter '
column)

LOAD FROM 'filename ' INSERT INTO
,

(

view

synonym

table
2-504 IBM Informix Guide to SQL: Syntax

LOAD
LOAD FROM File

The LOAD FROM file contains the data to be loaded into the specified table or
view. The default pathname for the load file is the current directory.

You can use the file that the UNLOAD statement creates as the LOAD FROM
file. (See “UNLOAD TO File” on page 2-754 for a description of how values
of various data types are represented within the UNLOAD TO file.)

If you do not include a list of columns in the INSERT INTO clause, the fields
in the file must match the columns that are specified for the table in number,
order, and data type.

Each line of the file must have the same number of fields. You must define
field lengths that are less than or equal to the length that is specified for the
corresponding column. Specify only values that can convert to the data type
of the corresponding column. The following table indicates how the database
server expects you to represent the data types in the LOAD FROM file (when
you use the default locale, U.S. English).

Type of Data Input Format

blank One or more blank characters between delimiters. You can include
leading blanks in fields that do not correspond to character
columns.

Boolean A 't' or 'T' indicates a TRUE value, and an 'f' or 'F' indicates
a FALSE value. ♦

collections Collection must have its values surrounded by braces ({}) and a
field delimiter separating each element. For more information, see
“Loading Complex Data Types” on page 2-510.

DATE Character string in the following format: mm/dd/year

You must state the month as a two-digit number. You can use a
two-digit number for the year if the year is in the 20th century. (You
can specify another century algorithm with the DBCENTURY
environment variable.) The value must be an actual date; for
example, February 30 is illegal. You can use a different date format
if you indicate this format with the GL_DATE or DBDATE
environment variable. For more information about environment
variables, see the IBM Informix Guide to SQL: Reference and the
IBM Informix GLS User’s Guide.

(1 of 2)

IDS
SQL Statements 2-505

LOAD
For more information on DB* environment variables, refer to the IBM Informix
Guide to SQL: Reference. For more information on GL* environment variables,
refer to the IBM Informix GLS User’s Guide.

If you are using a nondefault locale, the formats of DATE, DATETIME, MONEY,
and numeric column values in the LOAD FROM file must be compatible with
the formats that the locale supports for these data types. For more infor-
mation, see the IBM Informix GLS User’s Guide. ♦

DECIMAL,
MONEY,
FLOAT

Value that can include a leading and/or trailing currency symbol
and thousands and decimal separators. Your locale files or the
DBMONEY environment variable can specify a currency format.

NULL Nothing between the delimiters

ROW types
(named or
unnamed)

Row type must have its values surrounded by parentheses and a
field delimiter that separates each element. For more information,
see “Loading Complex Data Types” on page 2-510.

Simple large
objects
(TEXT, BYTE)

TEXT and BYTE columns are loaded directly from the LOAD TO
file. For more information, see “Loading Simple Large Objects” on
page 2-508.

Smart large
objects
(CLOB,
BLOB)

CLOB and BLOB columns are loaded from a separate operating-
system file. The field for the CLOB or BLOB column in the LOAD
FROM file contains the name of this separate file. For more infor-
mation, see “Loading Smart Large Objects” on page 2-509.

Time Character string in year-month-day hour:minute:second.fraction
format. You cannot use data type keywords or qualifiers for
DATETIME or INTERVAL values. The year must be a 4-digit
number, and the month must be a 2-digit number. The DBTIME or
GL_DATETIME environment variable can specify other formats.

User-defined
data formats
(opaque
types)

Associated opaque type must have an import support function
defined if special processing is required to copy the data in the
LOAD FROM file to the internal format of the opaque type. An
import binary support function might also be required for data iin
binary format. The LOAD FROM file data must be in the format
that the import or import binary support function expects. The
associated opaque type must have an assign support function if
special processing is required before writing the data is in the
database. See “Loading Opaque-Type Columns” on page 2-510.

Type of Data Input Format

(2 of 2)

GLS
2-506 IBM Informix Guide to SQL: Syntax

LOAD
The following example shows the contents of an input file named new_custs:

0|Jeffery|Padgett|Wheel Thrills|3450 El Camino|Suite 10|Palo
Alto|CA|94306||
0|Linda|Lane|Palo Alto Bicycles|2344 University||Palo
Alto|CA|94301|(415)323-6440

This data file conveys the following information:

� Indicates a serial field by specifying a zero (0)

� Uses the pipe (|), the default delimiter

� Assigns NULL values to the phone field for the first row and the
address2 field for the second row. The NULL values are shown by
two delimiters with nothing between them.

The following statement loads the values from the new_custs file into the
customer table that jason owns:

LOAD FROM 'new_custs' INSERT INTO jason.customer

If you include any of the following special characters as part of the value of a
field, you must precede the character with a backslash (\) escape symbol:

� Backslash

� Delimiter

� Newline character anywhere in the value of a VARCHAR or
NVARCHAR column

� Newline character at end of a value for a TEXT value

Do not use the backslash character (\) as a field separator. It serves as an
escape character to inform the LOAD statement that the next character is to be
interpreted as part of the data, rather than as having special significance.

Fields that correspond to character columns can contain more characters than
the defined maximum allows for the field. The extra characters are ignored.
SQL Statements 2-507

LOAD
If you are loading files that contain VARCHAR data types, note the following
information:

� If you give the LOAD statement data in which the character fields
(including VARCHAR) are longer than the column size, the excess
characters are disregarded.

� Use the backslash (\) to escape embedded delimiter and backslash
characters in all character fields, including VARCHAR.

� Do not use the following characters as delimiting characters in the
LOAD FROM file: 0 to 9, a to f, A to F, backslash, newline character.

Loading Simple Large Objects

The database server loads simple large objects (BYTE and TEXT columns)
directly from the LOAD FROM file. Keep the following restrictions in mind
when you load BYTE and TEXT data:

� You cannot have leading and trailing blanks in BYTE fields.

� Use the backslash (\) to escape the special significance of literal
delimiter and backslash characters in TEXT fields.

� Data being loaded into a BYTE column must be in ASCII-hexadecimal
form. BYTE columns cannot contain preceding blanks.

� Do not use the following characters as delimiting characters in the
LOAD FROM file: 0 to 9, a to f, A to F, backslash, newline character.

For TEXT columns, the database server handles any required code-set conver-
sions for the data. See also the IBM Informix GLS User’s Guide. ♦

If you are unloading files that contain BYTE or TEXT data types, objects
smaller than 10 kilobytes are stored temporarily in memory. You can adjust
the 10-kilobyte setting to a larger setting with the DBBLOBBUF environment
variable. Simple large objects that are larger than the default or the setting of
DBBLOBBUF are stored in a temporary file. For more information about the
DBBLOBBUF environment variable, see the IBM Informix Guide to SQL:
Reference.

GLS
2-508 IBM Informix Guide to SQL: Syntax

LOAD
Loading Smart Large Objects

The database server loads smart large objects (BLOB and CLOB columns) from
a separate operating-system file on the client computer. For information on
the structure of this file, see “Unloading Smart Large Objects” on page 2-756.

In a LOAD FROM file, a CLOB or BLOB column value appears as follows:

start_off,length,client_path

In this format, start_off is the starting offset (in hexadecimal) of the smart-
large-object value within the client file, length is the length (in hexadecimal)
of the BLOB or CLOB value, and client_path is the pathname for the client file.
No blank spaces can appear between these values.

For example, to load a CLOB value that is 512 bytes long and is at offset 256
in the /usr/apps/clob9ce7.318 file, the database server expects the CLOB value
to appear as follows in the LOAD FROM file:

|100,200,/usr/apps/clob9ce7.318|

If the whole client file is to be loaded, a CLOB or BLOB column value appears
as follows in the LOAD FROM file:

client_path

For example, to load a CLOB value that occupies the entire file
/usr/apps/clob9ce7.318, the database server expects the CLOB value to appear
as follows in the LOAD FROM file:

|/usr/apps/clob9ce7.318|

For CLOB columns, the database server handles any required code-set
conversions for the data. See also the IBM Informix GLS User’s Guide. ♦

IDS

GLS
SQL Statements 2-509

LOAD
Loading Complex Data Types

In a LOAD FROM file, complex data types appear as follows:

� Collections are introduced with the appropriate constructor (SET,
MULTISET, or LIST), and their elements are enclosed in braces ({ }) and
separated with a comma, as follows:

constructor{val1 , val2 , ... }

For example, to load the SET values {1, 3, 4} into a column whose
data type is SET(INTEGER NOT NULL), the corresponding field of the
LOAD FROM file appears as:

|SET{1 , 3 , 4}|

� Row types (named and unnamed) are introduced with the ROW
constructor and their fields are enclosed with parentheses and
separated with a comma, as follows:

ROW(val1 , val2 , ...)

For example, to load the ROW values (1, 'abc'), the corresponding
field of the LOAD FROM file appears as:

|ROW(1 , abc)|

Loading Opaque-Type Columns

Some opaque data types require special processing when they are inserted.
For example, if an opaque data type contains spatial or multirepresentational
data, it might provide a choice of how to store the data: inside the internal
structure or, for large objects, in a smart large object.

This processing is accomplished by calling a user-defined support function
called assign(). When you execute the LOAD statement on a table whose rows
contain one of these opaque types, the database server automatically invokes
the assign() function for the type. The assign() function can make the
decision of how to store the data. For more information about the assign()
support function, see the IBM Informix User-Defined Routines and Data Types
Developer’s Guide.

IDS

IDS
2-510 IBM Informix Guide to SQL: Syntax

LOAD
DELIMITER Clause
Use the DELIMITER clause to specify the delimiter that separates the data
contained in each column in a row in the input file. You can specify TAB
(CTRL-I) or a blank space (= ASCII 32) as the delimiter symbol. You cannot use
the following items as the delimiter symbol:

� Backslash (\)

� Newline character (CTRL-J)

� Hexadecimal numbers (0 to 9, a to f, A to F)

If you omit this clause, the database server checks the DBDELIMITER
environment variable. For information about how to set the DBDELIMITER
environment variable, see the IBM Informix Guide to SQL: Reference.

If the DBDELIMITER environment variable has not been set, the default
delimiter is the pipe (|).

The following example specifies the semicolon (;) as the delimiting
character. The example uses Windows file-naming conventions.

LOAD FROM 'C:\data\loadfile' DELIMITER ';'
INSERT INTO orders

INSERT INTO Clause
Use the INSERT INTO clause to specify the table, synonym, or view in which
to load the new data. You must specify the column names only if one of the
following conditions is true:

� You are not loading data into all columns.

� The input file does not match the default order of the columns (the
order specified when the table was created).

The following example identifies the price and discount columns as the only
columns in which to add data. The example uses Windows filenaming
conventions.

LOAD FROM 'C:\tmp\prices' DELIMITER ','
INSERT INTO norman.worktab(price,discount)
SQL Statements 2-511

LOAD
Related Information
Related statements: UNLOAD and INSERT

For a task-oriented discussion of the LOAD statement and other utilities for
moving data, see the IBM Informix Migration Guide.

For a discussion of the GLS aspects of the LOAD statement, see the
IBM Informix GLS User’s Guide.
2-512 IBM Informix Guide to SQL: Syntax

LOCK TABLE
LOCK TABLE
Use the LOCK TABLE statement to control access to a table by other processes.

Syntax

Usage
You can use LOCK TABLE to lock a table if either of the following is true:

� You are the owner of the table.

� You have Select privilege on the table or on a column in the table,
either from a direct grant or from a grant to PUBLIC.

The LOCK TABLE statement fails if the table is already locked in EXCLUSIVE
mode by another process, or if you request an EXCLUSIVE lock while another
user has locked the same table in SHARE mode.

The SHARE keyword locks a table in shared mode. Shared mode gives other
processes read access to the table but denies write access. Other processes
cannot update or delete data if a table is locked in shared mode.

The EXCLUSIVE keyword locks a table in exclusive mode. This mode denies
other processes both read and write access to the table. Exclusive-mode
locking automatically occurs during the ALTER INDEX, ALTER TABLE,
CREATE INDEX, DROP INDEX, RENAME COLUMN, RENAME TABLE, START
VIOLATIONS TABLE, and STOP VIOLATIONS TABLE statements.

+

Element Purpose Restrictions Syntax
synonym Synonym for the

table to be locked
Synonym and the table to which it
points must exist.

Database Object Name, p. 4-46

table Table to be locked See first paragraph of Usage. Database Object Name, p. 4-46

synonym

IN SHARE MODELOCK TABLE table

EXCLUSIVE
SQL Statements 2-513

LOCK TABLE
Databases with Transactions

If your database was created with transactions, the LOCK TABLE statement
succeeds only if it executes within a transaction. You must issue a BEGIN
WORK statement before you can execute a LOCK TABLE statement.

Transactions are implicit in an ANSI-compliant database. The LOCK TABLE
statement succeeds whenever the specified table is not already locked by
another process. ♦

The following guidelines apply to the use of the LOCK TABLE statement
within transactions:

� You cannot lock system catalog tables.

� You cannot switch between shared and exclusive table locking
within a transaction. For example, once you lock the table in shared
mode, you cannot upgrade the lock mode to exclusive.

� If you issue a LOCK TABLE statement before you access a row in the
table, and PDQ is not in effect, no row locks are set for the table. In
this way, you can override row-level locking and avoid exceeding the
maximum number of locks that are defined in the database server
configuration. (But if PDQ is not in effect, you might run out of locks
with error -134 unless the LOCKS parameter of your ONCONFIG file
specifies a large enough number of locks.)

� All row and table locks release automatically after a transaction is
completed. The UNLOCK TABLE statement fails in a database that
uses transactions.

� The same user can explicitly use LOCK TABLE to lock up to 32 tables
concurrently. (Use SET ISOLATION to specify an appropriate isolation
level, such as Repeatable Read, if you need to lock rows from more
than 32 tables during a single transaction.)

The following example shows how to change the locking mode of a table in
a database that was created with transaction logging:

BEGIN WORK
LOCK TABLE orders IN EXCLUSIVE MODE
 ...
COMMIT WORK
BEGIN WORK
LOCK TABLE orders IN SHARE MODE
 ...
COMMIT WORK

ANSI
2-514 IBM Informix Guide to SQL: Syntax

LOCK TABLE
Warning: It is recommended that you not use nonlogging tables in a transaction. If
you need to use a nonlogging table in a transaction, either lock the table in exclusive
mode or set the isolation level to Repeatable Read to prevent concurrency problems.

Databases Without Transactions

In a database that was created without transactions, table locks that were set
by the LOCK TABLE statement are released after any of the following events:

� An UNLOCK TABLE statement executes.

� The user closes the database.

� The user exits the application.

To change the lock mode on a table, release the lock with the UNLOCK TABLE
statement and then issue a new LOCK TABLE statement.

The following example shows how to change the lock mode of a table in a
database that was created without transactions:

LOCK TABLE orders IN EXCLUSIVE MODE
. . .

UNLOCK TABLE orders
. . .

LOCK TABLE orders IN SHARE MODE

Related Information
Related statements: BEGIN WORK, COMMIT WORK, ROLLBACK WORK, SET
ISOLATION, SET LOCK MODE, and UNLOCK TABLE

For a discussion of concurrency and locks, see the IBM Informix Guide to SQL:
Tutorial.
SQL Statements 2-515

OPEN
OPEN
Use the OPEN statement to activate a cursor. Use this statement with ESQL/C.

Syntax

Usage
A cursor is a database object that can contain an ordered set of values. The
OPEN statement activates a cursor that the DECLARE statement created.

E/C

Element Purpose Restrictions Syntax
cursor_id Name of a cursor Must have been declared Identifier, p. 4-189
cursor_id_var Host variable = cursor_id Must be a character data type Language specific
descriptor Name of a system-descriptor area Must have been allocated Quoted String,

p. 4-243
descriptor_var Host variable that identifies the

system-descriptor area
System-descriptor area must
have been allocated

Quoted String,
p. 4-243

parameter_var Host variable whose contents
replace a question (?) mark place-
holder in a prepared statement

Must be a character or collection
data type

Language specific

sqlda_pointer Pointer to sqlda structure defining
data type and memory location of
values to replace question (?)
marks in a prepared statement

Cannot begin with a dollar ($)
sign nor with a colon (:). You
must use an sqlda structure
with dynamic SQL statements.

DESCRIBE, p. 2-351

,

parameter_var

SQL DESCRIPTOR

OPEN

cursor_id_var

DESCRIPTOR sqlda_pointer

'descriptor '

descriptor_var

USING

WITH REOPTIMIZATION

+

cursor_id

+

2-516 IBM Informix Guide to SQL: Syntax

OPEN
The database server supports the following types of cursors:

� A select cursor: a cursor that is associated with a SELECT statement

� A function cursor: a cursor that is associated with the EXECUTE
FUNCTION (or EXECUTE PROCEDURE) statement

� An insert cursor: a cursor that is associated with the INSERT statement

� A collection cursor: a select or insert cursor that operates on a
collection variable ♦

The specific actions that the database server takes differ, depending on the
statement with which the cursor is associated. When you associate one of the
previous statements with a cursor directly (that is, you do not prepare the
statement and associate the statement identifier with the cursor), the OPEN
statement implicitly prepares the statement.

In an ANSI-compliant database, you receive an error code if you try to open
a cursor that is already open. ♦

Opening a Select Cursor

When you open either a select cursor or an update cursor that is created with
the SELECT… FOR UPDATE syntax, the SELECT statement is passed to the
database server with any values that are specified in the USING clause. The
database server processes the query to the point of locating or constructing
the first row of the active set. The following example illustrates a simple
OPEN statement in ESQL/C:

EXEC SQL declare s_curs cursor for select * from orders;
EXEC SQL open s_curs;

Opening an Update Cursor Inside a Transaction

If you are working in a database with explicit transactions, you must open an
update cursor within a transaction. This requirement is waived if you
declared the cursor using the WITH HOLD option.

Opening a Function Cursor

When you open a function cursor, the EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement is passed to the database server with any values that
are specified in the USING clause.

IDS

ANSI
SQL Statements 2-517

OPEN
The values in the USING clause are passed as arguments to the user-defined
function. This user-defined function must be declared to accept values. (If the
statement was previously prepared, the statement was passed to the
database server when it was prepared.) The database server executes the
function to the point where it returns the first set of values.

The following example illustrates a simple OPEN statement in ESQL/C:

EXEC SQL declare s_curs cursor for
execute function new_func(arg1,arg2)
into :ret_val1, :ret_val2;

EXEC SQL open s_curs;

In Extended Parallel Server, to re-create this example, use the CREATE
PROCEDURE statement instead of the CREATE FUNCTION statement. ♦

Reopening a Select or Function Cursor

The database server evaluates the values that are named in the USING clause
of the OPEN statement only when it opens the select or function cursor. While
the cursor is open, subsequent changes to program variables in the USING
clause do not change the active set of the cursor.

In a database that is ANSI-compliant, you receive an error code if you try to
open a cursor that is already open. ♦

In a database that is not ANSI-compliant, a subsequent OPEN statement closes
the cursor and then reopens it. When the database server reopens the cursor,
it creates a new active set, based on the current values of the variables in the
USING clause. If the variables have changed since the previous OPEN
statement, reopening the cursor can generate an entirely different active set.

Even if the values of the variables are unchanged, the values in the active set
can be different, in the following situations:

� If the user-defined function takes a different execution path from the
previous OPEN statement on a function cursor

� If data in the table was modified since the previous OPEN statement
on a select cursor

The database server can process most queries dynamically, without pre-
fetching all rows when it opens the select or function cursor. Therefore, if
other users are modifying the table at the same time that the cursor is being
processed, the active set might reflect the results of these actions.

XPS

ANSI
2-518 IBM Informix Guide to SQL: Syntax

OPEN
For some queries, the database server evaluates the entire active set when it
opens the cursor. These queries include those with the following features:

� Queries that require sorting: those with an ORDER BY clause or with
the DISTINCT or UNIQUE keyword

� Queries that require hashing: those with a join or with the GROUP BY
clause

For these queries, any changes that other users make to the table while the
cursor is being processed are not reflected in the active set.

Errors Associated with Select and Function Cursors

Because the database server is seeing the query for the first time, it might
detect errors. In this case, the database server does not actually return the first
row of data, but it sets a return code in the sqlca.sqlcode, SQLCODE field of
the sqlca. The return code value is either negative or zero, as the following
table describes.

If the SELECT, SELECT…FOR UPDATE, EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement is valid, but no rows match its criteria, the first
FETCH statement returns a value of 100 (SQLNOTFOUND), which means no
rows were found.

Tip: When you encounter an SQLCODE error, a corresponding SQLSTATE error
value also exists. For information about how to get the message text, check the GET
DIAGNOSTICS statement.

Opening an Insert Cursor

When you open an insert cursor, the cursor passes the INSERT statement to
the database server, which checks the validity of the keywords and column
names. The database server also allocates memory for an insert buffer to hold
new data. (See “DECLARE” on page 2-323.)

Return Code Value Purpose

Negative Shows an error is detected in the SELECT statement

Zero Shows the SELECT statement is valid
SQL Statements 2-519

OPEN
An OPEN statement for a cursor that is associated with an INSERT statement
cannot include a USING clause.

Example of Opening an Insert Cursor

The following ESQL/C example illustrates an OPEN statement with an insert
cursor:

EXEC SQL prepare s1 from
'insert into manufact values ('npr', 'napier')';

EXEC SQL declare in_curs cursor for s1;
EXEC SQL open in_curs;
EXEC SQL put in_curs;
EXEC SQL close in_curs;

Reopening an Insert Cursor

When you reopen an insert cursor that is already open, you effectively flush
the insert buffer; any rows that are stored in the insert buffer are written into
the database table. The database server first closes the cursor, which causes
the flush and then reopens the cursor. For information about how to check
errors and count inserted rows, see “Error Checking” on page 2-546.

In an ANSI-compliant database, you receive an error code if you try to open
a cursor that is already open. ♦

Opening a Collection Cursor

You can declare both select and insert cursors on collection variables. Such
cursors are called collection cursors. You must use the OPEN statement to
activate these cursors.

Use the name of a collection variable in the USING clause of the OPEN
statement. For more information on the use of OPEN...USING with a collection
variable, see “Fetching from a Collection Cursor” on page 2-432 and
“Inserting into a Collection Cursor” on page 2-544.

ANSI

IDS
2-520 IBM Informix Guide to SQL: Syntax

OPEN
USING Clause

The USING clause is required when the cursor is associated with a prepared
statement that includes question-mark (?) placeholders, as follows:

� A SELECT statement with input parameters in its WHERE clause

� An EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement with
input parameters as arguments of its user-defined function

� An INSERT statement with input parameters in its VALUES clause

You can supply values for these parameters in one of the following ways:

� You can specify one or more host variables.

� You can specify a system-descriptor area.

� You can specify a pointer to an sqlda structure.

(For more information, see “PREPARE” on page 2-527.)

If you know the number of parameters to be supplied at runtime and their
data types, you can define the parameters that are needed by the statement
as host variables in your program. You pass parameters to the database
server by opening the cursor with the USING keyword, followed by the
names of the variables. These variables are matched with the SELECT or
EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement question-mark (?)
parameters in a one-to-one correspondence, from left to right.

You cannot include indicator variables in the list of variable names. To use an
indicator variable, you must include the SELECT or EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement as part of the DECLARE statement.

You must supply one host variable name for each placeholder. The data type
of each variable must be compatible with the corresponding type that the
prepared statement requires. The following ESQL/C code fragment opens a
select cursor and specifies host variables in the USING clause:

sprintf (select_1, "%s %s %s %s %s",
"SELECT o.order_num, sum(total price)",
"FROM orders o, items i",
"WHERE o.order_date > ? AND o.customer_num = ?",
"AND o.order_num = i.order_num",
"GROUP BY o.order_num");

EXEC SQL prepare statement_1 from :select_1;
EXEC SQL declare q_curs cursor for statement_1;
EXEC SQL open q_curs using :o_date, :o.customer_num;
SQL Statements 2-521

OPEN
The following example illustrates the USING clause of the OPEN statement
with an EXECUTE FUNCTION statement in an ESQL/C code fragment:

stcopy ("EXECUTE FUNCTION one_func(?, ?)", exfunc_stmt);
EXEC SQL prepare exfunc_id from :exfunc_stmt;
EXEC SQL declare func_curs cursor for exfunc_id;
EXEC SQL open func_curs using :arg1, :arg2;

In Extended Parallel Server, to re-create this example use the CREATE
PROCEDURE statement instead of the CREATE FUNCTION statement. ♦

Specifying a System Descriptor Area

If you do not know the number of parameters to be supplied at runtime or
their data types, you can associate input values from a system-descriptor
area. A system-descriptor area describes the data type and memory location
of one or more values to replace question-mark (?) placeholders.

A system-descriptor area conforms to the X/Open standards. ♦

Use the SQL DESCRIPTOR keywords to introduce the name of a system
descriptor area as the location of the parameters.

The COUNT field in the system-descriptor area corresponds to the number of
dynamic parameters in the prepared statement. The value of COUNT must be
less than or equal to the number of item descriptors that were specified when
the system-descriptor area was allocated with the ALLOCATE DESCRIPTOR
statement. You can obtain the value of a field with the GET DESCRIPTOR
statement and set the value with the SET DESCRIPTOR statement.

The following example shows the OPEN...USING SQL DESCRIPTOR statement:

EXEC SQL allocate descriptor 'desc1';
...
EXEC SQL open selcurs using sql descriptor 'desc1';

As the example indicates, the system descriptor area must be allocated before
you reference it in the OPEN statement.

XPS

X/O
2-522 IBM Informix Guide to SQL: Syntax

OPEN
Specifying a Pointer to an sqlda Structure

If you do not know the number of parameters to be supplied at runtime, or
their data types, you can associate input values from an sqlda structure. An
sqlda structure lists the data type and memory location of one or more values
to replace question-mark (?) placeholders.

Use the DESCRIPTOR keyword to introduce a pointer to the sqlda structure as
the location of the parameters.

The sqlda value specifies the number of input values that are described in
occurrences of sqlvar. This number must correspond to the number of
dynamic parameters in the prepared statement.

Example of Specifying a Pointer to an sqlda Structure

The following example shows an OPEN...USING DESCRIPTOR statement:

struct sqlda *sdp;
...
EXEC SQL open selcurs using descriptor sdp;

Using the WITH REOPTIMIZATION Option

Use the WITH REOPTIMIZATION keywords to reoptimize your query plan.
When you prepare SELECT, EXECUTE FUNCTION, or EXECUTE PROCEDURE
statements, the database server uses a query plan to optimize the query.
If you later modify the data associated with the prepared statement, you can
compromise the effectiveness of the query plan for that statement. In other
words, if you change the data, you might deoptimize your query. To ensure
optimization of your query, you can prepare the statement again, or open the
cursor again using the WITH REOPTIMIZATION option.

You should generally use the WITH REOPTIMIZATION option, because it
provides the following advantages over preparing a statement again:

� Rebuilds only the query plan, rather than the entire statement

� Uses fewer resources

� Reduces overhead

� Requires less time

E/C
SQL Statements 2-523

OPEN
The WITH REOPTIMIZATION option forces the database server to optimize
the query-design plan before it processes the OPEN cursor statement.

The following example uses the WITH REOPTIMIZATION keywords:

EXEC SQL open selcurs using descriptor sdp with reoptimization;

Relationship Between OPEN and FREE

The database server allocates resources to prepared statements and open
cursors. If you execute a FREE statement_id or FREE statement_id_var
statement, you can still open the cursor associated with the freed statement
ID. If you release resources with a FREE cursor_id or FREE cursor_id_var
statement, however, you cannot use the cursor unless you declare the cursor
again.

Similarly, if you use the SET AUTOFREE statement for one or more cursors,
when the program closes the specific cursor, the database server automati-
cally frees the cursor-related resources. In this case, you cannot use the cursor
unless you declare the cursor again.

Related Information
Related statements: ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR,
DESCRIBE, CLOSE, DECLARE, EXECUTE, FETCH, FLUSH, FREE, GET
DESCRIPTOR, PREPARE, PUT, SET AUTOFREE, SET DEFERRED_PREPARE, and
SET DESCRIPTOR

For a task-oriented discussion of the OPEN statement, see the IBM Informix
Guide to SQL: Tutorial.

For more information on system-descriptor areas and the sqlda structure,
refer to the IBM Informix ESQL/C Programmer’s Manual.
2-524 IBM Informix Guide to SQL: Syntax

OUTPUT
OUTPUT
The OUTPUT statement writes query results in an operating-system file, or
pipes query results to another program. Use this statement with DB-Access.

Syntax

Usage
You can use the OUTPUT statement to direct the results of a query to an
operating-system file or to a program. You can also specify whether column
headings should be omitted from the query output.

Sending Query Results to a File

To send the results of a query to an operating-system file, specify the full
pathname for the file. If the file already exists, the output overwrites the
current contents.

The following examples show how to send the result of a query to an
operating-system file. The example uses UNIX filenaming conventions.

OUTPUT TO /usr/april/query1
SELECT * FROM cust_calls WHERE call_code = 'L'

+

DB

Element Purpose Restrictions Syntax
filename Path and filename where query

results are written. The default
path is the current directory.

Can specify a new or existing file. If the
file exists, the query results overwrite
the current contents of the file.

Must conform to
the rules of your
operating system.

program Name of a program to receive
the query results as input

Program must exist, must be known to
the operating system, and must be able
to read the results of a query.

Must conform to
the rules of your
operating system.

WITHOUT HEADINGS

OUTPUT TO
SELECT

Statement
p. 2-581

filename

PIPE program

UNIX
SQL Statements 2-525

OUTPUT
Displaying Query Results Without Column Headings

To display the results of a query without column headings, use the WITHOUT
HEADINGS keywords.

Sending Query Results to Another Program

In the UNIX environment, you can use the keyword PIPE to send the query
results to another program, as the following example shows:

OUTPUT TO PIPE more
SELECT customer_num, call_dtime, call_code

FROM cust_calls

Related Information
Related statements: SELECT and UNLOAD

UNIX
2-526 IBM Informix Guide to SQL: Syntax

PREPARE
PREPARE
Use the PREPARE statement to parse, validate, and generate an execution plan
for SQL statements at runtime. Use this statement with ESQL/C.

Syntax

Usage
The PREPARE statement enables your program to assemble the text of one or
more SQL statements at runtime (creating a prepared object) and make it
executable. This dynamic form of SQL is accomplished in three steps:

1. A PREPARE statement accepts statement text as input, either as a
quoted string or stored within a character variable. Statement text
can contain question-mark (?) placeholders to represent values that
are to be defined when the statement is executed.

2. An EXECUTE or OPEN statement can supply the required input
values and execute the prepared statement once or many times.

3. Resources allocated to the prepared statement can be released later
using the FREE statement.

+

E/C

Element Purpose Restrictions Syntax
statement_id Identifier declared here

for the prepared object
Must be unique in the database among names
of cursors and prepared objects.

Identifier,
p. 4-189

statement_id_var Host variable storing
statement_id

Must have been previously declared as a
character data type

Language
specific

statement_text Text of the SQL
statement(s) to prepare

See “Preparing Multiple SQL Statements” on
page 2-536 and “Statement Text” on page 2-529

Quoted String,
p. 4-243.

statement_var Host variable storing
the text of one or more
SQL statements

Must be a character data type. Not valid if the
SQL statement(s) contains the Collection-
Derived-Table segment.

Language
specific

FROM

statement_id_var

statement_idPREPARE

statement_var

statement_text' '
SQL Statements 2-527

PREPARE
The collating order that is current when the PREPARE statement creates
a prepared object is also used when that object is executed, even if the
execution-time collation of the session (or of DB_LOCALE) is different. ♦

Restrictions

The number of prepared objects in a single program is limited by available
memory. These include statement identifiers declared in PREPARE statements
(statement_id or statement_id_var) and declared cursors. To avoid exceeding
the limit, use the FREE statement to release some statements or cursors.

The maximum length of a PREPARE statement is 64 kilobytes.

For restrictions on the statements in the character string, see “Restricted
Statements in Single-Statement Prepares” on page 2-531 and “Restricted
Statements in Multistatement Prepared Objects” on page 2-537.

Using a Statement Identifier
PREPARE sends the statement text to the database server, which analyzes the
statement text. If the text contains no syntax errors, the database server trans-
lates it to an internal form. This translated statement is saved for later
execution in a data structure that the PREPARE statement allocates. The name
of the structure is the value that is assigned to the statement identifier in the
PREPARE statement. Subsequent SQL statements refer to the structure by
using the same statement identifier that was used in the PREPARE statement.

A subsequent FREE statement releases the database server resources that
were allocated to the statement. After you release these resources with FREE,
you cannot use the statement identifier in a DECLARE statement or with the
EXECUTE statement until you prepare the statement again.

Scope of Statement Identifiers

A program can consist of one or more source-code files. By default, the scope
of a statement identifier is global to the program. Therefore, a statement
identifier that is prepared in one file can be referenced from another file.

In a multiple-file program, if you want to limit the scope of a statement
identifier to the file in which it is prepared, preprocess all the files with the
-local command-line option.

IDS
2-528 IBM Informix Guide to SQL: Syntax

PREPARE
Releasing a Statement Identifier
A statement identifier can represent only one SQL statement or series of state-
ments at a time. A new PREPARE statement can specify an existing statement
identifier if you want to bind the t identifier to a different SQL statement text.

The PREPARE statement supports dynamic statement-identifier names,
which allow you to prepare a statement identifier as an identifier or as a host
variable of a data type that can contain a character string. The first example
that follows shows a statement identifier that was specified as a host variable.
The second specifies a statement identifier as a character-string.

stcopy ("query2", stmtid);
EXEC SQL prepare :stmtid from 'select * from customer';

EXEC SQL prepare query2 from 'select * from customer';

The variable must be a character data type. In C, it must be declared as char.

Statement Text
The PREPARE statement can take statement text either as a quoted string or as
text that is stored in a program variable. The following restrictions apply to
the statement text:

� The text can contain only SQL statements. It cannot contain
statements or comments from the host-programming language.

� The text can contain comments that are preceded by a double
dash (--) or enclosed in braces ({ }).

These comment symbols represent SQL comments. For more infor-
mation on SQL comment symbols, see “How to Enter SQL
Comments” on page 1-6.

� The text can contain either a single SQL statement or a series of
statements that are separated by semicolon (;) symbols.

For a list of SQL statements that cannot be prepared, see “Restricted
Statements in Single-Statement Prepares” on page 2-531. For more
information on how to prepare multiple SQL statements, see “Pre-
paring Multiple SQL Statements” on page 2-536.

� The text cannot include an embedded SQL statement prefix or
terminator, such as a dollar sign ($) or the words EXEC SQL.
SQL Statements 2-529

PREPARE
� Host-language variables are not recognized as such in prepared text.

Therefore, you cannot prepare a SELECT (or EXECUTE FUNCTION or
EXECUTE PROCEDURE) statement that includes an INTO clause,
because the INTO clause requires a host-language variable.

� The only identifiers that you can use are names that are defined in
the database, such as names of tables and columns. For more infor-
mation on how to use identifiers in statement text, see “Preparing
Statements with SQL Identifiers” on page 2-533.

� Use a question mark (?) as a placeholder to indicate where data is
supplied when the statement executes, as in this ESQL/C example:
EXEC SQL prepare new_cust from

'insert into customer(fname,lname) values(?,?)';

For more information on how to use question marks as placeholders,
see “Preparing Statements That Receive Parameters” on page 2-532.

If the prepared statement contains the Collection-Derived-Table segment on
an ESQL/C collection variable, some additional limitations exist on how you
can assemble the text for the PREPARE statement. For information about
dynamic SQL, see the IBM Informix ESQL/C Programmer’s Manual. ♦

Preparing and Executing User-Defined Routines
The way to prepare a user-defined routine (UDR) depends on whether the
UDR is a user-defined procedure or a user-defined function:

� To prepare a user-defined procedure, prepare the EXECUTE
PROCEDURE statement that executes the procedure.

To execute the prepared procedure, use the EXECUTE statement.

� To prepare a user-defined function, prepare the EXECUTE FUNCTION
(or EXECUTE PROCEDURE) statement that executes the function.

You cannot include the INTO clause of EXECUTE FUNCTION (or EXE-
CUTE PROCEDURE) in the PREPARE statement.

How to execute a prepared user-defined function depends on whether it
returns only one group or multiple groups of values. Use the EXECUTE
statement for user-defined functions that return only one group of values.

To execute user-defined functions that return more than one group of return
values, you must associate the EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement with a cursor.

IDS
2-530 IBM Informix Guide to SQL: Syntax

PREPARE
Restricted Statements in Single-Statement Prepares
In general, you can prepare any database manipulation (DML) statement.

You can prepare any single SQL statement except the following statements:

You can prepare any single SQL statement except the following statements:

ALLOCATE COLLECTION
ALLOCATE DESCRIPTOR
ALLOCATE ROW
CLOSE
CONNECT
CREATE FUNCTION FROM
CREATE PROCEDURE FROM
CREATE ROUTINE FROM
DEALLOCATE COLLECTION
DEALLOCATE DESCRIPTOR
DEALLOCATE ROW
DECLARE
DESCRIBE
DISCONNECT
EXECUTE
EXECUTE IMMEDIATE
FETCH

FLUSH
FREE
GET DESCRIPTOR
GET DIAGNOSTICS
INFO
LOAD
OPEN
OUTPUT
PREPARE
PUT
SET AUTOFREE
SET CONNECTION
SET DEFERRED_PREPARE
SET DESCRIPTOR
UNLOAD
WHENEVER

♦

ALLOCATE DESCRIPTOR
CLOSE
CONNECT
CREATE PROCEDURE FROM
DEALLOCATE DESCRIPTOR
DECLARE
DESCRIBE
DISCONNECT
EXECUTE
EXECUTE IMMEDIATE
FETCH
FLUSH
FREE

GET DESCRIPTOR
GET DIAGNOSTICS
INFO
LOAD
OPEN
OUTPUT
PREPARE
PUT
SET CONNECTION
SET DEFERRED_PREPARE
SET DESCRIPTOR
UNLOAD
WHENEVER ♦

IDS

XPS
SQL Statements 2-531

PREPARE
You can prepare a SELECT statement. If SELECT includes the INTO TEMP
clause, you can execute the prepared statement with an EXECUTE statement.
If it does not include the INTO TEMP clause, the statement returns rows of
data. Use DECLARE, OPEN, and FETCH cursor statements to retrieve the rows.

A prepared SELECT statement can include a FOR UPDATE clause. This clause
is used with the DECLARE statement to create an update cursor. The next
example shows a SELECT statement with a FOR UPDATE clause in ESQL/C:

sprintf(up_query, "%s %s %s",
"select * from customer ",
"where customer_num between ? and ? ",
"for update");

EXEC SQL prepare up_sel from :up_query;
EXEC SQL declare up_curs cursor for up_sel;
EXEC SQL open up_curs using :low_cust,:high_cust;

Preparing Statements When Parameters Are Known
In some prepared statements, all necessary information is known at the time
the statement is prepared. The following example in ESQL/C shows two
statements that were prepared from constant data:

sprintf(redo_st, "%s %s",
"drop table workt1; ",
"create table workt1 (wtk serial, wtv float)");

EXEC SQL prepare redotab from :redo_st;

Preparing Statements That Receive Parameters
In some statements, parameters are unknown when the statement is
prepared because a different value can be inserted each time the statement is
executed. In these statements, you can use a question-mark (?) placeholder
where a parameter must be supplied when the statement is executed.

The PREPARE statements in the following ESQL/C examples show some uses
of question-mark (?) placeholders:

EXEC SQL prepare s3 from
'select * from customer where state matches ?';

EXEC SQL prepare in1 from 'insert into manufact values (?,?,?)';
sprintf(up_query, "%s %s",

"update customer set zipcode = ?"
"where current of zip_cursor");

EXEC SQL prepare update2 from :up_query;
EXEC SQL prepare exfunc from

'execute function func1 (?, ?)';
2-532 IBM Informix Guide to SQL: Syntax

PREPARE
You can use a placeholder to defer evaluation of a value until runtime only
for an expression, but not for an SQL identifier, except as noted in “Preparing
Statements with SQL Identifiers” on page 2-533.

The following example of an ESQL/C code fragment prepares a statement
from a variable that is named demoquery. The text in the variable includes
one question-mark (?) placeholder. The prepared statement is associated
with a cursor and, when the cursor is opened, the USING clause of the OPEN
statement supplies a value for the placeholder.

EXEC SQL BEGIN DECLARE SECTION;
char queryvalue [6];
char demoquery [80];

EXEC SQL END DECLARE SECTION;

EXEC SQL connect to 'stores_demo';
sprintf(demoquery, "%s %s",

"select fname, lname from customer ",
"where lname > ? ");

EXEC SQL prepare quid from :demoquery;
EXEC SQL declare democursor cursor for quid;
stcopy("C", queryvalue);
EXEC SQL open democursor using :queryvalue;

The USING clause is available in both OPEN statements that are associated
with a cursor and EXECUTE statements (all other prepared statements).

You can use a question-mark (?) placeholder to represent the name of an
ESQL/C or SPL collection variable.

Preparing Statements with SQL Identifiers
In general, you must specify SQL identifiers explicitly in the statement text
when you prepare the statement. In a few special cases, however, you can use
the question-mark (?) placeholder for an SQL identifier:

� For the database name in the DATABASE statement.

� For the dbspace name in the IN dbspace clause of the CREATE
DATABASE statement.

� For the cursor name in statements that use cursor names.
SQL Statements 2-533

PREPARE
Obtaining SQL Identifiers from User Input

If a prepared statement requires identifiers, but the identifiers are unknown
when you write the prepared statement, you can construct a statement that
receives SQL identifiers from user input.

The following ESQL/C example prompts the user for the name of a table and
uses that name in a SELECT statement. Because this name is unknown until
runtime, the number and data types of the table columns are also unknown.
Therefore, the program cannot allocate host variables to receive data from
each row in advance. Instead, this program fragment describes the statement
into an sqlda descriptor and fetches each row with the descriptor. The fetch
puts each row into memory locations that the program provides dynamically.

If a program retrieves all the rows in the active set, the FETCH statement
would be placed in a loop that fetched each row. If the FETCH statement
retrieves more than one data value (column), another loop exists after the
FETCH, which performs some action on each data value.

#include <stdio.h>
EXEC SQL include sqlda;
EXEC SQL include sqltypes;

char *malloc();

main()
{

struct sqlda *demodesc;
char tablename[19];
int i;

EXEC SQL BEGIN DECLARE SECTION;
char demoselect[200];

EXEC SQL END DECLARE SECTION;

/* This program selects all the columns of a given tablename.
 The tablename is supplied interactively. */

EXEC SQL connect to 'stores_demo';

printf("This program does a select * on a table\n");
printf("Enter table name: ");
scanf("%s", tablename);

sprintf(demoselect, "select * from %s", tablename);

EXEC SQL prepare iid from :demoselect;
EXEC SQL describe iid into demodesc;

/* Print what describe returns */

for (i = 0; i < demodesc->sqld; i++)
prsqlda (demodesc->sqlvar + i);
2-534 IBM Informix Guide to SQL: Syntax

PREPARE
/* Assign the data pointers. */

for (i = 0; i < demodesc->sqld; i++)
{
switch (demodesc->sqlvar[i].sqltype & SQLTYPE)

{
case SQLCHAR:

demodesc->sqlvar[i].sqltype = CCHARTYPE;
/* make room for null terminator */
demodesc->sqlvar[i].sqllen++;
demodesc->sqlvar[i].sqldata =

malloc(demodesc->sqlvar[i].sqllen);
break;

case SQLSMINT: /* fall through */
case SQLINT: /* fall through */
case SQLSERIAL:

demodesc->sqlvar[i].sqltype = CINTTYPE;
demodesc->sqlvar[i].sqldata =

malloc(sizeof(int));
break;

/* And so on for each type. */
}

}

/* Declare and open cursor for select . */
EXEC SQL declare d_curs cursor for iid;
EXEC SQL open d_curs;

/* Fetch selected rows one at a time into demodesc. */
for(; ;)

{
printf("\n");
EXEC SQL fetch d_curs using descriptor demodesc;
if (sqlca.sqlcode != 0)

break;
for (i = 0; i < demodesc->sqld; i++)

{
switch (demodesc->sqlvar[i].sqltype)

{
case CCHARTYPE:

printf("%s: \"%s\n", demodesc->sqlvar[i].sqlname,
demodesc->sqlvar[i].sqldata);

break;
case CINTTYPE:

printf("%s: %d\n", demodesc->sqlvar[i].sqlname,
*((int *) demodesc->sqlvar[i].sqldata));

break;
/* And so forth for each type... */

}
}

}
EXEC SQL close d_curs;
EXEC SQL free d_curs;

/* Free the data memory. */

for (i = 0; i < demodesc->sqld; i++)
free(demodesc->sqlvar[i].sqldata);

free(demodesc);
SQL Statements 2-535

PREPARE
printf ("Program Over.\n");
}

prsqlda(sp)
struct sqlvar_struct *sp;

{
printf ("type = %d\n", sp->sqltype);
printf ("len = %d\n", sp->sqllen);
printf ("data = %lx\n", sp->sqldata);
printf ("ind = %lx\n", sp->sqlind);
printf ("name = %s\n", sp->sqlname);
}

Preparing Multiple SQL Statements
You can execute several SQL statements as one action if you include them in
the same PREPARE statement. Multistatement text is processed as a unit;
actions are not treated sequentially. Therefore, multistatement text cannot
include statements that depend on actions that occur in a previous statement
in the text. For example, you cannot create a table and insert values into that
table in the same prepared statement block.

If a statement in a multistatement prepare returns an error, the whole
prepared statement stops executing. The database server does not execute
any remaining statements. In most situations, compiled products return
error-status information on the error, but do not indicate which statement in
the text causes an error. You can use the sqlca.sqlerrd[4] field in the sqlca to
find the offset of the errors.

In a multistatement prepare, if no rows are returned from a WHERE clause in
the following statements, the database server returns SQLNOTFOUND (100):

� UPDATE…WHERE…

� SELECT INTO TEMP…WHERE…

� INSERT INTO…WHERE…

� DELETE FROM…WHERE…

In the next example, four SQL statements are prepared into a single ESQL/C
string called query. Individual statements are delimited with semicolons.
2-536 IBM Informix Guide to SQL: Syntax

PREPARE
A single PREPARE statement can prepare the four statements for execution,
and a single EXECUTE statement can execute the statements that are
associated with the qid statement identifier.

sprintf (query, "%s %s %s %s %s %s %s",
"update account set balance = balance + ? ",

"where acct_number = ?;",
"update teller set balance = balance + ? ",

"where teller_number = ?;",
"update branch set balance = balance + ? ",

"where branch_number = ?;",
"insert into history values (?, ?);";

EXEC SQL prepare qid from :query;

EXEC SQL begin work;
EXEC SQL execute qid using

:delta, :acct_number, :delta, :teller_number,
:delta, :branch_number, :timestamp, :values;

EXEC SQL commit work;

Here the semicolons (;) are required as SQL statement-terminator symbols
between each SQL statement in the text that query holds.

Restricted Statements in Multistatement Prepared Objects

In addition to the statements listed as exceptions in “Restricted Statements in
Single-Statement Prepares” on page 2-531, you cannot use the following
statements in the text of a multiple-statement prepared object: ti

Moreover, the following types of statements are not allowed in a multi-
statement prepare:

� Statements that can cause the current database to close during the
execution of the multistatement sequence

� Statements that include references to TEXT or BYTE host variables

In general, you cannot use the SELECT statement in a multistatement prepare.
The only form of the SELECT statement allowed in a multistatement prepare
is a SELECT statement with an INTO temporary table clause.

CLOSE DATABASE
CREATE DATABASE
DATABASE

DROP DATABASE
SELECT (with one exception)
SQL Statements 2-537

PREPARE
Using Prepared Statements for Efficiency
To increase performance efficiency, you can use the PREPARE statement and
an EXECUTE statement in a loop to eliminate overhead that redundant
parsing and optimizing cause. For example, an UPDATE statement that is
located within a WHILE loop is parsed each time the loop runs. If you prepare
the UPDATE statement outside the loop, the statement is parsed only once,
eliminating overhead and speeding statement execution. The following
example shows how to prepare an ESQL/C statement to improve
performance:

EXEC SQL BEGIN DECLARE SECTION;
char disc_up[80];
int cust_num;

EXEC SQL END DECLARE SECTION;

main()
{

sprintf(disc_up, "%s %s","update customer ",
"set discount = 0.1 where customer_num = ?");

EXEC SQL prepare up1 from :disc_up;

while (1)
{
printf("Enter customer number (or 0 to quit): ");
scanf("%d", cust_num);
if (cust_num == 0)

break;
EXEC SQL execute up1 using :cust_num;
}

}

Related Information
Related statements: CLOSE, DECLARE, DESCRIBE, EXECUTE, FREE, OPEN, SET
AUTOFREE, and SET DEFERRED_PREPARE

For information about basic concepts that relate to the PREPARE statement,
see the IBM Informix Guide to SQL: Tutorial.

For information about more advanced concepts that relate to the PREPARE
statement, see the IBM Informix ESQL/C Programmer’s Manual.
2-538 IBM Informix Guide to SQL: Syntax

PUT
PUT
Use the PUT statement to store a row in an insert buffer for later insertion into
the database. Use this statement with ESQL/C.

Syntax

Usage
PUT stores a row in an insert buffer that is created when the cursor is opened.

+

E/C

Element Purpose Restrictions Syntax
cursor_id Name of a cursor Must be open Identifier, p. 4-189
cursor_id_var Host variable = cursor_id Must be a character type;

cursor must be open
Language specific

descriptor Name of a system-descriptor area Must already be allocated Quoted String, p. 4-243
descriptor_var Host-variable that contains descriptor Must already be allocated Quoted String, p. 4-243
indicator_var Host variable to receive a return code

if corresponding output_var receives
a NULL value

Cannot be a DATETIME
or INTERVAL data type

Language specific

output_var Host variable whose contents replace
a question-mark (?) placeholder in a
prepared INSERT statement

Must be a character data
type

Language specific

sqlda_pointer Pointer to an sqlda structure First character cannot be
the ($) or (:) symbol

DESCRIBE, p. 2-351

SQL DESCRIPTOR

descriptor_var

USING 'descriptor '

sqlda_pointerDESCRIPTOR

FROM

,

output_var

INDICATOR

indicator_var

PUT

:

$

indicator_var

: indicator_var

cursor_id

cursor_id_var
SQL Statements 2-539

PUT
If the buffer has no room for the new row when the statement executes, the
buffered rows are written to the database in a block, and the buffer is
emptied. As a result, some PUT statement executions cause rows to be written
to the database, and some do not.

You can use the FLUSH statement to write buffered rows to the database
without adding a new row. The CLOSE statement writes any remaining rows
before it closes an insert cursor.

If the current database uses explicit transactions, you must execute a PUT
statement within a transaction.

The following example uses a PUT statement in ESQL/C:

EXEC SQL prepare ins_mcode from
'insert into manufact values(?,?)';

EXEC SQL declare mcode cursor for ins_mcode;
EXEC SQL open mcode;
EXEC SQL put mcode from :the_code, :the_name;

The PUT statement is not an X/Open SQL statement. Therefore, you get a
warning message if you compile a PUT statement in X/Open mode. ♦

Supplying Inserted Values
The values in the inserted row can come from one of the following sources:

� Constant values that are written into the INSERT statement

� Program variables that are named in the INSERT statement

� Program variables in the FROM clause of the PUT statement

� Values that are prepared in memory addressed by an sqlda structure
or a system-descriptor area and then specified in the USING clause of
the PUT statement

The system descriptor area or sqlda structure that descriptor or sqlda_pointer
references must define a data type and memory location of each value that
corresponds to a question-mark (?) placeholder in a prepared INSERT
statement.

Using Constant Values in INSERT

The VALUES clause lists the values for the inserted columns. One or more of
these values can be constants (that is, numbers or character strings).

X/O
2-540 IBM Informix Guide to SQL: Syntax

PUT
When all the inserted values are constants, the PUT statement has a special
effect. Instead of creating a row and putting it in the buffer, the PUT statement
merely increments a counter. When you use a FLUSH or CLOSE statement to
empty the buffer, one row and a repetition count are sent to the database
server, which inserts that number of rows. In the following ESQL/C example,
99 empty customer records are inserted into the customer table. Because all
values are constants, no disk output occurs until the cursor closes. (The
constant zero for customer_num causes generation of a SERIAL value.)

int count;
EXEC SQL declare fill_c cursor for

insert into customer(customer_num) values(0);
EXEC SQL open fill_c;
for (count = 1; count <= 99; ++count)

EXEC SQL put fill_c;
EXEC SQL close fill_c;

Naming Program Variables in INSERT

When you associate the INSERT statement with a cursor (in the DECLARE
statement), you create an insert cursor. In the INSERT statement, you can
name program variables in the VALUES clause. When each PUT statement is
executed, the contents of the program variables at that time are used to
populate the row that is inserted into the buffer.

If you are creating an insert cursor (using DECLARE with INSERT), you must
use only program variables in the VALUES clause. Variable names are not
recognized in the context of a prepared statement; you associate a prepared
statement with a cursor through its statement identifier.

The following ESQL/C example illustrates the use of an insert cursor. The
code includes the following statements:

� The DECLARE statement associates a cursor called ins_curs with an
INSERT statement that inserts data into the customer table.

The VALUES clause specifies a data structure that is called cust_rec;
the ESQL/C preprocessor converts cust_rec to a list of values, one for
each component of the structure.

� The OPEN statement creates a buffer.

� A user-defined function (not defined within this example) obtains
customer information from user input and stores it in cust_rec.
SQL Statements 2-541

PUT
� The PUT statement composes a row from the current contents of the
cust_rec structure and sends it to the row buffer.

� The CLOSE statement inserts into the customer table any rows that
remain in the row buffer and closes the insert cursor.

int keep_going = 1;
EXEC SQL BEGIN DECLARE SECTION

struct cust_row { /* fields of a row of customer table */ } cust_rec;
EXEC SQL END DECLARE SECTION

EXEC SQL declare ins_curs cursor for
insert into customer values (:cust_row);

EXEC SQL open ins_curs;
while ((sqlca.sqlcode == 0) && (keep_going))

{
keep_going = get_user_input(cust_rec); /* ask user for new customer */
if (keep_going) /* user did supply customer info

*/
{
cust_rec.customer_num = 0; /* request new serial value */
EXEC SQL put ins_curs;
}

if (sqlca.sqlcode == 0) /* no error from PUT */
keep_going = (prompt_for_y_or_n("another new customer") =='Y')

}
EXEC SQL close ins_curs;

Use an indicator variable if the data to be inserted by the INSERT statement
might be NULL.

Naming Program Variables in PUT

When the INSERT statement is prepared (see “PREPARE” on page 2-527), you
cannot use program variables in its VALUES clause, but you can represent
values by a question-mark (?) placeholder. List the program variables in the
FROM clause of the PUT statement to supply the missing values.

The following ESQL/C example lists host variables in a PUT statement:

char answer [1] = 'y';
EXEC SQL BEGIN DECLARE SECTION;

char ins_comp[80];
char u_company[20];

EXEC SQL END DECLARE SECTION;

main()
{

EXEC SQL connect to 'stores_demo';
EXEC SQL prepare ins_comp from

'insert into customer (customer_num, company) values (0, ?)';
EXEC SQL declare ins_curs cursor for ins_comp;
EXEC SQL open ins_curs;

while (1)
2-542 IBM Informix Guide to SQL: Syntax

PUT
{
printf("\nEnter a customer: ");
gets(u_company);
EXEC SQL put ins_curs from :u_company;
printf("Enter another customer (y/n) ? ");
if (answer = getch() != 'y')

break;
}

EXEC SQL close ins_curs;
EXEC SQL disconnect all;

}

Indicator variables are optional, but you should use an indicator variable if
the possibility exists that output_var might contain a NULL value.

If you specify the indicator variable without the INDICATOR keyword, you
cannot put a blank space between output_var and indicator_var.

Using the USING Clause
If you do not know the number of parameters to be supplied at runtime or
their data types, you can associate input values from a system-descriptor area
or an sqlda structure. Both of these descriptor structures describe the data
type and memory location of one or more values to replace question-mark (?)
placeholders.

Each time the PUT statement executes, the values that the descriptor structure
describes are used to replace question-mark (?) placeholders in the INSERT
statement. This process is similar to using a FROM clause with a list of
variables, except that your program has full control over the memory
location of the data values.

Specifying a System-Descriptor Area

The SQL DESCRIPTOR option specifies the name of a system-descriptor area.

The COUNT field in the system-descriptor area corresponds to the number of
dynamic parameters in the prepared statement. The value of COUNT must be
less than or equal to the number of item descriptors that were specified when
the system-descriptor area was allocated with the ALLOCATE DESCRIPTOR
statement. You can obtain the value of a field with the GET DESCRIPTOR
statement and set the value with the SET DESCRIPTOR statement.

A system-descriptor area conforms to the X/Open standards. ♦X/O
SQL Statements 2-543

PUT
The following ESQL/C example shows how to associate values from a
system-descriptor area:

EXEC SQL allocate descriptor 'desc1';
...
EXEC SQL put selcurs using sql descriptor 'desc1';

Specifying an sqlda Structure

Use the DESCRIPTOR option to introduce the name of a pointer to an sqlda
structure. The following ESQL/C example shows how to associate values
from an sqlda structure:

EXEC SQL put selcurs using descriptor pointer2;

Inserting into a Collection Cursor
A collection cursor allows you to access the individual elements of a
collection variable. To declare a collection cursor, use the DECLARE statement
and include the Collection-Derived-Table segment in the INSERT statement
that you associate with the cursor. Once you open the collection cursor with
the OPEN statement, the cursor can put elements in the collection variable.

To put elements, one at a time, into the insert cursor, use the PUT statement
and the FROM clause. The PUT statement identifies the collection cursor that
is associated with the collection variable. The FROM clause identifies the
element value to be inserted into the cursor. The data type of any host
variable in the FROM clause must match the element type of the collection.

Important: The collection variable stores the elements of the collection. However, it
has no intrinsic connection with a database column. Once the collection variable
contains the correct elements, you must then save the variable into the actual
collection column with the INSERT or UPDATE statement.

Suppose you have a table called children with the following schema:

CREATE TABLE children
(

age SMALLINT,
name VARCHAR(30),
fav_colors SET(VARCHAR(20)),

)

IDS
2-544 IBM Informix Guide to SQL: Syntax

PUT
The following ESQL/C program fragment shows how to use an insert cursor
to put elements into a collection variable called child_colors:

EXEC SQL BEGIN DECLARE SECTION;
client collection child_colors;
char *favorites[]
(

"blue",
"purple",
"green",
"white",
"gold",
0

);
int a = 0;
char child_name[21];

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :child_colors;

/* Get structure of fav_colors column for untyped
* child_colors collection variable */

EXEC SQL select fav_colors into :child_colors
from children
where name = :child_name;

/* Declare insert cursor for child_colors collection
* variable and open this cursor */

EXEC SQL declare colors_curs cursor for
insert into table(:child_colors)
values (?);

EXEC SQL open colors_curs;
/* Use PUT to gather the favorite-color values
* into a cursor */

while (fav_colors[a])
{

EXEC SQL put colors_curs from :favorites[:a];
a++
...

}
/* Flush cursor contents to collection variable */
EXEC SQL flush colors_curs;
EXEC SQL update children set fav_colors = :child_colors;

EXEC SQL close colors_curs;
EXEC SQL deallocate collection :child_colors;

After the FLUSH statement executes, the collection variable, child_colors,
contains the elements {"blue", "purple", "green", "white", "gold"}.
The UPDATE statement at the end of this program fragment saves the new
collection into the fav_colors column of the database. Without this UPDATE
statement, the new collection would not be added to the collection column.
SQL Statements 2-545

PUT
Writing Buffered Rows
To open an insert cursor, the OPEN statement creates an insert buffer. The PUT
statement puts a row into this insert buffer. The buffered rows are inserted
into the database table as a block only when necessary; this process is called
flushing the buffer. The buffer is flushed after any of the following events:

� Buffer is too full to hold the new row at the start of a PUT statement.

� A FLUSH statement executes.

� A CLOSE statement closes the cursor.

� An OPEN statement specifies an already open cursor, closing it before
reopening it. (This implicit CLOSE statement flushes the buffer.)

� A COMMIT WORK statement executes.

� The buffer contains BYTE or TEXT data (flushed after a single PUT
statement).

If the program terminates without closing an insert cursor, the buffer remains
unflushed. Rows that were inserted into the buffer since the last flush are lost.
Do not rely on the end of the program to close the cursor and flush the buffer.

Error Checking
The sqlca structure contains information on the success of each PUT
statement as well as information that lets you count the rows that were
inserted. The result of each PUT statement is contained in the following fields
of the sqlca: sqlca.sqlcode, SQLCODE, and sqlca.sqlerrd[2].

Data buffering with an insert cursor means that errors are not discovered
until the buffer is flushed. For example, an input value that is incompatible
with the data type of the column for which it is intended is discovered only
when the buffer is flushed. When an error is discovered, buffered rows that
were not inserted before the error are not inserted; they are lost from memory.
2-546 IBM Informix Guide to SQL: Syntax

PUT
The SQLCODE field is set to 0 if no error occurs; otherwise, it is set to an error
code. The third element of the sqlerrd array is set to the number of rows that
were successfully inserted into the database:

� If any row is put into the insert buffer, but not written to the database,
SQLCODE and sqlerrd are set to 0 (SQLCODE because no error
occurred, and sqlerrd because no rows were inserted).

� If a block of buffered rows is written to the database during the
execution of a PUT statement, SQLCODE is set to 0 and sqlerrd is set
to the number of rows that was successfully inserted into the
database.

� If an error occurs while the buffered rows are written to the database,
SQLCODE indicates the error, and sqlerrd contains the number of
successfully inserted rows. (The uninserted rows are discarded from
the buffer.)

Tip: When you encounter an SQLCODE error, a SQLSTATE error value also exists.
See the GET DIAGNOSTICS statement for details of how to obtain the message text.

To count the number of pending and inserted rows in the database

1. Prepare two integer variables (for example, total and pending).

2. When the cursor is opened, set both variables to 0.

3. Each time a PUT statement executes, increment both total and
pending.

4. Whenever a PUT or FLUSH statement executes or the cursor closes,
subtract the third field of the SQLERRD array from pending.

At any time, (total - pending) represents the number of rows actually
inserted. If no statements fail, pending contains zero after the cursor is
closed. If an error occurs during a PUT, FLUSH, or CLOSE statement, the value
that remains in pending is the number of uninserted (discarded) rows.

Related Information
Related statements: ALLOCATE DESCRIPTOR, CLOSE, DEALLOCATE
DESCRIPTOR, FLUSH, DECLARE, GET DESCRIPTOR, OPEN, PREPARE, and SET
DESCRIPTOR

For a task-oriented discussion of the PUT statement, see the IBM Informix
Guide to SQL: Tutorial.
SQL Statements 2-547

PUT
For more information about error checking, the system-descriptor area, and
the sqlda structure, see the IBM Informix ESQL/C Programmer’s Manual.
2-548 IBM Informix Guide to SQL: Syntax

RENAME COLUMN
RENAME COLUMN
Use the RENAME COLUMN statement to change the name of a column.

Syntax

Usage
You can rename a column of a table if any of the following conditions are true:

� You own the table or have Alter privilege on the table..

� You have the DBA privilege on the database.

You cannot rename the columns of a fragmented table if the table is
fragmented by range. For more information, see “RANGE Method Clause”
on page 2-244. ♦

How Views and Check Constraints Are Affected
If you rename a column that appears in a view, the text of the view definition
in the sysviews system catalog table is updated to reflect the new column
name. If you rename a column that appears in a check constraint, the text of
the check constraint in the syschecks system catalog table is updated to
reflect the new column name.

+

Element Purpose Restrictions Syntax
new_column New name to

replace old_column
Must not match any other column name in table.
See also “How Triggers Are Affected.”

Identifier, p. 4-189

old_column Column to rename Must exist within table. Identifier, p. 4-189
owner Owner of the table Must be the owner of the table. Owner, p. 4-234
table Table that contains

old_column
Must exist in the current database. Database Object

Name, p. 4-46

old_column TO new_columntable .RENAME COLUMN

owner .

XPS
SQL Statements 2-549

RENAME COLUMN
How Triggers Are Affected
If you rename a column that appears within a trigger, it is replaced with the
new name only in the following instances:

� When it appears as part of a correlation name inside the FOR EACH
ROW action clause of a trigger

� When it appears as part of a correlation name in the INTO clause of
an EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement

� When it appears as a triggering column in the UPDATE clause

When the trigger executes, if the database server encounters a column name
that no longer exists in the table, an error is returned.

Example of RENAME COLUMN
The following example assigns the new name of c_num to the
customer_num column in the customer table:

RENAME COLUMN customer.customer_num TO c_num

Related Information
Related statements: ALTER TABLE, CREATE TABLE, CREATE TRIGGER,
CREATE VIEW, and RENAME TABLE
2-550 IBM Informix Guide to SQL: Syntax

RENAME DATABASE
RENAME DATABASE
Use the RENAME DATABASE statement to change the name of a database.

Syntax

Usage
You can rename a database if either of the following is true:

� You created the database.

� You have the DBA privilege on the database.

You can only rename local databases. You can rename a local database from
inside an SPL routine.

Related Information
Related statement: CREATE DATABASE

For information on how to update the three-part names of JAR files after you
rename the database, see the J/Foundation Developer’s Guide. ♦

+

Element Purpose Restrictions Syntax
new_database New name for the

database
Must be unique among database names of
current database server and must not be opened
by any users when RENAME DATABASE is
issued.

Database Name,
p. 4-44

old_database Name that
new_database replaces

Must exist on current database server, but it
cannot be the name of the current database.

Database Name,
p. 4-44

owner Owner of database Must be the owner of the database. Owner, p. 4-234

old_database TO new_databaseRENAME DATABASE

owner .

IDS

Java
SQL Statements 2-551

RENAME INDEX
RENAME INDEX
Use the RENAME INDEX statement to change the name of an existing index.

Syntax

Usage
You can rename an index if you are the owner of the index or have the DBA
privilege on the database.

When you rename an index, the database server changes the index name in
the following system catalog tables: sysindexes, sysconstraints, sysobjstate,
and sysfragments. When you rename an index on a temporary table,
however, no system catalog tables are updated.

SPL routines that use the renamed index are reoptimized on their next use
after the index is renamed.

Related Information
Related statements: ALTER INDEX, CREATE INDEX, and DROP INDEX

For a discussion of SPL-routine reoptimization, see your Performance Guide.

+

IDS

Element Purpose Restrictions Syntax
new_index New name for

the index
Name must be unique to the database (or to the session,
if the index is on a temporary table).

Identifier,
p. 4-189

old_index Index name that
new_index
replaces

Must exist, but it cannot be any of the following:
An index on a system catalog table
A system-generated constraint index
A Virtual-Index Interface (VII)

Identifier,
p. 4-189

owner Owner of imdex Must be the owner of the index. Owner, p. 4-234

old_index TO new_indexRENAME INDEX

owner .
2-552 IBM Informix Guide to SQL: Syntax

RENAME SEQUENCE
RENAME SEQUENCE
Use the RENAME SEQUENCE statement to change the name of a sequence.

Syntax

Usage
To rename a sequence, you must be the owner of the sequence, or have the
ALTER privilege on the sequence, or have the DBA privilege on the database.

You cannot use a synonym to specify the name of the sequence.

In a database that is not ANSI compliant, the name of new_sequence (or in an
ANSI-compliant database, the combination of owner.new_sequence) must be
unique among sequences, tables, views, and synonyms in the database.

Related Information
Related statements: ALTER SEQUENCE, CREATE SEQUENCE, DROP
SEQUENCE, CREATE SYNONYM, DROP SYNONYM, GRANT, REVOKE, INSERT,
UPDATE, and SELECT

For information about generating values from a sequence, see “NEXTVAL
and CURRVAL Operators” on page 4-102.

IDS

Element Purpose Restrictions Syntax
new_sequence New name that you declare

here for an existing sequence
Must be unique among sequences, tables,
views, and synonyms in the database

Identifier, p. 4-189

old_sequence Current name of a sequence Must exist in the current database Identifier, p. 4-189
owner Owner of the sequence Must be the owner of the sequence Owner Name,

p. 4-234

old_sequenceRENAME SEQUENCE new_sequenceTO

owner .
SQL Statements 2-553

RENAME TABLE
RENAME TABLE
Use the RENAME TABLE statement to change the name of a table.

Syntax

Usage
To rename a table, you must be the owner of the table, or have the ALTER
privilege on the table, or have the DBA privilege on the database.

An error occurs if old_table is a synonym, rather than the name of a table.

You cannot change the table owner by renaming the table. An error occurs if
you try to specify an owner. qualifier for the new name of the table. ♦

A user with DBA privilege on the database can change the owner of a table,
if the table is local. Both the table name and owner can be changed using one
command.

The following example uses the RENAME TABLE statement to change the
owner of a table:

RENAME TABLE tro.customer TO mike.customer

When the table owner is changed, you must specify both the old owner and
new owner.

+

Element Purpose Restrictions Syntax
new_table New name for old_table Cannot include an owner. qualifier here. Identifier, p. 4-189
old_table Name that new_table replaces Must be the name (not the synonym) of a

table that exists in the current database.
Identifier, p. 4-189

owner Current owner of the table Must be the owner of the table. Owner, p. 4-234
new_owner The new owner of the table Must have DBA privilege on the database

(XPS)
Owner, p. 4-234

old_table TO new_tableRENAME TABLE

owner . XPS new_owner .

IDS

XPS
2-554 IBM Informix Guide to SQL: Syntax

RENAME TABLE
Important: When the owner of a table is changed, the existing privileges granted by
the original owner are retained. ♦

In an ANSI-compliant database, if you are not the owner of old_table, you
must specify owner.old_table as the old name of the table. ♦

You cannot rename a table that contains a dependent GK index. ♦

The renamed table remains in the current database. You cannot use the
RENAME TABLE statement to move a table from the current database to
another database, nor to rename a table that resides in another database.

If old_table is referenced by a view in the current database, the view definition
is updated in the sysviews system catalog table to reflect the new table name.
For further information on the sysviews system catalog table, see the
IBM Informix Guide to SQL: Reference.

If old_table is a triggerring table, the database server takes these actions:

� Replaces the name of the table in the trigger definition but does not
replace the table name where it appears inside any triggered actions

� Returns an error if the new table name is the same as a correlation
name in the REFERENCING clause of the trigger definition

When the trigger executes, the database server returns an error if it
encounters a table name for which no table exists.

The following example reorganizes the items table to move the quantity
column from the fifth position to the third position by the following steps:

1. Create a new table, new_table, that contains the column quantity in
the third position.

2. Fill the table with data from the current items table.

3. Drop the old items table.

4. Rename new_table with the name items.

ANSI

XPS
SQL Statements 2-555

RENAME TABLE
The following example uses the RENAME TABLE statement as the last step:

CREATE TABLE new_table
(
item_num SMALLINT,
order_numINTEGER,
quantity SMALLINT,
stock_numSMALLINT,
manu_codeCHAR(3),
total_priceMONEY(8)
);

INSERT INTO new_table
SELECT item_num, order_num, quantity, stock_num,

manu_code, total_price FROM items;
DROP TABLE items;
RENAME TABLE new_table TO items;

Related Information
Related statements: ALTER TABLE, CREATE TABLE, DROP TABLE, and
RENAME COLUMN
2-556 IBM Informix Guide to SQL: Syntax

REVOKE
REVOKE
Use the REVOKE statement to cancel access privileges for specified users or
for a specified role, or to cancel a specified role. (To cancel privileges on one
or more fragments of a table that has been fragmented by expression, see
“REVOKE FRAGMENT” on page 2-575.)

Syntax

Usage
You can revoke privileges if any of the following conditions is true for the
privileges that you are attempting to revoke on some database object:

� You granted them and did not designate another user as grantor.

� The GRANT statement named you as grantor.

� You own an object on which PUBLIC has privileges by default.

� You have database-level DBA privileges and you specify in the AS
clause the name of a user who is grantor of the privilege.

+

Element Purpose Restrictions Syntax
revoker Authorization identifier of the grantor

of the privilege(s) to be revoked
Must be the grantor of the
specified privileges.

Owner Name, p. 4-234.

FROMREVOKE

User List
p. 2-570

FROM CASCADE

RESTRICT

Database-Level Privileges
p. 2-558

User List
p. 2-570

Role Name
p. 2-570

revokerAS

'revoker '

+

+

Table-Level
Privileges
p. 2-560

Language-
Level

Privileges
p. 2-568

IDS Type-Level Privileges
p. 2-565

Role Name
p. 2-570

+

Routine-
Level

Privileges
p. 2-566

Sequence-Level Privileges
p. 2-568
SQL Statements 2-557

REVOKE
The REVOKE statement can cancel any of the following items for specific
users or for a specified role:

� Privileges on a database

� Privileges on a table, synonym, view, or sequence object

� Privileges on a user-defined data type (UDT), a user-defined routine
(UDR), or on the SPL language

� A role name.

You cannot revoke privileges from yourself. You cannot revoke grantor status
from another user. To revoke a privilege that was granted to another user
by the AS grantor clause of the GRANT statement, you must have the DBA
privilege and you must use the AS clause to specify that user as revoker.

Database-Level Privileges

Three concentric layers of privileges, Connect, Resource, and DBA, authorize
increasing power over database access and control. Only a user with the DBA
privilege can grant or revoke database-level privileges.

Because of the hierarchical organization of the privileges (as outlined in the
privilege definitions that are described later in this section), if you revoke
either the Resource or the Connect privilege from a user with the DBA
privilege, the statement has no effect. If you revoke the DBA privilege from a
user who has the DBA privilege, the user retains the Connect privilege on the
database. To deny database access to a user with the DBA or Resource
privilege, you must first revoke the DBA or the Resource privilege and then
revoke the Connect privilege in a separate REVOKE statement.

Similarly, if you revoke the Connect privilege from a user with the Resource
privilege, the statement has no effect. If you revoke the Resource privilege
from a user, the user retains the Connect privilege on the database.

Back to REVOKE
p. 2-557

Database-Level Privileges
DBA

RESOURCE

CONNECT
2-558 IBM Informix Guide to SQL: Syntax

REVOKE
Warning: Although user informix and DBAs can modify most system catalog tables
(only user informix can modify systables), It is strongly recommended that you not
update, delete, or insert any rows in these tables. Modifying system catalog tables can
destroy the integrity of the database. The use of the ALTER TABLE statement to
modify the size of the next extent of system catalog tables is not supported.

The following table lists the keyword for each database-level privilege.

Privilege Purpose

DBA Has all the capabilities of the Resource privilege and can perform the
following additional operations:

� Grant any database-level privilege, including the DBA privilege, to
another user.

� Grant any table-level privilege to another user or to a role.

� Grant a role to a user or to another role.

� Revoke a privilege whose grantor you specify as the revoker in the
AS clause of the REVOKE statement.

� Restrict the Execute privilege to DBAs when registering a UDR.

� Execute the SET SESSION AUTHORIZATION statement.

� Use the NEXT SIZE keywords to alter extent sizes in the system
catalog tables.

� Create any database object.

� Create tables, views, and indexes, designating another user as
owner of these objects.

� Alter, drop, or rename database objects, regardless of who owns it.

� Execute the DROP DISTRIBUTIONS option of the UPDATE
STATISTICS statement.

� Execute DROP DATABASE and RENAME DATABASE
statements.

� Insert, delete, or update rows of any system catalog table except
systables.

(1 of 2)
SQL Statements 2-559

REVOKE
Table-Level Privileges
Select, Update, and References privileges can be granted on some columns of
a table, view, or synonym, but are revoked for all columns. If Select privileges
are revoked from a user for a table that is referenced in the SELECT statement
defining a view that the same user owns, then that view is dropped, unless it
also includes columns from tables in another database.

RESOURCE Lets you extend the structure of the database. In addition to the
capabilities of the Connect privilege, the holder of the Resource
privilege can perform the following operations:

� Create new tables.

� Create new indexes.

� Create new user-defined routines.

� Create new data types.

CONNECT If you have this privilege, you can query and modify data, and
modify the database schema if you own the database object that you
want to modify. A user holding the Connect privilege can perform
the following operations:

� Connect to the database with the CONNECT statement or another
connection statement.

� Execute SELECT, INSERT, UPDATE, and DELETE statements,
provided that the user has the necessary table-level privileges.

� Create views, provided that the user has the Select privilege on the
underlying tables.

� Create synonyms.

� Create temporary tables and create indexes on temporary tables.

� Alter or drop a table or an index, if the user owns the table or index
(or has the Alter, Index, or References privilege on the table).

� Grant privileges on a table, if the user owns the table (or was given
privileges on the table with the WITH GRANT OPTION keyword).

Privilege Purpose

(2 of 2)
2-560 IBM Informix Guide to SQL: Syntax

REVOKE
This is the syntax for specifying the table-level privileges to revoke:

In one REVOKE statement, you can list one or more of the following keywords
to specify the privileges you want to revoke from the same users.

Element Purpose Restrictions Syntax
synonym Synonym for the table or view on which

privileges are revoked
Synonym and its
table must exist.

Database Object Name, p. 4-46

table Table on which privileges are revoked Must exist. Database Object Name, p. 4-46
view View on which privileges are revoked View must exist. Database Object Name, p. 4-46

ONALL

INSERT

DELETE

SELECT

UPDATE

INDEX

ALTER

REFERENCES

,

Back to REVOKE
p. 2-557

Table-Level Privileges

table

UNDER

IDS

synonym

PRIVILEGES

+

view

Privilege Purpose

INSERT The holder can insert rows.

DELETE The holder can delete rows.

SELECT The holder can display data retrieved by a SELECT statement.

(1 of 2)
SQL Statements 2-561

REVOKE
See also “Table-Level Privileges” on page 2-463.

If a user receives the same privilege from two different grantors and one
grantor revokes the privilege, the grantee still has the privilege until the
second grantor also revokes the privilege. For example, if both you and a DBA
grant the Update privilege on your table to ted, both you and the DBA must
revoke the Update privilege to prevent ted from updating your table.

UPDATE The holder can change column values.

INDEX The holder can create permanent indexes.

You must have the Resource privilege to take advantage of the
Index privilege. (Any user with the Connect privilege can create
indexes on temporary tables.)

ALTER The holder can add or delete columns, modify column data types,
add or delete constraints, change the locking mode of a table from
PAGE to ROW, or add or drop a corresponding ROW type name
for your table.

The holder can also set the database object mode of indexes,
constraints, and triggers; for details of how to change these
modes, see “SET Database Object Mode” on page 2-652.

REFERENCES The holder can reference columns in referential constraints.

You must have the Resource privilege to take advantage of the
References privilege. (You can add, however, a referential
constraint during an ALTER TABLE statement. This action does
not require that you have the Resource privilege on the database.)
Revoke the References privilege to disallow cascading deletes.

UNDER
(IDS only)

The holder can create subtables under a typed table.

ALL This privilege provides all of the table privileges that are listed
above.

The PRIVILEGES keyword is optional.

Privilege Purpose

(2 of 2)
2-562 IBM Informix Guide to SQL: Syntax

REVOKE
When to Use REVOKE Before GRANT

You can use combinations of REVOKE and GRANT to replace PUBLIC with
specific users as grantees, and to remove table-level privileges on some
columns.

Replacing PUBLIC with Specified Users

If a table owner grants a privilege to PUBLIC, the owner cannot revoke the
same privilege from any specific user. For example, assume PUBLIC has
default Select privileges on your customer table. Suppose that you issue the
following statement in an attempt to exclude ted from accessing your table:

REVOKE ALL ON customer FROM ted

This statement results in ISAM error message 111, No record found, because
the system catalog tables (syscolauth or systabauth) contain no table-level
privilege entry for a user named ted. The REVOKE does not prevent ted from
having all the table-level privileges given to PUBLIC on the customer table.

To restrict table-level privileges, first revoke the privileges with the PUBLIC
keyword, then re-grant them to some appropriate user list. The following
statements revoke the Index and Alter privileges from all users for the
customer table, and then grant these privileges specifically to user mary:

REVOKE INDEX, ALTER ON customer FROM PUBLIC
GRANT INDEX, ALTER ON customer TO mary

Restricting Access to Specific Columns

The REVOKE statement has no syntax for revoking privileges on particular
column names. When you revoke the Select, Update, or References privilege
from a user, you revoke the privilege for all columns in the table. If you want
a user to have some access to some, but not all the columns previously
granted, issue a new GRANT statement to restore the appropriate privileges.

The next example cancels Select privileges for PUBLIC on certain columns:

REVOKE SELECT ON customer FROM PUBLIC
GRANT SELECT (fname, lname, company, city)

ON customer TO PUBLIC
SQL Statements 2-563

REVOKE
In the next example, mary first receives the ability to reference four columns
in customer, then the table owner restricts references to two columns:

GRANT REFERENCES (fname, lname, company, city) ON
customer TO mary

REVOKE REFERENCES ON customer FROM mary
GRANT REFERENCES (company, city)

ON customer TO mary

Effect of the ALL Keyword

The ALL keyword revokes all table-level privileges. If any or all of the
table-level privileges do not exist for the revokee, REVOKE with the ALL
keyword executes successfully but returns the following SQLSTATE code:

01006--Privilege not revoked

For example, assume that user hal has the Select and Insert privileges on the
customer table. User jocelyn wants to revoke all seven table-level privileges
from user hal. So user jocelyn issues the following REVOKE statement:

REVOKE ALL ON customer FROM hal

This statement executes successfully but returns SQLSTATE code 01006. The
SQLSTATE warning is returned with a successful statement, as follows:

� The statement succeeds in revoking the Select and Insert privileges
from user hal because user hal had those privileges.

� SQLSTATE code 01006 is returned because the other privileges
implied by the ALL keyword did not exist for user hal; therefore,
these privileges were not revoked.

Tip: The ALL keyword instructs the database server to revoke everything possible,
including nothing. If the user from whom privileges are revoked has no privileges on
the table, the REVOKE ALL statement still succeeds, because it revokes everything
possible from the user (in this case, no privileges at all).

Effect of ALL Keyword on UNDER Privilege

If you revoke ALL privileges on a typed table, the Under privilege is included
in the privileges that are revoked. If you revoke ALL privileges on a table that
is not based on a row type, the Under privilege is not included in the privi-
leges that are revoked. (The Under privilege cannot be granted on a table that
is not a typed table.)
2-564 IBM Informix Guide to SQL: Syntax

REVOKE
Type-Level Privileges
You can revoke two privileges on data types:

� The Usage privilege on a user-defined data type

� The Under privilege on a named-row type

Usage Privilege

Any user can reference a built-in data type in an SQL statement, but not a
DISTINCT data type based on a built-in data type. The creator of a user-
defined data type or a DBA must explicitly grant the Usage privilege on that
new data type, including a DISTINCT data type based on a built-in data type.

REVOKE with the USAGE ON TYPE keywords removes the Usage privilege
that you granted earlier to another user or to a role.

Under Privilege

You own a named-row type that you create. If you want other users to be able
to create subtypes under this named-row type, you must grant these users
the Under privilege on your named-row type. If you later want to remove the
ability of these users to create subtypes under the named-row type, you must
revoke the Under privilege from these users. A REVOKE statement with the
UNDER ON TYPE keywords removes the Under privilege that you granted
earlier to these users.

IDS

Element Purpose Restrictions Syntax
row_type_name Named-row type for which to revoke Under privilege Must exist Data Type, p. 4-49
type_name User-defined type for which to revoke Usage privilege Must exist Data Type, p. 4-49

Type-Level Privileges Back to REVOKE
p. 2-557

USAGE ON TYPE type_name

UNDER ON TYPE row_type_name
SQL Statements 2-565

REVOKE
For example, suppose that you created a row type named rtype1:

CREATE ROW TYPE rtype1 (cola INT, colb INT)

If you want another user named kathy to be able to create a subtype under
this named-row type, you must grant the Under privilege on this named-row
type to user kathy:

GRANT UNDER on rtype1 to kathy

Now user kathy can create another row type under the rtype1 row type even
though kathy is not the owner of the rtype1 row type:

CREATE ROW TYPE rtype2 (colc INT, cold INT) UNDER rtype1

If you later want to remove the ability of user kathy to create subtypes under
the rtype1 row type, enter the following statement:

REVOKE UNDER on rtype1 FROM kathy

Routine-Level Privileges
If you revoke the Execute privilege on a UDR from a user, that user can no
longer execute that UDR in any way. For details of how a user can execute a
UDR, see “Routine-Level Privileges” on page 2-470.

Element Purpose Restrictions Syntax
routine A user-defined routine Must exist. Database Object Name, p. 4-46
SPL_routine An SPL routine Must be unique in the database. Database Object Name, p. 4-46

Routine-Level Privileges Back to REVOKE
p. 2-557

EXECUTE ON

()

Routine Parameter List
p. 4-266

routinePROCEDURE

ROUTINE

FUNCTION

SPL_routine

Specific Name
p. 4-274SPECIFIC PROCEDURE

ROUTINE

FUNCTION

IDS
2-566 IBM Informix Guide to SQL: Syntax

REVOKE
In an ANSI-compliant database, the owner name must qualify the routine
name. ♦

When you create a UDR under any of the following circumstances, you must
explicitly grant the Execute privilege before you can revoke it:

� You create a UDR in an ANSI-compliant database. ♦
� You have DBA-level privileges and use the DBA keyword with

CREATE to restrict the Execute privilege to users with the DBA
database-level privilege.

� The NODEFDAC environment variable is set to yes to prevent
PUBLIC from receiving any privileges that are not explicitly granted.

Any negator function for which you grant the Execute privilege requires a
separate, explicit REVOKE statement. ♦

When you create a UDR without any of the preceding conditions in effect,
PUBLIC can execute your UDR without a GRANT statement. To limit who
executes your UDR, revoke the privilege using the keywords FROM PUBLIC
and then grant it to a user list (see “User List” on page 2-570) or role (see
“Role Name” on page 2-570).

If two or more UDRs have the same name, use the appropriate keyword from
the following list to specify which of those UDRs a user can no longer execute.

♦

Privilege Purpose

SPECIFIC Prevents a user from executing the UDR identified by specific name

FUNCTION Prevents execution of any function with the specified routine name
(and parameter types that match routine parameter list, if supplied)

PROCEDURE Prevents execution of any procedure with the specified routine name
(and parameter types that match routine parameter list, if supplied)

ROUTINE Prevents execution of both functions and procedures with the
specified routine name (and parameter types that match routine
parameter list, if supplied)

ANSI

ANSI

IDS

IDS
SQL Statements 2-567

REVOKE
Language-Level Privileges
A user must have the Usage privilege on a language to register a UDR that is
written in that language.

When a user executes a CREATE FUNCTION or CREATE PROCEDURE
statement to register a UDR, the database server verifies that the user has the
Usage privilege on the language in which the UDR is written. If the user does
not have the Usage privilege, the statement fails. (In this release of Dynamic
Server, the C language and the Java language do not require Usage privilege.)

If you want to revoke the Usage privilege on the SPL language from a user or
role, issue a REVOKE statement that includes USAGE ON LANGUAGE SPL
keywords. The effect of issuing this statement is that the user or role can no
longer register UDRs that are written in the specified language. For example,
if you revoke the default Usage privilege in SPL from PUBLIC, the ability to
create SPL routines is taken away from all users:

REVOKE USAGE ON LANGUAGE SPL FROM PUBLIC

You can issue a GRANT USAGE ON LANGUAGE statement to restore Usage
privileges in SPL to a restricted group, such as the role named developers:

GRANT USAGE ON LANGUAGE SPL TO developers

Sequence-Level Privileges
Although a sequence is logically a table, only a subset of the table privileges
(as described in “Table-Level Privileges” on page 2-463) can be granted or
revoked on a sequence. You can revoke either or both of the following privi-
leges on a sequence object:

� Select privilege

� Alter privilege

IDS

Language-Level
Privileges

Back to REVOKE
p. 2-557

USAGE ON LANGUAGE SPL

IDS
2-568 IBM Informix Guide to SQL: Syntax

REVOKE
Use this syntax to specify the privileges to revoke on a sequence object:

The sequence must reside in the current database. (You can qualify the
sequence or synonym identifier with a valid owner name, but the name
of a remote database (or database@server) is not valid as a qualifier.)

Alter Privilege

You can revoke the Alter privilege on a sequence from another user or from
a role. The Alter privilege enables a specified user or role to modify the
definition of a sequence with the ALTER SEQUENCE statement or to rename
the sequence with the RENAME SEQUENCE statement.

Select Privilege

You can revoke the Select privilege on a sequence from another user or from
a role. The Select privilege enables a specified user or role to use the
sequence.CURRVAL and sequence.NEXTVAL in SQL and SPL statements to
access and to increment the value of a sequence.

ALL Keyword

You can use the ALL keyword to revoke both Alter and Select privileges from
another user or from a role.

Element Purpose Restrictions Syntax
owner Owner of the sequence or of its synonym Must be the owner Owner Name,p. 4-234
sequence Sequence on which to revoke privileges Must exist Identifier, p. 4-189
synonym Synonym for the sequence object

on which to revoke privileges
Must exist Identifier, p. 4-189

Sequence-Level Privileges Back to REVOKE
p. 2-557

ON sequence

synonym

SELECT

ALL+

ALTER+

owner .
SQL Statements 2-569

REVOKE
User List
The user list specifies who loses the privileges that you are revoking. The user
list can consist of the logins for a single user or multiple users, separated by
commas. If you use the PUBLIC keyword as the user list, the REVOKE
statement revokes privileges from all users.

When the user list contains specific logins, you can combine the REVOKE
statement with the GRANT statement to selectively secure tables, columns,
UDRs, types, and so forth. For examples, see “When to Use REVOKE Before
GRANT” on page 2-563.

Spell the user names in the list exactly as they were spelled in the GRANT
statement. In a database that is not ANSI compliant, you can optionally use
quotes around each user in the list.

In an ANSI-compliant database, if you do not use quotes to delimit user, the
name of the user is stored in uppercase letters. ♦

Role Name
Only the DBA or a user who has been granted a role with the WITH GRANT
OPTION can revoke a role or its privileges. Users cannot revoke roles from
themselves.

Element Purpose Restrictions Syntax
user Login name of the user

who is to lose the role
or privilege

Put quotes around user to ensure that the name of the
user is stored exactly as you type it. Use the single
keyword PUBLIC for user to revoke a role or privilege
from all authorized users.

Owner Name,
p. 4-234

User List Back to REVOKE
p. 2-557

,

user

PUBLIC

'user '

ANSI
2-570 IBM Informix Guide to SQL: Syntax

REVOKE
When you revoke a role that was granted with the WITH GRANT OPTION,
both the role and grant option are revoked. “Revoking Privileges Granted
WITH GRANT OPTION” on page 2-571 explains revoking such a role.

The following examples show the effects of REVOKE with role_name:

� Remove users or another role name from inclusion in the role:
REVOKE accounting FROM mary
REVOKE payroll FROM accounting

� Remove one or more privileges from a role:
REVOKE UPDATE ON employee FROM accounting

When you revoke table-level privileges from a role, you cannot use the
RESTRICT or CASCADE clauses.

Revoking Privileges Granted WITH GRANT OPTION
If you revoke from user privileges that you granted using the WITH GRANT
OPTION keywords, you sever the chain of privileges granted by that user.
Thus, when you revoke privileges from users or a role, you also revoke the
same privilege resulting from GRANT statements in the following contexts:

� Issued by your grantee

� Allowed because your grantee used the WITH GRANT OPTION
clause

� Allowed because subsequent grantees granted the same privilege
using the WITH GRANT OPTION clause

Element Purpose Restrictions Syntax
role_name A role with one of these attributes:

� Loses an existing privilege

� Loses the use of another role

� Is lost by a user or by another role

Must exist. If enclosed between
quotation marks, role_name is case
sensitive.

Identifier,
p. 4-189

Role Name Back to REVOKE
p. 2-557' role_name '

role_name
SQL Statements 2-571

REVOKE
The following examples illustrate this situation. You, as the owner of the table
items, issue the following statements to grant access to user mary:

REVOKE ALL ON items FROM PUBLIC
GRANT SELECT, UPDATE ON items TO mary WITH GRANT OPTION

User mary uses her new privilege to grant users cathy and paul access to the
table:

GRANT SELECT, UPDATE ON items TO cathy
GRANT SELECT ON items TO paul

Later you revoke privileges on the items table to user mary:

REVOKE SELECT, UPDATE ON items FROM mary

This single statement effectively revokes all privileges on the items table
from users mary, cathy, and paul.

The CASCADE keyword has the same effect as this default condition.

The AS Clause
Without the AS clause, the user who executes the REVOKE statement must be
a grantor of the privilege that is being revoked. The DBA or the owner of the
object can use the AS clause to specify another user (who must be the grantor
of the privilege) as the revoker of the privileges. The AS clause provides the
only mechanism by which privileges can be revoked on a database object
whose owner is an authorization identifier, such as informix, that is not a
valid user account known to the operating system.

Effect of CASCADE Keyword on UNDER Privileges

If you revoke the Under privilege on a typed table with the CASCADE option,
the Under privilege is removed from the specified user, and any subtables
created under the typed table by that user are dropped from the database.

If you revoke the Under privilege on a named ROW type with the CASCADE
option when that data type is in use, the REVOKE fails. This exception to the
normal behavior of the CASCADE option occurs because the database server
supports the DROP ROW TYPE statement with the RESTRICT keyword only.
2-572 IBM Informix Guide to SQL: Syntax

REVOKE
For example, assume that user jeff creates a ROW type named rtype1 and
grants the Under privilege on that ROW type to user mary. User mary now
creates a ROW type named rtype2 under ROW type rtype1 and grants the
Under privilege on ROW type rtype2 to user andy. Then user andy creates a
ROW type named rtype3 under row type rtype2.

If user jeff now tries to revoke the Under privilege on ROW type rtype1 from
user mary with the CASCADE option, the REVOKE statement fails, because
ROW type rtype2 is still in use by ROW type rtype3.

Controlling the Scope of REVOKE with the RESTRICT Option
The RESTRICT keyword causes the REVOKE statement to fail when any of the
following dependencies exist:

� A view depends on a Select privilege that you attempt to revoke.

� A foreign-key constraint depends on a References privilege that you
attempt to revoke.

� You attempt to revoke a privilege from a user who subsequently
granted this privilege to another user or users.

A REVOKE statement does not fail if it pertains to a user who has the right to
grant the privilege to any other user but does not exercise that right.

For example, assume that user clara uses the WITH GRANT OPTION clause to
grant the Select privilege on the customer table to user ted. Further assume
that user ted, in turn, grants the Select privilege on the customer table to user
tania. The following REVOKE statement that clara issued fails because ted
used his authority to grant the Select privilege:

REVOKE SELECT ON customer FROM ted RESTRICT

By contrast, if user ted does not grant the Select privilege to tania or any other
user, the same REVOKE statement succeeds. Even if ted does grant the Select
privilege to another user, either of the following statements succeeds:

REVOKE SELECT ON customer FROM ted CASCADE
REVOKE SELECT ON customer FROM ted
SQL Statements 2-573

REVOKE
Effect of Uncommitted Transactions
When REVOKE is executed, an exclusive row lock is placed on the entry in the
systables system catalog table for the table from which privileges were
revoked. The lock is not released until the transaction that contains the
REVOKE statement is complete. When another transaction attempts to
prepare a SELECT statement against this table, the transaction fails because
the entry for this table in systables is exclusively locked. The attempt to
prepare the SELECT statement will not succeed until the first transaction was
committed.

Related Information
Related Statements: GRANT, GRANT FRAGMENT, and REVOKE FRAGMENT

For information about roles, see the following statements: CREATE ROLE,
DROP ROLE, and SET ROLE.

For a discussion of privileges, see the IBM Informix Database Design and Imple-
mentation Guide.

For a discussion of how to embed GRANT and REVOKE statements in
programs, see the IBM Informix Guide to SQL: Tutorial.
2-574 IBM Informix Guide to SQL: Syntax

REVOKE FRAGMENT
REVOKE FRAGMENT
Use the REVOKE FRAGMENT statement to revoke the Insert, Update, or
Delete fragment-level privileges that were granted to users on individual
fragments of a fragmented table.

Syntax

Usage
Use the REVOKE FRAGMENT statement to revoke the Insert, Update, or
Delete privilege on one or more fragments of a fragmented table from one or
more users. This can also be used by the DBA to revoke privileges on a
fragment whose owner is another user.

+

IDS

Element Purpose Restrictions Syntax
dbspace The dbspace that stores the fragments

The default is all fragments of table on which
user holds fragment-level privileges.

Must exist and must store
fragment(s) of table.

Identifier,
p. 4-189

revoker The user (who is not executing the statement)
who is grantor of the privileges to be revoked

Must be grantor of the privi-
leges on the fragment(s).

Owner Name,
p. 4-234.

table Table whose fragment privileges are to be
revoked

Must exist and must be
fragmented by expression.

Database Object
Name, p. 4-46

user Users from whom the specified privileges are
to be revoked

Must be a valid authorization
identifier.

Owner Name,
p. 4-234.

ONREVOKE FRAGMENT
Fragment-Level

Privileges
p. 2-576

FROMdbspace()

table

,

user

,

'user '

revoker

' revoker '

AS
SQL Statements 2-575

REVOKE FRAGMENT
The REVOKE FRAGMENT statement is only valid for tables that are
fragmented according to an expression-based distribution scheme. For an
explanation of an expression-based distribution scheme, see “Expression
Distribution Scheme” on page 2-25.

You can specify one fragment or a comma-separated list of fragments in the
REVOKE FRAGMENT statement. To specify a fragment, specify the name of
the dbspace in which the fragment resides. If present, the dbspace list must be
enclosed between a pair of parentheses that follow the ON table clause.

If you do not specify any dbspace, the specified users lose the specified privi-
leges on all fragments for which the users currently have those privileges.

Fragment-Level Privileges

You can revoke fragment-level privileges individually or in combination. List
the keywords that correspond to the privileges that you are revoking from
user. The following table defines each of the fragment-level privileges.

INSERT

UPDATE

,

DELETE

Fragment-Level
Privileges

Back to REVOKE FRAGMENT
p. 2-575

ALL

Privilege Purpose

ALL Provides insert, delete, and update privileges on a fragment

INSERT Lets you insert rows in the fragment

DELETE Lets you delete rows in the fragment

UPDATE Lets you update rows in the fragment and name any column of the
table in an UPDATE statement
2-576 IBM Informix Guide to SQL: Syntax

REVOKE FRAGMENT
If you specify the ALL keyword in a REVOKE FRAGMENT statement, the
specified users lose all fragment-level privileges that they currently possess
on the specified fragments.

For example, assume that a user currently has the Update privilege on one
fragment of a table. If you use the ALL keyword to revoke all current privi-
leges on this fragment from this user, the user loses the Update privilege that
he or she had on this fragment.

For the distinction between fragment-level and table-level privileges, see the
sections “Definition of Fragment-Level Authorization” and “Role of
Fragment-Level Authority in Command Validation” on page 2-482.

The AS Clause
Without the AS clause, the user who executes the REVOKE statement must be
a grantor of the privilege that is being revoked. The DBA or the owner of the
fragment can use the AS clause to specify another user (who must be the
grantor of the privilege) as the revoker of privileges on a fragment.

The AS clause provides the only mechanism by which privileges can be
revoked on a fragment whose owner is an authorization identifier that is not
a valid user account known to the operating system.

Examples of the REVOKE FRAGMENT Statement
Examples that follow are based on the customer table. They all assume that
the customer table is fragmented by expression into three fragments that
reside in the dbspaces that are named dbsp1, dbsp2, and dbsp3.

Revoking One Privilege

The following statement revokes the Update privilege on the fragment of the
customer table in dbsp1 from user ed:

REVOKE FRAGMENT UPDATE ON customer (dbsp1) FROM ed
SQL Statements 2-577

REVOKE FRAGMENT
Revoking More Than One Privilege

The following statement revokes the Update and Insert privileges on the
fragment of the customer table in dbsp1 from user susan:

REVOKE FRAGMENT UPDATE, INSERT ON customer (dbsp1) FROM susan

Revoking All Privileges

The following statement revokes all privileges currently granted to user
harry on the fragment of the customer table in dbsp1:

REVOKE FRAGMENT ALL ON customer (dbsp1) FROM harry

Revoking Privileges on More Than One Fragment

The following statement revokes all privileges currently granted to user
millie on the fragments of the customer table in dbsp1 and dbsp2:

REVOKE FRAGMENT ALL ON customer (dbsp1, dbsp2) FROM millie

Revoking Privileges from More Than One User

The following statement revokes all privileges currently granted to users
jerome and hilda on the fragment of the customer table in dbsp3:

REVOKE FRAGMENT ALL ON customer (dbsp3) FROM jerome, hilda

Revoking Privileges Without Specifying Fragments

The following statement revokes all current privileges from user mel on all
fragments for which this user currently has privileges:

REVOKE FRAGMENT ALL ON customer FROM mel

Related Information
Related statements: GRANT FRAGMENT and REVOKE

For a discussion of fragment-level and table-level privileges, see the section
“Fragment-Level Privileges” on page 2-481. See also the IBM Informix
Database Design and Implementation Guide.
2-578 IBM Informix Guide to SQL: Syntax

ROLLBACK WORK
ROLLBACK WORK
Use the ROLLBACK WORK statement to cancel a transaction deliberately and
undo any changes that occurred since the beginning of the transaction. The
ROLLBACK WORK statement restores the database to the state that it was in
before the transaction began.

Syntax

Usage
The ROLLBACK WORK statement is valid only in databases with transaction
logging.

In a database that is not ANSI compliant, start a transaction with a BEGIN
WORK statement. You can end a transaction with a COMMIT WORK statement
or cancel the transaction with a ROLLBACK WORK statement. The ROLLBACK
WORK statement restores the database to the state that existed before the
transaction began.

Use ROLLBACK WORK only at the end of a multistatement operation.

The ROLLBACK WORK statement releases all row and table locks that the
cancelled transaction holds. If you issue a ROLLBACK WORK statement when
no transaction is pending, an error occurs.

In an ANSI-compliant database, transactions are implicit. You do not need to
mark the beginning of a transaction with a BEGIN WORK statement. You only
need to mark the end of each transaction with a COMMIT WORK statement or
cancel the transaction with a ROLLBACK WORK statement. If you issue a
ROLLBACK WORK statement when no transaction is pending, the statement
is accepted but has no effect. ♦

In ESQL/C, the ROLLBACK WORK statement closes all open cursors except
those that are declared with hold. Hold cursors remain open after a trans-
action is committed or rolled back.

ROLLBACK WORK

IDSANSI

E/C
SQL Statements 2-579

ROLLBACK WORK
If you use the ROLLBACK WORK statement within an SPL routine that a
WHENEVER statement calls, specify WHENEVER SQLERROR CONTINUE and
WHENEVER SQLWARNING CONTINUE before the ROLLBACK WORK
statement. This step prevents the program from looping if the ROLLBACK
WORK statement encounters an error or a warning. ♦

WORK Keyword
The WORK keyword is optional in a ROLLBACK WORK statement. The
following two statements are equivalent:

ROLLBACK;

ROLLBACK WORK;

Related Information
Related statements: BEGIN WORK and COMMIT WORK

For a discussion of transactions and ROLLBACK WORK, see the IBM Informix
Guide to SQL: Tutorial.
2-580 IBM Informix Guide to SQL: Syntax

SELECT
SELECT
Use the SELECT statement to query a database or the contents of an SPL or
ESQL/C collection variable.

Syntax

Usage
The SELECT statement can return data from tables in the current database, or
in another database of the current database server, or in a database of another
database server. Only the SELECT keyword, the Projection clause, and the
FROM clause are required specifications.

Element Purpose Restrictions Syntax
column Name of a column that can

be updated after a FETCH
Must be in a FROM clause table, but does not need to
be in the select list of the Projection clause

Identifier,
p. 4-189

INTO
Clause
p. 2-590

E/C

SPL

WHERE
Clause
p. 2-613

ORDER BY
Clause
p. 2-624 INTO Table

Clauses
p. 2-632

HAVING Clause
p. 2-623

UNION ALL

UNION

FROM
Clause
p. 2-594

Projection
Clause
p. 2-583

GROUP BY Clause
p. 2-621

READ ONLY

UPDATE OF

,

column

SELECT

+

Optimizer
Directives
p. 4-222+

IDS

+

FOR
SQL Statements 2-581

SELECT
The SELECT statement can include various basic clauses, which are identified
in the following list.

Sections that follow describe these clauses of the SELECT statement.

Clause Page Effect

Optimizer Directive 4-222 Specifies how the query should be implemented

Projection 2-583 Specifies a list of items to be read from the database

INTO 2-590 Specifies variables to receive the result set

FROM 2-594 Specifies table(s) that contain the selected column(s)

ON 2-609 Specifies join conditions as pre-join filters

WHERE 2-613 Sets conditions on selected rows and post-join filters

GROUP BY 2-621 Combines groups of rows into summary results

HAVING 2-623 Sets conditions on the summary results

ORDER BY 2-624 Sorts the selected rows according to column values

FOR UPDATE 2-629 Enables updating of the selected rows after a fetch

FOR READ ONLY 2-631 Disables updating of the selected rows after a fetch

INTO TEMP 2-633 Puts the results of the query into a temporary table

INTO EXTERNAL 2-635 Stores the results of the query in an external table

INTO SCRATCH 2-637 Stores the results in an unlogged temporary table ♦

UNION ALL 2-637 Combines the result sets of two SELECT statements

UNION 2-637 Same as UNION ALL, but discards duplicate rows

XPS
2-582 IBM Informix Guide to SQL: Syntax

SELECT
Projection Clause
The Projection clause (sometimes called the SELECT clause) specifies a list
of database objects or expressions to be retrieved, and whether to omit
duplicate values. (The the select list is sometimes also called the projection list.)

Element Purpose Restrictions Syntax
alias Temporary table or view name.

See “FROM Clause” on page 2-594.
To use an alias here, the FROM clause
must declare an alias for table or view

Identifier,
p. 4-189

column Column from which to retrieve data Must exist in a in a data source that the
FROM clause references

Identifier,
p. 4-189

display
_label

Temporary name that you declare
here for a column

For restrictions on display labels, see
“Declaring a Display Label” on
page 2-589

Identifier,
p. 4-189

external External table from which to
retrieve data

Must exist Database Object
Name, p. 4-46

max Integer (> 0) specifying maximum
number of rows to return

If max > rows that match query criteria,
then all matching rows are returned

Literal Number,
p. 4-216

subquery Embedded query Cannot include the FIRST max clause
nor the ORDER BY clause

SELECT,
p. 2-581

table, view,
synonym

Name of a table, view, or synonym
from which to retrieve data

The synonym and the table or view to
which it points must exist

Database Object
Name, p. 4-46

Select ListALL

AS

,

display_label

*

Projection Clause

Expression
p. 4-67

FIRST max

table.

view.

DISTINCT

UNIQUE

synonym.

alias.
Collection
Subquery

p. 4-22
IDS

MIDDLE

Select List

XPS +

column

external.XPS

subquery)(
SQL Statements 2-583

SELECT
The asterisk (*) specifies all columns in the table or view. Use this symbol to
retrieve all the columns in their defined order. To retrieve all the columns in
some other order, or to retrieve a subset of the columns, you must specify the
individual column names explicitly in the select list.

A distributed query that accesses tables of another database server cannot
reference a column or expression of an opaque or user-defined data type. ♦

Using the FIRST Option

The FIRST max option specifies a maximum number of rows to retrieve that
match conditions specified in the SELECT statement. Beyond that specified
number, any additional rows matching the selection criteria are not returned.
The following example retrieves at most 10 rows from a table:

SELECT FIRST 10 a, b FROM tab1;

When you use this option with an ORDER BY clause, you can retrieve the first
number of rows according to the order criteria. For example, the following
query finds the ten highest-paid employees:

SELECT FIRST 10 name, salary FROM emp ORDER BY salary DESC

If you are using Extended Parallel Server, you can also use the FIRST option
to select the first rows that result from a union query. In the following
example, the FIRST option is applied to the result of the UNION expression:

SELECT FIRST 10 a, b FROM tab1 UNION SELECT a, b FROM tab2 ♦

The FIRST option is not valid in the following contexts:

� In the definition of a view

� In nested SELECT statements

� In subqueries

� In a singleton SELECT (where max = 1) within an SPL routine ♦
� In the SELECT clause of an INSERT statement

� In a SELECT statement that inserts the retrieved data into another
table, such as a temporary, scratch, or external table

� Where embedded SELECT statements are used as expressions

� As part of a UNION query

� In a distributed query on a remote database server ♦

IDS

XPS

SPL

IDS
2-584 IBM Informix Guide to SQL: Syntax

SELECT
Using FIRST as a Column Name with Dynamic Server

FIRST is a keyword, but the database server can also interpret it as a column
name. If no integer follows the keyword, the database server interprets FIRST
as a column identifier. For example, if table T has columns first, second, and
third, the following query would return data from the column named first:

SELECT first FROM T

Using the MIDDLE Option

The MIDDLE option, like the FIRST option, can specify a maximum number of
rows to retrieve that match conditions specified in the SELECT statement. The
FIRST option returns the first max rows (for max a number that you specify)
that satisfy the selection criteria, but the MIDDLE option returns max rows
from the middle of the set of qualifying rows.

The syntax and restrictions for this option are the same as those for the FIRST
option. For more information, see “Using the FIRST Option” on page 2-584.

Allowing Duplicates

You can apply the ALL, UNIQUE, or DISTINCT keywords to indicate whether
duplicate values are returned, if any exist. If you do not specify any of these
keywords before the projection list, all the rows are returned by default.

For example, the next query lists unique values in the stock_num and
manu_code columns of all items table rows, excluding any duplicate values:

SELECT DISTINCT stock_num, manu_code FROM items

Keyword Effect

ALL Specifies that all selected values are returned, regardless of whether
duplicates exist. (If you specify no keyword, ALL is the default state.)

DISTINCT Eliminates duplicate rows from the query results

UNIQUE Eliminates duplicate rows from the query results. (Here UNIQUE as
a synonym for DISTINCT is an extension to the ANSI/ISO standard.)

IDS

XPS
SQL Statements 2-585

SELECT
You can specify DISTINCT or UNIQUE no more than once in each level of a
query or subquery. The following example uses DISTINCT in both the query
and in the subquery:

SELECT DISTINCT stock_num, manu_code FROM items
WHERE order_num = (SELECT DISTINCT order_num FROM orders

WHERE customer_num = 120)

Expressions in the Select List

You can use any basic type of expression (column, constant, built-in function,
aggregate function, and user-defined routine), or combination thereof, in the
select list. The expression types are described in “Expression” on page 4-67.
Sections that follow present examples of simple expression in the select list.

You can combine simple numeric expressions by connecting them with
arithmetic operators for addition, subtraction, multiplication, and division.
If you combine a column expression and an aggregate function, however,
you must include the column expression in the GROUP BY clause. (See also
“Relationship of GROUP BY and Projection Clauses” on page 2-622.)

In general, you cannot use variables (for example, host variables in an
ESQL/C application) in the select list by themselves. You can include a
variable in the select list, however, if an arithmetic or concatenation operator
connects it to a constant.

In a FOREACH SELECT statement, you cannot use SPL variables in the select
list, by themselves or with column names, when the tables in the FROM clause
are remote tables. You can use SPL variables by themselves or with a constant
in the select list only when the tables in the FROM clause are local tables.

The Boolean operator NOT is not valid in the Projection clause.

Selecting Columns

Column expressions are the most commonly used expressions in a SELECT
statement. For a complete description of the syntax and use of column
expressions, see “Column Expressions” on page 4-82. The following
examples use column expressions in a select list:

SELECT orders.order_num, items.price FROM orders, items
SELECT customer.customer_num ccnum, company FROM customer
SELECT catalog_num, stock_num, cat_advert [1,15] FROM catalog
SELECT lead_time - 2 UNITS DAY FROM manufact
2-586 IBM Informix Guide to SQL: Syntax

SELECT
Selecting Constants

If you include a constant expression in the select list, the same value is
returned for each row that the query returns (except when the constant
expression is NEXTVAL). For a complete description of the syntax and use of
constant expressions, see “Constant Expressions” on page 4-95. Examples
that follow show constant expressions within a select list:

SELECT 'The first name is', fname FROM customer
SELECT TODAY FROM cust_calls
SELECT SITENAME FROM systables WHERE tabid = 1
SELECT lead_time - 2 UNITS DAY FROM manufact
SELECT customer_num + LENGTH('string') from customer

Selecting Built-In Function Expressions

A built-in function expression uses a function that is evaluated for each row
in the query. All built-in function expressions require arguments. This set of
expressions contains the time functions and the length function when they
are used with a column name as an argument. The following examples show
built-in function expressions within the select list of the Projection clause:

SELECT EXTEND(res_dtime, YEAR TO SECOND) FROM cust_calls
SELECT LENGTH(fname) + LENGTH(lname) FROM customer
SELECT HEX(order_num) FROM orders
SELECT MONTH(order_date) FROM orders

Selecting Aggregate Function Expressions

An aggregate function returns one value for a set of queried rows. This value
depends on the set of rows that the WHERE clause of the SELECT statement
qualifies. In the absence of a WHERE clause, the aggregate functions take on
values that depend on all the rows that the FROM clause forms. Examples that
follow show aggregate functions in a select list:

SELECT SUM(total_price) FROM items WHERE order_num = 1013
SELECT COUNT(*) FROM orders WHERE order_num = 1001
SELECT MAX(LENGTH(fname) + LENGTH(lname)) FROM customer

Selecting User-Defined Function Expressions

User-defined functions extend the range of functions that are available to you
and allow you to perform a subquery on each row that you select.
SQL Statements 2-587

SELECT
The following example calls the get_orders() user-defined function for each
customer_num and displays the returned value under the n_orders label:

SELECT customer_num, lname, get_orders(customer_num) n_orders
FROM customer

If an SPL routine in a SELECT statement contains certain SQL statements, the
database server returns an error. For information on which SQL statements
cannot be used in an SPL routine that is called within a query, see “Restric-
tions on SPL Routines in Data-Manipulation Statements” on page 4-279. ♦

For the complete syntax of user-defined function expressions, see “User-
Defined Functions” on page 4-165.

Selecting Expressions That Use Arithmetic Operators

You can combine numeric expressions with arithmetic operators to make
complex expressions. You cannot combine expressions that contain
aggregate functions with column expressions. These examples show expres-
sions that use arithmetic operators within a select list in the Projection clause:

SELECT stock_num, quantity*total_price FROM customer
SELECT price*2 doubleprice FROM items
SELECT count(*)+2 FROM customer
SELECT count(*)+LENGTH('ab') FROM customer

Selecting ROW Fields

You can select a specific field of a named or unnamed ROW type column with
row.field notation, using a period (.) as a separator between the row and field
names. For example, suppose you have the following table structure:

CREATE ROW TYPE one (a INTEGER, b FLOAT)
CREATE ROW TYPE two (c one, d CHAR(10))
CREATE ROW TYPE three (e CHAR(10), f two)
CREATE TABLE new_tab OF TYPE two
CREATE TABLE three_tab OF TYPE three

The following examples show expressions that are valid in the select list:

SELECT t.c FROM new_tab t
SELECT f.c.a FROM three_tab
SELECT f.d FROM three_tab

You can also enter an asterisk (*) in place of a field name to signify that all
fields of the ROW-type column are to be selected.

SPL

IDS
2-588 IBM Informix Guide to SQL: Syntax

SELECT
For example, if the my_tab table has a ROW-type column named rowcol that
contains four fields, the following SELECT statement retrieves all four fields
of the rowcol column:

SELECT rowcol.* FROM my_tab

You can also retrieve all fields from a row-type column by specifying only the
column name. This example has the same effect as the previous query:

SELECT rowcol FROM my_tab

You can use row.field notation not only with ROW-type columns but with
expressions that evaluate to ROW-type values. For more information, see
“Column Expressions” on page 4-82 in the Expression segment.

Declaring a Display Label

You can declare a display label for any column or column expression in the
select list of the Projection clause. This temporary name is in scope only while
the SELECT statement is executing.

In DB-Access, a display label appears as the heading for that column in the
output of the SELECT statement. ♦

In ESQL/C, the value of display_label is stored in the sqlname field of the sqlda
structure. For more information on the sqlda structure, see the IBM Informix
ESQL/C Programmer’s Manual. ♦

If your display label is an SQL keyword, use the AS keyword to clarify the
syntax. For example, to use UNITS, YEAR, MONTH, DAY, HOUR, MINUTE,
SECOND, or FRACTION as a display label, use the AS keyword with the
display label. The next statement uses AS with minute as a display label:

SELECT call_dtime AS minute FROM cust_calls

For the keywords of SQL, see Appendix A, “Reserved Words for IBM
Informix Dynamic Server,” or Appendix B, “Reserved Words for
IBM Informix Extended Parallel Server.”

If you are creating a temporary table, you must supply a display label for any
columns that are not simple column expressions. The display label is used as
the name of the column in the temporary table. If you are using the SELECT
statement to define a view, do not use display labels. Specify the desired label
names in the CREATE VIEW column list instead.

DB

E/C
SQL Statements 2-589

SELECT
INTO Clause
Use the INTO clause in an SPL routine or an ESQL/C program to specify the
program variables or host variables to receive data that SELECT retrieves.

The INTO clause specifies one or more variables that receive the values that
the query returns. If it returns multiple values, they are assigned to the list of
variables in the order in which you specify the variables.

If the SELECT statement stands alone (that is, it is not part of a DECLARE
statement and does not use the INTO clause), it must be a singleton SELECT
statement. A singleton SELECT statement returns only one row.

The number of receiving variables must be equal to the number of items in
the select list of the Projection clause. The data type of each receiving variable
should be compatible with the data type of the corresponding column or
expression in the select list.

Element Purpose Restrictions Syntax
data_structure Structure that was declared as a host

variable
Data types of elements must be able to
store the values that are being selected

Language
specific

indicator_var Program variable to receive a return
code if corresponding output_var
receives a NULL value

Optional; use an indicator variable if
the possibility exists that the value of
the corresponding output_var is NULL.

Language
specific

output_var Program or host variable to receive
value of the corresponding select list
item. Can be a collection variable

Order of receiving variables must
match the order of corresponding items
in the select list of Projection clause

Language
specific

INTO
Clause

,

output_var

INDICATOR

INTO

data_structure

Back to SELECT
p. 2-581

+

E/C

indicator_var$

indicator_var

indicator_var:
2-590 IBM Informix Guide to SQL: Syntax

SELECT
For the actions that the database server takes when the data type of the
receiving variable does not match that of the selected item, see “Warnings in
ESQL/C” on page 2-593.

The following example shows a singleton SELECT statement in ESQL/C:

EXEC SQL select fname, lname, company_name
into :p_fname, :p_lname, :p_coname
where customer_num = 101;

In an SPL routine, if a SELECT returns more than one row, you must use the
FOREACH statement to access the rows individually. The INTO clause of the
SELECT statement holds the fetched values. For more information, see
“FOREACH” on page 3-27. ♦

INTO Clause with Indicator Variables

If the possibility exists that a data value returned from the query is NULL, use
an ESQL/C indicator variable in the INTO clause. For more information, see
the IBM Informix ESQL/C Programmer’s Manual.

INTO Clause with Cursors

If the SELECT statement returns more than one row, you must use a cursor in
a FETCH statement to fetch the rows individually. You can put the INTO
clause in the FETCH statement rather than in the SELECT statement, but you
should not put it in both.

The following ESQL/C code examples show different ways you can use the
INTO clause. As both examples show, first you must use the DECLARE
statement to declare a cursor.

Using the INTO clause in the SELECT statement

EXEC SQL declare q_curs cursor for
select lname, company

into :p_lname, :p_company
from customer;

EXEC SQL open q_curs;
while (SQLCODE == 0)

EXEC SQL fetch q_curs;
EXEC SQL close q_curs;

SPL

E/C
SQL Statements 2-591

SELECT
Using the INTO clause in the FETCH statement

EXEC SQL declare q_curs cursor for
select lname, company from customer;

EXEC SQL open q_curs;
while (SQLCODE == 0)

EXEC SQL fetch q_curs into :p_lname, :p_company;
EXEC SQL close q_curs;

Preparing a SELECT... INTO Query

In ESQL/C, you cannot prepare a query that has an INTO clause. You can
prepare the query without the INTO clause, declare a cursor for the prepared
query, open the cursor, and then use the FETCH statement with an INTO
clause to fetch the cursor into the program variable.

Alternatively, you can declare a cursor for the query without first preparing
the query and include the INTO clause in the query when you declare the
cursor. Then open the cursor and fetch the cursor without using the INTO
clause of the FETCH statement.

Using Array Variables with the INTO Clause

In ESQL/C, if you use a DECLARE statement with a SELECT statement that
contains an INTO clause, and the variable is an array element, you can
identify individual elements of the array with integer literals or variables.
The value of the variable that is used as a subscript is determined when the
cursor is declared; the subscript variable subsequently acts as a constant.

The following ESQL/C code example declares a cursor for a SELECT ... INTO
statement using the variables i and j as subscripts for the array a. After you
declare the cursor, the INTO clause of the SELECT statement is equivalent to
INTOa[5],a[2].

i = 5
j = 2
EXEC SQL declare c cursor for

select order_num, po_num into :a[i], :a[j] from orders
where order_num =1005 and po_num =2865

You can also use program variables in the FETCH statement to specify an
element of a program array in the INTO clause. With the FETCH statement, the
program variables are evaluated at each fetch rather than when you declare
the cursor.

E/C

E/C
2-592 IBM Informix Guide to SQL: Syntax

SELECT
Error Checking

If the data type of the receiving variable does not match that of the selected
item, the data type of the selected item is converted, if possible, to the data
type of the variable. If the conversion is impossible, an error occurs, and a
negative value is returned in the status variable, sqlca.sqlcode, or SQLCODE.
In this case, the value in the program variable is unpredictable.

In an ANSI-compliant database, if the number of variables that are listed in
the INTO clause differs from the number of items in the select list of the
Projection clause, you receive an error. ♦

Warnings in ESQL/C

In ESQL/C, if the number of variables listed in the INTO clause differs from
the number of items in the Projection clause, a warning is returned in the
sqlwarn structure: sqlca.sqlwarn.sqlwarn3. The actual number of variables
that are transferred is the lesser of the two numbers. For information about
the sqlwarn structure, see the IBM Informix ESQL/C Programmer’s Manual.

ANSI

E/C
SQL Statements 2-593

SELECT
FROM Clause
The FROM clause lists the tables from which you are selecting the data.

Element Purpose Restrictions Syntax
alias Temporary name for a table or

view in the SELECT statement
See “The AS Keyword” on
page 2-595.

Identifier, p. 4-216

external External table from which to
retrieve data

Must exist but cannot be the outer
table in an outer join.

Database Object Name,
p. 4-46

num Number of rows to be sampled Unsigned integer > 0. Literal Number, p. 4-216
subquery Specifies rows to be retrieved Cannot be a correlated subquery. SELECT, p. 2-581
synonym,
table, view

Synonym or name of a source
from which to retrieve data

Synonym and table or view to
which it points must exist.

Database Object Name,
p. 4-46

,

FROM
Clause

FROM

Back to SELECT
p. 2-581

ANSI Table Reference
p. 2-606

+
,

+

,

,

,
Table Reference

,

Informix-Extension
OUTER Clause

p. 2-612
,

Table Reference

view

table

+

LOCAL synonym

external

ONLY (table)
IDS

XPS

XPS

Collection-Derived
Table
p. 4-7

SAMPLES OFnum

SPL

IDS

E/C

+

(synonym)

Informix-Extension
OUTER Clause

p. 2-612

+

XPS
aliasAS

()subquery

IDS

ANSI

Iterator
p. 2-603

+

IDS

Table Reference
2-594 IBM Informix Guide to SQL: Syntax

SELECT
If the FROM clause specifies more than one data source, the query is called a
join, because its result set can join rows from several table references. For
more information about joins, see “Queries that Join Tables” on page 2-604.

Aliases for Tables or Views

You can declare an alias for a table or view in the FROM clause. If you do so,
you must use the alias to refer to the table or view in other clauses of the
SELECT statement. You can also use aliases to make the query shorter.

The following example shows typical uses of the FROM clause. The first
query selects all the columns and rows from the customer table. The second
query uses a join between the customer and orders table to select all the
customers who have placed orders.

SELECT * FROM customer
SELECT fname, lname, order_num FROM customer, orders

WHERE customer.customer_num = orders.customer_num

The next example is equivalent to the second query in the preceding example,
but it declares aliases in the FROM clause and uses them in the WHERE clause:

SELECT fname, lname, order_num FROM customer c, orders o
WHERE c.customer_num = o.customer_num

Aliases (sometimes called correlation names) are especially useful with a self-
join. For more information about self-joins, see “Self-Joins” on page 2-620. In
a self-join, you must list the table name twice in the FROM clause and declare
a different alias for each of the two instances of table name.

The AS Keyword

If you use a potentially ambiguous word as an alias (or a display label), you
must begin its declaration with the keyword AS. This keyword is required if
you use any of the keywords ORDER, FOR, AT, GROUP, HAVING, INTO, NOT,
UNION, WHERE, WITH, CREATE, or GRANT as an alias for a table or view.

The database server would issue an error if the next example did not include
the AS keyword to indicate that not is a display label, rather than an operator:

CREATE TABLE t1(a INT);
SELECT a AS not FROM t1

If you do not declare an alias for a collection-derived table, the database
server assigns an implementation-dependent name to it.
SQL Statements 2-595

SELECT
Table Expressions

The term table expression refers to the use of a view name, a table name, or
uncorrelated subquery in the FROM clause. These can be simple or complex:

� Simple table expressions

A simple table expression is one whose underlying query can be
folded into the main query while preserving the correctness of the
query result.

� Complex table expressions

A complex table expression is one whose underlying query cannot be
folded into the main query while preserving the correctness of the
query result. The database server materializes such table expressions
into a temporary table that is used in the main query.

In either case, the table expression is evaluated as a general SQL query, and
its results can be thought of as a logical table. This logical table and its
columns can be used just like an ordinary base table, but it is not persistent.
It exists only during the execution of the query that references it.

Table expressions have the same syntax as general SELECT statements, but
with the same restrictions that apply to subqueries in other contexts. A table
expression cannot include the following syntax elements:

� ORDER BY clause

� SELECT INTO clause

In addition, table expressions are not valid in the following contexts:

� CREATE TRIGGER statements

� CREATE GK INDEX statements

Queries and correlated subqueries are not supported in the FROM clause.

Apart from these restrictions, any valid SQL query can be a table expression.
A table expression can be nested within another table expression, and can
include tables and views in its definition. You can use table expressions in
CREATE VIEW statements to define views.

XPS
2-596 IBM Informix Guide to SQL: Syntax

SELECT
Usability and Performance Considerations

Although equivalent functionality is available through views, subqueries as
table expressions simplify the formulation of queries, make the syntax more
flexible and intuitive, and support the ANSI/ISO standard for SQL.

Performance might be affected, however, if you use table expressions. It is
advisable to use subqueries if you really do not need to use table expressions.

The following are examples of valid table expressions:

SELECT * FROM (SELECT * FROM t);

SELECT * FROM (SELECT * FROM t) AS s;

SELECT * FROM (SELECT * FROM t) AS s WHERE t.a = s.b;

SELECT *
FROM (SELECT * FROM t) AS s, (SELECT * FROM u) AS v

WHERE s.a = v.b;

SELECT * FROM (SELECT * FROM t WHERE t.a = 1) AS s,
OUTER
(SELECT * FROM u WHERE u.b = 2 GROUP BY 1) AS v

WHERE s.a = v.b;

SELECT * FROM (SELECT a AS colA FROM t WHERE t.a = 1) AS s,
OUTER
(SELECT b AS colB FROM u WHERE u.b = 2 GROUP BY 1) AS v

WHERE s.colA = v.colB;

CREATE VIEW vu AS SELECT * FROM (SELECT * FROM t);

SELECT * FROM ((SELECT * FROM t) AS r) AS s;

Restrictions on External Tables in Joins and Subqueries

In Extended Parallel Server, when you use external tables in joins or
subqueries, the following restrictions apply:

� No more than one external table is valid in a query.

� The external table cannot be the outer table in an outer join.

� For subqueries that cannot be converted to joins, you can use an
external table in the main query, but not the subquery.

� You cannot do a self-join on an external table.

For more information on subqueries, refer to your Performance Guide.

XPS
SQL Statements 2-597

SELECT
Application Partitioning: The LOCAL Keyword

In Extended Parallel Server, the LOCAL table feature allows client applica-
tions to read data only from the local fragments of a table. In other words, it
allows the application to read only the fragments that reside on the coserver
to which the client is connected. This feature supports application parti-
tioning. An application can connect to multiple coservers, execute a LOCAL
read on each coserver, and assemble the final result on the client computer.

You qualify the name of a table with the LOCAL keyword to indicate that you
want to retrieve rows from fragments only on the local coserver. The LOCAL
keyword has no effect on data retrieved from nonfragmented tables.

When a query involves a join, you must plan carefully if you want to extract
data that the client can aggregate. The simplest way to ensure that a join will
retrieve data suitable for aggregation is to limit the number of LOCAL tables
to one. The client can then aggregate data with respect to that table. The
following example shows a query that returns data suitable for aggregation
by the client:

The following example shows data that the client cannot aggregate:

The client must submit exactly the same query to each coserver to retrieve
data that can be aggregated.

Sampled Queries: The SAMPLES OF Keywords

In Extended Parallel Server, sampled queries are supported. Sampled queries
are queries that are based on sampled tables. A sampled table is the result of
randomly selecting a specified number of rows from the table, rather than all
rows that match the selection criteria.

SELECT x.col1, y.col2
FROM LOCAL tab1 x, tab2 y
INTO TEMP t1
WHERE x.col1 = y.col1;

{can be aggregated by client}

{tab1 is local}

SELECT x.col1, y.col2
FROM LOCAL tab1 x, LOCAL tab2
INTO SCRATCH s4
WHERE x.col1 = y.col1;

{client cannot aggregate}

{tab1 and tab2 are local}

XPS

XPS
2-598 IBM Informix Guide to SQL: Syntax

SELECT
You can use a sampled query to gather quickly an approximate profile of data
within a large table. If you use a sufficiently large sample size, you can
examine trends in the data by sampling the data instead of scanning all the
data. In such cases, sampled queries can provide better performance than
scanning the data. If the value specified for the sample size is greater than the
number of rows in the table, the whole table is scanned.

To indicate that a table is to be sampled, specify the number of samples to
return before the SAMPLES OF keywords of the FROM clause. You can run
sampled queries against tables and synonyms, but not against views.

Sampled queries are not supported in the INSERT, DELETE, UPDATE, or other
SQL statements.

A sampled query has at least one sampled table. You do not need to sample
all tables in a sampled query. You can specify the SAMPLES OF option for
some tables in the FROM clause but not specify it for other tables.

The sampling method is known as sampling without replacement. This means
that a sampled row is not sampled again. The database server applies
selection criteria after samples are selected. Thus, the selection criteria restrict
the sample set, rather than the rows from which the sample is taken.

If a table is fragmented, the database server divides the specified number of
samples among the fragments. The number of samples from a fragment is
proportional to the ratio of the size of a fragment to the size of the table. In
other words, the database server takes more samples from larger fragments.

Important: You must run UPDATE STATISTICS LOW before you run the query with
the SAMPLES OF option. If you do not run UPDATE STATISTICS, the SAMPLE
clause is ignored, and all data values are returned. For better results, run UPDATE
STATISTICS MEDIUM before you run the query with the SAMPLES OF option.

The results of a sampled query contain a certain amount of deviation from a
complete scan of all rows. You can reduce this expected error to an acceptable
level by increasing the proportion of sampled rows to actual rows. When you
use sampled queries in joins, the expected error increases dramatically; you
must use larger samples in each table to retain an acceptable level of accuracy.

For example, you might want to generate a list of how many of each part is
sold from the parts_sold table, which is known to contain approximately
100,000,000 rows.
SQL Statements 2-599

SELECT
The following query provides a sampling ratio of one percent and returns an
approximate result:

SELECT part_number, COUNT(*) * 100 AS how_many
FROM 1000000 SAMPLES OF parts_sold
GROUP BY part_number;

The ONLY Keyword

If the SELECT statement queries a supertable, rows from both the supertable
and its subtables are returned. To query rows from the supertable only, you
must include the ONLY keyword in the FROM clause, as in this example:

SELECT * FROM ONLY(super_tab)

Selecting from a Collection Variable

The SELECT statement in conjunction with the Collection-Derived-Table
segment allows you to select elements from a collection variable.

The Collection-Derived-Table segment identifies the collection variable from
which to select the elements. (See “Collection-Derived Table” on page 4-7.)

Using Collection Variables with SELECT

To modify the contents of a column of a collection data type, you can use the
SELECT statement with a collection variable in different ways:

� You can select the contents (if any) of a collection column into a
collection variable.

You can assign the data type of the column to a collection variable of
type COLLECTION (that is, an untyped collection variable).

� You can select the contents from a collection variable to determine
the data that you might want to update.

� You can select the contents from a collection variable INTO another
variable in order to update certain collection elements.

The INTO clause identifies the variable for the element value that is
selected from the collection variable. The data type of the host vari-
able in the INTO clause must be compatible with the data type of the
corresponding element of the collection.

IDS

IDS
2-600 IBM Informix Guide to SQL: Syntax

SELECT
� You can use a collection cursor to select one or more elements from
an ESQL/C collection variable.

For more information, including restrictions on the SELECT state-
ment, see “Associating a Cursor with a Collection Variable” on
page 2-339 in the DECLARE statement. ♦

� You can use a collection cursor to select one or more elements from
an SPL collection variable.

For more information, including restrictions on the SELECT state-
ment, see “Using a SELECT...INTO Statement” on page 3-29. ♦

When one of the tables to be joined is a collection, the FROM clause cannot
specify a join. This restriction applies when the collection variable holds your
collection-derived table. See also “Collection-Derived Table” on page 4-7 and
the INSERT, UPDATE, and DELETE statements in this chapter.

Selecting from a Row Variable

The SELECT statement can include the Collection-Derived-Table segment to
select one or more fields from a row variable. The Collection-Derived-Table
segment identifies the row variable from which to select the fields. For more
information, see “Collection-Derived Table” on page 4-7.

To select fields

1. Create a row variable in your ESQL/C program.

2. Optionally, fill the row variable with field values.

You can select a ROW-type column into the row variable with the
SELECT statement (without the Collection-Derived-Table segment).
Alternatively, you can insert field values into the row variable with
the UPDATE statement and the Collection-Derived-Table segment.

3. Select row fields from the row variable with the SELECT statement
and the Collection-Derived-Table segment.

4. Once the row variable contains the correct field values, you can use
the INSERT or UPDATE statement on a table or view name to save the
contents of the row variable in a named or unnamed ROW column.

The INTO clause can specify a host variable to hold a field value selected from
the row variable.

E/C

SPL

IDS

E/C
SQL Statements 2-601

SELECT
The type of the host variable must be compatible with that of the field. For
example, this code fragment puts the width field value into the rect_width
host variable.

EXEC SQL BEGIN DECLARE SECTION;
ROW (x INT, y INT, length FLOAT, width FLOAT) myrect;
double rect_width;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL SELECT rect INTO :myrect FROM rectangles

WHERE area = 200;
EXEC SQL SELECT width INTO :rect_width FROM table(:myrect);

The SELECT statement on a row variable has the following restrictions:

� No expressions are allowed in the select list of the Projection clause.

� ROW columns cannot be in a WHERE clause comparison condition.

� The Projection clause must be an asterisk (*) if the row-type contains
fields of opaque, distinct, or built-in data types.

� Columns listed in the Projection clause can have only unqualified
names. They cannot use the syntax database@server:table.column.

� The following clauses are not allowed: GROUP BY, HAVING, INTO
TEMP, ORDER BY, and WHERE.

� The FROM clause has no provisions to do a join.

You can modify the row variable with the Collection-Derived-Table segment
of the UPDATE statements. (The INSERT and DELETE statements do not
support a row variable in the Collection-Derived-Table segment.)

The row variable stores the fields of the row. It has no intrinsic connection,
however, with a database column. Once the row variable contains the correct
field values, you must then save the variable into the ROW column with one
of the following SQL statements:

� To update the ROW column in the table with the row variable, use an
UPDATE statement on a table or view name and specify the row
variable in the SET clause. For more information, see “Updating
ROW-Type Columns” on page 2-770.

� To insert a row into a ROW column, use the INSERT statement on a
table or view and specify the row variable in the VALUES clause. See
“Inserting Values into ROW-Type Columns” on page 2-497.
2-602 IBM Informix Guide to SQL: Syntax

SELECT
For examples of how to use SPL row variables, see the IBM Informix Guide to
SQL: Tutorial. For information using ESQL/C row variables, see the discussion
of complex data types in the IBM Informix ESQL/C Programmer’s Manual.

Iterator Functions

The FROM clause can include a call to an iterator function to specify the
source for a query. An iterator function is a user-defined function that returns
to its calling SQL statement several times, each time returning a value.

You can query the returned result set of an iterator UDR using a virtual table
interface. Use this syntax to invoke an iterator function in the FROM clause.

The table can only be referenced within the context of this query. After the
SELECT statement terminates, the virtual table no longer exists.

The number of columns must match the number of values returned by the
iterator. An external function can return no more than one value (but that can
be of a collection data type.) An SPL routine can return multiple values.

To reference the virtual table columns in other parts of the SELECT statement,
for example, in the WHERE clause, or HAVING clause, you must declare its
name and the virtual column names in the FROM clause.

IDS

Element Purpose Restrictions Syntax
column Name for a virtual column in table Cannot include qualifiers Identifier, p. 4-189
iterator Name of the iterator function Must be registered in the database Identifier, p. 4-189
table Name declared here for the virtual

table holding iterator result set
Cannot include qualifiers Identifier, p. 4-189

Back to FROM Clause
p. 2-594

Iterator

Routine Parameter List
p. 4-266

TABLE FUNCTION()iterator ()

AS table (column

,

)

SQL Statements 2-603

SELECT
You do not need to declare the table name or column names in the FROM clause
if you use the asterisk notation in the Projection list of the SELECT clause:

SELECT * FROM ...

For more information and examples of using iterator functions in queries, see
IBM Informix User-Defined Routines and Data Types Developer’s Guide.

Queries that Join Tables

If the FROM clause specifies more than one table reference, the query can join
rows from several tables. A join condition specifies a relationship between at
least one column from each table to be joined. Because the columns in a join
condition are being compared, they must have compatible data types.

The FROM clause of the SELECT statement can specify several types of joins:

The last four categories are collectively called “Join Types” in the literature of
the relational model; a CROSS JOIN ignores the data values in joined tables,
returning every possible pair of rows where one row is from each table.

In an inner (or simple) join, the result contains only the combination of rows
that satisfy the join conditions. Outer joins preserve rows that otherwise
would be discarded by inner joins. In an outer join, the result contains the
combination of rows that satisfy the join conditions and the rows from the
dominant table that would otherwise be discarded. The rows from the
dominant table that do not have matching rows in the subordinate table
contain NULL values in the columns selected from the subordinate table.

FROM Clause Keyword Corresponding Result Set

CROSS JOIN Cartesian product (all possible pairs of rows)

INNER JOIN Only rows from CROSS that satisfy the join condition

LEFT OUTER JOIN Qualifying rows of one table, and all rows of another

RIGHT OUTER JOIN Same as LEFT, but roles of the two tables are reversed

FULL OUTER JOIN The union of all rows from an INNER join of the two
tables, and of all rows of each table that have no match
in the other table (using NULL values in the selected col-
umns of the other table).
2-604 IBM Informix Guide to SQL: Syntax

SELECT
Dynamic Server supports the two different syntaxes for left outer joins:

� Informix-extension syntax

� ANSI-compliant syntax

Earlier versions of the database server supported only Informix-extension
syntax for outer joins. Dynamic Server continues to support this legacy
syntax, but using the ANSI-compliant syntax for joins provides greater flexi-
bility in creating queries. In view definitions, however, the legacy syntax does
not require materialized views, so it might offer performance advantages.

If you use ANSI-compliant syntax to specify a join in the FROM clause, you
must also use ANSI-compliant syntax for all outer joins in the same query
block. Thus, you cannot begin another outer join with only the OUTER
keyword. The following query, for example, is not valid:

SELECT * FROM customer, OUTER orders RIGHT JOIN cust_calls
ON (customer.customer_num = orders.customer_num)
WHERE customer.customer_num = 104);

This returns an error because it attempts to combine the Informix-extension
OUTER syntax with the ANSI-compliant RIGHT JOIN syntax for outer joins.

See the section “Informix-Extension Outer Joins” on page 2-612 for the
Informix-extension syntax for LEFT OUTER joins. ♦

ANSI-Compliant Joins

The ANSI-compliant syntax for joins supports these join specifications:

� To use a CROSS join, or a LEFT OUTER, RIGHT OUTER, or FULL OUTER
join, or an INNER (or simple) join, see “Creating an ANSI Join” on
page 2-606 and “ANSI INNER Joins” on page 2-608.

� To use pre-join filters, see “Using the ON Clause” on page 2-609.

� To use one or more post-join filters in the WHERE clause, see “Speci-
fying a Post-Join Filter” on page 2-610.)

� To have the dominant or subordinate part of an outer join be the
result set of another join, see “Using a Join as the Dominant or Subor-
dinate Part of an Outer Join” on page 2-611.

Important: Use the ANSI-compliant syntax for joins when you create new queries in
Dynamic Server. ♦

IDS

IDS

ANSI
SQL Statements 2-605

SELECT
ANSI Table Reference

This diagram shows the ANSI-compliant syntax for a table reference.

Here the ONLY keyword has the same semantics as in the Informix-extension
Table Reference segment, as described in “The ONLY Keyword” on
page 2-600.

The AS keyword is optional when you declare an alias (also called a corre-
lation name) for a table reference, as described in “The AS Keyword” on
page 2-595, unless the alias conflicts with an SQL keyword.

Creating an ANSI Join

With ANSI-compliant joined table syntax, as shown in the following diagram,
you can specify the INNER JOIN, CROSS JOIN, NATURAL JOIN, LEFT JOIN
(or LEFT OUTER JOIN), RIGHT JOIN (and FULL OUTER JOIN keywords.
The OUTER keyword is optional in ANSI-compliant outer joins.

You must use the same form of join syntax (either Informix extension or
ANSI-compliant) for all outer joins in the same query block. Except for CROSS
joins, the ANSI-compliant syntax requires you to specify the join condition in
the ON clause, as described in “Using the ON Clause” on page 2-609.

Element Purpose Restrictions Syntax
alias Temporary name for a table or view

within the scope of the SELECT
See “The AS Keyword” on
page 2-595.

Identifier,
p. 4-189

synonym,
table, view

Source from which to retrieve data The synonym and the table or view to
which it points must exist.

Database Object
Name, p. 4-46

Back to FROM Clause
p. 2-594

ANSI Table
Reference

view

table

(synonym)
Collection Derived Table

p. 4-7

E/C

SPL
ONLY

AS alias

(table)

ANSI Joined
Tables

p. 2-607

synonym

+

IDS

Iterator
p. 2-603
2-606 IBM Informix Guide to SQL: Syntax

SELECT
ANSI Joined Tables

This is the ANSI-compliant syntax for specifying inner and outer joins.

The ANSI-Joined Table segment must be enclosed in parentheses if it is
immediately followed by another join specification. For example, the first of
the following two queries returns an error; the second query is correct:

SELECT * FROM (T1 LEFT JOIN T2) CROSS JOIN T3 ON (T1.c1 = T2.c5)
WHERE (T1.c1 < 100); -- Ambiguous order of operations

SELECT * FROM ((T1 LEFT JOIN T2)) CROSS JOIN T3 ON (T1.c1 = T2.c5)
WHERE (T1.c1 < 100); -- Unambiguous order of operations

Element Purpose Restrictions Syntax
subquery Embedded query Cannot contain the FIRST or the ORDER BY clause SELECT, p. 2-581

()

ANSI Joined Tables

LEFT JOIN

INNER

ANSI Joined Tables

ON
Clause

OUTER

Back to FROM Clause
p. 2-594

ANSI Table
Reference
p. 2-606

ANSI Table
Reference
p. 2-606

RIGHT

FULL

CROSS JOIN

ON Clause

ON

Function Expression
p. 4-113

)(Collection Subquery
p. 4-22

Join
p. 2-619

Condition
p. 4-24

AND

OR

)(subquery

IDS ANSI Table Reference
p. 2-606

IDS

IDS

IDS
SQL Statements 2-607

SELECT
ANSI CROSS Joins

The CROSS keyword specifies a Cartesian product (with no ON clause), to
return all possible paired combinations that include a row from each table.

ANSI INNER Joins

To create an inner (or simple) join using the ANSI-compliant syntax, specify
the join with the JOIN or INNER JOIN keywords. If you specify only the JOIN
keyword, the database server creates an implicit inner join by default. An
inner join returns all the rows in a table that have one or more matching rows
in the other table (or tables). The unmatched rows are discarded.

ANSI LEFT OUTER Joins

The LEFT keyword specifies a join that treats the first table reference as the
dominant table in the join. In a left outer join, the subordinate part of the
outer join appears to the right of the keyword that begins the outer join speci-
fication. The result set includes all the rows that an INNER join returns, plus
all rows that would otherwise have been discarded from the dominant table.

ANSI RIGHT OUTER Joins

The RIGHT keyword specifies a join that treats the second table reference as
the dominant table in the join. In a right outer join, the subordinate part of the
outer join appears to the left of the keyword that begins the outer join speci-
fication. The result set includes all the rows that an INNER join returns, plus
all rows that would otherwise have been discarded from the dominant table.

ANSI FULL OUTER Joins

The FULL keyword specifies the union of (1) the result of an INNER join of two
tables, and (2) all rows of the left table that have no match in the right table,
and (3) all rows of the right table that have no match in the left table. (Here
(2) and (3) return NULL values in the selected columns of the other table.)

In an ANSI-compliant join that specifies the LEFT, RIGHT, or FULL keywords
in the FROM clause, the OUTER keyword is optional.

Optimizer directives that you specify for an ANSI-compliant joined query are
ignored, but are listed under Directives Not Followed in sqlexplain.out.
2-608 IBM Informix Guide to SQL: Syntax

SELECT
Using the ON Clause

Use the ON clause to specify the join condition and any expressions as
optional join filters for inner and outer joins. It is not valid with cross joins..

The following example from the stores_demo database illustrates how the
join condition in the ON clause combines the customer and orders tables:

SELECT c.customer_num, c.company, c.phone, o.order_date
FROM customer c LEFT JOIN orders o

ON c.customer_num = o.customer_num

The following table shows part of the joined customer and orders tables.

In an outer join, the join filters (expressions) that you specify in the ON clause
determine which rows of the subordinate table join to the dominant (or outer)
table. The dominant table, by definition, returns all its rows in the joined
table. That is, a join filter in the ON clause has no effect on the dominant table.

If the ON clause specifies a join filter on the dominant table, the database
server joins only those dominant table rows that meet the criterion of the join
filter to rows in the subordinate table. The joined result contains all rows from
the dominant table. Rows in the dominant table that do not meet the criterion
of the join filter are extended with NULL values for the subordinate columns.

The following example from the stores_demo database illustrates the effect
of a join filter in the ON clause:

SELECT c.customer_num, c.company, c.phone, o.order_date
FROM customer c LEFT JOIN orders o

ON c.customer_num = o.customer_num
AND c.company <> "All Sports Supplies"

customer_num company phone order_date

101 All Sports Supplies 408-789-8075 05/21/1998

102 Sports Spot 415-822-1289 null

103 Phil’s Sports 415-328-4543 null

104 Play Ball! 415-368-1100 05/20/1998

— — — —
SQL Statements 2-609

SELECT
The row that contains All Sports Supplies remains in the joined result.

Even though the order date for customer number 101 is 05/21/1998 in the
orders table, the effect of placing the join filter (c.company <> "All Sports

Supplies") prevents this row in the dominant customer table from being
joined to the subordinate orders table. Instead, a NULL value for order_date
is extended to the row of All Sports Supplies.

Applying a join filter to a base table in the subordinate part of an outer join
can improve performance. For more information, see your Performance Guide.

Specifying a Post-Join Filter

When you use the ON clause to specify the join, you can use the WHERE
clause as a post-join filter. The database server applies the post-join filter of
the WHERE clause to the results of the outer join.

The following example illustrates the use of a post-join filter. This query
returns data from the stores_demo database. Suppose you want to determine
which items in the catalog are not being ordered. The next query creates an
outer join of the data from the catalog and items tables and then determines
which catalog items from a specific manufacturer (HRO) have not sold:

SELECT c.catalog_num, c.stock_num, c.manu_code, i.quantity
FROM catalog c LEFT JOIN items i

ON c.stock_num = i.stock_num AND c.manu_code = i.manu_code
WHERE i.quantity IS NULL AND c.manu_code = "HRO"

The WHERE clause contains the post-join filter that locates the rows of HRO
items in the catalog for which nothing has been sold.

customer_num company phone order_date

101 All Sports Supplies 408-789-8075 null

102 Sports Spot 415-822-1289 null

103 Phil’s Sports 415-328-4543 null

104 Play Ball! 415-368-1100 05/20/1998

— — — —
2-610 IBM Informix Guide to SQL: Syntax

SELECT
When you apply a post-join filter to a base table in the dominant or subor-
dinate part of an outer join, you might improve performance. For more
information, see your Performance Guide.

Using a Join as the Dominant or Subordinate Part of an Outer Join

With the ANSI join syntax, you can nest joins. You can use a join as the
dominant or subordinate part of an outer or inner join.

Suppose you want to modify the previous query (the post-join filter example)
to get more information that will help you determine whether to continue
carrying each unsold item in the catalog. You can modify the query to include
information from the stock table so that you can see a short description of
each unsold item with its cost.

SELECT c.catalog_num, c.stock_num, s.description, s.unit_price,
s.unit_descr, c.manu_code, i.quantity

FROM (catalog c INNER JOIN stock s
ON c.stock_num = s.stock_num

AND c.manu_code = s.manu_code)
 LEFT JOIN items i

ON c.stock_num = i.stock_num
AND c.manu_code = i.manu_code

WHERE i.quantity IS NULL
AND c.manu_code = "HRO"

In this example, an inner join between the catalog and stock tables forms the
dominant part of an outer join with the items table.

For additional examples of outer joins, see the IBM Informix Guide to SQL:
Tutorial.
SQL Statements 2-611

SELECT
Informix-Extension Outer Joins

The Informix-extension syntax for outer joins begins with an implicit left
outer join. That is, you begin an Informix-extension outer join with the
OUTER keyword. This is the syntax of the Informix-extension OUTER clause.

If you use this syntax for an outer join, you must use Informix-extension
syntax for all outer joins in a single query block, and you must include the
join condition in the WHERE clause. You cannot begin another outer join with
the LEFT JOIN or the LEFT OUTER JOIN keywords.

This example uses the OUTER keyword to create an outer join that lists all
customers and their orders, regardless of whether they have placed orders:

SELECT c.customer_num, c.lname, o.order_num FROM customer c,
OUTER orders o WHERE c.customer_num = o.customer_num

This example returns all the rows from the customer table with the rows that
match in the orders table. If no record for a customer appears in the orders
table, the returned order_num column for that customer has a NULL value.

If you have a complex outer join, that is, the query has more than one outer
join, you must either embed the additional outer join or joins in parentheses
as the syntax diagram shows or establish join conditions, or relationships,
between the dominant table and each subordinate table in the WHERE clause.

+

Informix-Extension
OUTER Clause

()

OUTER

OUTER

Back to FROM Clause
p. 2-594

,

,

,
,

,

Informix-Extension
OUTER Clause

Table Reference
p. 2-594

Table Reference
p. 2-594

Table Reference
p. 2-594

,
Informix-Extension

OUTER Clause
2-612 IBM Informix Guide to SQL: Syntax

SELECT
When an expression or a condition in the WHERE clause relates two subor-
dinate tables, you must use parentheses around the joined tables in the FROM
clause to enforce dominant-subordinate relationships, as in this example:

SELECT c.company, o.order_date, i.total_price, m.manu_name
FROM customer c,

OUTER (orders o, OUTER (items i, OUTER manufact m))
WHERE c.customer_num = o.customer_num

AND o.order_num = i.order_num
AND i.manu_code = m.manu_code;

When you omit parentheses around the subordinate tables in the FROM
clause, you must establish join conditions between the dominant table and
each subordinate table in the WHERE clause. If a join condition is between
two subordinate tables, the query will fail, but the following example
successfully returns a result:

SELECT c.company, o.order_date, c2.call_descr
FROM customer c, OUTER orders o, OUTER cust_calls c2
WHERE c.customer_num = o.customer_num

AND c.customer_num = c2.customer_num;

The IBM Informix Guide to SQL: Tutorial. has examples of complex outer joins.

WHERE Clause
The WHERE clause can specify join conditions for Informix-extension joins,
post-join filters for ANSI-compliant joins, and search criteria on data values.

Element Purpose Restrictions Syntax
subquery Embedded query Cannot contain the FIRST or ORDER BY clause. SELECT, p. 2-581

WHERE
Clause

Back to SELECT
p. 2-581

Condition
p. 4-24

Join
p. 2-619

WHERE

Function Expression
p. 4-113

AND

OR

)(

Statement Local Variable Expressions
p. 4-169

Collection Subquery
p. 4-22

subquery)(
IDS
SQL Statements 2-613

SELECT
Using a Condition in the WHERE Clause

You can use these simple conditions or comparisons in the WHERE clause:

� Relational-operator condition

� IN or BETWEEN . . . AND

� IS NULL or IS NOT NULL

� LIKE or MATCHES

You also can use a SELECT statement within the WHERE clause; this is called
a subquery. The following subquery WHERE clause operators are valid:

� IN or EXISTS

� ALL, ANY, or SOME

For more information, see “Condition” on page 4-24.

In the WHERE clause, an aggregate function is not valid unless it is part of a
subquery, or if it is on a correlated column originating from a parent query,
and the WHERE clause is in a subquery within a HAVING clause.

Relational-Operator Condition

A relational-operator condition is satisfied if the expressions on each side of
the operator fulfill the relation that the operator specifies. The following
SELECT statements use the greater than (>) and equal (=) relational operators:

SELECT order_num FROM orders
WHERE order_date > '6/04/98'

SELECT fname, lname, company
FROM customer
WHERE city[1,3] = 'San'

Quotes are required around 'San' because the substring is from a character
column. See the “Relational-Operator Condition” on page 4-28.
2-614 IBM Informix Guide to SQL: Syntax

SELECT
IN Condition

The IN condition is satisfied when the expression to the left of the IN keyword
is included in the list of values to the right of the keyword.

The following examples show the IN condition:

SELECT lname, fname, company FROM customer
WHERE state IN ('CA','WA', 'NJ')

SELECT * FROM cust_calls
WHERE user_id NOT IN (USER)

For more information, see the “IN Subquery” on page 4-37.

BETWEEN Condition

The BETWEEN condition is satisfied when the value to the left of BETWEEN is
in the inclusive range of the two values on the right of BETWEEN. The first
two queries in the following example use literal values after the BETWEEN
keyword. The third query uses the built-in CURRENT function and a literal
interval to search for dates between the current day and seven days earlier.

SELECT stock_num, manu_code FROM stock
WHERE unit_price BETWEEN 125.00 AND 200.00

SELECT DISTINCT customer_num, stock_num, manu_code
FROM orders, items
WHERE order_date BETWEEN '6/1/97' AND '9/1/97'

SELECT * FROM cust_calls WHERE call_dtime
BETWEEN (CURRENT - INTERVAL(7) DAY TO DAY) AND CURRENT

For more information, see the “BETWEEN Condition” on page 4-29.

IS NULL Condition

The IS NULL condition is satisfied if the column contains a NULL value. If you
use the NOT option, the condition is satisfied when the column contains a
value that is not NULL. The following example selects the order numbers and
customer numbers for which the order has not been paid:

SELECT order_num, customer_num FROM orders
WHERE paid_date IS NULL

For a complete description, see the “IS NULL Condition” on page 4-32.
SQL Statements 2-615

SELECT
LIKE or MATCHES Condition

The LIKE or MATCHES condition is satisfied if either of the following is true:

� The value of the column that precedes the LIKE or MATCHES
keyword matches the pattern that the quoted string specifies. You
can use wildcard characters in the string.

� The value of the column that precedes the LIKE or MATCHES
keyword matches the pattern that is specified by the column that
follows the LIKE or MATCHES keyword. The value of the column on
the right serves as the matching pattern in the condition.

The following SELECT statement returns all rows in the customer table in
which the lname column begins with the literal string 'Baxter'. Because the
string is a literal string, the condition is case sensitive.

SELECT * FROM customer WHERE lname LIKE 'Baxter%'

The next SELECT statement returns all rows in the customer table in which
the value of the lname column matches the value of the fname column:

SELECT * FROM customer WHERE lname LIKE fname

The following examples use the LIKE condition with a wildcard. The first
SELECT statement finds all stock items that are some kind of ball. The second
SELECT statement finds all company names that contain a percent (%) sign.
Backslash (\) is used as the default escape character for the percent (%) sign
wildcard. The third SELECT statement uses the ESCAPE option with the LIKE
condition to retrieve rows from the customer table in which the company
column includes a percent (%) sign. The z is used as an escape character for
the percent (%) sign.

SELECT stock_num, manu_code FROM stock
WHERE description LIKE '%ball'

SELECT * FROM customer WHERE company LIKE '%\%%'
SELECT * FROM customer WHERE company LIKE '%z%%' ESCAPE 'z'
2-616 IBM Informix Guide to SQL: Syntax

SELECT
The following examples use MATCHES with a wildcard in several SELECT
statements. The first SELECT statement finds all stock items that are some
kind of ball. The second SELECT statement finds all company names that
contain an asterisk (*). The backslash (\) is used as the default escape
character for a literal asterisk (*) character. The third statement uses the
ESCAPE option with the MATCHES condition to retrieve rows from the
customer table where the company column includes an asterisk (*). The z
character is specified as an escape character for the asterisk (*) character.

SELECT stock_num, manu_code FROM stock
WHERE description MATCHES '*ball'

SELECT * FROM customer WHERE company MATCHES '***'

SELECT * FROM customer WHERE company MATCHES '*z**' ESCAPE 'z'

See also the “LIKE and MATCHES Condition” on page 4-32.

IN Subquery

With the IN subquery, more than one row can be returned, but only one
column can be returned.

This example shows the use of an IN subquery in a SELECT statement:

SELECT DISTINCT customer_num FROM orders
WHERE order_num NOT IN

(SELECT order_num FROM items
WHERE stock_num = 1)

For additional information, see the “IN Condition” on page 4-30.

EXISTS Subquery

With the EXISTS subquery, one or more columns can be returned.

The following example of a SELECT statement with an EXISTS subquery
returns the stock number and manufacturer code for every item that has
never been ordered (and is therefore not listed in the items table).
SQL Statements 2-617

SELECT
It is appropriate to use an EXISTS subquery in this SELECT statement because
you need the correlated subquery to test both stock_num and manu_code in
the items table.

SELECT stock_num, manu_code FROM stock
WHERE NOT EXISTS

(SELECT stock_num, manu_code FROM items
WHERE stock.stock_num = items.stock_num AND

stock.manu_code = items.manu_code)

The preceding example would work equally well if you use a SELECT * in the
subquery in place of the column names, because you are testing for the
existence of a row or rows.

For additional information, see the “EXISTS Subquery” on page 4-38.

ALL, ANY, SOME Subqueries

The following examples return the order number of all orders that contain an
item whose total price is greater than the total price of every item in order
number 1023.

The first SELECT uses the ALL subquery, and the second SELECT produces the
same result by using the MAX aggregate function.

SELECT DISTINCT order_num FROM items
WHERE total_price > ALL (SELECT total_price FROM items

 WHERE order_num = 1023)

SELECT DISTINCT order_num FROM items
WHERE total_price > SELECT MAX(total_price) FROM items

 WHERE order_num = 1023)

The following SELECT statements return the order number of all orders that
contain an item whose total price is greater than the total price of at least one
of the items in order number 1023. The first SELECT statement uses the ANY
keyword, and the second SELECT statement uses the MIN aggregate function.

SELECT DISTINCT order_num FROM items
WHERE total_price > ANY (SELECT total_price FROM items

 WHERE order_num = 1023)

SELECT DISTINCT order_num FROM items
WHERE total_price > (SELECT MIN(total_price) FROM items

WHERE order_num = 1023)
2-618 IBM Informix Guide to SQL: Syntax

SELECT
You can omit the keywords ANY, ALL, or SOME in a subquery if the subquery
returns exactly one value. If you omit ANY, ALL, or SOME, and the subquery
returns more than one value, you receive an error. The subquery in the next
example returns only one row, because it uses an aggregate function:

SELECT order_num FROM items
WHERE stock_num = 9 AND quantity =

(SELECT MAX(quantity) FROM items WHERE stock_num = 9)

See also “ALL, ANY, and SOME Subqueries” on page 4-39.

Specifying a Join in the WHERE Clause

You join two tables by creating a relationship in the WHERE clause between
at least one column from one table and at least one column from another. The
join creates a temporary composite table where each pair of rows (one from
each table) that satisfies the join condition is linked to form a single row.

Element Purpose Restrictions Syntax
alias Temporary alternative name assigned to

a table or view
See “Self-Joins” on page 2-620;
“FROM Clause” on page 2-594

Identifier, p. 4-189

column Column of a table or view to be joined Must exist in the table or view Identifier, p. 4-189
external External table from which to retrieve

data
External table must exist Database Object

Name, p. 4-46
synonym,
table, view

Name of the synonym, table, or view to
be joined

Synonym and the table or view
to which it points must exist

Database Object
Name, p. 4-46

Join

Relational Operator
p. 4-248 columncolumn

Back to WHERE Clause
p. 2-613

Data Source

table . synonym .

Data SourceData Source

alias . view .

XPS external .
SQL Statements 2-619

SELECT
Rows from the tables or views are joined when there is a match between the
values of specified columns. When the columns to be joined have the same
name, you must qualify each column name with its data source.

Two-Table Joins

You can create two-table joins, multiple-table joins, self-joins, and outer joins
(Informix-extension syntax). The following example shows a two-table join:

SELECT order_num, lname, fname FROM customer, orders
WHERE customer.customer_num = orders.customer_num

You can omit the column if the tables are joined in the projection clause.

Multiple-Table Joins

A multiple-table join is a join of more than two tables. Its structure is similar
to the structure of a two-table join, except that you have a join condition for
more than one pair of tables in the WHERE clause. When columns from
different tables have the same name, you must qualify the column name with
its associated table or table alias, as in table.column. For the full syntax of a
table name, see “Database Object Name” on page 4-46.

The following multiple-table join yields the company name of the customer
who ordered an item as well as its stock number and manufacturer code:

SELECT DISTINCT company, stock_num, manu_code
FROM customer c, orders o, items i
WHERE c.customer_num = o.customer_num

AND o.order_num = i.order_num

Self-Joins

You can join a table to itself. To do so, you must list the table name twice in
the FROM clause and assign it two different table aliases. Use the aliases to
refer to each of the two tables in the WHERE clause. The next example is a self-
join on the stock table. It finds pairs of stock items whose unit prices differ by
a factor greater than 2.5. The letters x and y are each aliases for the stock table.

SELECT x.stock_num, x.manu_code, y.stock_num, y.manu_code
FROM stock x, stock y WHERE x.unit_price > 2.5 * y.unit_price

Extended Parallel Server does not support self-joins with an external table. ♦XPS
2-620 IBM Informix Guide to SQL: Syntax

SELECT
Informix-Extension Outer Joins

The next outer join lists the company name of the customer and all associated
order numbers, if the customer has placed an order. If not, the company name
is still listed, and a NULL value is returned for the order number.

SELECT company, order_num FROM customer c, OUTER orders o
WHERE c.customer_num = o.customer_num

You cannot use an external table as the outer table in an outer join. ♦

For more information about outer joins, see the IBM Informix Guide to SQL:
Tutorial.

GROUP BY Clause
Use the GROUP BY clause to produce a single row of results for each group.
A group is a set of rows that have the same values for each column listed.

The SELECT statement with a GROUP BY clause returns a single row of results
for each group of rows that have the same value in column, or that have the
same value in the column or expression that the select_number specifies.

XPS

Element Purpose Restrictions Syntax
column A column (or an expression) from the select

list of the Projection clause
See “Relationship of GROUP BY
and Projection Clauses,”p. 2-622.

Identifier,
p. 4-189

select_
number

Integer specifying the ordinal position of a
column or expression in the select list

See “Using Select Numbers” on
page 2-623.

Literal Number,
p. 4-216

GROUP BY
Clause

column

,

GROUP BY

select_number

Back to SELECT
p. 2-581

+ Data Source
p. 2-619
SQL Statements 2-621

SELECT
Relationship of GROUP BY and Projection Clauses

A GROUP BY clause restricts what the Projection clause can specify. If you use
a GROUP BY clause, each column specified in the select list of the Projection
clause must also be included in the GROUP BY clause.

If you use an aggregate function and one or more column expressions in the
select list, you must put all the column names that are not used as part of an
aggregate or time expression in the GROUP BY clause.

Constant expressions and BYTE or TEXT column expressions are not valid in
the GROUP BY list.

If the select list includes a BYTE or TEXT column, you cannot use the GROUP
BY clause. In addition, you cannot include ROWID in a GROUP BY clause.

If your select list includes a column of a user-defined data type, the column
cannot be used in a GROUP BY clause unless the UDT can use the built-in bit-
hashing function. Any UDT that cannot use the built-in bit-hashing function
must be created with the CANNOTHASH modifier, which tells the database
server that the UDT cannot be used in a GROUP BY clause. ♦

The following example names one column that is not in an aggregate
expression. The total_price column should not be in the GROUP BY list
because it appears as the argument of an aggregate function. The COUNT and
SUM aggregates are applied to each group, not to the whole query set.

SELECT order_num, COUNT(*), SUM(total_price)
FROM items GROUP BY order_num

If a column stands alone in a column expression in the select list, you must
use it in the GROUP BY clause. If a column is combined with another column
by an arithmetic operator, you can choose to group by the individual
columns or by the combined expression using the number.

NULL Values in the GROUP BY Clause

In a column listed in a GROUP BY clause, each row that contains a NULL value
belongs to a single group. That is, all NULL values are grouped together.

IDS
2-622 IBM Informix Guide to SQL: Syntax

SELECT
Using Select Numbers

You can use one or more integers in the GROUP BY clause to stand for column
expressions. In the next example, the first SELECT statement uses select
numbers for order_date and paid_date - order_date in the GROUP BY clause.
You can group only by a combined expression using the select numbers.

In the second SELECT statement, you cannot replace the 2 with the arithmetic
expression paid_date - order_date.

SELECT order_date, COUNT(*), paid_date - order_date
FROM orders GROUP BY 1, 3

SELECT order_date, paid_date - order_date
FROM orders GROUP BY order_date, 2

HAVING Clause
Use the HAVING clause to apply one or more qualifying conditions to groups.

In the following examples, each condition compares one calculated property
of the group with another calculated property of the group or with a
constant. The first SELECT statement uses a HAVING clause that compares the
calculated expression COUNT(*) with the constant 2. The query returns the
average total price per item on all orders that have more than two items.

The second SELECT statement lists customers and the call months for
customers who have made two or more calls in the same month.

SELECT order_num, AVG(total_price) FROM items
GROUP BY order_num HAVING COUNT(*) > 2

SELECT customer_num, EXTEND (call_dtime, MONTH TO MONTH)
FROM cust_calls GROUP BY 1, 2 HAVING COUNT(*) > 1

Condition
p. 4-24

HAVING
Clause

HAVING

Back to SELECT
p. 2-581
SQL Statements 2-623

SELECT
You can use the HAVING clause to place conditions on the GROUP BY column
values as well as on calculated values. This example returns cust_code and
customer_num, call_dtime, and groups them by call_code for all calls that
have been received from customers with customer_num less than 120:

SELECT customer_num, EXTEND (call_dtime), call_code
FROM cust_calls GROUP BY call_code, 2, 1
HAVING customer_num < 120

The HAVING clause generally complements a GROUP BY clause. If you omit
the GROUP BY clause, the HAVING clause applies to all rows that satisfy the
query, and all rows in the table make up a single group. The following
example returns the average price of all the values in the table, as long as
more than ten rows are in the table:

SELECT AVG(total_price) FROM items HAVING COUNT(*) > 10

ORDER BY Clause
The ORDER BY clause sorts query results by specified columns or expressions.

Element Purpose Restrictions Syntax
column Sort rows by value in this column Must also be in select list (XPS only) Identifier, p. 4-189
display_label Temporary name for a column Must be declared in select list Identifier, p. 4-189
first, last Position of first and last character in

substring to sort the query results
Integers; for BYTE, TEXT, and
character data types only

Literal Number,
p. 4-216

select_
number

Ordinal position of a column in
select list of the Projection clause

See “Using Select Numbers” on
page 623.

Literal Number,
p. 4-216

ORDER BY
Clause

ORDER BY

[first, last]

select_number

ROWID

column ASC

,

DESC

Back to SELECT
p. 2-581

+

IDS

+

display_label

Data
Source
p. 2-619

Expression
p. 4-67
2-624 IBM Informix Guide to SQL: Syntax

SELECT
To order query results by an expression, you must also declare a display label
for the expression in the Projection clause, as in the following example:

SELECT paid_date - ship_date span, customer_num FROM orders
ORDER BY span

For Extended Parallel Server, any column in the ORDER BY clause must also
appear explicitly or by * notation in the select list of the Projection clause.
To order query results by an expression calculated from column values, you
must declare a display label for that expression in the select list of the
Projection clause, and specify this label in the ORDER BY clause.♦

The next query selects one column from the orders table and sorts the results
by another. (With Extended Parallel Server, order-date must also appear in
the Projection clause.) By default, the rows are listed in ascending order.

SELECT ship_date FROM orders ORDER BY order_date

You can order by an aggregate only if the query also has a GROUP BY clause.
This query declares the display label maxwgt for use in the ORDER BY clause:

SELECT ship_charge, MAX(ship_weight) maxwgt
FROM orders GROUP BY ship_charge ORDER BY maxwgt

If the current processing locale defines a localized collation, then NCHAR and
NVARCHAR column values are sorted in that localized order. ♦

The ORDER BY clause is not valid within an SPL routine. ♦

No column in the ORDER BY clause can be of a collection data type.

Dynamic Server supports columns and expressions in the ORDER BY clause
that do not appear in the select list of the Projection clause. You can omit a
display label for the derived column in the select list and specify the derived
column by means of a select number in the ORDER BY clause.

The select list of the Projection clause must include any column or expression
that the ORDER BY clause specifies, however, if any of the following is true:

� The query includes the DISTINCT, UNIQUE, or UNION operator.

� The query includes the INTO TEMP table clause.

XPS

GLS

SPL

IDS
SQL Statements 2-625

SELECT
� The distributed query accesses a remote database whose server
requires every column or expression in the ORDER BY clause to also
appear in the select list of the Projection clause.

� An expression in the ORDER BY clause includes a display label for a
column substring. (See “Ordering by a Substring” on page 2-626.) ♦

Ordering by a Substring

You can order by a substring instead of by the entire length of a character,
BYTE, or TEXT column, or of an expression returning a character string. The
substring is the portion used for the sort. You define the substring by speci-
fying between brackets ([]) integer subscripts (the first and last parameters),
representing the starting and ending character positions of the substring.

The following SELECT statement queries the customer table and specifies a
column substring in the ORDER BY column. The column substring instructs
the database server to sort the query results by the portion of the lname
column contained in the sixth through ninth characters of the column.

SELECT * from customee ORDER BY lname[6,9]

Assume that the value of lname in one row of the customer table is
Greenburg. Because of the column substring in the ORDER BY clause, the
database server determines the sort position of this row by using the value
burg, rather than the complete column value Greenburg.

When ordering by an expression, you can specify substrings only for expres-
sions that return a character data type. If you specify a column substring in
the ORDER BY clause, the column must have one of the following data types:
BYTE, CHAR, NCHAR, NVARCHAR, TEXT, or VARCHAR.

Dynamic Server can also support LVARCHAR column substrings in the
ORDER BY clause, if the column is in a database of the local database server. ♦

For information on the GLS aspects of using column substrings in the ORDER
BY clause, see the IBM Informix GLS User’s Guide. ♦

IDS

GLS
2-626 IBM Informix Guide to SQL: Syntax

SELECT
Ascending and Descending Orders

You can use the ASC and DESC keywords to specify ascending (smallest value
first) or descending (largest value first) order. The default order is ascending.
For DATE and DATETIME data types, smallest means earliest in time and
largest means latest in time. For character data types in the default locale, the
order is the ASCII collating sequence, as listed in “Collating Order for U.S.
English Data” on page 4-250.

For NCHAR or NVARCHAR data types, the localized collating order of the
current session is used, if that is different from the code set order. For more
information about collation, see “SET COLLATION” on page 2-643. ♦

If you specify the ORDER BY clause, NULL values are ordered as less than
values that are not NULL. Using the ASC order, a NULL value comes before
any non-NULL value; using DESC order, the NULL comes last.

Nested Ordering

If you list more than one column in the ORDER BY clause, your query is
ordered by a nested sort. The first level of sort is based on the first column;
the second column determines the second level of sort. The following
example of a nested sort selects all the rows in the cust_calls table and orders
them by call_code and by call_dtime within call_code:

SELECT * FROM cust_calls ORDER BY call_code, call_dtime

Using Select Numbers

In place of column names, you can enter in the ORDER BY clause one or more
integers that refer to the position of items listed in the select list of the
Projection clause. You can also use a select number to sort by an expression.

The following example orders by the expression paid_date - order_date and
customer_num, using select numbers in a nested sort:

SELECT order_num, customer_num, paid_date - order_date
FROM orders
ORDER BY 3, 2

Select numbers are required in the ORDER BY clause when SELECT statements
are joined by the UNION or UNION ALL keywords, or when compatible
columns in the same position have different names.

GLS
SQL Statements 2-627

SELECT
Ordering by Rowids

You can specify the ROWID keyword in the ORDER BY clause. This specifies
the rowid column, a hidden column in nonfragmented tables and in
fragmented tables that were created with the WITH ROWIDS clause. The
rowid column contains a unique internal record number that is associated
with a row in a table. (It is recommended, however, that you utilize primary
keys as your access method, rather than exploiting the rowid column.)

The ORDER BY clause cannot specify the rowid column if the table from
which you are selecting is a fragmented table that has no rowid column.

In Extended Parallel Server, you cannot specify the ROWID keyword in the
ORDER BY clause unless you also included ROWID in the Projection clause. ♦

In Dynamic Server, you do not need to include the ROWID keyword in the
Projection clause when you specify ROWID in the ORDER BY clause. ♦

For further information on how to use the rowid column in column expres-
sions, see “Expression” on page 4-67.

ORDER BY Clause with DECLARE

In ESQL/C, you cannot use a DECLARE statement with a FOR UPDATE clause
to associate a cursor with a SELECT statement that has an ORDER BY clause.

Placing Indexes on ORDER BY Columns

When you include an ORDER BY clause in a SELECT statement, you can
improve the performance of the query by creating an index on the column or
columns that the ORDER BY clause specifies. The database server uses the
index that you placed on the ORDER BY columns to sort the query results in
the most efficient manner. For more information on how to create indexes
that correspond to the columns of an ORDER BY clause, see “Using the ASC
and DESC Sort-Order Options” on page 2-149.

XPS

IDS

E/C
2-628 IBM Informix Guide to SQL: Syntax

SELECT
FOR UPDATE Clause
Use the FOR UPDATE clause when you intend to update the values returned
by a prepared SELECT statement when the values are fetched. Preparing a
SELECT statement that contains a FOR UPDATE clause is equivalent to
preparing the SELECT statement without the FOR UPDATE clause and then
declaring a FOR UPDATE cursor for the prepared statement.

The FOR UPDATE keyword notifies the database server that updating is
possible, causing it to use more stringent locking than it would with a select
cursor. You cannot modify data through a cursor without this clause. You can
specify which columns can be updated.

After you declare a cursor for a SELECT...FOR UPDATE statement, you can
update or delete the currently selected row using an UPDATE OR DELETE
statement with the WHERE CURRENT OF clause. The words CURRENT OF
refer to the row that was most recently fetched; they replace the usual test
expressions in the WHERE clause.

To update rows with a specific value, your program might contain statements
such as the sequence of statements that the following example shows:

EXEC SQL BEGIN DECLARE SECTION;
 char fname[16];
 char lname[16];
 EXEC SQL END DECLARE SECTION;
. . .

 EXEC SQL connect to 'stores_demo';
 /* select statement being prepared contains a for update clause */
 EXEC SQL prepare x from 'select fname, lname from customer for update';
 EXEC SQL declare xc cursor for x;

Element Purpose Restrictions Syntax
column Name of a column that can

be updated after a FETCH
Must be in the FROM clause table, but it does not
need to be in the select list of the Projection clause.

Identifier,
p. 4-189

FOR UPDATE OF

,

column+

FOR UPDATE
Clause
SQL Statements 2-629

SELECT
 for (;;)
{
EXEC SQL fetch xc into $fname, $lname;
if (strncmp(SQLSTATE, '00', 2) != 0) break;
printf("%d %s %s\n",cnum, fname, lname);
if (cnum == 999) --update rows with 999 customer_num

EXEC SQL update customer set fname = 'rosey' where current of xc;
}

 EXEC SQL close xc;
 EXEC SQL disconnect current;

A SELECT…FOR UPDATE statement, like an update cursor, allows you to
perform updates that are not possible with the UPDATE statement alone,
because both the decision to update and the values of the new data items can
be based on the original contents of the row. The UPDATE statement cannot
query the table that is being updated.

Syntax That is Incompatible with the FOR UPDATE Clause

A SELECT statement that uses a FOR UPDATE clause must conform to the
following restrictions:

� The statement can select data from only one table.

� The statement cannot include any aggregate functions.

� The statement cannot include any of the following clauses or
keywords: DISTINCT, FOR READ ONLY, GROUP BY, INTO SCRATCH,
INTO TEMP, INTO EXTERNAL, ORDER BY, UNION, or UNIQUE.

For information on how to declare an update cursor for a SELECT statement
that does not include a FOR UPDATE clause, see “Using the FOR UPDATE
Option” on page 2-328.

FOR READ ONLY Clause
Use the FOR READ ONLY keywords to specify that the select cursor declared
for the SELECT statement is a read-only cursor. A read-only cursor is a cursor
that cannot modify data. This section provides the following information
about the FOR READ ONLY clause:

� When you must use the FOR READ ONLY clause

� Syntax restrictions on a SELECT statement that uses a FOR READ
ONLY clause
2-630 IBM Informix Guide to SQL: Syntax

SELECT
Using the FOR READ ONLY Clause in Read-Only Mode

Normally, you do not need to include the FOR READ ONLY clause in a SELECT
statement. SELECT is a read-only operation by definition, so the FOR READ
ONLY clause is usually unnecessary. In certain circumstances, however, you
must include the FOR READ ONLY keywords in a SELECT statement.

If you have used the High-Performance Loader (HPL) in express mode to
load data into the tables of an ANSI-compliant database, and you have not yet
performed a level-0 backup of this data, the database is in read-only mode.
When the database is in read-only mode, the database server rejects any
attempts by a select cursor to access the data unless the SELECT or the
DECLARE includes a FOR READ ONLY clause. This restriction remains in effect
until the user has performed a level-0 backup of the data.

In an ANSI-compliant database, select cursors are update cursors by default.
An update cursor is a cursor that can be used to modify data. These update
cursors are incompatible with the read-only mode of the database. For
example, this SELECT statement against the customer_ansi table fails:

EXEC SQL declare ansi_curs cursor for
select * from customer_ansi;

The solution is to include the FOR READ ONLY clause in your select cursors.
The read-only cursor that this clause specifies is compatible with the read-
only mode of the database. For example, the following SELECT FOR READ
ONLY statement against the customer_ansi table succeeds:

EXEC SQL declare ansi_read cursor for
select * from customer_ansi for read only;

♦

DB-Access executes all SELECT statements with select cursors, so you must
specify FOR READ ONLY in all queries that access data in a read-only ANSI-
compliant database. The FOR READ ONLY clause causes DB-Access to declare
the cursor for the SELECT statement as a read-only cursor. ♦

For more information on level-0 backups, see your IBM Informix Backup and
Restore Guide. For more information on select cursors, read-only cursors, and
update cursors, see “DECLARE” on page 2-323.

For more information on the express mode of the HPL, see the IBM Informix
High-Performance Loader User’s Guide. ♦

ANSI

DB

IDS
SQL Statements 2-631

SELECT
Syntax That Is Incompatible with the FOR READ ONLY Clause

If you attempt to include both the FOR READ ONLY clause and the FOR
UPDATE clause in the same SELECT statement, the SELECT statement fails.
For information on declaring a read-only cursor for a SELECT statement that
does not include a FOR READ ONLY clause, see “DECLARE” on page 2-323.

INTO Table Clauses
Use the INTO Table clauses to specify a temporary or external table to receive
the data that the SELECT statement retrieves.

You must have the Connect privilege on a database to create a temporary or
external table in that database. The name of a temporary table need not be
unique among the names of temporary tables of other users.

Element Purpose Restrictions Syntax
table Table to receive the

results of the query
Must be unique among names of tables, views, and
synonyms that you own in the current database

Database Object
Name, p. 4-46

,

INTO Table
Clauses

TEMP

Back to SELECT
2-581

SCRATCH

tableEXTERNAL

table

table

)(DATAFILES
Clause
2-126

USING

XPS

INTO

WITH NO LOG

Table
Options
2-635

,Table
Options
2-635

RAW

STATIC

STANDARD

OPERATIONAL

table

Storage
Options

2-236

Lock Mode
Options
2-253
2-632 IBM Informix Guide to SQL: Syntax

SELECT
Column names in the temporary or external table must be specified in the
Projection clause, where you must supply a display label for all expressions
that are not simple column expressions. The display label becomes the
column name in the temporary or external table. If you do not declare a
display label for a column expression, the table uses the column name from
the select list of the Projection clause.

The following INTO TEMP example creates the pushdate table with two
columns, customer_num and slowdate:

SELECT customer_num, call_dtime + 5 UNITS DAY slowdate
FROM cust_calls INTO TEMP pushdate

Results When No Rows are Returned

When you use an INTO Table clause combined with the WHERE clause, and
no rows are returned, the SQLNOTFOUND value is 100 in ANSI-compliant
databases and 0 in databases that are not ANSI compliant. If the SELECT INTO
TEMP…WHERE… statement is a part of a multistatement PREPARE and no
rows are returned, the SQLNOTFOUND value is 100 for both ANSI-compliant
databases and databases that are not ANSI-compliant.

Restrictions with INTO Table Clauses in ESQL/C

In ESQL/C, do not use the INTO clause with an INTO table clause. If you do,
no results are returned to the program variables and the sqlca.sqlcode,
SQLCODE variable is set to a negative value.

INTO TEMP Clause

The INTO TEMP clause creates a temporary table to hold the query results.
The default initial and next extents for a temporary table are four pages. The
temporary table must be accessible by the built-in RSAM access method of the
database server; you cannot specify another access method.

If you use the same query results more than once, using a temporary table
saves time. In addition, using an INTO TEMP clause often gives you clearer
and more understandable SELECT statements.

Data values in a temporary table are static; they are not updated as changes
are made to the tables that were used to build the temporary table. You can
use the CREATE INDEX statement to create indexes on a temporary table.

E/C
SQL Statements 2-633

SELECT
A logged, temporary table exists until one of the following situations occurs:

� The application disconnects.

� A DROP TABLE statement is issued on the temporary table.

� The database is closed.

If your database does not have transaction logging, the temporary table
behaves in the same way as a table created with the WITH NO LOG option. ♦

If you define more than one temporary dbspace, the INTO TEMP clause loads
rows from query results into each of the dbspaces in round-robin fashion.

Using the WITH NO LOG Option

Use the WITH NO LOG option to reduce the overhead of transaction logging
because operations on nonlogging temporary tables are not logged.

A nonlogging temporary table exists until one of the following events occurs:

� The application disconnects.

� A DROP TABLE statement is issued on the temporary table.

Because nonlogging temporary tables do not disappear when the database is
closed, you can use a nonlogging temporary table to transfer data from one
database to another while the application remains connected. The behavior
of a temporary table that you create with the WITH NO LOG option of the
INTO TEMP clause is the same as that of a scratch table.

For more information about temporary tables, see “CREATE Temporary
TABLE” on page 2-261.

Using SELECT INTO to Create a New Permanent Table

Using Extended Parallel Server, you can use the SELECT INTO statement to
create a new permanent table based on the result set of a SELECT statement.

When using SELECT INTO to create a new table, you must specify its type.
You can optionally specify storage and lock mode options for the new table.

The column names of the new permanent table are the names specified in the
select list. If a “*” appears in the select list, it will be expanded to the columns
of the corresponding tables or views in the SELECT statement.

IDS

XPS
2-634 IBM Informix Guide to SQL: Syntax

SELECT
All expressions other than simple column expressions must have a display
label. This is used as the name of the column in the new table. If a column
expression has no display label, the table uses the column name. If there are
duplicate labels or column names in the select list, an error will be returned.

INTO EXTERNAL Clause

The INTO EXTERNAL clause unloads query results into an external table,
creating a default external table description that you can use when you
subsequently reload the files. This combines the functionality of the CREATE
EXTERNAL TABLE . . . SAMEAS and INSERT INTO . . . SELECT statements.

Table Options

The SELECT statement supports a subset of the CREATE EXTERNAL TABLE
syntax for “Table Options” on page 2-128. Use the Table Options clause of the
SELECT INTO EXTERNAL statement to specify the format of the unloaded
data in the external table.

XPS

Element Purpose Restrictions Syntax
field_delimiter Character to separate fields.

Default is the pipe (|) character
See “Specifying Delimiters” on
page 636.

Quoted String,
p. 4-243

record_delimiter Character to separate records See “Specifying Delimiters” on
page 636.

Quoted String,
p. 4-243

Table
Options

Back to INTO Table Clauses
p. 2-632,

EBCDIC

DELIMITER

RECORDEND

ESCAPE

INFORMIX

'field_delimiter '

' record_delimiter '

'FORMAT '

''

DELIMITED

ASCIICODESET

XPS
SQL Statements 2-635

SELECT
The following table describes the keywords that apply to unloading data.
If you want to specify additional table options in the external-table
description for the purpose of reloading the table later, see “Table Options”
on page 2-128.

In the SELECT...INTO EXTERNAL statement, you can specify all table options
that are discussed in the CREATE EXTERNAL TABLE statement except the
fixed-format option.

You can use the INTO EXTERNAL clause when the format type of the created
data file is either delimited text (if you use the DELIMITED keyword) or text
in Informix internal data format (if you use the INFORMIX keyword). You
cannot use it for a fixed-format unload.

Specifying Delimiters

If you do not set the RECORDEND environment variable, the default value
for record_delimiter is the newline character (CTRL-n).

If you use a non-printing character as a delimiter, encode it as the octal repre-
sentation of the ASCII character. For example, '\006' can represent CTRL-F.

For more information on external tables, see “CREATE EXTERNAL TABLE”
on page 2-121.

Keyword Purpose

CODESET Specifies the type of code set. Options are EBCDIC or ASCII.

DELIMITER Specifies the character that separates fields in a delimited text file

ESCAPE Directs the database server to recognize ASCII special characters
embedded in ASCII-text-based data files

If you do not specify ESCAPE when you load data, the database
server does not check the character fields in text data files for
embedded special characters.

If you do not specify ESCAPE when you unload data, the database
server does not create embedded hexadecimal characters in text
fields.

FORMAT Specifies the format of the data in the data files

RECORDEND Specifies the character that separates records in a delimited text file
2-636 IBM Informix Guide to SQL: Syntax

SELECT
INTO SCRATCH Clause

Extended Parallel Server supports the INTO SCRATCH clause. This can
improve performance, because scratch tables are not logged. A scratch table
does not support indexes or constraints. It persists until the application
disconnects, or a DROP TABLE statement is issued on the temporary table.

Because scratch tables do not disappear when the database is closed, you can
use a scratch table to transfer data from one database to another while the
application remains connected. A scratch table is identical to a temporary
table that is created with the WITH NO LOG option. For more information
about scratch tables, see “CREATE Temporary TABLE” on page 2-261.

UNION Operator
Place the UNION operator between two SELECT statements to combine the
queries into a single query. You can string several SELECT statements
together using the UNION operator. Corresponding items do not need to
have the same name. Omitting the ALL keyword excludes duplicate rows.

Restrictions on a Combined SELECT

Several restrictions apply on the queries that you can connect with a UNION
operator, as the following list describes:

� In ESQL/C, you cannot use an INTO clause in a compound query
unless exactly one row is returned, and you are not using a cursor. In
this case, the INTO clause must be in the first SELECT statement. ♦

� The number of items in the Projection clause of each query must be
the same, and the corresponding items in each Projection clause must
have compatible data types.

� The Projection clause of each query cannot specify BYTE or TEXT
columns. (This restriction does not apply to UNION ALL operations.)

� If you use an ORDER BY clause, it must follow the last Projection
clause, and you must refer to the item ordered by integer, not by
identifier. Sorting takes place after the set operation is complete.

You can store the combined results of a UNION operator in a temporary table,
but the INTO TEMP clause can appear only in the final SELECT statement.

XPS

E/C
SQL Statements 2-637

SELECT
Duplicate Rows in a Combined SELECT

If you use the UNION operator alone, the duplicate rows are removed from
the complete set of rows. That is, if multiple rows contain identical values in
each column, only one row is retained. If you use the UNION ALL operator,
all the selected rows are returned (the duplicates are not removed).

The next example uses UNION ALL to join two SELECT statements without
removing duplicates. The query returns a list of all the calls that were
received during the first quarter of 1997 and the first quarter of 1998.

SELECT customer_num, call_code FROM cust_calls
WHERE call_dtime BETWEEN

DATETIME (1997-1-1) YEAR TO DAY
AND DATETIME (1997-3-31) YEAR TO DAY

UNION ALL
SELECT customer_num, call_code FROM cust_calls

WHERE call_dtime BETWEEN
DATETIME (1998-1-1)YEAR TO DAY

AND DATETIME (1998-3-31) YEAR TO DAY

If you want to remove duplicates, use the UNION operator without the
keyword ALL in the query. In the preceding example, if the combination
101 B were returned in both SELECT statements, a UNION operator would
cause the combination to be listed once. (If you want to remove duplicates
within each SELECT statement, use the DISTINCT keyword in the Projection
clause, as described in “Projection Clause” on page 2-583.)

UNION in Subqueries

You can use the UNION and UNION ALL operators in subqueries of SELECT
statements within the WHERE clause, the FROM clause, and in collection
subqueries. In this release of Dynamic Server, however, subqueries that
include UNION or UNION ALL are not supported in the following contexts:

� In the definition of a view

� In the event or in the Action clause of a trigger

� With the FOR UPDATE clause or with an Update cursor

� In a distributed query (accessing tables outside the local database)

For more information about collection subqueries, see “Collection Subquery”
on page 4-22. For more information about the FOR UPDATE clause, see “FOR
UPDATE Clause” on page 2-629.

IDS
2-638 IBM Informix Guide to SQL: Syntax

SELECT
In a combined subquery, the database server can resolve a column name only
within the scope of its qualifying table reference. The following query, for
example, returns an error:

SELECT * FROM t1 WHERE EXISTS
(SELECT a FROM t2
UNION
SELECT b FROM t3 WHERE t3.c IN

(SELECT t4.x FROM t4 WHERE t4.4 = t2.z))

Here t2.z in the innermost subquery cannot be resolved, because z occurs
outside the scope of reference of the table reference t2. Only column refer-
ences that belong to t4, t3, or t1 can be resolved in the innermost subquery.
The scope of a table reference extends downwards through subqueries, but
not across the UNION operator to sibling SELECT statements.

Related Information
For task-oriented discussions of the SELECT statement, see the IBM Informix
Guide to SQL: Tutorial.

For a discussion of the GLS aspects of the SELECT statement, see the
IBM Informix GLS User’s Guide.

For information on how to access row and collections with ESQL/C host
variables, see the discussion of complex data types in the IBM Informix ESQL/C
Programmer’s Manual.
SQL Statements 2-639

2-640 IBM Informix Guide to SQL: Syntax

SET AUTOFREE
SET AUTOFREE
Use the SET AUTOFREE statement to instruct the database server to enable or
disable a memory-management feature that can free the memory allocated
for a cursor automatically, as soon as the cursor is closed. Use this statement
with ESQL/C.

Syntax

Usage
When the Autofree feature is enabled for a cursor, and the cursor is subse-
quently closed, you do not need to explicitly use the FREE statement to
release the memory that the database server allocated for the cursor. If you
issue SET AUTOFREE but specify no option, the default is ENABLED.

The SET AUTOFREE statement that enables the Autofree feature must appear
before the OPEN statement that opens a cursor. The SET AUTOFREE statement
does not affect the memory allocated to a cursor that is already open. After a
cursor is Autofree enabled, you cannot open that cursor a second time.

+

IDS

E/C

Element Purpose Restrictions Syntax
cursor_id Name of a cursor for which

Autofree is to be reset
Must already be declared
within the program.

Identifier, p. 4-189

cursor_id_var Host variable that holds the
value of cursor_id

Must store a cursor_id already
declared in the program.

Must conform to language-
specific rules for names.

DISABLED

ENABLEDSET AUTOFREE

FOR cursor_id

cursor_id_var

SET AUTOFREE
Globally Affecting Cursors with SET AUTOFREE

If you include no FOR cursor _id or FOR cursor_id_var clause, then the scope of
SET AUTOFREE is all subsequently-declared cursors in the program (or more
precisely, all cursors declared before a subsequent SET AUTOFREE statement
with no FOR clause globally resets the Autofree feature). This example
enables the Autofree feature for all subsequent cursors in the program:

EXEC SQL set autofree;

The next example disables the Autofree feature for all subsequent cursors:

EXEC SQL set autofree disabled;

Using the FOR Clause to Specify a Specific Cursor

If you specify FOR cursor _id or FOR cursor_id_var, then SET AUTOFREE affects
only the cursor that you specify after the FOR keyword.

This option allows you to override a global setting for all cursors. For
example, if you issue a SET AUTOFREE ENABLED statement for all cursors
in a program, you can issue a subsequent SET AUTOFREE DISABLED FOR
statement to disable the Autofree feature for a specific cursor.

In the following example, the first statement enables the Autofree feature for
all cursors, while the second statement disables the Autofree feature for the
cursor named x1:

EXEC SQL set autofree enabled;
EXEC SQL set autofree disabled for x1;

Here the x1 cursor must have been declared but not yet opened.

Associated and Detached Statements

When a cursor is automatically freed, its associated prepared statement (or
associated statement) is also freed.

The term associated statement has a special meaning in the context of the
Autofree feature. A cursor is associated with a prepared statement if it is the
first cursor that you declare with the prepared statement, or if it is the first
cursor that you declare with the statement after the statement is detached.
SQL Statements 2-641

SET AUTOFREE
The term detached statement has a special meaning in the context of the
Autofree feature. A prepared statement is detached if you do not declare a
cursor with the statement, or if the cursor with which the statement is
associated was freed.

If the Autofree feature is enabled for a cursor that has an associated prepared
statement, and that cursor is closed, the database server frees the memory
allocated to the prepared statement as well as the memory allocated for the
cursor. Suppose that you enable the Autofree feature for the following cursor:

/*Cursor associated with a prepared statement */
EXEC SQL prepare sel_stmt 'select * from customer';
EXEC SQL declare sel_curs2 cursor for sel_stmt;

When the database server closes the sel_curs2 cursor, it automatically
performs the equivalent of the following FREE statements:

FREE sel_curs2;
FREE sel_stmt;

Because memory for the sel_stmt statement is freed automatically, you
cannot declare a new cursor on it unless you prepare the statement again.

Closing Cursors Implicitly

A potential problem exists with cursors that have the Autofree feature
enabled. In a database that is not ANSI-compliant, if you do not close a cursor
explicitly and then open it again, the cursor is closed implicitly. This implicit
closing of the cursor triggers the Autofree feature. The second time the cursor
is opened, the database server generates an error message (cursor not
found) because the cursor is already freed.

Related Information
Related statements: CLOSE, DECLARE, FETCH, FREE, OPEN, and PREPARE

For more information on the Autofree feature, see the IBM Informix ESQL/C
Programmer’s Manual.
2-642 IBM Informix Guide to SQL: Syntax

SET COLLATION
SET COLLATION
Use the SET COLLATION statement to specify a new collating order for the
session, superseding the DB_LOCALE environment variable. SET NO
COLLATION restores the default collation. Use these statements with ESQL/C.

Syntax

Usage
As the IBM Informix GLS User’s Guide explains, the database server uses locale
files to specify the character set, the collating order, and other conventions of
some natural language to display and manipulate character strings and other
data values. The collating order of the database locale is the sequential order
in which the database server sorts character strings.

If you set no value for DB_LOCALE, the default locale, based on United States
English, is en_us.8859-1 for UNIX, or Code Page 1252 for Windows systems.
Otherwise, the database server uses the DB_LOCALE setting as its locale.
SET COLLATION overrides the collating order of DB_LOCALE at runtime for
all database servers previously accessed in the same session.

The new collating order remains in effect for the rest of the session, or until
you issue another SET COLLATION statement. Other sessions are not affected,
but database objects that you created with a non-default collation will use
whatever collating order was in effect at their time of their creation.

By default, the collating order is the code set order, but some locales also
support a locale-specific order. In most contexts. only NCHAR and NVARCHAR
data values can be sorted according to a locale-specific collating order.

+

IDS

Element Purpose Restrictions Syntax
locale Name of a locale whose collating

order is to be used in this session
Must be the name of a locale that the
database server can access

Quoted String,
p. 4-243

NO COLLATION

SET COLLATION locale
SQL Statements 2-643

SET COLLATION
Specifying a Collating Order with SET COLLATION

SET COLLATION replaces the current collating order with that of the specified
locale for all database servers previously accessed in the current session. For
example, this specifies the collating order of the German language:

EXEC SQL set collation "de_de.8859-1";

If the next action of a database server in this session sorted NCHAR or
NVARCHAR values, this would follow the German collating order.

Suppose that, in the same session, the following SET NO COLLATION
statement restores the DB_LOCALE setting for the collating order:

EXEC SQL set no collation;

After SET NO COLLATION executes, subsequent collation in the same session
is based on the DB_LOCALE setting. Any database objects that you created
using the German collating order, however, such as check constraints,
indexes, prepared objects, triggers, or UDRs, will continue to apply German
collation to NCHAR and NVARCHAR data types.

Restrictions on SET COLLATION

Although SET COLLATION enables you to change the collating order of the
database server dynamically within a session, you should be aware of these
limitations on the effects of the SET COLLATION statement.

� Only collation performed by the database server are affected. Client
processes that sort data are not affected by SET COLLATION.

� Only the current session is affected. Other sessions are not affected
directly by your SET COLLATION statements (but any database
objects that you create will sort in their creation-time collating order).

� Changing the collating order does not change the code set. The
database server always uses the code set specified by DB_LOCALE.

� Only NCHAR and NVARCHAR values sort in locale-specific order

Because SET COLLATION changes only the collating order, rather than the
current locale or code set, you cannot use this statement to insert character
data from different locales, such as French and Japanese, into the same
database. You must use Unicode if the database needs to store characters
from two or more languages that require inherently different code sets.
2-644 IBM Informix Guide to SQL: Syntax

SET COLLATION
Collation Performed by Database Objects

Although the database reverts to the DB_LOCALE collating order after the
session ends (or after you execute SET NO COLLATION), indexes that you
create using a non-default collating sequence persist in the database. You can
create multiple indexes on the same set of columns, called multilingual
indexes, using different collating orders that SET COLLATION specifies.

Only one clustered index, however, can exist on a given set of columns.

Only one unique constraint or primary key can exist on a given set of
columns, but you can create multiple unique indexes on the same set of
columns, if each index has a different collation order.

The query optimizer ignores indexes that apply any collation other than the
current session collation to NCHAR or NVARCHAR columns when calculating
the cost of a query.

The collating order of an attached index must be the same as that of its table,
and this must be the default collating order specified by DB_LOCALE.

The ALTER INDEX statement cannot change the collation of an index. Any
previous SET COLLATION statement is ignored when ALTER INDEX executes.

You can use SET COLLATION with CREATE TABLE or ALTER TABLE to create
columns with different collations. (Comparing such columns might not
provide meaningful results, because they might be in different languages.)

When synonyms are created for remote tables or views, the participating
databases must have the same collating order. Existing synonym, however,
can be used in other databases that support SET COLLATION and the collating
order of the synonym, regardless of the DB_LOCALE setting.

Check constraints, cursors, prepared objects, triggers, and SPL routines that
sort NCHAR or NVARCHAR values use the collation that was in effect at the
time of their creation, if this is different from the DB_LOCALE setting.

The effect on performance is sensitive to to how many different collations are
used when creating database objects that sort in a localized order.

Related Information
For information on locales, see the IBM Informix GLS User’s Guide.
SQL Statements 2-645

SET CONNECTION
SET CONNECTION
Use the SET CONNECTION statement to reestablish a connection between an
application and a database environment and make the connection current.
You can also use this statement with the DORMANT option to put the current
connection in a dormant state. Use this statement with ESQL/C.

Syntax

Usage
You can use SET CONNECTION to make a dormant connection current, or to
make the current connection dormant.

SET CONNECTION is not valid as a prepared statement.

Making a Dormant Connection the Current Connection

If you use the SET CONNECTION statement without the DORMANT option,
connection must represent a dormant connection. A dormant connection is a
connection that is established but that is not current.

E/C

Element Purpose Restrictions Syntax
connection Name that you declared for the initial

connection that the CONNECT statement made
The database must
already exist.

Quoted String,
p. 4-243

connection_var Host variable that contains the value of
connection

Must be of a character
data type.

Language
specific

'connection 'SET CONNECTION

connection_var

DEFAULT

Database Environment
p. 2-97

CURRENT DORMANT

DORMANT

+

+

+

+

2-646 IBM Informix Guide to SQL: Syntax

SET CONNECTION
The SET CONNECTION statement, with no DORMANT option, makes the
specified dormant connection the current one. The connection that the appli-
cation specifies must be dormant. The connection that is current when the
statement executes becomes dormant.

The SET CONNECTION statement in the following example makes connection
con1 the current connection and makes con2 a dormant connection:

CONNECT TO 'stores_demo' AS 'con1'
...
CONNECT TO 'demo' AS 'con2'
...
SET CONNECTION 'con1'

A dormant connection has a connection context associated with it. When an
application makes a dormant connection current, it reestablishes that
connection to a database environment and restores its connection context.
(For more information on connection context, see the CONNECT statement on
page 2-92.) Reestablishing a connection is comparable to establishing the
initial connection, except that it typically avoids authenticating the permis-
sions for the user again, and it saves reallocating resources associated with
the initial connection. For example, the application does not need to
reprepare any statements that have previously been prepared in the
connection, nor does it need to redeclare any cursors.

Making a Current Connection the Dormant Connection

In the SET CONNECTION connection DORMANT statement, connection must
represent the current connection. The SET CONNECTION statement with the
DORMANT option makes the specified current connection a dormant
connection. For example, the following SET CONNECTION statement makes
connection con1 dormant:

SET CONNECTION 'con1' DORMANT

The SET CONNECTION statement with the DORMANT option generates an
error if you specify a connection that is already dormant. For example, if
connection con1 is current and connection con2 is dormant, the following
SET CONNECTION statement returns an error message:

SET CONNECTION 'con2' DORMANT

The following SET CONNECTION statement executes successfully:

SET CONNECTION 'con1' DORMANT
SQL Statements 2-647

SET CONNECTION
Dormant Connections in a Single-Threaded Environment

In a single-threaded ESQL/C application (one that does not use threads), the
DORMANT option makes the current connection dormant. Using this option
makes single-threaded ESQL/C applications upwardly compatible with
thread-safe ESQL/C applications. A single-threaded environment, however,
can have only one active connection while the program executes.

Dormant Connections in a Thread-Safe Environment

In a thread-safe ESQL/C application, the DORMANT option makes an active
connection dormant. Another thread can now use the connection by issuing
the SET CONNECTION statement without the DORMANT option. A thread-
safe environment can have many threads (concurrent pieces of work
performing particular tasks) in one ESQL/C application, and each thread can
have one active connection.

An active connection is associated with a particular thread. Two threads
cannot share the same active connection. Once a thread makes an active
connection dormant, that connection is available to other threads. A dormant
connection is still established but is not currently associated with any thread.
For example, if the connection named con1 is active in the thread named
thread_1, the thread named thread_2 cannot make connection con1 its
active connection until thread_1 has made connection con1 dormant.

The following code fragment from a thread-safe ESQL/C program shows
how a particular thread within a thread-safe application makes a connection
active, performs work on a table through this connection, and then makes the
connection dormant so that other threads can use the connection:

thread_2()
{ /* Make con2 an active connection */

EXEC SQL connect to 'db2' as 'con2';
/*Do insert on table t2 in db2*/
EXEC SQL insert into table t2 values(10);
/* make con2 available to other threads */
EXEC SQL set connection 'con2' dormant;

}

If a connection to a database environment was initiated using the CONNECT
. . . WITH CONCURRENT TRANSACTION statement, any thread that subse-
quently connects to that database environment can use an ongoing
transaction. In addition, if an open cursor is associated with such a
connection, the cursor remains open when the connection is made dormant.
2-648 IBM Informix Guide to SQL: Syntax

SET CONNECTION
Threads within a thread-safe ESQL/C application can use the same cursor by
making the associated connection current, even though only one thread can
use the connection at any given time.

Identifying the Connection

If the application did not use a connection name in the initial CONNECT
statement, you must use a database environment (such as a database name or
a database pathname) as the connection name. For example, the following
SET CONNECTION statement uses a database environment for the connection
name because the CONNECT statement does not use a connection name. For
information about quoted strings that contain a database environment, see
“Database Environment” on page 2-97.

CONNECT TO 'stores_demo'
...

CONNECT TO 'demo'
...

SET CONNECTION 'stores_demo'

If a connection to a database server was assigned a connection name,
however, you must use the connection name to reconnect to the database
server. An error is returned if you use a database environment rather than the
connection name when a connection name exists.

DEFAULT Option

The DEFAULT option specifies the default connection for a SET CONNECTION
statement. The default connection is one of the following connections:

� An explicit default connection (a connection established with the
CONNECT TO DEFAULT statement)

� An implicit default connection (any connection established with the
DATABASE or CREATE DATABASE statements)

Use SET CONNECTION without a DORMANT option to reestablish the default
connection, or with that option to make the default connection dormant.

For more information, see “DEFAULT Option” on page 2-94 and “The
Implicit Connection with DATABASE Statements” on page 2-94.
SQL Statements 2-649

SET CONNECTION
CURRENT Keyword

Use the CURRENT keyword with the DORMANT option of the SET
CONNECTION statement as a shorthand form of identifying the current
connection. The CURRENT keyword replaces the current connection name. If
the current connection is con1, the following two statements are equivalent:

SET CONNECTION 'con1' DORMANT;

SET CONNECTION CURRENT DORMANT;

When a Transaction is Active

Without the DORMANT keyword, the SET CONNECTION statement implicitly
puts the current connection in the dormant state.

When you issue a SET CONNECTION statement with the DORMANT
keyword, the SET CONNECTION statement explicitly puts the current
connection in the dormant state. In both cases, the statement can fail if a
connection that becomes dormant has an uncommitted transaction. If the
connection that becomes dormant has an uncommitted transaction, the
following conditions apply:

� If the connection was established using the WITH CONCURRENT
TRANSACTION clause of the CONNECT statement, SET
CONNECTION succeeds and puts the connection in a dormant state.

� If the connection was not established by the WITH CONCURRENT
TRANSACTION clause of the CONNECT statement, SET
CONNECTION fails and cannot set the connection to a dormant state
and the transaction in the current connection continues to be active.
The statement generates an error and the application must decide
whether to commit or roll back the active transaction.

Related Information
Related statements: CONNECT, DISCONNECT, and DATABASE

For a discussion of the SET CONNECTION statement and thread-safe applica-
tions, see the IBM Informix ESQL/C Programmer’s Manual.
2-650 IBM Informix Guide to SQL: Syntax

SET CONSTRAINTS
SET CONSTRAINTS
Use the SET CONSTRAINTS statements to specify how some or all of the
constraints on a table are processed. Constraint-mode options include these:

� Whether constraints are checked at the statement level (IMMEDIATE)
or at the transaction level (DEFERRRED)

� Whether to enable or disable constraints

� Whether to change the filtering mode of constraints.

Syntax

Usage
The SET CONSTRAINTS keywords begin the SET Transaction Mode statement,
which is described in “SET Transaction Mode” on page 2-725.

The SET CONSTRAINTS keywords can also begin a special case of the SET
Database Object Mode statement. The SET Database Object Mode statement
can also enable or disable a trigger or index, or change the filtering mode of
a unique index. For the complete syntax and semantics of the SET INDEX
statement, see “SET Database Object Mode” on page 2-652.

Element Purpose Restrictions Syntax
constraint Constraint whose mode is to be

reset
All constraints must exist and must all
be defined on the same table.

Database Object
Name, p. 4-46

table Table whose constraint mode is
to be reset for all constraints

Table must exist in the database Database Object
Name, p. 4-46

WITHOUT ERROR

WITH ERROR

FILTERING

SET CONSTRAINTS ALL

,

constraint

FOR table

IMMEDIATE

DEFERRED

ENABLED

DISABLED
SQL Statements 2-651

SET Database Object Mode
SET Database Object Mode
Use the SET Database Object Mode statement to change the filtering mode of
constraints of unique indexes, or to enable or disable constraints, indexes,
and triggers.

To specify whether constraints are checked at the statement level or at the
transaction level, see “SET Transaction Mode” on page 2-725.

Syntax

Usage
When you change the mode of constraints, indexes, or triggers, the change
remains in effect until you change the mode of the database object again.

The sysobjstate system catalog table lists all of the database objects in the
database and the current mode of each database object. For information on
the sysobjstate table, see the IBM Informix Guide to SQL: Reference.

Privileges Required for Changing Database Object Modes

To change the mode of a constraint, index, or trigger, you must have the
necessary privileges. You must meet at least one of these requirements:

� You must have the DBA privilege on the database.

� You must be the owner of the table on which the database object is
defined and must have the Resource privilege on the database.

� You must have the Alter privilege on the table on which the database
object is defined and the Resource privilege on the database.

+

IDS

SET

Table-Mode Format
p. 2-654

List-Mode Format
p. 2-653
2-652 IBM Informix Guide to SQL: Syntax

SET Database Object Mode
List-Mode Format

Use list-mode format to change the mode for one or more constraint, index,
or trigger.

For example, to change the mode of the unique index unq_ssn on the
cust_subset table to filtering, enter the following statement:

SET INDEXES unq_ssn FILTERING

You can also use the list-mode format to change the mode for a list of
constraints, indexes, or triggers that are defined on the same table. Assume
that four triggers are defined on the cust_subset table: insert_trig,
update_trig, delete_trig, and execute_trig. Also assume that all four triggers
are enabled. To disable all triggers except execute_trig, enter this statement:

SET TRIGGERS insert_trig, update_trig, delete_trig DISABLED

If my_trig is a disabled INSTEAD OF trigger on a view, the following
statement enables that trigger:

SET TRIGGERS my_trig DENABLED

Element Purpose Restrictions Syntax
constraint Name of a constraint

whose mode is to be set
Must be a local constraint, and all constraints in
the list must be defined on the same table.

Database Object
Name, p. 4-44

index Name of an index whose
mode is to be set

Must be a local index, and all indexes in the list
must be defined on the same table.

Database Object
Name, p. 4-44

trigger Name of a trigger whose
mode is to be set

Must be a local trigger, and all triggers in the list
must be defined on the same table or view

Database Object
Name, p. 4-44

CONSTRAINTS

,

constraint

INDEXES

,

index

Modes for Constraints and Unique Indexes
p. 2-654

,

List-Mode Format

TRIGGERS trigger

Back to SET Database Object Mode
p. 2-652

Modes for Triggers and Duplicate Indexes
p. 2-658
SQL Statements 2-653

SET Database Object Mode
Table-Mode Format

Use table-mode format to change the mode of all database objects of a given
type that have been defined on a specified table.

This example disables all constraints defined on the cust_subset table

SET CONSTRAINTS FOR cust_subset DISABLED

In table-mode format, you can change the modes of more than one database
object type with a single statement. For example, this enables all constraints,
indexes, and triggers that are defined on the cust_subset table:

SET CONSTRAINTS, INDEXES, TRIGGERS FOR cust_subset ENABLED

Modes for Constraints and Unique Indexes

You can specify enabled or disabled mode for a constraint or a unique index.

Element Purpose Restrictions Syntax
table Table on which

objects are defined
Must be a local table. Objects defined on a temporary
table cannot be set to disabled or filtering modes.

Database Object
Name, p. 4-44

Table-Mode Format

,

CONSTRAINTS FOR table
Modes for Constraints and Unique Indexes

p. 2-654

Back to SET Database Object Mode
p. 2-652

INDEXES

TRIGGERS

Modes for Triggers and Duplicate Indexes
p. 2-658

Modes for Constraints and
Unique Indexes

DISABLED

WITHOUT ERROR

WITH ERROR

FILTERING

Back to Table-Mode Format p. 2-654
Back to List-Mode Format p. 2-653

ENABLED
2-654 IBM Informix Guide to SQL: Syntax

SET Database Object Mode
If you specify no mode for a constraint in a CREATE TABLE, ALTER TABLE, or
SET Database Object Mode statement, the constraint is enabled by default.
If you do not specify the mode for an index in the CREATE INDEX or SET
Database Object Mode statement, the index is enabled by default.

Definitions of Database Object Modes
You can use database object modes to control the effects of INSERT, DELETE,
and UPDATE statements. Your choice of mode affects the tables whose data
you are manipulating, the behavior of the database objects defined on those
tables, and the behavior of the data manipulation statements themselves.

Enabled Mode

Constraints, indexes, and triggers are enabled by default. The CREATE TABLE,
ALTER TABLE, CREATE INDEX, and CREATE TRIGGER statements create
database objects in enabled mode, unless you specify another mode. When a
database object is enabled, the database server recognizes the existence of the
database object and takes the database object into consideration while it
executes an INSERT, DELETE, or UPDATE statement. Thus, an enabled
constraint is enforced, an enabled index updated, and an enabled trigger is
executed when the trigger event takes place.

When you enable constraints and unique indexes, if a violating row exists,
the data manipulation statement fails (that is, no rows are changed) and the
database server returns an error message.

Disabled Mode

When a database object is disabled, the database server ignores it during the
execution of an INSERT, DELETE, or UPDATE statement. A disabled constraint
is not enforced, a disabled index is not updated, and a disabled trigger is not
executed when the trigger event takes place. When you disable constraints
and unique indexes, any data manipulation statement that violates the
restriction of the constraint or unique index succeeds (that is, the target row
is changed), and the database server does not return an error message.

You can use the disabled mode to add a new constraint or new unique index
to an existing table, even if some rows in the table do not satisfy the new
integrity specification. Disabling can also be efficient in LOAD operations.
SQL Statements 2-655

SET Database Object Mode
For information on adding a constraint, see “Adding a Constraint When
Existing Rows Violate the Constraint” in the ALTER TABLE statement. For
information on adding a unique index, see “Adding a Unique Index When
Duplicate Values Exist in the Column” in the CREATE INDEX statement.

Filtering Mode

When a constraint or unique index is in filtering mode, the INSERT, DELETE,
OR UPDATE statement succeeds, but the database server enforces the
constraint or the unique-index requirement by writing any failed rows to the
violations table associated with the target table. Diagnostic information
about the constraint violation or unique-index violation is written to the
diagnostics table associated with the target table.

In data manipulation operations, filtering mode has the following specific
effects on INSERT, UPDATE, and DELETE statements:

� A constraint violation or unique-index violation during an INSERT
statement causes the database server to make a copy of the noncon-
forming record and write it to the violations table. The database
server does not write the nonconforming record to the target table.

If the INSERT statement is not a singleton INSERT, the rest of the insert
operation proceeds with the next record.

� A constraint violation or unique-index violation during an UPDATE
statement causes the database server to make a copy of the existing
record that was to be updated and write it to the violations table. The
database server also makes a copy of the new record and writes it to
the violations table, but the actual record is not updated in the target
table. If the UPDATE statement is not a singleton update, the rest of
the update operation proceeds with the next record.

� A constraint violation or unique-index violation during a DELETE
statement causes the database server to make a copy of the record
that was to be deleted and write it to the violations table. The
database server does not delete the actual record in the target table.
If the DELETE statement is not a singleton delete, the rest of the delete
operation proceeds with the next record.

In all of these cases, the database server sends diagnostic information about
each constraint violation or unique-index violation to the diagnostics table
associated with the target table.
2-656 IBM Informix Guide to SQL: Syntax

SET Database Object Mode
For information on the structure of the records that the database server writes
to the violations and diagnostics tables, see “Structure of the Violations
Table” on page 2-734 and “Structure of the Diagnostics Table” on page 2-742.

Starting and Stopping the Violations and Diagnostics Tables

You must use the START VIOLATIONS TABLE statement to start the violations
and diagnostics tables for the target table on which the database objects are
defined, either before you set any database objects that are defined on the
table to the filtering mode, or after you set database objects to filtering, but
before any users issue INSERT, DELETE, or UPDATE statements.

If you want to stop the database server from filtering bad records to the viola-
tions table and sending diagnostic information about each bad record to the
diagnostics table, you must issue a STOP VIOLATIONS TABLE statement.

For further information on these statements, see “START VIOLATIONS
TABLE” on page 2-729 and “STOP VIOLATIONS TABLE” on page 2-748.

Error Options for Filtering Mode

When you set the mode of a constraint or unique index to filtering, you can
specify one of two error options. These error options control whether the
database server displays an integrity-violation error message when it
encounters bad records during execution of data manipulation statements.

� The WITH ERROR option instructs the database server to return a
referential integrity-violation error message after executing an
INSERT, DELETE, or UPDATE statement in which one or more of the
target rows causes a constraint violation or a unique-index violation.

� The WITHOUT ERROR option is the default. This option prevents the
database server from issuing a referential integrity-violation error
message to the user after an INSERT, DELETE, or UPDATE statement
causes a constraint violation or a unique-index violation.

Net Effect of Filtering Mode on the Database

The net effect of the filtering mode is that the contents of the target table
always satisfy all constraints on the table and any unique-index requirements
on the table.
SQL Statements 2-657

SET Database Object Mode
In addition, the database server does not lose any data values that violate a
constraint or unique-index requirement because bad records are sent to the
violations table and diagnostic information about those records is sent to the
diagnostics table.

Furthermore, when filtering mode is in effect, INSERT, DELETE, and UPDATE
operations on the target table do not fail when the database server encounters
bad records. These operations succeed in adding all the good records to the
target table. Thus, filtering mode is appropriate for large-scale batch updates
of tables. The user can fix records that violate constraints and unique-index
requirements after the fact. The user does not have to fix the bad records
before the batch update or lose the bad records during the batch update.

Modes for Triggers and Duplicate Indexes

You can specify the modes for triggers or duplicate indexes.

If you specify no mode for an index or for a trigger when you create it or in
the SET Database Object Mode statement, the object is enabled by default.

Related Information
Related statements: ALTER TABLE, CREATE TABLE, CREATE INDEX, CREATE
TRIGGER, START VIOLATIONS TABLE, and STOP VIOLATIONS TABLE

For a discussion of object modes and violation detection and examples that
show how database object modes work when users execute data manipu-
lation statements on target tables or add new constraints and indexes to
target tables, see the IBM Informix Guide to SQL: Tutorial.

For information on the system catalog tables associated with the SET
Database Object Mode statement, see the sysobjstate and sysviolations
tables in the IBM Informix Guide to SQL: Reference.

Modes for Triggers and
Duplicate Indexes

Back to Table-Mode Format p. 2-654
Back to List-Mode Format p. 2-653

ENABLED

DISABLED
2-658 IBM Informix Guide to SQL: Syntax

SET DATASKIP
SET DATASKIP
Use the SET DATASKIP statement to control whether the database server skips
a dbspace that is unavailable during the processing of a transaction.

Syntax

Usage
SET DATASKIP allows you to reset at runtime the Dataskip feature, which
controls whether the database server skips a dbspace that is unavailable (for
example, due to a media failure) in the course of processing a transaction.

In ESQL/C, the warning flag sqlca.sqlwarn.sqlwarn6 is set to W if a dbspace
is skipped. See also the IBM Informix ESQL/C Programmer’s Manual. ♦

This statement applies only to tables that are fragmented across dbspaces.
It does not apply to blobspaces nor to sbspaces. ♦

Specifying SET DATASKIP ON without a dbspace instructs the database server
to skip any dbspaces in the fragmentation list that are unavailable. You can
use the onstat -d or -D utility to determine whether a dbspace is down.

When you specify SET DATASKIP ON dbspace, you are instructing the database
server to skip the specified dbspace if it is unavailable.

If you specify SET DATASKIP OFF, the Dataskip feature is disabled. If you
specify SET DATASKIP DEFAULT, the database server uses the setting for the
Dataskip feature from the ONCONFIG file.

+

Element Purpose Restrictions Syntax
dbspace Name of the skipped dbspace Must exist at time of execution Identifier, p. 4-189

OFF

DEFAULT

,

dbspace

SET DATASKIP ON

E/C

IDS
SQL Statements 2-659

SET DATASKIP
Circumstances When a Dbspace Cannot Be Skipped

The database server cannot skip a dbspace under certain conditions. The
following list outlines those conditions:

� Referential constraint checking

When you want to delete a parent row, the child rows must also be
available for deletion, and must exist in an available fragment.

When you want to insert a new child row, the parent row must be
found in the available fragments.

� Updates

When you perform an update that moves a record from one
fragment to another, both fragments must be available.

� Inserts

When you try to insert records in a expression-based fragmentation
strategy and the dbspace is unavailable, an error is returned.

When you try to insert records in a round-robin fragment-based
strategy, and a dbspace is down, the database server inserts the rows
into any available dbspace.

When no dbspace is available, an error is returned.

� Indexing

When you perform updates that affect the index, such as when you
insert or delete records, or when you update an indexed field, the
index must be available.

When you try to create an index, the dbspace you want to use must
be available.

� Serial keys

The first fragment is used to store the current serial-key value inter-
nally. This is not visible to you except when the first fragment
becomes unavailable and a new serial key value is required, which
can happen during INSERT statements.

Related Information
For additional information about the Dataskip feature, see your Adminis-
trator’s Guide.
2-660 IBM Informix Guide to SQL: Syntax

SET DEBUG FILE TO
SET DEBUG FILE TO
Use the SET DEBUG FILE TO statement to name the file that is to hold the run-
time trace output of an SPL routine.

Syntax

Usage
This statement indicates that the output of the TRACE statement in the SPL
routine goes to the file that filename indicates. Each time the TRACE statement
is executed, the trace data is added to this output file.

Using the WITH APPEND Option

The output file that you specify in the SET DEBUG FILE TO statement can be a
new file or existing file. If you specify an existing file, its current contents are
purged when you issue the SET DEBUG FILE TO statement. The first execution
of a TRACE command sends trace output to the beginning of the file.

If you include the WITH APPEND option, the current contents of the file are
preserved when you issue the SET DEBUG FILE TO statement. The first
execution of a TRACE command adds trace output to the end of the file.

+

Element Purpose Restrictions Syntax
expression Expression that returns a filename Must be a valid filename Expression, p. 4-67
filename Pathname of the file that contains the

output of the TRACE statement
See “Using the WITH APPEND
Option” on page 2-661

Quoted String,
p. 4-243.

filename_var Host variable storing filename string Must be a character data type Language specific

'filename 'SET DEBUG FILE TO

WITH APPENDfilename_var

expression
SQL Statements 2-661

SET DEBUG FILE TO
If you specify a new file in the SET DEBUG FILE TO statement, it makes no
difference whether you include the WITH APPEND option. The first execution
of a TRACE command sends trace output to the beginning of the new file
whether you include or omit the WITH APPEND option.

Closing the Output File

To close the file that the SET DEBUG FILE TO statement opened, issue another
SET DEBUG FILE TO statement with another filename. You can then edit the
contents of the first file.

Redirecting Trace Output

You can use the SET DEBUG FILE TO statement outside an SPL routine to direct
the trace output of the SPL routine to a file. You can also use this statement
inside an SPL routine to redirect its own output.

Location of the Output File

If you invoke a SET DEBUG FILE TO statement with a simple filename on a
local database, the output file is located in your current directory. If your
current database is on a remote database server, the output file is located in
your home directory on the remote database server. If you provide a full
pathname for the debug file, the file is placed in the directory and file that you
specify on the remote database server. If you do not have write permissions
in the directory, you get an error.

The following example sends the output of the SET DEBUG FILE TO statement
to a file called debug.out:

SET DEBUG FILE TO 'debug' || '.out'

Related Information
Related statement: TRACE

For a task-oriented discussion of SPL routines, see the IBM Informix Guide to
SQL: Tutorial.
2-662 IBM Informix Guide to SQL: Syntax

SET Default Table Type
SET Default Table Type
Use the SET Default Table Type statement to specify the default table type for
tables (or temporary tables) that you subsequently create in the same session.

Syntax

Usage
If CREATE TABLE specifies no table type, the default table type is STANDARD.
The SET TABLE_TYPE statement can change this default for subsequent
CREATE TABLE statements in the current session. Similarly, you can use the
SET TEMP TABLE_TYPE to change the default temporary table type.

These statements have no effect on tables for which you explicitly specify a
table type in the statement that creates the new table or temporary table.

Because the CREATE Temporary TABLE statement requires an explicit table
type, the SET TEMP TABLE_TYPE statement only affects SQL operations that
create a temporary implicitly, such as in executing join operations, SELECT
statements with the GROUP BY or ORDER BY clause, and index builds.

The effect of SET Default Table Type persists until the end of the session, or
until you issue another SET Default Table Type statement to specify a new
default table type.

The SET TABLE_TYPE TO STANDARD statement and the SET TEMP
TABLE_TYPE TO DEFAULT statements restore the default behavior.

XPS

SET TABLE_TYPE TO

RAW

OPERATIONAL

STANDARD

DEFAULTTEMP TABLE_TYPE TO

SCRATCHSTATIC
SQL Statements 2-663

SET Default Table Type
Although the scope of these statements is the current session, they can be
used to have a database-wide effect. The next example shows how to do this
by using SPL routines to establish a default table type at connect time:

CREATE PROCEDURE public.sysdbopen()
SET TABLE_TYPE TO RAW;
SET TEMP TABLE_TYPE TO SCRATCH;
SET TABLE_SPACE TO other_tables;

...
END PROCEDURE;

CREATE PROCEDURE helene.sysdbopen()
EXECUTE PROCEDURE public.sysdbopen();
SET ROLE marketing;
SET TABLE_SPACE TO marketing_dbslice;

END PROCEDURE;

Related Information
Related statements: CREATE TABLE, CREATE TEMP TABLE, SET Default Table
Space.

For more information on table types that can be specified in the CREATE
TABLE statement, see “CREATE TABLE” on page 2-214. For more infor-
mation about temporary tables see “CREATE Temporary TABLE” on
page 2-261.
2-664 IBM Informix Guide to SQL: Syntax

SET Default Table Space
SET Default Table Space
Use the SET Default Table Space statement to specify the default storage space
used by subsequent CREATE TABLE statements (and SELECT statements that
include the INTO Table clause) in the same session. This statement can also
specify a default storage location for temporary tables.

Syntax

Usage
When the CREATE TABLE or CREATE Temporary TABLE statement includes no
fragmentation clause, the database server uses the dbspace of the current
database as the default storage location. You can use the SET TABLE_SPACE
statements to change the default to another dbslice or a list of one or more
dbspaces. This statement also sets the default dbspace for SELECT statements
that include the INTO Table clause. These defaults persist for the rest of the
current session, or until the next SET Default Table Space statement.

Likewise, you can use the SET TEMP TABLE_SPACE statement to change the
default storage location for CREATE Temporary TABLE statements that do not
include the Storage Options clause.

Specifying the TO DEFAULT option restores the default behavior.

Related Information
Related statements: CREATE TABLE, CREATE Temporary TABLE, SET Default
Table Type.

XPS

Element Purpose Restrictions Syntax
dbs_list A dbspace, dbslice, or a comma-separated list of dbspaces Must exist Identifier, p. 4-189

SET TABLE_SPACE

TEMP TABLE_SPACE

TO dbs_list

DEFAULT
SQL Statements 2-665

SET DEFERRED_PREPARE
SET DEFERRED_PREPARE
Use the SET DEFERRED_PREPARE statement to control whether a client
process postpones sending a PREPARE statement to the database server until
the OPEN or EXECUTE statement is sent. Use this statement with ESQL/C.

Syntax

Usage
By default, the SET DEFERRED_PREPARE statement causes the application
program to delay sending the PREPARE statement to the database server until
the OPEN or EXECUTE statement is executed. In effect, the PREPARE statement
is bundled with the other statement so that one round trip of messages
instead of two is sent between the client and the server. This Deferred-
Prepare feature works with the following sequences:

� PREPARE, DECLARE, OPEN statement blocks that operate with the
FETCH or PUT statements

� PREPARE followed by the EXECUTE or EXECUTE IMMEDIATE
statement

You can specify ENABLED or DISABLED options for SET DEFERRED_PREPARE.

If you specify no option, the default is ENABLED. This example enables the
Deferred-Prepare feature by default:

EXEC SQL set deferred_prepare;

The ENABLED option enables the Deferred-Prepare feature within the appli-
cation. The following example explicitly specifies the ENABLED option:

EXEC SQL set deferred_prepare enabled;

+

IDS

E/C

SET DEFERRED_PREPARE

DISABLED

ENABLED
2-666 IBM Informix Guide to SQL: Syntax

SET DEFERRED_PREPARE
After an application issues SET DEFERRED_PREPARE ENABLED, the Deferred-
Prepare feature is enabled for subsequent PREPARE statements in the appli-
cation. The application then exhibits the following behavior:

� The sequence PREPARE, DECLARE, OPEN sends the PREPARE
statement to the database server with the OPEN statement. If the
prepared statement has syntax errors, the database server does not
return error messages to the application until the application
declares a cursor for the prepared statement and opens the cursor.

� The sequence PREPARE, EXECUTE sends the PREPARE statement to
the database server with the EXECUTE statement. If a prepared
statement contains syntax errors, the database server does not return
error messages to the application until the application attempts to
execute the prepared statement.

If Deferred-Prepare is enabled in a PREPARE, DECLARE, OPEN statement
block that contains a DESCRIBE statement, the DESCRIBE statement must
follow the OPEN statement rather than the PREPARE statement. If the
DESCRIBE follows PREPARE, the DESCRIBE statement results in an error.

Use the DISABLED option to disable the Deferred-Prepare feature within the
application. The following example specifies the DISABLED option:

EXEC SQL set deferred_prepare disabled;

If you specify the DISABLED option, the application sends each PREPARE
statement to the database server when the PREPARE statement is executed.
SQL Statements 2-667

SET DEFERRED_PREPARE
Example of SET DEFERRED_PREPARE

The following code fragment shows a SET DEFERRED_PREPARE statement
with a PREPARE, EXECUTE statement block. In this case, the database server
executes the PREPARE and EXECUTE statements all at once.

EXEC SQL BEGIN DECLARE SECTION;
int a;

EXEC SQL END DECLARE SECTION;
EXEC SQL allocate descriptor 'desc';
EXEC SQL create database test;
EXEC SQL create table x (a int);

/* Enable Deferred-Prepare feature */
EXEC SQL set deferred_prepare enabled;
/* Prepare an INSERT statement */
EXEC SQL prepare ins_stmt from 'insert into x values(?)';
a = 2;
EXEC SQL EXECUTE ins_stmt using :a;
if (SQLCODE)

printf("EXECUTE : SQLCODE is %d\n", SQLCODE);

Using Deferred-Prepare with OPTOFC

You can use the Deferred-Prepare and Open-Fetch-Close Optimization
(OPTOFC) features in combination. The OPTOFC feature delays sending the
OPEN message to the database server until the FETCH message is sent. The
following situations occur if you enable the Deferred-Prepare and OPTOFC
features at the same time:

� If the text of a prepared statement contains syntax errors, the error
messages are not returned to the application until the first FETCH
statement is executed.

� A DESCRIBE statement cannot be executed until after the FETCH
statement.

� You must issue an ALLOCATE DESCRIPTOR statement before a
DESCRIBE or GET DESCRIPTOR statement can be executed.

The database server performs an internal execution of a SET DESCRIPTOR
statement which sets the TYPE, LENGTH, DATA, and other fields in the system
descriptor area. You can specify a GET DESCRIPTOR statement after the
FETCH statement to see the data that is returned.
2-668 IBM Informix Guide to SQL: Syntax

SET DEFERRED_PREPARE
Related Information
Related statements: DECLARE, DESCRIBE, EXECUTE, OPEN, and PREPARE

For a task-oriented discussion of the PREPARE statement and dynamic SQL,
see the IBM Informix Guide to SQL: Tutorial.

For more information about concepts that relate to the SET
DEFERRED_PREPARE statement, see the IBM Informix ESQL/C Programmer’s
Manual.
SQL Statements 2-669

SET DESCRIPTOR
SET DESCRIPTOR
The SET DESCRIPTOR statement assigns values to a system-descriptor area.
Use this statement with ESQL/C.

Syntax

+

E/C

Element Purpose Restrictions Syntax
descriptor String that identifies system-

descriptor area to which values are
assigned

System-descriptor area (SDA)
must be previously allocated.

Quoted String,
p. 4-243

descriptor_var Host variable with value of descriptor Same restrictions as descriptor. Language specific
item_num Unsigned integer that specifies

ordinal position of an item descriptor
in the system-descriptor area (SDA)

0 < item_num ≤ (number of
item descriptors specified
when SDA was allocated).

Literal Number,
p. 4-216

item_num_var Host variable that stores item_num Same restrictions as item_num. Language specific
total_items Unsigned integer that specifies how

many items the SDA describes
Same restrictions as item_num. Literal Number,

p. 4-216
total_items_var Host variable that stores total_items Same restrictions as total_items. Language specific

total_items

SET DESCRIPTOR

,

VALUE

COUNT

Item
Descriptor
p. 2-672

total_items_var

'descriptor '

descriptor_var

item_num

=

item_num_var
2-670 IBM Informix Guide to SQL: Syntax

SET DESCRIPTOR
Usage
The SET DESCRIPTOR statement can be used after you have described SELECT,
EXECUTE FUNCTION (or EXECUTE PROCEDURE), and INSERT statements
with the DESCRIBE...USING SQL DESCRIPTOR statement.

SET DESCRIPTOR can assign values to a system-descriptor area in these cases:

� To set the COUNT field of a system-descriptor area to match the
number of items for which you are providing descriptions in the
system-descriptor area

� To set the item descriptor for each value for which you are providing
descriptions in the system-descriptor area

� To modify the contents of an item-descriptor field

If an error occurs during the assignment to any identified system-descriptor
fields, the contents of all identified fields are set to 0 or NULL, depending on
the data type of the variable.

Using the COUNT Clause

Use the COUNT clause to set the number of items that are to be used in the
system-descriptor area. If you allocate a system-descriptor area with more
items than you are using, you need to set the COUNT field to the number of
items that you are actually using. The following example shows a fragment
of an ESQL/C program:

EXEC SQL BEGIN DECLARE SECTION;
int count;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate descriptor 'desc_100'; /*allocates for 100 items*/
count = 2;

EXEC SQL set descriptor 'desc_100' count = :count;

Using the VALUE Clause

Use the VALUE clause to assign values from host variables into fields of a
system-descriptor area. You can assign values for items for which you are
providing a description (such as parameters in a WHERE clause), or you can
modify values for items after you use a DESCRIBE statement to fill the fields
for a SELECT or INSERT statement.
SQL Statements 2-671

SET DESCRIPTOR
Item Descriptor
Use the Item Descriptor portion of the SET DESCRIPTOR statement to set
value for an individual field in a system-descriptor area.

For information on codes that are valid for the TYPE or ITYPE fields and their
meanings, see “Setting the TYPE or ITYPE Field” on page 2-673.

For the restrictions that apply to other field types, see the individual headings
for field types under “Using the VALUE Clause” on page 2-671.

Element Purpose Restrictions Syntax
input_var Host variable storing data for the

specified item descriptor field
Must be appropriate for the
specified field

Language-specific
rules for names

literal_int Integer value (> 0) assigned to the
specified item descriptor field

Restrictions depend on the
keyword to the left of = symbol

Literal Number,
p. 4-216

literal_int_var Variable having literal_int value Same as for literal_int Same as for input_var

Item
Descriptor

literal_int

=

Literal Number
p. 4-216

Literal INTERVAL
p. 4-214

Literal DATETIME
p. 4-212

Quoted String
p. 4-243

input_var

literal_int_varTYPE

LENGTH

PRECISION

SCALE

NULLABLE

INDICATOR

NAME

ITYPE

ILENGTH

EXTYPEOWNERNAME

EXTYPENAME

DATA

IDATA

Back to SET DESCRIPTOR
p 2-670

IDS

=

=

literal_int

literal_int_var

EXTYPEID

EXTYPELENGTH

SOURCETYPE

SOURCEID =

EXTYPEOWNERLENGTH
2-672 IBM Informix Guide to SQL: Syntax

SET DESCRIPTOR
Setting the TYPE or ITYPE Field

Use these integer values to set the value of TYPE or ITYPE for each item.

The following table lists integer values that represent additional data types
available with Dynamic Server.

♦

The same TYPE constants can also appear in the syscolumns.coltype column
in the system catalog; see IBM Informix Guide to SQL: Reference.

SQL Data Type
Integer
Value

X-Open
Integer
Value SQL Data Type

Integer
Value

X-Open
Integer
Value

CHAR 0 1 MONEY 8 –

SMALLINT 1 4 DATETIME 10 –

INTEGER 2 5 BYTE 11 –

FLOAT 3 6 TEXT 12 –

SMALLFLOAT 4 – VARCHAR 13 –

DECIMAL 5 3 INTERVAL 14 –

SERIAL 6 – NCHAR 15 –

DATE 7 – NVARCHAR 16 –

SQL Data Type
Integer
Value SQL Data Type

Integer
Value

INT8 17 COLLECTION 23

SERIAL8 18 Varying-length OPAQUE type 40

SET 19 Fixed-length OPAQUE type 41

MULTISET 20 LVARCHAR (client-side only) 43

LIST 21 BOOLEAN 45

ROW 22

IDS
SQL Statements 2-673

SET DESCRIPTOR
For code that is easier to maintain, use the predefined constants for these SQL
data types instead of their actual integer values. These constants are defined
in the $INFORMIX/incl/public/sqlstypes.h header file. You cannot, however,
use the actual constant name in the SET DESCRIPTOR statement. Instead,
assign the constant to an integer host variable and specify the host variable
in the SET DESCRIPTOR statement file.

The following example shows how you can set the TYPE field in ESQL/C:

main()
{
EXEC SQL BEGIN DECLARE SECTION;

int itemno, type;
EXEC SQL END DECLARE SECTION;
...
EXEC SQL allocate descriptor 'desc1' with max 5;
...
type = SQLINT; itemno = 3;
EXEC SQL set descriptor 'desc1' value :itemno type = :type;
}

This information is identical for ITYPE. Use ITYPE when you create a
dynamic program that does not comply with the X/Open standard.

Compiling Without the -xopen Option

If you compile without the -xopen option, the normal Informix SQL code is
assigned for TYPE. You must be careful not to mix normal and X/Open modes
because errors can result. For example, if a data type is not defined under
X/Open mode but is defined under normal mode, executing a SET
DESCRIPTOR statement can result in an error.

Setting the TYPE Field in X/Open Programs

In X/Open mode, you must use the X/Open set of integer codes for the data
type in the TYPE field.

If you use the ILENGTH, IDATA, or ITYPE fields in a SET DESCRIPTOR
statement, a warning message appears. The warning indicates that these
fields are not standard X/Open fields for a system-descriptor area.

For code that is easier to maintain, use the predefined constants for these
X/Open SQL data types instead of their actual integer value. These constants
are defined in the $INFORMIX/incl/public/sqlxtype.h header file.

X/O
2-674 IBM Informix Guide to SQL: Syntax

SET DESCRIPTOR
Using DECIMAL or MONEY Data Types

If you set the TYPE field for a DECIMAL or MONEY data type, and you want
to use a scale or precision other than the default values, set the SCALE and
PRECISION fields. You do not need to set the LENGTH field for a DECIMAL
or MONEY item; the LENGTH field is set accordingly from the SCALE and
PRECISION fields.

Using DATETIME or INTERVAL Data Types

If you set the TYPE field for a DATETIME or INTERVAL value, the DATA field
can be a DATETIME or INTERVAL literal or a character string. If you use a
character string, the LENGTH field must be the encoded qualifier value.

To determine the encoded qualifiers for a DATETIME or INTERVAL character
string, use the datetime and interval macros in the datetime.h header file.

If you set DATA to a host variable of DATETIME or INTERVAL, you do not need
to set LENGTH explicitly to the encoded qualifier integer.

Setting the DATA or IDATA Field

When you set the DATA or IDATA field, use the appropriate type of data
(character string for CHAR or VARCHAR, integer for INTEGER, and so on).

If any value other than DATA is set, the value of DATA is undefined. You
cannot set the DATA or IDATA field for an item without setting TYPE for that
item. If you set the TYPE field for an item to a character type, you must also
set the LENGTH field. If you do not set the LENGTH field for a character item,
you receive an error.

Setting the LENGTH or ILENGTH Field

If your DATA or IDATA field contains a character string, you must specify a
value for LENGTH. If you specify LENGTH=0, LENGTH is automatically set to
the maximum length of the string. The DATA or IDATA field can contain a
368-literal character string or a character string derived from a character
variable of CHAR or VARCHAR data type. This provides a method to
determine dynamically the length of a string in the DATA or IDATA field.
SQL Statements 2-675

SET DESCRIPTOR
If a DESCRIBE statement precedes a SET DESCRIPTOR statement, LENGTH is
automatically set to the maximum length of the character field that is
specified in your table.

This information is identical for ILENGTH. Use ILENGTH when you create a
dynamic program that does not comply with the X/Open standard.

Setting the INDICATOR Field

If you want to put a null value into the system-descriptor area, set the
INDICATOR field to -1 and do not set the DATA field.

If you set the INDICATOR field to 0 to indicate that the data is not null, you
must set the DATA field.

Setting Opaque-Type Fields

The following item-descriptor fields provide information about a column
that has an opaque type as its data type:

� The EXTYPEID field stores the extended identifier for the opaque
type. This integer value must correspond to a value in the
extended_id column of the sysxtdtypes system catalog table.

� The EXTYPENAME field stores the name of the opaque type. This
character value must correspond to a value in the name column of
the row with the matching extended_id value in the sysxtdtypes
system catalog table.

� The EXTYPELENGTH field stores the length of the opaque-type
name. This integer value is the length, in bytes, of the string in the
EXTYPENAME field.

� The EXTYPEOWNERNAME field stores the name of the opaque-type
owner. This character value must correspond to a value in the owner
column of the row with the matching extended_id value in the
sysxtdtypes system catalog table.

� The EXTYPEOWNERLENGTH field stores the length of the value in
the EXTTYPEOWNERNAME field. This integer value is the length, in
bytes, of the string in the EXTYPEOWNERNAME field.

For more information on the sysxtdtypes system catalog table, see the
IBM Informix Guide to SQL: Reference.

IDS
2-676 IBM Informix Guide to SQL: Syntax

SET DESCRIPTOR
Setting Distinct-Type Fields

The following item-descriptor fields provide information about a column
that has a distinct type as its data type:

� The SOURCEID field stores the extended identifier for the source
data type.

Set this field if the source type of the distinct type is an opaque data
type. This integer value must correspond to a value in the source col-
umn for the row of the sysxtdtypes system catalog table whose
extended_id value matches that of the distinct type you are setting.

� The SOURCETYPE field stores the data type constant for the source
data type.

This value is the data type constant for the built-in data type that is
the source type for the distinct type. The codes for the SOURCETYPE
field are the same as those for the TYPE field (page 2-673). This inte-
ger value must correspond to the value in the type column for the
row of the sysxtdtypes system catalog table whose extended_id
value matches that of the distinct type you are setting.

For more information on the sysxtdtypes system catalog table, see the
IBM Informix Guide to SQL: Reference.

Modifying Values Set by the DESCRIBE Statement
You can use a DESCRIBE statement to modify the contents of a system-
descriptor area after it is set.

After you use DESCRIBE on a SELECT or an INSERT statement, you must check
to determine whether the TYPE field is set to either 11 or 12 to indicate a TEXT
or BYTE data type. If TYPE contains an 11 or a 12, you must use the SET
DESCRIPTOR statement to reset TYPE to 116, which indicates FILE type.

Related Information
Related statements: ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR,
DECLARE, DESCRIBE, EXECUTE, FETCH, GET DESCRIPTOR, OPEN, PREPARE,
and PUT

For more information on system-descriptor areas, refer to the IBM Informix
ESQL/C Programmer’s Manual.
SQL Statements 2-677

SET ENVIRONMENT
SET ENVIRONMENT
The SET ENVIRONMENT statement lets you specify options that affect subse-
quent queries submitted within the same routine.

Syntax

Usage
The SET ENVIRONMENT statement specifies environment options that
manage resource use by the routine in which the statement is executed.
For example, the SET ENVIRONMENT IMPLICIT_PDQ ON statement enables
automatic PDQPRIORITY allocation for queries submitted in the routine.

The OFF keyword disables the specified option.

The ON keyword enables the specified option.

The DEFAULT keyword sets the specified option to its default value.

+XPS

+

Element Description Restrictions Syntax
value Value to set for the specified environment

option, which this statement also enables
Must be valid for the specified
environment option

Quoted String,
p. 4-243

size The extent size for system-generated
temporary tables, in kilobytes

Must be valid for the specified
environment option

Quoted String,
p. 4-243

SET ENVIRONMENT BOUND_IMPL_PDQ

MAXSCAN

IMPLICIT_PDQ

COMPUTE_QUOTA

TMPSPACE_LIMIT

OFF

ON

'value '

TEMP_TAB_EXT_SIZE 'size '

TEMP_TAB_NEXT_SIZE

DEFAULT
2-678 IBM Informix Guide to SQL: Syntax

SET ENVIRONMENT
The arguments that follow the option name depend on the syntax of the
option. The option name and its ON, OFF, and DEFAULT keywords are not
quoted and are not case sensitive. All other arguments must be enclosed in
single or double quotation marks. If a quoted string is a valid argument for
the environment option, it is case sensitive.

If you enter an undefined option name or an illegal value for a defined option,
no error is returned. Undefined options are ignored, but they might produce
unexpected results, if you intended some effect that a misspelled option
name cannot produce. The SET ENVIRONMENT statement can enable only the
environment options that are described in sections that follow.

For information about the performance implications of the SET
ENVIRONMENT options, refer to the Performance Guide.

BOUND_IMPL_PDQ Environment Option

If IMPLICIT_PDQ is set to ON or to a value, use the BOUND_IMPL_PDQ
environment option to specify that the allocated memory should be bounded
by the current explicit PDQPRIORITY value or range. If IMPLICIT_PDQ is OFF,
then BOUND_IMPL_PDQ is ignored. For example, you might execute the
following statement to force the database server to use explicit PDQPRI-
ORITY values as guidelines in allocating memory if the IMPLICIT_PDQ
environment option has already been set:

SET ENVIRONMENT BOUND_IMPL_PDQ ON

If you set both IMPLICIT_PDQ and BOUND_IMPL_PDQ, then the explicit
PDQPRIORITY value determines the upper limit of memory that can be
allocated to a query. If PDQPRIORITY is specified as a range, the database
server grants memory within the range specified.

For detailed information, see the Performance Guide.

COMPUTE_QUOTA Environment Option

Use the COMPUTE_QUOTA environment option to allow the optimizer to use
only one CPU VP (virtual processor) on each coserver for each query operator
instead of using all CPU VPs of each coserver.

To turn on this environment option, execute the following statement:

SET ENVIRONMENT COMPUTE_QUOTA ON
SQL Statements 2-679

SET ENVIRONMENT
IMPLICIT_PDQ Environment Option

Use the IMPLICIT_PDQ environment option to allow the database server to
determine the amount of memory allocated to a query. Unless
BOUND_IMPL_PDQ is also set, the database server ignores the current explicit
setting of PDQPRIORITY. It does not allocate more memory, however, than is
available when PDQPRIORITY is set to 100, as determined by
MAX_PDQPRIORITY / 100 * DS_TOTAL_MEMORY.

This environment option is OFF by default.

If value is set between 1 and 100, the database server scales its estimate by the
specified value. If you specify a low value, the amount of memory assigned
to the query is reduced, which might increase the amount of query-operator
overflow.

For example, to request the database server to determine memory allocations
for queries and distribute memory among query operators according to their
needs, enter the following statement:

SET ENVIRONMENT IMPLICIT_PDQ ON

To require the database server to use explicit PDQPRIORITY settings as the
upper bound and optional lower bound of memory that it grants to a query,
set the BOUND_IMPL_PDQ environment option.

MAXSCAN Environment Option

Use the MAXSCAN environment option to change the default number of scan
threads on each coserver. The default is three scan threads for each CPU VP.
You might want to reduce the number of scan threads on a coserver if the
GROUP, JOIN, and other operators above the scan are not producing rows
quickly enough to keep the default number of scan threads busy.

For some queries, you might want to increase the number of scan threads on
each coserver. For example, if each coserver has three CPU VPs, the database
server can create nine scan threads on each coserver. To increase the number
to four threads for each CPU VP, execute the following statement:

SET ENVIRONMENT MAXSCAN 12

MAXSCAN is automatically set to 1 if the COMPUTE_QUOTA environment
option is enabled or if the isolation level is set to Cursor Stability and the
database server can use a pipe operator.
2-680 IBM Informix Guide to SQL: Syntax

SET ENVIRONMENT
TMPSPACE_LIMIT Environment Option

Use the TMPSPACE_LIMIT environment option to specify the amount of
temporary space on each coserver that a query can use for query operator
overflow. Temporary space limits do not affect the creation of temporary
tables. The limits apply only to the query-operator overflow that occurs
when a query cannot get enough memory to complete execution.

By default TMPSPACE_LIMIT is OFF, and a query can use all available
temporary space for operator overflow. If the DS_TOTAL_TMPSPACE configu-
ration parameter is not set, then setting TMPSPACE_LIMIT has no effect.

If you enter a value between 0 and 100 as an argument to the
TMPSPACE_LIMIT option, the database server sets the temporary space quota
to the specified percent of available temporary space that the ONCONFIG
parameter, DS_TOTAL_TMPSPACE, specifies.

� If the value is 100, queries can use only the amount of temporary
space on each coserver that DS_TOTAL_TMPSPACE. specifies.

� If the value is 0, query operators cannot overflow to temporary
space.

� If you do not specify a value, a query can use all available temporary
space on each coserver, as limited by DS_TOTAL_TMPSPACE, for
query operator overflow.

To require queries to use only the amount of temporary space specified by the
setting of DS_TOTAL_TMPSPACE on each coserver, execute this statement:

SET ENVIRONMENT TMPSPACE_LIMIT ON

To limit queries to 50 percent of DS_TOTAL_TMPSPACE on each coserver,
execute the following statement:

SET ENVIRONMENT TMPSPACE_LIMIT "50";
SQL Statements 2-681

SET ENVIRONMENT
TEMP_TAB_EXT_SIZE and TEMP_TAB_NEXT_SIZE Options

Use the TEMP_TAB_EXT_SIZE and TEMP_TAB_NEXT_SIZE environment
options to specify the number of kilobytes used as the first and next extent
size for a system-generated temporary table.

The following example shows the syntax for setting the first and next extent
size using these environment options:

SET ENVIRONMENT TEMP_TAB_EXT_SIZE '64'
SET ENVIRONMENT TEMP_TAB_NEXT_SIZE '128'

This example sets the first extent size of a generated temporary table to 64
and the next extent size to 128 kilobytes.

The minimum value of these environment options is four times the page size
on your system. If you specify a size below the minimum, the server will
default the page size to four pages. For flex inserts, the server will default to
32 pages or 128 kilobytes.

The maximum value for TEMP_TAB_EXT_SIZE and TEMP_TAB_NEXT_SIZE is
the maximum value of a chunk size.

Use the DEFAULT keyword to reset the values of these environments options
back to the system defaults.

Important: The extent sizes for temporary tables created for hash tables and sorts are
calculated by the system and they will not be overridden by these SET
ENVIRONMENT variables.

Local Scope of SET ENVIRONMENT

The scope of these changes to environment options is local to the routine that
executes SET ENVIRONMENT, rather than the entire session. Exceptions to
this local scope are the sysdbopen() and sysdbclose() SPL routines, which
can set the initial environment for a session. For more information on these
built-in routines, see “Using sysbdopen() and sysdbclose() Stored Proce-
dures” on page 2-189.

Related Information
Related statements: SET PDQPRIORITY
2-682 IBM Informix Guide to SQL: Syntax

SET EXPLAIN
SET EXPLAIN
Use the SET EXPLAIN statement to display the query plan of optimizer, an
estimate of the number of rows returned, and the relative cost of the query.

Syntax

Usage
Output from a SET EXPLAIN ON statement is directed to the appropriate file
until you issue a SET EXPLAIN OFF statement or until the program ends. If
you do not enter a SET EXPLAIN statement, the default behavior is OFF. The
database server does not generate measurements for queries.

The SET EXPLAIN statement executes during the database server
optimization phase, which occurs when you initiate a query. For queries that
are associated with a cursor, if the query is prepared and does not have host
variables, optimization occurs when you prepare it. Otherwise, optimization
occurs when you open the cursor.

Element Purpose Restrictions Syntax
expr Expression that returns a

filename specification
Must return a string satisfying
the restrictions on filename.

Expression, p. 4-67

filename Path and filename of the file to
receive the output. For the
default, see “Location of the
Output File” on page 2-662.

Must conform to operating-
system rules. If an existing file,
see “Using the WITH APPEND
Option” on page 2-661.

Quoted String,
p. 4-243

filename_var Host variable that stores filename Must be a character data type. Language specific

SET EXPLAIN OFF

AVOID_EXECUTEON

FILE TO 'filename '

filename_var

expr

WITH APPEND

XPS
SQL Statements 2-683

SET EXPLAIN
The SET EXPLAIN statement provides various measurements of the work
involved in performing a query.

Using the AVOID_EXECUTE Option

The SET EXPLAIN ON AVOID_EXECUTE statement activates the Avoid
Execute option for a session, or until the next SET EXPLAIN OFF (or ON)
without AVOID_EXECUTE. The AVOID_EXECUTE keyword prevents DML
statements from executing; the database server prints the query plan to an
output file. If you activate AVOID_EXECUTE for a query that contains a
remote table, the query does not execute at either the local or remote site.

Use the SET EXPLAIN ON or the SET EXPLAIN OFF statement to turn off the
AVOID_EXECUTE option. The SET EXPLAIN ON statement turns off the
AVOID_EXECUTE option but continues to generate a query plan and writes
the results to an output file.

Option Purpose

ON Generates measurements for each subsequent query
and writes the results to an output file in the current
directory. If the file already exists, new explain output is
appended to the existing file.

AVOID_EXECUTE Prevents a SELECT, INSERT, UPDATE, or DELETE
statement from executing while the database server
prints the query plan to an output file

OFF Terminates activity of the SET EXPLAIN statement, so
that measurements for subsequent queries are no longer
generated or written to the output file

FILE TO Generates measurements for each subsequent query
and allows you to specify the location for the explain
output file. If the file already exists, new explain output
overwrites the contents of the file unless you use the
WITH APPEND option.
2-684 IBM Informix Guide to SQL: Syntax

SET EXPLAIN
If you use the SET EXPLAIN ON AVOID_EXECUTE statement inside an SPL
routine, the SPL routine and any DDL statements still execute, but the DML
statements inside the SPL routine do not execute. The database server prints
the query plan of the SPL routine to an output file. To turn off this option, you
must execute the SET EXPLAIN ON or the SET EXPLAIN OFF statement outside
the SPL routine. If you execute the SET EXPLAIN ON AVOID_EXECUTE
statement before you execute an SPL routine, the DML statements inside the
SPL routine do not execute, and the database server does not print a query
plan of the SPL routine to an output file.

If you execute the SET EXPLAIN ON AVOID_EXECUTE statement before you
open a cursor in an ESQL/C program, each FETCH operation returns the
message that the row was not found. If you execute SET EXPLAIN ON
AVOID_EXECUTE after an ESQL/C program opens a cursor, however, this
statement has no effect on the cursor, which continues to return rows. ♦

Nonvariant functions in a query are still evaluated when AVOID_EXECUTE is
in effect, because the database server calculates these functions before
optimization.

For example, the func() function is evaluated, even though the following
SELECT statement is not executed:

SELECT * FROM orders WHERE func(10) > 5

For other performance implications of the AVOID_EXECUTE option, see your
Performance Guide.

Using the FILE TO Option

When you execute a SET EXPLAIN FILE TO statement, explain output is
implicitly turned on. The default filename for the output is sqexplain.out
until changed by a SET EXPLAIN FILE TO statement. Once changed, the
filename remains set until the end of the session or until changed by another
SET EXPLAIN FILE TO statement.

The filename can be any valid combination of optional path and filename. If
no path component is specified, the file is placed in your current directory.
The permissions for the file are owned by the current user.

E/C
SQL Statements 2-685

SET EXPLAIN
Using the WITH APPEND Option

The output file that you specify in the SETEXPLAIN statement can be a new
file or an existing file.

If you specify an existing file, the current contents of the file are purged when
you issue the SET EXPLAIN FILE TO statement. The first execution of a FILE TO
command sends output to the beginning of the file.

If you include the WITH APPEND option, the current contents of the file are
preserved when you issue the SET EXPLAIN FILE TO statement. The execution
of a WITH APPEND command appends output to the end of the file.

If you specify a new file in the SET EXPLAIN FILE TO statement, it makes no
difference whether you include the WITH APPEND option. The first execution
of the command sends output to the beginning of the new file.

Default Name and Location of the Output File

On UNIX, when you issue a SET EXPLAIN ON statement, the plan that the
optimizer chooses for each subsequent query is written to the sqexplain.out
file by default.

If the output file does not exist when you issue the SET EXPLAIN ON
statement, the database server creates the output file. If the output file
already exists when you issue the SET EXPLAIN ON statement, subsequent
output is appended to the file.

If the client application and the database server are on the same computer, the
sqexplain.out file is stored in your current directory. If you are using a
Version 5.x or earlier client application and the sqexplain.out file does not
appear in the current directory, check your home directory for the file. When
the current database is on another computer, the sqexplain.out file is stored
in your home directory on the remote host. ♦

On Windows, SET EXPLAIN ON writes the plan that the optimizer chooses for
each subsequent query to file %INFORMIXDIR%\sqexpln\username.out
where username is the user login. ♦

UNIX

Windows
2-686 IBM Informix Guide to SQL: Syntax

SET EXPLAIN
SET EXPLAIN Output
By examining the SET EXPLAIN output file, you can determine if steps can be
taken to improve the performance of the query. The following table lists
terms that can appear in the output file and their significance.

Term Significance

Query Displays the executed query and indicates whether SET
OPTIMIZATION was set to HIGH or LOW.

If you SET OPTIMIZATION to LOW, the output displays the
following uppercase string as the first line: QUERY:{LOW}

If you SET OPTIMIZATION to HIGH, the output of SET EXPLAIN
displays the following uppercase string as the first line: QUERY:

Directives
followed

Lists the directives set for the query

If the syntax for a directive is incorrect, the query is processed
without the directive. In that case, the output shows DIRECTIVES
NOT FOLLOWED in addition to DIRECTIVES FOLLOWED.

For more information on the directives specified after this term, see
the “Optimizer Directives” on page 4-222 or “SET OPTIMI-
ZATION” on page 2-700.

Estimated
cost

An estimate of the amount of work for the query

The optimizer uses an estimate to compare the cost of one path
with another. The estimate is a number the optimizer assigns to the
selected access method. This number does not translate directly
into time and cannot be used to compare different queries. It can be
used, however, to compare changes made for the same query.
When data distributions are used, a query with a higher estimate
generally takes longer to run than one with a smaller estimate.

In the case of a query and a subquery, two estimated cost figures
are returned; the query figure also contains the subquery cost. The
subquery cost is shown only so you can see the cost that is
associated with the subquery.

Estimated
number of
rows returned

An estimate of the number of rows to be returned

This number is based on information in the system catalog tables.

(1 of 2)
SQL Statements 2-687

SET EXPLAIN
If the query uses a collating order other than the default for the DB_LOCALE
setting, then the DB_LOCALE setting and the name of the other locale that is
the basis for the collation in the query (as specified by the SET COLLATION
statement) are both included in the output file. Similarly, if an index is not
used because of its collation, the output file indicates this. ♦

Related Information
Related statements: SET OPTIMIZATION and UPDATE STATISTICS

For a description of the EXPLAIN and AVOID_EXECUTE optimizer directives,
see “Explain-Mode Directives” on page 4-231.

For discussions of SET EXPLAIN and of analyzing the output of the optimizer,
see your Performance Guide.

Numbered
list

The order in which tables are accessed, followed by the access
method used (index path or sequential scan)

When a query involves table inheritance, all the tables are listed
under the supertable in the order they were accessed.

Index keys The columns used as filters or indexes; the column name used for
the index path or filter is indicated

The notation (Key Only) indicates that all the desired columns are
part of the index key, so a key-only read of the index could be
substituted for a read of the actual table.

The Lower Index Filter shows the key value where the index read
begins. If the filter condition contains more than one value, an
Upper Index Filter is shown for the key value where the index read
stops.

Join method When the query involves a join between two tables, the join
method the optimizer used (Nested Loop or Dynamic Hash) is
shown at the bottom of the output for that query.

When the query involves a dynamic join of two tables, if the output
contains the words Build Outer, the hash table is built on the first
table listed (called the build table). If the words Build Outer do not
appear, the hash table is built on the second table listed.

Term Significance

(2 of 2)

IDS

GLS
2-688 IBM Informix Guide to SQL: Syntax

SET INDEX
SET INDEX
Use the SET INDEX statement to specify that one or more fragments of an
index be resident in shared memory as long as possible.

Syntax

Usage
This statement was formerly supported by Dynamic Server, but it is ignored
in current releases. Beginning with Version 9.40, Dynamic Server determines
the residency status of indexes and tables automatically. ♦

The SET INDEX statement is a special case of the SET Residency statement.
The SET Residency statement can also specify how long a table fragment
remains resident in shared memory.

For the complete syntax and semantics of the SET INDEX statement, see “SET
Residency” on page 2-708.

+

XPS

Element Purpose Restrictions Syntax
dbspace Dbspace to store the fragment Must exist. Identifier, p. 4-189
index Index for which to change residency state Must exist. Database Object Name, p. 4-46

SET indexINDEX

)

,

MEMORY_RESIDENT

NON_RESIDENT

(dbspace

IDS
SQL Statements 2-689

SET INDEXES
SET INDEXES
Use the SET INDEXES statement to enable or disable an index, or to change the
filtering mode of a unique index.

Do not confuse the SET INDEXES statement with the SET INDEX statement.

Syntax

Usage
The SET INDEXES statement is a special case of the SET Database Object Mode
statement. The SET Database Object Mode statement can also enable or
disable a trigger or constraint, or change the filtering mode of a constraint.

For the complete syntax and semantics of the SET INDEX statement, see “SET
Database Object Mode” on page 2-652.

Element Purpose Restrictions Syntax
table Table whose indexes are all to be enabled,

disabled, or changed in their filtering mode
Must exist Database Object Name, p. 4-46

index Index to be enabled, disabled, or changed in its
filtering mode

Must exist Database Object Name, p. 4-46

SET INDEXES

,

index DISABLED

WITHOUT ERROR

WITH ERROR

FILTERING

FOR table ENABLED
2-690 IBM Informix Guide to SQL: Syntax

SET ISOLATION
SET ISOLATION
Use the SET ISOLATION statement to define the degree of concurrency among
processes that attempt to access the same rows simultaneously.

Syntax

Usage
The SET ISOLATION statement is an Informix extension to the ANSI SQL-92
standard. If you want to set isolation levels through an ANSI-compliant
statement, use the SET TRANSACTION statement instead. For a comparison of
these two statements, see “SET TRANSACTION” on page 2-720.

The database isolation level affects read concurrency when rows are retrieved
from the database. The database server uses shared locks to support different
levels of isolation among processes attempting to access data.

The update or delete process always acquires an exclusive lock on the row
that is being modified. The level of isolation does not interfere with rows that
you are updating or deleting. If another process attempts to update or delete
rows that you are reading with an isolation level of Repeatable Read, that
process is denied access to those rows.

In ESQL/C, cursors that are open when SET ISOLATION executes might or
might not use the new isolation level when rows are retrieved. Any isolation
level that was set from the time the cursor was opened until the application
fetches a row might be in effect. The database server might have read rows
into internal buffers and internal temporary tables using the isolation level
that was in effect at that time. To ensure consistency and reproducible results,
close any open cursors before you execute the SET ISOLATION statement. ♦

+

SET ISOLATION TO DIRTY READ

CURSOR STABILITY

REPEATABLE READ

COMMITTED READ RETAIN UPDATE LOCKS

E/C
SQL Statements 2-691

SET ISOLATION
Informix Isolation Levels
The following definitions explain the critical characteristics of each isolation
level, from the lowest level of isolation to the highest.

Using the Dirty Read Option

Use the Dirty Read option to copy rows from the database whether or not
there are locks on them. The program that fetches a row places no locks and
it respects none. Dirty Read is the only isolation level available to databases
that do not have transactions.

This isolation level is most appropriate for static tables that are used for
queries, that is, tables where data is not being modified, because it provides
no isolation. With Dirty Read, the program might return a phantom row,
which is an uncommitted row that was inserted or modified within a trans-
action that has subsequently rolled back. No other isolation level allows
access to a phantom row.

Using the Committed Read Option

Use the Committed Read option to guarantee that every retrieved row is
committed in the table at the time that the row is retrieved. This option does
not place a lock on the fetched row. Committed Read is the default level of
isolation in a database with logging that is not ANSI compliant.

Committed Read is appropriate to use when each row of data is processed as
an independent unit, without reference to other rows in the same table or in
other tables.

Using the Cursor Stability Option

Use the Cursor Stability option to place a shared lock on the fetched row,
which is released when you fetch another row or close the cursor. Another
process can also place a shared lock on the same row, but no process can
acquire an exclusive lock to modify data in the row. Such row stability is
important when the program updates another table based on the data it reads
from the row.
2-692 IBM Informix Guide to SQL: Syntax

SET ISOLATION
If you set the isolation level to Cursor Stability, but you are not using a trans-
action, the Cursor Stability isolation level acts like the Committed Read
isolation level.

Using the Repeatable Read Option

Use the Repeatable Read option to place a shared lock on every row that is
selected during the transaction. Another process can also place a shared lock
on a selected row, but no other process can modify any selected row during
your transaction or insert a row that meets the search criteria of your query
during your transaction. If you repeat the query during the transaction, you
reread the same information. The shared locks are released only when the
transaction commits or rolls back. Repeatable Read is the default isolation
level in an ANSI-compliant database.

Repeatable Read isolation places the largest number of locks and holds them
the longest. Therefore, it is the level that reduces concurrency the most.

Default Isolation Levels

The default isolation level for a particular database is established when you
create the database according to database type. The following list describes
the default isolation level for each database type.

The default level remains in effect until you issue a SET ISOLATION statement.
After a SET ISOLATION statement executes, the new isolation level remains in
effect until one of the following events occurs:

� You enter another SET ISOLATION statement.

� You open another database that has a default isolation level different
from the level that your last SET ISOLATION statement specified.

� The program ends.

Isolation Level Database Type

Dirty Read Default level in a database without logging

Committed Read Default level in a logged database that is not ANSI compliant

Repeatable Read Default level in an ANSI-compliant database
SQL Statements 2-693

SET ISOLATION
Using the RETAIN UPDATE LOCKS Option

Use the RETAIN UPDATE LOCKS option to affect the behavior of the database
server when it handles a SELECT ... FOR UPDATE statement.

In a database with the isolation level set to Dirty Read, Committed Read, or
Cursor Stability, the database server places an update lock on a fetched row
of a SELECT ... FOR UPDATE statement. When you turn on the RETAIN
UPDATE LOCKS option, the database server retains the update lock until the
end of the transaction rather than release it at the next subsequent FETCH or
when the cursor is closed. This option prevents other users from placing an
exclusive lock on the updated row before the current user reaches the end of
the transaction.

You can use this option to achieve the same locking effects but avoid the
overhead of dummy updates or the repeatable read isolation level.

You can turn this option on or off at any time during the current session.

You can turn the option off by resetting the isolation level without using the
RETAIN UPDATE LOCKS keywords.

For more information on update locks, see “Locking Considerations” on
page 2-765.

Turning the Option Off In the Middle of a Transaction

If you set the RETAIN UPDATE LOCKS option to OFF after a transaction has
begun, but before the transaction has been committed or rolled back, several
update locks might still exist.

Switching OFF the feature does not directly release any update lock. When
you turn this option off, the database server reverts to normal behavior for
the three isolation levels. That is, a FETCH statement releases the update lock
placed on a row by the immediately preceding FETCH statement, and a
closed cursor releases the update lock on the current row.

Update locks placed by earlier FETCH statements are not released unless
multiple update cursors are present within the same transaction. In this case,
a subsequent FETCH could also release older update locks of other cursors.
2-694 IBM Informix Guide to SQL: Syntax

SET ISOLATION
Effects of Isolation Levels
You cannot set the database isolation level in a database that does not have
logging. Every retrieval in such a database occurs as a Dirty Read.

You can issue a SET ISOLATION statement from a client computer only after a
database is opened.

The data retrieved from a BYTE or TEXT column can vary, depending on the
database isolation level. Under Dirty Read or Committed Read levels of
isolation, a process can read a BYTE or TEXT column that is either deleted (if
the DELETE is not yet committed) or in the process of being deleted. Under
these isolation levels, deleted data is readable under certain conditions. For
information about these conditions, see the Administrator’s Guide.

When you use DB-Access, as you use higher levels of isolation, lock conflicts
occur more frequently. For example, if you use Cursor Stability, more lock
conflicts occur than if you use Committed Read. ♦

Using a scroll cursor in an ESQL/C transaction, you can force consistency
between your temporary table and the database table either by setting the
level to Repeatable Read or by locking the entire table during the transaction.

If you use a scroll cursor WITH HOLD in a transaction, you cannot force
consistency between your temporary table and the database table. A table-
level lock or locks that are set by Repeatable Read are released when the
transaction is completed, but the scroll cursor with hold remains open
beyond the end of the transaction. You can modify released rows as soon as
the transaction ends, but the retrieved data in the temporary table might be
inconsistent with the actual data. ♦

Warning: Do not use nonlogging tables within a transaction. If you need to use a
nonlogging table within a transaction, either set the isolation level to Repeatable
Read or lock the table in exclusive mode to prevent concurrency problems.

Related Information
Related statements: CREATE DATABASE, SET LOCK MODE, and SET
TRANSACTION

For a discussion on how to set the isolation level, see the IBM Informix Guide
to SQL: Tutorial.

DB

E/C
SQL Statements 2-695

SET LOCK MODE
SET LOCK MODE
Use the SET LOCK MODE statement to define how the database server
handles a process that tries to access a locked row or table.

Syntax

Usage
This statement overrides any setting of the IFX_TABLE_LOCKMODE
environment variable or DEF_TABLE_LOCKMODE setting in ONCONFIG. You
can direct the response of the database server in the following ways when a
process tries to access a locked row or table.

In the following example, the user specifies that if the process requests a
locked row, the operation should end immediately and an error code should
be returned:

SET LOCK MODE TO NOT WAIT

+

Element Purpose Restrictions Syntax
seconds Maximum number of seconds that a process waits

for a lock to be released before issuing an error
Valid only if shorter
than system default.

Literal Number,
p. 4-216

SET LOCK MODE TO

seconds WAIT

NOT WAIT

Lock Mode Effect

NOT WAIT Database server ends the operation immediately and returns an
error code. This condition is the default.

WAIT Database server suspends the process until the lock releases.

WAIT seconds Database server suspends the process until the lock releases or until
the waiting period ends. If the lock remains after the waiting
period, the operation ends and an error code is returned.
2-696 IBM Informix Guide to SQL: Syntax

SET LOCK MODE
In the following example, the user specifies that the process should be
suspended until the lock is released:

SET LOCK MODE TO WAIT

The next example sets an upper limit of 17 seconds on the length of any wait:

SET LOCK MODE TO WAIT 17

WAIT Clause
The WAIT clause causes the database server to suspend the process until the
lock is released or until a specified number of seconds have passed without
the lock being released.

The database server protects against the possibility of a deadlock when you
request the WAIT option. Before the database server suspends a process, it
checks whether suspending the process could create a deadlock. If the
database server discovers that a deadlock could occur, it ends the operation
(overruling your instruction to wait) and returns an error code. In the case of
either a suspected or actual deadlock, the database server returns an error.

Cautiously use the unlimited waiting period that was created when you
specify the WAIT option without seconds. If you do not specify an upper limit,
and the process that placed the lock somehow fails to release it, suspended
processes could wait indefinitely. Because a true deadlock situation does not
exist, the database server does not take corrective action.

In a networked environment, the DBA uses the ONCONFIG parameter
DEADLOCK_TIMEOUT to establish a default value for seconds. If you use a SET
LOCK MODE statement to set an upper limit, your value applies only when
your waiting period is shorter than the system default. The number of
seconds that the process waits applies only if you acquire locks within the
current database server and a remote database server within the same
transaction.

Related Information
Related statements: LOCK TABLE, SET ISOLATION, SET TRANSACTION, and
UNLOCK TABLE

For a discussion on how to set the lock mode, see the IBM Informix Guide to
SQL: Tutorial.
SQL Statements 2-697

SET LOG
SET LOG
Use the SET LOG statement to change your database logging mode from
buffered transaction logging to unbuffered transaction logging or vice versa.

Syntax

Usage
You activate transaction logging when you create a database or add logging
to an existing database. These transaction logs can be buffered or unbuffered.

Buffered logging is a type of logging that holds transactions in a memory
buffer until the buffer is full, regardless of when the transaction is committed
or rolled back. The database server provides this option to speed up opera-
tions by reducing the number of disk writes.

Warning: You gain a marginal increase in efficiency with buffered logging, but you
incur some risk. In the event of a system failure, the database server cannot recover
any completed transactions in the memory buffer that had not been written to disk.

The SET LOG statement in the following example changes the transaction
logging mode to buffered logging:

SET BUFFERED LOG

Unbuffered logging is a type of logging that does not hold transactions in a
memory buffer. As soon as a transaction ends, the database server writes the
transaction to disk. If a system failure occurs when you are using unbuffered
logging, you recover all completed transactions, but not those still in the
buffer. The default condition for transaction logs is unbuffered logging.

The SET LOG statement in the following example changes the transaction
logging mode to unbuffered logging:

SET LOG

+

SET LOG

BUFFERED
2-698 IBM Informix Guide to SQL: Syntax

SET LOG
The SET LOG statement redefines the mode for the current session only. The
default mode, which the database administrator sets with the ondblog utility,
remains unchanged.

 The buffering option does not affect retrievals from external tables. For
distributed queries, a database with logging can retrieve only from databases
with logging, but it makes no difference whether the databases use buffered
or unbuffered logging.

An ANSI-compliant database cannot use buffered logging.

You cannot change the logging mode of ANSI-compliant databases. If you
created a database with the WITH LOG MODE ANSI keywords, you cannot
later use the SET LOG statement to change the logging mode to buffered or
unbuffered transaction logging. ♦

Related Information
Related statement: CREATE DATABASE

ANSI
SQL Statements 2-699

SET OPTIMIZATION
SET OPTIMIZATION
Use the SET OPTIMIZATION statement to specify how much time the
optimizer spends developing a query plan or specifying optimization goals.

Syntax

Usage
You can execute a SET OPTIMIZATION statement at any time. The specified
optimization level carries across databases on the current database server.
The option that you specify remains in effect until you issue another SET
OPTIMIZATION statement or until the program ends. The default database
server optimization level for the amount of time that the query optimizer
spends determining the query plan is HIGH.

The default optimization goal is ALL_ROWS. Although you can set only one
option at a time, you can issue two SET OPTIMIZATION statements: one that
specifies the time the optimizer spends to determine the query plan and one
that specifies the optimization goal of the query. ♦

+

SET OPTIMIZATION HIGH

LOWIDS FIRST_ROWS

ALL_ROWS

IDS
2-700 IBM Informix Guide to SQL: Syntax

SET OPTIMIZATION
HIGH and LOW Options

The HIGH and LOW options determine how much time the query optimizer
spends to determine the query plan:

� HIGH

This option directs the optimizer to use a sophisticated, cost-based
algorithm that examines all reasonable query-plan choices and
selects the best overall alternative.

For large joins, this algorithm can incur more overhead than you
desire. In extreme cases, you can run out of memory.

� LOW

This option directs the optimizer to use a less sophisticated, but
faster, optimization algorithm. This algorithm eliminates unlikely
join strategies during the early stages of optimization and reduces
the time and resources spent during optimization.

When you specify a low level of optimization, the database server
might not select the optimal strategy because the strategy was elim-
inated from consideration during the early stages of the algorithm.

FIRST_ROWS and ALL_ROWS Options

The FIRST_ROWS and ALL_ROWS options relate to the optimization goal of
the query:

� FIRST_ROWS

This option directs the optimizer to choose the query plan that
returns the first result record as soon as possible.

� ALL_ROWS

This option directs the optimizer to choose the query plan that
returns all the records as quickly as possible.

You can also specify the optimization goal of a specific query with the
optimization-goal directive. For more information, see “Optimizer Direc-
tives” on page 4-222.

IDS
SQL Statements 2-701

SET OPTIMIZATION
Optimizing SPL Routines

For SPL routines that remain unchanged or change only slightly, you might
want to set the SET OPTIMIZATION statement to HIGH when you create the
SPL routine. This step stores the best query plans for the SPL routine. Then
execute a SET OPTIMIZATION LOW statement before you execute the SPL
routine. The SPL routine then uses the optimal query plans and runs at the
more cost-effective rate.

Examples

The following example shows optimization across a network. The central
database (on the midstate database server) is to have LOW optimization; the
western database (on the rockies database server) is to have HIGH
optimization.

CONNECT TO 'central@midstate';
SET OPTIMIZATION LOW;
SELECT * FROM customer;
CLOSE DATABASE;
CONNECT TO 'western@rockies';
SET OPTIMIZATION HIGH;
SELECT * FROM customer;
CLOSE DATABASE;
CONNECT TO 'wyoming@rockies';
SELECT * FROM customer;

The wyoming database is to have HIGH optimization because it resides on
the same database server as the western database. The code does not need to
re-specify the optimization level for the wyoming database because the
wyoming database resides on the rockies database server like the western
database.

The following example directs the optimizer to use the most time to
determine a query plan and to then return the first rows of the result as soon
as possible:

SET OPTIMIZATION LOW;
SET OPTIMIZATION FIRST_ROWS;
SELECT lname, fname, bonus
FROM sales_emp, sales
WHERE sales.empid = sales_emp.empid AND bonus > 5,000
ORDER BY bonus DESC

♦

IDS
2-702 IBM Informix Guide to SQL: Syntax

SET OPTIMIZATION
Related Information
Related statements: SET EXPLAIN and UPDATE STATISTICS

For information on other methods by which you can alter the query plan of
the optimizer, see “Optimizer Directives” on page 4-222. ♦

For more information on how to optimize queries, see your Performance
Guide.

IDS
SQL Statements 2-703

SET PDQPRIORITY
SET PDQPRIORITY
The SET PDQPRIORITY statement allows an application to set the query
priority level dynamically within a routine.

Syntax

Usage
The SET PDQPRIORITY statement overrides the PDQPRIORITY environment
variable (but has lower precedence than the ONCONFIG configuration
parameter MAX_PDQPRIORITY). The scope of SET PDQPRIORITY is local to the
routine, and does not affect other routines within the same session.

Set PDQ priority to a value that is less than the quotient of 100 divided by the
maximum number of prepared statements. For example, if two prepared
statements are active, you should set the PDQ priority to less than 50. ♦

The SET PDQPRIORITY statement is not supported in SPL routines. ♦

+

Element Purpose Restrictions Syntax
high Integer value that specifies the desired

resource allocation
Must be in the range 1 to 100, and
not less than the low value.

Literal Number,
p. 4-216

low Integer that specifies the minimum
resource allocation

Must be in the range 1 to 100, and
not greater than the high value.

Literal Number,
p. 4-216

resources Integer that specifies the query priority
level and the percent of resources to
process the query

Can range from -1 to 100. See also
“Allocating Database Server
Resources” on page 2-705.

Literal Number,
p. 4-216

OFF

HIGH

resources

SET PDQPRIORITY DEFAULT

LOW

LOW HIGH highlow

IDS

XPS

IDS

SPL
2-704 IBM Informix Guide to SQL: Syntax

SET PDQPRIORITY
In Extended Parallel Server, you can use SET PDQPRIORITY to set PDQ
priority at runtime to a value greater than 0 when you need more memory
for operations such as sorts, forming groups, and index builds.
For guidelines on which values to use, see your Performance Guide. ♦

Allocating Database Server Resources

For example, assume that the DBA sets the MAX_PDQPRIORITY parameter to
50. Then a user enters the following SET PDQPRIORITY statement to set the
query priority level to 80 percent of resources:

SET PDQPRIORITY 80

When it processes the query, the database server uses the MAX_PDQPRIORITY
value to factor the query priority level set by the user. The database server
silently processes the query with a priority level of 40. This priority level
represents 50 percent of the 80 percent of resources that the user specifies.

The following keywords are supported by the SET PDQPRIORITY statement.

You can specify an integer in the range from -1 to 100 to indicate a query
priority level as the percent of database server resources to process the query.
Resources include the amount of memory and the number of processors. The
higher the number you specify, the more resources the database server uses.

Keyword Effect

DEFAULT Uses the setting of the PDQPRIORITY environment variable

LOW Data values are fetched from fragmented tables in parallel. (In
Dynamic Server, when you specify LOW, the database server uses no
other forms of parallelism.)

OFF PDQ is turned off (Dynamic Server only). The database server uses no
parallelism. OFF is the default if you use neither the PDQPRIORITY
environment variable nor the SET PDQPRIORITY statement.

HIGH The database server determines an appropriate PDQPRIORITY value,
based on factors that include the number of available processors, the
fragmentation of the tables being queried, the complexity of the
query, and others. IBM reserves the right to change the performance
behavior of queries when HIGH is specified in future releases.

XPS
SQL Statements 2-705

SET PDQPRIORITY
Use of more resources usually indicates better performance for a given query.
Using excessive resources, however, can cause contention for resources and
remove resources from other queries, so that degraded performance results.
With the resources option, the following values are numeric equivalents of the
keywords that indicate query priority level.

The following statements are equivalent. The first statement uses the
keyword LOW to establish a low query-priority level. The second uses a value
of 1 in the resources parameter to establish a low query-priority level.

SET PDQPRIORITY LOW;

SET PDQPRIORITY 1;

Using a Range of Values

In Extended Parallel Server, when you specify a range of values in SET
PDQPRIORITY, you allow the Resource Grant Manager (RGM) some discretion
in allocating resources.

The high value in the range is the desired resource allocation, while the low
value is the minimum acceptable resource allocation for the query. If the low
value exceeds the available system resources, the RGM blocks the query.
Otherwise, the RGM chooses the largest PDQ priority in the specified range
that does not exceed available resources.

Related Information
For information about configuration parameters and about the Resource
Grant Manager, see your Administrator’s Guide and your Performance Guide.

For information about the PDQPRIORITY environment variable, see the
IBM Informix Guide to SQL: Reference.

Value Equivalent Keyword-Priority Level

-1 DEFAULT

0 OFF (Dynamic Server only)

1 LOW

XPS
2-706 IBM Informix Guide to SQL: Syntax

SET PLOAD FILE
SET PLOAD FILE
Use the SET PLOAD FILE statement to prepare a log file for a session of loading
or unloading data from or to an external table. The log file records summary
statistics about each load or unload job. The log file also lists any reject files
created during a load job.

Syntax

Usage
The WITH APPEND option allows you to append new log information to the
existing log file.

Each time a session closes, the log file for that session also closes. If you issue
more than one SET PLOAD FILE statement within a session, each new
statement closes a previously opened log file and opens a new log file.

If you invoke a SET PLOAD FILE statement with a simple filename on a local
database, the output file is located in your current directory. If your current
database is on a remote database server, then the output file is located in your
home directory on the remote database server, on the coserver where the
initial connection was made. If you provide a full pathname for the file, it is
placed in the directory and file specified on the remote server.

Related Information
Related statement: CREATE EXTERNAL TABLE

+

XPS

Element Purpose Restrictions Syntax
filename Name of the log file. If you specify no log filename,

then log information is written to /dev/null.
If the file cannot be opened
for writing, an error results.

Platform-
dependent

filenameSET PLOAD FILE TO

WITH APPEND
SQL Statements 2-707

SET Residency
SET Residency
Use the SET Residency statement to specify that one or more fragments of a
table or index be resident in shared memory as long as possible.

Syntax

Usage
This statement was formerly supported by Dynamic Server, but it is ignored
in current releases. Beginning with Version 9.40, Dynamic Server determines
the residency status of indexes and tables automatically. ♦

The SET Residency statement allows you to specify the tables, indexes, and
data fragments that you want to remain in the buffer as long as possible.
When a free buffer is requested, pages that are declared MEMORY_RESIDENT
are considered last for page replacement.

The default state is nonresident. The residency state is persistent while the
database server is up. That is, each time the database server is started, you
must specify the database objects that you want to remain in shared memory.

+

XPS

Element Purpose Restrictions Syntax
dbspace The dbspace where fragment resides The dbspace must exist Identifier, p. 4-189
name Table or index for which the residency

state will be changed
Table or index must exist Database Object

Name, p. 4-46

SET nameTABLE

INDEX
)

,
MEMORY_RESIDENT

NON_RESIDENT
(dbspace

IDS
2-708 IBM Informix Guide to SQL: Syntax

SET Residency
After a table, index, or data fragment is set to MEMORY_RESIDENT, the
residency state remains in effect until one of the following events occurs:

� You use SET Residency to set the database object to NON_RESIDENT.

� The database object is dropped.

� The database server is taken offline.

Only user informix can set or change the residency state of a database object.

Residency and the Changing Status of Fragments

If new fragments are added to a resident table, the fragments are not marked
automatically as resident. You must issue the SET Residency statement for
each new fragment or reissue the statement for the entire table.

Similarly, if a resident fragment is detached from a table, the residency state
of the fragment remains unchanged. If you want the residency state to
change to nonresident, you must issue the SET Residency statement to
declare the specific fragment (or the entire table) as nonresident.

Examples

The next example shows how to set the residency status of an entire table:

SET TABLE tab1 MEMORY_RESIDENT

For fragmented tables or indexes, you can specify residency for individual
fragments as the following example shows:

SET INDEX index1 (dbspace1, dbspace2) MEMORY_RESIDENT;
SET TABLE tab1 (dbspace1) NON_RESIDENT

This example specifies that the tab1 fragment in dbspace1 is not to remain in
shared memory while the index1 fragments in dbspace1 and dbspace2 are to
remain in shared memory as long as possible.

Related Information
Related statement: ALTER FRAGMENT

For information on how to monitor the residency status of tables, indexes,
and fragments, refer to your Administrator’s Guide.
SQL Statements 2-709

SET ROLE
SET ROLE
Use the SET ROLE statement to enable the privileges of a role.

Syntax

Usage
Any user who is granted a role can enable the role using the SET ROLE
statement. You can only enable one role at a time. If you execute the SET ROLE
statement after a role is already set, the new role replaces the old role.

All users are, by default, assigned the role NULL or NONE. In this context,
NULL and NONE are synonymous. The roles NULL and NONE have no privi-
leges. When you set the role to NULL or NONE, you disable the current role.

When you set a role, you gain the privileges of the role, in addition to the
privileges of PUBLIC and your own privileges. If a role is granted to another
role, you gain the privileges of both roles, in addition to those of PUBLIC and
your own privileges.

After the SET ROLE statement executes successfully, the role remains effective
until the current database is closed or the user executes another SET ROLE
statement. Additionally, only the user, not the role, retains ownership of any
database objects, such as tables, that were created during the session.

A role is on scope only within the current database. You cannot use privileges
that you acquire from a role to access data in another database.

+

Element Purpose Restrictions Syntax
role The role to be

enabled
Must have been created with the CREATE ROLE statement. A role
name that is enclosed between quotation marks is case sensitive.

Identifier,
p. 4-189

NULL

NONE

SET ROLE role

'role '
2-710 IBM Informix Guide to SQL: Syntax

SET ROLE
For example, if you have privileges from a role in the database named acctg,
and you execute a distributed query over the databases named acctg and
inventory, your query cannot access the data in the inventory database
unless you were granted privileges in the inventory database.

You cannot execute the SET ROLE statement while in a transaction. If the SET
ROLE statement is executed while a transaction is active, an error occurs.

If the SET ROLE statement is executed as a part of a trigger or SPL routine, and
the owner of the trigger or SPL routine was granted the role with the WITH
GRANT OPTION, the role is enabled even if you are not granted the role. For
example, this code fragment sets a role and then relinquishes it after a query:

EXEC SQL set role engineer;
EXEC SQL select fname, lname, project

INTO :efname, :elname, :eproject FROM projects
WHERE project_num > 100 AND lname = 'Larkin';

printf ("%s is working on %s\n", efname, eproject);
EXEC SQL set role null;

Setting the Default Role

In Extended Parallel Server, you can be define a default role for a user
without having to set it explicitly each time a session is initialized. After a role
has been created, it can be granted to a user using the sysdbopen()
procedure. The next example sets the default role to Engineer for all users:

CREATE PROCEDURE PUBLIC.sysdbopen()
SET ROLE Engineer;

END PROCEDURE;

You can also define a default role for individual users, as in this example:

CREATE PROCEDURE newuser.sysdbopen()
SET ROLE DBmaster;

END PROCEDURE;

For more information on using the sysdbopen() procedure, see “Using
sysbdopen() and sysdbclose() Stored Procedures” on page 2-189.

Related Information
Related statements: CREATE ROLE, DROP ROLE, GRANT, and REVOKE

For a discussion of how to use roles, see the IBM Informix Guide to SQL: Tutorial.

XPS
SQL Statements 2-711

SET SCHEDULE LEVEL
SET SCHEDULE LEVEL
The SET SCHEDULE LEVEL statement specifies the scheduling level of a query
when queries are waiting to be processed.

Syntax

Usage
The highest priority level is 100. That is, a query at level 100 is more
important than a query at level 1. In general, the Resource Grant Manager
(RGM) processes a query with a higher scheduling level before a query with
a lower scheduling level. The exact behavior of the RGM is also influenced by
the setting of the DS_ADM_POLICY configuration parameter.

Related Information
Related statement: SET PDQPRIORITY

For information about the Resource Grant Manager, see your Administrator’s
Guide.

For information about the DS_ADM_POLICY configuration parameter, see
your Administrator’s Reference.

+

XPS

Element Purpose Restrictions Syntax
 level Integer value that specifies the

scheduling priority of a query
Must be between 1 and 100. If the value falls
outside the range of 1 and 100, the database server
uses the default value of 50.

Literal
Number,
p. 4-216

SET SCHEDULE LEVEL level
2-712 IBM Informix Guide to SQL: Syntax

SET SESSION AUTHORIZATION
SET SESSION AUTHORIZATION
The SET SESSION AUTHORIZATION statement lets you change the user name
under which database operations are performed in the current session.

Syntax

Usage
This statement allows a user with the DBA privilege to bypass the privileges
that protect database objects. You can use this statement to gain access to a
table and adopt the identity of a table owner to grant access privileges. You
must obtain the DBA privilege before you start a session in which you use this
statement. Otherwise, this statement returns an error.

This statement requires the DBA privilege, which you must obtain from the
DBA before the start of your current session. The new identity remains in
effect in the current database until you execute another SET SESSION
AUTHORIZATION statement or until you close the current database. When
you use this statement, the specified user must have the Connect privilege on
the current database. Additionally, the DBA cannot set the authorization to
PUBLIC or to any defined role in the current database.

Setting a session to another user causes a change in a user name in the current
active database server. These users are, as far as this database server process
is concerned, completely dispossessed of any privileges that they might have
while accessing the database server through some administrative utility.
Additionally, the new session user is not able to initiate an administrative
operation (execute a utility, for example) by virtue of the acquired identity.

IDS

Element Purpose Restrictions Syntax
 user User name by which database operations

will be performed in the current session
You must specify a valid user name and
put quotation marks around that name.

Identifier,
p. 4-189

SET SESSION AUTHORIZATION TO 'user '
SQL Statements 2-713

SET SESSION AUTHORIZATION
After the SET SESSION AUTHORIZATION statement successfully executes, the
user must use the SET ROLE statement to assume a role granted to the current
user. Any role enabled by a previous user is relinquished.

After SET SESSION AUTHORIZATION successfully executes, all owner-privi-
leged UDRs created while using the new identity are given RESTRICTED
mode. For more information on RESTRICTED mode, see the sysprocedures
system catalog table in the IBM Informix Guide to SQL: Reference.

When you assume the identity of another user by executing the SET SESSION
AUTHORIZATION statement, you can perform operations in the current
database only. You cannot perform an operation on a database object outside
the current database, such as a remote table. In addition, you cannot execute
a DROP DATABASE or RENAME DATABASE statement, even if the database is
owned by the real or effective user.

You can use this statement either to obtain access to the data directly or to
grant the database-level or table-level privileges needed for the database
operation to proceed. The following example shows how to use the SET
SESSION AUTHORIZATION statement to obtain table-level privileges:

SET SESSION AUTHORIZATION TO 'cathl';
GRANT ALL ON customer TO mary;
SET SESSION AUTHORIZATION TO 'mary';
UPDATE customer SET fname = 'Carl' WHERE lname = 'Pauli';

SET SESSION AUTHORIZATION and Transactions
If your database is not ANSI compliant, you must issue the SET SESSION
AUTHORIZATION statement outside a transaction. If you issue the statement
within a transaction, you receive an error message.

In an ANSI-compliant database, you can execute the SET SESSION
AUTHORIZATION statement as long as you have not executed a statement
that initiates an implicit transaction (for example, CREATE TABLE or SELECT).
Statements that do not initiate an implicit transaction are statements that do
not acquire locks or log data (for example, SET EXPLAIN and SET ISOLATION).
You can execute the SET SESSION AUTHORIZATION statement immediately
after a DATABASE statement or a COMMIT WORK statement. ♦

Related Information
Related statements: CONNECT, DATABASE, GRANT, and SET ROLE

ANSI
2-714 IBM Informix Guide to SQL: Syntax

SET STATEMENT CACHE
SET STATEMENT CACHE
Use the SET STATEMENT CACHE statement to turn caching on or off for the
current session.

Syntax

Usage
You can use the SET STATEMENT CACHE statement to turn caching in the SQL
statement cache ON or OFF for the current session. The statement cache stores
in a buffer identical statements that are repeatedly executed in a session. Only
data manipulation language (DML) statements (DELETE, INSERT, UPDATE, or
SELECT) can be stored in the statement cache.

This mechanism allows qualifying statements to bypass the optimization
stage and parsing stage, and avoid recompiling, which can reduce memory
consumption and can improve query processing time.

Precedence and Default Behavior

SET STATEMENT CACHE takes precedence over the STMT_CACHE
environment variable and the STMT_CACHE configuration parameter.
You must enable the SQL statement cache, however, either by setting
the STMT_CACHE configuration parameter or by using the onmode utility,
before the SET STATEMENT CACHE statement can execute successfully.

When you issue a SET STATEMENT CACHE ON statement, the SQL statement
cache remains in effect until you issue a SET STATEMENT CACHE OFF
statement or until the program ends. If you do not use SET STATEMENT
CACHE, the default behavior depends on the setting of the STMT_CACHE
environment variable or the STMT_CACHE configuration parameter.

+

IDS

SET STATEMENT CACHE ON

OFF
SQL Statements 2-715

SET STATEMENT CACHE
Turning the Cache ON

Use the ON option to enable the SQL statement cache. When the SQL
statement cache is enabled, each statement that you execute passes through
the SQL statement cache to determine if a matching cache entry is present. If
so, the database server uses the cached entry to execute the statement.

If the statement has no matching entry, the database server tests to see if it
qualifies for entry into the cache. For the conditions a statement must meet to
enter into the cache, see “Statement Qualification” on page 2-717.

Restrictions on Matching Entries in the SQL Statement Cache

When the database server considers whether or not a statement is identical to
a statement in the SQL statement cache, the following items must match:

� Lettercase

� Comments

� White space

� Optimization settings

❑ SET OPTIMIZATION statement options

❑ Optimizer directives

❑ Settings of the OPTCOMPIND environment variable or the
OPTCOMPIND configuration parameter in the ONCONFIG file

� Parallelism settings

❑ SET PDQPRIORITY statement options or settings of the
PDQPRIORITY environment variable

� Query text strings

� Literals

If an SQL statement is semantically equivalent to a statement in the SQL
statement cache but has different literals, the statement is not considered
identical and qualifies for entry into the cache. For example, the following
SELECT statements are not identical:

SELECT col1, col2 FROM tab1 WHERE col1=3;

SELECT col1, col2 FROM tab1 WHERE col1=5;

In this example, both statements are entered into the SQL statement cache.
2-716 IBM Informix Guide to SQL: Syntax

SET STATEMENT CACHE
Host-variable names, however, are insignificant. For example, the following
select statements are considered identical:

SELECT * FROM tab1 WHERE x = :x AND y = :y;

SELECT * FROM tab1 WHERE x = :p AND y = :q;

In the previous example, although the host names are different, the state-
ments qualify, because the case, query text strings, and white space match.
Performance does not improve, however, because each statement has already
been parsed and optimized by the PREPARE statement.

Turning the Cache OFF

The OFF option disables the SQL statement cache. When you turn caching off
for your session, no SQL statement cache code is executed for that session.

The SQL statement cache is designed to save memory in environments where
identical queries are executed repeatedly and where schema changes are
infrequent. If this is not the case, you might want to turn the SQL statement
cache off to avoid the overhead of caching. For example, if you have little
cache cohesion, that is, when relatively few matches but many new entries
into the cache exist, the cache management overhead is high. In this case, turn
the SQL statement cache off.

If you know that you are executing many statements that do not qualify for
the SQL statement cache, you might want to disable it and avoid the overhead
of testing to see if each statement qualifies for entry into the cache.

Statement Qualification
A statement that can be cached in the SQL statement cache (and consequently,
one that can match a statement that already appears in the SQL statement
cache) must meet the following conditions:

� It must be a SELECT, INSERT, UPDATE, or DELETE statement.

� It must contain only built-in data types (excluding BLOB, BOOLEAN,
BYTE, CLOB, LVARCHAR, or TEXT).

� It must contain only built-in operators.

� It cannot contain user-defined routines.

� It cannot contain temporary or remote tables.
SQL Statements 2-717

SET STATEMENT CACHE
� It cannot contain subqueries in the select list.

� It cannot be part of a multistatement PREPARE.

� It cannot have user-permission restrictions on target columns.

� In an ANSI-compliant database, it must contain fully qualified object
names.

� It cannot require re-optimization.

Cache Insertion After "n" Hits

A qualified SQL statement is fully inserted into the SQL statement cache only
after the database server counts a configured number of references, or hits, to
that statement.

The database administrator (DBA) can specify a minimum number of hits for
cache insertion using the configuration parameter, STMT_CACHE_HITS. By
doing so, the DBA excludes one-time-only ad hoc queries from full insertion
into the SQL statement cache, thus lowering cache-management overhead.

Enabling or Disabling Insertions After Size Exceeds Configured Limit

The DBA can prevent the insertion of qualified SQL statements into the SQL
statement cache when the cache size reaches its configured size
(STMT_CACHE_SIZE configuration parameter) by setting the configuration
parameter, STMT_CACHE_NOLIMIT.

Related Information
For information on optimization settings, see “SET OPTIMIZATION” on
page 2-700 and “Optimizer Directives” on page 4-222.

For information about the STMT_CACHE environment variable, see the
IBM Informix Guide to SQL: Reference.

For more information about the configuration parameters and the onmode
utility, see your Administrator’s Reference.

For more information on the performance implications of this feature, on
when and how to use the SQL statement cache, on how to monitor the cache
with the onstat options, and on how to tune the configuration parameters,
see your Performance Guide.
2-718 IBM Informix Guide to SQL: Syntax

SET TABLE
SET TABLE
Use the SET TABLE statement to specify that one or more fragments of a table
be resident in shared memory as long as possible.

Syntax

Usage
This statement was formerly supported by Dynamic Server, but it is ignored
in current releases. Beginning with Version 9.40, Dynamic Server determines
the residency status of indexes and tables automatically. ♦

The SET TABLE statement is a special case of the SET Residency statement. The
SET Residency statement can also specify how long an index fragment
remains resident in shared memory.

For the complete syntax and semantics of the SET TABLE statement, see “SET
Residency” on page 2-708.

+

XPS

Element Purpose Restrictions Syntax
dbspace Name of the dbspace in which the fragment

resides
The dbspace must exist. Identifier, p. 4-189

table Name of the table for which you want to
change the residency state

The table must exist. Database Object
Name, p. 4-46

SET tableTABLE

)

,

MEMORY_RESIDENT

NON_RESIDENT

(dbspace

IDS
SQL Statements 2-719

SET TRANSACTION
SET TRANSACTION
Use the SET TRANSACTION statement to define isolation levels and to define
the access mode of a transaction (read-only or read-write).

Syntax

Usage
SET TRANSACTION is valid only in databases with logging. You can issue a
this statement from a client computer only after a database is opened. The
database isolation level affects concurrency among processes that attempt to
access the same rows simultaneously from the database. The database server
uses shared locks to support different levels of isolation among processes that
are attempting to read data, as the following list shows:

� Read Uncommitted

� Read Committed

� (ANSI) Repeatable Read

� Serializable

The update or delete process always acquires an exclusive lock on the row
that is being modified. The level of isolation does not interfere with such
rows, but the access mode does affect whether you can update or delete rows.

If another process attempts to update or delete rows that you are reading
with an isolation level of Serializable or (ANSI) Repeatable Read, that process
will be denied access to those rows.

+

1

,

SET TRANSACTION

ISOLATION LEVEL1

READ WRITE

READ ONLY

READ UNCOMMITTED

REPEATABLE READ

SERIALIZABLE

READ COMMITTED
2-720 IBM Informix Guide to SQL: Syntax

SET TRANSACTION
Comparing SET TRANSACTION with SET ISOLATION

The SET TRANSACTION statement complies with ANSI SQL-92. This statement
is similar to the Informix SET ISOLATION statement; however, the SET
ISOLATION statement is not ANSI compliant and does not provide access
modes. In fact, the isolation levels that you can set with the SET
TRANSACTION statement are almost parallel to the isolation levels that you
can set with the SET ISOLATION statement, as the following table shows.

Another difference between SET TRANSACTION and SET ISOLATION is the
behavior of the isolation levels within transactions. You can issue SET TRANS-
ACTION only once for a transaction. Any cursors that are opened during that
transaction are guaranteed that isolation level (or access mode, if you are
defining an access mode). With SET ISOLATION, after a transaction is started,
you can change the isolation level more than once within the transaction.

The following examples illustrate this difference in the behavior of the SET
ISOLATION and SET TRANSACTION statements:

EXEC SQL BEGIN WORK;
EXEC SQL SET ISOLATION TO DIRTY READ;
EXEC SQL SELECT ... ;
EXEC SQL SET ISOLATION TO REPEATABLE READ;
EXEC SQL INSERT ... ;
EXEC SQL COMMIT WORK;-- Executes without error

Compare the previous example to these SET TRANSACTION statements:

EXEC SQL BEGIN WORK;
EXEC SQL SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
EXEC SQL SELECT ... ;
EXEC SQL SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

-- Produces error 876: Cannot issue SET TRANSACTION
-- in an active transaction.

SET TRANSACTION Isolation Level SET ISOLATION Isolation Level

Read Uncommitted Dirty Read

Read Committed Committed Read

[Not supported] Cursor Stability

(ANSI) Repeatable Read (Informix) Repeatable Read

Serializable (Informix) Repeatable Read
SQL Statements 2-721

SET TRANSACTION
Another difference between SET ISOLATION and SET TRANSACTION is the
duration of isolation levels. The isolation level set by SET ISOLATION remains
in effect until another SET ISOLATION statement is issued. The isolation level
set by SET TRANSACTION only remains in effect until the transaction termi-
nates. Then the isolation level is reset to the default for the database type.

Informix Isolation Levels

The following definitions explain the critical characteristics of each isolation
level, from the lowest level of isolation to the highest.

Using the Read Uncommitted Option

Use the Read Uncommitted option to copy rows from the database whether
or not locks are present on them. The program that fetches a row places no
locks and it respects none. Read Uncommitted is the only isolation level
available to databases that do not have transactions.

This isolation level is most appropriate for static tables that are used for
queries, that is, tables where data is not being modified, since it provides no
isolation. With Read Uncommitted, the program might return a phantom
row, which is an uncommitted row that was inserted or modified within a
transaction that has subsequently rolled back. No other isolation level allows
access to a phantom row.

Using the Read Committed Option

Use the Read Committed option to guarantee that every retrieved row is
committed in the table at the time that the row is retrieved. This option does
not place a lock on the fetched row. Read Committed is the default level of
isolation in a database with logging that is not ANSI compliant.

Read Committed is appropriate when each row of data is processed as an
independent unit, without reference to other rows in the same or other tables.

Using the Repeatable Read and Serializable Options

The Informix implementation of Repeatable Read and of Serializable are
equivalent. The Serializable (or Repeatable Read) option places a shared lock
on every row that is selected during the transaction.
2-722 IBM Informix Guide to SQL: Syntax

SET TRANSACTION
Another process can also place a shared lock on a selected row, but no other
process can modify any selected row during your transaction or insert a row
that meets the search criteria of your query during your transaction.

If you repeat the query during the transaction, you reread the same data. The
shared locks are released only when the transaction commits or rolls back.
Serializable is the default isolation level in an ANSI-compliant database.
Serializable isolation places the largest number of locks and holds them the
longest. Therefore, it is the level that reduces concurrency the most.

Default Isolation Levels

The default isolation level is established when you create the database.

The default isolation level remains in effect until you issue a SET
TRANSACTION statement within a transaction. After a COMMIT WORK
statement completes the transaction or a ROLLBACK WORK statement cancels
the transaction, the isolation level is reset to the default.

Access Modes

Access modes affect read and write concurrency for rows within transactions.
Use access modes to control data modification. SET TRANSACTION can
specify that a transaction is read-only or read-write. By default, transactions
are read-write. When you specify a read-only transaction, certain limitations
apply. Read-only transactions cannot perform the following actions:

� Insert, delete, or update rows of a table

� Create, alter, or drop any database object such as schemas, tables,
temporary tables, indexes, or SPL routines

� Grant or revoke privileges

Informix Name ANSI Name When This Is the Default Level of Isolation

Dirty Read Read Uncommitted Database without transaction logging

Committed Read Read Committed Databases with logging that are not
ANSI- compliant

Repeatable Read Serializable ANSI-compliant databases
SQL Statements 2-723

SET TRANSACTION
� Update statistics

� Rename columns or tables

You can execute SPL routines in a read-only transaction as long as the SPL
routine does not try to perform any restricted statement.

Effects of Isolation Levels

You cannot set the database isolation level in a database that does not have
logging. Every retrieval in such a database occurs as a Read Uncommitted.

The data that is obtained during retrieval of BYTE or TEXT data can vary,
depending on the database isolation levels. Under Read Uncommitted or
Read Committed isolation levels, a process is permitted to read a BYTE or
TEXT column that is either deleted (if the delete is not yet committed) or in
the process of being deleted. Under these isolation levels, an application can
read a deleted BYTE or TEXT column when certain conditions exist. For
information about these conditions, see the Administrator’s Guide.

In ESQL/C, if you use a scroll cursor in a transaction, you can force consis-
tency between your temporary table and the database table either by setting
the isolation level to Serializable or by locking the entire table. A scroll cursor
with hold, however, cannot guarantee the same consistency between the two
tables. A table-level lock or locks set by Serializable are released when the
transaction is completed, but the scroll cursor with hold remains open
beyond the end of the transaction. You can modify released rows as soon as
the transaction ends, so the retrieved data in the temporary table might be
inconsistent with the actual data. ♦

Warning: Do not use nonlogging tables within a transaction. If you need to use a
nonlogging table within a transaction, either set the isolation level to Repeatable
Read or lock the table in exclusive mode to prevent concurrency problems.

Related Information
Related statements: CREATE DATABASE, SET ISOLATION, and SET LOCK
MODE

For a discussion of isolation levels and concurrency issues, see the
IBM Informix Guide to SQL: Tutorial.

E/C
2-724 IBM Informix Guide to SQL: Syntax

SET Transaction Mode
SET Transaction Mode
Use the SET Transaction Mode statement to specify whether constraints are
checked at the statement level or at the transaction level.

To enable or disable constraints, or to change their filtering mode, see “SET
Database Object Mode” on page 2-652. ♦

Syntax

Usage
The SET Transaction Mode statement is valid only in a database with logging.
The effect of the SET Transaction Mode statement is limited to the transaction
in which it is executed. Use the IMMEDIATE keyword to set the transaction
mode of constraints to statement-level checking. IMMEDIATE is the default
transaction mode of constraints.

Use the DEFERRED keyword to set the transaction mode to transaction-level
checking. You cannot change the transaction mode of a constraint to
DEFERRED mode unless the constraint is currently enabled.

Statement-Level Checking
When you set the transaction mode to IMMEDIATE, statement-level checking
is turned on, and all specified constraints are checked at the end of each
INSERT, UPDATE, or DELETE statement. If a constraint violation occurs, the
statement is not executed.

IDS

Element Purpose Restrictions Syntax
constraint A constraint whose transaction

mode is to be changed
All constraints must exist in the same
database, which must support logging.

Database Object
Name, p. 4-46

SET CONSTRAINTS

,

ALL

constraint IMMEDIATE

DEFERRED
SQL Statements 2-725

SET Transaction Mode
Transaction-Level Checking
When you set the transaction mode of constraints to DEFERRED, statement-
level checking is turned off, and all (or the specified) constraints are not
checked until the transaction is committed. If a constraint violation occurs
while the transaction is being committed, the transaction is rolled back.

Tip: If you defer checking a primary-key constraint, checking the not-null constraint
for that column or set of columns is also deferred.

Duration of Transaction Modes
The duration of the transaction mode that the SET Transaction Mode
statement specifies is the transaction in which the SET Transaction Mode
statement is executed. You cannot execute this statement outside a trans-
action. Once a COMMIT WORK or ROLLBACK WORK statement is successfully
completed, the transaction mode of all constraints reverts to IMMEDIATE.

To switch from transaction-level checking to statement-level checking, you
can use the SET Transaction Mode statement to set the transaction mode to
IMMEDIATE, or you can use a COMMIT WORK or ROLLBACK WORK statement
to terminate your transaction.

Specifying All Constraints or a List of Constraints
You can specify all constraints in the database in your SET Transaction Mode
statement, or you can specify a single constraint or list of constraints.

Specifying All Constraints

If you specify the ALL keyword, the SET Transaction Mode statement sets the
transaction mode for all constraints in the database. If any statement in the
transaction requires that any constraint on any table in the database be
checked, the database server performs the checks at the statement level or the
transaction level, depending on the setting that you specify in the SET Trans-
action Mode statement.
2-726 IBM Informix Guide to SQL: Syntax

SET Transaction Mode
Specifying a List of Constraints

If you specify a single constraint name or a list of constraints, the SET Trans-
action Mode statement sets the transaction mode for the specified constraints
only. If any statement in the transaction requires checking of a constraint that
you did not specify in the SET Transaction Mode statement, that constraint is
checked at the statement level regardless of the setting that you specified in
the SET Transaction Mode statement for other constraints.

When you specify a list of constraints, the constraints do not have to be
defined on the same table, but they must exist in the same database.

Specifying Remote Constraints
You can set the transaction mode of local constraints or remote constraints.
That is, the constraints that are specified in the SET Transaction Mode
statement can be constraints that are defined on local tables or constraints
that are defined on remote tables.

Examples of Setting the Transaction Mode for Constraints
The following example shows how to defer checking constraints within a
transaction until the transaction is complete. The SET Transaction Mode
statement in the example specifies that any constraints on any tables in the
database are not checked until the COMMIT WORK statement is encountered.

BEGIN WORK
SET CONSTRAINTS ALL DEFERRED
...
COMMIT WORK

The following example specifies that a list of constraints is not checked until
the transaction is complete:

BEGIN WORK
SET CONSTRAINTS update_const, insert_const DEFERRED
...
COMMIT WORK

Related Information
Related statements: ALTER TABLE and CREATE TABLE
SQL Statements 2-727

SET TRIGGERS
SET TRIGGERS
Use the SET TRIGGERS statement to enable or disable all or some of the
triggers on a table, or all or some of the INSTEAD OF triggers on a view.

Syntax

Usage
The SET TRIGGERS statement is a special case of the SET Database Object
Mode statement. The SET Database Object Mode statement can also enable or
disable an index or a constraint, or change the filtering mode of a unique
index or of a constraint.

For the complete syntax and semantics of the SET TRIGGERS statement, see
“SET Database Object Mode” on page 2-652.

Element Purpose Restrictions Syntax
table Table whose triggers are all to be enabled or

disabled
Must exist Database Object Name, p. 4-46

trigger Trigger to be enabled or disabled Must exist Database Object Name, p. 4-46
view View whose INSTEAD OF triggers are all to be

enabled or disabled
Must exist Database Object Name, p. 4-46

SET TRIGGERS

,

trigger

FOR table

ENABLED

DISABLED

view
2-728 IBM Informix Guide to SQL: Syntax

START VIOLATIONS TABLE
START VIOLATIONS TABLE
Use the START VIOLATIONS TABLE statement to create a violations table and
(for Dynamic Server only) a diagnostics table for a specified target table.

Syntax

Usage
The database server associates the violations table and (for Dynamic Server
only) the diagnostics table with the target table that you specify after the
FOR keyword by recording the relationship among the three tables in the
sysviolations system catalog table.

In Extended Parallel Server, the START VIOLATIONS TABLE statement creates
a violations table, but no diagnostics table is created. ♦

+

Element Purpose Restrictions Syntax
diagnostics Diagnostics table to be associated with the

target table. Default name is table_dia.
Must be unique among tables,
views, and synonyms.

Database Object
Name, p. 4-46

num_rows Maximum number of rows the database
server (IDS) or any single coserver (XPS)
can insert into violations when a single
statement is executed on table

Must be an integer in range
from 1 to the maximum value
of the INTEGER data type.

Literal Number,
p. 4-216

table Target table for which violations and (for
IDS only) diagnostics are to be created

No more than 124 bytes (IDS)
or no more than 14 bytes
(XPS) if USING clause omitted

Database Object
Name, p. 4-46

violations Violations table to be associated with table.
Default name is table_vio.

Same restrictions as
diagnostics.

Database Object
Name, p. 4-46

START VIOLATIONS TABLE FOR table

IDS

XPS USING violations

IDS

MAX VIOLATIONS num_rowsXPS

USING violations , diagnostics MAX ROWS num_rows

XPS
SQL Statements 2-729

START VIOLATIONS TABLE
A target table must satisfy these requirements:

� It cannot be external to the database.

� It cannot already be associated with a violations or diagnostics table.

� It cannot be a system catalog table.

The START VIOLATIONS TABLE statement creates the special violations table
that holds rows that fail to satisfy constraints and unique indexes during
INSERT, UPDATE, and DELETE operations on target tables. This statement also
creates the special diagnostics table that contains information about the
integrity violations that each row causes in the violations table.

Relationship to SET Database Object Mode Statement

The START VIOLATIONS TABLE statement is closely related to the SET
Database Object Mode statement. If you use SET Database Object Mode to set
the constraints or unique indexes defined on a table to the FILTERING mode,
without also using START VIOLATIONS TABLE, any rows that violate a
constraint or unique-index requirement in data manipulation operations are
not filtered out to a violations table. Instead you receive an error message that
indicates that you must start a violations table for the target table.

Similarly, if you use the SET Database Object Mode statement to set a disabled
constraint or disabled unique index to the ENABLED or FILTERING mode, but
you do not use START VIOLATIONS TABLE for the table on which the database
objects are defined, any rows that do not satisfy the constraint or unique-
index requirement are not filtered out to a violations table.

In these cases, to identify the rows that do not satisfy the constraint or
unique-index requirement, issue the START VIOLATIONS TABLE statement to
start the violations and diagnostics tables. Do this before you use the SET
Database Object Mode statement to set the database objects to the ENABLED
or FILTERING database object mode.

Extended Parallel Server does not support the SET Database Object Mode,
and the concept of database object modes does not exist. Once you use the
START VIOLATIONS TABLE statement to create a violations table and associate
it with a target table, the existence of this violations table causes all violations
of constraints and unique-index requirements by insert, delete, and update
operations to be recorded in the violations table.

XPS
2-730 IBM Informix Guide to SQL: Syntax

START VIOLATIONS TABLE
In other words, once you issue a START VIOLATIONS TABLE statement, all
constraints and unique indexes in a database on Extended Parallel Server
behave like filtering-mode constraints and filtering-mode unique indexes in
a database on Dynamic Server. For an explanation of the behavior of filtering-
mode constraints and filtering-mode unique indexes, see “Filtering Mode”
on page 2-656. ♦

Effect on Concurrent Transactions

If athe database has transaction logging, you must issue START VIOLATIONS
TABLE in isolation. That is, no other transaction can be in progress on a target
table when you issues START VIOLATIONS TABLE on that table within a trans-
action. Any transactions that start on the target table after the first transaction
has issued the START VIOLATIONS TABLE statement will behave the same
way as the first transaction with respect to the violations and diagnostics
tables. That is, any constraint and unique-index violations by these subse-
quent transactions will be recorded in the violations and diagnostics tables.

For example, if transaction A operates on table tab1 and issues a START
VIOLATIONS TABLE statement on table tab1, the database server starts a
violations table named tab1_vio and filters any constraint or unique-index
violations on table tab1 by transaction A to table tab1_vio. If transactions B
and C start on table tab1 after transaction A has issued the START
VIOLATIONS TABLE statement, the database server also filters any constraint
and unique-index violations by transactions B and C to table tab1_vio.

The result is that all three transactions do not receive error messages about
constraint and unique-index violations, even though transactions B and C do
not expect this behavior. For example, if transaction B issues an INSERT or
UPDATE statement that violates a check constraint on table tab1, the database
server does not issue a constraint violation error to transaction B. Instead, the
database server filters the bad row to the violations table without notifying
transaction B that a data-integrity violation occurred.

You can prevent this situation from arising in Dynamic Server by specifying
WITH ERRORS when you specify the FILTERING mode in a SET Database
Object Mode, CREATE TABLE, ALTER TABLE, or CREATE INDEX statement.
When multiple transactions operate on a table and the WITH ERRORS option
is in effect, any transaction that violates a constraint or unique-index
requirement on a target table receives a data-integrity error message. ♦

IDS
SQL Statements 2-731

START VIOLATIONS TABLE
In Extended Parallel Server, once a transaction issues a START VIOLATIONS
TABLE statement, you have no way to make the database server issue data-
integrity violation messages to that transaction or to any other transactions
that start subsequently on the same target table. ♦

Stopping the Violations and Diagnostics Tables

After you use START VIOLATIONS TABLE to create an association between a
target table and the violations and diagnostics tables, the only way to drop
the association between the target table and the violations and diagnostics
tables is to issue a STOP VIOLATIONS TABLE statement for the target table. For
more information, see “STOP VIOLATIONS TABLE” on page 2-748.

USING Clause

Use the USING clause to assign explicit names to the violations and
diagnostics tables.

If you omit the USING clause, the database server assigns names to the viola-
tions and diagnostics tables. The system-assigned name of the violations
table consists of the name of the target table followed by the string vio. The
system-assigned name of the diagnostics table consists of the name of the
target table followed by the string _dia.

If you omit the USING clause, the maximum length of the name of the target
table is 124 bytes. ♦

Use the USING clause to assign an explicit name to the violations table.

If you omit the USING clause, the database server assigns a name to the viola-
tions table. The system-assigned name of the violations table consists of the
name of the target table followed by the string _vio. If you omit the USING
clause, the maximum length of the name of the target table is 14 bytes. ♦

Using the MAX ROWS Clause

The MAX ROWS clause specifies the maximum number of rows that the
database server can insert into the diagnostics table when a single statement
is executed on the target table. If you omit the MAX ROWS clause, no upper
limit is imposed on the number of rows that can be inserted into the
diagnostics table when a single statement is executed on the target table.

IDS

IDS

XPS

IDS
2-732 IBM Informix Guide to SQL: Syntax

START VIOLATIONS TABLE
Using the MAX VIOLATIONS Clause

Use the MAX VIOLATIONS clause to specify the maximum number of rows
that any single coserver can insert into the violations table when a single
statement is executed on the target table. Each coserver where the violations
table resides has this limit. The first coserver to reach this limit raises an error
and causes the statement to fail.

If you omit the MAX VIOLATIONS clause of START VIOLATIONS TABLE, no
upper limit exists on the number of rows that can be inserted into the viola-
tions table when a single statement is executed on the target table.

Specifying the Maximum Number of Rows in the Diagnostics Table

The following statement starts violations and diagnostics tables for the target
table named orders. The MAX ROWS clause specifies the maximum number
of rows that can be inserted into the diagnostics table when a single
statement, such as an INSERT statement, is executed on the target table.

START VIOLATIONS TABLE FOR orders MAX ROWS 50000

Specifying the Maximum Number of Rows in the Violations Table

The following statement starts a violations table for the target table named
orders. The MAX VIOLATIONS clause specifies the maximum number of rows
that any single coserver can insert into the violations table when a single
statement, such as an INSERT statement, is executed on the target table.

START VIOLATIONS TABLE FOR orders MAX VIOLATIONS 50000

Privileges Required for Starting Violations Tables

To start a violations and diagnostics table for a target table, you must meet
one of the following requirements:

� You must have the DBA privilege on the database.

� You must be the owner of the target table and have the Resource
privilege on the database.

� You must have the Alter privilege on the target table and the
Resource privilege on the database.

XPS

IDS

XPS
SQL Statements 2-733

START VIOLATIONS TABLE
Structure of the Violations Table

When you issue START VIOLATIONS TABLE for a target table, the violations
table that the statement creates has a predefined structure. This structure
consists of the columns of the target table and three additional columns.

Serial columns in the target table are converted to integer data types in the
violations table.

Users can examine these bad rows in the violations table, analyze the related
rows that contain diagnostics information in the diagnostics table, and take
corrective actions.

The following table shows the structure of the violations table.

Column Name Data Type Column Description

Same columns (in the
same order) that appear
in the target table

Same types as corre-
sponding columns
in the target table.

The violations table has the same schema as the target
table, so that rows violating constraints or a unique-
index during insert, update, and delete operations can
be filtered to the violations table.

informix_tupleid SERIAL Unique serial code for the nonconforming row

informix_optype CHAR(1) The type of operation that caused this bad row. This
column can have the following values:

I = Insert

D = Delete

O = Update (with original values in this row)

N = Update (with new values in this row)

S = SET Database Object Mode statement (IDS)

informix_recowner CHAR(8) User who issued the statement that created this bad row
2-734 IBM Informix Guide to SQL: Syntax

START VIOLATIONS TABLE
Examples of START VIOLATIONS TABLE Statements

The following examples show different ways to execute the START
VIOLATIONS TABLE statement.

Violations and Diagnostics Tables with Default Names

The following statement starts violations and diagnostics tables for the target
table named cust_subset. The violations table is named cust_subset_vio by
default, and the diagnostics table is named cust_subset_dia by default.

START VIOLATIONS TABLE FOR cust_subset

Violations and Diagnostics Tables with Explicit Names

The following statement starts a violations and diagnostics table for the
target table named items. The USING clause assigns explicit names to the
violations and diagnostics tables. The violations table is to be named
exceptions, and the diagnostics table is to be named reasons.

START VIOLATIONS TABLE FOR items USING exceptions, reasons

Relationships Among the Target, Violations, and Diagnostics Tables

Users can take advantage of the relationships among the target, violations,
and diagnostics tables to obtain diagnostic information about rows that cause
data-integrity violations during INSERT, DELETE, and UPDATE statements.
Each row of the violations table has at least one corresponding row in the
diagnostics table.

� One row in the violations table is a copy of any row in the target table
for which a data-integrity violation was detected. A row in the
diagnostics table contains information about the nature of the data-
integrity violation caused by the bad row in the violations table.

� One row in the violations table has a unique serial identifier in the
informix_tupleid column. A row in the diagnostics table has the
same serial identifier in its informix_tupleid column.
SQL Statements 2-735

START VIOLATIONS TABLE
A given row in the violations table can have more than one corresponding
row in the diagnostics table. The multiple rows in the diagnostics table all
have the same serial identifier in their informix_tupleid column so that they
are all linked to the same row in the violations table. Multiple rows can exist
in the diagnostics table for the same row in the violations table because a bad
row in the violations table can cause more than one data-integrity violation.

For example, a bad row can violate a unique-index requirement for one
column, a not-NULL constraint for another column, and a check constraint for
yet another column. In this case, the diagnostics table contains three rows for
the single bad row in the violations table. Each of these diagnostic rows
identifies a different data-integrity violation that the nonconforming row in
the violations table caused.

By joining the violations and diagnostics tables, the DBA or target-table
owner can obtain diagnostic information about any or all bad rows in the
violations table. SELECT statements can perform these joins interactively, or
you can write a program to perform them within transactions.

Initial Privileges on the Violations Table

When you issue the START VIOLATIONS TABLE statement to create the viola-
tions table, the database server uses the set of privileges granted on the target
table as a basis for granting privileges on the violations table. The database
server follows different rules, however, when it grants each type of privilege.

The following table summarizes the circumstances under which the database
server grants each type of privilege on the violations table.

Privilege Condition for Granting the Privilege

Alter Alter privilege is not granted on the violations table. (Users cannot
alter violations tables.)

Index User has Index privilege on the violations table if the user has the
Index privilege on the target table.

The user cannot create a globally detached index on the violations
table even if the user has the Index privilege on the violations table
(XPS).

Insert User has the Insert privilege on the violations table if the user has the
Insert, Delete, or Update privilege on any column of the target table.

(1 of 2)
2-736 IBM Informix Guide to SQL: Syntax

START VIOLATIONS TABLE
The following rules apply to ownership of the violations table and privileges
on the violations table:

� When the violations table is created, the owner of the target table
becomes the owner of the violations table.

� The owner of the violations table automatically receives all table-
level privileges on the violations table, including the Alter and
References privileges. The database server, however, prevents the
owner of the violations table from altering the violations table or
adding a referential constraint to the violations table.

� You can use the GRANT and REVOKE statements to modify the initial
set of privileges on the violations table.

Delete User has the Delete privilege on the violations table if the user has the
Insert, Delete, or Update privilege on any column of the target table.

Select User has the Select privilege on the informix_tupleid,
informix_optype, and informix_recowner columns of the violations
table if the user has the Select privilege on any column of the target
table.

User has the Select privilege on any other column of the violations
table if the user has the Select privilege on the same column in the
target table.

Update User has the Update privilege on the informix_tupleid,
informix_optype, and informix_recowner columns of the violations
table if the user has the Update privilege on any column of the target
table.

Even if the user has the Update privilege on the informix_tupleid
column, however, the user cannot update this SERIAL column.

User has the Update privilege on any other violations table column if
the user has the Update privilege on the same column in the target
table.

References The References privilege is not granted on the violations table. (Users
cannot add referential constraints to violations tables.)

Privilege Condition for Granting the Privilege

(2 of 2)
SQL Statements 2-737

START VIOLATIONS TABLE
� When you issue an INSERT, DELETE, or UPDATE statement on a target
table that has a filtering-mode unique index or constraint defined on
it, you must have the Insert privilege on the violations and
diagnostics tables.

If you do not have the Insert privilege on the violations and diagnos-
tics tables, the database server executes the INSERT, DELETE, or
UPDATE statement on the target table provided that you have the
necessary privileges on the target table. The database server does not
return an error concerning the lack of insert permission on the viola-
tions and diagnostics tables unless an integrity violation is detected
during the execution of the INSERT, DELETE, or UPDATE statement.

Similarly, when you issue a SET Database Object Mode statement to
set a disabled constraint or disabled unique index to the enabled or
filtering mode, and a violations table and diagnostics table exist for
the target table, you must have the Insert privilege on the violations
and diagnostics tables.

If you do not have the Insert privilege on the violations and diagnos-
tics tables, the database server executes the SET Database Object
Mode statement provided that you have the necessary privileges on
the target table. The database server does not return an error con-
cerning the lack of insert permission on the violations and
diagnostics tables unless an integrity violation is detected during the
execution of the SET Database Object Mode statement.

� The grantor of the initial set of privileges on the violations table is the
same as the grantor of the privileges on the target table.

For example, if user henry was granted the Insert privilege on the
target table by both user jill and user albert, then the Insert privilege
on the violations table is granted to henry both by jill and by albert.

� After the violations table is started, revoking a privilege on the target
table from a user does not automatically revoke the same privilege
on the violations table from that user. Instead, you must explicitly
revoke the privilege on the violations table from the user.

� If you have fragment-level privileges on the target table, you have
the corresponding fragment-level privileges on the violations table.
2-738 IBM Informix Guide to SQL: Syntax

START VIOLATIONS TABLE
Example of Privileges on the Violations Table

The following example illustrates how the initial set of privileges on a viola-
tions table is derived from the current set of privileges on the target table.
Assume that a table named cust_subset consists of the following columns:
ssn (customer social security number), fname (customer first name), lname
(customer last name), and city (city in which the customer lives).

The following set of privileges exists on the cust_subset table:

� User barbara has the Insert and Index privileges on the table. She
also has the Select privilege on the ssn and lname columns.

� User carrie has the Update privilege on the city column. She also has
the Select privilege on the ssn column.

� User danny has the Alter privilege on the table.

Now user alvin starts a violations table named cust_subset_viols and a
diagnostics table named cust_subset_diags for the cust_subset table:

START VIOLATIONS TABLE FOR cust_subset
USING cust_subset_viols, cust_subset_diags

The database server grants the following set of initial privileges on the
cust_subset_viols violations table:

� User alvin is the owner of the violations table, so he has all table-
level privileges on the table.

� User barbara has the Insert, Delete, and Index privileges on the table.

User barbara has the Select privilege on five columns of the viola-
tions table: the ssn, the lname, the informix_tupleid, the
informix_optype, and the informix_recowner columns.

� User carrie has Insert and Delete privileges on the violations table.

User carrie has the Update privilege on four columns of the viola-
tions table: the city, the informix_tupleid, the informix_optype, and
the informix_recowner columns. She cannot, however, update the
informix_tupleid column (because this is a SERIAL column).

User carrie has the Select privilege on four columns of the violations
table: the ssn column, the informix_tupleid column, the
informix_optype column, and the informix_recowner column.

� User danny has no privileges on the violations table.
SQL Statements 2-739

START VIOLATIONS TABLE
Using the Violations Table

The following rules concern the structure and use of the violations table:

� Every pair of update rows in the violations table has the same value
in the informix_tupleid column to indicate that both rows refer to
the same row in the target table.

� If the target table has columns named informix_tupleid,
informix_optype, or informix_recowner, the database server
attempts to generate alternative names for these columns in the
violations table by appending a digit to the end of the column name
(for example, informix_tupleid1). If this fails, an error is returned,
and no violations table is started for the target table.

� When a table functions as a violations table, it cannot have triggers
or constraints defined on it.

� When a table functions as a violations table, users can create indexes
on the table, even though the existence of an index affects perfor-
mance. Unique indexes on the violations table cannot be set to the
filtering database object mode.

� If a target table has a violations and diagnostics table associated with
it, dropping the target table in cascade mode (the default mode)
causes the violations and diagnostics tables to be dropped also. If the
target table is dropped in the restricted mode, the DROP TABLE
operation fails (because the violations and diagnostics tables exist).

� After a violations table is started for a target table, ALTER TABLE
cannot add, modify, or drop columns of the violations, diagnostics,
or target tables. Before you can alter any of these tables, you must
issue a STOP VIOLATIONS TABLE statement for the target table.

� The database server does not clear out the contents of the violations
table before or after it uses the violations table during an Insert,
Update, Delete, or SET Database Object Mode operation.
2-740 IBM Informix Guide to SQL: Syntax

START VIOLATIONS TABLE
� If a target table has a filtering-mode constraint or unique index
defined on it and a violations table associated with it, users cannot
insert into the target table by selecting from the violations table.
Before you insert rows into the target table by selecting from the
violations table, you must take one of the following steps:

❑ You can set the constraint or unique index to DISABLED mode.

❑ You can issue STOP VIOLATIONS TABLE for the target table.

If it is inconvenient to take either of these steps, but you still want to
copy records from the violations table into the target table, a third
option is to select from the violations table into a temporary table and
then insert the contents of the temporary table into the target table.

� If the target table that is specified in the START VIOLATIONS TABLE
statement is fragmented, the violations table has the same fragmen-
tation strategy as the target table. Each fragment of the violations
table is stored in the same dbspace as the corresponding fragment of
the target table.

� Once a violations table is started for a target table, you cannot use the
ALTER FRAGMENT statement to alter the fragmentation strategy of
the target table or the violations table.

� If the target table specified in the START VIOLATIONS TABLE
statement is not fragmented, the database server places the viola-
tions table in the same dbspace as the target table.

� If the target table has BYTE or TEXT columns, BYTE or TEXT data in
the violations table is created in the same blobspace as the BYTE or
TEXT data in the target table.

Example of a Violations Table

To start a violations and diagnostics table for the target table named customer
in the demonstration database, enter the following statement:

START VIOLATIONS TABLE FOR customer
SQL Statements 2-741

START VIOLATIONS TABLE
Because you include no USING clause, the violations table is named
customer_vio by default. The customer_vio table includes these columns:

The customer_vio table has the same table definition as the customer table
except that the customer_vio table has three additional columns that contain
information about the operation that caused the bad row.

Structure of the Diagnostics Table

When you issue a START VIOLATIONS TABLE statement for a target table, the
diagnostics table that the statement creates has a predefined structure. This
structure is independent of the structure of the target table.

The following table shows the structure of the diagnostics table.

customer_num
fname
lname
company
address1

address2
city
state
zipcode
phone

informix_tupleid
informix_optype
informix_recowner

Column Name Type Purpose

informix_tupleid INTEGER Implicitly refers to the values in the
informix_tupleid column in the violations table

This relationship, however, is not declared as a
foreign-key to primary-key relationship.

objtype CHAR(1) Identifies the type of the violation

This column can have the following values:

C = Constraint violation

I = Unique-index violation

objowner CHAR(8) Identifies the owner of the constraint or index for
which an integrity violation was detected

objname CHAR(18) Contains the name of the constraint or index for
which an integrity violation was detected

IDS
2-742 IBM Informix Guide to SQL: Syntax

START VIOLATIONS TABLE
Initial Privileges on the Diagnostics Table

When the START VIOLATIONS TABLE statement creates the diagnostics table,
the set of privileges granted on the target table are a basis for granting privi-
leges on the diagnostics table. The database server follows different rules,
however, when it grants each type of privilege.

The following table explains the circumstances under which the database
server grants each privilege on the diagnostics table.

Privilege Condition for Granting the Privilege

Insert User has the Insert privilege on the diagnostics table if the user has any
of the following privileges on the target table: the Insert privilege, the
Delete privilege, or the Update privilege on any column.

Delete User has the Delete privilege on the diagnostics table if the user has
any of the following privileges on the target table: the Insert privilege,
the Delete privilege, or the Update privilege on any column.

Select User has the Select privilege on the diagnostics table if the user has the
Select privilege on any column in the target table.

Update User has the Update privilege on the diagnostics table if the user has
the Update privilege on any column in the target table.

Index User has the Index privilege on the diagnostics table if the user has the
Index privilege on the target table.

Alter Alter privilege is not granted on the diagnostics table.

(Users cannot alter diagnostics tables.)

References References privilege is not granted on the diagnostics table.

(Users cannot add referential constraints to diagnostics tables.)
SQL Statements 2-743

START VIOLATIONS TABLE
The following rules concern privileges on the diagnostics table:

� When the diagnostics table is created, the owner of the target table
becomes the owner of the diagnostics table.

� The owner of the diagnostics table automatically receives all table-
level privileges on the diagnostics table, including the Alter and
References privileges. The database server, however, prevents the
owner of the diagnostics table from altering the diagnostics table or
adding a referential constraint to the diagnostics table.

� You can use the GRANT and REVOKE statements to modify the initial
set of privileges on the diagnostics table.

� For INSERT, DELETE, or UPDATE operations on a target table that has
a filtering-mode unique index or constraint defined on it, you must
have the Insert privilege on the violations and diagnostics tables.

If you do not have the Insert privilege on the violations and diagnos-
tics tables, the database server executes the INSERT, DELETE, or
UPDATE statement on the target table provided that you have the
necessary privileges on the target table. The database server does not
return an error concerning the lack of insert permission on the viola-
tions and diagnostics tables unless an integrity violation is detected
during the execution of the INSERT, DELETE, or UPDATE statement.

Similarly, when you issue a SET Database Object Mode statement to
set a disabled constraint or disabled unique index to the enabled or
filtering mode, and a violations table and diagnostics table exist for
the target table, you must have the Insert privilege on the violations
and diagnostics tables.

If you do not have the Insert privilege on the violations and diagnos-
tics tables, the database server executes the SET Database Object
Mode statement provided that you have the necessary privileges on
the target table. The database server does not return an error con-
cerning the lack of insert permission on the violations and
diagnostics tables unless an integrity violation is detected during the
execution of the SET Database Object Mode statement.

� The grantor of the initial set of privileges on the diagnostics table is
the same as the grantor of the privileges on the target table. For
example, if the user jenny was granted the Insert privilege on the
target table by both the user wayne and the user laurie, both user
wayne and user laurie grant the Insert privilege on the diagnostics
table to user jenny.
2-744 IBM Informix Guide to SQL: Syntax

START VIOLATIONS TABLE
� Once a diagnostics table is started for a target table, revoking a
privilege on the target table from a user does not automatically
revoke the same privilege on the diagnostics table from that user.
Instead you must explicitly revoke the privilege on the diagnostics
table from the user.

� If you have fragment-level privileges on the target table, you have
the corresponding table-level privileges on the diagnostics table.

The next example illustrates how the initial set of privileges on a diagnostics
table is derived from the current privileges on the target table. Assume that
you have a table called cust_subset that holds customer data. This table
consists of the following columns: ssn (social security number), fname (first
name), lname (last name), and city (city in which the customer lives). The
following set of privileges exists on the cust_subset table:

� User alvin is the owner of the table.

� User barbara has the Insert and Index privileges on the table. She
also has the Select privilege on the ssn and lname columns.

� User danny has the Alter privilege on the table.

� User carrie has the Update privilege on the city column. She also has
the Select privilege on the ssn column.

Now user alvin starts a violations table named cust_subset_viols and a
diagnostics table named cust_subset_diags for the cust_subset table:

START VIOLATIONS TABLE FOR cust_subset
USING cust_subset_viols, cust_subset_diags

The database server grants the following set of initial privileges on the
cust_subset_diags diagnostics table:

� User alvin is the owner of the diagnostics table, so he has all table-
level privileges on the table.

� User barbara has the Insert, Delete, Select, and Index privileges on
the diagnostics table.

� User carrie has the Insert, Delete, Select, and Update privileges on
the diagnostics table.

� User danny has no privileges on the diagnostics table.
SQL Statements 2-745

START VIOLATIONS TABLE
Using the Diagnostics Table

For information on the relationship between the diagnostics table and the
violations table, see “Relationships Among the Target, Violations, and
Diagnostics Tables” on page 2-735.

The following issues concern the structure and use of the diagnostics table:

� The MAX ROWS clause of the START VIOLATIONS TABLE statement
sets a limit on the number of rows that can be inserted into the
diagnostics table when you execute a single statement, such as an
INSERT or SET Database Object Mode statement, on the target table.

� The MAX ROWS clause limits the number of rows only for operations
in which the table functions as a diagnostics table.

� When a table functions as a diagnostics table, it cannot have triggers
or constraints defined on it.

� When a table functions as a diagnostics table, users can create
indexes on the table, even though the existence of an index affects
performance. You cannot set unique indexes on the diagnostics table
to the filtering database object mode.

� If a target table has a violations and diagnostics table associated with
it, dropping the target table in CASCADE mode (the default mode)
causes the violations and diagnostics tables to be dropped also.

� If the target table is dropped in RESTRICTED mode, the DROP TABLE
operation fails (because the violations and diagnostics tables exist).

� Once a violations table is started for a target table, you cannot use the
ALTER TABLE statement to add, modify, or drop columns in the target
table, violations table, or diagnostics table. Before you can alter any
of these tables, you must issue a STOP TABLE VIOLATIONS statement
for the target table.

� The database server does not clear out the contents of the diagnostics
table before or after it uses the diagnostics table during an Insert,
Update, Delete, or Set operation.

� If the target table that is specified in the START VIOLATIONS TABLE
statement is fragmented, the diagnostics table is fragmented with a
round-robin strategy over the same dbspaces in which the target
table is fragmented.
2-746 IBM Informix Guide to SQL: Syntax

START VIOLATIONS TABLE
To start a violations and diagnostics table for the target table named stock in
the demonstration database, enter the following statement:

START VIOLATIONS TABLE FOR stock

Because your START VIOLATIONS TABLE statement does not include a USING
clause, the diagnostics table is named stock_dia by default. The stock_dia
table includes the following columns:

This list of columns shows an important difference between the diagnostics
table and violations table for a target table. Whereas the violations table has
a matching column for every column in the target table, the columns of the
diagnostics table do not match any columns in the target table. The
diagnostics table created by any START VIOLATIONS TABLE statement always
has the same columns with the same column names and data types.

Related Information
Related statements: SET Database Object Mode and STOP VIOLATIONS TABLE

For a discussion of object modes and violation detection, see the IBM Informix
Guide to SQL: Tutorial.

informix_tupleid
objtype

objowner
objname
SQL Statements 2-747

STOP VIOLATIONS TABLE
STOP VIOLATIONS TABLE
Use the STOP VIOLATIONS TABLE statement to drop the association between
a target table and its violations table (and for IDS only, its diagnostics tables).

Syntax

Usage
The STOP VIOLATIONS TABLE statement drops the association between the
target table and the violations and diagnostics tables. After you issue this
statement, the former violations and diagnostics tables continue to exist, but
they no longer function as violations and diagnostics tables for the target
table. They now have the status of regular database tables instead of viola-
tions and diagnostics tables for the target table. You must issue the DROP
TABLE statement to drop these two tables explicitly.

When INSERT, DELETE, or UPDATE operations cause data-integrity violations
for rows of the target table, the nonconforming rows are no longer filtered to
the former violations table, and diagnostics information about the data-
integrity violations is not placed in the former diagnostics table.

In Extended Parallel Server, the diagnostics table does not exist. The STOP
VIOLATIONS TABLE statement drops the association between the target table
and the violations table. ♦

+

Element Purpose Restrictions Syntax
table Name of target table whose association

with the violations and diagnostics table
is to be dropped. No default value exists.

Must be a local table that has an
associated violations table and
(for IDS only) a diagnostics table

Database Object
Name, p. 4-46

STOP VIOLATIONS TABLE FOR table

XPS
2-748 IBM Informix Guide to SQL: Syntax

STOP VIOLATIONS TABLE
Example of Stopping a Violations and Diagnostics Table

Assume that a target table named cust_subset has an associated violations
table named cust_subset_vio and an associated diagnostics table named
cust_subset_dia. To drop the association between the target table and the
violations and diagnostics tables, enter the following statement:

STOP VIOLATIONS TABLE FOR cust_subset

Example of Dropping a Violations and Diagnostics Table

After you execute the STOP VIOLATIONS TABLE statement in the preceding
example, the cust_subset_vio and cust_subset_dia tables continue to exist,
but they are no longer associated with the cust_subset table. Instead they
now have the status of regular database tables. To drop these two tables, enter
the following statements:

DROP TABLE cust_subset_vio;
DROP TABLE cust_subset_dia;

Privileges Required for Stopping a Violations Table
To stop a violations and diagnostics table for a target table, you must meet
one of the following requirements:

� You must have the DBA privilege on the database.

� You must be the owner of the target table and have the Resource
privilege on the database.

� You must have the Alter privilege on the target table and the
Resource privilege on the database.

Related Information
Related statements: SET Database Object Mode and START VIOLATIONS
TABLE

For a discussion of database object modes and violation detection, see the
IBM Informix Guide to SQL: Tutorial.
SQL Statements 2-749

TRUNCATE
TRUNCATE
Use the TRUNCATE statement for quick removal of all rows from a table and
all corresponding index data.

Syntax

Usage
You must be the owner of the table or have the DBA privilege to use this
statement.

The TRUNCATE statement does not automatically reset the serial value of a
column. To reset the serial value of a column, you must do so explicitly, either
before or after you run the TRUNCATE statement.

TRUNCATE is not equivalent to DROP TABLE. After TRUNCATE successfully
executes, the specified table (and all its columns, synonyms, views, indexes
and permissions) still exists in the database schema, but with no rows of data.

Restrictions

The statement will not succeed if any of the following conditions exist:

� One or more cursors are open on the table.

� Referential constraints exist on the table and any of the referencing
tables has at least one row.

� A shared or exclusive lock on the table already exists.

� The statement references a view.

+

XPS

Element Purpose Restrictions Syntax
table Name of table from which to remove all data Must exist Database Object Name, p. 4-46

tableTRUNCATE

ONLY

TABLE
2-750 IBM Informix Guide to SQL: Syntax

TRUNCATE
� The statement references any of the following types of tables:

❑ External

❑ System catalog

❑ Violations

� The statement is issued inside a transaction.

Using the ONLY and TABLE Keyword

The ONLY and TABLE keywords have no effect on this statement. They can be
included to make your code more legible for human readers.

All of the following statements have the same effect, deleting all rows and
any related index data from the customer table:

TRUNCATE ONLY TABLE customer

TRUNCATE TABLE customer

TRUNCATE ONLY customer

TRUNCATE customer

After the TRUNCATE Statement Executes

Information about the success of this statement appears in the logical-log
files. For information about logical-log files, see your Administrator’s Guide.

If the table was fragmented, after the statement executes, each fragment has
a space allocated for it that is the same size as that of the first extent size. The
fragment size of any indexes also corresponds to the size of the first extents.

Because the TRUNCATE statement does not alter the schema, the database
server does not automatically update statistics. After you use this statement,
you might want to issue an UPDATE STATISTICS statement.
SQL Statements 2-751

TRUNCATE
When You Might Use The TRUNCATE Statement

TRUNCATE performs similar operations to those that you can perform with
the DELETE statement or a combination of DROP TABLE and CREATE TABLE.

Using TRUNCATE can be faster than removing all rows from a table with the
DELETE statement, because it does not activate any DELETE triggers. In
addition, when you use this statement, the database server creates a log entry
for the entire TRUNCATE statement rather than for each deleted row.

You might also use this statement instead of dropping a table and then re-
creating it. When you drop and re-create a table, you must regrant any privi-
leges that you want to preserve on the table. In addition, you must re-create
any indexes, constraints, and triggers that were defined on the table. The
TRUNCATE statement leaves these database objects and privileges intact.

Related Information
Related statements: DELETE and DROP TABLE

For more information about the performance implications of this statement,
see your Performance Guide.
2-752 IBM Informix Guide to SQL: Syntax

UNLOAD
UNLOAD
Use the UNLOAD statement to write the rows retrieved in a SELECT statement
to an operating-system file. Use this with DB-Access.

Syntax

Usage
UNLOAD copies to a file the rows that a query retrieves. You must have the
Select privilege on all columns specified in the SELECT statement. For infor-
mation on database- and table-level privileges, see “GRANT” on page 2-459.

You can specify a literal SELECT statement or a character variable that
contains the text of a SELECT statement. (See “SELECT” on page 2-581.)

This example unloads rows where the value of customer.customer_num is
greater than or equal to 138, and writes them to a file named cust_file:

UNLOAD TO 'cust_file' DELIMITER '!'
SELECT * FROM customer WHERE customer_num> = 138

The resulting output file, cust_file, contains two rows of data values:

138!Jeffery!Padgett!Wheel Thrills!3450 El Camino!Suite 10!Palo
Alto!CA!94306!!
139!Linda!Lane!Palo Alto Bicycles!2344 University!!Palo
Alto!CA!94301!(415)323-5400

+

DB

SQLE

Element Purpose Restrictions Syntax
delimiter Quoted string to specify the field delimiter

character in filename file
See “DELIMITER Clause” on
page 2-758

Quoted String,
p. 4-243

filename Operating-system file to receive the rows.
Default pathname is the current directory.

See “UNLOAD TO File” on
page 2-754.

Quoted String,
p. 4-243

variable Host variable that contains the text of a
valid SELECT statement

Must have been declared as a
character data type.

Language-
specific

DELIMITER 'delimiter '

'filename ' SELECT Statement
p. 2-581UNLOAD TO

variable
SQL Statements 2-753

UNLOAD
UNLOAD TO File
The UNLOAD TO file, as specified by the filename parameter, receives the
retrieved rows. You can use an UNLOAD TO file as input to a LOAD statement.

In the default locale, data values have these formats in the UNLOAD TO file.

Data Type Output Format

BOOLEAN BOOLEAN values appear as either t for TRUE or f for FALSE. ♦

Character If a character field contains the delimiter, IBM Informix products
automatically escape it with a backslash (\) to prevent interpre-
tation as a special character. (If you use a LOAD statement to insert
the rows into a table, backslashes are automatically stripped.)

Collections A collection is unloaded with its values enclosed between braces
({ }) and a field delimiter separating each element. For more infor-
mation, see “Unloading Complex Types” on page 2-758.

DATE DATE values are represented as mm/dd/yyyy (or the default format
for the database locale), where mm is the month (January = 1, and
so on), dd is the day, and yyyy is the year. If you have set the
GL_DATE or DBDATE environment variable, the UNLOAD
statement uses the specified date format for DATE values.

DATETIME,
INTERVAL

Literal DATETIME and INTERVAL values appear as digits and
delimiters, without keyword qualifiers, in the default format
yyyy-mm-dd hh:mi:ss.fff. Time units outside the declared precision
are omitted. If the GL_DATETIME or DBTIME environment
variable is set, DATETIME values appear in the specified format.

DECIMAL,
MONEY

Values are unloaded with no leading currency symbol. In the
default locale, comma (,) is the thousands separator and period (.)
is the decimal separator. If DBMONEY is set, UNLOAD uses its
specified separators (and its currency format for MONEY values).

NULL NULL appears as two delimiters with no characters between them.

Number Values appear as literals, with no leading blanks. INTEGER, INT8,
or SMALLINT zero appear as 0, and MONEY, FLOAT, SMALL-
FLOAT, or DECIMAL zero is represented as 0.0.

ROW types
(named and
unnamed)

A ROW type is unloaded with its values surrounded by paren-
theses and a field delimiter separating each element. For more
information, see “Unloading Complex Types” on page 2-758. ♦

(1 of 2)

IDS

GLID
2-754 IBM Informix Guide to SQL: Syntax

UNLOAD
For more information on DB environment variables, refer to the IBM Informix
Guide to SQL: Reference. For more information on GL environment variables,
refer to the IBM Informix GLS User’s Guide.

In a nondefault locale, DATE, DATETIME, MONEY, and numeric column
values have formats that the locale supports for these data types. For more
information, see the IBM Informix GLS User’s Guide. ♦

Unloading Character Columns

In unloading files that contain VARCHAR or NVARCHAR columns, trailing
blanks are retained in VARCHAR or NVARCHAR fields. Trailing blanks are
discarded when CHAR or NCHAR columns are unloaded.

For CHAR, VARCHAR, NCHAR, and NVARCHAR columns, an empty string
(that is, a data string of zero length, containing no characters) is represented
in the UNLOAD TO file as the four bytes “|\ |” (delimiter, backslash, blank
space, delimiter).

Some earlier releases of Informix database servers used “||” (consecutive
delimiters) to represent the empty string in LOAD and UNLOAD operations.
In this release, however, “||” only represents NULL values in CHAR,
VARCHAR, NCHAR, and NVARCHAR columns.

Simple large
objects
(TEXT, BYTE)

TEXT and BYTE columns are unloaded directly into the UNLOAD
TO file. BYTE values appear in ASCII hexadecimal form, with no
added whitespace or newline characters. For more information, see
“Unloading Simple Large Objects” on page 2-756.

Smart large
objects
(CLOB,
BLOB)

CLOB and BLOB columns are unloaded into a separate operating-
system file on the client computer. The CLOB or BLOB field in the
UNLOAD TO file contains the name of this separate file. For more
information, see “Unloading Smart Large Objects” on page 2-756.

User-defined
data types
(opaque
types)

Opaque types must have an export support function defined. They
need special processing to copy data from the internal format of the
opaque type to the UNLOAD TO file format. An export binary
support function might also be required for data in binary format.
The data in the UNLOAD TO file would correspond to the format
that the export or exportbinary support function returns. ♦

Data Type Output Format

(2 of 2)

IDS

GLS
SQL Statements 2-755

UNLOAD
Unloading Simple Large Objects

The database server writes BYTE and TEXT values directly into the UNLOAD
TO file. BYTE values are written in hexadecimal dump format with no added
blank spaces or new line characters. The logical length of an UNLOAD TO file
containing BYTE data can therefore be long and difficult to print or edit.

If you are unloading files that contain simple-large-object data types, do not
use characters that can appear in BYTE or TEXT values as delimiters in the
UNLOAD TO file. See also the section “DELIMITER Clause” on page 2-758.

The database server handles any required code-set conversions for TEXT
data. For more information, see the IBM Informix GLS User’s Guide. ♦

If you are unloading files that contain simple-large-object data types, objects
smaller than 10 kilobytes are stored temporarily in memory. You can adjust
the 10-kilobyte setting to a larger setting with the DBBLOBBUF environment
variable. Simple large objects that are larger than the default or the setting of
the DBBLOBBUF environment variable are stored in a temporary file. For
additional information about the DBBLOBBUF environment variable, see the
IBM Informix Guide to SQL: Reference.

Unloading Smart Large Objects

The database server unloads smart large objects (BLOB and CLOB columns)
into a separate operating-system file on the client computer, in the same
directory as the UNLOAD TO file. The file has a name in one of these formats:

� For a BLOB value: blob########

� For a CLOB value: clob########

In the preceding formats, the pound (#) symbols represent the digits of the
unique hexadecimal smart-large-object identifier. The database server uses
the hexadecimal ID for the first smart large object in the file. The maximum
number of digits for a smart-large-object identifier is 17. Most smart large
objects, however, would have an identifier with fewer digits.

When the database server unloads the first smart large object, it creates the
appropriate BLOB or CLOB client file with the hexadecimal identifier of the
smart large object. If additional smart-large-object values are present, the
database server creates another BLOB or CLOB client file whose filename
contains the hexadecimal identifier of the next smart large object to unload.

GLS

IDS
2-756 IBM Informix Guide to SQL: Syntax

UNLOAD
In an UNLOAD TO file, a BLOB or CLOB column value appears as follows:

start_off,length,client_path

In this format, start_off is the starting offset (in hexadecimal) of the smart-
large-object value within the client file, length is the length (in hexadecimal)
of the BLOB or CLOB value, and client_path is the pathname for the client file.
No blank spaces can appear between these values. If a CLOB value is 512
bytes long and is at offset 256 in the /usr/apps/clob9ce7.318 file, for example,
then the CLOB value appears as follows in the UNLOAD TO file:

|100,200,/usr/apps/clob9ce7.318|

If a BLOB or CLOB column value occupies an entire client file, the CLOB or
BLOB column value appears as follows in the UNLOAD TO file:

client_path

For example, if a CLOB value occupies the entire file /usr/apps/clob9ce7.318,
the CLOB value appears as follows in the UNLOAD TO file:

|/usr/apps/clob9ce7.318|

For CLOB columns, the database server handles any required code-set
conversions for the data. For more information, see the IBM Informix GLS
User’s Guide. ♦

GLS
SQL Statements 2-757

UNLOAD
Unloading Complex Types

In an UNLOAD TO file, complex types appear as follows:

� Collections are introduced with the appropriate constructor (SET,
MULTISET, LIST), and have their elements enclosed in braces ({}) and
separated with a comma, as follows:

constructor{val1 , val2 , ... }

For example, to unload the SET values {1, 3, 4} from a column of the
SET (INTEGER NOT NULL) data type, the corresponding field of the
UNLOAD TO file appears as follows:

|SET{1 , 3 , 4}|

� Row types (named and unnamed) are introduced with the ROW
constructor and have their fields enclosed between parentheses and
separated with a comma, as follows:

ROW(val1 , val2 , ...)

For example, to unload the ROW values (1, 'abc'), the correspond-
ing field of the UNLOAD TO file appears as follows:

|ROW(1 , abc)|

DELIMITER Clause
Use the DELIMITER clause to identify the delimiter that separates the data
contained in each column in a row in the output file. If you omit this clause,
DB-Access checks the DBDELIMITER environment variable. If DBDELIMITER
has not been set, the default delimiter is the pipe (|).

You can specify the TAB (CTRL-I) or a blank space (ASCII 32) as the delimiter
symbol. You cannot use the following symbols as delimiter symbols:

� Backslash (\)

� Newline character (CTRL-J)

� Hexadecimal digits (0 to 9, a to f, A to F)

The backslash (\) is not a valid field separator or record delimiter because it
serves as an escape character, indicating that the next character is a literal
character in the data, rather than a special character.

IDS
2-758 IBM Informix Guide to SQL: Syntax

UNLOAD
The following statement specifies the semicolon (;) as the delimiter:

UNLOAD TO 'cust.out' DELIMITER ';'
SELECT fname, lname, company, city

FROM customer

Related Information
Related statements: LOAD and SELECT

For information about how to set the DBDELIMITER environment variable,
see the IBM Informix Guide to SQL: Reference.

For a discussion of the GLS aspects of the UNLOAD statement, see the
IBM Informix GLS User’s Guide.

For a task-oriented discussion of the UNLOAD statement and other utilities
for moving data, see the IBM Informix Migration Guide.
SQL Statements 2-759

UNLOCK TABLE
UNLOCK TABLE
Use the UNLOCK TABLE statement in a database without transactions to
unlock a table that you previously locked with the LOCK TABLE statement.
The UNLOCK TABLE statement fails in a database that uses transactions.

Syntax

Usage
You can lock a table if you own the table or if you have the Select privilege on
the table, either from a direct grant to yourself or from a grant to public. You
can only unlock a table that you locked. You cannot unlock a table that
another process locked. Only one lock can apply to a table at a time.

You must specify the name or synonym of the table that you are unlocking.
Do not specify the name of a view, or a synonym for a view.

To change the lock mode of a table in a database without transactions, use the
UNLOCK TABLE statement to unlock the table, then issue a new LOCK TABLE
statement. The following example shows how to change the lock mode of a
table in a database that was created without transactions:

LOCK TABLE items IN EXCLUSIVE MODE
...
UNLOCK TABLE items
...
LOCK TABLE items IN SHARE MODE

+

Element Purpose Restrictions Syntax
synonym Synonym for a

table to unlock
The synonym and the table to which it points must exist. Database Object

Name, p. 4-46
table Table to unlock Must be in a database without transactions and must be a

table that you previously locked
Database Object
Name, p. 4-46

UNLOCK TABLE

synonym

table
2-760 IBM Informix Guide to SQL: Syntax

UNLOCK TABLE
The UNLOCK TABLE statement fails if it is issued within a transaction. Table
locks set within a transaction are released automatically when the transaction
completes.

If you are using an ANSI-compliant database, do not issue an UNLOCK TABLE
statement. The UNLOCK TABLE statement fails if it is issued within a trans-
action, and a transaction is always in effect in an ANSI-compliant database. ♦

Related Information
Related statements: BEGIN WORK, COMMIT WORK, LOCK TABLE, and
ROLLBACK WORK

For a discussion of concurrency and locks, see the IBM Informix Guide to SQL:
Tutorial.

ANSI
SQL Statements 2-761

UPDATE
UPDATE
Use the UPDATE statement to change the values in one or more columns of
one or more rows in a table or view.

With Dynamic Server, you can also use this statement to change the values in
one or more elements in an ESQL/C collection variable. ♦

Syntax

Usage
Use the UPDATE statement to update any of the following types of objects:

� A row in a table: a single row, a group of rows, or all rows in a table

� An element in a collection variable

� An ESQL/C row variable: a field or all fields

IDS

Element Purpose Restrictions Syntax
cursor_id Name of a cursor whose current

row is to be updated
You cannot update a row that includes
aggregates.

Identifier,
p. 4-189

synonym,
table, view

Synonym, table, or view that
contains the rows to be updated

The synonym and the table or view to
which it points must exist.

Database Object
Name, p. 4-46

UPDATE

WHERE

SET
Clause
p. 2-766

WHERE CURRENT OF cursor_id

view

synonym

table

Optimizer
Directives
p. 4-222

Subset of
FROM Clause

p. 2-773

SET Clause
p. 2-766

Collection-
Derived Table

p. 4-7

ONLY

+

IDS

Condition
p. 4-24

IDS

XPS

(table)

+

E/C

SPL
(synonym)

IDS
2-762 IBM Informix Guide to SQL: Syntax

UPDATE
For information on how to update elements of a collection variable, see
“Collection-Derived Table” on page 4-7. The other sections of this UPDATE
statement describe how to update a row in a table. ♦

You must either own the table or have the Update privilege for the table; see
“GRANT” on page 2-459. To update data in a view, you must have the
Update privilege, and the view must meet the requirements that are
explained in “Updating Rows Through a View” on page 2-764.

The cursor (as defined in the SELECT...FOR UPDATE portion of a DECLARE
statement) can contain only column names. If you omit the WHERE clause, all
rows of the target table are updated.

If you are using effective checking and the checking mode is set to
IMMEDIATE, all specified constraints are checked at the end of each UPDATE
statement. If the checking mode is set to DEFERRED, all specified constraints
are not checked until the transaction is committed.

In Extended Parallel Server, if UPDATE is constructed in such a way that a
single row might be updated more than once, the database server returns an
error. If the new value is the same in every update, however, the database
server allows the UPDATE to take place without reporting an error. ♦

If you omit the WHERE clause and are in interactive mode, DB-Access does
not run the UPDATE statement until you confirm that you want to change all
rows. If the statement is in a command file, however, and you are running at
the command line, the statement executes immediately. ♦

Using the ONLY Keyword

If you use the UPDATE statement to update rows of a supertable, rows from
its subtables can also be updated. To update rows from the supertable only,
use the ONLY keyword prior to the table name, as this example shows:

UPDATE ONLY(am_studies_super)
WHERE advisor = "johnson"
SET advisor = "camarillo"

Warning: If you use the UPDATE statement on a supertable without the ONLY
keyword and without a WHERE clause, all rows of the supertable and its subtables
are updated.

You cannot use the ONLY keyword if you plan to use the WHERE CURRENT OF
clause to update the current row of the active set of a cursor.

XPS

DB

IDS
SQL Statements 2-763

UPDATE
Updating Rows Through a View

You can update data through a single-table view if you have the Update
privilege on the view (see “GRANT” on page 2-459). Certain restrictions
exist. For a view to be updatable, the SELECT statement that defines the view
must not contain any of the following items:

� Columns in the select list that are aggregate values

� Columns in the select list that use the UNIQUE or DISTINCT keyword

� A GROUP BY clause

� A UNION operator

In addition, if a view is built on a table that has a derived value for a column,
that column cannot be updated through the view. Other columns in the view,
however, can be updated. In an updatable view, you can update the values in
the underlying table by inserting values into the view. See also the section
“INSTEAD OF Triggers on Views” on page 2-305, which describes how you
can create INSTEAD OF triggers to update tables through a view.

You can use data-integrity constraints to prevent users from updating values
in the underlying table when the update values do not fit the SELECT
statement that defined the view. For more information, see “WITH CHECK
OPTION Keywords” on page 2-314.

Because duplicate rows can occur in a view even though the underlying table
has unique rows, be careful when you update a table through a view. For
example, if a view is defined on the items table and contains only the
order_num and total_price columns, and if two items from the same order
have the same total price, the view contains duplicate rows. In this case, if
you update one of the two duplicate total price values, you have no way to
know which item price is updated.

Important: If you are using a view with a check option, you cannot update rows to a
remote table.

Updating Rows in a Database Without Transactions

If you are updating rows in a database without transactions, you must take
explicit action to restore updated rows. For example, if the UPDATE statement
fails after updating some rows, the successfully updated rows remain in the
table. You cannot automatically recover from a failed update.
2-764 IBM Informix Guide to SQL: Syntax

UPDATE
Updating Rows in a Database with Transactions

If you are updating rows in a database with transactions, and you are using
transactions, you can undo the update using the ROLLBACK WORK
statement. If you do not execute a BEGIN WORK statement before the update,
and the update fails, the database server automatically rolls back any
database modifications made since the beginning of the update.

You can create temporary tables with the WITH NO LOG option. These tables
are never logged and are not recoverable.

Tables that you create with the RAW logging type are never logged. Thus,
RAW tables are not recoverable, even if the database uses logging. For infor-
mation about RAW tables, refer to the IBM Informix Guide to SQL: Reference.

In an ANSI-compliant database, transactions are implicit, and all database
modifications take place within a transaction. In this case, if an UPDATE
statement fails, you can use ROLLBACK WORK to undo the update.

If you are within an explicit transaction, and the update fails, the database
server automatically undoes the effects of the update. ♦

Locking Considerations

When a row is selected with the intent to update, the update process acquires
an update lock. Update locks permit other processes to read, or share, a row
that is about to be updated, but they do not allow those processes to update
or delete it. Just before the update occurs, the update process promotes the
shared lock to an exclusive lock. An exclusive lock prevents other processes
from reading or modifying the contents of the row until the lock is released.

An update process can acquire an update lock on a row or on a page that has
a shared lock from another process, but you cannot promote the update lock
from shared to exclusive (and the update cannot occur) until the other
process releases its lock.

If the number of rows that a single update affects is large, you can exceed the
limits placed on the maximum number of simultaneous locks. If this occurs,
you can reduce the number of transactions per UPDATE statement, or you can
lock the page or the entire table before you execute the statement.

ANSI
SQL Statements 2-765

UPDATE
SET Clause
Use the SET clause to identify the columns to update and assign values to
each column. The clause supports the following formats:

� A single-column format, which pairs a column to a single expression

� A multiple-column format, which lists multiple columns and sets
them equal to corresponding expressions

Single-Column Format

Use the single-column format to pair one column with a single expression.

SET
Clause

Multiple-Column Format
p.2-768

Back to UPDATE
p. 2-762

Single-Column Format
p. 2-766

+

SET

Element Purpose Restrictions Syntax
column Column to be updated Cannot be a serial data type. Identifier, p. 4-189
collection_var Host or program variable Must be declared as a collection data

type.
Language specific

expression Returns a value for column Cannot contain aggregate functions. Expression, p. 4-67
singleton select Subquery that returns

exactly one row
Returned subquery values must have a
1-to-1 correspondence with column list.

SELECT, p. 2-581

Single-Column
Format

()

NULL

=column

Back to SET Clause
p.2-766

,

collection_varIDS

singleton select

expression
2-766 IBM Informix Guide to SQL: Syntax

UPDATE
You can use this syntax to update a ROW column.

An expression list can include an SQL subquery that returns a single row of
multiple values, provided that the number of columns named in the column
list equals the number of values that the expression list returns.

You can include any number of single columns to single expressions in the
UPDATE statement. For information on how to specify values of a row-type
column in a SET clause, see “Updating ROW-Type Columns” on page 2-770.
The following examples illustrate the single-column format of the SET clause.

UPDATE customer
SET address1 = '1111 Alder Court', city = 'Palo Alto',

zipcode = '94301' WHERE customer_num = 103;

UPDATE stock
SET unit_price = unit_price * 1.07;

Using a Subquery to Update a Column

You can update a column with the value that a subquery returns.

UPDATE orders
SET ship_charge =

(SELECT SUM(total_price) * .07 FROM items
WHERE orders.order_num = items.order_num)

WHERE orders.order_num = 1001

If you are updating a supertable in a table hierarchy, the SET clause cannot
include a subquery that references a subtable.

If you are updating a subtable in a table hierarchy, a subquery in the SET
clause can reference the supertable if it references only the supertable. That
is, the subquery must use the SELECT…FROM ONLY (supertable)… syntax. ♦

Updating a Column to NULL

Use the NULL keyword to modify a column value when you use the UPDATE
statement. For example, for a customer whose previous address required two
address lines but now requires only one, you would use the following entry:

UPDATE customer
SET address1 = '123 New Street',
SET address2 = null,
city = 'Palo Alto',
zipcode = '94303'
WHERE customer_num = 134

IDS
SQL Statements 2-767

UPDATE
Updating the Same Column Twice

You can specify the same column more than once in the SET clause. If you do
so, the column is set to the last value that you specified for the column. In the
following example, the user specifies the fname column twice in the SET
clause. For the row where the customer number is 101, the user sets fname
first to gary and then to harry. After the UPDATE statement executes, the
value of fname is harry.

UPDATE customer
SET fname = "gary", fname = "harry"

WHERE customer_num = 101

Multiple-Column Format

Use the multiple-column format of the SET clause to list multiple columns
and set them equal to corresponding expressions.

Element Purpose Restrictions Syntax
column Name of a column to be

updated
Cannot be a serial or ROW column. The number
of column names must equal the number of
values returned to the right of the = sign.

Identifier,
p. 4-189

expression Expression that returns a
value for a column

Cannot include aggregate functions. Expression,
p. 4-67

singleton select Subquery that returns
exactly one row

Values that the subquery returns must corre-
spond to the columns named in the column list.

SELECT,
p. 2-581

SPL function An SPL routine that
returns one or more values

Returned values must have a 1-to-1 correspon-
dence to the columns named in the column list.

Identifier,
p. 4-189

Multiple-Column
Format

Back to SET Clause
p. 2-766

()

,

()

NULL

,

=

*

column()

singleton
select

SPL
function

XPS

,

()

expression

Argument
p. 4-5
2-768 IBM Informix Guide to SQL: Syntax

UPDATE
The multiple-column format of the SET clause offers the following options for
listing a set of columns that you intend to update:

� Explicitly list each column, placing commas between columns and
enclosing the set of columns between parentheses.

� Implicitly list all columns in the table by using an asterisk (*).

You must list each expression explicitly, placing comma (,) separators
between expressions and enclosing the set of expressions between paren-
theses. The number of columns must equal the number of values returned by
the expression list, unless the expression list includes an SQL subquery.

The following examples show the multiple-column format of the SET clause:

UPDATE customer
SET (fname, lname) = ('John', 'Doe') WHERE customer_num = 101

UPDATE manufact
SET * = ('HNT', 'Hunter') WHERE manu_code = 'ANZ'

Using a Subquery to Update Column Values

An expression list can include an SQL subquery that returns a single row of
multiple values, provided that the number of columns that you specify,
explicitly or implicitly, equals the number of values produced by the
expression or expressions that follow the equal (=) sign.

The following examples show the use of subqueries:

UPDATE items
SET (stock_num, manu_code, quantity) =

((SELECT stock_num, manu_code FROM stock
WHERE description = 'baseball'), 2)

WHERE item_num = 1 AND order_num = 1001

UPDATE table1
SET (col1, col2, col3) =

((SELECT MIN (ship_charge),
MAX (ship_charge) FROM orders),
'07/01/1997')

WHERE col4 = 1001

If you are updating the supertable in a table hierarchy, the SET clause cannot
include a subquery that references one of its subtables. If you are updating a
subtable in a table hierarchy, a subquery in the SET clause can reference the
supertable if it references only the supertable. That is, the subquery must use
the SELECT… FROM ONLY (supertable) syntax. ♦

IDS
SQL Statements 2-769

UPDATE
Using an SPL Function to Update Column Values

When you use an SPL function to update column values, the returned values
of the function must have a one-to-one correspondence with the listed
columns. That is, each value that the SPL function returns must be of the data
type expected by the corresponding column in the column list.

If the called SPL routine contains certain SQL statements, a runtime error
occurs. For information on which SQL statements cannot be used in an SPL
routine that is called in a data-manipulation statement, see “Restrictions on
SPL Routines in Data-Manipulation Statements” on page 4-279. In the next
example, the SPL function p2() updates the i2 and c2 columns of the t2 table:

CREATE PROCEDURE p2()
RETURNING int, char(20);
RETURN 3, ‘three’;

END PROCEDURE;
UPDATE t2 SET (i2, c2) = (p2()) WHERE i2 = 2;

In Extended Parallel Server, you create an SPL function with the CREATE
PROCEDURE statement. The CREATE FUNCTION statement is not available.

Updating ROW-Type Columns

Use the SET clause to update a named or unnamed ROW-type column. For
example, suppose you define the following named ROW type and a table that
contains columns of both named and unnamed ROW types:

CREATE ROW TYPE address_t
(

street CHAR(20), city CHAR(15), state CHAR(2)
);
CREATE TABLE empinfo
(

emp_id INT
name ROW (fname CHAR(20), lname CHAR(20)),
address address_t

);

To update an unnamed ROW type, specify the ROW constructor before the
parenthesized list of field values.

The following statement updates the name column (an unnamed ROW type)
of the empinfo table:

UPDATE empinfo SET name = ROW('John','Williams') WHERE emp_id =455

XPS

IDS
2-770 IBM Informix Guide to SQL: Syntax

UPDATE
To update a named ROW type, specify the ROW constructor before the paren-
thesized list of field values and use the cast (::) operator to cast the ROW
value as a named ROW type. The following statement updates the address
column (a named ROW type) of the empinfo table:

UPDATE empinfo
SET address = ROW('103 Baker St','Tracy','CA')::address_t
WHERE emp_id = 3568

For more information on the syntax for ROW constructors, see “Constructor
Expressions” on page 4-106. See also “Literal Row” on page 4-218.

The ROW-column SET clause can only support literal values for fields. To use
a variable to specify a field value, you must select the ROW data into a row
variable, use host variables for the individual field values, then update the
ROW column with the row variable. For more information, see “Updating a
Row Variable” on page 2-775. ♦

You can use ESQL/C host variables to insert non-literal values as:

� An entire row type into a column

Use a row variable as a variable name in the SET clause to update all
fields in a ROW column at one time.

� Individual fields of a ROW type

To insert non-literal values into a ROW-type column, you can first
update the elements in a row variable and then specify the collection
variable in the SET clause of an UPDATE statement.

When you use a row variable in the SET clause, the row variable must contain
values for each field value. For information on how to insert values into a row
variable, see “Updating a Row Variable” on page 2-775. ♦

You can use the UPDATE to modify only some of the fields in a row:

� Specify the field names with field projection for all fields whose
values remain unchanged.

For example, the following UPDATE statement changes only the
street and city fields of the address column of the empinfo table:

UPDATE empinfo
SET address = ROW('23 Elm St', 'Sacramento',

address.state)
WHERE emp_id = 433

The address.state field remains unchanged.

E/C

E/C
SQL Statements 2-771

UPDATE
� Select the row into a row variable and update the desired fields.

For more information, see “Updating a Row Variable” on
page 2-775. ♦

Updating Collection Columns

You can use the SET clause to update values in a collection column. For more
information, see “Collection Constructors” on page 4-108.

A collection variable can update a collection-type column. With a collection
variable, you can insert one or more individual elements of a collection. For
more information, see “Collection-Derived Table” on page 4-7. ♦

For example, suppose you define the tab1 table as follows:

CREATE TABLE tab1
(

int1 INTEGER,
list1 LIST(ROW(a INTEGER, b CHAR(5)) NOT NULL),
dec1 DECIMAL(5,2)

)

The following UPDATE statement updates a row in tab1:

UPDATE tab1
SET list1 = LIST{ROW(2, 'zyxwv'),

ROW(POW(2,6), ‘=64’),
ROW(ROUND(ROOT(146)), ‘=12’)},

where int1 = 10

Collection column list1 in this example has three elements. Each element is
an unnamed row type with an INTEGER field and a CHAR(5) field. The first
element includes two literal values: an integer (2) and a quoted string
('zyxwv').

The second and third elements also use a quoted string to indicate the value
for the second field. They each designate the value for the first field with an
expression, however, rather than with a literal value.

Updating Values in Opaque-Type Columns

Some opaque data types require special processing when they are updated.
For example, if an opaque data type contains spatial or multirepresentational
data, it might provide a choice of how to store the data: inside the internal
structure or, for large objects, in a smart large object.

E/C

IDS

E/C

SPL

IDS
2-772 IBM Informix Guide to SQL: Syntax

UPDATE
This processing is accomplished by calling a user-defined support function
called assign(). When you execute UPDATE on a table whose rows contain
one of these opaque types, the database server automatically invokes the
assign() function for the type. This function can make the decision of how to
store the data. For more information about the assign() support function, see
IBM Informix User-Defined Routines and Data Types Developer’s Guide.

Subset of FROM Clause

In Extended Parallel Server, you can use a join to determine which column
values to update by specifying a FROM clause. Columns from any table in the
FROM clause can appear in the WHERE clause to provide values for the
columns and rows to update. For example, in the following UPDATE
statement, a FROM clause introduces tables to be joined in the WHERE clause:

UPDATE tab1 SET tab1.a = tab2.a FROM tab1, tab2, tab3
WHERE tab1.b = tab2.b AND tab2.c =tab3.c

UPDATE supports only a subset of the syntax listed in “FROM Clause” on
page 2-594. You cannot include the LOCAL or the SAMPLES OF keywords.

WHERE Clause

The WHERE clause lets you specify search criteria to limit the rows to be
updated. If you omit the WHERE clause, every row in the table is updated. For
more information, see the “WHERE Clause” on page 2-613.

The next example uses WHERE and FROM clauses to update three columns
(state, zipcode, and phone) in each row of the customer table that has a corre-
sponding entry in a table of new addresses called new_address:

UPDATE customer
SET (state, zipcode, phone) =

((SELECT state, zipcode, phone FROM new_address N
WHERE N.cust_num = customer.customer_num))

WHERE customer_num IN
(SELECT cust_num FROM new_address)

SQLSTATE VALUES When Updating an ANSI Database

If you update a table in an ANSI-compliant database with an UPDATE
statement that contains the WHERE clause and no rows are found, the
database server issues a warning.

XPS

ANSI
SQL Statements 2-773

UPDATE
You can detect this warning condition in either of the following ways:

� The GET DIAGNOSTICS statement sets the RETURNED_SQLSTATE
field to the value 02000. In an SQL API application, the SQLSTATE
variable contains this same value.

� In an SQL API application, the sqlca.sqlcode and SQLCODE variables
contain the value 100.

The database server also sets SQLSTATE and SQLCODE to these values if the
UPDATE... WHERE... is a part of a multistatement PREPARE and the database
server returns no rows.

SQLSTATE VALUES When Updating a Non-ANSI Database

In a database that is not ANSI compliant, the database server does not return
a warning when it finds no matching rows for the WHERE clause of an
UPDATE statement. The SQLSTATE code is 00000 and the SQLCODE code is
zero (0). If the UPDATE... WHERE... is a part of a multistatement PREPARE,
however, and no rows are returned, the database server issues a warning,
and sets SQLSTATE to 02000 and sets SQLCODE to 100.

Using the WHERE CURRENT OF Clause

Use the WHERE CURRENT OF clause to update the current row of the active
set of a cursor in the current element of a collection cursor.

The UPDATE statement does not advance the cursor to the next row, so the
current row position remains unchanged.

You cannot use this clause if you are selecting from only one table in a table
hierarchy. That is, you cannot use this option if you use the ONLY keyword. ♦

To use the WHERE CURRENT OF keywords, you must have previously used
the DECLARE statement to define the cursor with the FOR UPDATE option.

If the DECLARE statement that created the cursor specified one or more
columns in the FOR UPDATE clause, you are restricted to updating only those
columns in a subsequent UPDATE...WHERE CURRENT OF statement. The
advantage to specifying columns in the FOR UPDATE clause of a DECLARE
statement is speed. The database server can usually perform updates more
quickly if columns are specified in the DECLARE statement.

E/C

SPL

IDS
2-774 IBM Informix Guide to SQL: Syntax

UPDATE
Before you can use the CURRENT OF keywords, you must declare a cursor
with the FOREACH statement.

Tip: An update cursor can perform updates that are not possible with the UPDATE
statement.

The following ESQL/C example illustrates the CURRENT OF form of the
WHERE clause. In this example, updates are performed on a range of
customers who receive 10-percent discounts (assume that a new column,
discount, is added to the customer table). The UPDATE statement is prepared
outside the WHILE loop to ensure that parsing is done only once.

char answer [1] = 'y';
EXEC SQL BEGIN DECLARE SECTION;

char fname[32],lname[32];
int low,high;

EXEC SQL END DECLARE SECTION;
main()
{

EXEC SQL connect to 'stores_demo';
EXEC SQL prepare sel_stmt from

'select fname, lname from customer \
 where cust_num between ? and ? for update';

EXEC SQL declare x cursor for sel_stmt;
printf("\nEnter lower limit customer number: ");
scanf("%d", &low);
printf("\nEnter upper limit customer number: ");
scanf("%d", &high);
EXEC SQL open x using :low, :high;
EXEC SQL prepare u from

'update customer set discount = 0.1 where current of x';
while (1)

{
EXEC SQL fetch x into :fname, :lname;
if (SQLCODE == SQLNOTFOUND) break;
}

printf("\nUpdate %.10s %.10s (y/n)?", fname, lname);
if (answer = getch() == 'y')

EXEC SQL execute u;
EXEC SQL close x;

}

Updating a Row Variable

The UPDATE statement with the Collection-Derived-Table segment allows
you to update fields in a row variable. The Collection-Derived-Table segment
identifies the row variable in which to update the fields. For more infor-
mation, see “Collection-Derived Table” on page 4-7.

IDS

E/C
SQL Statements 2-775

UPDATE
To update fields

1. Create a row variable in your ESQL/C program.

2. Optionally, select a row-type column into the row variable with the
SELECT statement (without the Collection-Derived-Table segment).

3. Update fields of the row variable with the UPDATE statement and the
Collection-Derived-Table segment.

4. After the row variable contains the correct fields, you then use the
UPDATE or INSERT statement on a table or view name to save the row
variable in the ROW column (named or unnamed).

The UPDATE statement and the Collection-Derived-Table segment allow you
to update a particular field or group of fields in the row variable. Specify the
new field values in the SET clause. For example, the following UPDATE
changes the x and y fields in the myrect ESQL/C row variable:

EXEC SQL BEGIN DECLARE SECTION;
row (x int, y int, length float, width float) myrect;

EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL select into :myrect from rectangles where area = 64;
EXEC SQL update table(:myrect) set x=3, y=4;

Suppose that after the SELECT statement, the myrect2 variable has the values
x=0, y=0, length=8, and width=8. After the UPDATE statement, the myrect2
variable has field values of x=3, y=4, length=8, and width=8. You cannot use
a row variable in the Collection-Derived-Table segment of an INSERT
statement.

You can, however, use the UPDATE statement and the Collection-Derived-
Table segment to insert new field values into a row host variable, if you
specify a value for every field in the row.

For example, the following code fragment inserts new field values into the
row variable myrect and then inserts this row variable into the database:

EXEC SQL update table(:myrect)
set x=3, y=4, length=12, width=6;

EXEC SQL insert into rectangles
values (72, :myrect);

If the row variable is an untyped variable, you must use a SELECT statement
before the UPDATE so that ESQL/C can determine the data types of the fields.
An UPDATE of fields in a row variable cannot include a WHERE clause.
2-776 IBM Informix Guide to SQL: Syntax

UPDATE
The row variable can store the field values of the row, but it has no intrinsic
connection with a database column. Once the row variable contains the
correct field values, you must then save the variable into the ROW column
with one of the following SQL statements:

� To update the ROW column in the table with contents of the row
variable, use an UPDATE statement on a table or view name and
specify the row variable in the SET clause. (For more information, see
“Updating ROW-Type Columns” on page 2-770.)

� To insert a row into a column, use the INSERT statement on a table or
view name and specify the row variable in the VALUES clause. (For
more information, see “Inserting Values into ROW-Type Columns”
on page 2-497.)

For examples of SPL ROW variables, see the IBM Informix Guide to SQL: Tutorial.
For more information on using ESQL/C row variables, see the discussion of
complex data types in the IBM Informix ESQL/C Programmer’s Manual.

Related Information
Related statements: DECLARE, INSERT, OPEN, SELECT, and FOREACH

For a task-oriented discussion of the UPDATE statement, see the IBM Informix
Guide to SQL: Tutorial.

For a discussion of the GLS aspects of the UPDATE statement, see the
IBM Informix GLS User’s Guide.

For information on how to access row and collections with ESQL/C host
variables, see the discussion of complex data types in the IBM Informix ESQL/C
Programmer’s Manual.
SQL Statements 2-777

2-778 IBM Informix Guide to SQL: Syntax

UPDATE STATISTICS
UPDATE STATISTICS
Use the UPDATE STATISTICS statement to perform any of the following tasks:

� Determine the distribution of column values.

� Update system catalog tables that the database server uses to
optimize queries.

� Force reoptimization of SPL routines.

� Convert existing indexes when you upgrade the database server.

Syntax

+

Element Purpose Restrictions Syntax
column A column in table or

synonym
Must exist. With MEDIUM or HIGH keywords,
column cannot be of BYTE or TEXT data type.

Identifier,
p. 4-189

synonym Synonym for a table whose
statistics are to be updated

The synonym and the table to which it points
must exist in the current database.

Database Object
Name, p. 4-46

table Table for which statistics
are to be updated

Must exist in the current database. Database Object
Name, p. 4-46

MEDIUM

UPDATE STATISTICS LOW

DROP DISTRIBUTIONS

,

column()

FOR TABLE table

synonym

HIGH

Routine Statistics
p. 2-786

ONLY

RESOLUTION Clause
p. 2-784

Table and Column
Information

Table and Column
Information

Table and Column
Information

UPDATE STATISTICS
Usage
You cannot update the statistics used by the optimizer for a table or UDR that
is external to the current database. That is, you cannot update statistics on
remote database objects.

Scope of UPDATE STATISTICS

If you do not specify any clause that begins with the FOR keyword, statistics
are updated for every table and SPL routine in the current database, including
the system catalog tables. Similarly, if you use a clause that begins with the
FOR keyword, but do not specify a table or SPL routine name, the database
server updates the statistics for all tables, including temporary tables, or all
SPL routines in the current database.

If you use the FOR TABLE clause without a specific table name to build distri-
butions on all of the tables in the database, distributions are also built on all
of the temporary tables in your session.

Updating Statistics for Tables
Although a change to the database might obsolete the corresponding
statistics in the systables, syscolumns, sysindexes, and sysdistrib system
catalog tables, the database server does not automatically update them.

Issue an UPDATE STATISTICS statement in the following situations to ensure
that the stored distribution information reflects the state of the database:

� You perform extensive modifications to a table.

� An application changes the distribution of column values.

The UPDATE STATISTICS statement reoptimizes queries on the modi-
fied objects.

� You upgrade a database for use with a newer database server.

The UPDATE STATISTICS statement converts the old indexes to con-
form to the newer database server index format and implicitly drops
the old indexes.

You can choose to convert the indexes table by table or for the entire
database at one time. Follow the conversion guidelines in the
IBM Informix Migration Guide.
SQL Statements 2-779

UPDATE STATISTICS
If your application makes many modifications to the data in a particular
table, update the system catalog data for that table routinely with the
UPDATE STATISTICS statement to improve query efficiency. The term many
modifications is relative to the resolution of the distributions. If the data
changes do not change the distribution of column values, you do not need to
execute UPDATE STATISTICS.

In Extended Parallel Server, the UPDATE STATISTICS statement does not
update, maintain, or collect statistics on indexes. The statement does not
update the syscolumns and sysindexes tables. Any information about
indexes, the syscolumns, and the sysindexes tables in the following pages
does not apply to Extended Parallel Server. ♦

Using the ONLY Keyword

Use the ONLY keyword to collect data for one table in a hierarchy of typed
tables. If you do not specify the ONLY keyword and the table that you specify
has subtables, the database server creates distributions for that table and
every table under it in the hierarchy.

For example, assume your database has the typed table hierarchy that
appears in Figure 2-2, which shows a supertable named employee that has a
subtable named sales_rep. The sales_rep table, in turn, has a subtable named
us_sales_rep.

When the following statement executes, the database server generates
statistics on both the sales_rep and us_sales_rep tables:

UPDATE STATISTICS FOR TABLE sales_rep

Figure 2-2
Example of Typed

Table Hierarchy

XPS

IDS

us_sales_rep

employee

sales_rep

Table Hierarchy
2-780 IBM Informix Guide to SQL: Syntax

UPDATE STATISTICS
In contrast, the following example generates statistical data for each column
in table sales_rep but does not act on tables employee or us_sales_rep:

UPDATE STATISTICS FOR TABLE ONLY sales_rep

Because neither of the previous examples specified the level at which to
update the statistical data, the database server uses the LOW mode by default.

Examining Index Pages

In Dynamic Server, when you execute the UPDATE STATISTICS statement in
any mode, the database server reads through index pages to:

� Compute statistics for the query optimizer

� Locate pages that have the delete flag marked as 1

If pages are found with the delete flag marked as 1, the corresponding keys
are removed from the B-tree cleaner list.

This operation is particularly useful if a system failure causes the B-tree
cleaner list (which exists in shared memory) to be lost. To remove the B-tree
items that have been marked as deleted but are not yet removed from the
B-tree, run the UPDATE STATISTICS statement. For information on the B-tree
cleaner list, see your Administrator’s Guide.

Using the LOW Mode Option
Use the LOW option to generate and update some of the relevant statistical
data regarding table, row, and page count statistics in the systables system
catalog table. If you do not specify any mode, the LOW mode is the default.

In Dynamic Server, the LOW mode also generates and updates some index
and column statistics for specified columns in the syscolumns and the
sysindexes system catalog tables.

The LOW mode generates the least amount of information about the column.
If you want the UPDATE STATISTICS statement to do minimal work, specify a
column that is not part of an index. The colmax and colmin values in
syscolumns are not updated unless there is an index on the column.

IDS

IDS
SQL Statements 2-781

UPDATE STATISTICS
The following example updates statistics on the customer_num column of
the customer table:

UPDATE STATISTICS LOW FOR TABLE customer (customer_num)

Because the LOW mode option does not update data in the sysdistrib system
catalog table, all distributions associated with the customer table remain
intact, even those that already exist on the customer_num column. ♦

Using the DROP DISTRIBUTIONS Option

Use the DROP DISTRIBUTIONS option to force the removal of distribution
information from the sysdistrib system catalog table.

When you specify the DROP DISTRIBUTIONS option, the database server
removes the existing distribution data for the column or columns that you
specify. If you do not specify any columns, the database server removes all
the distribution data for that table.

You must have the DBA privilege or be owner of the table to use this option.

The following example shows how to remove distributions for the
customer_num column in the customer table:

UPDATE STATISTICS LOW
FOR TABLE customer (customer_num) DROP DISTRIBUTIONS

As the example shows, you drop the distribution data at the same time you
update the statistical data that the LOW mode option generates.

Using the MEDIUM Mode Option
Use the MEDIUM mode option to update the same statistics that you can
perform with the LOW mode option and also generate statistics about the
distribution of data values for each specified column. The database server
places distribution information in the sysdistrib system catalog table.

If you use the MEDIUM mode option, the database server scans tables at least
once and takes longer to execute on a given table than the LOW mode option.

When you use the MEDIUM mode option, the data for the distributions is
obtained by sampling a percentage of data rows, using a statistical confi-
dence level that you specify, or else a default confidence level of 95 percent.
2-782 IBM Informix Guide to SQL: Syntax

UPDATE STATISTICS
Because the MEDIUM sample size is usually much smaller than the actual
number of rows, this mode executes more quickly than the HIGH mode.

Because the distribution is obtained by sampling, the results can vary,
because different samples of rows might produce different distribution
results. If the results vary significantly, you can lower the resolution percent
or increase the confidence level to obtain more consistent results.

If you specify no RESOLUTION clause, the default average percentage of the
sample in each bin is 2.5, dividing the range into 40 intervals. If you do not
specify a value for confidence_level, the default level is 0.95. This value can be
roughly interpreted to mean that 95 times out of 100, the estimate is not statis-
tically different from what would be obtained from HIGH distributions.

You must have the DBA privilege or be the owner of the table to create
MEDIUM distributions. For more on the MEDIUM and HIGH mode options,
see the “Resolution Clause” on page 2-784.

Using the HIGH Mode Option
Use the HIGH mode option to update the same statistics that you can perform
with the LOW mode option and also generate statistics about the distribution
of data values for each specified column. The database server places distri-
bution information in the sysdistrib system catalog table.

If you do not specify a RESOLUTION clause, the default percentage of data
distributed to every bin is 0.5, partitioning the range of values for each
column into 200 intervals.

The constructed distribution is exact. Because more information is gathered,
this mode executes more slowly than LOW or MEDIUM modes. If you use the
HIGH mode option of UPDATE STATISTICS, the database server can take
considerable time to gather the information across the database, particularly
a database with large tables. The HIGH keyword might scan each table
several times (for each column). To minimize processing time, specify a table
name and column names within that table.

You must have the DBA privilege or be the owner of the table to create HIGH
distributions. For more information on the MEDIUM and HIGH mode options,
see the “Resolution Clause” on page 2-784.
SQL Statements 2-783

UPDATE STATISTICS
Resolution Clause
Use the Resolution clause to adjust the size of the distribution bin, designate
whether or not to avoid calculating data on indexes, and with the MEDIUM
mode, to adjust the confidence level.

A distribution is a mapping of the data in a column into a set of column values,
ordered by magnitude or by collation. The range of these sample values is
partitioned into disjunct intervals, called bins, each containing an approxi-
mately equal portion of the sample of column values. For example, if one bin
holds 2 percent of the data, 50 such intervals hold the entire sample.

Element Purpose Restrictions Syntax
confidence_level Estimated fraction of the time that sampling in

MEDIUM mode should produce the same results
as the exact HIGH mode. Default level is 0.95.

Must be within the range
from 0.80 (minimum) to
0.99 (maximum).

Literal
Number,
p. 4-216

percent Percentage of sample in each bin of distribution

Default is 2.5 for MEDIUM and 0.5 for HIGH.

Minimum resolution is
1/nrows, for nrows the
number of rows in the table.

Literal
Number,
p. 4-216

RESOLUTION
Clause

Back to UPDATE STATISTICS
p. 2-778

RESOLUTION percent

confidence_level

RESOLUTION Clause
for MEDIUM Mode

RESOLUTION Clause
for HIGH Mode

RESOLUTION percent

RESOLUTION Clause
for HIGH Mode

DISTRIBUTIONS ONLY

IDS

DISTRIBUTIONS ONLYIDS

RESOLUTION Clause
for MEDIUM Mode
2-784 IBM Informix Guide to SQL: Syntax

UPDATE STATISTICS
Some statistical texts call these bins equivalence categories. Each contains a
subset of the range of the data values that are sampled from the column.

The optimizer estimates the effect of a WHERE clause by examining, for each
column included in the WHERE clause, the proportionate occurrence of data
values contained in the column.

You cannot create distributions for BYTE or TEXT columns. If you include a
BYTE or TEXT column in an UPDATE STATISTICS statement that specifies
medium or high distributions, no distributions are created for those columns.
Distributions are constructed for other columns in the list, however, and the
statement does not return an error.

Columns of the VARCHAR data type do not use overflow bins, even when
multiple bins are being used for duplicate values.

The amount of space that the DBUPSPACE environment variable specifies
determines the number of times the database server scans the designated
table to construct a distribution.

Using the DISTRIBUTIONS ONLY Option to Suppress Index Information

In Dynamic Server, when you specify the DISTRIBUTIONS ONLY option, you
do not update index information. This option does not affect existing index
information.

Use this option to avoid the examination of index information that can
consume considerable processing time.

This option does not affect the recalculation of information on tables, such as
the number of pages used, the number of rows, and fragment information.
UPDATE STATISTICS needs this information to construct accurate column
distributions and requires little time and system resources to collect it.

IDS
SQL Statements 2-785

UPDATE STATISTICS
Routine Statistics
Use the Routine Statistics segment of the UPDATE STATISTICS statement to
update the optimized execution plans for SPL routines in the sysprocplan
system catalog table.

The following table explains the keywords of the Routine Statistics segment.

Element Purpose Restrictions Syntax
routine Name declared for a SPL routine in

a CREATE FUNCTION or CREATE
PROCEDURE statement

Must reside in current database. In an
ANSI-compliant database, qualify
routine with owner if you are not owner.

Database Object
Name, p. 4-46

Routine Statistics

(

Back to UPDATE STATISTICS
p. 2-778

FOR

Specific Name
p. 4-274SPECIFIC

PROCEDURE

ROUTINE

FUNCTION

PROCEDURE

ROUTINE

FUNCTION

routine

routine

Routine Parameter List
p. 4-266

)

IDS

PROCEDURE

Keyword Which Execution Plan is Reoptimized

SPECIFIC The plan for the SPL routine called specific name

FUNCTION The plan for any SPL function with the specified name (and with
parameter types that match routine parameter list, if supplied)

PROCEDURE The plan for any SPL procedure with the specified name (and
parameter types that match routine parameter list, if supplied)

ROUTINE The plan for SPL functions and procedures with the specified name
(and parameter types that match routine parameter list, if supplied)
2-786 IBM Informix Guide to SQL: Syntax

UPDATE STATISTICS
If you omit routine, execution plans are reoptimized for all SPL routines in the
current database.

The sysprocplan system catalog table stores execution plans for SPL routines.
Two actions update the sysprocplan system catalog table:

� Execution of an SPL routine that uses a modified table

� The UPDATE STATISTICS statement

If you change a table that an SPL routine references, you can run UPDATE
STATISTICS to reoptimize on demand, rather than waiting until the next time
an SPL routine that uses the table executes.

Updating Statistics for Columns of User-Defined Types
To collect statistics for a column of a user-defined data type, you must specify
either MEDIUM or HIGH mode. When you execute UPDATE STATISTICS, the
database server does not collect values for the colmin and colmax columns
of the syscolumns table for columns that hold user-defined data types.

To drop statistics for a column that holds one of these data types, you must
execute UPDATE STATISTICS in the LOW mode with the DROP DISTRIBUTIONS
option. When you use this option, the database server removes the row in the
sysdistrib system catalog table that corresponds to the tableid and column.
In addition, the database server removes any large objects that might have
been created for storing the statistics information.

Requirements

UPDATE STATISTICS collects statistics for opaque data types only if you have
defined user-defined routines for statcollect(), statprint(), and the selectivity
functions. You must have usage permissions on these routines.

In some cases, UPDATE STATISTICS also requires an sbspace as specified by
the SYSSBSPACENAME onconfig parameter. For information about how to
provide statistical data for a column, refer to the IBM Informix DataBlade API
Programmer’s Guide. For information about SYSSBSPACENAME, refer to your
Administrator’s Reference.

IDS
SQL Statements 2-787

UPDATE STATISTICS
Updating Statistics When You Upgrade the Database Server
When you upgrade a database to use with a newer database server, you can
use the UPDATE STATISTICS statement to convert the indexes to the form that
the newer database server uses. You can choose to convert the indexes one
table at a time or for the entire database at one time. Follow the conversion
guidelines that are outlined in the IBM Informix Migration Guide.

When you use the UPDATE STATISTICS statement to convert the indexes to
use with a newer database server, the indexes are implicitly dropped and re-
created. The only time that an UPDATE STATISTICS statement causes table
indexes to be implicitly dropped and re-created is when you upgrade a
database for use with a newer database server.

Performance
The more specific you make the list of objects that UPDATE STATISTICS
examines, the faster it completes execution. Limiting the number of columns
distributed speeds the update. Similarly, precision affects the speed of the
update. If all other keywords are the same, LOW works fastest, but HIGH
examines the most data.

Related Information
Related statements: SET EXPLAIN and SET OPTIMIZATION

For a discussion of the performance implications of UPDATE STATISTICS, see
your Performance Guide.

For a discussion of how to use the dbschema utility to view distributions
created with UPDATE STATISTICS, see the IBM Informix Migration Guide.

IDS
2-788 IBM Informix Guide to SQL: Syntax

WHENEVER
WHENEVER
Use the WHENEVER statement to trap exceptions that occur during the
execution of SQL statements. Use this statement with ESQL/C.

Syntax

Usage
The WHENEVER statement is equivalent to placing an exception-checking
routine after every SQL statement. The following table summarizes the types
of exceptions for which you can check with the WHENEVER statement.

E/C

Element Purpose Restrictions Syntax
label Statement label to which program control

transfers when an exception occurs
Must exist in the same
source-code module.

See language-specific
rules for labels.

routine Name of a user-defined routine (UDR) to
be invoked when an exception occurs

No arguments; UDR must
exist at compile time.

Database Object
Name, p. 4-46

WHENEVER SQLERROR

NOT FOUND

CONTINUE

GOTO label

SQLWARNING +

ERROR

+

CALL routine

:

label

+

+ GO TO

STOP

Type of Exception WHENEVER Keyword For More Information

Errors SQLERROR or ERROR page 2-791

Warnings SQLWARNING page 2-792

Not Found or End of Data NOT FOUND page 2-792
SQL Statements 2-789

WHENEVER
Programs that do not use the WHENEVER statement do not automatically
abort when an exception occurs. Such programs must explicitly check for
exceptions and take whatever corrective action their logic specifies. If you do
not check for exceptions, the program simply continues running. If errors
occur, however, the program might not perform its intended purpose.

The first keyword that follows WHENEVER specifies some type of exceptional
condition; the last part of the statement specifies some action to take when
the exception is encountered (or no action, if CONTINUE is specified). The
following table summarizes possible actions that WHENEVER can specify.

The Scope of WHENEVER

Whenever is a preprocessor directive, rather than an executable statement.
The ESQL/C preprocessor, not the database server, handles the interpretation
of the WHENEVER statement. When the preprocessor encounters a
WHENEVER statement in an ESQL/C source file, it inserts appropriate code
into the preprocessed code after each SQL statement, based on the exception
and the action that WHENEVER specifies. The scope of the WHENEVER
statement begins where the statement appears in the source module and
remains in effect until the preprocessor encounters one or the other of the
following things while sequentially processing the source module:

� The next WHENEVER statement with the same condition (SQLERROR,
SQLWARNING, or NOT FOUND) in the same source module

� The end of the source module

The following ESQL/C example program has three WHENEVER statements,
two of which are WHENEVER SQLERROR statements. Line 4 uses STOP with
SQLERROR to override the default CONTINUE action for errors.

Type of Action WHENEVER Keyword For More Information

Continue program execution CONTINUE page 2-793

Stop program execution STOP page 2-793

Transfer control to a specified label GOTO
GO TO

page 2-793

Transfer control to a UDR CALL page 2-794
2-790 IBM Informix Guide to SQL: Syntax

WHENEVER
Line 8 specifies the CONTINUE keyword to return the handling of errors to
the default behavior. For all SQL statements between lines 4 and 8, the prepro-
cessor inserts code that checks for errors and halts program execution if an
error occurs. Therefore, any errors that the INSERT statement on line 6
generates cause the program to stop.

After line 8, the preprocessor does not insert code to check for errors after SQL
statements. Therefore, any errors that the INSERT statement (line 10), the
SELECT statement (line 11), and DISCONNECT statement (line 12) generate are
ignored. The SELECT statement, however, does not stop program execution if
it does not locate any rows; the WHENEVER statement on line 7 tells the
program to continue if such an exception occurs.

1 main()
2 {
3 EXEC SQL connect to 'test';
4 EXEC SQL WHENEVER SQLERROR STOP;
5 printf("\n\nGoing to try first insert\n\n");
6 EXEC SQL insert into test_color values ('green');
7 EXEC SQL WHENEVER NOT FOUND CONTINUE;
8 EXEC SQL WHENEVER SQLERROR CONTINUE;
9 printf("\n\nGoing to try second insert\n\n");
10 EXEC SQL insert into test_color values ('blue');
11 EXEC SQL select paint_type from paint where color='red';
12 EXEC SQL disconnect all;
13 printf("\n\nProgram over\n\n");
14 }

SQLERROR Keyword

If you use the SQLERROR keyword, any SQL statement that encounters an
error is handled as the WHENEVER SQLERROR statement directs. If an error
occurs, the sqlcode variable (sqlca.sqlcode, SQLCODE) is set to a value less
than zero (0) and the SQLSTATE variable is set to a class code with a value
greater than 02.

The next example terminates program execution if an SQL error is detected:

WHENEVER SQLERROR STOP

If you do not use any WHENEVER SQLERROR statements in a program, the
default for WHENEVER SQLERROR is CONTINUE.
SQL Statements 2-791

WHENEVER
ERROR Keyword

Within the WHENEVER statement (and only in this context), the keyword
ERROR is a synonym for the SQLERROR keyword.

SQLWARNING Keyword

If you use the SQLWARNING keyword, any SQL statement that generates a
warning is handled as the WHENEVER SQLWARNING statement directs. If a
warning occurs, the first field of the warning structure in SQLCA
(sqlca.sqlwarn.sqlwarn0) is set to W, and the SQLSTATE variable is set to a
class code of 01.

In addition to setting the first field of the warning structure, a warning also
sets an additional field to W. The field that is set indicates the type of warning
that occurred.

The next statement causes execution to stop if a warning condition exists:

WHENEVER SQLWARNING STOP

If you do not use any WHENEVER SQLWARNING statements in a program, the
default action for WHENEVER SQLWARNING is CONTINUE.

NOT FOUND Keywords

If you use the NOT FOUND keywords, exception handling for SELECT and
FETCH statements (including implicit SELECT and FETCH statements in
FOREACH and UNLOAD statements) is treated differently from other SQL
statements. The NOT FOUND keyword checks for the following cases:

� The End of Data condition: a FETCH statement that attempts to get a
row beyond the first or last row in the active set

� The Not Found condition: a SELECT statement that returns no rows

In each case, the sqlcode variable is set to 100, and the SQLSTATE variable
has a class code of 02. For the name of the sqlcode variable in each
IBM Informix product, see the table in “SQLERROR Keyword” on page 2-791.

The following statement calls the no_rows() function each time the NOT
FOUND condition exists:

WHENEVER NOT FOUND CALL no_rows
2-792 IBM Informix Guide to SQL: Syntax

WHENEVER
If you do not use any WHENEVER NOT FOUND statements in a program, the
default for WHENEVER NOT FOUND is CONTINUE.

CONTINUE Keyword

Use the CONTINUE keyword to instruct the program to ignore the exception
and to continue execution at the next statement after the SQL statement. The
default action for all exceptions is CONTINUE. You can use this keyword to
turn off a previously specified action for an exceptional condition.

STOP Keyword

Use the STOP keyword to instruct the program to stop execution when the
specified exception occurs. The following statement halts execution of an
ESQL/C program each time that an SQL statement generates a warning:

EXEC SQL WHENEVER SQLWARNING STOP;

GOTO Keyword

Use the GOTO clause to transfer control to the statement that the label
identifies when a specified exception occurs. The GOTO keyword is ANSI-
compliant syntax for this feature of embedded SQL languages like ESQL/C.
(The GO TO keywords as a synonym for GOTO are an Informix extension.)

The following example shows a WHENEVER statement in ESQL/C code that
transfers control to the label missing each time that the NOT FOUND
condition occurs:

query_data()
...
EXEC SQL WHENEVER NOT FOUND GO TO missing;
...
EXEC SQL fetch lname into :lname;
...
missing:

printf("No Customers Found\n");

Within the scope of the WHENEVER GOTO statement, you must define the
labeled statement in each routine that contains SQL statements. If your
program contains more than one user-defined function, you might need to
include the labeled statement and its code in each function.
SQL Statements 2-793

WHENEVER
If the preprocessor encounters an SQL statement within the scope of a
WHENEVER... GOTO statement, but within a routine that does not have the
specified label, the preprocessor tries to insert the code associated with the
labeled statement but generates an error when it cannot find the label.

To correct this error, either put a labeled statement with the same label name
in each UDR, or issue another WHENEVER statement to reset the error
condition, or use the CALL clause to call a separate function.

CALL Clause

Use the CALL clause to transfer program control to the specified UDR when
the specified type of exception occurs. Do not include parentheses after the
UDR name. The following WHENEVER statement causes the program to call
the error_recovery() function if the program detects an error:

EXEC SQL WHENEVER SQLERROR CALL error_recovery;

When the UDR returns, execution resumes at the next statement after the line
that is causing the error. If you want to halt execution when an error occurs,
include statements that terminate the program as part of the specified UDR.

Observe the following restrictions on the specified routine:

� The UDR cannot accept arguments nor can it return values. If it needs
external information, use global variables or the WHENEVER... GOTO
option to transfer program control to a label that calls the UDR.

� You cannot specify the name of an SPL routine in the CALL clause. To
call an SPL routine, use the CALL clause to invoke a UDR that contains
the EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement.

� Make sure that all functions within the scope of WHENEVER... CALL
statements can find a declaration of the specified function.

Related Information
Related statements: EXECUTE FUNCTION, EXECUTE PROCEDURE, and FETCH

For discussions on exception handling and error checking, see the
IBM Informix ESQL/C Programmer’s Manual.
2-794 IBM Informix Guide to SQL: Syntax

3
Chapter
SPL Statements
In This Chapter . 3-3
CALL . 3-4
CASE . 3-6
CONTINUE . 3-9
DEFINE. 3-10
EXIT . 3-22
FOR . 3-23
FOREACH. 3-27
IF . 3-33
LET . 3-36
ON EXCEPTION 3-39
RAISE EXCEPTION 3-43
RETURN . 3-45
SYSTEM . 3-47
TRACE . 3-50
WHILE . 3-54

3-2 IBM
 Informix Guide to SQL: Syntax

In This Chapter
You can use Stored Procedure Language (SPL) statements to write SPL
routines (formerly referred to as stored procedures), and you can store these
routines in the database. SPL routines are effective tools for controlling SQL
activity. This chapter contains descriptions of the SPL statements. The
description of each statement includes the following information:

� A brief introduction that explains the purpose of the statement

� A syntax diagram that shows how to enter the statement correctly

� A syntax table that explains each input parameter in the syntax
diagram

� Rules of usage, including examples that illustrate these rules

If a statement is composed of multiple clauses, the statement description
provides the same set of information for each clause.

For task-oriented information about using SPL routines, see the IBM Informix
Guide to SQL: Tutorial.

In Extended Parallel Server, to create an SPL function you must use the
CREATE PROCEDURE statement or the CREATE PROCEDURE FROM statement.
Extended Parallel Server does not support the CREATE FUNCTION nor the
CREATE FUNCTION FROM statement. ♦

In Dynamic Server, for backward compatibility, you can create an SPL
function with the CREATE PROCEDURE or CREATE PROCEDURE FROM
statement. For external functions, you must use the CREATE FUNCTION or
CREATE FUNCTION FROM statement. It is recommended that you use the
CREATE FUNCTION or CREATE FUNCTION FROM statement when you create
new user-defined functions. ♦

The SPL language does not support dynamic SQL. You cannot include any of
the SQL statements that Chapter 1 classifies as “Dynamic Management State-
ments” within an SPL routine.

XPS

IDS
SPL Statements 3-3

CALL
CALL
Use the CALL statement to execute a user-defined routine (UDR) from within
an SPL routine.

Syntax

Usage
The CALL statement invokes a UDR. The CALL statement is identical in
behavior to the EXECUTE PROCEDURE and EXECUTE FUNCTION statements,
but you can only use CALL from within an SPL routine.

You can use CALL in an ESQL/C program or with DB-Access, but only if the
statement is in an SPL routine that the program or DB-Access executed.

If you CALL a user-defined function, you must specify a RETURNING clause.

Element Purpose Restrictions Syntax
data_var Variable to receive the values

function returns
The data type of data_var must be appropriate
for the returned value.

Identifier,
p. 4-189

function,
procedure

User-defined function or
procedure

The function or procedure must exist. Database Object
Name, p. 4-46

routine_var Variable that contains the
name of a UDR

Must be a character data type that contains
the non-NULL name of an existing UDR.

Identifier,
p. 4-189

;

,

RETURNING data_var

CALL

routine_var

procedure

function

,

Argument
p.4-5

)(

,

Argument
p.4-5

)(
3-4 IBM Informix Guide to SQL: Syntax

CALL
Specifying Arguments
If a CALL statement contains more arguments than the UDR expects, you
receive an error.

If CALL specifies fewer arguments than the UDR expects, the arguments are
said to be missing. The database server initializes missing arguments to their
corresponding default values. (See “CREATE PROCEDURE” on page 2-182
and “CREATE FUNCTION” on page 2-133.) This initialization occurs before
the first executable statement in the body of the UDR. If missing arguments
do not have default values, they are initialized to the value of UNDEFINED.
An attempt to use any variable of UNDEFINED value results in an error.

In each UDR call, you have the option of specifying parameter names for the
arguments you pass to the UDR. Each of the following examples are valid for
a UDR that expects character arguments named t, n, and d, in that order:

CALL add_col (t='customer', n = 'newint', d ='integer');
CALL add_col('customer','newint','integer');

The syntax is described in more detail in “Arguments” on page 4-5.

Receiving Input from the Called UDR
The RETURNING clause specifies the data variable that receives values that a
a called function returns.

The following example shows two UDR calls:

CREATE PROCEDURE not_much()
DEFINE i, j, k INT;
CALL no_args (10,20);
CALL yes_args (5) RETURNING i, j, k;

END PROCEDURE

The first routine call (no_args) expects no returned values. The second
routine call is to a function (yes_args), which expects three returned values.
The not_much() procedure declares three integer variables (i, j, and k) to
receive the returned values from yes_args.
SPL Statements 3-5

CASE
CASE
Use the CASE statement when you need to take one of many branches
depending on the value of an SPL variable or a simple expression. The CASE
statement is a fast alternative to the IF statement.

Syntax

Usage
You can use the CASE statement to create a set of conditional branches within
an SPL routine. Both the WHEN and ELSE clauses are optional, but you must
supply one or the other. If you do not specify either a WHEN clause or an ELSE
clause, you receive a syntax error.

How the Database Server Executes a CASE Statement
The database server executes the CASE statement in the following way:

� The database server evaluates the value_expr parameter.

� If the resulting value matches a literal value specified in the
constant_expr parameter of a WHEN clause, the database server
executes the statement block that follows the THEN keyword in that
WHEN clause.

XPS

Element Purpose Restrictions Syntax
constant_expr Expression that

specifies a literal
value

Can be a literal number, quoted string, literal datetime, or
literal interval. The data type must be compatible with
the data type of value_expr.

Constant
Expression,
p. 4-95

value_expr Expression that
returns a value

An SPL variable or any other type of expression that
returns a value.

Expression,
p. 4-67

CASE value_expr constant_exprWHEN END CASETHEN
Statement Block

p. 4-276

Statement Block
p. 4-276ELSE
3-6 IBM Informix Guide to SQL: Syntax

CASE
� If the value resulting from the evaluation of the value_expr parameter
matches the constant_expr parameter in more than one WHEN clause,
the database server executes the statement block that follows the
THEN keyword in the first matching WHEN clause in the CASE
statement.

� After the database server executes the statement block that follows
the THEN keyword, it executes the statement that follows the CASE
statement in the SPL routine.

� If the value of the value_expr parameter does not match the literal
value specified in the constant_expr parameter of any WHEN clause,
and if the CASE statement includes an ELSE clause, the database
server executes the statement block that follows the ELSE keyword.

� If the value of the value_expr parameter does not match the literal
value specified in the constant_expr parameter of any WHEN clause,
and if the CASE statement does not include an ELSE clause, the
database server executes the statement that follows the CASE
statement in the SPL routine.

� If the CASE statement includes an ELSE clause but not a WHEN
clause, the database server executes the statement block that follows
the ELSE keyword.

Computation of the Value Expression in CASE
The database server computes the value of the value_expr parameter only one
time. It computes this value at the start of execution of the CASE statement. If
the value expression specified in the value_expr parameter contains SPL
variables and the values of these variables change subsequently in one of the
statement blocks within the CASE statement, the database server does not
recompute the value of the value_expr parameter. So a change in the value of
any variables contained in the value_expr parameter has no effect on the
branch taken by the CASE statement.

Valid Statements in the Statement Block
The statement block that follows the THEN or ELSE keywords can include any
SQL statement or SPL statement that is allowed in the statement block of an
SPL routine. For more information, see “Statement Block” on page 4-276.
SPL Statements 3-7

CASE
Example of CASE Statement
In the following example, the CASE statement initializes one of a set of SPL
variables (named j, k, l, and m) to the value of an SPL variable named x,
depending on the value of another SPL variable named i:

CASE i
WHEN 1 THEN

LET j = x;
WHEN 2 THEN

LET k = x;
WHEN 3 THEN

LET l = x;
WHEN 4 THEN

LET m = x;
ELSE

RAISE EXCEPTION 100; --illegal value
END CASE

Related Information
Related statement: IF
3-8 IBM Informix Guide to SQL: Syntax

CONTINUE
CONTINUE
Use the CONTINUE statement to start the next iteration of the innermost FOR,
WHILE, or FOREACH loop.

Syntax

Usage
When control of execution passes to a CONTINUE statement, the SPL routine
skips the rest of the statements in the innermost loop of the indicated type.
Execution continues at the top of the loop with the next iteration.

In the following example, the loop_skip function inserts values 3 through 15

into the table testtable. The function also returns values 3 through 9 and 13

through 15 in the process. The function does not return the value 11 because
it encounters the CONTINUE FOR statement. The CONTINUE FOR statement
causes the function to skip the RETURN WITH RESUME statement.

CREATE FUNCTION loop_skip()
RETURNING INT;
DEFINE i INT;
...
FOR i IN (3 TO 15 STEP 2)

INSERT INTO testtable values(i, null, null);
IF i = 11

CONTINUE FOR;
END IF;
RETURN i WITH RESUME;

END FOR;

END FUNCTION;

Just as with EXIT (page 3-22), the FOR, WHILE, or FOREACH keyword must
immediately follow CONTINUE to specify the type of loop. The CONTINUE
statement generates errors if it cannot find the specified loop.

CONTINUE ;FOR

WHILE

FOREACH
SPL Statements 3-9

DEFINE
DEFINE
Use the DEFINE statement to declare local variables that an SPL routine uses,
or to declare global variables that can be shared by several SPL routines.

Syntax

Element Purpose Restrictions Syntax
column Column name Must already exist in the table or view. Data type, p. 4-49
data_type Type of SPL_var See “Declaring Global Variables” on page 3-12. Data type, p. 4-49
distinct_type A distinct type Must already be defined in the database. Identifier, p. 4-189
opaque_type An opaque type Must already be defined in the database. Identifier, p. 4-189
SPL_var New SPL variable Must be unique within statement block. Identifier, p. 4-189
synonym,
table, view

Name of a table,
view, or synonym

Synonym and the table or view to which it points
must already exist when the statement is issued

Database Object
Name, p. 4-46

DEFINE GLOBAL
Default Value

p. 3-14DEFAULT

,

SPL_var

BLOB

;

opaque_type

distinct_type

Subset of
Complex Data Types

p. 3-17

IDS

REFERENCES

PROCEDURE

column.LIKE table

synonym

 BYTE

 TEXT

DEFAULT NULLREFERENCES

,

SPL_var

data_type

data_type

CLOB

view

 BYTE

 TEXT
3-10 IBM Informix Guide to SQL: Syntax

DEFINE
Usage
The DEFINE statement is not an executable statement. The DEFINE statement
must appear after the routine header and before any other statements. If you
define a local variable (by using DEFINE without the GLOBAL keyword), its
scope of reference is the statement block in which it is defined. You can use
the variable within the statement block. Another variable outside the
statement block with a different definition can have the same name.

A variable with the GLOBAL keyword is global in scope and is available
outside the statement block and to other SPL routines.Global variables can be
any built-in data type except SERIAL, SERIAL8, TEXT, BYTE, CLOB, or BLOB.
Local variables can be any built-in data type except SERIAL, SERIAL8, TEXT, or
BYTE. If column is of the SERIAL or SERIAL8 data type, declare an INT or INT8
variable (respectively) to store its value.

Referencing TEXT and BYTE Variables

The REFERENCES keyword lets you use BYTE and TEXT variables. These do
not contain the actual data but are pointers to the data. The REFERENCES
keyword indicates that the SPL variable is just a pointer. You can use BYTE
and TEXT variables exactly as you would use any other variable in SPL.

Redeclaration or Redefinition

If you define the same variable twice in the same statement block, you receive
an error. You can redefine a variable within a nested block, in which case it
temporarily hides the outer declaration. This example produces an error:

CREATE PROCEDURE example1()
DEFINE n INT; DEFINE j INT;
DEFINE n CHAR (1); -- redefinition produces an error

Redeclaration is valid in the following example. Within the nested statement
block, n is a character variable. Outside the block, n is an integer variable.

CREATE PROCEDURE example2()
DEFINE n INT; DEFINE j INT;
...
BEGIN
DEFINE n CHAR (1); -- character n masks global integer variable
...

END
SPL Statements 3-11

DEFINE
Declaring Global Variables
Use the following syntax for declaring global variables:

The GLOBAL keyword indicates that the variables that follow have a scope of
reference that includes all SPL routines that run in a given DB-Access or SQL
API session. The data types of these variables must match the data types of
variables in the global environment. The global environment is the memory
that is used by all the SPL routines that run in a given DB-Access or SQL API
session. The values of global variables are stored in memory.

SPL routines that are running in the current session share global variables.
Because the database server does not save global variables in the database,
the global variables do not remain when the current session closes.

The first declaration of a global variable establishes the variable in the global
environment; subsequent global declarations simply bind the variable to the
global environment and establish the value of the variable at that point.

Element Purpose Restrictions Syntax
data_type Type of SPL_var See “Declaring Global Variables” on page 3-12. Data type, p. 4-49
SPL_var New SPL variable Must be unique within statement block. Identifier, p. 4-189

DEFINE
Default Value

p. 3-14DEFAULT

,

SPL_var ;

DEFAULT NULLREFERENCES

data_type

 BYTE

 TEXT

GLOBAL
3-12 IBM Informix Guide to SQL: Syntax

DEFINE
The following example shows two SPL procedures, proc1 and proc2; each has
defined the global variable gl_out:

� SPL procedure proc1
CREATE PROCEDURE proc1()

...
DEFINE GLOBAL gl_out INT DEFAULT 13;
...
LET gl_out = gl_out + 1;

END PROCEDURE;

� SPL procedure proc2
CREATE PROCEDURE proc2()

...
DEFINE GLOBAL gl_out INT DEFAULT 23;
DEFINE tmp INT;
...
LET tmp = gl_out

END PROCEDURE;

If proc1 is called first, gl_out is set to 13 and then incremented to 14. If proc2
is then called, it sees that gl_out is already defined, so the default value of 23
is not applied. Then, proc2 assigns the existing value of 14 to tmp. If proc2
had been called first, gl_out would have been set to 23, and 23 would have
been assigned to tmp. Later calls to proc1 would not apply the default of 13.

Databases do not share global variables. The database server and any appli-
cation development tools do not share global variables.
SPL Statements 3-13

DEFINE
Default Value

Global variables can have literal, NULL, or system constant default values.

If you specify a default value, the global variable is initialized with the
specified value.

CURRENT

CURRENT is a valid default only for a DATETIME variable. If the YEAR TO
FRACTION is its declared precision, no qualifier is needed. Otherwise, you
must specify the same DATETIME qualifier when CURRENT is the default, as
in the following example of a DATETIME variable:

DEFINE GLOBAL d_var DATETIME YEAR TO MONTH
DEFAULT CURRENT YEAR TO MONTH;

USER

If you use the value that USER returns as the default, the variable must be
defined as a CHAR, VARCHAR, NCHAR, or NVARCHAR data type. It is recom-
mended that the length of the variable be at least 32 bytes. You risk getting an
error message during INSERT and ALTER TABLE operations if the length of the
variable is too small to store the default value.

DATETIME Field Qualifier
p. 4-65

Literal Number
p. 4-216

Quoted String
p. 4-243

Literal Interval
p. 4-212

Literal Datetime
p. 4-212

CURRENT

Default
Value

SITENAMENULL

DBSERVERNAME

Back to DEFINE
p. 3-10

TODAY

USER
3-14 IBM Informix Guide to SQL: Syntax

DEFINE
TODAY

If you use TODAY as the default, the variable must be a DATE value. (See
“Constant Expressions” on page 4-95 for descriptions of TODAY and of the
other system constants that can appear in the Default Value clause.)

BYTE and TEXT

The only default value valid for a BYTE or TEXT variable is NULL. The
following example defines a TEXT global variable that is called l_blob:

CREATE PROCEDURE use_text()
DEFINE i INT;
DEFINE GLOBAL l_blob REFERENCES TEXT DEFAULT NULL;
...

END PROCEDURE

Here the REFERENCES keyword is required, because the DEFINE statement
cannot declare a BYTE or TEXT data type directly; the l_blob variable is a
pointer to a TEXT value that is stored in the global environment.

SITENAME or DBSERVERNAME

If you use the SITENAME or DBSERVERNAME keyword as the default, the
variable must be a CHAR, VARCHAR, NCHAR, NVARCHAR, or LVARCHAR
data type. Its default value is the name of the database server at runtime.
It is recommended that the size of the variable be at least 128 bytes long.
You risk getting an error message during INSERT and ALTER TABLE opera-
tions if the length of the variable is too small to store the default value.

The following example uses the SITENAME keyword to specify a default
value. This example also initializes a global BYTE variable to NULL:

CREATE PROCEDURE gl_def()
DEFINE GLOBAL gl_site CHAR(200) DEFAULT SITENAME;
DEFINE GLOBAL gl_byte REFERENCES BYTE DEFAULT NULL;
...

END PROCEDURE
SPL Statements 3-15

DEFINE
Declaring Local Variables
A local variable has as its scope of reference the routine in which it is declared.
If you omit the GLOBAL keyword, any variables declared in the DEFINE
statement are local variables, and are not visible in other SPL routines.

For this reason, different SPL routines that declare local variables of the same
name can run without conflict in the same DB-Access or SQL API session.

If a local variable and a global variable have the same name, the global
variable is not visible within the SPL routine where the local variable is
declared. (In all other SPL routines, only the global variable is in scope.)

The following DEFINE statement syntax is for declaring local variables.

Element Purpose Restrictions Syntax
column Column name Must already exist in the table or view Identifier, p. 4-189
data_type Type of SPL_var Cannot be SERIAL, SERIAL8, TEXT, nor BYTE Data type, p. 4-49
distinct_type A distinct type Must already be defined in the database Identifier, p. 4-189
opaque_type An opaque type Must already be defined in the database. Identifier, p. 4-189

(1 of 2)

DEFINE

BLOB

;

opaque_type

distinct_type

Subset of
Complex Data Types

p. 3-17

IDS

REFERENCES

PROCEDURE

column.LIKE table

synonym

 BYTE

 TEXT

,

SPL_var data_type

CLOB

view
3-16 IBM Informix Guide to SQL: Syntax

DEFINE
Local variables do not support default values. The following example shows
some typical definitions of local variables:

CREATE PROCEDURE def_ex()
DEFINE i INT;
DEFINE word CHAR(15);
DEFINE b_day DATE;
DEFINE c_name LIKE customer.fname;
DEFINE b_text REFERENCES TEXT;

END PROCEDURE

Subset of Complex Data Types

You can use the following syntax to declare an SPL variable as a typed or
generic collection, or as a named, unnamed, or generic row data type.

SPL_var New SPL variable Must be unique within statement block Identifier, p. 4-189
synonym,
table, view

Name of a table,
view, or synonym

Synonym and the table or view to which it points
must already exist when the statement is issued

Database Object
Name, p. 4-46

Element Purpose Restrictions Syntax

(2 of 2)

IDS

Element Purpose Restrictions Syntax
data_type Type of elements of a

collection or of fields
of an unnamed row

Must match the data type of the values that the
variable will store. Cannot be SERIAL, SERIAL8,
TEXT, BYTE, CLOB, or BLOB.

Identifier, p. 4-189

field Field of unnamed row Must exist in the database. Identifier, p. 4-189
row Named row data type Must exist in the database. Identifier, p. 4-189

MULTISET

MULTISET

LIST

(data_type

(NOT NULL)

NOT NULL)

Complex Data
Types (Subset)

Back to DEFINE
p. 3-10

SET

data_type

LIST

SET

COLLECTION

ROW

()

row

,

field data_type
SPL Statements 3-17

DEFINE
Declaring Collection Variables

A local variable of type COLLECTION, SET, MULTISET, or LIST can hold a
collection of values fetched from the database. You cannot define a collection
variable as global (with the GLOBAL keyword) or with a default value.

A variable declared with the keyword COLLECTION is an untyped (or
generic) collection variable that can hold a collection of any data type.

A variable defined with the type SET, MULTISET, or LIST is a typed collection
variable. A typed collection variable can hold only a collection of its specified
data type.

You must use the NOT NULL keywords when you define the elements of a
typed collection variable, as in the following examples:

DEFINE a SET (INT NOT NULL);

DEFINE b MULTISET (ROW (b1 INT,
b2 CHAR(50)

) NOT NULL);

DEFINE c LIST(SET(INTEGER NOT NULL) NOT NULL);

With variable c, both the INTEGER values in the SET and the SET values in the
LIST are defined as NOT NULL.

You can define collection variables with nested complex types to hold
matching nested complex type data. Any type or depth of nesting is allowed.
You can nest row types within collection types, collection types within row
types, collection types within collection types, row types within collection
and row types, and so on.

If you declare a variable as COLLECTION type, the variable acquires varying
data type declarations if it is reassigned within the same statement block, as
in the following example:

DEFINE a COLLECTION;
LET a = setB;
...
LET a = listC;

In this example, varA is a generic collection variable that changes its data
type to the data type of the currently assigned collection. The first LET
statement makes varA a SET variable. The second LET statement makes varA
a LIST variable.

IDS
3-18 IBM Informix Guide to SQL: Syntax

DEFINE
Declaring Row Variables

Row variables hold data from named or unnamed row types. You can define
a generic row variable, a named row variable, or an unnamed row variable.

A generic row variable, defined with the ROW keyword, can hold data from
any row type. A named row variable holds data from the named row type
specified in the variable definition.

The following statements show examples of generic row variables and
named row variables:

DEFINE d ROW; -- generic row variable

DEFINE rectv rectangle_t; -- named row variable

A named row variable holds named row types of the same type in the
variable definition.

To define a variable that will hold data stored in an unnamed row type, use
the ROW keyword followed by the fields of the row type, as in:

DEFINE area ROW (x int, y char(10));

Unnamed row types are type-checked only by structural equivalence. Two
unnamed row types are considered equivalent if they have the same number
of fields, and if the fields have the same type definitions. Therefore, you could
fetch either of the following row types into the variable area defined above:

ROW (a int, b char(10))
ROW (area int, name char(10))

Row variables can have fields, just as row types have fields. To assign a value
to a field of a row variable, use the SQL dot notation variableName.fieldName,
followed by an expression, as in the following example:

CREATE ROW TYPE rectangle_t (start point_t, length real,
width real);

DEFINE r rectangle_t;
-- Define a variable of a named row type

LET r.length = 45.5;
-- Assign a value to a field of the variable

When you assign a value to a row variable, you can use any valid expression.

IDS
SPL Statements 3-19

DEFINE
Declaring Opaque-Type Variables

Opaque-type variables hold data retrieved from opaque types, which you
create with the CREATE OPAQUE TYPE statement. An opaque-type variable
can only hold data of the opaque type on which it is defined. The following
example defines a variable of the opaque type point, which holds the x and
y coordinates of a two-dimensional point:

DEFINE b point;

Declaring Variables LIKE Columns

If you use the LIKE clause, the database server assigns the variable the same
data type as a column in a table, synonym, or view.

The data types of variables that are defined as database columns are resolved
at runtime; therefore, column and table do not need to exist at compile time.

Declaring a Variable LIKE a SERIAL Column

You can use the LIKE keyword to declare that a variable is like a SERIAL
column. For example, if the column serialcol in the mytab table has the
SERIAL data type, you can create the following SPL function:

CREATE FUNCTION func1()
DEFINE local_var LIKE mytab.serialcol;
RETURN;
END FUNCTION;

The variable local_var is treated as an INTEGER variable.

IDS
3-20 IBM Informix Guide to SQL: Syntax

DEFINE
Declaring Variables as the PROCEDURE Type

The PROCEDURE keyword indicates that in the current scope, the variable is
a call to a UDR.

The DEFINE statement does not have a FUNCTION keyword. Use the
PROCEDURE keyword, whether you are calling a user-defined procedure or
a user-defined function. ♦

Defining a variable of PROCEDURE type indicates that in the current
statement scope, the variable is not a call to a built-in function. For example,
the following statement defines length as an SPL routine, not as the built-in
LENGTH function:

DEFINE length PROCEDURE;
...
LET x = length (a,b,c)

This definition disables the built-in LENGTH function within the scope of the
statement block. You would use such a definition if you had already created
a user-defined routine with the name length.

If you create an SPL routine with the same name as an aggregate function
(SUM, MAX, MIN, AVG, COUNT) or with the name extend, you must qualify
the routine name with the owner name.

Declaring Variables for BYTE and TEXT Data

The keyword REFERENCES indicates that the variable does not contain a
BYTE or TEXT value but is a pointer to the BYTE or TEXT value. Use the
variable as though it holds the data.

The following example defines a local BYTE variable:

CREATE PROCEDURE use_byte()
DEFINE i INT;
DEFINE l_byte REFERENCES BYTE;

END PROCEDURE --use_byte

If you pass a variable of BYTE or TEXT data type to an SPL routine, the data is
passed to the database server and stored in the root dbspace or dbspaces that
the DBSPACETEMP environment variable specifies, if it is set. You do not
need to know the location or name of the file that holds the data. BYTE or
TEXT manipulation requires only the name of the BYTE or TEXT variable as it
is defined in the routine.

IDS
SPL Statements 3-21

EXIT
EXIT
The EXIT statement terminates execution of a FOR, WHILE, or FOREACH loop.

Syntax

Usage
The EXIT statement marks the end of a FOR, WHILE, or FOREACH statement,
causing the innermost loop of the specified type (FOR, WHILE, or FOREACH)
to terminate. Execution resumes at the first statement outside the loop.

The FOR, WHILE, or FOREACH keyword must immediately follow EXIT. If the
database server cannot find the specified loop, the EXIT statement fails. If
EXIT is used outside any FOR, WHILE, or FOREACH loop, it generates errors.

The following example uses an EXIT FOR statement. In the FOR loop, when j

becomes 6, the IF condition i = 5 in the WHILE loop is true. The FOR loop
stops executing, and the SPL procedure continues at the next statement
outside the FOR loop (in this case, the END PROCEDURE statement). In this
example, the procedure ends when j equals 6:

CREATE PROCEDURE ex_cont_ex()
DEFINE i,s,j, INT;
FOR j = 1 TO 20

IF j > 10 THEN
CONTINUE FOR;

END IF
LET i,s = j,0;
WHILE i > 0

LET i = i -1;
IF i = 5 THEN

EXIT FOR;
END IF

END WHILE
END FOR

END PROCEDURE

EXIT ;FOR

WHILE

FOREACH
3-22 IBM Informix Guide to SQL: Syntax

FOR
FOR
Use the FOR statement to initiate a controlled (definite) loop when you want
to guarantee termination of the loop. The FOR statement uses expressions or
range operators to specify a finite number of iterations for a loop.

Syntax

Element Purpose Restrictions Syntax
expression Value to compare with loop_var Must match loop_var data type. Expression, p. 4-67
increment_expr Positive or negative value by

which loop_var is incremented
Must return an integer. Cannot
return 0.

Expression, p. 4-67

left_expression Starting expression of a range Value must match SMALLINT
or INT data type of loop_var.

Expression, p. 4-67

loop_var Variable that determines how
many times the loop executes

Must be defined and in scope
within this statement block.

Identifier, p. 4-189

right_expression Ending expression in the range Same as for left_expression. Expression, p. 4-67

)

,

FOR loop_var

TO right_expression

IN (
Statement

Block
p. 4-276

END FOR

,

expression

;

=

increment_exprSTEP

left_expression

Expression
Range

Expression
Range

Expression
Range
SPL Statements 3-23

FOR
Usage
The database server evaluates all expressions before the FOR statement
executes. If one or more of the expressions are variables whose values change
during the loop, the change has no effect on the iterations of the loop.

An error is issued, however, if an assignment within the body of the FOR
statement attempts to modify the value of loop_var.

You can use the output from a SELECT statement as the expression.

The FOR loop terminates when loop_var is equal to the values of each element
in the expression list or range in succession, or when it encounters an EXIT
FOR statement.

The size of right_expression relative to left_expression determines if the range is
stepped through by positive or negative increments.

Using the TO Keyword to Define a Range

The TO keyword implies a range operator. The range is defined by
left_expression and right_expression, and the STEP increment_expr option
implicitly sets the number of increments. If you use the TO keyword, loop_var
must be an INT or SMALLINT data type.

The following example shows two equivalent FOR statements. Each uses the
TO keyword to define a range. The first statement uses the IN keyword, and
the second statement uses an equal sign (=). Each statement causes the loop
to execute five times.

FOR index_var IN (12 TO 21 STEP 2)
-- statement block

END FOR

FOR index_var = 12 TO 21 STEP 2
-- statement block

END FOR

If you omit the STEP option, the database server gives increment_expr the
value of -1 if right_expression is less than left_expression, or +1 if
right_expression is more than left_expression. If increment_expr is specified, it
must be negative if right_expression is less than left_expression, or positive if
right expression is more than left_expression.
3-24 IBM Informix Guide to SQL: Syntax

FOR
The two statements in the following example are equivalent. In the first
statement, the STEP increment is explicit. In the second statement, the STEP
increment is implicitly 1.

FOR index IN (12 TO 21 STEP 1)
-- statement block

END FOR

FOR index = 12 TO 21
-- statement block

END FOR

The database server initializes the value of loop_var to the value of
left_expression. In subsequent iterations, the server adds increment_expr to the
value of loop_var and checks increment_expr to determine whether the value
of loop_var is still between left_expression and right_expression. If so, the next
iteration occurs. Otherwise, an exit from the loop takes place. Or, if you
specify another range, the variable takes on the value of the first element in
the next range.

Specifying Two or More Ranges in a Single FOR Statement

The following example shows a statement that traverses a loop forward and
backward and uses different increment values for each direction:

FOR index_var IN (15 to 21 STEP 2, 21 to 15 STEP -3)
-- statement body

END FOR

Using an Expression List as the Range

The database server initializes the value of loop_var to the value of the first
expression specified. In subsequent iterations, loop_var takes on the value of
the next expression. When the database server has evaluated the last
expression in the list and used it, the loop stops.

The expressions in the IN list do not have to be numeric values, as long as you
do not use range operators in the IN list. The following example uses a
character expression list:

FOR c IN ('hello', (SELECT name FROM t), 'world', v1, v2)
INSERT INTO t VALUES (c);
END FOR
SPL Statements 3-25

FOR
The following FOR statement shows the use of a numeric expression list:

FOR index IN (15,16,17,18,19,20,21)
-- statement block

END FOR

Mixing Range and Expression Lists in the Same FOR Statement

If loop_var is an INT or SMALLINT value, you can mix ranges and expression
lists in the same FOR statement. The following example shows a mixture that
uses an integer variable. Values in the expression list include the value that is
returned from a SELECT statement, a sum of an integer variable and a
constant, the values that are returned from an SPL function named p_get_int,
and integer constants.

CREATE PROCEDURE for_ex ()
DEFINE i, j INT;
LET j = 10;
FOR i IN (1 TO 20, (SELECT c1 FROM tab WHERE id = 1),
j+20 to j-20, p_get_int(99),98,90 to 80 step -2)

INSERT INTO tab VALUES (i);
END FOR

END PROCEDURE

Related Information
Related statements: FOREACH, WHILE
3-26 IBM Informix Guide to SQL: Syntax

FOREACH
FOREACH
Use a FOREACH loop to select and manipulate more than one row.

Syntax

Usage
A FOREACH loop is the procedural equivalent of using a cursor. To execute a
FOREACH statement, the database server takes these actions:

1. It declares and implicitly opens a cursor.

2. It obtains the first row from the query contained within the
FOREACH loop, or else the first set of values from the called routine.

Element Purpose Restrictions Syntax
cursor Identifier that you supply as a name

for this FOREACH loop
Each cursor name within a
routine must be unique.

Identifier, p. 4-189

data_var SPL variable in the calling routine
that receives the returned values

Data type of data_var must be
appropriate for returned value.

Identifier, p. 4-189

function,
procedure

SPL function or procedure to execute Function or procedure must
exist.

Database Object
Name, p. 4-46

SPL_var SPL variable that contains the name
of a routine to execute

Must be a CHAR, VARCHAR,
NCHAR, or NVARCHAR type.

Identifier, p. 4-189

SPL_var ,

SELECT...INTO
Statement

p. 3-29

Statement
Block

p. 4-276
END FOREACH

;

EXECUTE (

data_varINTO
Argument

p. 4-5

,

FUNCTION

procedure

FOREACH

function

cursor FOR

WITH HOLD

WITH HOLD

)

IDS

PROCEDURE
SPL Statements 3-27

FOREACH
3. It assigns to each variable in the variable list the value of the
corresponding value from the active set that the SELECT statement or
the called routine creates.

4. It executes the statement block.

5. It fetches the next row from the SELECT statement or called routine
on each iteration, and it repeats steps 3 and 4.

6. It terminates the loop when it finds no more rows that satisfy the
SELECT statement or called routine. It closes the implicit cursor when
the loop terminates.

Because the statement block can contain additional FOREACH statements,
cursors can be nested. No limit exists on the number of nested cursors.

An SPL routine that returns more than one row, collection element, or set of
values is called a cursor function. An SPL routine that returns only one row
or value is a noncursor function.

This SPL procedure illustrates FOREACH statements with a SELECT...INTO
clause, with an explicitly named cursor, and with a procedure call:

CREATE PROCEDURE foreach_ex()
DEFINE i, j INT;
FOREACH SELECT c1 INTO i FROM tab ORDER BY 1

INSERT INTO tab2 VALUES (i);
END FOREACH
FOREACH cur1 FOR SELECT c2, c3 INTO i, j FROM tab

IF j > 100 THEN
DELETE FROM tab WHERE CURRENT OF cur1;
CONTINUE FOREACH;

END IF
UPDATE tab SET c2 = c2 + 10 WHERE CURRENT OF cur1;

END FOREACH
FOREACH EXECUTE PROCEDURE bar(10,20) INTO i

INSERT INTO tab2 VALUES (i);
END FOREACH

END PROCEDURE; -- foreach_ex

A select cursor is closed when any of the following situations occur:

� The cursor returns no further rows.

� The cursor is a select cursor without a HOLD specification, and a
transaction completes using COMMIT or ROLLBACK statements.

� An EXIT statement executes, which transfers control out of the
FOREACH statement.
3-28 IBM Informix Guide to SQL: Syntax

FOREACH
� An exception occurs that is not trapped inside the body of the
FOREACH statement. (See “ON EXCEPTION” on page 3-39.)

� A cursor in the calling routine that is executing this cursor routine
(within a FOREACH loop) closes for any reason.

Using a SELECT...INTO Statement

As indicated in the diagram for “FOREACH” on page 3-27, not all clauses
and options of the SELECT statement are available for you to use in a
FOREACH statement. The SELECT statement in the FOREACH statement must
include the INTO clause. It can also include UNION and ORDER BY clauses,
but it cannot use the INTO TEMP clause. For a complete description of SELECT
syntax and usage, see “SELECT” on page 2-581. The data type and count of
each variable in the variable list must match each value that the
SELECT...INTO statement returns.

Using Hold Cursors

The WITH HOLD keywords specify that the cursor should remain open when
a transaction closes (by being committed or rolled back).

Updating or Deleting Rows Identified by Cursor Name

Specify a cursor name in the FOREACH statement if you intend to use the
WHERE CURRENT OF cursor clause in UPDATE or DELETE statements that
operate on the current row of cursor within the FOREACH loop. Although you
cannot include the FOR UPDATE keywords in the SELECT ... INTO segment of
the FOREACH statement, the cursor behaves like a FOR UPDATE cursor.

For a discussion of locking, see the section on “Locking with an Update
Cursor” on page 2-330. For a discussion of isolation levels, see the description
of “SET ISOLATION” on page 2-691.

Using Collection Variables

The FOREACH statement allows you to declare a cursor for an SPL collection
variable. Such a cursor is called a collection cursor. Use a collection variable to
access the elements of a collection (SET, MULTISET, LIST) column. Use a cursor
when you want to access one or more elements in a collection variable.

IDS
SPL Statements 3-29

FOREACH
Restrictions

When you use a collection cursor to fetch individual elements from a
collection variable the FOREACH statement has the following restrictions:

� It cannot contain the WITH HOLD keywords.

� It must contain a restricted SELECT statement in the FOREACH loop.

In addition, the SELECT statement that you associate with the collection
cursor has the following restrictions:

� Its general structure is SELECT… INTO… FROM TABLE. The statement
selects one element at a time from a collection variable named after
the TABLE keyword into another variable called an element variable.

� It cannot contain an expression in the select list.

� It cannot include the following clauses or options: WHERE, GROUP
BY, ORDER BY, HAVING, INTO TEMP, and WITH REOPTIMIZATION.

� The data type of the element variable must be the same as the
element type of the collection.

� The data type of the element variable can be any opaque, distinct, or
collection data type, or any built-in data type except SERIAL,
SERIAL8, TEXT, BYTE, CLOB, or BLOB.

� If the collection contains opaque, distinct, built-in, or collection
types, the select list must be an asterisk (*).

� If the collection contains row types, the select list can be a list of one
or more field names.

Examples

The following excerpt from an SPL routine shows how to fill a collection
variable and then how to use a cursor to access individual elements:

DEFINE a SMALLINT;
DEFINE b SET(SMALLINT NOT NULL);
SELECT numbers INTO b FROM table1 WHERE id = 207;
FOREACH cursor1 FOR

SELECT * INTO a FROM TABLE(b);
...
END FOREACH;
3-30 IBM Informix Guide to SQL: Syntax

FOREACH
In this example, the SELECT statement selects one element at a time from the
collection variable b into the element variable a. The select list is an asterisk,
because the collection variable b contains a collection of built-in types. The
variable b is used with the TABLE keyword as a Collection-Derived Table. For
more information, see “Collection-Derived Table” on page 4-7.

The next example also shows how to fill a collection variable and then how
to use a cursor to access individual elements. This example, however, uses a
list of row-type fields in its select list.

DEFINE employees employee_t;
DEFINE n VARCHAR(30);
DEFINE s INTEGER;

SELECT emp_list into employees FROM dept_table
WHERE dept_no = 1057;

FOREACH cursor1 FOR
SELECT name,salary

INTO n,s FROM TABLE(employees) AS e;
...
END FOREACH;

Here the collection variable employees contains a collection of row types.
Each row type contains the fields name and salary. The collection query
selects one name and salary combination at a time, placing name into n and
salary into s. The AS keyword declares e as an alias for the collection-derived
table employees. The alias exists as long as the SELECT statement executes.

Modifying Elements in a Collection Variable

To update an element of a collection within an SPL routine, you must first
declare a cursor with the FOREACH statement.

Then, within the FOREACH loop, select elements one at a time from the
collection variable, using the collection variable as a collection-derived table
in a SELECT query.

When the cursor is positioned on the element to be updated, you can use the
WHERE CURRENT OF clause, as follows:

� The UPDATE statement with the WHERE CURRENT OF clause updates
the value in the current element of the collection variable.

� The DELETE statement with the WHERE CURRENT OF clause deletes
the current element from the collection variable.
SPL Statements 3-31

FOREACH
Calling a UDR in the FOREACH Loop
In general, use these guidelines for calling another UDR from an SPL routine:

� To call a user-defined procedure, use EXECUTE PROCEDURE
procedure name.

� To call a user-defined function, use EXECUTE FUNCTION function
name (or EXECUTE PROCEDURE function name if the user-defined
function was created with the CREATE PROCEDURE statement).

In Extended Parallel Server, you must use EXECUTE PROCEDURE. Extended
Parallel Server does not support the EXECUTE FUNCTION statement. ♦

In Dynamic Server, if you use EXECUTE PROCEDURE, the database server
looks first for a user-defined procedure of the name you specify. If it finds the
procedure, the database server executes it. If it does not find the procedure, it
looks for a user-defined function of the same name to execute. If the database
server finds neither a function nor a procedure, it issues an error message.If
you use EXECUTE FUNCTION, the database server looks for a user-defined
function of the name you specify. If it does not find a function of that name,
the database server issues an error message. ♦

A called SPL function can return zero (0) or more values or rows.

The data type and count of each variable in the variable list must match each
value that the function returns.

Related Information
Related statements: FOR, WHILE

XPS

IDS
3-32 IBM Informix Guide to SQL: Syntax

IF
IF
Use an IF statement to create a branch within an SPL routine.

Syntax

Usage
The condition that the IF clause states is evaluated. If the result is true, the
statements that follow the THEN keyword execute. If the result is false, and
an ELIF clause exists, the statements that follow the ELIF clause execute. If no
ELIF clause exists, or if the condition in the ELIF clause is not true, the state-
ments that follow the ELIF keyword execute.

ELIF Clause

Use the ELIF clause to specify one or more additional conditions to evaluate.
If the IF condition is false, the ELIF condition is evaluated. If the ELIF
condition is true, the statements that follow the ELIF clause execute.

ELSE Clause

The ELSE clause executes if no true previous condition exists in the IF clause
or any of the ELIF clauses.

In the following example, the SPL function uses an IF statement with both an
ELIF clause and an ELSE clause. The IF statement compares two strings.

;

IF Condition
p. 4-24

THEN

ELIF
Condition

p. 4-24 THEN

END IF

ELSE

IF Statement List
p. 3-34

IF Statement List
p. 3-34

IF Statement List
p. 3-34
SPL Statements 3-33

IF
The function displays a 1 to indicate that the first string comes before the
second string alphabetically, or a -1 if the first string comes after the second
string alphabetically. If the strings are the same, a zero (0) is returned.

CREATE FUNCTION str_compare (str1 CHAR(20), str2 CHAR(20))
RETURNING INT;
DEFINE result INT;
IF str1 > str2 THEN

LET result =1;
ELIF str2 > str1 THEN

LET result = -1;
ELSE

LET result = 0;
END IF
RETURN result;

END FUNCTION -- str_compare

Conditions in an IF Statement

Conditions in an IF statement are evaluated in the same way as conditions in
a WHILE statement. If any expression in the condition evaluates to NULL, the
condition returns false. Consider the following points:

1. If the expression x evaluates to NULL, then x is not true by definition.
Furthermore, NOT(x) is also not true.

2. IS NULL is the sole operator that can yield true for x. That is, x IS
NULL is true, and x IS NOT NULL is not true.

If an expression in the condition has an UNKNOWN value (due to the use of
an uninitialized variable), the statement terminates and raises an exception.

IF Statement List

Subset of SQL Statements
p. 3-35 ;

Back to IF
p. 3-33

Subset of SPL Statements
p. 3-35

IF Statement
List

Statement Block
p. 4-276BEGIN END
3-34 IBM Informix Guide to SQL: Syntax

IF
Subset of SPL Statements Allowed in the IF Statement List

You can use any of the following SPL statements in the IF statement list.

The “Subset of SPL Statements” syntax diagram for the “IF Statement List”
refers to the SPL statements that are listed in the preceding table.

SQL Statements Not Allowed in an IF Statement

The “Subset of SQL Statements” element in the syntax diagram for the “IF
Statement List” refers to all SQL statements, except for the following SQL
statements, which are not valid in the IF statement list.

Many of these statements are prohibited by the more general rule that the
dynamic management statements of SQL are not valid within an SPL routine.

You can use a SELECT statement only if you use the INTO TEMP clause to store
the result set of the SELECT statement in a temporary table.

Related Information
Related statements: CASE, WHILE

CALL
CONTINUE
EXIT
FOR

FOREACH
IF
LET
RAISE EXCEPTION

RETURN
SYSTEM
TRACE
WHILE

ALLOCATE DESCRIPTOR
CLOSE DATABASE
CONNECT
CREATE DATABASE
CREATE PROCEDURE
DATABASE
DEALLOCATE DESCRIPTOR
DECLARE
DESCRIBE
DISCONNECT
EXECUTE
EXECUTE IMMEDIATE
FETCH
FLUSH

LOAD
OPEN
OUTPUT
PREPARE
PUT
SET CONNECTIPON
SET DESCRIPTOR
UNLOAD
WHENEVER
FREE
GET DESCRIPTOR
GET DIAGNOSTICS
INFO
SPL Statements 3-35

LET
LET
Use the LET statement to assign values to variables or to call a user-defined
SPL routine and assign the returned value or values to SPL variables.

Syntax

Usage
The LET statement can assign a value returned by an expression, function, or
query to an SPL variable. At runtime, the value to be assigned is calculated
first. The resulting value is cast to the data type of SPL_var, if possible, and
the assignment occurs. If conversion is not possible, an error occurs, and the
value of the variable is undefined. (A LET operation that assigns a single
value to a single SPL variable is called a simple assignment.)

A compound assignment assigns multiple expressions to multiple SPL
variables.The data types of expressions in the expression list do not need to
match the data types of the corresponding variables in the variable list,
because the database server automatically converts the data types. (For a
detailed discussion of casting, see the IBM Informix Guide to SQL: Reference.)

Element Purpose Restrictions Syntax
function SPL function to be invoked Must exist in the database. Database Object

Name, p. 4-46
SPL_var SPL variable to receive a value that the

function, expression, or query returns
Must be defined and in scope
within the statement block.

Identifier, p. 4-189

,

SPL_varLET = (;)

Expression
p. 4-67

,

SELECT Statement
p. 3-37()

Argument
p. 4-5

,
function

,

3-36 IBM Informix Guide to SQL: Syntax

LET
In multiple-assignment operations, the number of variables to the left of the
“ = “ symbol must match the number of values returned by the functions,
expressions, and queries listed on the right of the “ = “ symbol. The following
example shows several LET statements that assign values to SPL variables:

LET a = c + d ;
LET a,b = c,d ;
LET expire_dt = end_dt + 7 UNITS DAY;
LET name = 'Brunhilda';
LET sname = DBSERVERNAME;
LET this_day = TODAY;

You cannot use multiple values to the right of the “ = “ symbol to operate on
other values. For example, the following statement is not valid:

LET a,b = (c,d) + (10,15); -- INVALID EXPRESSION

Using a SELECT Statement in a LET Statement

The examples in this section use a SELECT statement in a LET statement. You
can use a SELECT statement to assign values to one or more variables on the
left side of the equals (=) operator, as the following example shows:

LET a,b = (SELECT c1,c2 FROM t WHERE id = 1);
LET a,b,c = (SELECT c1,c2 FROM t WHERE id = 1), 15;

You cannot use a SELECT statement to make multiple values operate on other
values. The following example is invalid:

LET a,b = (SELECT c1,c2 FROM t) + (10,15); -- ILLEGAL CODE

Because a LET statement is equivalent to a SELECT...INTO statement, the two
statements in the following example have the same results: a=c and b=d:

CREATE PROCEDURE proof()
DEFINE a, b, c, d INT;
LET a,b = (SELECT c1,c2 FROM t WHERE id = 1);
SELECT c1, c2 INTO c, d FROM t WHERE id = 1

END PROCEDURE

If the SELECT statement returns more than one row, you must enclose the
SELECT statement in a FOREACH loop.

For a complete description of SELECT syntax and usage, see “SELECT” on
page 2-581.
SPL Statements 3-37

LET
Calling a Function in a LET Statement

You can call a user-defined function in a LET statement and assign the return
values to an SPL variable. The SPL variable receives the returned values from
the called function.

An SPL function can return multiple values (that is, values from multiple
columns in the same row) into a list of variable names. In other words, the
function can have multiple values in its RETURN statement and the LET
statement can have multiple variables to receive the returned values.

When you call the function, you must specify all the necessary arguments to
the function unless the arguments of the function have default values. If you
name one of the parameters in the called function, with syntax such as name
= 'smith', you must name all of the parameters.

An SPL function that selects and returns more than one row must be enclosed
in a FOREACH loop.

The following two examples show valid LET statements:

LET a, b, c = func1(name = 'grok', age = 17);
LET a, b, c = 7, func2('orange', 'green');

The following LET statement is not valid because it tries to add the output of
two functions and then assign the sum to two variables, a and b. You can
easily split this LET statement into two valid LET statements.

LET a, b = func1() + func2(); -- ILLEGAL CODE

A function called in a LET statement can have an argument of COLLECTION,
SET, MULTISET, or LIST. You can assign the value that the function returns to
a variable, for example:

LET d = function1(collection1);
LET a = function2(set1);

In the first statement, the SPL function function1 accepts collection1 (that is,
any collection data type) as an argument and returns its value to the variable
d. In the second statement, the SPL function function2 accepts set1 as an
argument and returns a value to the variable a.
3-38 IBM Informix Guide to SQL: Syntax

ON EXCEPTION
ON EXCEPTION
Use the ON EXCEPTION statement to specify the actions to be taken for a
specified error or a list of errors during execution of a statement block.

Syntax

Usage
The ON EXCEPTION statement, together with the RAISE EXCEPTION
statement, provides an error-trapping and error-recovery mechanism for
SPL. ON EXCEPTION specifies a list of errors that you want to trap as the SPL
routine executes, and specifies the action to take when the error occurs within
the statement block. If the IN clause is omitted, then all errors are trapped.

A statement block can include more than one ON EXCEPTION statement. The
exceptions that are trapped can be either system-defined or user-defined.

Element Purpose Restrictions Syntax
error_data_var SPL variable to receive a string

returned by an SQL error or by a user-
defined exception

Must be a character type to receive
the error information. Must be valid
in the current statement block.

Identifier,
p. 4-189

error_number SQL error number or an error number
created by a RAISE EXCEPTION
statement that is to be trapped

Must be of integer type. Must be
valid in the current statement block.

Literal
Number,
p. 4-216

ISAM_error_var SPL variable that receives the ISAM
error number of the exception raised

Must be of integer type. Must be
valid in the current statement block.

Identifier,
p. 4-189

SQL_error_var SPL variable that receives the SQL
error number of the exception raised

Must be a character type. Must be
valid in the current statement block.

Identifier,
p. 4-189

,

ON EXCEPTION
Statement

Block
p. 4-276

END EXCEPTION

error_numberIN)

SET

;

error_data_var

WITH RESUME

,ISAM_error_var,SQL_error_var

(

SPL Statements 3-39

ON EXCEPTION
The scope of an ON EXCEPTION statement is the statement block that follows
the ON EXCEPTION statement and all the statement blocks that are nested
within that following statement block.

When an exception is trapped, the error status is cleared.

If you specify a variable to receive an ISAM error, but no accompanying ISAM
error exists, a zero (0) is assigned to the variable. If you specify a variable to
receive the error text, but none exists, the variable stores an empty string.

ON EXCEPTION has no effect within a UDR that is called by a trigger.

Placement of the ON EXCEPTION Statement

The ON EXCEPTION statement is a declarative statement, not an executable
statement. For this reason, ON EXCEPTION must precede any executable
statement and must follow any DEFINE statement within an SPL routine.

The following example shows the correct placement of an ON EXCEPTION
statement. Function add_salesperson() inserts a set of values into a table. If
the table does not exist, it is created, and the values are inserted. The function
also returns the total number of rows in the table after the insert occurs.

CREATE FUNCTION add_salesperson(last CHAR(15), first CHAR(15))
RETURNING INT;
DEFINE x INT;
ON EXCEPTION IN (-206) -- If no table was found, create one

CREATE TABLE emp_list
 (lname CHAR(15),fname CHAR(15), tele CHAR(12));

INSERT INTO emp_list VALUES -- and insert values
 (last, first, '800-555-1234');

END EXCEPTION WITH RESUME
INSERT INTO emp_list VALUES (last, first, '800-555-1234')
LET x = SELECT count(*) FROM emp_list;
RETURN x;

END FUNCTION

When an error occurs, the database server searches for the last declaration of
the ON EXCEPTION statement, which traps the specified error code. The ON
EXCEPTION statement can have the error number in the IN clause or have no
IN clause. If the database server finds no pertinent ON EXCEPTION statement,
the error code passes back to the caller (the SPL routine, application, or inter-
active user), and execution aborts.

In the previous example, the minus (-) symbol is required in the IN clause
that specifies error -206; most error codes are negative integers.
3-40 IBM Informix Guide to SQL: Syntax

ON EXCEPTION
The following example uses two ON EXCEPTION statements with the same
error number so that error code 691 can be trapped in two levels of nesting:

CREATE PROCEDURE delete_cust (cnum INT)
ON EXCEPTION IN (-691) -- children exist

BEGIN -- Begin-end so no other DELETEs get caught in here.
ON EXCEPTION IN (-691)

DELETE FROM another_child WHERE num = cnum;
DELETE FROM orders WHERE customer_num = cnum;

END EXCEPTION -- for 691
DELETE FROM orders WHERE customer_num = cnum;
END

DELETE FROM cust_calls WHERE customer_num = cnum;
 DELETE FROM customer WHERE customer_num = cnum;
 END EXCEPTION
 DELETE FROM customer WHERE customer_num = cnum;
END PROCEDURE

Using the IN Clause to Trap Specific Exceptions
An error is trapped if the SQL error code or the ISAM error code matches an
exception code in the list of error numbers. The search through the list of
errors begins from the left and stops with the first match. You can use a
combination of an ON EXCEPTION statement without an IN clause and one or
more ON EXCEPTION statements with an IN clause. When an error occurs, the
database server searches for the last declaration of the ON EXCEPTION
statement that traps the particular error code.

CREATE PROCEDURE ex_test ()
DEFINE error_num INT;
...
ON EXCEPTION SET error_num
-- action C
END EXCEPTION
ON EXCEPTION IN (-300)
-- action B
END EXCEPTION
ON EXCEPTION IN (-210, -211, -212) SET error_num
-- action A
END EXCEPTION

A summary of the sequence of statements in the previous example would be:

1. Test for an error.

2. If error -210, -211, or -212 occurs, take action A.

3. If error -300 occurs, take action B.

4. If any other error occurs, take action C.
SPL Statements 3-41

ON EXCEPTION
Receiving Error Information in the SET Clause
If you use the SET clause, when an exception occurs, the SQL error code and
(optionally) the ISAM error code are inserted into the variables that are
specified in the SET clause. If you provide an error_data_var, any error text that
the database server returns is put into the error_data_var. Error text includes
information such as the offending table or column name.

Forcing Continuation of the Routine
The first example in “Placement of the ON EXCEPTION Statement” on
page 3-40 uses the WITH RESUME keyword to indicate that after the
statement block in the ON EXCEPTION statement executes, execution is to
continue at the LET x = SELECT COUNT(*) FROM emp_list statement, which
is the line following the line that raised the error. For this function, the result
is that the count of salespeople names occurs even if the error occurred.

Continuing Execution After an Exception Occurs

If you omit the WITH RESUME keywords, the next statement that executes
after an exception occurs depends on the placement of the ON EXCEPTION
statement, as the following scenarios describe:

� If the ON EXCEPTION statement is inside a statement block with a
BEGIN and an END keyword, execution resumes with the first
statement (if any) after that BEGIN...END block. That is, it resumes
after the scope of the ON EXCEPTION statement.

� If the ON EXCEPTION statement is inside a loop (FOR, WHILE,
FOREACH), the rest of the loop is skipped, and execution resumes
with the next iteration of the loop.

� If no statement or block, but only the SPL routine, contains the ON
EXCEPTION statement, the routine executes a RETURN statement
with no arguments, returning a successful status and no values.

To prevent an infinite loop, if an error occurs during execution of the
statement block, then the search for another ON EXCEPTION statement to trap
the error does not include the current ON EXCEPTION statement.
3-42 IBM Informix Guide to SQL: Syntax

RAISE EXCEPTION
RAISE EXCEPTION
Use the RAISE EXCEPTION statement to simulate the generation of an error.

Syntax

Usage
Use the RAISE EXCEPTION statement to simulate an error or to generate an
error with a custom message. An ON EXCEPTION statement can trap the
generated error.

If you omit ISAM_error, the database server sets the ISAM error code to zero
(0) when the exception is raised. If you want to specify error_text but not
specify a value for ISAM_error, specify zero (0) as the value of ISAM_error.

The RAISE EXCEPTION statement can raise either system-generated excep-
tions or user-generated exceptions. For example, the following statement
raises the error number -208 and inserts the text a missing file into the
variable of the system-generated error message:

RAISE EXCEPTION -208, 0, 'a missing file';

Here the minus (-) symbol is required after the EXCEPTION keyword for
error -208; most error codes are negative integers.

Element Purpose Restrictions Syntax
error_text SPL variable or expression that

contains the error message text
Must be a character data type and
be valid in the statement block.

Identifier, p. 4-189;
Expression, p. 4-67

ISAM_error SPL variable or expression that
represents an ISAM error number

Default is 0.

Must return a SMALLINT value.
You can place a unary minus sign
before the error number.

Identifier, p. 4-189;
Expression, p. 4-67

SQL_error SPL variable or expression that
represents an SQL error number

Same as for ISAM_error Identifier, p. 4-189;
Expression, p. 4-67

ISAM_error,

RAISE EXCEPTION ;SQL_error_var

error_text,
SPL Statements 3-43

RAISE EXCEPTION
Special Error Numbers
The special error number -746 allows you to produce a customized message.
For example, the following statement raises the error number -746 and
returns the quoted text:

RAISE EXCEPTION -746, 0, 'You broke the rules';

In the following example, a negative value for alpha raises exception -746

and provides a specific message that describes the problem. The code should
contain an ON EXCEPTION statement that traps for an exception of -746.

FOREACH SELECT c1 INTO alpha FROM sometable
IF alpha < 0 THEN
RAISE EXCEPTION -746, 0, 'a < 0 found' -- emergency exit
END IF
END FOREACH

When the SPL routine executes and the IF condition is met, the database
server returns the following error:

-746: a < 0 found.

For more information about the scope and compatibility of exceptions, see
“ON EXCEPTION” on page 3-39.

Related Information
Related statement: ON EXCEPTION
3-44 IBM Informix Guide to SQL: Syntax

RETURN
RETURN
Use the RETURN statement to specify what values (if any) the SPL function
returns to the calling module.

Syntax

Usage
In Dynamic Server, for backward compatibility, you can use this statement
inside a CREATE PROCEDURE statement to create an SPL function. However,
only use this statement inside the CREATE FUNCTION statement to create
new user-defined functions. ♦

All the RETURN statements in the SPL function must be consistent with the
RETURNING clause of the CREATE FUNCTION (or CREATE PROCEDURE)
statement, which defines the function.

The number and data type of values in the RETURN statement, if any, must
match in number and data type the data types that are listed in the
RETURNING clause of the CREATE FUNCTION (or CREATE PROCEDURE)
statement. You can choose to return no values even if you specify one or more
values in the RETURNING clause. If you use a RETURN statement without any
expressions, but the calling UDR or program expects one or more returned
values, it is equivalent to returning the expected number of NULL values to
the calling program.

A RETURN statement without any expressions exits only if the SPL function
is declared as not returning any values; otherwise it returns NULL values.

In an SPL program, you can use an external function as an expression in a
RETURN statement provided that the external function is not an iterator
function. An iterator function is an external function that returns one or more
rows of data and therefore requires a cursor to execute. ♦

,
RETURN

Expression
p. 4-67

;

WITH RESUME

IDS

IDS
SPL Statements 3-45

RETURN
This SPL function includes two valid RETURN statements. A program that
calls this function should check if no values are returned and act accordingly.

CREATE FUNCTION two_returns (stockno INT)
RETURNING CHAR (15);
DEFINE des CHAR(15);
ON EXCEPTION (-272) -- if user doesn’t have select privilege...

RETURN; -- return no values.
END EXCEPTION;
SELECT DISTINCT descript INTO des FROM stock

WHERE stocknum = stockno;
RETURN des;

END FUNCTION

WITH RESUME Keyword
If you use the WITH RESUME keyword, after the RETURN statement executes,
the next invocation of the SPL function (upon the next FETCH or FOREACH
statement) starts from the statement that follows the RETURN statement. Any
function that executes a RETURN WITH RESUME statement must be invoked
within a FOREACH loop, or else in the FROM clause of a query.

If an SPL routine executes a RETURN WITH RESUME statement, a FETCH
statement in an ESQL/C application can call the SPL routine. ♦

The following example shows a cursor function that another UDR can call.
After the RETURN WITH RESUME statement returns each value to the calling
UDR or program, the next line of series executes the next time series is called.
If the variable backwards equals zero (0), no value is returned to the calling
UDR or program, and execution of series stops.

CREATE FUNCTION series (limit INT, backwards INT)
RETURNING INT;
DEFINE i INT;
FOR i IN (1 TO limit)

RETURN i WITH RESUME;
END FOR
IF backwards = 0 THEN

RETURN;
END IF
FOR i IN (limit TO 1 STEP -1)

RETURN i WITH RESUME;
END FOR

END FUNCTION -- series

SPL iterator functions must include the RETURN WITH RESUME statement.
For information about using an iterator function with a virtual table interface
in the FROM clause of a query, see “Iterator Functions” on page 2-603. ♦

E/C

IDS
3-46 IBM Informix Guide to SQL: Syntax

SYSTEM
SYSTEM
Use the SYSTEM statement to issue an operating-system command from
within an SPL routine.

Syntax

Usage
If the specified expression is not a character expression, it is converted to a
character expression and passed to the operating system for execution.

The command that SYSTEM specifies cannot run in the background. The
database server waits for the operating system to complete execution of the
command before it continues to the next statement in the SPL routine. The SPL
routine cannot use any returned value(s) from the command.

If the operating-system command fails (that is, returns a nonzero status for
the command), an exception is raised that contains the returned operating-
system status as the ISAM error code and an appropriate SQL error code.

A rollback does not terminate a system call, so a suspended transaction can
wait indefinitely for the call to return. For instructions on recovery from a
deadlock during a long transaction rollback, see the Administrator’s Guide.

The dynamic log feature of Dynamic Server automatically adds log files until
the long transaction completes or rolls back successfully. ♦

In DBA- and owner-privileged SPL routines that contain SYSTEM statements,
the command runs with the permissions of the user who executes the routine.

Element Purpose Restrictions Syntax
expression Evaluates to a user-executable

operating-system command
You cannot specify that the
command run in the background.

Operating-system
dependent

SPL_var SPL variable that contains a command Must be of a character data type. Identifier, p. 4-189

SPL_var

expressionSYSTEM ;

IDS
SPL Statements 3-47

SYSTEM
Examples of the SYSTEM Statement on UNIX

The SYSTEM statement in the following example of an SPL routine causes the
UNIX operating system to send a mail message to the system administrator:

CREATE PROCEDURE sensitive_update()
...
LET mailcall = 'mail headhoncho < alert';
-- code to execute if user tries to execute a specified
-- command, then sends email to system administrator
SYSTEM mailcall;
...

END PROCEDURE; -- sensitive_update

You can use a double-pipe symbol (||) to concatenate expressions with a
SYSTEM statement, as the following example shows:

CREATE PROCEDURE sensitive_update2()
DEFINE user1 char(15);
DEFINE user2 char(15);
LET user1 = 'joe';
LET user2 = 'mary';
...
-- code to execute if user tries to execute a specified
-- command, then sends email to system administrator
SYSTEM 'mail -s violation' ||user1 || ' ' || user2

 || '< violation_file';
...

END PROCEDURE; --sensitive_update2

Example of the SYSTEM Statement on Windows

The first SYSTEM statement in the following example of an SPL routine causes
Windows to send an error message to a temporary file and to put the message
in a system log that is sorted alphabetically. The second SYSTEM statement
causes the operating system to delete the temporary file.

CREATE PROCEDURE test_proc()
...
SYSTEM 'type errormess101 > %tmp%tmpfile.txt |

sort >> %SystemRoot%systemlog.txt';
SYSTEM 'del %tmp%tmpfile.txt';
...

END PROCEDURE; --test_proc

The expressions that follow the SYSTEM statements in this example contain
variables %tmp% and %SystemRoot% that are defined by Windows.

UNIX

Windows
3-48 IBM Informix Guide to SQL: Syntax

SYSTEM
Setting Environment Variables in SYSTEM Commands

When the operating-system command that SYSTEM specifies is executed, no
guarantee exists that any environment variables that the user application sets
are passed to the operating system. If you set an environment variable in a
SYSTEM command, the setting is only valid during that SYSTEM command.

To avoid this potential problem, the following method is recommended to
ensure that any environment variables that the user application requires are
carried forward to the operating system.

To Change Environment Settings for an Operating System Command

1. Create a shell script (on UNIX systems) or a batch file (on Windows
platforms) that sets up the desired environment and then executes
the operating system command.

2. Use the SYSTEM command to execute the shell script or batch file.

This solution has an additional advantage, in that if you subsequently need
to change the environment, you can modify the shell script or the batch file
without needing to recompile the SPL routine.

For information about operating system commands that set environment
variables, see the IBM Informix Guide to SQL: Reference.
SPL Statements 3-49

TRACE
TRACE
Use the TRACE statement to control the generation of debugging output.

Syntax

Usage
The TRACE statement generates output that is sent to the file that the SET
DEBUG FILE TO statement specifies. Tracing writes to the debug file the
current values of the following program objects:

� SPL variables

� Routine arguments

� Return values

� SQL error codes

� ISAM error codes

The output of each executed TRACE statement appears on a separate line.

If you use the TRACE statement before you specify a DEBUG file to contain the
output, an error is generated.

Any routine that the SPL routine calls inherits the trace state. That is, a called
routine (on the same database server) assumes the same trace state (ON, OFF,
or PROCEDURE) as the calling routine. The called routine can set its own trace
state, but that state is not passed back to the calling routine.

A routine that is executed on a remote database server does not inherit the
trace state.

TRACE ON

OFF

PROCEDURE

Expression
p. 4-67

;

3-50 IBM Informix Guide to SQL: Syntax

TRACE
TRACE ON

If you specify the keyword ON, all statements are traced. The values of
variables (in expressions or otherwise) are printed before they are used. To
turn tracing ON implies tracing both routine calls and statements in the body
of the routine.

TRACE OFF

If you specify the keyword OFF, all tracing is turned off.

TRACE PROCEDURE

If you specify the keyword PROCEDURE, only the routine calls and return
values, but not the body of the routine, are traced.

The TRACE statement does not have ROUTINE or FUNCTION keywords.
Therefore, use the TRACE PROCEDURE keywords even if the SPL routine you
want to trace is a function.

Displaying Expressions

You can use the TRACE statement with a quoted string or an expression to
display values or comments in the output file. If the expression is not a literal
expression, the expression is evaluated before it is written to the output file.

You can use the TRACE statement with an expression even if you used a
TRACE OFF statement earlier in a routine. You must first, however, use the
SET DEBUG statement to establish a trace output file.
SPL Statements 3-51

TRACE
The next example uses a TRACE statement with an expression after using a
TRACE OFF statement. The example uses UNIX file naming conventions.

CREATE PROCEDURE tracing ()
DEFINE i INT;

BEGIN
ON EXCEPTION IN (1)
END EXCEPTION; -- do nothing
SET DEBUG FILE TO '/tmp/foo.trace';
TRACE OFF;
TRACE 'Forloop starts';

FOR i IN (1 TO 1000)
BEGIN

TRACE 'FOREACH starts';
FOREACH SELECT...INTO a FROM t

IF <some condition> THEN
RAISE EXCEPTION 1 -- emergency exit

END IF
END FOREACH
-- return some value

END
END FOR
-- do something

END;
END PROCEDURE

Example Showing Different Forms of TRACE

The following example shows several different forms of the TRACE
statement. The example uses Windows file naming conventions.

CREATE PROCEDURE testproc()
DEFINE i INT;

SET DEBUG FILE TO 'C:\tmp\test.trace';
TRACE OFF;
TRACE 'Entering foo';

TRACE PROCEDURE;
LET i = test2();

TRACE ON;
LET i = i + 1;

TRACE OFF;
TRACE 'i+1 = ' || i+1;
TRACE 'Exiting testproc';

SET DEBUG FILE TO 'C:\tmp\test2.trace';

END PROCEDURE
3-52 IBM Informix Guide to SQL: Syntax

TRACE
Looking at the Traced Output

To see the traced output, use a text editor or similar utility to display or read
the contents of the file.
SPL Statements 3-53

WHILE
WHILE
Use the WHILE statement to establish a loop with variable end conditions.

Syntax

Usage
The condition is evaluated before the statement block first runs and before each
subsequent iteration. Iterations continue as long as the condition remains
TRUE. The loop terminates when the condition evaluates to not true.

If any expression within the condition evaluates to NULL, the condition
becomes not true unless you are explicitly testing with the IS NULL operator.

If an expression within the condition has an unknown value because it
references uninitialized SPL variables, an immediate error results. In this
case, the loop terminates, and an exception is raised.

Example of WHILE Loops in an SPL Routine
The following example illustrates the use of WHILE loops in an SPL routine.
In the SPL procedure, simp_while, the first WHILE loop executes a DELETE
statement. The second WHILE loop executes an INSERT statement and incre-
ments the value of an SPL variable.

CREATE PROCEDURE simp_while()
DEFINE i INT;
WHILE EXISTS (SELECT fname FROM customer

 WHERE customer_num > 400)
DELETE FROM customer WHERE id_2 = 2;

END WHILE;
LET i = 1;
WHILE i < 10

INSERT INTO tab_2 VALUES (i);
LET i = i + 1;

END WHILE;
END PROCEDURE

WHILE Condition
p. 4-24 END WHILE

;

Statement Block
p. 4-276
3-54 IBM Informix Guide to SQL: Syntax

4
Chapter
Segments
In This Chapter . 4-3
Arguments . 4-5
Collection-Derived Table 4-7
Collection Subquery 4-22
Condition . 4-24
Database Name . 4-44
Database Object Name 4-46
Data Type . 4-49
DATETIME Field Qualifier 4-65
Expression . 4-67
External Routine Reference 4-187
Identifier . 4-189
INTERVAL Field Qualifier 4-205
Jar Name . 4-207
Literal Collection 4-208
Literal DATETIME 4-212
Literal INTERVAL 4-214
Literal Number . 4-216
Literal Row . 4-218
Optimizer Directives 4-222
Owner Name . 4-234
Purpose Options. 4-237
Quoted String . 4-243
Relational Operator 4-248
Return Clause . 4-253
Routine Modifier 4-257
Routine Parameter List 4-266

4-2 IBM
Shared-Object Filename 4-270
Specific Name. 4-274
Statement Block . 4-276
 Informix Guide to SQL: Syntax

In This Chapter
Segments are language elements, such as table names or expressions, that
appear as a subdiagram reference box in the syntax diagrams of SQL and SPL
statements. A segment that can occur in only one statement is described
within the description of the statement. For the sake of clarity, ease of use,
and comprehensive treatment, however, most segments that can occur in
various SQL or SPL statements are discussed separately in this section.

Scope of Segment Descriptions
The description of each segment includes the following information:

� A brief introduction that explains the purpose of the segment

� A syntax diagram that shows how to enter the segment correctly

� A table that explains the terms in the syntax diagram for which you
must substitute names, values, or other specific information

� Rules of usage, typically including examples that illustrate these
rules

If a segment consists of multiple parts, the segment description provides
similar information about each part. Some descriptions conclude with refer-
ences to related information in this and in other manuals.

Use of Segment Descriptions
The syntax diagram within each segment description is not a stand-alone
diagram. Rather, it is a subdiagram of the syntax of the SQL statements (in
Chapter 2) and SPL statements (in Chapter 3) that can include the segment.
Segments 4-3

SQL or SPL syntax descriptions can refer to segment descriptions in two ways:

� A subdiagram-reference box in a statement syntax diagram can list a
segment name and the page where the segment description begins.

� The Syntax column of the table beneath a syntax diagram can list a
segment name and the page where the segment description begins.

If the syntax diagram for a statement includes a reference to a segment, turn
to that segment description to see the complete syntax for the segment.

For example, if you want to write a CREATE VIEW statement that includes a
database and database server qualifiers of the view name, first look up the syntax
diagram for the CREATE VIEW statement in Chapter 4. The table beneath that
diagram refers to the Database Object Name segment for the syntax of view.
Then use the Database Object Name segment syntax to enter a valid CREATE
VIEW statement that also specifies the database name and database server
name for the view. For example, the following SQL statement defines a view
called name_only in the sales database on the boston database server:

CREATE VIEW sales@boston:name_only AS
SELECT customer_num, fname, lname FROM customer

Segments in This Section
This section describes the following segments:

Argument
Collection-Derived Table
Condition
Database Name
Database Object Name
Data Type
DATETIME Field Qualifier
Expression
External Routine Reference
Identifier
INTERVAL Field Qualifier
Jar Name
Literal Collection
Literal DATETIME

Literal INTERVAL
Literal Number
Literal Row
Optimizer Directives
Owner Name
Purpose Options
Quoted String
Relational Operator
Return Clause
Routine Modifier
Routine Parameter List
Shared-Object Filename
Specific Name
Statement Block
4-4 IBM Informix Guide to SQL: Syntax

Arguments
Arguments
Use the Argument segment to pass a specific value to a routine. Use this
segment wherever you see a reference to an argument in a syntax diagram.

Syntax

Usage
The CREATE PROCEDURE or CREATE FUNCTION statement can define a
parameter list for a UDR. If the parameter list is not empty, you must enter
arguments when you invoke the UDR. An argument is a specific value whose
data type is compatible with that of the corresponding UDR parameter.

When you execute a UDR, you can enter arguments in either of two ways:

� With a parameter name (in the form parameter name = expression),
even if the arguments are not in the same order as the parameters

� By position, with no parameter name, where each expression is in the
same order as the parameter to which the argument corresponds

You cannot mix these two ways of specifying arguments within a single
invocation of a routine. If you specify a parameter name for one argument, for
example, you must use parameter names for all the arguments.

Element Purpose Restrictions Syntax
parameter Name of parameter for

which you supply a value
Must match a name that CREATE FUNCTION
or CREATE PROCEDURE statement declared.

Expression,
p. 4-67

singleton
_select

Embedded query that
returns a single value

Must return exactly one value of a data type and
length compatible with parameter.

SELECT,
p. 2-581

=parameter

Subset of Expression
p. 4-6

NULL

()

Argument

singleton_select
Segments 4-5

Arguments
In the following example, both statements are valid for a user-defined
procedure that expects three character arguments, t, d, and n:

EXECUTE PROCEDURE add_col (t ='customer', d ='integer',
n ='newint');

EXECUTE PROCEDURE add_col ('customer','newint','integer') ;

Comparing Arguments to the Parameter List

When you create or register a UDR with CREATE PROCEDURE or CREATE
FUNCTION, you declare a parameter list with the names and data types of the
parameters that the UDR expects. (Parameter names are optional for external
routines written in the C or Java languages.) See “Routine Parameter List” on
page 4-266 for details of declaring parameters.

User-defined routines can be overloaded, if different routines have the same
identifier, but have different numbers of declared parameters. For more infor-
mation about overloading, see “Routine Overloading and Naming UDRs
with a Routine Signature” on page 4-48.

If you attempt to execute a UDR with more arguments than the UDR expects,
you receive an error.

If you invoke a UDR with fewer arguments than the UDR expects, the omitted
arguments are said to be missing. The database server initializes missing
arguments to their corresponding default values. This initialization occurs
before the first executable statement in the body of the UDR.

If missing arguments do not have default values, the database server
initializes the arguments to the value UNDEFINED. You cannot, however, use
a variable with a value of UNDEFINED within the UDR. If you do, the
database server issues an error.

Subset of Expressions Valid as an Argument

The diagram for “Arguments” on page 4-5 refers to this section.

You can use any expression as an argument, except an aggregate function.
If you use a subquery or function call as an argument, the subquery or
function must return a single value of the appropriate data type and size. For
the syntax and usage of SQL expressions, see “Expression” on page 4-67.
4-6 IBM Informix Guide to SQL: Syntax

Collection-Derived Table
Collection-Derived Table
A collection-derived table is a virtual table in which the values in the rows of the
table are equivalent to the elements of a collection. Use this segment where
you see a reference to Collection-Derived Table in a syntax diagram.

Syntax

+

IDS

Element Purpose Restrictions Syntax
alias Temporary name for a

collection-derived table within
the scope of a SELECT
statement. The default is imple-
mentation dependent.

If potentially ambiguous, you
must precede alias with the
AS keyword. See “The AS
Keyword” on page 2-595.

Identifier, p. 4-189

collection_expr Any expression that evaluates to
a single collection

See “Restrictions with the
Collection-Expression
Format” on page 4-9.

Expression, p. 4-67

collection_var,
row_var

Name of typed or untyped
collection variable, or an
ESQL/C row variable that holds
the collection-derived table

Must have been declared in
an ESQL/C program or (for
collection_var) in an SPL
routine.

See the IBM Informix
ESQL/C Programmer’s
Manual or “DEFINE”
on page 3-10.

derived_column Temporary name for a derived
column in a table

If the underlying collection is
not a ROW type, you can
specify only one derived-
column name.

Identifier, page 4-189

TABLE

Collection-Derived Table

()

aliasAS+

(

,

)

collection_expr

derived_columncollection_var

)row_varE/C
E/C

SPL
Segments 4-7

Collection-Derived Table
Usage
A collection-derived table can appear where a table is valid in the UPDATE
statement, in the FROM clause of the SELECT or DELETE statement, or in the
INTO clause of an INSERT statement.

Use the collection-derived-table segment to accomplish these tasks:

� Access the elements of a collection as you would the rows of a table

� Specify a collection variable to access, instead of a table name

� Specify an ESQL/C row variable to access, instead of a table name

The TABLE keyword converts a collection into a virtual table. You can use the
collection expression format to query a collection column, or you can use the
collection variable or row variable format to manipulate the data in a
collection column.

Accessing a Collection Through a Virtual Table

When you use the collection expression format of the collection-derived-
table segment to access the elements of a collection, you can select elements
of the collection directly through a virtual table. You can use this format only
in the FROM clause of a SELECT statement. The FROM clause can be in either
a query or a subquery.

With this format you can use joins, aggregates, the WHERE clause, expres-
sions, the ORDER BY clause, and other operations that are not available when
you use the collection-variable format. This format reduces the need for
multiple cursors and temporary tables.

Examples of possible collection expressions include column references, scalar
subquery, dotted expression, functions, operators (through overloading),
collection subqueries, literal collections, collection constructors, cast
functions, and so on.
4-8 IBM Informix Guide to SQL: Syntax

Collection-Derived Table
Restrictions with the Collection-Expression Format

When you use the collection-expression format, certain restrictions apply:

� A collection-derived table is read-only.

❑ It cannot be the target of INSERT ‘, UPDATE, or DELETE
statements.

To perform insert, update, and delete operations, you must use
the collection-variable format.

❑ It cannot be the underlying table of an updatable cursor or view.

� You cannot use the WITH ORDINALITY keywords to introduce a new
column whose value is the ordinality of a row in the list expression.

� If the collection is a LIST data type, the resulting collection-derived
table does not preserve the order of the elements in the LIST.

� The underlying collection expression cannot evaluate to NULL.

� The collection expression cannot contain a reference to a collection
on a remote database server.

� The collection expression cannot contain column references to tables
that appear in the same FROM clause. That is, the collection-derived
table must be independent of other tables in the FROM clause.

For example, the following statement returns an error because the
collection-derived table, TABLE (parents.children), refers to the
table parents, which is also referenced in the FROM clause:

SELECT COUNT(*)
FROM parents, TABLE(parents.children) c_table
WHERE parents.id = 1001

To counter this restriction, you might write a query that contains a
subquery in the select list of the Projection clause:

SELECT (SELECT COUNT(*)
FROM TABLE(parents.children) c_table)

FROM parents WHERE parents.id = 1001
Segments 4-9

Collection-Derived Table
Additional Restrictions That Apply to ESQL/C

In addition to the previously described restrictions, the following restrictions
also apply when you use the collection-expression format with ESQL/C:

� You cannot use the untyped collection-host variable, COLLECTION.

� You cannot use the format TABLE(?).

The data type of the underlying collection variable must be deter-
mined statically. To counter this restriction, you can explicitly cast the
variable to a typed collection data type (SET, MULTISET, or LIST) that
the database server recognizes. For example,

TABLE(CAST(? AS type))

� You cannot use the format TABLE(:hostvar).

To counter this restriction, you must explicitly cast the variable to a
typed collection data type (SET, MULTISET, or LIST) that the database
server recognizes. For example,

TABLE(CAST(:hostvar AS type))

Row Type of the Resulting Collection-Derived Table

If you do not specify a derived-column name, the behavior of the database
server depends on the data types of the elements in the underlying collection.

Although a collection-derived table appears to contain columns of individual
data types, these columns are, in fact, the fields of a ROW data type. The data
type of the ROW type as well as the column name depend on several factors.

If the data type of the elements of the underlying collection expression is type,
the database server determines the ROW type of the collection-derived table
by the following rules:

� If type is a ROW type, and no derived column list is specified, then the
ROW type of the collection-derived table is type.

� If type is a ROW type and a derived column list is specified, then the
row type of the collection-derived table is an unnamed ROW type
whose column types are the same as those of type and whose column
names are taken from the derived column list.

E/C
4-10 IBM Informix Guide to SQL: Syntax

Collection-Derived Table
� If type is not a ROW type, the row type of the collection-derived table
is an unnamed ROW type that contains one column of type, and
whose name is specified in the derived column list. If no name is
specified, the database server assigns an implementation-dependent
name to the column.

The extended examples that the following table shows illustrate these rules.
The table uses the following schema for its examples:

CREATE ROW TYPE person (name CHAR(255), id INT);
CREATE TABLE parents

(
name CHAR(255),
id INT,
children LIST (person NOT NULL)
);

CREATE TABLE parents2
(
name CHAR(255),
id INT,
children_ids LIST (INT NOT NULL)
);
Segments 4-11

Collection-Derived Table
The following program fragment creates a collection-derived table using an
SPL function that returns a single value:

CREATE TABLE wanted(person_id int);
CREATE FUNCTION

wanted_person_count (person_set SET(person NOT NULL))
RETURNS INT;
RETURN(SELECT COUNT (*)

FROM TABLE (person_set) c_table, wanted
WHERE c_tabel.id = wanted.person_id);

END FUNCTION;

Row
Type

Explicit
Derived-
Column
List

Resulting ROW Type of the
Collection-Derived Table Code Example

Yes No Type SELECT (SELECT c_table.name
FROM TABLE(parents.children) c_table
WHERE c_table.id = 1002)

FROM parents WHERE parents.id = 1001

In this example, the ROW type of c_table is parents.

Yes Yes Unnamed ROW type of
which the column type is
Type and the column name
is the name in the derived-
column list

SELECT (SELECT c_table.c_name
FROM TABLE(parents.children)
c_table(c._name, c_id)
WHERE c_table.c_id = 1002)

FROM parents WHERE parents.id = 1001

In this example, the ROW type of c_table is
ROW(c_name CHAR(255), c_id INT).

No No Unnamed ROW that
contains one column of
Type that is assigned an
implementation-
dependent name

In the following example, if you do not specify c_id, the
database server assigns a name to the derived column. In
this case, the ROW type of c_table is
ROW(server_defined_name INT).

No Yes Unnamed ROW type that
contains one column of
Type whose name is in the
derived-column list.

SELECT(SELECT c_table.c_id FROM
TABLE(parents2.child_ids) c_table (c_id)
WHERE c_table.c_id = 1002)

FROM parents WHERE parents.id = 1001

Here the ROW type of c_table is ROW(c_id INT).
4-12 IBM Informix Guide to SQL: Syntax

Collection-Derived Table
The next program fragment shows the more general case of creating a
collection-derived table using an SPL function that returns multiple values:

-- Table of categories and child categories,
-- allowing any number of levels of subcategories
CREATE TABLE CategoryChild (
 categoryId INTEGER,
 childCategoryId SMALLINT
);

INSERT INTO CategoryChild VALUES (1, 2);
INSERT INTO CategoryChild VALUES (1, 3);
INSERT INTO CategoryChild VALUES (1, 4);
INSERT INTO CategoryChild VALUES (2, 5);
INSERT INTO CategoryChild VALUES (2, 6);
INSERT INTO CategoryChild VALUES (5, 7);
INSERT INTO CategoryChild VALUES (7, 8);
INSERT INTO CategoryChild VALUES (7, 9);
INSERT INTO CategoryChild VALUES (4, 10);

-- "R" == ROW type
CREATE ROW TYPE categoryLevelR (
 categoryId INTEGER,
 level SMALLINT);

-- DROP FUNCTION categoryDescendants (
-- INTEGER, SMALLINT);
CREATE FUNCTION categoryDescendants (
 pCategoryId INTEGER,
 pLevel SMALLINT DEFAULT 0)
RETURNS MULTISET (categoryLevelR NOT NULL);

-- "p" == Prefix for Parameter names
-- "l" == Prefix for Local variable names
DEFINE lCategoryId LIKE CategoryChild.categoryId;
DEFINE lRetSet MULTISET (categoryLevelR NOT NULL);
DEFINE lCatRow categoryLevelR;
-- TRACE ON;
-- Must initialize collection before inserting rows
LET lRetSet

= 'MULTISET{}' :: MULTISET (categoryLevelR NOT NULL);
Segments 4-13

Collection-Derived Table
FOREACH
SELECT childCategoryId INTO lCategoryId

FROM CategoryChild WHERE categoryId = pCategoryId;
INSERT INTO TABLE (lRetSet)

VALUES (ROW (lCategoryId, pLevel+1)::categoryLevelR);

-- INSERT INTO TABLE (lRetSet);
-- EXECUTE FUNCTION categoryDescendantsR (lCategoryId,
-- pLevel+1);
-- Need to iterate over results and insert into SET.
-- See the SQL Tutorial, pg. 10-52:
-- "Tip: You can only insert one value at a time
-- into a simple collection."
 FOREACH
 EXECUTE FUNCTION categoryDescendantsR (lCategoryId, pLevel+1)
 INTO lCatRow;
 INSERT INTO TABLE (lRetSet)
 VALUES (lCatRow);
 END FOREACH;
END FOREACH;

RETURN lRetSet;
END FUNCTION
;

-- "R" == recursive
-- DROP FUNCTION categoryDescendantsR (INTEGER, SMALLINT);
CREATE FUNCTION categoryDescendantsR (
 pCategoryId INTEGER,
 pLevel SMALLINT DEFAULT 0
)
RETURNS categoryLevelR
;

DEFINE lCategoryId LIKE CategoryChild.categoryId;
DEFINE lCatRow categoryLevelR;

FOREACH
SELECT childCategoryId
INTO lCategoryId
FROM CategoryChild
WHERE categoryId = pCategoryId
RETURN ROW (lCategoryId, pLevel+1)::categoryLevelR WITH RESUME;

FOREACH
EXECUTE FUNCTION categoryDescendantsR (lCategoryId, pLevel+1)

INTO lCatRow
RETURN lCatRow WITH RESUME;

END FOREACH;
END FOREACH;

END FUNCTION;
4-14 IBM Informix Guide to SQL: Syntax

Collection-Derived Table
-- Test the functions:
SELECT lev, col
FROM TABLE ((
 categoryDescendants (1, 0)
)) AS CD (col, lev)
;

Accessing a Collection Through a Collection Variable

When you use the collection-variable format of the collection-derived-table
segment, you use a host or program variable to access and manipulate the
elements of a collection. This format allows you to modify the contents of a
variable as you would a table in the database and then update the actual table
with the contents of the collection variable.

You can use the collection-variable format (the TABLE keyword preceding a
collection variable) in place of the name of a table, synonym, or view in the
following SQL statements:

� The FROM clause of the SELECT statement to access an element of the
collection variable

� The INTO clause of the INSERT statement to add a new element to the
collection variable

� The DELETE statement to remove an element from the collection
variable

� The UPDATE statement to modify an existing element in the
collection variable

� The DECLARE statement to declare a select or insert cursor to access
multiple elements of an ESQL/C collection-host variable

� The FETCH statement to retrieve a single element from a collection-
host variable that is associated with a select cursor

� The PUT statement to retrieve a single element from a collection-host
variable that is associated with an insert cursor ♦

� The FOREACH statement to declare a cursor to access multiple
elements of an SPL collection variable and to retrieve a single element
from this collection variable ♦

E/C

SPL
Segments 4-15

Collection-Derived Table
Using a Collection Variable to Manipulate Collection Elements

When you use data manipulation statements (SELECT, INSERT, UPDATE, or
DELETE) in conjunction with a collection variable, you can modify one or
more elements in a collection.

To modify elements in a collection

1. Create a collection variable in your SPL routine or ESQL/C program.

For information on how to declare a collection variable in ESQL/C,
see the IBM Informix ESQL/C Programmer’s Manual. For information on
how to define a collection variable in SPL, see “DEFINE” on
page 3-10.

2. In ESQL/C, allocate memory for the collection; see “ALLOCATE
COLLECTION” on page 2-8. ♦

3. Optionally, use a SELECT statement to select a collection column into
the collection variable.

If the collection variable is an untyped COLLECTION variable, you
must perform a SELECT from the collection column before you use
the variable in the collection-derived-table segment. The SELECT
statement allows the database server to obtain the collection type.

4. Use the appropriate data manipulation statement with the
collection-derived-table segment to add, delete, or update collection
elements in the collection variable.

To insert more than one element or to update or delete a specific ele-
ment of a collection, you must use a cursor for the collection variable.

� For more information on how to use an update cursor with
ESQL/C, see “DECLARE” on page 2-323.

� For more information on how to use an update cursor with SPL,
see “FOREACH” on page 3-27.

5. After the collection variable contains the correct elements, use an
INSERT or UPDATE statement on the table or view that holds the
actual collection column to save the changes that the collection
variable holds.

� With the UPDATE statement, specify the collection variable in the
SET clause.

� With the INSERT statement, specify the collection variable in the
VALUES clause.

IDS

E/C
4-16 IBM Informix Guide to SQL: Syntax

Collection-Derived Table
The collection variable stores the elements of the collection. It has no intrinsic
connection, however, with a database column. Once the collection variable
contains the correct elements, you must then save the variable into the actual
collection column of the table with either an INSERT or an UPDATE statement.

Example of Deleting from a Collection in ESQL/C

Suppose that the set_col column of a row in the table1 table is defined as a
SET and for one row contains the values {1,8,4,5,2}. The following ESQL/C
code fragment uses an update cursor and a DELETE statement with a WHERE
CURRENT OF clause to delete the element whose value is 4:

EXEC SQL BEGIN DECLARE SECTION;
client collection set(smallint not null) a_set;
int an_int;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL allocate collection :a_set;
EXEC SQL select set_col into :a_set from table1

where int_col = 6;
EXEC SQL declare set_curs cursor for

select * from table(:a_set)
for update;

EXEC SQL open set_curs;
while (i<coll_size)
{

EXEC SQL fetch set_curs into :an_int;
if (an_int = 4)
{

EXEC SQL delete from table(:a_set)
where current of set_curs;

break;
}
i++;

}
EXEC SQL update table1 set set_col = :a_set

where int_col = 6;
EXEC SQL deallocate collection :a_set;
EXEC SQL close set_curs;
EXEC SQL free set_curs;

After the DELETE statement executes, this collection variable contains the
elements {1,8,5,2}. The UPDATE statement at the end of this code fragment
saves the modified collection into the set_col column. Without this UPDATE
statement, element 4 of the collection column is not deleted.
Segments 4-17

Collection-Derived Table
For information on how to use collection-host variables in an ESQL/C
program, see the discussion of complex data types in the IBM Informix ESQL/C
Programmer’s Manual.

Example of Deleting from a Collection

Suppose that the set_col column of a row in the table1 table is defined as a
SET and one row contains the values {1,8,4,5,2}. The following SPL code
fragment uses a FOREACH loop and a DELETE statement with a WHERE
CURRENT OF clause to delete the element whose value is 4:

CREATE_PROCEDURE test6()

DEFINE a SMALLINT;
DEFINE b SET(SMALLINT NOT NULL);
SELECT set_col INTO b FROM table1

WHERE id = 6;
-- Select the set in one row from the table
-- into a collection variable

FOREACH cursor1 FOR
SELECT * INTO a FROM TABLE(b);

-- Select each element one at a time from
-- the collection derived table b into a

IF a = 4 THEN
DELETE FROM TABLE(b)

WHERE CURRENT OF cursor1;
-- Delete the element if it has the value 4

EXIT FOREACH;
END IF;

END FOREACH;

UPDATE table1 SET set_col = b
WHERE id = 6;
-- Update the base table with the new collection

END PROCEDURE;

This SPL routine declares two SET variables, a and b, each to hold a set of
SMALLINT values. The first SELECT statement copies a SET column from one
row of table1 into variable b. The routine then declares a cursor called
cursor1 that copies one element at a time from b into SET variable a. When the
cursor is positioned on the element whose value is 4, the DELETE statement
removes that element from SET variable b. Finally, the UPDATE statement
replaces the row of table1 with the new collection that is stored in variable b.

For information on how to use collection variables in an SPL routine, see the
IBM Informix Guide to SQL: Tutorial.
4-18 IBM Informix Guide to SQL: Syntax

Collection-Derived Table
Example of Updating a Collection

Suppose that the set_col column of a table called table1 is defined as a SET
and that it contains the values {1,8,4,5,2}. The following ESQL/C program
changes the element whose value is 4 to a value of 10:

main
{

EXEC SQL BEGIN DECLARE SECTION;
int a;
collection b;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :b;
EXEC SQL select set_col into :b from table1

where int_col = 6;

EXEC SQL declare set_curs cursor for
select * from table(:b) for update;

EXEC SQL open set_curs;
while (SQLCODE != SQLNOTFOUND)
{

EXEC SQL fetch set_curs into :a;
if (a = 4)
{

EXEC SQL update table(:b)(x)
set x = 10 where current of set_curs;

break;
}

}
EXEC SQL update table1 set set_col = :b

where int_col = 6;
EXEC SQL deallocate collection :b;
EXEC SQL close set_curs;
EXEC SQL free set_curs;

}

After you execute this ESQL/C program, the set_col column in table1
contains the values {1,8,10,5,2}.

This ESQL/C program defines two collection variables, a and b, and selects a
SET from table1 into b. The WHERE clause ensures that only one row is
returned. Then the program defines a collection cursor, which selects
elements one at a time from b into a. When the program locates the element
with the value 4, the first UPDATE statement changes that element value to 10
and exits the loop.

In the first UPDATE statement, x is a derived-column name used to update the
current element in the collection-derived table. The second UPDATE
statement updates the base table table1 with the new collection.
Segments 4-19

Collection-Derived Table
For information on how to use collection host variables in an ESQL/C
program, see the discussion of complex data types in the IBM Informix ESQL/C
Programmer’s Manual.

Example of Inserting a Value into a Multiset Collection

Suppose the ESQL/C host variable a_multiset has the following declaration:

EXEC SQL BEGIN DECLARE SECTION;
client collection multiset(integer not null) a_multiset;

EXEC SQL END DECLARE SECTION;

The following INSERT statement adds a new MULTISET element of 142,323 to
a_multiset:

EXEC SQL allocate collection :a_multiset;
EXEC SQL select multiset_col into :a_multiset from table1

where id = 107;
EXEC SQL insert into table(:a_multiset) values (142323);
EXEC SQL update table1 set multiset_col = :a_multiset

where id = 107;

EXEC SQL deallocate collection :a_multiset;

When you insert elements into a client-collection variable, you cannot
specify a SELECT statement or an EXECUTE FUNCTION statement in the
VALUES clause of the INSERT. When you insert elements into a server-
collection variable, however, the SELECT and EXECUTE FUNCTION state-
ments are valid in the VALUES clause. For more information on client- and
server-collection variables, see the IBM Informix ESQL/C Programmer’s Manual.

Accessing a Nested Collection

If the element of the collection is itself a complex type (collection or row
type), the collection is a nested collection. For example, suppose the ESQL/C
collection variable, a_set, is a nested collection that is defined as follows:

EXEC SQL BEGIN DECLARE SECTION;
client collection set(list(integer not null)) a_set;
client collection list(integer not null) a_list;
int an_int;

EXEC SQL END DECLARE SECTION;

To access the elements (or fields) of a nested collection, use a collection or
row variable that matches the element type (a_list and an_int in the
preceding code fragment) and a select cursor.
4-20 IBM Informix Guide to SQL: Syntax

Collection-Derived Table
Accessing a Row Variable

The TABLE keyword can make an ESQL/C row variable a collection-derived
table. That is, a row appears as a table in an SQL statement. For a row variable,
think of the collection-derived table as a table of one row, with each field of
the row type being a column of the row. Use the TABLE keyword in place of
the name of a table, synonym, or view in these SQL statements:

� The FROM clause of the SELECT statement to access a field of the row
variable

� The UPDATE statement to modify an existing field in the row variable

The DELETE and INSERT statements do not support a row variable in the
collection-derived-table segment.

For example, suppose an ESQL/C host variable a_row has the following
declaration:

EXEC SQL BEGIN DECLARE SECTION;
row(x int, y int, length float, width float) a_row;

EXEC SQL END DECLARE SECTION;

The following ESQL/C code fragment adds the fields in the a_row variable to
the row_col column of the tab_row table:

EXEC SQL update table(:a_row)
set x=0, y=0, length=10, width=20;

EXEC SQL update rectangles set rect = :a_row;

Related Information
Related statements: DECLARE, DELETE, DESCRIBE, FETCH, INSERT, PUT,
SELECT, UPDATE, DEFINE, and FOREACH

For information on how to use COLLECTION variables in an SPL routine, see
the IBM Informix Guide to SQL: Tutorial.

For information on how to use collection or row variables in an ESQL/C
program, see the chapter on complex data types in the IBM Informix ESQL/C
Programmer’s Manual.
Segments 4-21

Collection Subquery
Collection Subquery
You can use a Collection Subquery to create a multiset collection from the
results of a subquery.

Syntax

Usage
The MULTISET and SELECT ITEM keywords have the following significance:

� MULTISET specifies a collection of elements that can contain
duplicate values, but that has no specific order of elements.

� SELECT ITEM supports only one expression in the projection list. You
cannot repeat the SELECT keyword in the singleton subquery.

You can use a collection subquery in the following contexts:

� The SELECT and WHERE clauses of the SELECT statement

� The VALUES clause of the INSERT statement

� The SET clause of the UPDATE statement

� Wherever you can use a collection expression (that is, any expression
that evaluates to a single collection)

� As an argument passed to a user-defined routine

IDS

Element Purpose Restrictions Syntax
singleton

_select
Subquery returning
exactly one row

Subquery cannot repeat the SELECT keyword,
nor include the FIRST or ORDER BY clause

SELECT, p. 2-581

subquery Embedded query Cannot contain the FIRST or ORDER BY clause SELECT, p. 2-581

Collection Subquery

)(subquery

singleton_select

MULTISET

SELECT ITEM
4-22 IBM Informix Guide to SQL: Syntax

Collection Subquery
The following restrictions apply to a collection subquery:

� The Projection clause cannot contain duplicate column (field) names.

� It cannot contain aliases for table names. (But it can use aliases for
column (field) names, as in some of the examples that follow.)

� It is read-only.

� It cannot be opened twice.

� It cannot contain NULL values.

� It cannot contain syntax that attempts to seek within the subquery.

A collection subquery returns a multiset of unnamed ROW data types. The
fields of this ROW type are elements in the projection list of the subquery.
The examples that follow access the schema created with these statements:

CREATE ROW TYPE rt1 (a INT);
CREATE ROW TYPE rt2 (x int, y rt1);
CREATE TABLE tab1 (col1 rt1, col2 rt2);
CREATE TABLE tab2 OF TYPE rt1;
CREATE TABLE tab3 (a ROW(x INT));

The following examples of collection subqueries return the MULTISET collec-
tions that are listed to the right of the subquery.

The following is another collection subquery:

SELECT f(MULTISET(SELECT * FROM tab1 WHERE tab1.x = t.y))
FROM t WHERE t.name = 'john doe';

The following collection subquery includes the UNION operator:

SELECT f(MULTISET(SELECT id FROM tab1
UNION
SELECT id FROM tab2 WHERE tab2.id2 = tab3.id3)) FROM tab3;

Collection Subquery Resulting Collections

MULTISET (SELECT * FROM tab1)... MULTISET(ROW(col1 rt1, col2 rt2))

MULTISET (SELECT col2.y FROM tab1)... MULTISET(ROW(y rt1))

MULTISET (SELECT * FROM tab2)... MULTISET(ROW(a int))

MULTISET(SELECT p FROM tab2 p)... MULTISET(ROW(p rt1))

MULTISET (SELECT * FROM tab3)... MULTISET(ROW(a ROW(x int)))
Segments 4-23

Condition
Condition
Use a condition to test whether data meets certain qualifications. Use this
segment wherever you see a reference to a condition in a syntax diagram.

Syntax

Usage
A condition is a search criterion, or criteria connected by the logical operators
AND or OR. Conditions can be classified into the following categories:

� Comparison conditions (also called filters or Boolean expressions)

� Conditions within a subquery

� User-defined functions (Dynamic Server only)

A condition can contain only an aggregate function if it is used in the HAVING
clause of a SELECT statement or in the HAVING clause of a subquery.

No aggregate function can appear in a condition in the WHERE clause of a
DELETE, SELECT, or UPDATE statement unless both of the following are TRUE:

� Aggregate is on a correlated column originating from a parent query.

� The WHERE clause appears in a subquery within a HAVING clause.

NOT

OR

AND

Comparison Conditions
p. 4-26

Condition with Subquery
p. 4-36

User-Defined Function
p. 4-165

IDS

Comparison

User-Defined Function
p. 4-165
4-24 IBM Informix Guide to SQL: Syntax

Condition
In Dynamic Server, user-defined functions are not valid as conditions in the
following context:

� In the HAVING clause of a SELECT statement

� In the definition of a check constraint ♦

SPL routines are not valid as conditions in the following contexts:

� In the definition of a check constraint

� In the ON clause of a SELECT statement

� In the WHERE clause of a DELETE, SELECT, or UPDATE statement

External routines are not valid as conditions in the following contexts:

� In the definition of a check constraint

� In the ON clause of a SELECT statement

� In the WHERE clause of a DELETE, SELECT, or UPDATE statement

� In the WHEN clause of CREATE TRIGGER

� In the IF, CASE, or WHILE statements of SPL

IDS
Segments 4-25

Condition
Comparison Conditions (Boolean Expressions)

Five kinds of comparison conditions exist: Relational Operator, BETWEEN,
IN, IS NULL, and LIKE and MATCHES. Comparison conditions are often called
Boolean expressions because they return a TRUE or FALSE result. Their syntax
is summarized in this diagram and explained in the sections that follow.

The following sections describe the different types of comparison conditions:

� “Relational-Operator Condition” on page 4-28

� “BETWEEN Condition” on page 4-29

� “IN Condition” on page 4-30

� “IS NULL Condition” on page 4-32

� “LIKE and MATCHES Condition” on page 4-32

Element Purpose Restrictions Syntax
char A single ASCII character to be the nondefault

escape character in the quoted string

Single (') and double quotation marks (") are
not valid here as char.

See “ESCAPE with LIKE” on
page 4-35 and “ESCAPE with
MATCHES” on page 4-36.

Quoted
String,
p. 4-243

Relational Operator
p. 4-248

Expression
p. 4-67

Expression
p. 4-67

Comparison Conditions Back to Condition
p. 4-24

Expression
p. 4-67

Expression
p. 4-67

NOT

BETWEEN AND

MATCHES

LIKE

ESCAPE 'char '+

Column Name
p. 4-27

Quoted
String

p. 4-243

Expression
p. 4-67

IS NULLColumn Name
p. 4-27

+
IN Condition

p. 4-30

Column Name
p. 4-27

Quoted
String

p. 4-243

NOT

NOT
4-26 IBM Informix Guide to SQL: Syntax

Condition
For a discussion of comparison conditions in the context of the SELECT
statement, see “Using a Condition in the WHERE Clause” on page 2-614.

Warning: A literal DATE or DATETIME value in a comparison condition should
specify 4 digits for the year. When you specify a 4-digit year, the DBCENTURY
environment variable has no effect on the result. When you specify a 2-digit year,
DBCENTURY can affect how the database server interprets the comparison condition,
which might not work as you intended. For more information, see the “IBM Informix
Guide to SQL: Reference.”

Column Name

For more information on the meaning of the column name in these conditions,
see the “IS NULL Condition” on page 4-32 and the “LIKE and MATCHES
Condition” on page 4-32.

Element Purpose Restrictions Syntax
alias Temporary alternative

name for table or view
Must be defined in the FROM clause of the
SELECT statement.

Identifier, p. 4-189

column Name of a column Must exist in the specified table. Identifier, p. 4-189
field A field to compare in a

ROW type column
Must be a component of row-column name or
field name (for nested rows).

Identifier, p. 4-189

row_column A column of type ROW Must be an existing named ROW type or
unnamed ROW type.

Identifier, p. 4-189

synonym, table,
view

Name of a synonym,
table, or view

The synonym and the table or view to which
it points must exist in the database.

Database Object
Name, p. 4-46

Column Name

column

field

row_column

.

3

IDS

.

alias

.

.

.

.

table

view

synonym

Back to Comparison Condition
p. 4-26
Segments 4-27

Condition
Quotation Marks in Conditions

When you compare a column expression with a constant expression in any
type of comparison condition, observe the following rules:

� If the column has a numeric data type, do not surround the constant
expression with quotation marks.

� If the column has a character data type, surround the constant
expression with quotation marks.

� If the column has a time data type, surround the constant expression
with quotation marks.

Otherwise, you might get unexpected results.

The following example shows the correct use of quotation marks in
comparison conditions. Here the ship_instruct column has a character data
type, the order_date column has a DATE data type, and the ship_weight
column has a numeric data type.

SELECT * FROM orders
WHERE ship_instruct = 'express'
AND order_date > '05/01/98'
AND ship_weight < 30

Relational-Operator Condition

The following examples show some relational-operator conditions:

city[1,3] = 'San'

o.order_date > '6/12/98'

WEEKDAY(paid_date) = WEEKDAY(CURRENT- (31 UNITS DAY))

YEAR(ship_date) < YEAR (TODAY)

quantity <= 3

customer_num <> 105

customer_num != 105
4-28 IBM Informix Guide to SQL: Syntax

Condition
If either expression is NULL for a row, the condition evaluates to FALSE. For
example, if the paid_date column has a NULL, you cannot use either of the
following statements to retrieve that row:

SELECT customer_num, order_date FROM orders
WHERE paid_date = ''

SELECT customer_num, order_date FROM orders
WHERE NOT PAID !=''

An IS NULL condition finds a NULL value, as the next example shows. The IS
NULL condition is described in “IS NULL Condition” on page 4-32.

SELECT customer_num, order_date FROM orders
WHERE paid_date IS NULL

BETWEEN Condition

For a BETWEEN test to be TRUE, the value of the expression on the left of the
BETWEEN keyword must be in the inclusive range of the values of the two
expressions on the right of the BETWEEN keyword.

NULL values do not satisfy the condition, and you cannot use NULL for either
expression that defines the range.

The following examples show some BETWEEN conditions:

order_date BETWEEN '6/1/97' and '9/7/97'

zipcode NOT BETWEEN '94100' and '94199'

EXTEND(call_dtime, DAY TO DAY) BETWEEN
(CURRENT - INTERVAL(7) DAY TO DAY) AND CURRENT

lead_time BETWEEN INTERVAL (1) DAY TO DAY
AND INTERVAL (4) DAY TO DAY

unit_price BETWEEN loprice AND hiprice
Segments 4-29

Condition
IN Condition

The IN condition is satisfied when the expression to the left of the keyword
IN is included in the list of items.

If you specify the NOT operator, the IN condition is TRUEwhen the expression
is not in the list of items. NULL values do not satisfy the IN condition.

Element Purpose Restrictions Syntax
collection_col Name of a collection column that

is used in an IN condition
The column must exist in the
specified table.

Identifier, p. 4-189

Expression
p. 4-67

,

)(Literal Number
p. 4-216

SITENAME

DBSERVERNAME

NOT

Literal Collection
p. 4-208

Literal Row
p. 4-218

)(

,

Quoted String
p. 4-243

Literal DATETIME
p. 4-212

Literal INTERVAL
p. 4-214

CURRENT

USER

TODAY

Literal Collection
p. 4-208

Back to Comparison Conditions
p. 4-26

IN Condition

IDS IDS

IN

DATETIME
Field Qualifier

p. 4-65

collection_col
4-30 IBM Informix Guide to SQL: Syntax

Condition
The following examples show some IN conditions:

WHERE state IN ('CA', 'WA', 'OR')
WHERE manu_code IN ('HRO', 'HSK')
WHERE user_id NOT IN (USER)
WHERE order_date NOT IN (TODAY)

In ESQL/C, the built-in TODAY function is evaluated at execution time. The
built-in CURRENT function is evaluated when a cursor opens or when the
query executes, if it is a singleton SELECT statement. ♦

The built-in USER function is case sensitive; for example, it interprets minnie
and Minnie as different values.

Using the IN Operator with Collection Data Types

You can use the IN operator to determine if an element is contained in a
collection. The collection can be a simple or nested collection. (In a nested
collection type, the element type of the collection is also a collection type.)
When you use IN to search for an element of a collection, the expression to the
left or right of the IN keyword cannot contain a BYTE or TEXT data type.

Suppose you create the following table that contains two collection columns:

CREATE TABLE tab_coll
(
set_num SET(INT NOT NULL),
list_name LIST(SET(CHAR(10) NOT NULL) NOT NULL)
);

The following partial examples show how you might use the IN operator for
search conditions on the collection columns of the tab_coll table:

WHERE 5 IN set_num
WHERE 5.0::INT IN set_num
WHERE "5" NOT IN set_num
WHERE set_num IN ("SET{1,2,3}", "SET{7,8,9}")
WHERE "SET{'john', 'sally', 'bill'}" IN list_name
WHERE list_name IN ("LIST{""SET{'bill','usha'}"",

""SET{'ann' 'moshi'}""}",
"LIST{""SET{'bob','ramesh'}"",

""SET{'bomani' 'ann'}""}")

In general, when you use the IN operator on a collection data type, the
database server checks whether the value on the left of the IN operator is an
element in the set of values on the right of the IN operator.

E/C

IDS
Segments 4-31

Condition
IS NULL Condition

The IS NULL condition is satisfied if the column contains a NULL value. If you
use the IS NOT NULL operator, the condition is satisfied when the column
contains a value that is not NULL. The following example shows an IS NULL
condition:

WHERE paid_date IS NULL

Conditions that use the IS NULL operator are exceptions to the usual rule that
SQL expressions in which an operator has a NULL operand return FALSE.

LIKE and MATCHES Condition

A LIKE or MATCHES condition tests for matching character strings. The
condition is TRUE, or satisfied, when either of the following tests is TRUE:

� The value of the column on the left matches the pattern that the
quoted string specifies. You can use wildcard characters in the string.
NULL values do not satisfy the condition.

� The value of the column on the left matches the pattern that the
column on the right specifies. The value of the column on the right
serves as the matching pattern in the condition.

You can use the single quote (') only with the quoted string to match a literal
quote; you cannot use the ESCAPE clause. You can use the quote character as
the escape character in matching any other pattern if you write it as ''''.

Important: You cannot specify a row-type column in a LIKE or MATCHES condition.
A row-type column is a column that is defined on a named or unnamed ROW type.

NOT Operator

The NOT operator makes the search condition successful when the column on
the left has a value that is not NULL and that does not match the pattern that
the quoted string specifies.

For example, the following conditions exclude all rows that begin with the
characters Baxter in the lname column:

WHERE lname NOT LIKE 'Baxter%'
WHERE lname NOT MATCHES 'Baxter*'
4-32 IBM Informix Guide to SQL: Syntax

Condition
LIKE Operator

The LIKE operator supports these wildcard characters in the quoted string.

Using the backslash (\) symbol as the default escape character is an Informix
extension to the ANSI/ISO-standard for SQL.

In an ANSI-compliant database, you can only use an escape character to
escape a percent sign (%), an underscore (_), or the escape character itself. ♦

The following condition tests for the string tennis, alone or in a longer
string, such as tennis ball or table tennis paddle:

WHERE description LIKE '%tennis%'

The next example tests for description rows containing an underscore. Here
backslash (\) is necessary because underscore (_) is a wildcard character.

WHERE description LIKE '%_%'

The LIKE operator has an associated operator function called like(). You can
define a like() function to handle your own user-defined data types. See also
IBM Informix User-Defined Routines and Data Types Developer’s Guide.

Wildcard Effect

% Matches zero or more characters

_ Matches any single character

\ Removes the special significance of the next character (to match a literal
% or _ or \ by specifying \% or _ or \\)

ANSI
Segments 4-33

Condition
MATCHES Operator

The MATCHES operator supports wildcard characters in the quoted string.

The following condition tests for the string tennis, alone or within a longer
string, such as tennis ball or table tennis paddle:

WHERE description MATCHES '*tennis*'

The following condition is TRUE for the names Frank and frank:

WHERE fname MATCHES '[Ff]rank'

The following condition is TRUE for any name that begins with either F or f:

WHERE fname MATCHES '[Ff]*'

The next condition is TRUE for any name that ends with the letters a, b, c, or d:

WHERE fname MATCHES '*[a-d]'

MATCHES has an associated matches() operator function. You can define a
matches() function for your own user-defined data types. For more infor-
mation, see IBM Informix User-Defined Routines and Data Types Developer’s
Guide.

Wildcard Effect

* Matches any string of zero or more characters

? Matches any single character

[. . .] Matches any of the enclosed characters, including ranges, as in [a-z].
Characters within the brackets cannot be escaped.

^ As the first character within the brackets matches any character that is
not listed. Thus, [^abc] matches any character except a, b, or c.

\ Removes the special significance of the next character (to match a literal
\ or any other wildcard by specifying \\ or* or \? and so forth)
4-34 IBM Informix Guide to SQL: Syntax

Condition
If DB_LOCALE or SET COLLATION specifies a nondefault locale supporting a
localized collation, and you specify a range for the MATCHES operator using
bracket ([. . .]) symbols, the database server uses the localized collating
order, instead of code-set order, to interpret the range and to sort values that
have CHAR, CHARACTER VARYING, LVARCHAR, NCHAR, NVARCHAR, and
VARCHAR data types.

This behavior is an exception to the usual rule that only NCHAR and
NVARCHAR data types can be sorted in a localized collating order. For more
information on the GLS aspects of conditions that include the MATCHES or
LIKE operators, see the IBM Informix GLS User’s Guide. ♦

ESCAPE with LIKE

The ESCAPE clause can specify a nondefault escape character. For example, if
you specify z in the ESCAPE clause, then a quoted string operand that
included z_ is interpreted as including a literal underscore (_) character,
rather than _ as a wildcard. Similarly, z% would be interpreted as a literal
percent (%) sign, rather than including % as a wildcard. Finally, the
characters zz in a string would be interpreted as single literal z. The
following statement retrieves rows from the customer table in which the
company column includes a literal underscore character:

SELECT * FROM customer WHERE company LIKE '%z_%' ESCAPE 'z'

You can also use a host variable that contains a single character. The next
statement uses a host variable to specify an escape character:

EXEC SQL BEGIN DECLARE SECTION;
char escp='z';
char fname[20];

EXEC SQL END DECLARE SECTION;
EXEC SQL select fname from customer

into :fname where company like '%z_%' escape :escp;

GLS
Segments 4-35

Condition
ESCAPE with MATCHES

The ESCAPE clause can specify a nondefault escape character. Use this as you
would the backslash to include a question mark (?), an asterisk (*), a caret
(^), or a left ([) or right (]) bracket as a literal character within the quoted
string, to prevent them from being interpreted as special characters. If you
choose to use z as the escape character, the characters z? in a string stand for
the question mark (?). Similarly, the characters z* stand for the asterisk (*).
Finally, the characters zz in the string stand for the single character z.

The following example retrieves rows from the customer table in which the
value of the company column includes the question mark (?):

SELECT * FROM customer WHERE company MATCHES '*z?*' ESCAPE 'z'

Stand-Alone Condition

A stand-alone condition can be any expression that is not explicitly listed in
the syntax for the comparison condition. Such an expression is valid as a
condition only if it returns a BOOLEAN value. For example, the following
example returns a value of the BOOLEAN data type:

funcname(x)

Condition with Subquery

Condition with
Subquery

Back to Condition
p. 4-24

IN Subquery
p. 4-37

EXISTS Subquery
p. 4-38

ALL, ANY, SOME Subquery
p. 4-39
4-36 IBM Informix Guide to SQL: Syntax

Condition
You can include a SELECT statement within a condition; this combination is
called a subquery. You can use a subquery in a SELECT statement to perform
the following functions:

� Compare an expression to the result of another SELECT statement

� Determine whether an expression is included in the results of
another SELECT statement

� Ask whether another SELECT statement selects any rows

The subquery can depend on the current row that the outer SELECT statement
is evaluating; in this case, the subquery is called a correlated subquery.

The following sections describe subquery conditions and their syntax. For a
discussion of types of subquery conditions in the context of the SELECT
statement, see “Using a Condition in the WHERE Clause” on page 2-614.

A subquery can return a single value, no value, or a set of values, depending
on its context. If a subquery returns a value, it must select only a single
column. If the subquery simply checks whether a row (or rows) exists, it can
select any number of rows and columns.

A subquery cannot contain BYTE or TEXT data types, nor can it contain an
ORDER BY clause. For a complete description of SELECT syntax and usage, see
“SELECT” on page 2-581.

IN Subquery

Element Purpose Restrictions Syntax
subquery Embedded query Cannot contain the FIRST nor the ORDER BY clause. SELECT, p. 2-581

Expression
p. 4-67

IN
Subquery

)(

NOT

IN

Back to Condition with Subquery
p. 4-36

subquery
Segments 4-37

Condition
An IN subquery condition is TRUE if the value of the expression matches one
or more of the values from the subquery. (The subquery must return only one
column, but it can return more than one row.) The keyword IN is equivalent
to the =ANY specification. The keywords NOT IN are equivalent to the !=ALL
specification. See the “ALL, ANY, and SOME Subqueries” on page 4-39.

The following example of an IN subquery finds the order numbers for orders
that do not include baseball gloves (stock_num = 1):

WHERE order_num NOT IN
(SELECT order_num FROM items WHERE stock_num = 1)

Because the IN subquery tests for the presence of rows, duplicate rows in the
subquery results do not affect the results of the main query. Therefore, the
UNIQUE or DISTINCT keyword in the subquery has no effect on the query
results, although not testing duplicates can improve query performance.

EXISTS Subquery

An EXISTS subquery condition evaluates to TRUE if the subquery returns a
row. With an EXISTS subquery, one or more columns can be returned. The
subquery always contains a reference to a column of the table in the main
query. If you use an aggregate function in an EXISTS subquery that includes
no HAVING clause, at least one row is always returned.

Element Purpose Restrictions Syntax
subquery Embedded query Cannot contain the FIRST nor the ORDER BY clause. SELECT, p. 2-581

EXISTS
Subquery

EXISTS

NOT

Back to Condition with Subquery
p. 4-36

)(subquery
4-38 IBM Informix Guide to SQL: Syntax

Condition
The following example of a SELECT statement with an EXISTS subquery
returns the stock number and manufacturer code for every item that has
never been ordered (and is therefore not listed in the items table). You can
appropriately use an EXISTS subquery in this SELECT statement because you
use the subquery to test both stock_num and manu_code in items.

SELECT stock_num, manu_code FROM stock
WHERE NOT EXISTS (SELECT stock_num, manu_code FROM items

WHERE stock.stock_num = items.stock_num AND
stock.manu_code = items.manu_code)

The preceding example works equally well if you use SELECT * in the
subquery in place of the column names, because the existence of the entire
row is tested; specific column values are not tested.

ALL, ANY, and SOME Subqueries

Use the ALL, ANY, and SOME keywords to specify what makes the condition
TRUE or FALSE. A search condition that is TRUE when the ANY keyword is
used might not be TRUE when the ALL keyword is used, and vice versa.

Using the ALL Keyword

The ALL keyword specifies that the search condition is TRUE if the
comparison is TRUE for every value that the subquery returns. If the subquery
returns no value, the condition is TRUE.

Element Purpose Restrictions Syntax
subquery Embedded query Cannot contain the FIRST or the ORDER BY clause. SELECT, p. 2-581

ALL

ANY

SOME

ALL, ANY, SOME
Subquery

Back to Condition with Subquery
p. 4-36

)(Expression
p. 4-67

Relational Operator
p. 4-248

subquery
Segments 4-39

Condition
In the following example, the first condition tests whether each total_price is
greater than the total price of every item in order number 1023. The second
condition uses the MAX aggregate function to produce the same results.

total_price > ALL (SELECT total_price FROM items
WHERE order_num = 1023)

total_price > (SELECT MAX(total_price) FROM items
WHERE order_num = 1023)

Using the NOT keyword with an ALL subquery tests whether an expression
is not TRUE for at least one element that the subquery returns. For example,
the following condition is TRUEwhen the expression total_price is not greater
than all the selected values. That is, it is TRUE when total_price is not greater
than the highest total price in order number 1023.

NOT total_price > ALL (SELECT total_price FROM items
WHERE order_num = 1023)

Using the ANY or SOME Keywords

The ANY keyword denotes that the search condition is TRUE if the
comparison is TRUE for at least one of the values that is returned. If the
subquery returns no value, the search condition is FALSE. The SOME keyword
is a synonym for ANY.

The following conditions are TRUE when the total price is greater than the
total price of at least one of the items in order number 1023. The first
condition uses the ANY keyword; the second uses the MIN aggregate
function.

total_price > ANY (SELECT total_price FROM items
WHERE order_num = 1023)

total_price > (SELECT MIN(total_price) FROM items
WHERE order_num = 1023)

Using the NOT keyword with an ANY subquery tests whether an expression
is not TRUE for all elements that the subquery returns. For example, the
following condition is TRUE when the expression total_price is not greater
than any selected value. That is, it is TRUE when total_price is greater than
none of the total prices in order number 1023.

NOT total_price > ANY (SELECT total_price FROM items
WHERE order_num = 1023)
4-40 IBM Informix Guide to SQL: Syntax

Condition
Omitting the ANY, ALL, or SOME Keywords

You can omit the keywords ANY, ALL, or SOME in a subquery if you know
that the subquery will return exactly one value. If you omit the ANY, ALL, or
SOME keywords, and the subquery returns more than one value, you receive
an error. The subquery in the following example returns only one row
because it uses an aggregate function:

SELECT order_num FROM items
WHERE stock_num = 9 AND quantity =

(SELECT MAX(quantity) FROM items WHERE stock_num = 9)

NOT Operator
If you preface a condition with the keyword NOT, the test is TRUE only if the
condition that NOT qualifies is FALSE. If the condition that NOT qualifies is
UNKNOWN (that is, has a NULL value), the NOT operator has no effect.

The following truth table shows the effect of NOT. Here T represents a TRUE

condition, F represents a FALSE condition, and a question mark (?) represents
an UNKNOWN condition. (An UNKNOWN value can occur when an operand is
NULL).

The left column shows the value of the operand of the NULL operator, and the
right column shows the returned value after NOT is applied to the operand.

NOT

T F

? ?

F T
Segments 4-41

Condition
Conditions with AND or OR
You can combine simple conditions with the logical operators AND or OR to
form complex conditions. The following SELECT statements contain
examples of complex conditions in their WHERE clauses:

SELECT customer_num, order_date FROM orders
WHERE paid_date > '1/1/97' OR paid_date IS NULL

SELECT order_num, total_price FROM items
WHERE total_price > 200.00 AND manu_code LIKE 'H%'

SELECT lname, customer_num FROM customer
WHERE zipcode BETWEEN '93500' AND '95700'
OR state NOT IN ('CA', 'WA', 'OR')

The following truth tables show the effect of the AND and OR operators.The
letter T represents a TRUE condition, F represents a FALSE condition, and the
question mark (?) represents an UNKNOWN value. An UNKNOWN value can occur
when part of an expression that uses a logical operator is NULL.

The marginal values at the left represent the first operand, and values in the
top row represent the second operand. Values within each 3x3 matrix shows
the returned value after the operator is applied to those operands.

If the Boolean expression evaluates to UNKNOWN, the condition is not satisfied.

Consider the following example within a WHERE clause:

WHERE ship_charge/ship_weight < 5
AND order_num = 1023

The row where order_num = 1023 is the row where ship_weight is NULL.
Because ship_weight is NULL, ship_charge/ship_weight is also NULL;
therefore, the truth value of ship_charge/ship_weight < 5 is UNKNOWN.
Because order_num = 1023 is TRUE, the AND table states that the truth value
of the entire condition is UNKNOWN. Consequently, that row is not chosen. If the
condition used an OR in place of the AND, the condition would be TRUE.

AND

T

T

T

? ?

F F

?

?

?

F

F

F

F

F

OR

T

T

T

? T

F T

?

T

?

?

F

T

?

F

4-42 IBM Informix Guide to SQL: Syntax

Condition
Related Information
For discussions of comparison conditions in the SELECT statement and of
conditions with a subquery, see the IBM Informix Guide to SQL: Tutorial.

For information on the GLS aspects of conditions, see the IBM Informix GLS
User’s Guide.
Segments 4-43

Database Name
Database Name
Use the Database Name segment to specify the name of a database. Use this
segment when you see a reference to a database name in a syntax diagram.

Syntax

Usage
Database names are not case sensitive. You cannot use delimited identifiers
for a database name.

The identifiers dbname and dbservername can each have a maximum of
128 bytes.

In a nondefault locale, dbname can include alphabetic characters from the
code set of the locale. In a locale that supports a multibyte code set, keep in
mind that the maximum length of the database name refers to the number of
bytes, not the number of characters. For more information on the GLS aspects
of naming databases, see the IBM Informix GLS User’s Guide. ♦

Element Purpose Restrictions Syntax
dbname Database name (with no pathname

nor database server name)
Must be unique among database
names on the database server.

Identifier, p. 4-189

dbservername Database server on which the
database dbname resides

Must exist. No blank space can
separate @ from dbservername.

Identifier, p. 4-189

db_var Host variable whose value specifies
a database environment

Variable must be a fixed-length
character data type.

Language specific

@dbservername

' //dbservername /dbname '

db_varE/C

dbname

GLS
4-44 IBM Informix Guide to SQL: Syntax

Database Name
Specifying the Database Server
You can choose a database on another database server as your current
database by specifying a database server name. The database server that
dbservername specifies must match the name of a database server that is listed
in your sqlhosts information.

Using the @ Symbol

The @ symbol is a literal character. If you specify a database server name, do
not put any blank spaces between the @ symbol and the database server
name. Either put a blank space between dbname and the @ symbol, or omit the
blank space.

The following examples show valid database specifications, qualified by the
database server name:

empinfo@personnel
empinfo @personnel

In these examples, empinfo is the name of the database and personnel is the
name of the database server.

Using a Path-Type Naming Notation

If you specify a pathname, do not put blank spaces between the quotes,
slashes, and names. The following example includes a valid pathname:

'//personnel/empinfo'

Here empinfo is the dbname and personnel is the name of the database server.

Using a Host Variable

You can use a host variable within an ESQL/C application to store a value that
represents a database environment.

E/C
Segments 4-45

4-46 IBM Informix Guide to SQL: Syntax

Database Object Name
Database Object Name
Use the Database Object Name segment to specify the name of a database
object, such as a constraint, index, opaque type, operator class, table, trigger,
sequence, synonym, user-defined routine (UDR), or view. Use this segment
whenever you see a reference to a database object name.

Syntax

Usage
If you are creating or renaming a database object, the name that you specify
must be unique in relation to other database objects of the same type in the
database. For example, a new constraint name must be unique among
constraint names that exist in the database, and a new name or synonym for
a table or view must be unique among the names and synonyms of tables and
views, and temporary tables that already exist in the database.

In an ANSI-compliant database, the ownername.object combination must be
unique in a database. A database object specification must include the owner
name for a database object that you do not own. For example, if you specify
a table that you do not own, you must also specify the owner of the table. The
owner of all the system catalog tables is informix. ♦

Element Purpose Restrictions Syntax
database Database where object resides Must exist. Identifier, p. 4-189
dbservername Database server of database Must exist. No blank space after @. Identifier, p. 4-189
object Name of the database object See “Usage.” Identifier, p. 4-189

:

object

@dbservername

database .Owner Name
p. 4-234

+

Database Object Name

ANSI

Database Object Name
In Dynamic Server, the uniqueness requirement does not apply to user
defined routine (UDR) names. For more information, see “Routine
Overloading and Naming UDRs with a Routine Signature” on page 4-48. ♦

Characters from the code set of your locale are valid in database object
names. For more information, see IBM Informix GLS User’s Guide. ♦

Specifying a Database Object in an External Database

You can specify a database object in either an external database on the local
database server or in an external database on a remote database server.

Specifying a Database Object in a Cross-Database Query

To specify an object in another database of the local database server, you must
qualify the identifier of the object with the name of the database (and of the
owner, if the external database is ANSI compliant), as in this example:

corp_db:hrdirector.executives

In this example, the name of the external database is corp_db. The name of
the owner of the table is hrdirector. The name of the table is executives. Here
the colon (:) separator is required after the database qualifier.

Specifying a Database Object in a Cross-Server Query

To specify an object in an external database on a remote database server, you
must use a fully-qualified identifier that includes the names of the database,
database server, and owner (if the external database is ANSI compliant) in
addition to the database object name. This is a fully-qualified table name:

hr_db@remoteoffice:hrmanager.employees

Here the database name is hr_db, the database server is remoteoffice, the
table owner is hrmanager, and the table name is employees. The at (@)
separator is required between the database and database server qualifiers.
Cross-server queries cannot access columns that have opaque data types.

If a UDR exists on a remote database server, you must specify a fully-qualified
identifier for the UDR. A remote UDR is limited to built-in data types for its
arguments, parameters, and returned values; these can include opaque ,
DISTINCT, collection, and ROW data types.

IDS

GLS

IDS
Segments 4-47

Database Object Name
You can refer to a remote database object in the following statements only.

For information on the support in these statements across databases or across
database servers, refer to the IBM Informix Guide to SQL: Tutorial. ♦

Routine Overloading and Naming UDRs with a Routine Signature

Because of routine overloading, the name of a UDR (that is, a user-defined
function or a user-defined procedure) does not have to be unique to the
database. You can define more than one UDR with the same name as long as
the routine signature for each UDR is different.

UDRs are uniquely identified by their signatures. The signature of a UDR
includes the following items of information:

� The type of routine (function or procedure)

� The identifier of the routine

� The quantity, data type, and order of the parameters

� In an ANSI-compliant database, the owner name ♦

For any given UDR, at least one item in the signature must be unique among
all the UDRs stored in a name space or database.

Specifying an Existing UDR

When you are specifying the name of an existing UDR, if the name you
specify does not uniquely identify the UDR, you must also specify the
parameter data types after the UDR name in the same order that they were
specified when the UDR was created. The database server then uses routine
resolution to identify the instance of the UDR to alter, drop, or execute. As an
alternative, you can specify the specific name for the UDR if one was declared
when the UDR was created.

For more information about routine resolution, see IBM Informix User-Defined
Routines and Data Types Developer’s Guide.

CREATE DATABASE
CREATE SYNONYM
CREATE VIEW
DATABASE
DELETE

EXECUTE FUNCTION
EXECUTE PROCEDURE
INFO
INSERT
LOAD

LOCK TABLE
SELECT
UNLOAD
UNLOCK TABLE
UPDATE

IDS

ANSI
4-48 IBM Informix Guide to SQL: Syntax

Data Type
Data Type
The Data Type segment specifies the data type of a column or value. Use this
segment whenever you see a reference to a data type in a syntax diagram.

Syntax

Usage
Sections that follow summarize these data types. For more information, see
the chapter about data types in the IBM Informix Guide to SQL: Reference.

Built-In Data Types
Built-in data types are data types that are defined by the database server.

Built-In Data Type
p. 4-49

User-Defined Data Type
p. 4-60

Complex Data Type
p. 4-61

+

IDS

Data Type

Built-In Data Type

Numeric Data Type
p. 4-52

Large-Object Data Type
p. 4-57

Time Data Type
p. 4-59

BOOLEAN

Back to Data Type
p. 4-49

+

IDS

Character Data Type
p. 4-50
Segments 4-49

Data Type
These are “built into the database server” in the sense that the information
required to interpret and transfer these data types is part of the database
server software, which supports character, numeric, large-object, and time
categories of built-in data types. These are described in sections that follow.

Dynamic Server also supports the BOOLEAN data type. The BOOLEAN type
is a built-in opaque data type that can store TRUE, FALSE, or NULL values.
The symbol t represents BOOLEAN TRUE and f represents BOOLEAN FALSE.

Like other opaque data types, BOOLEAN column values cannot be retrieved
by a distributed query of a remote database. ♦

Character Data Types

The database server issues an error if the data type declaration includes
empty parentheses, such as LVARCHAR(). To declare a CHAR or LVARCHAR
data type of the default length, simply omit any (size) or (max) specification.

IDS

Element Purpose Restrictions Syntax
max Maximum size in bytes. For

VARCHAR, this is mandatory.
For LVARCHAR, default is 2048

VARCHAR: Integer; 1 ≤ max ≤ 255
(or 1 ≤ max ≤ 254, if indexed)
LVARCHAR: 1 ≤ max ≤ 32,739

Literal Number, p. 4-216

reserve Bytes reserved. Default is 0. Integer; 0 ≤ reserve ≤ max Literal Number, p. 4-216
size Size in bytes. Default is 1. Integer; 1 ≤ size ≤ 32,767 Literal Number, p. 4-216

Character Data Type

size

CHAR

CHARACTER

GLS NCHAR

()

(1)

VARCHAR

CHARACTER VARYING , reserve

, 0)(max

LVARCHAR

Back to Built-In Data Type
p. 4-49

IDS

NVARCHAR

max()

(2048)
4-50 IBM Informix Guide to SQL: Syntax

Data Type
The following table summarizes the built-in character data types.

The TEXT and CLOB data types also support character data. For more infor-
mation, see “Large-Object Data Types” on page 4-57.

Fixed- and Varying-Length Character Data Types

The database server supports storage of fixed-length and varying-length
character data. A fixed-length column requires the defined number of bytes
regardless of the actual size of the character data. The CHAR data type is of
fixed-length. For example, a CHAR(25) column requires 25 bytes of storage for
all values, so the string “This is a text string” uses 25 bytes of storage.

A varying-length column size can be the number of bytes occupied by its data.
NVARCHAR, VARCHAR, and (for Dynamic Server only) the LVARCHAR data
types are varying-length character data types. For example, a VARCHAR(25)
column reserves up to 25 bytes of storage for the column value, but the
character string “This is a text string”uses only 21 bytes of the reserved
25 bytes. The VARCHAR data type can store up to 255 bytes of data.

The LVARCHAR data type can store up to 32,739 bytes of text data. ♦

Data Type Description

CHAR Stores single-byte or multibyte text strings of up to 32,767 bytes of
text data; supports code-set collation of text data. Default is 1 byte.

CHARACTER Synonym for CHAR

CHARACTER
VARYING

ANSI-compliant synonym for VARCHAR

LVARCHAR
(IDS)

Stores variable-length strings of up to 32,739 bytes. (Size of other
columns in the same table can further reduce this upper limit.
Default is 2,048 bytes, if no explicit maximum size is specified.)

NCHAR Stores single-byte or multibyte text strings of up to 32,767 bytes in
length; supports localized collation of text data

NVARCHAR Stores single-byte or multibyte text strings of varying length (up
to 255 bytes); supports localized collation of text data

VARCHAR Stores single-byte or multibyte text strings of varying length up to
255 bytes); supports code-set order collation of text data

IDS
Segments 4-51

Data Type
The LVARCHAR data type is a built-in opaque type. Like other opaque types,
it cannot be retrieved by a distributed query of a remote database.

A single table cannot be created with more than 195 LVARCHAR columns.
(The same restriction applies to all varying-length and ROW data types.) ♦

Light scans are not supported on tables having VARCHAR data types. ♦

NCHAR and NVARCHAR Data Types

The character data types CHAR, LVARCHAR, and VARCHAR support code-set
order collation of data. The database server collates text data in columns of
these types by the order that their characters are defined in the code set.

To accommodate locale-specific order of characters, use the NCHAR and
NVARCHAR data types. The NCHAR data type is the fixed-length character
data type that supports localized collation. The NVARCHAR data type is the
varying-length character data type that can store up to 255 bytes of text data
and supports localized collation. A single table cannot be created with more
than 195 NVARCHAR or VARCHAR columns.

Light scans are not supported on tables having NVARCHAR data types. ♦

For more information, see the IBM Informix GLS User’s Guide.

Numeric Data Types

Numeric data types allow the database server to store numbers such as
integers and real numbers in a column.

The values of numbers are stored either as exact numeric data types or as
approximate numeric data types.

IDS

IDS

IDS

Exact Numeric Data Type
p. 4-53

Approximate Numeric Data Type
p. 4-55

Numeric
Data Type

Back to Built-In Data Type
p. 4-49
4-52 IBM Informix Guide to SQL: Syntax

Data Type
Exact Numeric Data Types

An exact numeric data type stores numbers of a specified precision and scale.

The precision of a data type is the number of digits that the data type stores.
The scale is the number of digits to the right of the decimal separator.

Element Purpose Restrictions Syntax
precision Significant digits An integer; 1 ≤ precision ≤ 32 Literal Number,

p. 4-216
scale Digits in fractional part An integer; 1 ≤ scale ≤ precision Literal Number,

p. 4-216
start Integer starting value For SERIAL: 0 ≤ start ≤ 2,147,483,64;

For SERIAL8: 0 ≤ start ≤ 9,223,372,036,854,775,807
Literal Number,
p. 4-216

SMALLINT

DECIMAL

scaleprecision

DEC

NUMERIC

INTEGER

INT

MONEY

precision

,()

+

(), 2

, scale

+

INT8

SERIAL

SERIAL8 start()

Exact Numeric
Data Type

Back to Numeric Data Type
p. 4-52

IDS

IDS

(16)+

(16, 2)

(1)

, 0
Segments 4-53

Data Type
The following table summarizes the exact numeric data types available.

Notes on DECIMAL(p,s) Data Types

The first DECIMAL(p, s) parameter (p) specifies the precision and the second (s)
parameter specifies the scale. If you provide only one parameter, an ANSI-
compliant database interprets it as the precision of a fixed-point number and
the default scale is 0. If you specify no parameters, and the database is ANSI-
compliant, then the default precision is 16, and the default scale is 0.

If the database is not ANSI-compliant, specifying fewer than 2 parameters,
declares a floating-point DECIMAL, which is not an exact number data type.

Data Type Description

DEC(p,s) Synonym for DECIMAL(p,s)

DECIMAL(p,s) Stores fixed-point decimal values of real numbers, with up to 30
significant digits in the fractional part, or up to 32 significant
digits to the left of the decimal point.

INT Synonym for INTEGER

INTEGER Stores a 4-byte integer value. These values can be in the range -
((2**31)-1) to (2**31)-1 (the range -2,147,483,647 to 2,147,483,647).

INT8
(IDS)

Stores an 8-byte integer value. These values can be in the range
-((2**63)-1) to (2**63)-1 (the range -9,223,372,036,854,775,807 to
9,223,372,036,854,775,807).

MONEY(p,s) Stores fixed-point currency values. These values have same
internal data format as a fixed-point DECIMAL(p,s) value.

NUMERIC(p,s) ANSI-compliant synonym for DECIMAL(p,s)

SERIAL Stores a 4-byte integer value that the database server generates.
These values can be in the range -((2**31)-1) to (2**31)-1 (the
values -2,147,483,647 to 2,147,483,647).

SERIAL8
(IDS)

Stores an 8-byte integer value that the database server generates.
These values can be in the range -((2**63)-1) to (2**63)-1 (the
values -9,223,372,036,854,775,807 to 9,223,372,036,854,775,807).

SMALLINT Stores a 2-byte integer value. These values can be in the range -
((2**15)-1) to (2**15)-1 (that is, from -32,767 to 32,767).
4-54 IBM Informix Guide to SQL: Syntax

Data Type
DECIMAL(p,s) values are stored internally with the first byte representing a
sign bit and a 7-bit exponent in excess-65 format. The other bytes express the
mantissa as base-100 digits. This implies that DECIMAL(32,s) data types store
only s-1 decimal digits to the right of the decimal point, if s is an odd number.

Notes on SERIAL and SERIAL8E Data Types

If you want to insert an explicit value into a SERIAL or SERIAL8 column, you
can use any nonzero number. You cannot, however, start or reset the value of
a SERIAL or SERIAL8 column with a negative number.

A SERIAL or SERIAL8 column is not unique unless you set a unique index on
the column. (The index can also be in the form of a primary key or unique
constraint.) With such an index, values in SERIAL OR SERIAL8 columns are
guaranteed to be unique but not contiguous.

Approximate Numeric Data Types

An approximate numeric data type represents numeric values approximately.

Element Purpose Restrictions Syntax
float_precision The float_precision is ignored,

but is ANSI/ISO compliant
Must be a positive integer.
Specified value has no effect.

Literal Number, p. 4-216

precision Significant digits. Default is 16. An integer; 1 ≤ precision ≤ 32 Literal Number, p. 4-216

Approximate Numeric
Data Type

FLOAT

+ SMALLFLOAT

REAL

Back to Numeric Data Type
p. 4-52

precision()

DOUBLE PRECISION

(16)+

float_precision()

DECIMAL

DEC

NUMERIC
Segments 4-55

Data Type
Use approximate numeric data types for very large and very small numbers
that can tolerate some degree of rounding during arithmetic operations.

This table summarizes the approximate numeric data types.

The built-in data types of Informix database servers support real numbers.
They cannot directly store imaginary or complex numbers.

You must create a user-defined data type for applications that support values
that can have an imaginary part. ♦

No more than nine arguments to a UDR can be DECIMAL data types of SQL
that the UDR declares as BigDecimal data types of the Java language. ♦

Data Type Description

DEC(p) Synonym for DECIMAL(p)

DECIMAL(p) Stores floating-point decimal values in the approximate range
from 1.0E-130 to 9.99E+126

The p parameter specifies the precision. If no precision is specified,
the default is 16. This floating-point data type is available as an
approximate numeric type only in a database that is not ANSI-
compliant. In an ANSI-compliant database, DECIMAL(p) is
implemented as a fixed-point DECIMAL; see “Exact Numeric
Data Types” on page 4-53.

DOUBLE
PRECISION

ANSI-compliant synonym for FLOAT. The float_precision term is
not valid when you use this synonym in data type declarations.

FLOAT Stores double-precision floating-point numbers with up to 16
significant digits. The float-precision parameter is accepted in data-
type declarations for compliance with the ANSI/ISO standard for
SQL, but this parameter has no effect on the actual precision of
values that the database server stores.

NUMERIC(p) ANSI-compliant synonym for DECIMAL(p)

In an ANSI-compliant database, this is implemented as an exact
numeric type, with the specified precision and a scale of zero,
rather than an approximate numeric (floating-point) data type.

REAL ANSI-compliant synonym for SMALLFLOAT

SMALL-
FLOAT

Stores single-precision floating-point numbers with approxi-
mately 8 significant digits

IDS

Ext
4-56 IBM Informix Guide to SQL: Syntax

Data Type
Large-Object Data Types

Large-object data types can store extremely large column values, such as
images and documents, independently of the column.

The large object data types can be classified in two categories:

� Simple large objects: TEXT and BYTE

� Smart large objects: CLOB and BLOB

Simple-Large-Object Data Types

These are the simple-large-object data types:

These data types are not recoverable. Do not supply a BYTE value where TEXT
is expected. No built-in cast supports BYTE to TEXT data-type conversion.

You cannot create a table with more than 195 BYTE or TEXT columns.
(The same restriction applies to all varying-length and ROW data types.)

Element Purpose Restrictions Syntax
blobspace Name of an existing blobspace Must exist. Identifier, p. 4-189
family_name Family name or variable in the optical family Must exist. Quoted String, p. 4-243.

BYTE blobspace

BLOB family_name

Large-Object
Data Type

CLOB

Back to Built-In Data Type
p. 4-49

IDS
OP

IN TABLETEXT

Data Type Description

TEXT Stores text data of up to 231 bytes

BYTE Stores any digitized data of up to 231 bytes
Segments 4-57

Data Type
Storing BYTE and TEXT Data

A simple-large-object data type stores text or binary data in blobspaces or in
tables. The database server can access a BYTE or TEXT value in one piece.
When you specify a BYTE or TEXT data type, you can specify the location in
which it is stored. You can store data with the table or in a separate blobspace.

If you are creating a named ROW data type that includes a BYTE or TEXT
column, you cannot use the IN clause to specify a separate storage space. ♦

This example shows how blobspaces and dbspaces are specified. The user
creates the resume table. The data values are stored in the employ dbspace.
The data in the vita column is stored with the table, but the data associated
with the photo column is stored in a blobspace named photo_space.

CREATE TABLE resume
(
fname CHAR(15),
lname CHAR(15),
phone CHAR(18),
recd_date DATETIME YEAR TO HOUR,
contact_date DATETIME YEAR TO HOUR,
comments VARCHAR(250, 100),
vita TEXT IN TABLE,
photo BYTE IN photo_space
)
IN employ

Smart-Large-Object Data Types

A smart-large-object data type stores text or binary data in sbspaces. The
database server can provide random access to a smart-large-object value.
That is, it can access any portion of the smart-large-object value. These data
types are recoverable. The following table summarizes the smart-large-object
data types that Dynamic Server supports.

For more information, see the IBM Informix Guide to SQL: Reference.

For information on how to create blobspaces, see your Administrator’s Guide.

Data Type Description

BLOB Stores binary data of up to 4 terabytes (4*240 bytes)

CLOB Stores text data of up to 4 terabytes (4*240 bytes)

IDS

IDS
4-58 IBM Informix Guide to SQL: Syntax

Data Type
For information about optical families, see the IBM Informix Optical Subsystem
Guide.

For information about the built-in functions that you can use to import,
export, and copy smart large objects, see “Smart-Large-Object Functions” on
page 4-134 and the IBM Informix Guide to SQL: Tutorial.

Time Data Types

The time data types allow the database server to store increments of time.

The following table summarizes the built-in time data types.

DATE

INTERVAL Field Qualifier
p. 4-205INTERVAL

DATETIME DATETIME Field Qualifier
p. 4-65

Back to Built-In Data Type
p. 4-49

Time Data Types

+

+

Data Type Description

DATE Stores a date value as a Julian date in the range from January 1 of the
year 1 up to December 31, 9999.

DATETIME Stores a point-in-time date (year, month, day) and time-of-day (hour,
minute, second, and fraction of second), in the range of years 1 to 9999.
Also supports contiguous subsets of these time units.

INTERVAL Stores spans of time, in years and/or months, or in smaller time units
(days, hours, minutes, seconds, and/or fractions of second), with up to 9
digits of precision in the largest time unit, if this is not FRACTION

Also supports contiguous subsets of these time units.
Segments 4-59

Data Type
User-Defined Data Type
A user-defined data type is one that a user defines for the database server.
Dynamic Server supports two categories of user-defined data types, namely-
distinct data types and opaque data types. This is the declaration syntax for user-
defined data types:

In this manual, user-defined data type is usually abbreviated as UDT.

Distinct Data Types

A distinct data type is a user-defined data type that is based on an existing
built-in type, opaque type, named row type, or distinct type. To create a
distinct type, you must use the CREATE DISTINCT TYPE statement. (For more
information, see“CREATE DISTINCT TYPE” on page 2-115.)

Opaque Data Types

An opaque data type is a user-defined data type that can be used in the same
way as a built-in data type. To create an opaque type, you must use the
CREATE OPAQUE TYPE statement. Because an opaque type is encapsulated,
you create support functions to access the individual components of an
opaque type. The internal storage details of the type are hidden or opaque.

For more information about how to create an opaque data type and its
support functions, see IBM Informix User-Defined Routines and Data Types
Developer’s Guide.

IDS

Element Purpose Restrictions Syntax
distinct_type Distinct data type with same

structure as an existing data type
Must be unique among data
type names in the database.

Identifier, p. 4-189

opaque_type Name of the opaque data type Must be unique among data
type names in the database.

Identifier, p. 4-189

opaque_type

distinct_type

User-Defined
Data Type

Back to Data Type
p. 4-49

.Owner Name
p. 4-234
4-60 IBM Informix Guide to SQL: Syntax

Data Type
Because of the maximum row size limit of 32,767 bytes, when you create a
new table, no more than 195 columns can be varying-length opaque or
distinct user-defined data types. (The same restriction applies to BYTE, TEXT,
VARCHAR, LVARCHAR, NVARCHAR, and ROW columns. See “Row Data
Types” on page 4-62 for additional information about ROW data types.)

Complex Data Type
Complex data types are ROW types or COLLECTION types that you create from
built-in types, opaque types, distinct types, or other complex types.

A single complex data type can include multiple components. When you
create a complex type, you define the components of the complex type.
Unlike an opaque type, however, a complex type is not encapsulated. You can
use SQL to access the individual components of a complex data type.
The individual components of a complex data type are called elements.

Dynamic Server supports the following categories of complex data types:

� ROW types: Named ROW types and unnamed ROW types

� COLLECTION data types: SET, MULTISET, and LIST

The elements of a COLLECTION data type must all be of the same data type.
You can use the keyword COLLECTION in SPL data type declarations to
specify an untyped collection variable. NULL values are not supported in
elements of COLLECTION data types.

The elements of a ROW data type can be of different data types, but the
pattern of data types from the first to the last element cannot vary for a given
ROW data type. NULL values are supported in elements of ROW data types,
unless you specify otherwise in the data type declaration or in a constraint.

IDS

Complex
Data Type

Collection Data Types
p. 4-63

Back to Data Type
p. 4-49

Row Data Types
p. 2-198
Segments 4-61

Data Type
Row Data Types

This is the syntax to define a column as a named or unnamed ROW type.

You can assign a named ROW type to a table, to a column, or to an SPL
variable. A named ROW type that you use to create a typed table or to define
a column must already exist. For information on how to create a named ROW
data type, see “CREATE ROW TYPE” on page 2-198.

To specify a named ROW data type in an ANSI-compliant database, you must
specify the owner of row_type, if you are not the owner of row_type. ♦

An unnamed ROW data type is identified by its structure, which specifies
fields that you create with its ROW constructor. You can define a column or
an SPL variable as an unnamed ROW data type. For the syntax to specify
values for an unnamed ROW type, see “ROW Constructors” on page 4-106.

Element Purpose Restrictions Syntax
data_type Data type of field Any data type except BYTE or TEXT Data Type, p. 4-49
field Field in the row Name must be unique among fields

of the same ROW type
Identifier, p. 4-189

row_type Name of ROW data type created by
the CREATE ROW TYPE statement

ROW type must exist Identifier, p. 4-189;
Data type, p. 4-49

ROW)(

,
Unnamed Row

Types

Back to Complex Data Type
p. 4-61

field data_type

Unnamed Row Types
p. 2-198

row_type

Row Data Types

Owner Name
p. 4-234

ANSI
4-62 IBM Informix Guide to SQL: Syntax

Data Type
Collection Data Types

This diagram shows the syntax to define a column or of an SPL variable as
a collection data type. (A table can include no more than 97 columns of
collection data types.) For the syntax to specify values of collection elements,
see “Collection Constructors” on page 4-108.

A SET is an unordered collection of elements, each of which has a unique
value. Define a column as a SET data type when you want to store collections
whose elements contain no duplicate values and have no associated order.

A MULTISET is an unordered collection of elements in which elements can
have duplicate values. You can define a column as a MULTISET collection type
when you want to store collections whose elements might not be unique and
have no specific order associated with them.

A LIST is an ordered collection of elements that allows duplicate elements. A
LIST differs from a MULTISET in that each element in a LIST collection has an
ordinal position in the collection. You can define a column as a LIST collection
type when you want to store collections whose elements might not be unique
but have a specific order associated with them.

The keyword COLLECTION can be used in SPL data type declarations to
specify an untyped collection variable.

Element Purpose Restrictions Syntax
data_type Data type of each of the elements of

the collection
Can be any data type except TEXT,
BYTE, SERIAL, or SERIAL8

Data Type,
p. 4-49

Collection
Data Type

Back to Complex Data Type
p. 4-61

MULTISET

MULTISET

LIST

(data_type

(NOT NULL)

NOT NULL)SET

data_type

LIST

SET

COLLECTION
Segments 4-63

Data Type
Defining the Element Type

The element type can be any data type except TEXT, BYTE, SERIAL, or
SERIAL8. You can nest collection types, using elements of a collection type.

Every element must be of the same type. For example, if the element type of
a collection data type is INTEGER, every element must be of type INTEGER.

An exception to this restriction occurs if the database server determines that
some elements of a collection of character strings are VARCHAR data types
(whose length is limited to 255 or fewer bytes) but other elements are longer
than 255 bytes. In this case, the collection constructor can assign a CHAR(n)
data type to all elements, for n the length in bytes of the longest element.
If this is undesirable, you can cast the collection to LVARCHAR, to prevent
padding extra length in elements of the collection, as in this example:

LIST {'first character string longer than 255 bytes . . . ',
'second character string longer than 255 bytes . . . ',
'another character string'} ::LIST (LVARCHAR NOT NULL)

See “Collection Constructors” on page 4-108 for additional information.

If the element type of a collection is an unnamed ROW type, the unnamed
ROW type cannot contain fields that hold unnamed ROW types. That is, a
collection cannot contain nested unnamed ROW types.

The elements of a collection cannot be NULL. When you define a column as a
collection data type, you must use the NOT NULL keywords to specify that
the elements of the collection cannot be NULL.

Privileges on a collection data type are those of the database column. You
cannot specify privileges on individual elements of a collection.

Related Information
For more information about choosing a data type for your database, see the
IBM Informix Database Design and Implementation Guide.

For more information about the specific qualities of individual data types, see
the chapter on data types in the IBM Informix Guide to SQL: Reference.

For more information about multibyte data types, see the discussion of the
NCHAR and NVARCHAR data types and the GLS aspects of other character
data types in the IBM Informix GLS User’s Guide.
4-64 IBM Informix Guide to SQL: Syntax

DATETIME Field Qualifier
DATETIME Field Qualifier
Use a DATETIME Field Qualifier to specify the largest and smallest unit of
time in a DATETIME column or value. Use this segment whenever you see a
reference to a DATETIME Field Qualifier in a syntax diagram.

Syntax

Usage
This segment specifies the precision and scale of a DATETIME data type.

Specify as the first keyword the largest time unit that the DATETIME column
will store. After the keyword TO, specify the smallest unit as the last
keyword. These can be the same keyword. If they are different, the qualifier
implies that any intermediate time units between the first and last are also
recorded by the DATETIME data type.

Element Purpose Restrictions Syntax
scale Fraction of a second. The default is 3. Integer (1 ≤ scale ≤ 5) Literal Number, p. 4-216

YEAR

MONTH

DAY

MINUTE

SECOND

FRACTION

HOUR

(3)

(scale)

DATETIME Field Qualifier

TO DAY

TO HOUR

TO MINUTE

TO SECOND

TO FRACTION

TO YEAR

TO MONTH
Segments 4-65

DATETIME Field Qualifier
The keywords can specify the following time units for the DATETIME column.

Unlike INTERVAL qualifiers, DATETIME qualifiers cannot specify nondefault
precision (except for FRACTION, when FRACTION is the smallest unit in the
qualifier). Some examples of DATETIME qualifiers follow:

YEAR TO MINUTE MONTH TO MONTH
DAY TO FRACTION(4) MONTH TO DAY

An error results if the first keyword represents a smaller time unit than the
last, or if you use the plural form of a keyword (such as MINUTES).

Operations on DATETIME values that do not include YEAR in their qualifier
use values from the system clock-calendar to supply any additional
precision. If the first term in the qualifier is DAY, and the current month has
fewer than 31 days, unexpected results can occur.

Related Information
For an explanation of the DATETIME Field Qualifier, see the discussion of the
DATETIME data type in the IBM Informix Guide to SQL: Reference.

For important differences between the syntax of DATETIME and INTERVAL
field qualifiers, see “INTERVAL Field Qualifier” on page 4-205.

Unit of Time Description

YEAR Specifies a year, in the range from A.D. 1 to 9999

MONTH Specifies a month, in the range from 1 (January) to 12 (December)

DAY Specifies a day, in the range from 1 to 28, 29, 30, or 31 (depending on
the specific month)

HOUR Specifies an hour, in the range from 0 (midnight) to 23

MINUTE Specifies a minute, in the range from 0 to 59

SECOND Specifies a second, in the range from 0 to 59

FRACTION Specifies a fraction of a second, with up to five decimal places

The default scale is three digits (thousandth of a second).
4-66 IBM Informix Guide to SQL: Syntax

Expression
Expression
Data values in SQL statements must be represented as expressions. An
expression is a specification, which can include operators, operands, and
parentheses, that the database server can evaluate to one or more values, or
to a reference to some database object.

Expressions can refer to values already in a table of the database, or to values
derived from such data, but some expressions (such as TODAY, CURRENT, or
literal values) can return values that are independent of the database. You can
use expressions to specify values in data-manipulation statements, to define
fragmentation strategies, and in other contexts. Use the Expression segment
whenever you see a reference to an expression in a syntax diagram.

In most contexts, however, you are restricted to expressions whose returned
value is of some specific data type, or of a data type that can be converted by
the database server to some required data type.

For an alphabetical listing of the built-in operators and functions that are
described in this segment, see “List of Expressions” on page 4-69.
Segments 4-67

Expression
Syntax
This segment describes SQL expressions. An expression is a specification that
returns one or more values or references to database objects. IBM Informix
database servers support the following types of expressions:

Element Purpose Restrictions Syntax
SPL_variable In an SPL routine, a variable that

contains some expression type that
the syntax diagram shows

Must conform to the rules for
expressions of that type

Identifier, p. 4-189

variable Host or program variable that
contains some expression type that
the syntax diagram shows

Must conform to the rules for
expressions of that type

Language-specific
rules for names

-

+

*
/

| |

-
+

variable

Column Expressions
p. 4-82

)(

Conditional Expressions
p. 4-89

Constant Expressions
p. 4-95

Function Expressions
p. 4-113

SPL_variable

Constructor Expressions
p. 4-106

Aggregate Expressions
p. 4-171

Cast Expressions
p. 4-79

Statement-Local
Variable Expressions

p. 4-169

SPL

NULL

Expression
4-68 IBM Informix Guide to SQL: Syntax

Expression
Usage
This table lists the different types of SQL expressions, as identified in the
diagram for “Syntax” on page 4-68, and states the purpose of each type.

You can also use host variables or SPL variables as expressions. For a
complete list, see “List of Expressions” on the pages that follow.

List of Expressions
Each category of SQL expressions includes many individual expressions. The
following table lists all the SQL expressions (and some operators) in alpha-
betical order. The columns in this table have the following meanings:

� Name gives the name of each expression.

� Purpose gives a short description of each expression.

� Syntax lists the page that shows the syntax of the expression.

� Usage shows the page that describes the usage of the expression.

Expression Type Purpose

Arithmetic operators Supports arithmetic operations on one (unary
operators) or two (binary operators) numeric operands

Concatenation operator Concatenates two string values

Cast operators Explicitly casts from one data type to another

Column expressions Full or partial column values

Conditional expressions Returns values that depend on conditional tests

Constant expressions Literal values in DML statements

Constructor expressions Dynamically creates values for complex data types

Function expressions Returns values from built-in or user-defined functions

Statement-Local-
Variable expressions

Specifies how you can use a defined statement-local
variable (SLV) elsewhere in an SQL statement

Aggregate functions Returns values from built-in or user-defined aggregates
Segments 4-69

Expression
Each expression listed in the following table is supported on all database
servers unless otherwise noted. When an expression is not supported on all
database servers, the Name column notes in parentheses the database server
or servers that do support the expression.

Name Purpose Syntax Usage

ABS function Returns the absolute value of a given expression p. 4-114 p. 4-115

ACOS function Returns the arc cosine of a numeric expression p. 4-149 p. 4-150

Addition (+) operator Returns the sum of two numeric expression operands p. 4-68 p. 4-77

ASIN function Returns the arc sine of a numeric expression p. 4-149 p. 4-151

ATAN function Returns the arc tangent of a numeric expression p. 4-149 p. 4-151

ATAN2 function Computes the angular component of the polar coordinates
(r, q) associated with (x, y)

p. 4-149 p. 4-151

AVG function Returns the mean value of a set of numeric expressions p. 4-171 p. 4-175

CARDINALITY function
(IDS)

Returns the number of elements in a collection column
(SET, MULTISET, or LIST)

p. 4-118 p. 4-118

CASE expression Returns one of several possible results, depending on
which of several conditional tests evaluates to true

p. 4-89 p. 4-89

CAST expression (IDS) Casts an expression to another specified data type p. 4-79 p. 4-79

Cast (::) operator See double-colon cast operator. p. 4-79 p. 4-79

CHARACTER_LENGTH
function

See CHAR_LENGTH function. p. 4-131 p. 4-132

CHAR_LENGTH function Counts the logical characters (not bytes) in a string p. 4-131 p. 4-132

Column expression Complete or partial column value from a table p. 4-82 p. 4-82

Concatenation (||) operator Concatenates the results of two expressions p. 4-68 p. 4-78

Constant expression Expression that returns a literal, fixed, or variant value p. 4-95 p. 4-95

COS function Returns the cosine of a radian expression p. 4-149 p. 4-150

(1 of 7)
4-70 IBM Informix Guide to SQL: Syntax

Expression
COUNT (as a set of
functions)

Functions that return specified frequency counts

Each form of the COUNT function is listed below.

p. 4-171 p. 4-175

COUNT (ALL column)
function

See COUNT (column) function. p. 4-171 p. 4-176

COUNT (column) function Returns the number of non-NULL values in a column p. 4-171 p. 4-176

COUNT DISTINCT function Returns the number of unique non-NULL values in a
specified column

p. 4-171 p. 4-176

COUNT UNIQUE function See COUNT DISTINCT function. p. 4-171 p. 4-176

COUNT (*) function Returns the number of rows that satisfy a query p. 4-171 p. 4-175

CURRENT operator) Returns the current instant by returning a DATETIME
value that consists of the date and the time of day

p. 4-95 p. 4-99

sequence.CURRVAL (IDS Returns the current value of the specified sequence. p. 4-96 p. 4-103

DATE function Converts to a DATE value a nondate expression argument p. 4-143 p. 4-144

DAY function Returns an integer that represents the day of the month p. 4-143 p. 4-145

DBINFO (as a set of
functions)

Provides a set of functions for retrieving different types of
database information. To invoke each function, specify the
appropriate DBINFO option. Each option is listed below.

p. 4-119 p. 4-120

DBINFO ('coserverid' string
followed by table. column and
the 'currentrow' string) (XPS)

Returns the coserver ID of the coserver where each row of
a specified table is located

p. 4-119 p. 4-127

DBINFO ('coserverid' string
with no other arguments)
(XPS)

Returns the coserver ID of the coserver to which the user
who entered the query is connected

p. 4-119 p. 4-126

DBINFO ('dbhostname'
option)

Returns the hostname of the database server to which a
client application is connected

p. 4-119 p. 4-123

DBINFO ('dbspace' string
followed by table.column and
the 'currentrow' string) (XPS)

Returns the name of the dbspace where each row of a
specified table is located

p. 4-119 p. 4-128

Name Purpose Syntax Usage

(2 of 7)
Segments 4-71

Expression
DBINFO ('dbspace' string
followed by a tblspace
number)

Returns the name of a dbspace corresponding to a tblspace
number

p. 4-119 p. 4-121

DBINFO ('serial8' option)
(IDS)

Returns the most recently inserted SERIAL8 value p. 4-119 p. 4-126

DBINFO ('sessionid' option) Returns the session ID of the current session p. 4-119 p. 4-122

DBINFO ('sqlca.sqlerrd1'
option)

Returns the last serial value inserted in a table p. 4-119 p. 4-121

DBINFO ('sqlca.sqlerrd2'
option)

Returns the number of rows processed by selects, inserts,
deletes, updates, EXECUTE PROCEDURE statements,
and EXECUTE FUNCTION statements

p. 4-119 p. 4-122

DBINFO ('version' option) Returns the exact version of the database server to which
a client application is connected

p. 4-119 p. 4-124

DBSERVERNAME function Returns the name of the database server p. 4-95 p. 4-98

DECODE function Evaluates one or more expression pairs and compares the
when expression in each pair with a specified value
expression

p. 4-93 p. 4-93

Division (/) operator Returns the quotient of two numeric expression operands p. 4-68 p. 4-77

Double-colon (::) cast
operator (IDS)

Casts a value to a specified data type p. 4-79 p. 4-79

EXP function Returns the exponent of a numeric expression p. 4-129 p. 4-129

EXTEND function Adjusts the precision of a DATETIME or DATE value p. 4-143 p. 4-146

FILETOBLOB function (IDS) Creates a BLOB value for data that is stored in a specified
operating-system file

p. 4-134 p. 4-135

FILETOCLOB function (IDS) Creates a CLOB value for data that is stored in a specified
operating-system file

p. 4-134 p. 4-135

HEX function Returns the hexadecimal encoding of an integer value p. 4-130 p. 4-130

Host variable See variable. p. 4-68 p. 4-68

Name Purpose Syntax Usage

(3 of 7)
4-72 IBM Informix Guide to SQL: Syntax

Expression
IFX_ALLOW_NEWLINE
function

Sets a newline mode that allows newline characters in
quoted strings or disallows newline characters in quoted
strings within a given session

p. 4-164 p. 4-164

IFX_REPLACE_MODULE
function (IDS)

Replaces a loaded shared-object file with a new version
that has a different name or location

p. 4-132 p. 4-132

INITCAP function Converts a source expression so that every word in the
source expression begins with an initial capital letter and
all remaining letters in each word are lowercase

p. 4-161 p. 4-163

LENGTH function Returns the number of bytes in a character column, not
including any trailing blank spaces

p. 4-131 p. 4-131

LIST collection constructor
(IDS)

Enables you to specify values for collections whose
elements are ordered and can contain duplicate values

p. 4-108 p. 4-108

Literal BOOLEAN Provides a literal representation of a BOOLEAN value p. 4-95 p. 4-95

Literal collection (IDS) Provides the values of elements in a collection data type p. 4-95 p. 4-105

Literal DATETIME Provides a DATETIME value p. 4-95 p. 4-101

Literal INTERVAL Provides an INTERVAL value p. 4-95 p. 4-101

Literal number Provides a numeric value p. 4-95 p. 4-97

Literal opaque type (IDS) Provides a literal representation of an opaque data type p. 4-95 p. 4-95

Literal row (IDS) Provides the values of elements in a ROW data type p. 4-95 p. 4-105

LOCOPY function (IDS) Creates a copy of a smart large object p. 4-134 p. 4-140

LOGN function Returns the natural log of a numeric expression p. 4-129 p. 4-130

LOG10 function Returns the log of a value to the base 10 p. 4-129 p. 4-129

LOTOFILE function (IDS) Copies a smart large object to an operating-system file p. 4-134 p. 4-138

LOWER function Converts a source expression to lowercase characters p. 4-161 p. 4-163

LPAD function Returns a copy of a source string that is left-padded by a
specified number of pad characters

p. 4-159 p. 4-159

MAX function Returns the largest value in the specified set of values p. 4-171 p. 4-180

Name Purpose Syntax Usage

(4 of 7)
Segments 4-73

Expression
MDY function Returns a DATE value with the month, day, and year p. 4-143 p. 4-147

MIN function Returns the lowest value in a specified set of values p. 4-171 p. 4-180

MOD function Returns the modulus (the integer-divisiom remainder
value) from two numeric arguments.

p. 4-114 p. 4-115

MONTH function Returns an integer that corresponds to the month portion
of its DATE or DATETIME argument

p. 4-143 p. 4-145

Multiplication (*) operator Multiplies two numeric operands and returns the product p. 4-68 p. 4-77

MULTISET collection
constructor
(IDS)

Enables you to specify values for collection columns. The
MULTISET constructor indicates a collection of elements
with the following qualities:

� The collection can contain duplicate values.

� Elements have no specific order associated with them.

p. 4-108 p. 4-108

sequence.NEXTVAL (IDS) Increments the current value of the specified sequence. p. 4-96 p. 4-102

NULL keyword Specifies unknown, missing, or logically undefined value. p. 4-110 p. 4-112

NVL function Evaluates an expression and returns the value of the
expression if the value of the expression is not NULL.

If the value of the expression is NULL, the NVL function
returns a specified result.

p. 4-92 p. 4-92

OCTET_LENGTH function Returns the number of bytes in a character column,
including any trailing spaces

p. 4-131 p. 4-132

POW function Raises a base value to a specified power p. 4-114 p. 4-115

Procedure-call expression See user-defined function. p. 4-165 p. 4-165

Program variable See variable. p. 4-68 p. 4-68

Quoted string Literal character string p. 4-95 p. 4-97

RANGE function Computes the range for a sample of a population p. 4-171 p. 4-180

REPLACE function Replaces specified characters in a source string with
different characters

p. 4-158 p. 4-158

ROOT function Returns the root value of a numeric expression p. 4-114 p. 4-115

Name Purpose Syntax Usage

(5 of 7)
4-74 IBM Informix Guide to SQL: Syntax

Expression
ROUND function Returns the rounded value of an expression p. 4-114 p. 4-116

ROW constructor
(IDS)

Enables you to specify values for columns that are named
ROW data types

p. 4-106 p. 4-106

RPAD function Returns a copy of a source string that is right-padded by a
specified number of pad characters

p. 4-160 p. 4-160

SET collection constructor
(IDS)

Enables you to specify values for collection columns.
The SET constructor indicates a collection of elements
with the following qualities:

� The collection must contain unique values.

� Elements have no specific order associated with them.

p. 4-108 p. 4-108

SIN function Returns the sine of a radian expression p. 4-149 p. 4-150

SITENAME function See DBSERVERNAME function. p. 4-95 p. 4-98

SPL routine expression See user-defined functions. p. 4-165 p. 4-165

SPL variable SPL variable that stores an expression p. 4-68 p. 4-68

SQRT function Returns the square root of a numeric expression p. 4-114 p. 4-117

Statement-Local-Variable
expression

Specifies how you can use a defined statement-local
variable (SLV) elsewhere in an SQL statement

p. 4-169 p. 4-169

STDEV function Computes the standard deviation for a specified sample p. 4-171 p. 4-181

SUBSTR function Returns a subset of a source string p. 4-156 p. 4-156

SUBSTRING function Returns a subset of a source string p. 4-154 p. 4-154

Substring ([first, last])
operator

Returns the first through last bytes of its string operand,
for first and last positive integers specifying byte positions

p. 4-82 p. 2-614

Subtraction (-) operator Returns the difference between two numeric expressions p. 4-68 p. 4-77

SUM function Returns the sum of a specified set of values p. 4-171 p. 4-180

TAN function Returns the tangent of a radian expression p. 4-149 p. 4-150

TO_CHAR function Converts a DATE or DATETIME value to a string p. 4-143 p. 4-147

TO_DATE function Converts a character string to a DATETIME value p. 4-143 p. 4-148

Name Purpose Syntax Usage

(6 of 7)
Segments 4-75

Expression
Sections that follow describe the syntax and usage of each expression that
appears in the preceding table.

TODAY operator Returns the system date p. 4-95 p. 4-99

TRIM function Removes leading or trailing (or both) pad characters from
a string

p. 4-152 p. 4-152

TRUNC function Returns the truncated value of a numeric expression p. 4-114 p. 4-117

UNITS operator Enables you to display a simple interval or increase or
decrease a specific interval or datetime value

p. 4-95 p. 4-101

UPPER function Converts a source expression to uppercase characters p. 4-161 p. 4-162

User-defined aggregate (IDS) An aggregate that you define (as opposed to built-in
aggregates that the database server provides)

p. 4-185 p. 4-185

User-defined function A function that you write (as opposed to the built-in
functions that the database server provides)

p. 4-165 p. 4-165

USER operator Returns the login name of the current user p. 4-95 p. 4-97

Variable Host or program variable that stores an expression p. 4-68 p. 4-68

VARIANCE function Returns the variance for a sample of values as an unbiased
estimate of the variance of a population

p. 4-171 p. 4-182

WEEKDAY function Returns an integer that represents the day of the week p. 4-143 p. 4-145

YEAR function Returns a four-digit integer that represents the year p. 4-143 p. 4-145

* symbol See multiplication operator. p. 4-68 p. 4-77

+ symbol See addition operator. Also, unary plus sign. p. 4-68 p. 4-77

- symbol See subtraction operator. Also, unary minus sign. p. 4-68 p. 4-77

/ symbol See division operator. p. 4-68 p. 4-77

:: symbols See double-colon cast operator. p. 4-79 p. 4-79

| | symbol See double-pipe concatenation operator. p. 4-68 p. 4-78

[first, last] symbols See substring operator p. 4-68 p. 4-77

Name Purpose Syntax Usage

(7 of 7)
4-76 IBM Informix Guide to SQL: Syntax

Expression
Arithmetic Operators
Binary arithmetic operators can combine expressions that return numbers.

The following examples use binary arithmetic operators:

quantity * total_price
price * 2
COUNT(*) + 2

If you combine a DATETIME value with one or more INTERVAL values, all the
fields of the INTERVAL value must be present in the DATETIME value; no
implicit EXTEND function is performed. In addition, you cannot use YEAR TO
MONTH intervals with DAY TO SECOND intervals. For additional information
about binary arithmetic operators, see the IBM Informix Guide to SQL: Reference.

The binary arithmetic operators have associated operator functions, as the
preceding table shows. Connecting two expressions with a binary operator is
equivalent to invoking the associated operator function on the expressions.
For example, the following two statements both select the product of the
total_price column and 2. In the first statement, the * operator implicitly
invokes the times() function.

SELECT (total_price * 2) FROM items
WHERE order_num = 1001

SELECT times(total_price, 2) FROM items
WHERE order_num = 1001

You cannot use arithmetic operators to combine expressions that use
aggregate functions with column expressions.

The database server provides the operator functions associated with the
relational operators for all built-in data types. You can define new versions of
these operator functions to handle your own user-defined data types.

For more information, see IBM Informix User-Defined Routines and Data Types
Developer’s Guide.

Arithmetic
Operation

Arithmetic
Operator

Operator
Function

Arithmetic
Operation

Arithmetic
Operator

Operator
Function

Addition + plus() Multiplication * times()

Subtraction – minus() Division / divide()
Segments 4-77

Expression
The database server also supports the following unary arithmetic operators.

The unary arithmetic operators have the associated operator functions that
the preceding table shows. You can define new versions of these functions to
handle your own user-defined data types. For more information on this topic,
see IBM Informix User-Defined Routines and Data Types Developer’s Guide.

If any value that participates in an arithmetic expression is NULL, the value
of the entire expression is NULL, as the following example shows:

SELECT order_num, ship_charge/ship_weight FROM orders
WHERE order_num = 1023

If either ship_charge or ship_weight is NULL, the value returned for the
expression ship_charge/ship_weight is also NULL. If the expression
ship_charge/ship_weight is used in a condition, its truth value is unknown.

Concatenation Operator
You can use the concatenation operator (||) to concatenate two expressions.
These examples show some possible concatenated-expression combinations.

� The first example concatenates the zipcode column to the first three
letters of the lname column.

� The second example concatenates the suffix .dbg to the contents of a
host variable called file_variable.

� The third example concatenates the value that the TODAY operator
returns to the string Date.

lname[1,3] || zipcode

:file_variable || '.dbg'

'Date:' || TODAY

Sign of Number Unary Arithmetic Operator Operator Function

Positive + positive()

Negative – negate()
4-78 IBM Informix Guide to SQL: Syntax

Expression
You cannot use the concatenation operator in an embedded-language-only
statement. The ESQL/C-only statements appear in the following list:

You can use the concatenation operator in the SELECT, INSERT, or EXECUTE
FUNCTION (or EXECUTE PROCEDURE) statement in the DECLARE statement.

You can use the concatenation operator in the SQL statement or statements in
the PREPARE statement. ♦

The concatenation operator (||) has an associated operator function called
concat(). You can define a concat() function to handle your own string-based
user-defined data types. For more information, see IBM Informix User-Defined
Routines and Data Types Developer’s Guide.

Cast Expressions
You can use the CAST AS keywords or the double-colon cast operator (::) to
cast an expression to another data type. Both the operator and the keywords
invoke a cast from the data type of the expression to the target data type.

To invoke an explicit cast, you can use either the cast operator or the CAST AS
keywords. If you use the cast operator or CAST AS keywords, but no explicit
or implicit cast was defined to perform the conversion between two data
types, the statement returns an error.

ALLOCATE COLLECTION
ALLOCATE DESCRIPTOR
ALLOCATE ROW
CLOSE
CREATE FUNCTION FROM
CREATE PROCEDURE FROM
CREATE ROUTINE FROM
DEALLOCATE COLLECTION
DEALLOCATE DESCRIPTOR
DEALLOCATE ROW
DECLARE
DESCRIBE
EXECUTE

EXECUTE IMMEDIATE
FETCH
FLUSH
FREE
GET DESCRIPTOR
GET DIAGNOSTICS
OPEN
PREPARE
PUT
SET AUTOFREE
SET CONNECTION
SET DESCRIPTOR
WHENEVER

E/C

IDS
Segments 4-79

Expression
Rules for the Target Data Type

The following rules restrict the target data type in cast expressions:

� The target data type must be either a built-in type, a user-defined
type, or a named ROW type in the database.

� The target data type cannot be an unnamed ROW or a collection type.

� The target data type can be a BLOB data type under the following
conditions:

❑ The source expression (the expression to be cast to another data
type) is a BYTE data type.

❑ The source expression is a user-defined type and the user has
defined a cast from the user-defined type to the BLOB type.

� The target data type can be a CLOB type under these conditions:

❑ The source expression is a TEXT data type.

❑ The source expression is a user-defined type and the user has
defined a cast from the user-defined type to the CLOB type.

� You cannot cast a BLOB data type to a BYTE data type.

� You cannot cast a CLOB data type to a TEXT data type.

� An explicit or implicit cast must exist that can convert the data type
of the source expression to the target data type.

Element Purpose Restrictions Syntax
target_data_type Data type that results after the

cast is applied
See “Rules for the Target Data
Type” on page 4-80.

Data type, p. 4-49

CAST Expression
p. 4-67

AS

Expression
p. 4-67

::

)(

Back to Expression
p. 4-68

Cast Expressions

target_data_type

target_data_type

:: target_data_type
4-80 IBM Informix Guide to SQL: Syntax

Expression
Examples of Cast Expressions

The following examples show two different ways to convert the sum of x and
y to a user-defined data type, user_type. The two methods produce identical
results. Both require the existence of an explicit or implicit cast from the type
returned by x + y to the user-defined type.

CAST ((x + y) AS user_type)
(x + y)::user_type

The following examples show two different ways of finding the integer
equivalent of the expression expr. Both require the existence of an implicit or
explicit cast from the data type of expr to the INTEGER data type.

CAST (expr AS INTEGER)
expr::INTEGER

In the following example, the user casts a BYTE column to the BLOB type and
copies the BLOB data to an operating-system file:

SELECT LOTOFILE(mybytecol::blob, 'fname', 'client')
FROM mytab
WHERE pkey = 12345

In the following example, the user casts a TEXT column to a CLOB value and
then updates a CLOB column in the same table to have the CLOB value
derived from the TEXT column:

UPDATE newtab SET myclobcol = mytextcol::clob

The Keyword NULL in Cast Expressions

Cast expressions can appear in the SELECT list, including expressions of the
form NULL::datatype, where datatype is any data type known to the database.

SELECT newtable.col0, null::int FROM newtable;

The keyword NULL has a global scope of reference within expressions.
In SQL, the keyword NULL is the only syntactic mechanism for accessing a
NULL value. Any attempt to redefine or restrict the global scope of the
keyword NULL (for example, declaring an SPL variable called null) disables
any cast expression that involves a NULL value. Make sure that the keyword
NULL receives its global scope in all expression contexts.
Segments 4-81

Expression
Column Expressions
A column expression specifies a data value in a column in the database, or a
substring of the value, or (for Dynamic Server only) a field within a ROW-
type column. This is the syntax for column expressions.

Element Purpose Restrictions Syntax
alias Temporary alternative name for a

table or view, declared in the
FROM clause of a query

Restrictions depend on the clause of
the SELECT statement in which alias
occurs.

Identifier,
p. 4-189

column Name of a column Restrictions depend on the SQL
statement where column occurs.

Identifier,
p. 4-189

field_name Name of a ROW field in the ROW
column or ROW-column
expression

Must be a member of the ROW that
row-column name or row_col_expr or
field name (for nested rows) specifies.

Identifier,
p. 4-189

first,last Integers indicating positions of
first and last characters within
column

The column must be of type CHAR,
VARCHAR, NCHAR, NVARCHAR,
BYTE, or TEXT, and 0 < first ≤ last

Literal Number,
p. 4-216

row_col_expr Expression that returns ROW-type
values

Must return a ROW data type. Expression,
p. 4-67

row_column Name of a ROW-type column Must be a named ROW type or an
unnamed ROW type.

Identifier,
p. 4-189

synonym,
 table, view

Table, view, or synonym (for the
table or view) that contains column

Synonym and the table or view to
which it points must exist.

Database Object
Name, p. 4-46

column

+table .

view .
synonym .

alias .

[first, last]+

Back to Expression
p. 4-68

Column Expressions

. field_name3

. *

IDS

IDS

ROWID

row_column

row_col_expr
4-82 IBM Informix Guide to SQL: Syntax

Expression
The following examples show column expressions:

company

items.price

cat_advert [1,15]

You must qualify the column name with a table name or alias whenever it is
necessary to distinguish between columns that have the same name but are
in different tables. The SELECT statements that the following example shows
use customer_num from the customer and orders tables. The first example
precedes the column names with table names. The second example precedes
the column names with table aliases.

SELECT * FROM customer, orders
WHERE customer.customer_num = orders.customer_num

SELECT * FROM customer c, orders o
WHERE c.customer_num = o.customer_num

Using Dot Notation

Dot notation (sometimes called the membership operator) allows you to qualify
an SQL identifier with another SQL identifier of which it is a component. You
separate the identifiers with the period (.) symbol. For example, you can
qualify a column name with any of the following SQL identifiers:

� Table name: table_name.column_name

� View name: view_name.column_name

� Synonym name: syn_name.column_name

These forms of dot notation are called column projections.

You can also use dot notation to directly access the fields of a named or
unnamed ROW column, as in the following example:

row-column name.field name

This use of dot notation is called a field projection. For example, suppose you
have a column called rect with the following definition:

CREATE TABLE rectangles
(

area float,
rect ROW(x int, y int, length float, width float)

)

Segments 4-83

Expression
The following SELECT statement uses dot notation to access field length of
the rect column:

SELECT rect.length FROM rectangles
WHERE area = 64

Selecting All Fields of a Column with Asterisk Notation

If you want to select all fields of a column that has a row type, you can specify
the column name without dot notation. For example, you can select all fields
of the rect column as follows:

SELECT rect FROM rectangles
WHERE area = 64

You can also use asterisk (*) notation to project all the fields of a column that
has a ROW data type. For example, if you want to use asterisk notation to
select all fields of the rect column, you can enter the following statement:

SELECT rect.* FROM rectangles
WHERE area = 64

Asterisk notation is easier than specifying each field of the rect column
individually:

SELECT rect.x, rect.y, rect.length,
rect.width
FROM rectangles
WHERE area = 64

Asterisk notation is valid only in the select list of a SELECT statement. It can
specify all fields of a ROW-type column or the data that a ROW-column
expression returns.

Asterisk notation is not necessary with ROW-type columns because you can
specify the column name alone to project all of its fields. Asterisk notation is
quite helpful, however, with ROW-type expressions such as subqueries and
user-defined functions that return ROW-type values. For more information,
see “Using Dot Notation with Row-Type Expressions” on page 4-86.

You can use asterisk notation with columns and expressions of ROW data
types in the select list of a SELECT statement only. You cannot use asterisk
notation with columns and expressions of ROW type in any other clause of a
SELECT statement.
4-84 IBM Informix Guide to SQL: Syntax

Expression
Selecting Nested Fields

When the ROW type that defines a column itself contains other ROW types,
the column contains nested fields. Use dot notation to access these nested
fields within a column.

For example, assume that the address column of the employee table contains
the fields: street, city, state, and zip. In addition, the zip field contains the
nested fields: z_code and z_suffix. A query on the zip field returns values for
the z_code and z_suffix fields. You can specify, however, that a query returns
only specific nested fields. The following example shows how to use dot
notation to construct a SELECT statement that returns rows for the z_code
field of the address column only:

SELECT address.zip.z_code
FROM employee

Rules of Precedence

The database server uses the following precedence rules to interpret dot
notation:

1. schema name_a . table name_b . column name_c . field name_d

2. table name_a . column name_b . field name_c . field name_d

3. column name_a . field name_b . field name_c . field name_d

When the meaning of a particular identifier is ambiguous, the database
server uses precedence rules to determine which database object the
identifier specifies. Consider the following two tables:

CREATE TABLE b (c ROW(d INTEGER, e CHAR(2));
CREATE TABLE c (d INTEGER);

In the following SELECT statement, the expression c.d references column d
of table c (rather than field d of column c in table b) because a table identifier
has a higher precedence than a column identifier:

SELECT *
FROM b,c
WHERE c.d = 10

For more information about precedence rules and how to use dot notation
with row columns, see the IBM Informix Guide to SQL: Tutorial.
Segments 4-85

Expression
Using Dot Notation with Row-Type Expressions

Besides specifying a column of a ROW data type, you can also use dot
notation with any expression that evaluates to a ROW type. In an INSERT
statement, for example, you can use dot notation in a subquery that returns
a single row of values. Assume that you created a ROW type named row_t:

CREATE ROW TYPE row_t (part_id INT, amt INT)

Also assume that you created a typed table named tab1 that is based on the
row_t ROW type:

CREATE TABLE tab1 OF TYPE row_t

Assume also that you inserted the following values into table tab1:

INSERT INTO tab1 VALUES (ROW(1,7));
INSERT INTO tab1 VALUES (ROW(2,10));

Finally, assume that you created another table named tab2:

CREATE TABLE tab2 (colx INT)

Now you can use dot notation to insert the value from only the part_id
column of table tab1 into the tab2 table:

INSERT INTO tab2
VALUES ((SELECT t FROM tab1 t

WHERE part_id = 1).part_id)

The asterisk form of dot notation is not necessary when you want to select all
fields of a row-type column because you can specify the column name alone
to select all of its fields. The asterisk form of dot notation can be quite helpful,
however, when you use a subquery, as in the preceding example, or when
you call a user-defined function to return row-type values.

Suppose that a user-defined function named new_row returns ROW-type
values, and you want to call this function to insert the ROW-type values into
a table. Asterisk notation makes it easy to specify that all the ROW-type
values that the new_row function returns are to be inserted into the table:

INSERT INTO mytab2 SELECT new_row (mycol).* FROM mytab1

References to the fields of a ROW-type column or a ROW-type expression are
not allowed in fragment expressions. A fragment expression is an expression
that defines a table fragment or an index fragment in statements like CREATE
TABLE, CREATE INDEX, and ALTER FRAGMENT.
4-86 IBM Informix Guide to SQL: Syntax

Expression
Using Subscripts on Character Columns

You can use subscripts on CHAR, VARCHAR, NCHAR, NVARCHAR, BYTE, and
TEXT columns. The subscripts indicate the starting and ending character
positions in the expression. Together the column subscripts define a column
substring as the portion of the column that is contained in the expression.

For example, if a value in the lname column of the customer table is
Greenburg, the following expression evaluates to burg:

lname[6,9]

A conditional expression can include a column expression that uses the
substring operator ([first, last]), as in the following example:

SELECT lname FROM customer WHERE phone[5,7] = '356'

Here the quotes are required, to prevent the database server from applying a
numeric filter to the digits in the criterion value.

For information on the GLS aspects of column subscripts and substrings, see
the IBM Informix GLS User’s Guide. ♦

Using Rowids

In Dynamic Server, you can use the rowid column that is associated with a
table row as a property of the row. The rowid column is essentially a hidden
column in nonfragmented tables and in fragmented tables that were created
with the WITH ROWIDS clause. The rowid column is unique for each row, but
it is not necessarily sequential. It is recommended, however, that you use
primary keys as an access method rather than exploiting the rowid column.

The following examples use the ROWID keyword in a SELECT statement:

SELECT *, ROWID FROM customer

SELECT fname, ROWID FROM customer ORDER BY ROWID

SELECT HEX(rowid) FROM customer WHERE customer_num = 106

The last example shows how to get the page number (the first six digits after
0x) and the slot number (the last two digits) of the location of your row.

You cannot use the ROWID keyword in the select list of the Projection clause
of a query that contains an aggregate function.

GLS

IDS
Segments 4-87

Expression
Using Smart Large Objects

The SELECT, UPDATE, and INSERT statements do not manipulate the values
of smart large objects directly. Instead, they use a handle value, which is a type
of pointer, to access the BLOB or CLOB value, as follows:

� The SELECT statement returns a handle value to the BLOB or CLOB
value that the select list specifies. SELECT does not return the actual
data for the BLOB or CLOB column that the select list specifies.
Instead, it returns a handle value to the column data.

� The INSERT and UPDATE statements do not send the actual data for
the BLOB or CLOB column to the database server. Instead, they accept
a handle value to this data as the value to be inserted or updated.

To access the data of a smart-large-object column, you must use one of the
following application programming interfaces (APIs):

� From within an IBM Informix ESQL/C program, use the ESQL/C
library functions that access smart large objects. For more infor-
mation, see the IBM Informix ESQL/C Programmer’s Manual.

� From within a C program such as a DataBlade module, use the Client
and Server API. For more information, see your DataBlade Developer’s
Kit User’s Guide.

You cannot use the name of a smart-large-object column in expressions that
involve arithmetic operators. For example, operations such as addition or
subtraction on the smart-large-object handle value have no meaning.

When you select a smart-large-object column, you can assign the handle
value to any number of columns: all columns with the same handle value
share the CLOB or BLOB value. This storage arrangement reduces the amount
of disk space that the CLOB or BLOB value, but when several columns share
the same smart-large-object value, the following conditions result:

� The chance of lock contention on a CLOB or BLOB column increases.
If two columns share the same smart-large-object value, the data
might be locked by either column that needs to access it.

� The CLOB or BLOB value can be updated from a number of points.

To remove these constraints, you can create separate copies of the BLOB or
CLOB data for each column that needs to access it. You can use the LOCOPY
function to create a copy of an existing smart large object.

IDS
4-88 IBM Informix Guide to SQL: Syntax

Expression
You can also use the built-in functions LOTOFILE, FILETOCLOB, and
FILETOBLOB to access smart-large-object values, as described in “Smart-
Large-Object Functions” on page 4-134. For more information on the BLOB
and CLOB data types, see the IBM Informix Guide to SQL: Reference.

Conditional Expressions
Conditional expressions return values that depend on the outcome of condi-
tional tests. This diagram shows the syntax for Conditional Expressions.

CASE Expressions

The CASE expression allows an SQL statement such as the SELECT statement
to return one of several possible results, depending on which of several
condition evaluates to true. The CASE expression has two forms: generic
CASE expressions and linear CASE expressions.

You must include at least one WHEN clause in the CASE expression. Subse-
quent WHEN clauses and the ELSE clause are optional.

Back to Expression
p. 4-67

CASE Expressions
p. 4-89

NVL Function
p. 4-92

DECODE Function
p. 4-93

Conditional Expressions

Back to Conditional Expressions
p. 4-89

Generic CASE Expression
p. 4-90

Linear CASE Expression
p. 4-91

CASE Expressions

IDS
Segments 4-89

Expression
You can use a generic or linear CASE expression wherever you can use a
column expression in an SQL statement (for example, in the select list of the
Projection clause a SELECT statement).

Expressions in the search condition or the result value expression can contain
subqueries, and you can nest a CASE expression in another CASE expression.

When a CASE expression appears in an aggregate expression, you cannot use
aggregate functions in the CASE expression.

Generic CASE Expressions

A generic CASE expression tests for a TRUE condition in a WHEN clause. If it
finds a TRUE condition, it returns the result specified in the THEN clause.

The database server processes the WHEN clauses in the order that they
appear in the statement. If the search condition of a WHEN clause evaluates
to TRUE , the database server uses the value of the corresponding THEN
expression as the result, and stops processing the CASE expression.

If no WHEN condition evaluates to TRUE, the database server uses the ELSE
expression as the overall result. If no WHEN condition evaluates to TRUE, and
no ELSE clause was specified, the returned CASE expression value is NULL.
You can use the IS NULL condition to handle NULL results. For information
on how to handle NULL values, see “IS NULL Condition” on page 4-32.

The next example shows a generic CASE expression in the Projection clause.

Element Purpose Restrictions Syntax
expr Expression that returns

some data type
Data type of expr in a THEN clause must be compatible
with data types of expressions in other THEN clauses.

Expression,
p. 4-67

NULL

NULL

CASE ENDWHEN THEN

ELSE

Condition
p. 4-24

expr

expr

Back to CASE Expressions
p. 4-89

Generic CASE Expression
4-90 IBM Informix Guide to SQL: Syntax

Expression
In this example the user retrieves the name and address of each customer as
well as a calculated number that is based on the number of problems that
exist for that customer.

SELECT cust_name,
CASE
WHEN number_of_problems = 0

THEN 100
WHEN number_of_problems > 0 AND number_of_problems < 4

THEN number_of_problems * 500
WHEN number_of_problems >= 4 and number_of_problems <= 9

THEN number_of_problems * 400
ELSE

(number_of_problems * 300) + 250
END,
cust_address

FROM custtab

In a generic CASE expression, all the results should be of the same type, or
they should evaluate to a common compatible type. If the results in all the
WHEN clauses are not of the same type, or if they do not evaluate to values of
mutually compatible types, an error occurs.

Linear CASE Expressions

A linear CASE expression compares the value of the expression that follows
the CASE keyword with an expression in a WHEN clause.

IDS

Element Purpose Restrictions Syntax
expr Expression

that returns
value of some
data type

Data type of expr that follows the WHEN keyword must be
compatible with data type of the expression that follows the CASE
keyword. Data type of expr in the THEN clause must be
compatible with data types of expressions in other THEN clauses.

Expression,
p. 4-67

NULL

NULL

CASE ENDWHEN THEN

ELSE expr

exprexprexpr

Back to CASE Expressions
p. 4-89

Linear CASE Expression
Segments 4-91

Expression
The database server evaluates the expression that follows the CASE keyword,
and then processes the WHEN clauses sequentially. If an expression after the
WHEN keyword returns the same value as the expression that follows the
CASE keyword, the database server uses the value of the expression that
follows the THEN keyword as the overall result of the CASE expression. Then
the database server stops processing the CASE expression.

If none of the WHEN expressions return the same value as the expression that
follows the CASE keyword, the database server uses the expression of the
ELSE clause as the overall result of the CASE expression (or, if no ELSE clause
was specified, the returned value of the CASE expression is NULL).

The next example shows a linear CASE expression in the select list of the
Projection clause of a SELECT statement. For each movie in a table of movie
titles, the query returns the title, the cost, and the type of the movie. The
statement uses a CASE expression to derive the type of each movie.

SELECT title, CASE movie_type
WHEN 1 THEN 'HORROR'
WHEN 2 THEN 'COMEDY'
WHEN 3 THEN 'ROMANCE'
WHEN 4 THEN 'WESTERN'
ELSE 'UNCLASSIFIED'

END,
our_cost FROM movie_titles

In linear CASE expressions, the data types of WHEN clause expressions must
be compatible with that of the expression that follows the CASE keyword.

NVL Function

The NVL expression returns different results, depending on whether its first
argument evaluates to NULL.

Element Purpose Restrictions Syntax
expr1
expr2

Expressions that return values of a
compatible data type

Cannot be a host variable or a BYTE or
TEXT data type.

Expression,
p. 4-67

NVL expr1 expr2,()

Back to Conditional Expressions
p. 4-89

NVL Function
4-92 IBM Informix Guide to SQL: Syntax

Expression
NVL evaluates expression1. If expression1 is not NULL, then NVL returns the
value of expression1. If expression1 is NULL, NVL returns the value of
expression2. The expressions expression1 and expression2 can be of any data
type, as long as they can be cast to a common compatible data type.

Suppose that the addr column of the employees table has NULL values in
some rows, and the user wants to be able to print the label Address unknown

for these rows. The user enters the following SELECT statement to display the
label Address unknown when the addr column has a NULL value.

SELECT fname, NVL (addr, 'Address unknown') AS address
FROM employees

DECODE Function

The DECODE expression is similar to the CASE expression in that it can print
different results depending on the values found in a specified column.

The expressions expr, when_expr, and then_expr are required. DECODE
evaluates expr and compares it to when_expr. If the value of when_expr
matches the value of expr, then DECODE returns then_expr.

The expressions when_expr and then_expr are an expression pair, and you can
specify any number of expression pairs in the DECODE function. In all cases,
DECODE compares the first member of the pair against expr and returns the
second member of the pair if the first member matches expr.

Element Purpose Restrictions Syntax
expr, else_expr,
then_expr,
when_expr

Expressions whose
values and data types
can be evaluated

Data types of when_expr and expr must be
compatible, as must then_expr and else_expr.
Value of when_expr cannot be a NULL.

Expression,
p. 4-67

NULL

NULL

DECODE

else_expr

then_exprwhen_exprexpr

,

)

,

,(

Back to Conditional Expressions
p. 4-89

DECODE Function

,

Segments 4-93

Expression
If no expression matches expr, DECODE returns else_expr. If no expression
matches expr and you specified no else_expr, then DECODE returns NULL.

You can specify any data type for the arguments, but two restrictions exist:

� All instances of when_expr must have the same data type, or a
common compatible type must exist. All instances of when_expr must
also have the same (or a compatible) data type as expr.

� All instances of then_expr must have the same data type, or a
common compatible type must exist. All instances of then_expr must
also have the same (or a compatible) data type as else_expr.

Suppose that a user wants to convert descriptive values in the evaluation
column of the students table to numeric values in the output. The following
table shows the contents of the students table.

The user now enters a query with the DECODE function to convert the
descriptive values in the evaluation column to numeric equivalents.

SELECT firstname, DECODE(evaluation,
'Poor', 0,
'Fair', 25,
'Good', 50,
'Very Good', 75,
'Great', 100,
-1) as grade

FROM students

The following table shows the output of this SELECT statement.

firstname evaluation firstname evaluation

Edward Great Mary Good

Joe Not done Jim Poor

firstname evaluation firstname evaluation

Edward 100 Mary 50

Joe -1 Jim 0
4-94 IBM Informix Guide to SQL: Syntax

Expression
Constant Expressions
Certain expressions that return a fixed value are called constant expressions.
Among these are four operators (or system constants) whose returned values
are determined at runtime:

� DBSERVERNAME returns the name of the current database server.

� SITENAME is a synonym for DBSERVERNAME.

� TODAY returns the current calendar date, from the system clock.

� USER returns the login name (also called the authorization identifier)
of the current user.

Besides these system constants, the term constant expression can also refer to a
quoted string, a literal value, or to expressions that include the CURRENT or
UNITS operator with its operands.
Segments 4-95

Expression
The Constant Expression segment has the following syntax.

Element Purpose Restrictions Syntax
literal
Boolean

Literal representation of a BOOLEAN
value

Must be either t (TRUE) or f
(FALSE).

Quoted string,
p. 4-243

literal
opaque type

Literal representation of value of an
opaque data type

Must be recognized by input
support function of opaque type.

Defined by UDT
developer.

num How many of the specified time units.
See “UNITS Operator” on page 4-101.

If num is not an integer, the
fractional part is truncated.

Literal Number,
p. 4-216

sequence Name or synonym of a sequence object Must exist in current database Identifier,
p. 4-189

time_unit Keyword to specify time unit: YEAR,
MONTH, DAY, HOUR, MINUTE,
SECOND, or FRACTION

Must be one of the keywords at
left. Case insensitive but cannot
be enclosed within quotes.

See the
Restrictions
column.

Back to Expression
p. 4-67

Constant Expressions

TODAY

UNITSnum

Literal INTERVAL
p. 4-214

SITENAME

CURRENT DATETIME Field Qualifier
p. 4-65

Quoted String
p. 4-243

Literal Number
p. 4-216

USER
+

Literal DATETIME
p. 4-212

IDS

Literal Collection
p. 4-208

Literal Row
p. 4-218

literal opaque type

literal BOOLEAN

Owner Name
p. 4-234

.
datetime_unit

sequence .NEXTVAL

sequence .CURRVAL

DBSERVERNAME
4-96 IBM Informix Guide to SQL: Syntax

Expression
Quoted String

 The following examples show quoted strings as expressions:

SELECT 'The first name is ', fname FROM customer

INSERT INTO manufact VALUES ('SPS', 'SuperSport')

UPDATE cust_calls SET res_dtime = '1997-1-1 10:45'
WHERE customer_num = 120 AND call_code = 'B'

For more information, see “Quoted String” on page 4-243.

Literal Number

The following examples show literal numbers as expressions:

INSERT INTO items VALUES (4, 35, 52, 'HRO', 12, 4.00)

INSERT INTO acreage VALUES (4, 5.2e4)

SELECT unit_price + 5 FROM stock

SELECT -1 * balance FROM accounts

For more information, see “Literal Number” on page 4-216.

USER Operator

The USER operator returns a string that contains the login name (or authori-
zation identifier) of the current user who is running the process.

The following statements show how you might use the USER operator:

INSERT INTO cust_calls VALUES
 (221,CURRENT,USER,'B','Decimal point off', NULL, NULL)

SELECT * FROM cust_calls WHERE user_id = USER

UPDATE cust_calls SET user_id = USER WHERE customer_num = 220

The USER operator does not change the lettercase of a user ID. If you use
USER in an expression and the current user is Robertm, the USER operator
returns Robertm, not robertm.

If you specify USER as the default value for a column, the column must have
a CHAR, VARCHAR, NCHAR, or NVARCHAR data type.
Segments 4-97

Expression
If you specify USER as the default value for a column, the size of the column
should be at least 32 bytes long. You risk getting an error message during
INSERT and ALTER TABLE operations if the length of the column is too small
to store the default value. ♦

If you specify USER as the default value for a column, the size of the column
should be at least 8 bytes long. You risk getting an error message during
INSERT and ALTER TABLE operations if the length of the column is too small
to store the default value. ♦

In an ANSI-compliant database, if you do not use quotes around the owner
name, the name of the table owner is stored as uppercase letters. If you use
the USER keyword as part of a condition, you must be sure that the way the
user name is stored agrees with the values that the USER operator returns,
with respect to lettercase. ♦

DBSERVERNAME and SITENAME Operators

The DBSERVERNAME operator returns the database server name, as defined
in the ONCONFIG file for the installation where the current database resides
or as specified in the INFORMIXSERVER environment variable. The two
operators, DBSERVERNAME and SITENAME are synonymous. You can use
the DBSERVERNAME operator to determine the location of a table, to put
information into a table, or to extract information from a table. You can insert
DBSERVERNAME into a simple character field or use it as a default value for
a column.

If you specify DBSERVERNAME as a default value for a column, the column
must have a CHAR, VARCHAR, NCHAR, or NVARCHAR data type.

If you specify DBSERVERNAME as the default value for a column, the size of
the column should be at least 128 bytes long. You risk getting an error
message during INSERT and ALTER TABLE operations if the length of the
column is too small to store the default value. ♦

If you specify DBSERVERNAME as the default value for a column, the size of
the column should be at least 18 bytes long. You risk getting an error message
during INSERT and ALTER TABLE operations if the length of the column is too
small to store the default value. ♦

IDS

XPS

ANSI

IDS

XPS
4-98 IBM Informix Guide to SQL: Syntax

Expression
In the following example, the first statement returns the name of the database
server where the customer table resides. Because the query is not restricted
with a WHERE clause, it returns DBSERVERNAME for every row in the table.
If you add the DISTINCT keyword to the SELECT clause, the query returns
DBSERVERNAME once. The second statement adds a row that contains the
current site name to a table. The third statement returns all the rows that have
the site name of the current system in site_col. The last statement changes the
company name in the customer table to the current system name.

SELECT DBSERVERNAME FROM customer

INSERT INTO host_tab VALUES ('1', DBSERVERNAME)

SELECT * FROM host_tab WHERE site_col = DBSERVERNAME

UPDATE customer SET company = DBSERVERNAME
 WHERE customer_num = 120

TODAY Operator

Use the TODAY operator to return the system date as a DATE data type. If you
specify TODAY as a default value for a column, it must be a DATE column.

The following examples show how you might use the TODAY operator in an
INSERT, UPDATE, or SELECT statement:

UPDATE orders (order_date) SET order_date = TODAY
 WHERE order_num = 1005

INSERT INTO orders VALUES
(0, TODAY, 120, NULL, N, '1AUE217', NULL, NULL, NULL, NULL)

SELECT * FROM orders WHERE ship_date = TODAY

CURRENT Operator

The CURRENT operator returns a DATETIME value with the date and time of
day, showing the current instant.

If you do not specify a DATETIME qualifier, the default qualifier is YEAR TO
FRACTION(3). The USEOSTIME configuration parameter specifies whether or
not the database server uses subsecond precision when it obtains the current
time from the operating system. For more information on the USEOSTIME
configuration parameter, see your Administrator’s Reference.
Segments 4-99

Expression
You can use CURRENT in any context where a literal DATETIME is valid. See
“Literal DATETIME” on page 4-212). If you specify CURRENT as the default
value for a column, it must be a DATETIME column and the qualifier of
CURRENT must match the column qualifier, as the following example shows:

CREATE TABLE new_acct (col1 int, col2 DATETIME YEAR TO DAY
DEFAULT CURRENT YEAR TO DAY)

If you use the CURRENT keyword in more than one place in a single
statement, identical values can be returned at each point of the call. You
cannot rely on CURRENT to provide distinct values each time it executes.

The returned value comes from the system clock and is fixed when any SQL
statement starts. For example, any call to CURRENT from inside the SPL
function that an EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement
invokes returns the value of the system clock when the SPL function starts.

CURRENT is always evaluated in the database server where the current
database is located. If the current database is in a remote database server, the
returned value is from the remote host.

CURRENT might not execute in the physical order in which it appears in a
statement. You should not use CURRENT to mark the start, end, or a specific
point in the execution of a statement.

If your platform does not provide a system call that returns the current time
with subsecond precision, CURRENT returns a zero for the FRACTION field.

In the following example, the first statement uses CURRENT in a WHERE
condition. The second statement uses CURRENT as an argument to the DAY
function. The last query selects rows whose call_dtime value is within a
range from the beginning of 1997 to the current instant.

DELETE FROM cust_calls WHERE
res_dtime < CURRENT YEAR TO MINUTE

SELECT * FROM orders WHERE DAY(ord_date) < DAY(CURRENT)

SELECT * FROM cust_calls WHERE call_dtime
BETWEEN '1997-1-1 00:00:00' AND CURRENT

For more information, see “DATETIME Field Qualifier” on page 4-65.
4-100 IBM Informix Guide to SQL: Syntax

Expression
Literal DATETIME

The following examples show literal DATETIME as an expression:

SELECT DATETIME (1997-12-6) YEAR TO DAY FROM customer

UPDATE cust_calls SET res_dtime = DATETIME (1998-07-07 10:40)
YEAR TO MINUTE

WHERE customer_num = 110
AND call_dtime = DATETIME (1998-07-07 10:24) YEAR TO MINUTE

SELECT * FROM cust_calls
WHERE call_dtime
= DATETIME (1998-12-25 00:00:00) YEAR TO SECOND

For more information, see “Literal DATETIME” on page 4-212.

Literal INTERVAL

The following examples show literal INTERVAL as an expression:

INSERT INTO manufact VALUES ('CAT', 'Catwalk Sports',
INTERVAL (16) DAY TO DAY)

SELECT lead_time + INTERVAL (5) DAY TO DAY FROM manufact

The second statement in the preceding example adds five days to each value
of lead_time selected from the manufact table.

For more information, see “Literal INTERVAL” on page 4-214.

UNITS Operator

The UNITS operator specifies an interval whose precision has only one time
unit. You can use UNITS in arithmetic expressions that increase or decrease
one of the time units in an INTERVAL or DATETIME value.

If the n operand is not an integer, it is rounded down to the nearest whole
number when the database server evaluates the expression.

In the following example, the first SELECT statement uses the UNITS keyword
to select all the manufacturer lead times, increased by five days. The second
SELECT statement finds all the calls that were placed more than 30 days ago.
Segments 4-101

Expression
If the expression in the WHERE clause returns a value greater than 99
(maximum number of days), the query fails. The last statement increases the
lead time for the ANZA manufacturer by two days.

SELECT lead_time + 5 UNITS DAY FROM manufact

SELECT * FROM cust_calls WHERE (TODAY - call_dtime) > 30 UNITS DAY

UPDATE manufact SET lead_time = 2 UNITS DAY + lead_time
WHERE manu_code = 'ANZ'

NEXTVAL and CURRVAL Operators

You can access the value of a sequence using the NEXTVAL or CURRVAL
operators in SQL or SPL statements. You must qualify NEXTVAL or CURRVAL
with the name (or synonym) of a sequence that resides on the same database
(for example, sequence.NEXTVAL or sequence.CURRVAL). An expression can
also qualify sequence by the owner name, as in zelaine.myseq.CURRVAL. You
can specify the identifier of sequence or a valid synonym, if one exists.

In an ANSI-compliant database, you must qualify the name of the sequence
with the name of its owner (owner.sequence) if you are not the owner. ♦

To use NEXTVAL or CURRVAL with a sequence, you must have the Select
privilege on the sequence or have the DBA privilege on the database. For
information about sequence-level privileges, see the GRANT statement.

Using NEXTVAL

To access a sequence for the first time, you must refer to sequence.NEXTVAL
before you can refer to sequence.CURRVAL. The first reference to NEXTVAL
returns the initial value of the sequence. Each subsequent reference to
NEXTVAL increments the value of the sequence by the defined step and
returns a new incremented value of the sequence.

You can increment a given sequence only once within a single SQL statement.
Even if you specify sequence.NEXTVAL more than once within a single
statement, the sequence is incremented only once, so that every occurrence of
sequence.NEXTVAL in the same SQL statement returns the same value.

Except for the case of multiple occurrences within the same statement, every
sequence.NEXTVAL expression increments the sequence, regardless of whether
you subsequently commit or roll back the current transaction.

IDS

ANSI
4-102 IBM Informix Guide to SQL: Syntax

Expression
If you specify sequence.NEXTVAL in a transaction that is ultimately rolled
back, some sequence numbers might be skipped.

Using CURRVAL

Any reference to CURRVAL returns the current value of the sequence, which
is the value that your last reference to NEXTVAL returns. After you generate
a new value with NEXTVAL, you can continue to access that value using
CURRVAL, regardless of whether another user increments the sequence.

If both sequence.CURRVAL and sequence.NEXTVAL occur in an SQL statement,
the sequence is incremented once. In this case, each sequence.CURRVAL and
sequence.NEXTVAL expression returns the same value, regardless of the order
of sequence.CURRVAL and sequence.NEXTVAL within the statement.

Concurrent Access of a Sequence

A sequence always generates unique values within a database without
perceptible waiting or locking, even when multiple users refer to the same
sequence concurrently. When multiple users use NEXTVAL to increment the
sequence, each user generates a unique value that other users cannot see.

When multiple users concurrently increment the same sequence, the values
that each user sees will have gaps. For example, one user might generate a
series of values, such as 1, 4, 6, and 8, from a sequence, while another user
concurrently generates the values 2, 3, 5, and 7 from the same sequence.

Restrictions

Several restrictions apply to NEXTVAL and CURRVAL in SQL statements:

� You must have Select privilege on the sequence.

� In a CREATE TABLE or ALTER TABLE statement, you cannot specify
NEXTVAL or CURRVAL in the following contexts:

❑ In the DEFAULT clause

❑ In a check constraint
Segments 4-103

Expression
� In a SELECT statement, you cannot specify NEXTVAL or CURRVAL in
the following contexts:

❑ In the Select List when the DISTINCT keyword is used

❑ In the WHERE, GROUP BY, or ORDER BY clauses

❑ In a subquery

❑ When the UNION operator combines SELECT statements

� You also cannot specify NEXTVAL or CURRVAL in these contexts:

❑ In fragmentation expressions

❑ In reference to a remote sequence

Examples

In the following examples, it is assumed that no other user is concurrently
accessing the sequence and that the user executes the statements
consecutively.

The examples are based on the following sequence and table:

CREATE SEQUENCE seq_2
INCREMENT BY 1 START WITH 1
MAXVALUE 30 MINVALUE 0
NOCYCLE CACHE 10 ORDER;

CREATE TABLE tab1 (col1 int, col2 int);
INSERT INTO tab1 VALUES (0, 0);

You can use NEXTVAL (or CURRVAL) in the VALUES clause of an INSERT
statement, as the following example shows:

INSERT INTO tab1 (col1, col2)
VALUES (seq_2.NEXTVAL, seq_2.NEXTVAL)

In the previous example, the database server inserts an incremented value (or
the first value of the sequence, which is 1) into the col1 and col2 columns of
the table.

You can use NEXTVAL (or CURRVAL) in the SET clause of an UPDATE
statement, as the following example shows:

UPDATE tab1
SET col2 = seq_2.NEXTVAL
WHERE col1 = 1;
4-104 IBM Informix Guide to SQL: Syntax

Expression
In the previous example, the incremented value of the seq_2 sequence, which
is 2, replaces the value in col2 where col1 is equal to 1.

The following example shows how you can use NEXTVAL and CURRVAL in
the SELECT clause of a SELECT statement:

SELECT seq_2.CURRVAL, seq_2.NEXTVAL FROM tab1;

In the previous example, the database server returns two incremented
values, 3 and 4, under both the currval and nextval columns. For the first row
of tab1, the database server returns the incremented value 3 for currval and
nextval; for the second row of tab1, it returns the incremented value 4.

You can use NEXTVAL (or CURRVAL) in an SPL routine, as the following
example shows:

LET var = seq_2.NEXTVAL

For more examples on how to use NEXTVAL and CURRVAL, see the
IBM Informix Guide to SQL: Tutorial

Literal Collection

The following examples show literal collections as expressions:

INSERT INTO tab_a (set_col) VALUES ("SET{6, 9, 3, 12, 4}")

INSERT INTO TABLE(a_set) VALUES (9765)

UPDATE table1 SET set_col = "LIST{3}"

SELECT set_col FROM table1
WHERE SET{17} IN (set_col)

For more information, see “Literal Collection” on page 4-208. For the syntax
of element values, see “Collection Constructors” on page 4-108.

Literal Row

The following examples show literal rows as expressions:

INSERT INTO employee VALUES
(ROW('103 Baker St', 'San Francisco',

'CA', 94500))

UPDATE rectangles
SET rect = ROW(8, 3, 7, 20)

IDS

IDS
Segments 4-105

Expression
WHERE area = 140

EXEC SQL update table(:a_row)
set x=0, y=0, length=10, width=20;

SELECT row_col FROM tab_b
WHERE ROW(17, 'abc') IN (row_col)

For more information, see “Literal Row” on page 4-218. For syntax that
allows you to use expressions that evaluate to field values, see “ROW
Constructors” on page 4-106.

Constructor Expressions
A constructor is a function that the database server uses to create an instance
of a specific data type. The database server supports ROW and collection
constructors.

ROW Constructors

You use ROW constructors to generate values for ROW-type columns.
Suppose you create the following named ROW type and a table that contains
the named ROW type row_t and an unnamed ROW type:

CREATE ROW TYPE row_t (x INT, y INT);
CREATE TABLE new_tab
(
col1 row_t,
col2 ROW(a CHAR(2), b INT)
)

IDS

,

Back to Expression
p. 4-68

Constructor Expressions

ROW (Expression
p. 4-67

)

Collection Constructors
p. 4-108
4-106 IBM Informix Guide to SQL: Syntax

Expression
When you define a column as a named ROW type or unnamed ROW type, you
must use a ROW constructor to generate values for the ROW-type column. To
create a value for either a named ROW type or unnamed ROW type, you must
complete the following steps:

� Begin the expression with the ROW keyword.

� Specify a value for each field of the ROW type.

� Enclose the field values within parentheses.

The format of the value for each field must be compatible with the data type
of the ROW field to which it is assigned.

You can use any kind of expression as a value with a ROW constructor,
including literals, functions, and variables. The following examples show the
use of different types of expressions with ROW constructors to specify values:

ROW(5, 6.77, 'HMO')

ROW(col1.lname, 45000)

ROW('john davis', TODAY)

ROW(USER, SITENAME)

The following statement uses literal numbers and quoted strings with ROW
constructors to insert values into col1 and col2 of the new_tab table:

INSERT INTO new_tab
VALUES
(
ROW(32, 65)::row_t,
ROW('CA', 34)
)

When you use a ROW constructor to generate values for a named ROW type,
you must explicitly cast the ROW value to the appropriate named ROW type.
The cast is necessary to generate a value of the named ROW type. To cast the
ROW value as a named ROW type, you can use the cast operator (::) or the
CAST AS keywords, as the following examples show:

ROW(4,5)::row_t
CAST (ROW(3,4) AS row_t)
Segments 4-107

Expression
You can use a ROW constructor to generate row type values in INSERT,
UPDATE, and SELECT statements. In the next example, the WHERE clause of
a SELECT statement specifies a ROW type value that is cast as type person_t:

SELECT * FROM person_tab
WHERE col1 = ROW('charlie','hunter')::person_t

For more information on using ROW constructors in INSERT and UPDATE
statements, see the INSERT and UPDATE statements in this manual. For infor-
mation on named ROW types, see the CREATE ROW TYPE statement. For
information on unnamed ROW types, see the discussion of the ROW data type
in the IBM Informix Guide to SQL: Reference. For task-oriented information on
named ROW types and unnamed ROW types, see the IBM Informix Database
Design and Implementation Guide.

Collection Constructors

Use a collection constructor to specify values for a collection column.

You can use collection constructors in the WHERE clause of the SELECT
statement and the VALUES clause of the INSERT statement. You can also pass
collection constructors to UDRs.

Back to Constructor Expressions
p. 4-106

Collection Constructors

{ }MULTISET

LIST

,

Expression
p. 4-67

SET
4-108 IBM Informix Guide to SQL: Syntax

Expression
This table differentiates the types of collections that you can construct.

The element type of the collection can be any built-in or extended data type.
You can use any kind of expression with a collection constructor, including
literals, functions, and variables.

When you use a collection constructor with a list of expressions, the database
server evaluates each expression to its equivalent literal form and uses the
literal values to construct the collection.

You specify an empty collection with a set of empty braces ({ }).

Elements of a collection cannot be NULL. If a collection element evaluates to
a NULL value, the database server returns an error.

The element type of each expression must all be exactly the same type.
To accomplish this, cast the entire collection constructor expression to a
collection type, or cast individual element expressions to the same type.
If the database server cannot determine that the collection type and the
element types are not homogeneous, then the collection constructor returns
an error. In the case of host variables, this determination is made at bind time
when the client declares the element type of the host variable.

Keyword Description

SET Indicates a collection of elements with the following qualities:

� The collection must contain unique values.

� Elements have no specific order associated with them.

MULTISET Indicates a collection of elements with the following qualities:

� The collection can contain duplicate values.

� Elements have no specific order associated with them.

LIST Indicates a collection of elements with the following qualities:

� The collection can contain duplicate values.

� Elements have ordered positions.
Segments 4-109

Expression
An exception to this restriction can occur when some elements of a collection
are VARCHAR data types but others are longer than 255 bytes. Here the
collection constructor can assign a CHAR(n) type to all elements, for n the
length in bytes of the longest element. (But see “Collection Data Types” on
page 4-63 for an example based on this exception, where the user avoids
fixed-length CHAR elements by an explicit cast to the LVARCHAR data type.)

Examples of Collection Constructors

The following example shows that you can construct a collection with many
various expressions as long as the resulting values are of the same data type:

CREATE FUNCTION f (a int RETURNS int;
RETURN a+1;

END FUNCTION;
CREATE TABLE tab1 (x SET(INT NOT NULL));
INSERT INTO tab1 VALUES
(
SET{10,

1+2+3,
f(10)-f(2),
SQRT(100) +POW(2,3),
(SELECT tabid FROM systables WHERE tabname = ‘sysusers’),
‘T’::BOOLEAN::INT}

)
SELECT * FROM tab1 WHERE
x=SET{10,

1+2+3,
f(10)-f(2),
SQRT(100) +POW(2,3),
(SELECT tabid FROM systables WHERE tabname = ‘sysusers’),
‘T’::BOOLEAN::INT}

}

This assumes that a cast from BOOLEAN to INT exists. (For a more restrictive
syntax to specify collection values , see “Literal Collection” on page 4-208.)

NULL Keyword
The NULL keyword is valid in most contexts where you can specify a value.
What it specifies, however, is the absence of any value (or an unknown or
missing value).

NULL
4-110 IBM Informix Guide to SQL: Syntax

Expression
Within SQL, the keyword NULL is the only syntactic mechanism for accessing
a NULL value. NULL is not equivalent to zero, nor to any specific value. In
ascending ORDER BY operations, NULL values precede any non-NULL value;
in descending sorts, NULL values follow any non-NULL value. In GROUP BY
operations, all NULL values are grouped together. (Such groups may in fact
be logically heterogeneous, if they include missing or unknown values.)

The keyword NULL is a global symbol in the syntactic context of expressions,
meaning that its scope of reference is global.

Every data type, whether built-in or user-defined, can represent a NULL
value. IBM Informix Dynamic Server supports cast expressions in the SELECT
list. This means that users can write expressions of the form NULL::datatype,
in which datatype is any data type known to the database server.

IBM Informix Dynamic Server prohibits the redefinition of NULL because
allowing such definition would restrict the global scope of the NULL
keyword. For this reason, any mechanism that restricts the global scope or
redefines the scope of the keyword NULL will syntactically disable any cast
expression involving a NULL value. You must ensure that the occurrence of
the keyword NULL receives its global scope in all expression contexts.

For example, consider the following SQL code:

CREATE TABLE newtable
(
null int
);

SELECT null, null::int FROM newtable;

The CREATE TABLE statement is valid, because the column identifiers have a
scope of reference that is restricted to the table definition; they can be
accessed only within the scope of a table.
Segments 4-111

Expression
The SELECT statement in the example, however, poses some syntactic
ambiguities. Does the identifier null appearing in the SELECT list refer to the
global keyword NULL, or does it refer to the column name null that was
defined in the CREATE TABLE statement?

� If the identifier null is interpreted as the column name, the global
scope of cast expressions with the NULL keyword will be restricted.

� If the identifier null is interpreted as the NULL keyword, the SELECT
statement must generate a syntactic error for the first occurrence of
null because the NULL keyword can appear only as a cast expression
in the select list.

A SELECT statement of the following form is valid because the NULL column
of newtable is qualified with the table name:

SELECT newtable.null, null::int FROM newtable;

More involved syntactic ambiguities arise in the context of an SPL routine
that has a variable named null. An example follows:

CREATE FUNCTION nulltest() RETURNING INT;
DEFINE a INT;
DEFINE null INT;
DEFINE b INT;
LET a = 5;
LET null = 7;
LET b = null;
RETURN b;
END FUNCTION;

EXECUTE FUNCTION nulltest();

When the preceding function executes in DB-Access, in the expressions of the
LET statement, the identifier null is treated as the keyword NULL. The
function returns a NULL value instead of 7.

Using null as a variable of an SPL routine would restrict the use of a NULL
value in the body of the SPL routine. Therefore, the preceding SPL code is not
valid, and causes IBM Informix Dynamic Server to return the following error:

-947 Declaration of an SPL variable named 'null' conflicts
with SQL NULL value.

You should use an indicator variable if there is the possibility that a SELECT
statement will return a NULL value. ♦

E/C
4-112 IBM Informix Guide to SQL: Syntax

Expression
Function Expressions
A function expression can call built-in functions or user-defined functions, as
the following diagram shows.

The following examples show function expressions:

EXTEND (call_dtime, YEAR TO SECOND)
MDY (12, 7, 1900 + cur_yr)
DATE (365/2)
LENGTH ('abc') + LENGTH (pvar)
HEX (customer_num)
HEX (LENGTH(123))
TAN (radians)
ABS (-32)
EXP (3)
MOD (10,3)

+

DBINFO Function
p. 4-119

Length Functions
p. 4-131

HEX Function
p. 4-130

Exponential and Logarithmic Functions
p. 4-129

Algebraic Functions
p. 4-114

Back to Expression
p. 4-68

Function Expressions

CARDINALITY Function
p. 4-118

IFX_REPLACE_MODULE Function
p. 4-132

Smart-Large-Object Functions
p. 4-134

Time Functions
p. 4-143

Trigonometric Functions
p. 4-149

String-Manipulation Functions
p. 4-152

User-Defined Functions
p. 4-165

IFX_ALLOW_NEWLINE Function
p. 4-164
Segments 4-113

Expression
Algebraic Functions

Algebraic functions take one or more arguments of numeric data types.

Element Purpose Restrictions Syntax
base Value to be raised to the power

specified in exponent
Must return a real number. Expression, p. 4-67

dividend Value to be divided by divisor Must return a real number. Expression, p. 4-67
divisor Value by which to divide dividend Must return a nonzero number. Expression, p. 4-67
exponent Power to which to raise base Must return a real number. Expression, p. 4-67
index Root to extract. The default is 2. Must return a nonzero number. Expression, p. 4-67
num_expression Number with an absolute value Must return a real number. Expression, p. 4-67
radicand Value whose root is to be returned Must return a real number. Expression, p. 4-67
rounding_factor Position to which a number is to be

rounded. The default is zero.
Integer in range +32 to -32; see
“ROUND Function” on
page 116.

Literal Number,
p. 4-216

sqrt_radicand Number with real square roots Must be a positive real number. Expression, p. 4-67
truncate_factor Position to which a number is to be

truncated. The default is zero.
Integer in range +32 to -32; see
“TRUNC Function” on
page 117.

Literal Number,
p. 4-216

Expression
p. 4-67

ABS

sqrt_radicand

num_expression

ROUND

dividend , divisorMOD

SQRT

)(

)(

(

()

), 0

rounding_factor,

base, exponentPOW)(

ROOT radicand(, 2

index,

)

Expression
p. 4-67

TRUNC)(, 0

truncate_factor,

Back to Function Expressions
p. 4-113

Algebraic Functions
4-114 IBM Informix Guide to SQL: Syntax

Expression
ABS Function

The ABS function returns the absolute value of a numeric expression,
returning the same data type as its single argument. The following example
shows all orders of more than $20 paid in cash (+) or store credit (-). The
stores_demo database does not contain any negative balances, but you might
have negative balances in your application.

SELECT order_num, customer_num, ship_charge
 FROM orders WHERE ABS(ship_charge) > 20

MOD Function

The MOD function returns the remainder from integer division of two real
number operands, after the integer part of the first argument (the dividend) is
divided by the integer part of the second argument (the divisor) as an INT data
type (or INT8 on Dynamic Server, for remainders outside the range of INT).
The quotient and any fractional part of the remainder are discarded. The
divisor cannot be 0. Thus, MOD (x,y) returns y (modulo x). Make sure that
any variable that receives the result can store the returned value.

This example tests to see if the current date is within a 30-day billing cycle:

SELECT MOD(TODAY - MDY(1,1,YEAR(TODAY)),30) FROM orders

POW Function

The POW function raises the base to the exponent. This function requires two
numeric arguments. The returned data type is FLOAT. The following example
returns data for circles whose areas are less than 1,000 square units:

SELECT * FROM circles WHERE (3.1416 * POW(radius,2)) < 1000

To use e, the base of natural logarithms, see “EXP Function” on page 4-129.

ROOT Function

The ROOT function returns the root value of a numeric expression. This
function requires at least one numeric argument (the radicand argument) and
allows no more than two (the radicand and index arguments). If only the
radicand argument is supplied, the value 2 is used as a default value for the
index argument. The value 0 cannot be used as the value of index. The value
that the ROOT function returns is a FLOAT data type.
Segments 4-115

Expression
The first SELECT statement in the following example takes the square root of
the expression. The second takes the cube root of the expression.

SELECT ROOT(9) FROM angles -- square root of 9
SELECT ROOT(64,3) FROM angles -- cube root of 64

The SQRT function uses the form SQRT(x)=ROOT(x) if no index is given.

ROUND Function

The ROUND function returns the rounded value of an expression. The
expression must be numeric or must be converted to numeric. If you omit the
digit indication, the value is rounded to zero digits or to the units place. The
digit range of 32 (+ and -) refers to the entire decimal value.

Positive-digit values indicate rounding to the right of the decimal point;
negative-digit values indicate rounding to the left of the decimal point, as
Figure 4-1 shows.

The following example shows how you can use the ROUND function with a
column expression in a SELECT statement. This statement displays the order
number and rounded total price (to zero places) of items whose rounded total
price (to zero places) is equal to 124.00.

SELECT order_num , ROUND(total_price) FROM items
WHERE ROUND(total_price) = 124.00

If you use a MONEY data type as the argument for the ROUND function and
you round to zero places, the value displays with .00. The SELECT statement
in the following example rounds an INTEGER value and a MONEY value. It
displays 125 and a rounded price in the form xxx.00 for each row in items.

SELECT ROUND(125.46), ROUND(total_price) FROM items

Figure 4-1
ROUND Function

2

Expression:

ROUND (24,536.8746, -2) = 24,500.00

ROUND (24,536.8746, 0) = 24,537.00

ROUND (24,536.8746, 2) = 24,536.87
-2

2 4 5 3 6 . 8 7 4 6

0

4-116 IBM Informix Guide to SQL: Syntax

Expression
SQRT Function

The SQRT function returns the square root of a numeric expression. The next
example returns the square root of 9 for each row of the angles table:

SELECT SQRT(9) FROM angles

TRUNC Function

The TRUNC function returns the truncated value of a numeric expression.

The expression must be numeric or a form that can be converted to a numeric
expression. If you omit the digit indication, the value is truncated to zero
digits or to the unit’s place. The digit limitation of 32 (+ and -) refers to the
entire decimal value.

Positive digit values indicate truncating to the right of the decimal point;
negative digit values indicate truncating to the left, as Figure 4-2 shows.

If a MONEY data type is the argument for the TRUNC function that specifies
zero places, the fractional places are removed. For example, the following
SELECT statement truncates a MONEY value and an INTEGER value. It
displays 125 and a truncated price in integer format for each row in items.

SELECT TRUNC(125.46), TRUNC(total_price) FROM items

Figure 4-2
TRUNC Function

Expression:

TRUNC (24536.8746, -2) =24500

TRUNC (24536.8746, 0) = 24536

TRUNC (24536.8746, 2) = 24536.87

2 4 5 3 6 . 8 7 4 6

2-2 0
Segments 4-117

Expression
CARDINALITY Function

The CARDINALITY function returns the number of elements in a collection
column (SET, MULTISET, LIST).

Suppose that the set_col SET column contains the following value:

{3, 7, 9, 16, 0}

The following SELECT statement returns 5 as the number of elements in the
set_col column:

SELECT CARDINALITY(set_col)
FROM table1

If the collection contains duplicate elements, CARDINALITY counts each
individual element.

 IDS

Element Purpose Restrictions Syntax
collection_col An existing collection column Must return an integer. Expression, p. 4-67
collection_var Host or program collection variable Must exist. Language specific

Back to Function Expressions
p. 4-113

CARDINALITY Function

CARDINALITY (collection_col)

collection_var
4-118 IBM Informix Guide to SQL: Syntax

Expression
DBINFO Function

The following diagram shows the syntax of the DBINFO function.

Element Purpose Restrictions Syntax
column Name of a column in the table

that you specify in table
Must exist in table. Database Object

Name, p. 4-46
expression Expression that evaluates to

tblspace_num
Can contain column names, SPL
variables, host variables, or subqueries,
but must return a numeric value.

Expression,
p. 4-67

specifier Literal value that specifies which
part of version string to return

For valid specifier values, see “Using the
‘version’ Option” on page 4-124.

Expression,
p. 4-67

table Table for which to display the
dbspace name or coserver ID
corresponding to each row

Must match the name of a table in the
FROM clause of the query.

Database-
Object Name,
p. 4-46

tblspace_
num

Tblspace number (partition
number) of a table

Must exist in the partnum column of the
systables table for the database.

Literal Number,
p. 4-216

DBINFO 'dbspace' , tblspace_num()

expression

'sessionid'

+ 'sqlca.sqlerrd2'

'sqlca.sqlerrd1'

'version'

'dbhostname'

'specifier',

Back to Function Expressions
p. 4-113

DBINFO Function

'serial8'IDS

'coserverid'

XPS

table.column'dbspace' , 'currentrow',

'coserverid' table.column , 'currentrow',
Segments 4-119

Expression
DBINFO Options

The DBINFO function is actually a set of functions that return different types
of information about the database. To invoke each function, specify a
particular option after the DBINFO keyword. You can use any DBINFO
option anywhere within SQL statements and within UDRs.

The following table shows the different types of database information that
you can retrieve with the DBINFO options. The Option column shows the
name of each DBINFO option. The Effect column shows the type of database
information that the option retrieves.

The Page column shows the page where you can find more information
about a given option.

Option Effect Page

'dbspace' tblspace_num Returns the name of a dbspace corresponding
to a tblspace number

4-121

'sqlca.sqlerrd1' Returns the last serial value inserted in a table 4-121

'sqlca.sqlerrd2' Returns the number of rows processed by
selects, inserts, deletes, updates, EXECUTE
PROCEDURE statements, and EXECUTE
FUNCTION statements

4-122

'sessionid' Returns the session ID of the current session 4-122

'dbhostname' Returns the hostname of the database server to
which a client application is connected

4-123

'version' Returns the exact version of the database server
to which a client application is connected

4-124

'serial8' (IDS) Returns last SERIAL8 value inserted in a table 4-126

'coserverid' (XPS) Returns the coserver ID of coserver to which
the user who entered the query is connected

4-126

'coserverid' table.column
'currentrow' (XPS)

Returns the coserver ID of the coserver where
each row of a specified table is located

4-127

'dbspace' table.column
'currentrow' (XPS)

Returns the name of the dbspace where each
row of a specified table is located

4-128
4-120 IBM Informix Guide to SQL: Syntax

Expression
Using the 'dbspace' Option Followed by a Tblspace Number

The 'dbspace' option returns a character string containing the name of the
dbspace that corresponds to a tblspace number. You must supply an
additional parameter, either tblspace_num or an expression that evaluates to
tblspace_num. The next example uses the 'dbspace' option. First, it queries the
systables system catalog table to determine the tblspace_num for the table
customer, then it executes the function to determine the dbspace name.

SELECT tabname, partnum FROM systables
where tabname = 'customer'

If the statement returns a partition number of 1048892, you insert that value
into the second argument to find which dbspace contains the customer table,
as the following example shows:

SELECT DBINFO ('dbspace', 1048892) FROM systables
where tabname = 'customer'

If the table for which you want to know the dbspace name is fragmented, you
must query the sysfragments system catalog table to find out the tblspace
number of each table fragment. Then you must supply each tblspace number
in a separate DBINFO query to find out all the dbspaces across which a table
is fragmented.

Using the 'sqlca.sqlerrd1' Option

The 'sqlca.sqlerrd1' option returns a single integer that provides the last
serial value that is inserted into a table. To ensure valid results, use this option
immediately following a singleton INSERT statement that inserts a single row
with a serial value into a table.

Tip: To obtain the value of the last SERIAL8 value that is inserted into a table, use the
'serial8' option of DBINFO. For more information, see “Using the 'serial8' Option”
on page 4-126.

The following example uses the 'sqlca.sqlerrd1' option:

EXEC SQL create table fst_tab (ordernum serial, partnum int);
EXEC SQL create table sec_tab (ordernum serial);
EXEC SQL insert into fst_tab VALUES (0,1);
EXEC SQL insert into fst_tab VALUES (0,4);
EXEC SQL insert into fst_tab VALUES (0,6);
EXEC SQL insert into sec_tab values (dbinfo('sqlca.sqlerrd1'));
Segments 4-121

Expression
This example inserts a row that contains a primary-key serial value into the
fst_tab table, and then uses the DBINFO function to insert the same serial
value into the sec_tab table. The value that the DBINFO function returns is
the serial value of the last row that is inserted into fst_tab.

Using the 'sqlca.sqlerrd2' Option

The 'sqlca.sqlerrd2' option returns a single integer that provides the number
of rows that SELECT, INSERT, DELETE, UPDATE, EXECUTE PROCEDURE, and
EXECUTE FUNCTION statements processed. To ensure valid results, use this
option after SELECT, EXECUTE PROCEDURE, and EXECUTE FUNCTION state-
ments have completed executing. In addition, to ensure valid results when
you use this option within cursors, make sure that all rows are fetched before
the cursors are closed.

The following example shows an SPL routine that uses the 'sqlca.sqlerrd2'
option to determine the number of rows that are deleted from a table:

CREATE FUNCTION del_rows (pnumb int)
RETURNING int;

DEFINE nrows int;

DELETE FROM fst_tab WHERE part_number = pnumb;
LET nrows = DBINFO('sqlca.sqlerrd2');
RETURN nrows;

END FUNCTION

Using the 'sessionid' Option

The 'sessionid' option of the DBINFO function returns the session ID of your
current session. When a client application makes a connection to the database
server, the database server starts a session with the client and assigns a
session ID for the client. The session ID serves as a unique identifier for a
given connection between a client and a database server.

The database server stores the value of the session ID in a data structure in
shared memory that is called the session control block. The session control
block for a given session also includes the user ID, the process ID of the client,
the name of the host computer, and a variety of status flags.
4-122 IBM Informix Guide to SQL: Syntax

Expression
When you specify the 'sessionid' option, the database server retrieves the
session ID of your current session from the session control block and returns
this value to you as an integer. Some of the System-Monitoring Interface
(SMI) tables in the sysmaster database include a column for session IDs, so
you can use the session ID that the DBINFO function obtained to extract infor-
mation about your own session from these SMI tables. For further
information on the session control block, see the Administrator’s Guide. For
further information on the sysmaster database and the SMI tables, see the
Administrator’s Reference.

In the following example, the user specifies the DBINFO function in a SELECT
statement to obtain the value of the current session ID. The user poses this
query against the systables system catalog table and uses a WHERE clause to
limit the query result to a single row.

SELECT DBINFO('sessionid') AS my_sessionid
FROM systables
WHERE tabname = 'systables'

In the preceding example, the SELECT statement queries against the systables
system catalog table. You can, however, obtain the session ID of the current
session by querying against any system catalog table or user table in the
database. For example, you can enter the following query to obtain the
session ID of your current session:

SELECT DBINFO('sessionid') AS user_sessionid
FROM customer
WHERE customer_num = 101

You can use the DBINFO 'sessionid' option not only in SQL statements but
also in SPL routines. The following example shows an SPL function that
returns the value of the current session ID to the calling program or routine:

CREATE FUNCTION get_sess()
RETURNING INT;
RETURN DBINFO('sessionid');

END FUNCTION;

Using the ‘dbhostname’ Option

You can use the 'dbhostname' option to retrieve the hostname of the database
server to which a database client is connected. This option retrieves the
physical computer name of the computer on which the database server is
running.
Segments 4-123

Expression
In the following example, the user enters the 'dbhostname' option of DBINFO
in a SELECT statement to retrieve the hostname of the database server to
which DB-Access is connected:

SELECT DBINFO('dbhostname')
FROM systables
WHERE tabid = 1

The following table shows the result of this query.

Using the ‘version’ Option

You can use the 'version' option of the DBINFO function to retrieve the exact
version number of the database server against which the client application is
running. This option retrieves the exact version string from the message log.
The value of the full version string is the same as that displayed by the -V
option of the oninit utility.

Use the specifier parameter of the 'version' option to specify which part of the
version string you want to retrieve. The following table lists the values that
you can enter in the specifier parameter, shows which part of the version
string is returned for each specifier value, and gives an example of what is
returned by each value of specifier.

Each example returns part of the complete version string Dynamic Server
Version 9.40.UC1.

(constant)

rd_lab1

Specifier
Parameter Part of Version String Returned Example of Returned Value

'server-type' Type of database server Dynamic Server

'major' Major version number of the current
database server version

9

'minor' Minor version number of the current
database server version

40

(1 of 2)
4-124 IBM Informix Guide to SQL: Syntax

Expression
Important: Not all UNIX environments fit the word-length descriptions of
operating- system (os) codes in the preceding table. For example, some U versions can
run on 64-bit operating systems. Similarly, some F versions can run on operating
systems with 32-bit kernels that support 64-bit applications.

The following example shows how to use the 'version' option of DBINFO in
a SELECT statement to retrieve the major version number of the database
server that the DB-Access client is connected to:

SELECT DBINFO('version', 'major')
FROM systables
WHERE tabid = 1

The following table shows the result of this query.

'os' Operating-system identifier within the
version string:

U

T = Windows

U = UNIX 32-bit running on a 32-bit
operating system

H = UNIX 32-bit running on a 64-bit
operating system

F = UNIX 64-bit running on a 64-bit
operating system

'level' Interim release level of the current
database server version

C1

'full' Complete version string as it would be
returned by oninit -V

Dynamic Server,
Version 9.40.UC1

(constant)

7

Specifier
Parameter Part of Version String Returned Example of Returned Value

(2 of 2)
Segments 4-125

Expression
Using the 'serial8' Option

The 'serial8' option returns a single integer that provides the last SERIAL8
value that is inserted into a table. To ensure valid results, use this option
immediately following an INSERT statement that inserts a SERIAL8 value.

Tip: To obtain the value of the last SERIAL value that is inserted into a table, use the
'sqlca.sqlerrd1' option of DBINFO(). For more information, see “Using the
'sqlca.sqlerrd1' Option” on page 4-121.

The following example uses the 'serial8' option:

EXEC SQL create table fst_tab
(ordernum serial8, partnum int);

EXEC SQL create table sec_tab (ordernum serial8);

EXEC SQL insert into fst_tab VALUES (0,1);
EXEC SQL insert into fst_tab VALUES (0,4);
EXEC SQL insert into fst_tab VALUES (0,6);

EXEC SQL insert into sec_tab
select dbinfo('serial8')
from sec_tab where partnum = 6;

This example inserts a row that contains a primary-key SERIAL8 value into
the fst_tab table and then uses the DBINFO function to insert the same
SERIAL8 value into the sec_tab table. The value that the DBINFO function
returns is the SERIAL8 value of the last row that is inserted into fst_tab. The
subquery in the last line contains a WHERE clause so that a single value is
returned.

Using the 'coserverid' Option with No Other Arguments

The 'coserverid' option with no other arguments returns a single integer that
corresponds to the coserver ID of the coserver to which the user who entered
the query is connected.

Suppose that you use the following statement to create the mytab table:

CREATE TABLE mytab (mycol INT)
FRAGMENT BY EXPRESSION

mycol < 5 in rootdbs.1
mycol > 5 in rootdbs.2

IDS

XPS
4-126 IBM Informix Guide to SQL: Syntax

Expression
Further, suppose that the dbspace named rootdbs.1 resides on coserver 1,
and the dbspace named rootdbs.2 resides on coserver 2. Also suppose that
you use the following statements to insert rows into the mytab table:

INSERT INTO mytab VALUES ('1');
INSERT INTO mytab VALUES ('6');

Finally, suppose that you are logged on to coserver 1 when you make the
following query, which displays the values of all columns in the row where
the value of the mycol column is 1. This query also displays the coserver ID
of the coserver to which you are logged on when you enter the query.

SELECT *, DBINFO ('coserverid') AS cid
FROM mytab
WHERE mycol = 1

The following table shows the result of this query.

Using the 'coserverid' Option Followed by Table and Column Names

Use the 'coserverid' option followed by the table name and column name and
the 'currentrow' string to find out the coserver ID where each row in a
specified table is located. This option is especially useful when you fragment
a table across multiple coservers.

In the following example, the user asks to see all columns and rows of the
mytab table as well as the coserver ID of the coserver where each row resides.
For a description of the mytab table, see “Using the 'coserverid' Option with
No Other Arguments” on page 4-126.

SELECT *, DBINFO ('coserverid', mytab.mycol, 'currentrow')
AS cid
FROM mytab

myco l cid

1 1

XPS
Segments 4-127

Expression
The following table shows the result of this query.

The column that you specify in the DBINFO function can be any column in
the specified table.

Using the 'dbspace' Option Followed by Table and Column Names

Use the 'dbspace ' option followed by the table name and column name and
the 'currentrow' string to find out the name of the dbspace where each row
in a specified table is located. This option is especially useful when you
fragment a table across multiple dbspaces.

In the following example, the user asks to see all columns and rows of the
mytab table as well as the name of the dbspace where each row resides. For
a description of the mytab table, see “Using the 'coserverid' Option with No
Other Arguments” on page 4-126.

SELECT *, DBINFO ('dbspace', mytab.mycol, 'currentrow')
AS dbsp
FROM mytab

The following table shows the result of this query.

The column that you specify in the DBINFO function can be any column in
the specified table.

mycol cid

1 1

6 2

mycol dbspace

1 rootdbs.1

6 rootdbs.2

XPS
4-128 IBM Informix Guide to SQL: Syntax

Expression
Exponential and Logarithmic Functions

Exponential and logarithmic functions take at least one argument and return
a FLOAT data type.

EXP Function

The EXP function returns the exponent of a numeric expression. The
following example returns the exponent of 3 for each row of the angles table:

SELECT EXP(3) FROM angles

For this function, the base is always e, the base of natural logarithms, as the
following example shows:

e=exp(1)=2.718281828459

When you want to use the base of natural logarithms as the base value, use
the EXP function. If you want to specify a particular value to raise to a specific
power, see the “POW Function” on page 4-115.

LOG10 Function

The LOG10 function returns the log of a value to base 10. The following
example returns the log base 10 of distance for each row of the travel table:

SELECT LOG10(distance) + 1 digits FROM travel

Element Purpose Restrictions Syntax
float_expression An argument to the EXP, LOGN, or LOG10

functions. For the meaning of float_expression in
these functions, see the individual heading for each
function on the pages that follow.

The domain is the set of
real numbers, and the
range is the set of
positive real numbers.

Expression,
p. 4-67

Back to Function Expressions
p. 4-113

Exponential and Logarithmic Functions

LOG10

LOGN

EXP float_expression)

)

)

(

(

(

float_expression

float_expression
Segments 4-129

Expression
LOGN Function

The LOGN function returns the natural logarithm of a numeric argument.
This value is the inverse of the exponential value. The following query
returns the natural log of population for each row of the history table:

SELECT LOGN(population) FROM history WHERE country='US'
ORDER BY date

HEX Function

The HEX function returns the hexadecimal encoding of an integer expression.

The next example displays the data type and column length of the columns
of the orders table in hexadecimal format. For MONEY and DECIMAL
columns, you can then determine the precision and scale from the lowest and
next-to-the-lowest bytes. For VARCHAR and NVARCHAR columns, you can
determine the minimum space and maximum space from the lowest and
next-to-the-lowest bytes. For more information about encoded information,
see the IBM Informix Guide to SQL: Reference.

SELECT colname, coltype, HEX(collength)
FROM syscolumns C, systables T
WHERE C.tabid = T.tabid AND T.tabname = 'orders'

The following example lists the names of all the tables in the current database
and their corresponding tblspace number in hexadecimal format.

SELECT tabname, HEX(partnum) FROM systables

The two most significant bytes in the hexadecimal number constitute the
dbspace number. They identify the table in oncheck output (in Dynamic
Server) and in onutilcheck output (in Extended Parallel Server).

Element Purpose Restrictions Syntax
int_expression Expression for which you want

the hexadecimal equivalent
Must be a literal integer or some other
expression that returns an integer.

Expression,
p. 4-67

Back to Function Expressions
p. 4-113

HEX Function

HEX (int_expression)
4-130 IBM Informix Guide to SQL: Syntax

Expression
The HEX function can operate on an expression, as the next example shows:

SELECT HEX(order_num + 1) FROM orders

Length Functions

Use length functions to determine the length of a column, string, or variable.

Each of these functions has a distinct purpose:

� LENGTH

� OCTET_LENGTH

� CHAR_LENGTH (also known as CHARACTER_LENGTH)

The LENGTH Function

The LENGTH function returns the number of bytes in a character column, not
including any trailing blank spaces. For BYTE or TEXT columns, LENGTH
returns the full number of bytes, including any trailing blank spaces.

In ESQL/C, LENGTH can also return the length of a character variable. ♦

Element Purpose Restrictions Syntax
column Name of a column in table Must have a character data type. Identifier, p. 4-189
table Name of the table in which the

specified column occurs
The table must exist. Database- Object

Name, p. 4-46
variable_name Host variable or SPL variable

that contains a character string
Variable must have a character
data type.

Seelanguage-specific
rules for names.

variable_name

column

LENGTH)(

CHAR_LENGTH

CHARACTER_LENGTH

OCTET_LENGTH table.

E/C

+

SPL

Quoted String
p. 4-243

Back to Function Expressions
p. 4-113

LENGTH Functions

E/C
Segments 4-131

Expression
The next example illustrates the use of the LENGTH function:

SELECT customer_num, LENGTH(fname) + LENGTH(lname),
LENGTH('How many bytes is this?')
FROM customer WHERE LENGTH(company) > 10

See also the discussion of LENGTH in the IBM Informix GLS User’s Guide. ♦

The OCTET_LENGTH Function

OCTET_LENGTH returns the number of bytes in a character column,
including any trailing spaces. See also the IBM Informix GLS User’s Guide.

The CHAR_LENGTH Function

The CHAR_LENGTH function (also called CHARACTER_LENGTH) returns
the number of logical characters (which can be distinct from the number of
bytes in some East Asian locales) in a character column. For a discussion of
this function, see the IBM Informix GLS User’s Guide.

IFX_REPLACE_MODULE Function

The IFX_REPLACE_MODULE function replaces a loaded shared-object file
with a new version that has a different name or location.

GLS

IDS

C

Element Purpose Restrictions Syntax
new_module Full pathname of the new shared-

object file to replace the shared-object
file that old_module specifies

The shared-object file must exist with
the specified pathname, which can be no
more than 255 bytes long.

Quoted
String,
p. 4-243

old_module Full pathname of the shared-object file
to replace with the shared-object file
that new_module specifies

The shared-object file must exist with
the specified pathname, which can be no
more than 255 bytes long.

Quoted
String,
p. 4-243

Back to Function Expressions
p. 4-113

IFX_REPLACE_MODULE
Function

(old_module new_module C,,IFX_REPLACE_MODULE)" "
4-132 IBM Informix Guide to SQL: Syntax

Expression
The IFX_REPLACE_MODULE function returns an integer value to indicate the
status of the shared-object-file replacement, as follows:

� Zero (0) to indicate success

� A negative integer to indicate an error

Important: Do not use the IFX_REPLACE_MODULE function to reload a module of
the same name. If the full names of the old and new modules that you send to
ifx_replace_module() are the same, then unpredictable results can occur.

After IFX_REPLACE_MODULE completes execution, the database server
“ages out” the old_module shared-object file; that is, all statements subsequent
to the IFX_REPLACE_MODULE function will use UDRs in the new_module
shared-object file, and the old module will be unloaded when any statements
that were using it are complete. Thus, for a brief time, both the old_module and
the new_module shared-object files could be resident in memory. If this “aging
out” behavior is undesirable, use the IFX_UNLOAD_MODULE procedure to
unload the shared-object file completely.

For example, suppose you want to replace the circle.so shared library, which
contains UDRs written in the C language. If the old version of this library
resides in the /usr/apps/opaque_types directory and the new version in the
/usr/apps/shared_libs directory, then the following EXECUTE FUNCTION
statement executes the IFX_REPLACE_MODULE function:

EXECUTE FUNCTION ifx_replace_module(
"/usr/apps/opaque_types/circle.so",
"/usr/apps/shared_libs/circle.so", "C")

♦

For example, suppose you want to replace the circle.dll dynamic link library,
which contains C UDRs. If the old version of this library resides in the
C:\usr\apps\opaque_types directory and the new version in the
C:\usr\apps\DLLs directory, then the following EXECUTE FUNCTION
statement executes the IFX_REPLACE_MODULE function:

EXECUTE FUNCTION ifx_replace_module(
"C:\usr\apps\opaque_types\circle.dll",
"C:\usr\apps\DLLs\circle.dll", "C")

♦

To execute the IFX_REPLACE_MODULE function in an IBM Informix ESQL/C
application, you must associate the function with a cursor. ♦

UNIX

Windows

E/C
Segments 4-133

Expression
For more information on how to use IFX_REPLACE_MODULE to replace a
shared-object file, see the chapter on how to design a UDR in IBM Informix
User-Defined Routines and Data Types Developer’s Guide. For information on
how to use the IFX_UNLOAD_MODULE procedure, see
“IFX_UNLOAD_MODULE Procedure” on page 2-416.

Smart-Large-Object Functions

The Smart-large-object functions support CLOB and BLOB data types:

IDS

Element Purpose Restrictions Syntax
BLOB_column,
CLOB_column

A column of type BLOB;
a column of type CLOB

In table.column, the column must
have BLOB or CLOB data type.

Identifier,
p. 4-189

column Column within table for the copy of
the BLOB or CLOB value

Must have CLOB or BLOB as its
data type.

Quoted String,
p. 4-243

file_destination Name of the system on which to put
or get the smart large object

The only valid values are the strings
server or client.

Quoted String,
p. 4-243

pathname Directory path and filename to
locate the smart large object

Must exist on file_destination
system. See also “Pathnames with
Commas” on page 4-137.

Quoted String,
p. 4-243

table Name or synonym of a table that
contains column whose storage
characteristics are used for the copy
of BLOB or CLOB value

Must exist in the database and must
contain a CLOB or BLOB column.

Quoted String,
p. 4-243

()

FILETOCLOB , table , column

LOTOFILE ,

Back to Function Expressions
p. 4-113

Smart-Large-Object Functions

FILETOBLOB)(pathname , file_destination

pathname , file_destination

CLOB_column

BLOB_column

()

CLOB_column

BLOB_columnLOCOPY

, ,table column
4-134 IBM Informix Guide to SQL: Syntax

Expression
FILETOBLOB and FILETOCLOB Functions

The FILETOBLOB function creates a BLOB value for data that is stored in a
specified operating-system file. Similarly, the FILETOCLOB function creates a
CLOB value for data that is stored in an operating-system file.

These functions determine the operating-system file to use from the
following parameters:

� The pathname parameter identifies the directory path and name of the
source file.

� The file destination parameter identifies the computer, client or server,
on which this file resides:

❑ Set file destination to client to identify the client computer as the
location of the source file. The pathname can be either a full
pathname or relative to the current directory.

❑ Set file destination to server to identify the server computer as
the location of the source file. The pathname must be a full
pathname.

The table and column parameters are optional:

� If you omit table and column, the FILETOBLOB function creates a
BLOB value with the system-specified storage defaults, and the
FILETOCLOB function creates a CLOB value with the system-
specified storage defaults.

These functions obtain the system-specific storage characteristics
from either the ONCONFIG file or the sbspace. For more information
on system-specified storage defaults, see the Administrator’s Guide.

� If you specify table and column, the FILETOBLOB and FILETOCLOB
functions use the storage characteristics from the specified column
for the BLOB or CLOB value that they create.

The FILETOBLOB function returns a handle value (a pointer) to the new BLOB
value. Similarly, FILETOCLOB returns a handle value to the new CLOB value.
Neither function actually copies the smart-large-object value into a database
column. You must assign the BLOB or CLOB value to the appropriate column.

The FILETOCLOB function performs any code-set conversion that might be
required when it copies the file from the client or server computer to the
database. ♦

GLS
Segments 4-135

Expression
The following INSERT statement uses the FILETOCLOB function to create a
CLOB value from the value in the smith.rsm file:

INSERT INTO candidate (cand_num, cand_lname, resume)
VALUES (2, 'Smith', FILETOCLOB('smith.rsm', 'client'))

In the preceding example, the FILETOCLOB function reads the smith.rsm file
in the current directory on the client computer and returns a handle value to
a CLOB value that contains the data in this file. Because the FILETOCLOB
function does not specify a table and column name, this new CLOB value has
the system-specified storage characteristics. The INSERT statement then
assigns this CLOB value to the resume column in the candidate table.

The following INSERT statement uses the FILETOBLOB function to create a
BLOB value in a remote table, election2000, from the value in the photos.xxx
file on the local database server:

INSERT INTO rdb@rserv:election2000 (cand_pic)
VALUES (FILETOBLOB('C:\tmp\photos.xxx', 'server',

'candidate', 'cand_photo'))

In the preceding example, the FILETOBLOB function reads the photos.xxx file
in the specified directory on the local database server and returns a handle
value to a BLOB value that contains the data in this file. The INSERT statement
then assigns this BLOB value to the cand_pic column in the remote
election2000 table. This new BLOB value has the storage characteristics of the
cand_photo column in the candidate table on the local database server.

In the following example, the new BLOB value has the storage characteristics
of the cand_pix column in the election96 table on a remote database server:

INSERT INTO rdb@rserv:election2000 (cand_pic)
VALUES (FILETOBLOB('C:\tmp\photos.xxx', 'server',

'rdb2@rserv2:election96', 'cand_pix'))

When you qualify the FILETOBLOB or FILETOCLOB function with the name
of a remote database and a remote database server, the pathname and the file
destination become relative to the remote database server.

When you specify server as the file destination, as the following example
shows, the FILETOBLOB function looks for the source file (in this case,
photos.xxx) on the remote database server:

INSERT INTO rdb@rserv:election (cand_pic)
VALUES (rdb@rserv:FILETOBLOB('C:\tmp\photos.xxx', 'server'))
4-136 IBM Informix Guide to SQL: Syntax

Expression
When you specify client as the file destination, however, as in the following
example, the FILETOBLOB function looks for the source file (in this case,
photos.xxx) on the local client computer:

INSERT INTO rdb@rserv:election (cand_pic)
VALUES (rdb@rserv:FILETOBLOB('photos.xxx', 'client'))

Pathnames with Commas

If a comma (,) symbol is within the pathname of the function, the database
server expects the pathname to have the following format:

"offset, length, pathname"

For pathnames that contain a comma, you must also specify an offset and
length, as in the following example:

FILETOBLOB("0,-1,/tmp/blob,x","server")

The first term in the quoted pathname string is an offset of 0, which instructs
the database server to begin reading at the start of the file.

The second term is a length of -1, which instructs the database server to
continue reading until the end of the entire file.

The third term is the /tmp/blob,x pathname, specifying which file to read.
(Notice the comma symbol that precedes the x.)

Because the pathname includes a comma, the comma-separated offset and
length specifications are necessary in this example to avoid an error when
FILETOBLOB is called. You do not need to specify offset and length for
pathnames that include no comma, but including 0,-1, as the initial characters
of the pathname string avoids this error for any valid pathname.
Segments 4-137

Expression
LOTOFILE Function

The LOTOFILE function copies a smart large object to an operating-system
file. The first parameter specifies the BLOB or CLOB column to copy. The
function determines what file to create from the following parameters:

� The pathname identifies the directory path and the source file name.

� The file destination identifies the computer, client or server, on which
this file resides:

❑ Set file destination to client to identify the client computer as the
location of the source file. The pathname can be either a full
pathname or a path relative to the current directory.

❑ Set file destination to server to identify the server computer as
the location of the source file. The full pathname is required.

By default, the LOTOFILE function generates a filename of the form:

file.hex_id

In this format, file is the filename you specify in pathname and hex_id is the
unique hexadecimal smart-large-object identifier. The maximum number of
digits for a smart-large-object identifier is 17; however most smart large
objects would have an identifier with significantly fewer digits.

For example, suppose you specify a pathname value as follows:

'/tmp/resume'

If the CLOB column has the identifier 203b2, then LOTOFILE creates the file:

/tmp/resume.203b2

♦

For example, suppose you specify a pathname value as follows:

'C:\tmp\resume'

If the CLOB column has an identifier of 203b2, the LOTOFILE function would
create the file:

C:\tmp\resume.203b2

♦

UNIX

Windows
4-138 IBM Informix Guide to SQL: Syntax

Expression
To change the default filename, you can specify the following wildcards in
the filename of the pathname:

� One or more contiguous question mark (?) characters in the
filename can generate a unique filename.

The LOTOFILE function replaces each question mark with a hexadec-
imal digit from the identifier of the BLOB or CLOB column.

For example, suppose you specify a pathname value as follows:
'/tmp/resume??.txt'

The LOTOFILE function puts 2 digits of the hexadecimal identifier
into the name. If the CLOB column has an identifier of 203b2, the
LOTOFILE function would create the file:

/tmp/resume20.txt

♦
If you specify more than 17 question marks, LOTOFILE ignores them.

� An exclamation (!) point at the end of the filename indicates that the
filename does not need to be unique.

For example, suppose you specify a pathname value as follows:
'C:\tmp\resume.txt!'

The LOTOFILE function does not use the smart-large-object identifier
in the filename, so it generates the following file:

C:\tmp\resume.txt

♦

If the filename you specify already exists, LOTOFILE returns an error.

The LOTOFILE function performs any code-set conversion that might be
required when it copies a CLOB value from the database to a file on the client
or server computer. ♦

When you qualify LOTOFILE with the name of a remote database and a
remote database server, the BLOB or CLOB column, the pathname, and the file
destination become relative to the remote database server.

When you specify server as the file destination, as in the next example, the
LOTOFILE function copies the smart large object from the remote database
server to a source file in the specified directory on the remote database server:

rdb@rserv:LOTOFILE(blob_col, 'C:\tmp\photo.gif!', 'server')

UNIX

Windows

GLS
Segments 4-139

Expression
If you specify client as the file destination, as in the following example, the
LOTOFILE function copies the smart large object from the remote database
server to a source file in the specified directory on the local client computer:

rdb@rserv:LOTOFILE(clob_col, 'C:\tmp\essay.txt!', 'client')

LOCOPY Function

The LOCOPY function creates a copy of a smart large object. The first
parameter specifies the BLOB or CLOB column to copy. The table and column
parameters are optional.

� If you omit table and column, the LOCOPY function creates a smart
large object with system-specified storage defaults and copies the
data in the BLOB or CLOB column into it.

The LOCOPY function obtains the system-specific storage defaults
from either the ONCONFIG file or the sbspace. For more information
on system-specified storage defaults, see the Administrator’s Guide.

� When you specify table and column, the LOCOPY function uses the
storage characteristics from the specified column for the BLOB or
CLOB value that it creates.

The LOCOPY function returns a handle value (a pointer) to the new BLOB or
CLOB value. This function does not actually store the new smart-large-object
value into a column in the database. You must assign the BLOB or CLOB value
to the appropriate column.
4-140 IBM Informix Guide to SQL: Syntax

Expression
The following ESQL/C code fragment copies the CLOB value in the resume
column of the candidate table to the resume column of the interview table:

/* Insert a new row in the interviews table and get the
* resulting SERIAL value (from sqlca.sqlerrd[1])
*/

EXEC SQL insert into interviews (intrv_num, intrv_time)
values (0, '09:30');

intrv_num = sqlca.sqlerrd[1];

/* Update this interviews row with the candidate number
* and resume from the candidate table. Use LOCOPY to
* create a copy of the CLOB value in the resume column
* of the candidate table.
*/

EXEC SQL update interviews
SET (cand_num, resume) =

(SELECT cand_num,
LOCOPY(resume, 'candidate', 'resume')

FROM candidate
WHERE cand_lname = 'Haven')

WHERE intrv_num = :intrv_num;

In the preceding example, the LOCOPY function returns a handle value for
the copy of the CLOB resume column in the candidate table. Because the
LOCOPY function specifies a table and column name, this new CLOB value
has the storage characteristics of this resume column. If you omit the table
(candidate) and column (resume) names, the LOCOPY function uses the
system-defined storage defaults for the new CLOB value. The UPDATE
statement then assigns this new CLOB value to the resume column in the
interviews table.

In the following example, the LOCOPY function executes on the local
database server and returns a handle value on the local server for the copy of
the BLOB cand_pic column in the remote election2000 table. The INSERT
statement then assigns this new BLOB value to the cand_photo column in the
local candidate table.

INSERT INTO candidate (cand_photo)
SELECT LOCOPY(cand_pic) FROM rdb@rserv:election2000

When the LOCOPY function executes on the same database server as the
original BLOB or CLOB column in a distributed query, it produces two copies
of the BLOB or CLOB value, one on the remote database server and the other
on the local database server, as the following two examples show.
Segments 4-141

Expression
In the first example, the LOCOPY function executes on the remote database
server and returns a handle value on the remote server for the copy of the
BLOB cand_pic column in the remote election2000 table. The INSERT
statement then assigns this new BLOB value to the cand_photo column in the
local candidate table:

INSERT INTO candidate (cand_photo)
SELECT rdb@rserv:LOCOPY(cand_pic)

FROM rdb@rserv:election2000

In the second example, the LOCOPY function executes on the local database
server and returns a handle value on the local server for the copy of the BLOB
cand_photo column in the local candidate table. The INSERT statement then
assigns this new BLOB value to the cand_pic column in the remote
election2000 table:

INSERT INTO rdb@rserv:election2000 (cand_pic)
SELECT LOCOPY(cand_photo) FROM candidate
4-142 IBM Informix Guide to SQL: Syntax

Expression
Time Functions

Element Purpose Restrictions Syntax
char_expression Expression to be converted to

a DATE or DATETIME value
Must be a literal, host variable, expression, or
column of a character data type

Expression,
p. 4-67

date/dtime_expr Expression that returns a
DATE or DATETIME value

Must return a DATE or DATETIME value. Expression,
p. 4-67

day Expression that returns the
number of a day of the month

Must evaluate to an integer not greater than
the number of days in the specified month.

Expression,
p. 4-67

first Largest time unit in the result
If you omit first and last, the
default first is YEAR.

Must be a DATETIME qualifier that specifies
a time unit no smaller than last.

DATETIME
Qualifier,
p. 4-65

format_string String that contains a format
mask for the DATE or
DATETIME value

Must be a character data type and contain a
valid date format. Can be a column, host
variable, expression, or constant.

Quoted
String,
p. 4-243

last Smallest time unit in the
result

Must be a DATETIME qualifier that specifies
a time unit no smaller than first.

DATETIME
Qualifier,
p. 4-65

month Expression that represents
the number of the month

Must evaluate to an integer between 1 and
12, inclusive.

Expression,
p. 4-67

(1 of 2)

DATE

DAY date/dtime_expr

MONTH

WEEKDAY

YEAR

EXTEND

MDY

non_date_expr

first,

,,month day year

)(

)(

()

)(

TO last

TO_CHAR source_date)(

format_string,TO_DATE char_expression(

date/dtime_expr

Back to Function Expressions
p. 4-113

Time Functions
Segments 4-143

Expression
DATE Function

The DATE function converts a non-DATE expression to a DATE value. The
argument can be any expression that can be converted to a DATE value,
usually a CHAR, DATETIME, or INTEGER value. The following WHERE clause
specifies a CHAR value for the nondate expression:

WHERE order_date < DATE('12/31/97')

When the DATE function interprets a CHAR nondate expression, it expects
this expression to conform to any DATE format that the DBDATE environment
specifies. For example, suppose DBDATE is set to Y2MD/ when you execute
the following query:

SELECT DISTINCT DATE('02/01/1998') FROM ship_info

This SELECT statement generates an error because the DATE function cannot
convert this nondate expression. The DATE function interprets the first part
of the date string (02) as the year and the second part (01) as the month.

For the third part (1998), the DATE function encounters four digits when it
expects a two-digit day (valid day values must be between 01 and 31). It
therefore cannot convert the value. For the SELECT statement to execute
successfully with the Y2MD/ value for DBDATE, the nondate expression
would need to be '98/02/01'. For information on the format of DBDATE, see
the IBM Informix Guide to SQL: Reference.

When you specify a positive INTEGER value for the nondate expression, the
DATE function interprets this as the number of days after December 31, 1899.

non_date_expr Expression that represents a
value to be converted to a
DATE data type

Typically an expression that returns a CHAR,
DATETIME, or INTEGER value that can be
converted to a DATE data type.

Expression,
p. 4-67

source_date Date to be converted to a
character string

Type DATETIME or DATE. Can be host
variable, expression, column, or constant.

Expression,
p. 4-67

year Expression that represents
the year

Must evaluate to a four-digit integer. You
cannot use a two-digit abbreviation.

Expression,
p. 4-67

Element Purpose Restrictions Syntax

(2 of 2)
4-144 IBM Informix Guide to SQL: Syntax

Expression
If the integer value is negative, the DATE function interprets the value as the
number of days before December 31, 1899. The following WHERE clause
specifies an INTEGER value for the nondate expression:

WHERE order_date < DATE(365)

The database server searches for rows with an order_date value less than
December 31, 1900 (12/31/1899 plus 365 days).

DAY Function

The DAY function returns an integer that represents the day of the month. The
following example uses the DAY function with the CURRENT function to
compare column values to the current day of the month:

WHERE DAY(order_date) > DAY(CURRENT)

MONTH Function

The MONTH function returns an integer corresponding to the month portion
of its type DATE or DATETIME argument. The following example returns a
number from 1 through 12 to indicate the month when the order was placed:

SELECT order_num, MONTH(order_date) FROM orders

WEEKDAY Function

The WEEKDAY function returns an integer that represents the day of the
week; zero (0) represents Sunday, one (1) represents Monday, and so on. The
following example lists all the orders that were paid on the same day of the
week, which is the current day:

SELECT * FROM orders
WHERE WEEKDAY(paid_date) = WEEKDAY(CURRENT)

YEAR Function

The YEAR function returns a four-digit integer that represents the year.

The following example lists orders in which the ship_date is earlier than the
beginning of the current year:

SELECT order_num, customer_num FROM orders
WHERE year(ship_date) < YEAR(TODAY)
Segments 4-145

Expression
Similarly, because a DATE value is a simple calendar date, you cannot add or
subtract a DATE value with an INTERVAL value whose last qualifier is smaller
than DAY. In this case, convert the DATE value to a DATETIME value.

EXTEND Function

The EXTEND function adjusts the precision of a DATETIME or DATE value.
The expression cannot be a quoted string representation of a DATE value.

If you do not specify first and last qualifiers, the default qualifiers are YEAR
TO FRACTION(3).

If the expression contains fields that are not specified by the qualifiers, the
unwanted fields are discarded.

If the first qualifier specifies a larger (that is, more significant) field than what
exists in the expression, the new fields are filled in with values returned by
the CURRENT function. If the last qualifier specifies a smaller field (that is,
less significant) than what exists in the expression, the new fields are filled in
with constant values. A missing MONTH or DAY field is filled in with 1, and
the missing HOUR to FRACTION fields are filled in with 0.

In the following example, the first EXTEND call evaluates to the call_dtime
column value of YEAR TO SECOND. The second statement expands a literal
DATETIME so that an interval can be subtracted from it. You must use the
EXTEND function with a DATETIME value if you want to add it to or subtract
it from an INTERVAL value that does not have all the same qualifiers. The
third example updates only a portion of the datetime value, the hour
position. The EXTEND function yields just the hh:mm part of the datetime.
Subtracting 11:00 from the hours and minutes of the datetime yields an
INTERVAL value of the difference, plus or minus, and subtracting that from
the original value forces the value to 11:00.

EXTEND (call_dtime, YEAR TO SECOND)

EXTEND (DATETIME (1989-8-1) YEAR TO DAY, YEAR TO MINUTE)
- INTERVAL (720) MINUTE (3) TO MINUTE

UPDATE cust_calls SET call_dtime = call_dtime -
(EXTEND(call_dtime, HOUR TO MINUTE) - DATETIME (11:00)
HOUR TO MINUTE) WHERE customer_num = 106
4-146 IBM Informix Guide to SQL: Syntax

Expression
MDY Function

The MDY function returns a type DATE value with three expressions that
evaluate to integers that represent the month, day, and year. The first
expression must evaluate to an integer that represents the number of the
month (1 to 12).

The second expression must evaluate to an integer that represents the
number of the day of the month (1 to 28, 29, 30, or 31, as appropriate for the
month.)

The third expression must evaluate to a four-digit integer that represents the
year. You cannot use a two-digit abbreviation for the third expression. The
following example sets the paid_date associated with the order number 8052
equal to the first day of the present month:

UPDATE orders SET paid_date = MDY(MONTH(TODAY), 1, YEAR(TODAY))
WHERE po_num = '8052'

TO_CHAR Function

The TO_CHAR function converts a DATE or DATETIME value to a character
string. The character string contains the date that was specified in the
source_date parameter and represents this date in the format that was
specified in the format_string parameter.

You can use this function only with built-in data types. ♦

If the value of the source_date parameter is NULL, the function returns a NULL
value.

If you omit the format_string parameter, the TO_CHAR function uses the
default date format to format the character string. The default date format is
specified by environment variables such as GL_DATETIME and GL_DATE.

The format_string parameter does not have to imply the same qualifiers as the
source_date parameter. When the implied formatting mask qualifier in
format_ string is different from the qualifier in source_date, the TO_CHAR
function extends the DATETIME value as if it had called the EXTEND function.

IDS
Segments 4-147

Expression
In the following example, the user wants to convert the begin_date column
of the tab1 table to a character string. The begin_date column is defined as a
DATETIME YEAR TO SECOND data type. The user uses a SELECT statement
with the TO_CHAR function to perform this conversion.

SELECT TO_CHAR(begin_date, '%A %B %d, %Y %R') FROM tab1

The symbols in the format_string parameter in this example have the
following meanings. For a complete list of format symbols and their
meanings, see the GL_DATE and GL_DATETIME environment variables in the
IBM Informix GLS User’s Guide.

The result of applying the specified format_string to the begin_date column
is as follows:

Wednesday July 23, 1997 18:45

TO_DATE Function

The TO_DATE function converts a character string to a DATETIME value. The
function evaluates the char_expression parameter as a date according to the
date format you specify in the format_string parameter and returns the equiv-
alent date. If char_expression is NULL, then a NULL value is returned.

The argument of the TO_DATE function must be of a built-in data type. ♦

If you omit the format_string parameter, the TO_DATE function applies the
default DATETIME format to the DATETIME value. The default DATETIME
format is specified by the GL_DATETIME environment variable.

Symbol Meaning

%A Full weekday name as defined in the locale

%B Full month name as defined in the locale

%d Day of the month as a decimal number

%Y Year as a 4-digit decimal number

%R Time in 24-hour notation

IDS
4-148 IBM Informix Guide to SQL: Syntax

Expression
In the following example, the user wants to convert a character string to a
DATETIME value in order to update the begin_date column of the tab1 table
with the converted value. The begin_date column is defined as a DATETIME
YEAR TO SECOND data type. The user uses an UPDATE statement that
contains a TO_DATE function to accomplish this result.

UPDATE tab1
SET begin_date = TO_DATE('Wednesday July 23, 1997 18:45',
'%A %B %d, %Y %R');

The format_string parameter in this example tells the TO_DATE function how
to format the converted character string in the begin_date column. For a table
that shows the meaning of each format symbol in this format string, see
“TO_CHAR Function” on page 4-147.

Trigonometric Functions

The built-in trigonometric functions have the following syntax.

Element Purpose Restrictions Syntax
numeric_expr Expression that serves as an argument to the

ASIN, ACOS, or ATAN functions
Must return a value between
-1 and 1, inclusive.

Expression,
p. 4-67

radian_expr Expression that represents the number of
radians

Must return a numeric value. Expression,
p. 4-67

x Expression that represents the x coordinate of
the rectangular coordinate pair (x, y)

Must return a numeric value. Expression,
p. 4-67

y Expression that represents the y coordinate of
the rectangular coordinate pair (x, y)

Must return a numeric value. Expression,
p. 4-67

Back to Function Expressions
p. 4-113

Trigonometric Functions

ATAN2 y, x

numeric_expr

radian_ expr)(

)

)

(

(

ACOS

ASIN

ATAN

SIN

COS

TAN
Segments 4-149

Expression
Formulas for Radian Expressions

The COS, SIN, and TAN functions take the number of radians (radian_expr) as
an argument. If you are using degrees and want to convert degrees to
radians, use the following formula:

degrees * p/180= # radians

To convert radians to degrees, use the following formula:

radians * 180/p = # degrees

COS Function

The COS function returns the cosine of a radian expression. The following
example returns the cosine of the values of the degrees column in the
anglestbl table. The expression passed to the COS function in this example
converts degrees to radians.

SELECT COS(degrees*180/3.1416) FROM anglestbl

SIN Function

The SIN function returns the sine of a radian expression. This example
returns the sine of the values in the radians column of the anglestbl table:

SELECT SIN(radians) FROM anglestbl

TAN Function

The TAN function returns the tangent of a radian expression. This example
returns the tangent of the values in the radians column of the anglestbl table:

SELECT TAN(radians) FROM anglestbl

ACOS Function

The ACOS function returns the arc cosine of a numeric expression. The
following example returns the arc cosine of the value (-0.73) in radians:

SELECT ACOS(-0.73) FROM anglestbl
4-150 IBM Informix Guide to SQL: Syntax

Expression
ASIN Function

The ASIN function returns the arc sine of a numeric expression. The
following example returns the arc sine of the value (-0.73) in radians:

SELECT ASIN(-0.73) FROM anglestbl

ATAN Function

The ATAN function returns the arc tangent of a numeric expression. The
following example returns the arc tangent of the value (-0.73) in radians:

SELECT ATAN(-0.73) FROM anglestbl

ATAN2 Function

The ATAN2 function computes the angular component of the polar
coordinates (r, q) associated with (x, y). The following example compares
angles to q for the rectangular coordinates (4, 5):

WHERE angles > ATAN2(4,5) --determines q for (4,5) and
 compares to angles

You can determine the length of the radial coordinate r using the expression
that the following example shows:

SQRT(POW(x,2) + POW(y,2)) --determines r for (x,y)

You can determine the length of the radial coordinate r for the rectangular
coordinates (4,5) using the expression that the following example shows:

SQRT(POW(4,2) + POW(5,2)) --determines r for (4,5)
Segments 4-151

Expression
String-Manipulation Functions

String-manipulation functions perform various operations on strings of
characters. The syntax for string-manipulation functions is as follows.

TRIM Function

The TRIM function removes leading or trailing pad characters from a string.

Back to Function Expressions
p. 4-113

String-Manipulation Functions

+

TRIM Function
p. 4-152

SUBSTRING Function
p. 4-154

SUBSTR Function
p. 4-156

REPLACE Function
p. 4-158

LPAD Function
p. 4-159

RPAD Function
p. 4-160

Case-Conversion Functions
p. 4-161

Element Purpose Restrictions Syntax
trim

_expression
Expression that evaluates to a single character or
NULL Default is a blank space (= ASCII 32)

Must be a character
expression

Quoted String,
p. 4-243

source
_expression

Character expression, including a character
column name, or a call to another TRIM function

Cannot be LVARCHAR
nor a host variable

Quoted String,
p. 4-243

Back to String-Manipulation Functions
p. 4-152

TRIM Function

)(

LEADING

TRAILING

TRIM source_expression

FROM

trim_expression

BOTH
4-152 IBM Informix Guide to SQL: Syntax

Expression
The TRIM function returns a VARCHAR value identical to its character string
argument, except that any leading or trailing whitespace characters, if
specified, are deleted. If no trim qualifier (LEADING, TRAILING, or BOTH) is
specified, BOTH is the default. If no trim_expression is used, a single blank
space is assumed. If either the trim_expression or the source_expression
evaluates to NULL, the result of the TRIM function is NULL. The maximum
length of the returned string must be 255 bytes or fewer, because the
VARCHAR data type supports no more than 255 bytes.

The following example shows some generic uses for the TRIM function:

SELECT TRIM (c1) FROM tab;
SELECT TRIM (TRAILING '#' FROM c1) FROM tab;
SELECT TRIM (LEADING FROM c1) FROM tab;
UPDATE c1='xyz' FROM tab WHERE LENGTH(TRIM(c1))=5;
SELECT c1, TRIM(LEADING '#' FROM TRIM(TRAILING '%' FROM

'###abc%%%')) FROM tab;

When you use the DESCRIBE statement with a SELECT statement that uses the
TRIM function in the select list, the described character type of the trimmed
column depends on the database server that you are using and on the data
type of the source_expression. For further information on the GLS aspects of the
TRIM function in ESQL/C, see the IBM Informix GLS User’s Guide. ♦

Fixed Character Columns

The TRIM function can be specified on fixed-length character columns. If the
length of the string is not completely filled, the unused characters are padded
with blank space. Figure 4-3 shows this concept for the column entry
'##A2T##', where the column is defined as CHAR(10).

If you want to trim the pound sign (#) trim_expression from the column, you
need to consider the blank padded spaces as well as the actual characters.

GLS

Figure 4-3
Column Entry in a

Fixed-Length
Character Column2 T #A## #

Blank paddedCharacters

21 3 4 5 6 7 8 9 10
Segments 4-153

Expression
For example, if you specify the trim specification BOTH, the result from the
trim operation is A2T##, because the TRIM function does not match the blank
padded space that follows the string. In this case, the only pound signs (#)
trimmed are those that precede the other characters. The SELECT statement is
shown, followed by Figure 4-4, which presents the result.

SELECT TRIM(LEADING '#' FROM col1) FROM taba

This SELECT statement removes all occurrences of the pounds (#) sign:

SELECT TRIM(BOTH '#' FROM TRIM(TRAILING ' ' FROM col1)) FROM taba

SUBSTRING Function

The SUBSTRING function returns a subset of a character string.

Figure 4-4
Result of TRIM

Operation
#T2A

Blank paddedCharacters

21 3 4 5 6 7 8 9 10

Element Purpose Restrictions Syntax
length Number of characters to

return from source_string
Must be an expression, constant, column,
or host variable that returns an integer.

Literal Number,
p. 4-216

source_string String argument to the
SUBSTRING function

Must be an expression, constant, column,
or host variable whose value can be
converted to a character data type.

Expression,
p. 4-67

start_position Position in source_string of
first returned character

Must be an expression, constant, column,
or host variable that returns an integer.

Literal Number,
p. 4-216

SUBSTRING FROM

FOR

()source_string start_position

length

Back to String-Manipulation Functions
p. 4-152

SUBSTRING Function
4-154 IBM Informix Guide to SQL: Syntax

Expression
You can use the SUBSTRING function only with built-in data types. ♦

The subset begins at the column position that start_position specifies. The
following table shows how the database server determines the starting
position of the returned subset based on the input value of the start_position.

In locales for languages with a right-to-left writing direction, such as Arabic,
Farsi, or Hebrew, right should replace left in the preceding table. ♦

The size of the subset is specified by length. The length parameter refers to the
number of logical characters rather than to the number of bytes. If you omit
the length parameter, the SUBSTRING function returns the entire portion of
source_ string that begins at start_position. The following example specifies
that the subset of the source string that begins in column position 3 and is two
characters long should be returned:

SELECT SUBSTRING('ABCDEFG' FROM 3 FOR 2) FROM mytable

The following table shows the output of this SELECT statement.

Value of
Start_Position

How the Database Server Determines the
Starting Position of the Return Subset

Positive Counts forward from the first character in source_string

For example, if start_position = 1, the first character in the
source_string is the first character in the return subset.

Zero (0) Counts from one position before (that is, to the left of) the first
character in source_string

For example, if start_position = 0 and length = 1, the database server
returns NULL, whereas if length = 2, the database server returns
the first character in source_string.

Negative Counts backward from one position before (that is, left of) the first
character in source_string

For example, if start_position = -1, the starting position of the
return subset is two positions (0 and -1) before the first character
in source_string.

(constant)

CD

IDS

GLS
Segments 4-155

Expression
In the following example, the user specifies a negative start_position for the
return subset:

SELECT SUBSTRING('ABCDEFG' FROM -3 FOR 7)
FROM mytable

The database server starts at the -3 position (four positions before the first
character) and counts forward for 7 characters. The following table shows the
output of this SELECT statement.

SUBSTR Function

The SUBSTR function has the same purpose as the SUBSTRING function (to
return a subset of a source string), but it uses different syntax.

Any argument to the SUBSTR function must be of a built-in data type. ♦

(constant)

ABC

Element Purpose Restrictions Syntax
length Number of characters to be

returned from source_string
Must be an expression, constant, column,
or host variable that returns an integer.

Literal
Number,
p. 4-216

source_string String that serves as input to the
SUBSTR function

Must be an expression, constant, column,
or host variable of a data type that can be
converted to a character data type.

Expression,
p. 4-67

start_position Column position in source_string
where the SUBSTR function
starts to return characters

Must be an integer expression, constant,
column, or host variable. Can have a plus
sign (+), a minus sign (-), or no sign.

Literal
Number,
p. 4-216

SUBSTR ()source_string start_position

length

,

,

Back to String-Manipulation Functions
p. 4-152

SUBSTR Function

IDS
4-156 IBM Informix Guide to SQL: Syntax

Expression
The SUBSTR function returns a subset of source_string. The subset begins at
the column position that start_position specifies. The following table shows
how the database server determines the starting position of the returned
subset based on the input value of the start_position.

The length parameter specifies the number of logical characters (not bytes) in
the subset. If you omit the length parameter, the SUBSTR function returns the
entire portion of source_ string that begins at start_position.

In the following example, the user specifies that the subset of the source
string to be returned begins at a starting position 3 characters back from the
end of the string. Because the source string is 7 characters long, the starting
position is the fifth column of source_string. Because the user does not specify
a value for length, the database server returns the entire portion of the source
string that begins in column position 5.

SELECT SUBSTR('ABCDEFG', -3)
FROM mytable

The following table shows the output of this SELECT statement.

Value of
Start_Position

How the Database Server Determines the
Starting Position of the Return Subset

Positive Counts forward from the first character in source_string

Zero (0) Counts forward from the first character in source_string (that is,
treats a start_position of 0 as equivalent to 1)

Negative Counts backward from the last character in source_string

A value of -1 returns the last character in source_string.

(constant)

EFG
Segments 4-157

Expression
REPLACE Function

The REPLACE function replaces specified characters within a source string
with different characters.

Any argument to the REPLACE function must be of a built-in data type. ♦

The REPLACE function returns a copy of source_string in which every occur-
rence of old_string is replaced by new_string. If you omit the new_string
option, every occurrence of old_string is omitted from the return string.

In the following example, the user replaces every occurrence of xz in the
source string with t:

SELECT REPLACE('Mighxzy xzime', 'xz', 't')
FROM mytable

The following table shows the output of this SELECT statement.

Element Purpose Restrictions Syntax
new_string Character or characters that

replace old_string in the return
string

Must be an expression, constant, column,
or host variable of a data type that can be
converted to a character data type.

Expression,
p. 4-67

old_string Character or characters in
source_string that are to be
replaced by new_string

Must be an expression, constant, column,
or host variable of a data type that can be
converted to a character data type.

Expression,
p. 4-67

source_string String of characters argument to
the REPLACE function

Must be an expression, constant, column,
or host variable of a data type that can be
converted to a character data type.

Expression,
p. 4-67

REPLACE ()source_string old_string

new_string

,

,

Back to String-Manipulation Functions
p. 4-152

REPLACE Function

(constant)

Mighty time

IDS
4-158 IBM Informix Guide to SQL: Syntax

Expression
LPAD Function

The LPAD function returns a copy of source_string that is left-padded to the
total number of characters specified by length.

Any argument to the LPAD function must be of a built-in data type. ♦

The pad_string parameter specifies the character or characters to be used for
padding the source string. The sequence of pad characters occurs as many
times as necessary to make the return string the length specified by length.

The series of pad characters in pad_string is truncated if it is too long to fit into
length. If you specify no pad_string, the default value is a single blank.

In the following example, the user specifies that the source string is to be left-
padded to a total length of 16 characters. The user also specifies that the pad
characters are a series consisting of a hyphen and an underscore (-_).

SELECT LPAD('Here we are', 16, '-_') FROM mytable

Element Purpose Restrictions Syntax
length Integer value that specifies

total number of characters
in the returned string

Must be an expression, constant, column, or
host variable of a data type that can be
converted to a character data type.

Literal
Number,
p. 4-216

pad_string String that specifies the
pad character or
characters

Must be an expression, constant, column, or
host variable of a data type that can be
converted to a character data type.

Expression,
p. 4-67

source_string String that serves as input
to the LPAD function

Must be an expression, constant, column, or
host variable of a data type that can be
converted to a character data type.

Expression,
p. 4-67

LPAD ()source_string length

pad_string

,

,

Back to String-Manipulation Functions
p. 4-152

LPAD Function

IDS
Segments 4-159

Expression
The following table shows the output of this SELECT statement.

RPAD Function

The RPAD function returns a copy of source_string that is right-padded to the
total number of characters that length specifies.

Any argument to the RPAD function must be of a built-in data type. ♦

The pad_string parameter specifies the pad character or characters to be used
to pad the source string.

The series of pad characters occurs as many times as necessary to make the
return string reach the length that length specifies. The series of pad
characters in pad_string is truncated if it is too long to fit into length. If you
omit the pad_string parameter, the default value is a single blank space.

(constant)

-_-_-Here we are

Element Purpose Restrictions Syntax
length Integer value that indicates the

total number of characters in the
return string

Must be an expression, constant, column,
or host variable

Literal
Number,
p. 4-216

pad_string String that specifies the pad
character or characters

Must be an expression, column, constant,
or host variable of a data type that can be
converted to a character data type

Expression,
p. 4-67

source_string String that serves as input to the
RPAD function

Same as for pad_stringe Expression,
p. 4-67

RPAD ()source_string length

pad_string

,

,

Back to String-Manipulation Functions
p. 4-152

RPAD Function

IDS
4-160 IBM Informix Guide to SQL: Syntax

Expression
In the following example, the user specifies that the source string is to be
right-padded to a total length of 18 characters. The user also specifies that the
pad characters to be used are a sequence consisting of a question mark and
an exclamation point (?!).

SELECT RPAD('Where are you', 18, '?!')
FROM mytable

The following table shows the output of this SELECT statement.

Case-Conversion Functions

The case-conversion functions perform lettercase conversion on alphabetic
characters. In the default locale, only the ASCII characters A - Z and a - z

can be modified by these functions, which enable you to perform case-insen-
sitive searches in your queries and to specify the format of the output.

The case-conversion functions are UPPER, LOWER, and INITCAP. The
following diagram shows the syntax of these case-conversion functions.

The expression must return a character data type. When the column is
described, the data type returned by the database server is that of expression.
For example, if the input type is CHAR, the output type is also CHAR.

Arguments to these functions must be of the built-in data types. ♦

(constant)

Where are you?!?!?

Element Purpose Restrictions Syntax
expression Expression returning

a character string
Must be a character type. If a host variable, its declared
length must be long enough to store the converted string.

Expression,
p. 4-67

()expressionLOWER

INITCAP

Back to String-Manipulation Functions
p. 4-152

Case-Conversion Functions

UPPER

IDS
Segments 4-161

Expression
The byte length returned from the description of a column with a case-
conversion function is the input byte length of the source string. If you use a
case-conversion function with a multibyt expression argument, the
conversion might increase or decrease the length of the string. If the byte
length of the result string exceeds the byte length expression, the database
server truncates the result string to fit into the byte length of expression.

Only characters designated as ALPHA class in the locale file are converted,
and this occurs only if the locale recognizes the construct of lettercase. ♦

If expression is NULL, the result of a case-conversion function is also NULL.

The database server treats a case-conversion function as an SPL routine in the
following instances:

� If it has no argument

� If it has one argument, and that argument is a named argument

� If it has more than one argument

� If it appears in a SELECT list with a host variable as an argument

If none of the conditions in the preceding list are met, the database server
treats a case-conversion function as a system function.

The following example uses all the case-conversion functions in the same
query to specify multiple output formats for the same value:

Input value:

SAN Jose

Query:

SELECT City, LOWER(City), Lower("City"),
UPPER (City), INITCAP(City)

FROM Weather;

Query output:

SAN Jose san jose city SAN JOSE San Jose

UPPER Function

The UPPER function returns a copy of the expression argument in which every
lowercase alphabetical character in the expression is replaced by a corre-
sponding uppercase alphabetic character.

GLS
4-162 IBM Informix Guide to SQL: Syntax

Expression
The following example shows how to use the UPPER function to perform a
case-insensitive search on the lname column for all employees with the last
name of curran:

SELECT title, INITCAP(fname), INITCAP(lname) FROM employees
WHERE UPPER (lname) = "CURRAN"

Because the INITCAP function is specified in the select list, the database
server returns the results in a mixed-case format. For example, the output of
one matching row might read: accountant James Curran.

LOWER Function

The LOWER function returns a copy of the expression in which every
uppercase alphabetic character in the expression is replaced by a corre-
sponding lowercase alphabetic character.

The following example shows how to use the LOWER function to perform a
case-insensitive search on the City column. This statement directs the
database server to replace all instances (that is, any variation) of the words
san jose, with the mixed-case format, San Jose.

UPDATE Weather SET City = "San Jose"
WHERE LOWER (City) = "san jose";

INITCAP Function

The INITCAP function returns a copy of the expression in which every word
in the expression begins with an uppercase letter. With this function, a word
begins after any character other than a letter. Thus, in addition to a blank
space, symbols such as commas, periods, colons, and so on, introduce a new
word.

For an example of the INITCAP function, see “UPPER Function” on
page 4-162.
Segments 4-163

Expression
IFX_ALLOW_NEWLINE Function

The IFX_ALLOW_NEWLINE function sets a newline mode that allows
newline characters in quoted strings or disallows newline characters in
quoted strings within the current session.

If you enter 't' as the argument of this function, you enable newline
characters in quoted strings in the session. If you enter 'f' as the argument,
you disallow newline characters in quoted strings in the session.

You can set the newline mode for all sessions by setting the
ALLOW_NEWLINE parameter in the ONCONFIG file to a value of 0 (newline
characters not allowed) or to a value of 1 (newline characters allowed). If you
do not set this configuration parameter, the default value is 0. Each time you
start a session, the new session inherits the newline mode set in the
ONCONFIG file. To change the newline mode for the session, execute the
IFX_ALLOW_NEWLINE function. Once you have set the newline mode for a
session, the mode remains in effect until the end of the session or until you
execute the IFX_ALLOW_NEWLINE function again within the session.

In the following example, assume that you did not specify any value for the
ALLOW_NEWLINE parameter in the ONCONFIG file, so by default newline
characters are not allowed in quoted strings in any session. After you start a
new session, you can enable newline characters in quoted strings in that
session by executing the IFX_ALLOW_NEWLINE function:

EXECUTE PROCEDURE IFX_ALLOW_NEWLINE('t')

The newline mode that is set by the ALLOW_NEWLINE parameter in the
ONCONFIG file or by the execution of the IFX_ALLOW_NEWLINE function in
a session applies only to quoted-string literals in SQL statements. The
newline mode does not apply to quoted strings contained in host variables in
SQL statements. Host variables can contain newline characters within string
data regardless of the newline mode currently in effect.

IFX_ALLOW_NEWLINE ()' t '

Back to Function Expressions
p. 4-113

IFX_ALLOW_NEWLINE Function

' f '

E/C
4-164 IBM Informix Guide to SQL: Syntax

Expression
For example, you can use a host variable to insert data that contains newline
characters into a column even if the ALLOW_NEWLINE parameter in the
ONCONFIG file is set to 0. ♦

For further information on how the IFX_ALLOW_NEWLINE function affects
quoted strings, see “Quoted String” on page 4-243. For further information
on the ALLOW_NEWLINE parameter in the ONCONFIG file, see the Adminis-
trator’s Reference.

User-Defined Functions

A user-defined function is a function that you write in SPL or in a language
external to the database, such as C or Java.

You can call user-defined functions within SQL statements. Unlike built-in
functions, user-defined functions can only be used by the creator of the
function, the DBA, and the users who have been granted the Execute
privilege on the function. For more information, see “GRANT” on
page 2-459.

Element Purpose Restrictions Syntax
function Name of the function Function must exist Database Object

Name, p. 4-46
parameter Name of an argument that was

declared in a CREATE
FUNCTION statement

If you use the parameter = option for any
argument in the called function, you
must use it for all arguments

Identifier,
p. 4-189

parameter =

, Statement-Local Variable Declaration
p. 4-167

,

Back to Function Expressions
p. 4-113

User-Defined Functions

function)Expression
p. 4-67

(

IDS
Segments 4-165

Expression
The following examples show some user-defined function expressions. The
first example omits the parameter option when it lists the function argument:

read_address('Miller')

This second example uses the parameter option to specify the argument value:

read_address(lastname = 'Miller')

When you use the parameter option, the parameter name must match the name
of the corresponding parameter in the function registration. For example, the
preceding example assumes that the read_address() function had been regis-
tered as follows:

 CREATE FUNCTION read_address(lastname CHAR(20))
 RETURNING address_t ...

A statement-local variable (SLV) enables you to transmit a value from a user-
defined function call to another part of the SQL statement.

To use SLVs with a call to a user-defined function

1. Write one or more OUT parameters for the user-defined function.

For more information on how to write a user-defined function with
OUT parameters, see IBM Informix User-Defined Routines and Data
Types Developer’s Guide.

2. When you register the user-defined function, specify the OUT
keyword in front of each OUT parameter.

For more information, see “Specifying OUT Parameters for a User-
Defined Routine” on page 4-269.

3. Declare each SLV in a function expression that calls the user-defined
function with each OUT parameter.

The call to the user-defined function must be made within a WHERE
clause. For information about the syntax to declare a SLV, see “State-
ment-Local Variable Declaration” on page 4-167.

4. Use the SLVs that the user-defined function has initialized within the
SQL statement.

Once the call to the user-defined function has initialized the SLVs,
you can use their values in other parts of the SQL statement. For
information about the use of SLVs within an SQL statement, see
“Statement-Local Variable Expressions” on page 4-169.

IDS
4-166 IBM Informix Guide to SQL: Syntax

Expression
Statement-Local Variable Declaration

The Statement-Local Variable Declaration declares a statement-local variable
(SLV) in a call to a user-defined function that defines one or more OUT
parameters.

You declare an SLV in a user-defined function call so that a user-defined
function can assign the value of its OUT parameter to the SLV. The user-
defined function must be invoked in the WHERE clause of the SQL statement.
For example, if you register a function with the following CREATE FUNCTION
statement, you can use its y parameter as an SLV in a WHERE clause:

CREATE FUNCTION find_location(a FLOAT, b FLOAT, OUT y INTEGER)
RETURNING VARCHAR(20)
EXTERNAL NAME "/usr/lib/local/find.so"
LANGUAGE C

In this example, find_location() accepts two FLOAT values that represent a
latitude and a longitude and returns the name of the nearest city with an
extra value of type INTEGER that represents the population rank of the city.

IDS

Element Purpose Restrictions Syntax
distinct_data_type Name of a distinct data type The distinct data type must already exist

in the database
Identifier,
p. 4-189

opaque_data_type Name of an opaque data type The opaque data type must already exist
in the database

Identifier,
p. 4-189

slv_name Name of a statement local
variable you are defining

The slv_name exists only for the life of
the statement. The slv_name must be
unique within the statement

Identifier,
p. 4-189

Back to User-Defined Functions
p. 4-165

Statement-Local Variable Declaration

opaque_data_type

distinct_data_type

slv_name #
Built-In Data Type

p. 4-49

distinct_data_type

Complex Data Type
p. 4-61
Segments 4-167

Expression
You can now call find_location() in a WHERE clause:

SELECT zip_code_t FROM address
WHERE address.city = find_location(32.1, 35.7, rank # INT)
AND rank < 101;

The function expression passes two FLOAT values to find_location(and
declares an SLV named rank of type INT. In this case, find_location() will
return the name of the city nearest latitude 32.1 and longitude 35.7 (which
might be a heavily populated area) whose population rank is between 1 and
100. The statement then returns the zip code that corresponds to that city.

The WHERE clause of the SQL statement must produce an SLV that is used
within other parts of the statement. The following SELECT statement is invalid
because the select list of the Projection clause produces the SLV:

-- illegal SELECT statement
SELECT title, contains(body, 'dog and cat', rank # INT), rank

FROM documents

The data type you use when you declare a SLV in a statement must be the
same as the data type of the corresponding OUT parameter in the CREATE
FUNCTION statement. If you use different but compatible data types, such as
INTEGER and FLOAT, the database server automatically performs the cast
between the data types.

SLVs share the name space with UDR variables and the column names of the
table involved in the SQL statement. Therefore, the database uses the
following precedence to resolve ambiguous situations:

� UDR variables

� Column names

� SLVs

Once the user-defined function assigns its OUT parameters to the SLVs, you
can use this SLV value in other parts of the SQL statement. For more infor-
mation, see “Statement-Local Variable Expressions” on page 4-169.
4-168 IBM Informix Guide to SQL: Syntax

Expression
Statement-Local Variable Expressions
The Statement-Local Variable Expression specifies a statement-local variable
(SLV) that you can use elsewhere in the same SQL statement.

You define an SLV in the call to a user-defined function in the WHERE clause
of the SQL statement. This user-defined function must be defined with one or
more OUT parameters. The call to the user-defined function assigns the value
of the OUT parameters to the SLVs. For more information, see “Statement-
Local Variable Declaration” on page 4-167.

Once the user-defined function assigns its OUT parameters to the SLVs, you
can use these values in other parts of the SQL statement, subject to the
following scop-of-reference rules:

� The SLV is read-only throughout the query (or subquery) in which it
is defined.

� The scope of an SLV extends from the query in which the SLV is
defined down into all nested subqueries.

In other words, if a query contains a subquery, an SLV that is visible
in the query is also visible to all subqueries of that query.

� In nested queries, the scope of an SLV does not extend upwards.

In other words, if a query contains a subquery and the SLV is defined
in the subquery, it is not visible to the parent query.

IDS

Element Purpose Restrictions Syntax
SLV_variable Statement-local variable (SLV)

assigned in a call to a user-defined
function in the same SQL statement

The SLV_variable exists only for the
life of the statement. Its name must
be unique within the statement.

Identifier,
p. 4-189

Statement-Local Variable Expressions

SLV_variable

Back to Expression
p. 4-67
Segments 4-169

Expression
� In queries that involve UNION, the SLV is only visible in the query in
which it is defined.

The SLV is not visible to all other queries involved in the UNION.

� For INSERT, DELETE, and UPDATE statements, an SLV is not visible
outside the SELECT portion of the statement.

Within this SELECT portion, all the above scoping rules apply.

Important: A statement-local variable is valid only for the life of a single SQL
statement.

The following SELECT statement calls the find_location() function in a
WHERE clause and defines the rank SLV. Here find_location() accepts two
values that represent a latitude and a longitude and return the name of the
nearest city with an extra value of type INTEGER that represents the
population rank of the city.

SELECT zip_code_t FROM address
WHERE address.city = find_location(32.1, 35.7, rank # INT)
AND rank < 101;

When execution of the find_location() function completes successfully, the
function has initialized the rank SLV. The SELECT then uses this rank value in
a second WHERE clause condition. In this example, the Statement-Local
Variable Expression is the variable rank in the second WHERE clause
condition:

rank < 101

The number of OUT parameters and SLVs that a user-defined function can
have is not restricted. (Releases of Dynamic Server earlier than Version 9.4
restricted user-defined functions to a single OUT parameter, and thereby
restricted the number of SLVs to no more than one.)

If the user-defined function that initializes the SLVs is not executed in an
iteration of the statement, the SLVs each have a value of NULL. SLV values do
not persist across iterations of the statement. At the start of each iteration, the
database server sets the SLV values to NULL.
4-170 IBM Informix Guide to SQL: Syntax

Expression
The following partial statement calls two user-defined functions with OUT
parameters, whose values are referenced with the SLV names out1 and out2:

SELECT...
WHERE func_2(x, out1 # INTEGER) < 100
AND (out1 = 12 OR out1 = 13)
AND func_3(a, out2 # FLOAT) = "SAN FRANCISCO"
AND out2 = 3.1416;

For more information on how to write a user-defined function with OUT
parameters, see IBM Informix User-Defined Routines and Data Types Developer’s
Guide.

Aggregate Expressions
An aggregate expression uses an aggregate function to summarize selected
database data. The built-in aggregate functions have the following syntax.

Element Purpose Restrictions Syntax
column Column to which aggregate

function is applied
See headings for individual
keywords on pages that follow

Identifier, p. 4-189

synonym,
table, view

Synonym, table, or view
that contains column

Synonym and the table or view to
which it points must exist

Database Object Name, p. 4-46

()columnAVG

MAX

MIN

SUM

DISTINCT

ALL)

UNIQUE

table .

view .
synonym .

COUNT (

Back to Expression
p. 4-67

Aggregate Expressions

Subset of
Expression

p. 4-174

RANGE

STDEV

VARIANCE
User-Defined Aggregates

p. 4-185IDS

ALL

*(
Segments 4-171

Expression
You cannot use an aggregate expression in a condition that is part of a WHERE
clause unless you use the aggregate expression within a subquery. You
cannot apply an aggregate function to a BYTE or TEXT column. For other
general restrictions, see “Subset of Expressions Valid in an Aggregate
Expression” on page 4-174.

An aggregate function returns one value for a set of queried rows. The
following examples show aggregate functions in SELECT statements:

SELECT SUM(total_price) FROM items WHERE order_num = 1013

SELECT COUNT(*) FROM orders WHERE order_num = 1001

SELECT MAX(LENGTH(fname) + LENGTH(lname)) FROM customer

If you use an aggregate function and one or more columns in the select list of
the Projection clause, you must put all the column names that are not used as
part of an aggregate or time expression in the GROUP BY clause.

Types of Aggregate Expressions

SQL statements can include built-in aggregates and user-defined aggregates.
The built-in aggregates include all the aggregates shown in the syntax
diagram in “Aggregate Expressions” on page 4-171 except for the “User-
Defined Aggregates” category. User-defined aggregates are any new aggre-
gates that the user creates with the CREATE AGGREGATE statement.

Built-in Aggregates

Built-in aggregates are aggregate functions that are defined by the database
server, such as AVG, SUM, and COUNT. These aggregates work only with
built-in data types, such as INTEGER and FLOAT. You can extend these built-
in aggregates to work with extended data types. To extend built-in aggre-
gates, you must create UDRs that overload several binary operators.

After you overload the binary operators for a built-in aggregate, you can use
that aggregate with an extended data type in an SQL statement. For example,
if you have overloaded the plus operator for the SUM aggregate to work with
a specified row type and assigned this row type to the complex column of the
complex_tab table, you can apply the SUM aggregate to the complex column:

SELECT SUM(complex) FROM complex_tab
4-172 IBM Informix Guide to SQL: Syntax

Expression
For more information on how to extend built-in aggregates, see IBM Informix
User-Defined Routines and Data Types Developer’s Guide. For information on
how to invoke built-in aggregates, see the descriptions of individual built-in
aggregates in the following pages.

User-Defined Aggregates

A user-defined aggregate is an aggregate that you define to perform an
aggregate computation that the database server does not provide. For
example, you can create a user-defined aggregate named SUMSQ that returns
the sum of the squared values of a specified column. User-defined aggregates
can work with built-in data types or extended data types or both, depending
on how you define the support functions for the user-defined aggregate.

To create a user-defined aggregate, use the CREATE AGGREGATE statement.
In this statement you name the new aggregate and specify the support
functions for the aggregate. Once you create the new aggregate and its
support functions, you can use the aggregate in SQL statements. For example,
if you created the SUMSQ aggregate and specified that it works with the
FLOAT data type, you can apply the SUMSQ aggregate to a FLOAT column
named digits in the test table:

SELECT SUMSQ(digits) FROM test

For more information on how to create user-defined aggregates, see
“CREATE AGGREGATE” on page 2-104 and the discussion of user-defined
aggregates in IBM Informix User-Defined Routines and Data Types Developer’s
Guide. For information on how to invoke user-defined aggregates, see “User-
Defined Aggregates” on page 4-185.
Segments 4-173

Expression
Subset of Expressions Valid in an Aggregate Expression

As indicated in the diagrams for “Aggregate Expressions” on page 4-171 and
“User-Defined Aggregates” on page 4-185, not all expressions are available
when you use an aggregate expression. The argument of an aggregate
function, for example, cannot itself contain an aggregate function. You cannot
use aggregate functions in the following contexts:

� In a WHERE clause, unless it is contained in a subquery, or unless the
aggregate is on a correlated column from a parent query and the
WHERE clause is in a subquery within a HAVING clause

� As an argument to an aggregate function

The following nested aggregate expression is invalid:
MAX (AVG (order_num))

� On a BYTE or TEXT column

You cannot use a column that is a collection data type as an argument to the
following aggregate functions:

� AVG

� SUM

� MIN

� MAX

Expression or column arguments to built-in aggregates (except for COUNT,
MAX, MIN, and PERCENT) must return numeric or INTERVAL data types, but
RANGE also accepts DATE and DATETIME arguments.

For SUM and AVG, you cannot use the difference between two DATE values
directly as the argument to an aggregate, but you can use DATE differences as
operands within arithmetic expression arguments. For example,

SELECT . . . AVG(ship_date - order_date)

returns error -1201, but the following equivalent expression is valid:

SELECT . . . AVG((ship_date - order_date)*1)
4-174 IBM Informix Guide to SQL: Syntax

Expression
Including or Excluding Duplicates in the Row Set

The DISTINCT keyword restricts the argument to unique values from the
specified column. The UNIQUE and DISTINCT keywords are synonyms.

The ALL keyword specifies that all values selected from the column or
expression, including any duplicate values, are used in the calculation.

AVG Function

The AVG function returns the average of all values in the specified column or
expression. You can apply the AVG function only to number columns. If you
use the DISTINCT keyword, the average (meaning the mean) is calculated
from only the distinct values in the specified column or expression. The
query in the following example finds the average price of a helmet:

SELECT AVG(unit_price) FROM stock WHERE stock_num = 110

NULLs are ignored unless every value in the column is NULL. If every column
value is NULL, the AVG function returns a NULL for that column.

Overview of COUNT Functions

The COUNT function is actually a set of functions that enable you to count
column values in different ways, according to arguments after the COUNT
keyword. Each form of the COUNT function is explained in the following
subsections. For a comparison of the different forms of the COUNT function,
see “Comparison of the Different COUNT Functions” on page 4-177.

COUNT(*) Function

The COUNT (*) function returns the number of rows that satisfy the WHERE
clause of a SELECT statement. The following example finds how many rows
in the stock table have the value HRO in the manu_code column:

SELECT COUNT(*) FROM stock WHERE manu_code = 'HRO'

If the SELECT statement does not have a WHERE clause, the COUNT (*)
function returns the total number of rows in the table. The following example
finds how many rows are in the stock table:

SELECT COUNT(*) FROM stock
Segments 4-175

Expression
If the SELECT statement contains a GROUP BY clause, the COUNT (*) function
reflects the number of values in each group. The following example is
grouped by the first name; the rows are selected if the database server finds
more than one occurrence of the same name:

SELECT fname, COUNT(*) FROM customer GROUP BY fname
HAVING COUNT(*) > 1

If the value of one or more rows is NULL, the COUNT (*) function includes the
NULL columns in the count unless the WHERE clause explicitly omits them.

COUNT DISTINCT and COUNT UNIQUE Functions

The COUNT DISTINCT function returns the number of unique values in the
column or expression, as the following example shows. If the COUNT
DISTINCT function encounters NULLs, it ignores them.

SELECT COUNT (DISTINCT item_num) FROM items

NULLs are ignored unless every value in the specified column is NULL. If
every column value is NULL, the COUNT DISTINCT function returns zero (0).

The UNIQUE keyword has the same meaning as the DISTINCT keyword in
COUNT functions. The UNIQUE keyword instructs the database server to
return the number of unique non-NULL values in the column or expression.
The following example calls the COUNT UNIQUE function, but it is equiv-
alent to the preceding example that calls the COUNT DISTINCT function:

SELECT COUNT (UNIQUE item_num) FROM items

COUNT column Function

The COUNT column function returns the total number of non-NULL values in
the column or expression, as the following example shows:

SELECT COUNT (item_num) FROM items

The ALL keyword can precede the specified column name for clarity, but the
query result is the same whether you include the ALL keyword or omit it.

The following example shows how to include the ALL keyword in the
COUNT column function:

SELECT COUNT (ALL item_num) FROM items
4-176 IBM Informix Guide to SQL: Syntax

Expression
Comparison of the Different COUNT Functions

You can use the different forms of the COUNT function to retrieve different
types of information about a table. The following table summarizes the
meaning of each form of the COUNT function.

Some examples can help to show the differences among the different forms
of the COUNT function. Most of the following examples query against the
ship_instruct column of the orders table in the demonstration database.
For information on the structure of the orders table and the data in the
ship_instruct column, see the description of the demonstration database in
the IBM Informix Guide to SQL: Reference.

Examples of the Count(*) Function

In the following example, the user wants to know the total number of rows
in the orders table. So the user calls the COUNT(*) function in a SELECT
statement without a WHERE clause.

SELECT COUNT(*) AS total_rows FROM orders

The following table shows the result of this query.

COUNT Function Description

COUNT (*) Returns the number of rows that satisfy the query

If you do not specify a WHERE clause, this function returns
the total number of rows in the table.

COUNTDISTINCTor
COUNT UNIQUE

Returns the number of unique non-NULL values in the
specified column

COUNT (column) or
COUNT (ALL column)

Returns the total number of non-NULL values in the
specified column

total_rows

23
Segments 4-177

Expression
In the following example, the user wants to know how many rows in the
orders table have a NULL value in the ship_instruct column. The user calls
the COUNT(*) function in a SELECT statement with a WHERE clause, and
specifies the IS NULL condition in the WHERE clause.

SELECT COUNT (*) AS no_ship_instruct FROM orders
WHERE ship_instruct IS NULL

The following table shows the result of this query.

In the following example, the user wants to know how many rows in the
orders table have the value express in the ship_instruct column. So the user
calls the COUNT(*) function in the select list and specifies the equals (=)
relational operator in the WHERE clause.

SELECT COUNT (*) AS ship_express FROM ORDERS
WHERE ship_instruct = 'express'

The following table shows the result of this query.

Examples of the COUNT DISTINCT Function

In the next example, the user wants to know how many unique non-NULL
values are in the ship_instruct column of the orders table. The user calls the
COUNT DISTINCT function in the select list of the SELECT statement.

SELECT COUNT(DISTINCT ship_instruct) AS unique_notnulls
FROM orders

no_ship_instruct

 2

ship_express

 6
4-178 IBM Informix Guide to SQL: Syntax

Expression
The following table shows the result of this query.

Examples of the COUNT column Function

In the following example the user wants to know how many non-NULL
values are in the ship_instruct column of the orders table. The user invokes
the COUNT(column) function in the select list of the SELECT statement.

SELECT COUNT(ship_instruct) AS total_notnullsFROM orders

The following table shows the result of this query.

A similar query for non-NULL values in the ship_instruct column can
include the ALL keyword in the parentheses that follow the COUNT keyword.

SELECT COUNT(ALL ship_instruct) AS all_notnulls FROM orders

The following table shows that the query result is the same whether you
include or omit the ALL keyword (because ALL is the default).

unique_notnulls

 16

total_notnulls

 21

all_notnulls

 21
Segments 4-179

Expression
MAX Function

The MAX function returns the largest value in the specified column or
expression. Using the DISTINCT keyword does not change the results. The
query in the following example finds the most expensive item that is in stock
but has not been ordered:

SELECT MAX(unit_price) FROM stock
WHERE NOT EXISTS (SELECT * FROM items

WHERE stock.stock_num = items.stock_num AND
stock.manu_code = items.manu_code)

NULLs are ignored unless every value in the column is NULL. If every column
value is NULL, the MAX function returns a NULL for that column.

MIN Function

The MIN function returns the lowest value in the column or expression.
Using the DISTINCT keyword does not change the results. The following
example finds the least expensive item in the stock table:

SELECT MIN(unit_price) FROM stock

NULLs are ignored unless every value in the column is NULL. If every column
value is NULL, the MIN function returns a NULL for that column.

SUM Function

The SUM function returns the sum of all the values in the specified column
or expression, as the following example shows. If you use the DISTINCT
keyword, the sum is for only distinct values in the column or expression.

SELECT SUM(total_price) FROM items WHERE order_num = 1013

NULLs are ignored unless every value in the column is NULL. If every column
value is NULL, the SUM function returns a NULL for that column. You cannot
use the SUM function with a non-numeric column.

RANGE Function

The RANGE function computes the range of returned values. It calculates the
difference between the maximum and the minimum values, as follows:

range(expr) = max(expr) - min(expr)
4-180 IBM Informix Guide to SQL: Syntax

Expression
You can apply the RANGE function only to numeric columns. The following
query finds the range of ages for a population:

SELECT RANGE(age) FROM u_pop

As with other aggregates, the RANGE function applies to the rows of a group
when the query includes a GROUP BY clause, as the next example shows:

SELECT RANGE(age) FROM u_pop GROUP BY birth

Because DATE values are stored internally as integers, you can use the
RANGE function on DATE columns. With a DATE column, the return value is
the number of days between the earliest and latest dates in the column.

NULLs are ignored unless every value in the column is NULL. If every column
value is NULL, the RANGE function returns a NULL for that column.

Important: All computations for the RANGE function are performed in 32-digit
precision, which should be sufficient for many sets of input data. The computation,
however, loses precision or returns incorrect results when all of the input data values
have 16 or more digits of precision.

STDEV Function

The STDEV function computes the standard deviation of a data set, which is
the square root of the VARIANCE function. You can apply the STDEV function
only to numeric columns. The next query finds the standard deviation:

SELECT STDEV(age) FROM u_pop WHERE u_pop.age > 0

As with the other aggregates, the STDEV function applies to the rows of a
group when the query includes a GROUP BY clause, as this example shows:

SELECT STDEV(age) FROM u_pop GROUP BY birth WHERE STDEV(age) > 0

NULL values are ignored unless every value in the specified column is NULL.
If every column value is NULL, STDEV returns a NULL for that column.

Important: All computations for the STDEV function are performed in 32-digit
precision, which should be sufficient for many sets of input data. The computation,
however, loses precision or returns incorrect results when all of the input data values
have 16 or more digits of precision.

You cannot use this function on columns of type DATE.
Segments 4-181

Expression
Within a SELECT Statement with GROUP BY clause, STDEV returns a zero
variance for a count of 1. You can omit this special case through appropriate
query construction (for example, "having count(*) > 1"). Otherwise, a data
set that has only a few cases might block the rest of the query result.

VARIANCE Function

The VARIANCE function returns an estimate of the population variance, as
the standard deviation squared. VARIANCE calculates the following value:

(SUM(Xi
2) - (SUM(Xi)

2)/N)/N

In this formula, Xi is each value in the column and N is the total number of
non-NULL values in the column (unless all values are NULL, in which case the
variance is logically undefined, and the VARIANCE function returns NULL).

You can apply the VARIANCE function only to numeric columns.

The following query estimates the variance of age values for a population:

SELECT VARIANCE(age) FROM u_pop WHERE u_pop.age > 0

As with the other aggregates, the VARIANCE function applies to the rows of
a group when the query includes a GROUP BY clause, as in this example:

SELECT VARIANCE(age) FROM u_pop GROUP BY birth
WHERE VARIANCE(age) > 0

As previously noted, VARIANCE ignores NULL values unless every qualified
row is NULL for a specified column. If every value is NULL, then VARIANCE
returns a NULL result for that column. (This typically indicates missing data,
and is not necessarily a good estimate of underlying population variance.)

If N, the total number of qualified non-NULL column values, equals one, then
the VARIANCE function returns zero (another implausible estimate of the
true population variance). To omit this special case, you can modify the
query. For example, you might include a HAVING COUNT(*) > 1 clause.

Important: All calculations for the VARIANCE function are performed in 32-digit
precision, which should be sufficient for many sets of input data. The computation,
however, loses precision or returns incorrect results when all of the input data values
have 16 or more digits of precision.

Although DATE values are stored internally as an integer, you cannot use the
VARIANCE function on columns of data type DATE.
4-182 IBM Informix Guide to SQL: Syntax

Expression
Error Checking in ESQL/C

Aggregate functions always return one row. If no rows are selected, the
function returns a NULL. You can use the COUNT (*) function to determine
whether any rows were selected, and you can use an indicator variable to
determine whether any selected rows were empty. Fetching a row with a
cursor that is associated with an aggregate function always returns one row;
hence, 100 for end of data is never returned into the sqlcode variable for a
first FETCH attempt.

You can also use the GET DIAGNOSTICS statement for error checking.

Summary of Aggregate Function Behavior

An example can help to summarize the behavior of the aggregate functions.
Assume that the testtable table has a single INTEGER column that is named
num. The contents of this table are as follows.

You can use aggregate functions to obtain information about the num column
and the testtable table. The following query uses the AVG function to obtain
the average of all the non-NULL values in the num column:

SELECT AVG(num) AS average_number FROM testtable

The following table shows the result of this query.

num

2

2

2

3

3

4

(NULL)

average_number

2.66666666666667

E/C
Segments 4-183

Expression
You can use the other aggregate functions in SELECT statements that are
similar to the preceding example. If you enter a series of SELECT statements
that have different aggregate functions in the select list and do not include a
WHERE clause, you receive the results that the following table shows.

Function Results Function Results

COUNT (*) 7 MAX 4

COUNT (DISTINCT) 3 MAX(DISTINCT) 4

COUNT (ALL num) 6 MIN 2

COUNT (num) 6 MIN(DISTINCT) 2

AVG 2.66666666666667 RANGE 2

AVG (DISTINCT) 3.00000000000000 SUM 16

STDEV 0.74535599249993 SUM(DISTINCT) 9

VARIANCE 0.55555555555556
4-184 IBM Informix Guide to SQL: Syntax

Expression
User-Defined Aggregates

You can create your own aggregate expressions with the CREATE
AGGREGATE statement and then invoke these aggregates wherever you can
invoke the built-in aggregates. The following diagram shows the syntax for
invoking a user-defined aggregate.

Use the DISTINCT or UNIQUE keywords to specify that the user-defined
aggregate is to be applied only to unique values in the named column or
expression. Use the ALL keyword to specify that the aggregate is to be
applied to all values in the named column or expression.

If you omit the DISTINCT, UNIQUE, and ALL keywords, ALL is the default.
For further information on the DISTINCT, UNIQUE, and ALL keywords, see
“Including or Excluding Duplicates in the Row Set” on page 4-175.

IDS

Element Purpose Restrictions Syntax
aggregate Name of the user-defined

aggregate to invoke
The aggregate and the support functions
defined for aggregate must exist

Identifier,
p. 4-189

column Name of a column within table Must exist and have a numeric data type Quoted String,
p. 4-243

setup_expr Set-up expression that
customizes aggregate for a
specific invocation

Cannot be a lone host variable. Any
columns referenced in setup_expr must be
in the GROUP BY clause of the query

Expression,
p. 4-67

synonym,
table, view

Synonym, table, or view in
which column occurs

The synonym and the table or view to which
it points must exist

Database Object
Name, p. 4-46

()

setup_expr,

Back to Aggregate Expressions
p. 4-171

User-Defined Aggregates

aggregate

Subset of Expression
p. 4-174

DISTINCT

ALL

UNIQUE

table .

synonym .

ALL column

view .
Segments 4-185

Expression
When you specify a set-up expression, this value is passed to the INIT
support function that was defined for the user-defined aggregate in the
CREATE AGGREGATE statement.

In the following example, you apply the user-defined aggregate named
my_avg to all values of the quantity column in the items table:

SELECT my_avg(quantity) FROM items

In the following example, you apply the user-defined aggregate named
my_sum to unique values of the quantity column in the items table. You also
supply the value 5 as a set-up expression. This value might specify that the
initial value of the sum that my_avg will compute is 5.

SELECT my_sum(DISTINCT quantity, 5) FROM items

In the following example, you apply the user-defined aggregate named
my_max to all values of the quantity column in the remote items table:

SELECT my_max(remote.quantity) FROM rdb@rserv:items remote

If the my_max aggregate is defined as EXECUTEANYWHERE, then the
distributed query can be pushed to the remote database server, rserv, for
execution. If the my_max aggregate is not defined as EXECUTEANYWHERE,
then the distributed query scans the remote items table and computes the
my_max aggregate on the local database server.

You cannot qualify a user-defined aggregate with the name of a remote
database server, as the following example shows. In this case, the database
server returns an error:

SELECT rdb@rserv:my_max(remote.quantity)
FROM rdb@rserv:items remote

For further information on user-defined aggregates, see “CREATE
AGGREGATE” on page 2-104 and the discussion of user-defined aggregates
in IBM Informix User-Defined Routines and Data Types Developer’s Guide.

Related Information
For a discussion of expressions in the context of the SELECT statement, see the
IBM Informix Guide to SQL: Tutorial.

For discussions of column expressions, length functions, and the TRIM
function, see the IBM Informix GLS User’s Guide.
4-186 IBM Informix Guide to SQL: Syntax

External Routine Reference
External Routine Reference
Use an External Routine Reference when you write an external routine.

Syntax

Usage
The External Routine Reference segment specifies the following information
about an external routine:

� Pathname to the executable object code, stored in a shared-object file

For C routines, this file is either a DLL or a shared library, depending
on your operating system.

For Java routines, this file is a jar file. Before you can create a UDR
written in the Java language, you must assign a jar identifier to the
external jar file with the sqlj.install_jar procedure. For more infor-
mation, see “sqlj.install_jar” on page 2-418.

� The name of the language in which the UDR is written

� The parameter style of the UDR

By default, the parameter style is INFORMIX. (This implies that if you
specify an OUT parameter, the OUT argument is passed by reference.)

� The VARIANT or NOT VARIANT option, if you specify one

This option is not available for SPL routines. ♦

IDS

External Routine Reference

EXTERNAL NAME
Shared-Object

Filename
p. 4-270

LANGUAGE

PARAMETER STYLE INFORMIX

NOT

JAVA

C

C
VARIANT

Java

SPL
Segments 4-187

External Routine Reference
VARIANT or NOT VARIANT Option

A function is variant if it can return different results when it is invoked with
the same arguments or if it modifies a database or variable state. For example,
a function that returns the current date or time is a variant function.

By default, user-defined functions are variant. If you specify NOT VARIANT
when you create or modify a function, it cannot contain any SQL statements.

If the function is nonvariant, the database server might cache the return
variant functions. For more information on functional indexes, see “CREATE
INDEX” on page 2-144.

To register a nonvariant function, add the NOT VARIANT option in this clause
or in the Routine Modifier clause that is discussed in “Routine Modifier” on
page 4-257. If you specify the modifier in both contexts, however, you must
use the same modifier (either VARIANT or NOT VARIANT) in both clauses.

Example of a C User-Defined Function

The next example registers an external function named equal() that takes
two point data type values as arguments. In this example, point is an opaque
data type that specifies the x and y coordinates of a two-dimensional point.

CREATE FUNCTION equal(a point, b point) RETURNING BOOLEAN;
EXTERNAL NAME "/usr/lib/point/lib/libbtype1.so(point1_equal)"
LANGUAGE C

END FUNCTION

The function returns a single value of type BOOLEAN. The external name
specifies the path to the C shared-object file where the object code of the
function is stored. The external name indicates that the library contains
another function, point1_equal(), which is invoked while equal() executes.

C

4-188 IBM Informix Guide to SQL: Syntax

Identifier
Identifier
An identifier specifies the simple name of a database object, such as a column,
table, index, or view. Use the Identifier segment whenever you see a reference
to an identifier in a syntax diagram.

Syntax

Usage
This is a logical subset of “Database Object Name” on page 4-46, a segment
that can specify the owner, database, and database server of external objects.

To include a blank space (ASCII 32) in an identifier, you must use a delimited
identifier. It is recommended that you do not use the dollar sign ($) in identi-
fiers, because this symbol is a special character whose inclusion in an
identifier might cause conflicts with other syntax elements. For more infor-
mation, see “Delimited Identifiers” on page 4-191.

Element Purpose Restrictions Syntax
digit Integer in range 0 to 9 Cannot be the first character. Literal number, p. 4-216
dollar_sign Dollar-sign symbol ($) Cannot be the first character. Literal symbol entered

from the keyboard.
letter Upper- or lowercase

letter of the alphabet
In the default locale, must be an ASCII
character in the range of A to Z or a to z.

Literal symbol entered
from the keyboard.

underscore Underscore (_)
character

Cannot substitute a blank space, hyphen,
or other nonalphanumeric character.

Literal symbol entered
from the keyboard.

letter

underscore

letter

digit

underscore

Delimited Identifier
p. 4-191

dollar_signIDS

Identifier
Segments 4-189

Identifier
An identifier can contain up to 128 bytes, inclusive. For example, the
following table name is valid: employee_information.

If you are using a multibyte code set, keep in mind that the maximum length
of an identifier refers to the number of bytes, not the number of characters.

For letter characters in nondefault locales, see “Support for Non-ASCII
Characters in Identifiers” on page 4-191. For further information on the GLS
aspects of identifiers, see the IBM Informix GLS User’s Guide. ♦

The database server checks the internal version number of the client appli-
cation and the setting of the IFX_LONGID environment variable to determine
whether a client application supports long identifiers (up to 128 bytes in
length). For more information, see the IBM Informix Guide to SQL: Reference. ♦

Use of Uppercase Characters

You can specify the name of a database object with uppercase characters, but
the database server shifts the name to lowercase characters unless the
DELIMIDENT environment variable is set and the name of the database
object is enclosed in double quotes. In this case, the database server treats the
name of the database object as a delimited identifier and preserves the
uppercase characters in the name. For more information, see “Delimited
Identifiers” on page 4-191.

Use of Keywords as Identifiers

Although you can use almost any word as an identifier, syntactic ambiguities
can result from using keywords as identifiers in SQL statements. The
statement might fail or might not produce the expected results. For a
discussion of the syntactic ambiguities that can result from using keywords
as identifiers and an explanation of workarounds for these problems, see
“Potential Ambiguities and Syntax Errors” on page 4-194.

Delimited identifiers provide the easiest and safest way to use a keyword as
an identifier without syntactic ambiguities. No workarounds are necessary
for a keyword as a delimited identifier. For the syntax and usage of delimited
identifiers, see “Delimited Identifiers” on page 4-191. Delimited identifiers
require, however, that your code always use single (') quotes, rather than
double (") quotes, to delimit character-string literals.

GLS

IDS

E/C
4-190 IBM Informix Guide to SQL: Syntax

Identifier
The keywords of the Informix implementation of SQL in Dynamic Server are
listed in Appendix A, “Reserved Words for IBM Informix Dynamic
Server.” ♦

The keywords of SQL in Extended Parallel Server are listed in Appendix B,
“Reserved Words for IBM Informix Extended Parallel Server.” ♦

Tip: If an error message seems unrelated to the statement that caused the error, check
to see whether the statement uses a keyword as an undelimited identifier.

Support for Non-ASCII Characters in Identifiers

In a nondefault locale, you can use any alphabetic character that your locale
recognizes as a letter in an SQL identifier. This feature enables you to use non-
ASCII characters in the names of some database objects. For objects that
support non-ASCII characters, see the IBM Informix GLS User’s Guide.

Delimited Identifiers

IDS

XPS

GLS

Element Purpose Restrictions Syntax
digit Integer in the range 0 to 9 Cannot be the first character. Literal number,

p. 4-216
letter Letter that forms part of the

delimited identifier
Letters in delimited identifiers
are case-sensitive.

Literal value entered
from the keyboard.

special_character Nonalphanumeric character,
such as #, $, or blank space

Must be an element in the code
set of the locale.

Literal value entered
from the keyboard.

underscore Underscore (_) that forms part
of the delimited identifier

None. Literal value entered
from the keyboard.

Delimited
Identifier

letter

digit

underscore

special_character

Back to Identifier
p. 4-189

""
Segments 4-191

Identifier
Delimited identifiers allow you to specify names for database objects that are
otherwise identical to SQL keywords, such as TABLE, WHERE, DECLARE, and
so on. The only database object for which you cannot use delimited identi-
fiers is a database name.

Letters in delimited identifiers are case sensitive. If you are using the default
locale, letter must be an upper- or lowercase character in the range a to z or A
to Z (in the ASCII code set). If you are using a nondefault locale, letter must be
an alphabetic character that the locale supports. For more information, see
“Support for Non-ASCII Characters in Delimited Identifiers” on page 4-192.

Delimited identifiers are compliant with the ANSI/ISO standard for SQL.

When you create a database object, avoid including leading blank spaces or
other whitespace characters between the first delimiting quotation mark and
the first nonblank character of the delimited identifier. (Otherwise, you might
not be able to reference the object in some contexts.) Delimited identifiers also
require that your code always use single (') quotes, rather than double (")
quotes, to delimit character-string literals.

Support for Nonalphanumeric Characters

You can use delimited identifiers to specify nonalphanumeric characters in
the names of database objects. You cannot use delimited identifiers, however,
to specify non-alphanumeric characters in the names of storage objects such
as dbspaces and blobspaces.

Support for Non-ASCII Characters in Delimited Identifiers

When you are using a nondefault locale whose code set supports non-ASCII
characters, you can specify non-ASCII characters in most delimited identi-
fiers. The rule is that if you can specify non-ASCII characters in the
undelimited form of the identifier, you can also specify non-ASCII characters
in the delimited form of the same identifier. For a list of identifiers that
support non-ASCII characters and for information on non-ASCII characters in
delimited identifiers, see the IBM Informix GLS User’s Guide.

GLS
4-192 IBM Informix Guide to SQL: Syntax

Identifier
Effect of DELIMIDENT Environment Variable

To use delimited identifiers, you must set the DELIMIDENT environment
variable. If you set DELIMIDENT, strings enclosed in double quotes (") are
treated as identifiers and database objects enclosed in single quotes (') are
treated as strings. If the DELIMIDENT environment variable is not set, values
enclosed in double quotes are also treated as strings.

If DELIMIDENT is set, the SELECT statement in the following example must
be in single quotes in order to be treated as a quoted string:

PREPARE ... FROM 'SELECT * FROM customer'

If a delimited identifier is used in the SELECT statement that defines a view,
then the DELIMIDENT environment variable must be set in order for the view
to be accessed, even if the view name itself contains no special characters.

Examples of Delimited Identifiers

The next example shows how to create a table with a case-sensitive name:

CREATE TABLE "Power_Ranger" (...)

The following example creates a table whose name includes a whitespace
character. If the table name were not enclosed by double (") quotes, and if
DELIMIDENT were not set, you could not use a blank space in the identifier.

CREATE TABLE "My Customers" (...)

The next example creates a table that has a keyword as the table name:

CREATE TABLE "TABLE" (...)

The following example shows how to delete all the rows from a table that is
named FROM when you omit the keyword FROM in the DELETE statement:

DELETE “FROM”; ♦

Using Double Quotes Within a Delimited Identifier

To include a double quote (") in a delimited identifier, you must precede the
double quote (") with another double quote ("), as this example shows:

CREATE TABLE "My""Good""Data" (...)

IDS
Segments 4-193

Identifier
Potential Ambiguities and Syntax Errors
You can use almost any word as an SQL identifier, but syntactic ambiguities
can occur. An ambiguous statement might not produce the desired results.
The following sections outline some potential pitfalls and workarounds.

Using the Names of Built-In Functions as Column Names

The following two examples show a workaround for using a built-in function
as a column name in a SELECT statement. This workaround applies to the
aggregate functions (AVG, COUNT, MAX, MIN, SUM) as well as the function
expressions (algebraic, exponential and logarithmic, time, hex, length,
dbinfo, trigonometric, and trim functions).

Using avg as a column name causes the next example to fail because the
database server interprets avg as an aggregate function rather than as a
column name:

SELECT avg FROM mytab -- fails

If the DELIMIDENT environment variable is set, you could use avg as a
column name as the following example shows:

SELECT "avg" from mytab -- successful

The workaround in the following example removes ambiguity by including
a table name with the column name:

SELECT mytab.avg FROM mytab

If you use the keyword TODAY, CURRENT, or USER as a column name,
ambiguity can occur, as the following example shows:

CREATE TABLE mytab (user char(10),
CURRENT DATETIME HOUR TO SECOND,TODAY DATE)

INSERT INTO mytab VALUES('josh','11:30:30','1/22/1998')

SELECT user,current,today FROM mytab

The database server interprets user, current, and today in the SELECT
statement as the built-in functions USER, CURRENT, and TODAY. Thus,
instead of returning josh, 11:30:30,1/22/1998, the SELECT statement
returns the current user name, the current time, and the current date.
4-194 IBM Informix Guide to SQL: Syntax

Identifier
If you want to select the actual columns of the table, you must write the
SELECT statement in one of the following ways:

SELECT mytab.user,mytab.current,mytab.today FROM mytab;

EXEC SQL select * from mytab;

Using Keywords as Column Names
Specific workarounds exist for using a keyword as a column name in a
SELECT statement or other SQL statement. In some cases, more than one
suitable workaround might be available.

Using ALL, DISTINCT, or UNIQUE as a Column Name

If you want to use the ALL, DISTINCT, or UNIQUE keywords as column names
in a SELECT statement, you can take advantage of a workaround.

First, consider what happens when you try to use one of these keywords
without a workaround. In the following example, using all as a column name
causes the SELECT statement to fail because the database server interprets all
as a keyword rather than as a column name:

SELECT all FROM mytab -- fails

You need to use a workaround to make this SELECT statement execute
successfully. If the DELIMIDENT environment variable is set, you can use all
as a column name by enclosing all in double quotes. In the following
example, the SELECT statement executes successfully because the database
server interprets all as a column name:

SELECT "all" from mytab -- successful

The workaround in the following example uses the keyword ALL with the
column name all:

SELECT ALL all FROM mytab

The examples that follow show workarounds for using the keywords
UNIQUE or DISTINCT as a column name in a CREATE TABLE statement.

This example fails to declare a column named unique because the database
server interprets unique as a keyword rather than as a column name:

CREATE TABLE mytab (unique INTEGER) -- fails
Segments 4-195

Identifier
The workaround in the following example uses two SQL statements. The first
statement creates the column mycol; the second statement renames the
column mycol to unique.

CREATE TABLE mytab (mycol INTEGER)

RENAME COLUMN mytab.mycol TO unique

The workaround in the following example also uses two SQL statements. The
first statement creates the column mycol; the second alters the table, adds the
column unique, and drops the column mycol.

CREATE TABLE mytab (mycol INTEGER)

ALTER TABLE mytab
ADD (unique INTEGER),
DROP (mycol)

Using INTERVAL or DATETIME as a Column Name

The examples in this section show workarounds for using the keyword
INTERVAL (or DATETIME) as a column name in a SELECT statement.

Using interval as a column name causes the following example to fail
because the database server interprets interval as a keyword and expects it
to be followed by an INTERVAL qualifier:

SELECT interval FROM mytab -- fails

If the DELIMIDENT environment variable is set, you could use interval as a
column name, as the following example shows:

SELECT "interval" from mytab -- successful

The workaround in the following example removes ambiguity by specifying
a table name with the column name:

SELECT mytab.interval FROM mytab;

The workaround in the following example includes an owner name with the
table name:

SELECT josh.mytab.interval FROM josh.mytab;
4-196 IBM Informix Guide to SQL: Syntax

Identifier
Using rowid as a Column Name

Every nonfragmented table has a virtual column named rowid. To avoid
ambiguity, you cannot use rowid as a column name. Performing the
following actions causes an error:

� Creating a table or view with a column named rowid

� Altering a table by adding a column named rowid

� Renaming a column to rowid

You can, however, use the term rowid as a table name.

CREATE TABLE rowid (column INTEGER, date DATE, char CHAR(20))

Important: It is recommended that you use primary keys as an access method, rather
than exploiting the rowid column.

Using Keywords as Table Names
Examples in this section show workarounds that involve owner naming
when the keyword STATISTICS or OUTER is a table name. (This workaround
also applies to STATISTICS or OUTER as a view name or synonym.)

Using statistics as a table name causes the following example to fail because
the database server interprets it as part of the UPDATE STATISTICS syntax
rather than as a table name in an UPDATE statement:

UPDATE statistics SET mycol = 10

The workaround in the following example specifies an owner name with the
table name, to avoid ambiguity:

UPDATE josh.statistics SET mycol = 10

Using outer as a table name causes the following example to fail because the
database server interprets outer as a keyword for performing an outer join:

SELECT mycol FROM outer -- fails

The following successful example uses owner naming to avoid ambiguity:

SELECT mycol FROM josh.outer

IDS
Segments 4-197

Identifier
Workarounds That Use the Keyword AS
In some cases, although a statement is not ambiguous and the syntax is
correct, the database server returns a syntax error. The preceding pages show
existing syntactic workarounds for several situations. You can use the AS
keyword to provide a workaround for the exceptions.

You can use the AS keyword in front of column labels or table aliases.

The following example uses the AS keyword with a column label:

SELECT column_name AS display_label FROM table_name

The following example uses the AS keyword with a table alias:

SELECT select_list FROM table_name AS table_alias

Using AS with Column Labels

The examples in this section show workarounds that use the AS keyword
with a column label. The first two examples show how you can use the
keyword UNITS (or YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, or
FRACTION) as a column label.

Using units as a column label causes this example to fail because the database
server interprets it as a DATETIME qualifier for the column named mycol:

SELECT mycol units FROM mytab

The workaround in the following example includes the AS keyword:

SELECT mycol AS units FROM mytab;

The following examples use w the AS or FROM keyword as a column label.

Using as as a column label causes the following example to fail because the
database server interprets as as identifying from as a column label and thus
finds no required FROM clause:

SELECT mycol as from mytab -- fails

The following successful example repeats the AS keyword:

SELECT mycol AS as from mytab
4-198 IBM Informix Guide to SQL: Syntax

Identifier
Using from as a column label causes the following example to fail because
the database server expects a table name to follow the first from:

SELECT mycol from FROM mytab -- fails

This example uses the AS keyword to identify the first from as a column label:

SELECT mycol AS from FROM mytab

Using AS with Table Aliases

Examples in this section show workarounds that use the AS keyword with a
table alias. The first pair shows how to use the ORDER, FOR, GROUP, HAVING,
INTO, UNION, WITH, CREATE, GRANT, or WHERE keyword as a table alias.

Using order as a table alias causes the following example to fail because the
database server interprets order as part of an ORDER BY clause:

SELECT * FROM mytab order -- fails

The workaround in the following example uses the keyword AS to identify
order as a table alias:

SELECT * FROM mytab AS order;

The next two examples show how to use the keyword WITH as a table alias.

Using with as a table alias causes the next example to fail because the
database server interprets with as part of the WITH CHECK OPTION syntax:

EXEC SQL select * from mytab with; -- fails

The workaround in the following example uses the keyword AS to identify
with as a table alias:

EXEC SQL select * from mytab as with;

The following two examples show how to use the keyword CREATE (or
GRANT) as a table alias.

Using create as a table alias causes the following example to fail because the
database server interprets the keyword as part of the syntax to create a new
database object, such as a table, synonym, or view:

EXEC SQL select * from mytab create; -- fails
Segments 4-199

Identifier
The workaround in the following example uses the keyword AS to identify
create as a table alias:

EXEC SQL select * from mytab as create;

Fetching Keywords as Cursor Names
In a few situations, no workaround exists for the syntactic ambiguity that
occurs when a keyword is used as an identifier in an SQL program.

In the following example, the FETCH statement specifies a cursor named
next. The FETCH statement generates a syntax error because the preprocessor
interprets next as a keyword, signifying the next row in the active set and
expects a cursor name to follow next. This occurs whenever the keyword
NEXT, PREVIOUS, PRIOR, FIRST, LAST, CURRENT, RELATIVE, or ABSOLUTE is
used as a cursor name.

/* This code fragment fails */
EXEC SQL declare next cursor for

select customer_num, lname from customer;

EXEC SQL open next;
EXEC SQL fetch next into :cnum, :lname;

Using Keywords as Variable Names in UDRs
If you use any of the following keywords as identifiers for variables in a user-
defined routine (UDR), you can create ambiguous syntax:

CURRENT
DATETIME
GLOBAL
INTERVAL
NULL

OFF
ON
OUT
PROCEDURE
SELECT
4-200 IBM Informix Guide to SQL: Syntax

Identifier
Using CURRENT, DATETIME, INTERVAL, and NULL in INSERT

A UDR cannot insert a variable that was declared using the CURRENT,
DATETIME, INTERVAL, or NULL keywords as the name. For example, if you
declare a variable called null, when you try to insert the value null into a
column, you receive a syntax error, as the following example shows:

CREATE PROCEDURE problem()
. . .
DEFINE null INT;
LET null = 3;
INSERT INTO tab VALUES (null); -- error, inserts NULL, not 3

Using NULL and SELECT in a Condition

If you define a variable with the name null or select, using it in a condition
that uses the IN keyword is ambiguous. The following example shows three
conditions that cause problems: in an IF statement, in a WHERE clause of a
SELECT statement, and in a WHILE condition:

CREATE PROCEDURE problem()
. . .
DEFINE x,y,select, null, INT;
DEFINE pfname CHAR[15];
LET x = 3; LET select = 300;
LET null = 1;
IF x IN (select, 10, 12) THEN LET y = 1; -- problem if

IF x IN (1, 2, 4) THEN
SELECT customer_num, fname INTO y, pfname FROM customer

WHERE customer IN (select , 301 , 302, 303); -- problem in

WHILE x IN (null, 2) -- problem while
. . .
END WHILE;

You can use the variable select in an IN list if you ensure it is not the first
element in the list. The workaround in the following example corrects the IF
statement that the preceding example shows:

 IF x IN (10, select, 12) THEN LET y = 1; -- problem if

No workaround exists to using null as a variable name and attempting to use
that variable in an IN condition.
Segments 4-201

Identifier
Using ON, OFF, or PROCEDURE with TRACE

If you define an SPL variable called on, off, or procedure, and you attempt to
use it in a TRACE statement, the value of the variable is not traced. Instead,
the TRACE ON, TRACE OFF, or TRACE PROCEDURE statements execute. You
can trace the value of the variable by making the variable into a more
complex expression.

The following example shows the ambiguous syntax and the workaround:

DEFINE on, off, procedure INT;

TRACE on; --ambiguous
TRACE 0+ on;--ok
TRACE off; --ambiguous
TRACE ''||off;--ok

TRACE procedure;--ambiguous
TRACE 0+procedure;--ok

Using GLOBAL as a Variable Name

If you attempt to define a variable with the name global, the DEFINE
operation fails. The syntax that the following example shows conflicts with
the syntax for defining global variables:

DEFINE global INT; -- fails;

If the DELIMIDENT environment variable is set, you could use global as a
variable name, as the following example shows:

DEFINE "global" INT; -- successful

Important: Although workarounds that the preceding sections show can avoid
compilation or runtime syntax conflicts from keywords used as identifiers, keep in
mind that such identifiers tend to make code more difficult understand and maintain.

Using EXECUTE, SELECT, or WITH as Cursor Names

Do not use an EXECUTE, SELECT, or WITH keyword as the name of a cursor.
If you try to use one of these keywords as the name of a cursor in a FOREACH
statement, the cursor name is interpreted as a keyword in the FOREACH
statement. No workaround exists.
4-202 IBM Informix Guide to SQL: Syntax

Identifier
The following example does not work:

DEFINE execute INT;
FOREACH execute FOR SELECT col1 -- error, looks like

-- FOREACH EXECUTE PROCEDURE
 INTO var1 FROM tab1;

SELECT Statements in WHILE and FOR Statements

If you use a SELECT statement in a WHILE or FOR loop, and if you need to
enclose it in parentheses, enclose the entire SELECT statement in a
BEGIN…END statement block. The SELECT statement in the first WHILE
statement in the following example is interpreted as a call to the procedure
var1; the second WHILE statement is interpreted correctly:

DEFINE var1, var2 INT;
WHILE var2 = var1

SELECT col1 INTO var3 FROM TAB -- error, interpreted as call var1()
UNION
SELECT co2 FROM tab2;

END WHILE

WHILE var2 = var1
BEGIN

SELECT col1 INTO var3 FROM TAB -- ok syntax
UNION
SELECT co2 FROM tab2;

END
END WHILE
Segments 4-203

Identifier
SET Keyword in the ON EXCEPTION Statement

If you use a statement that begins with the keyword SET in ON EXCEPTION,
you must enclose it in a BEGIN … END statement block. The following list
shows some of the SQL statements that begin with the keyword SET:

The following examples show the incorrect and correct use of a SET LOCK
MODE statement inside an ON EXCEPTION statement.

The following ON EXCEPTION statement returns an error because the SET
LOCK MODE statement is not enclosed in a BEGIN … END statement block:

ON EXCEPTION IN (-107)
SET LOCK MODE TO WAIT; -- error, value expected, not 'lock'

END EXCEPTION

The following ON EXCEPTION statement executes successfully because the
SET LOCK MODE statement is enclosed in a BEGIN … END statement block:

ON EXCEPTION IN (-107)
BEGIN
SET LOCK MODE TO WAIT; -- ok
END

END EXCEPTION

Related Information
For a discussion of owner naming, see your Performance Guide.

For a discussion of identifiers that support non-ASCII characters and a
discussion of non-ASCII characters in delimited identifiers, see the
IBM Informix GLS User’s Guide.

SET AUTOFREE
SET CONNECTION
SET CONSTRAINTS
SET DATASKIP
SET DEBUG FILE
SET DEFERRED PREPARE
SET DESCRIPTOR
SET EXPLAIN
SET INDEX
SET INDEXES
SET ISOLATION

SET LOCK MODE
SET LOG
SET OPTIMIZATION
SET PDQPRIORITY
SET PLOAD FILE
SET ROLE
SET SCHEDULE LEVEL
SET SESSION AUTHORIZATION
SET STATEMENT CACHE
SET TABLE
SET TRANSACTION
4-204 IBM Informix Guide to SQL: Syntax

INTERVAL Field Qualifier
INTERVAL Field Qualifier
The INTERVAL field qualifier specifies the units for an INTERVAL value. Use
the INTERVAL Field Qualifier segment whenever you see a reference to an
INTERVAL field qualifier in a syntax diagram.

Syntax

Element Purpose Restrictions Syntax
scale Integer number of digits in FRACTION field. Default is 5. Must be in the

range from 1 to 5.
Literal number,
p. 4-216

precision Integer number of digits in the largest time unit that the
INTERVAL includes. For YEAR, the default is 4. For all
other time units, the default is 2.

Must be in the
range from 1 to 9.

Literal number,
p. 4-216

DAY

MINUTE

SECOND

FRACTION

TO DAY

TO HOUR

TO MINUTE

TO SECOND

TO FRACTION

HOUR

(precision)

(precision)

(precision)

(precision) (scale)

YEAR

MONTH

TO YEAR

TO MONTH

(precision)

(precision)

(2)

(2)

(2)

(2)

(4)

(3)

(2)

INTERVAL
Field Qualifier
Segments 4-205

INTERVAL Field Qualifier
Usage
This segment specifies the precision and scale of an INTERVAL data type.

A keyword specifying the largest time unit must be the first keyword, and a
keyword specifying the smallest time unit must follow the TO keyword. These
can be the same keyword. This segment resembles the syntax of a
“DATETIME Field Qualifier” on page 4-65, but with these exceptions:

� If the largest time unit keyword is YEAR or MONTH, the smallest time
unit keyword cannot specify a time unit smaller than MONTH.

� You can specify up to 9-digit precision after the first time unit, unless
FRACTION is the first time unit (in which case the limit is 5 digits).

The next two examples show INTERVAL data types with YEAR TO MONTH
qualifiers. The first example can hold an interval of up to 999 years and 11
months, because it gives 3 as the precision of the YEAR field. The second
example uses the default precision on the YEAR field, so it can hold an
interval of up to 9,999 years and 11 months.

YEAR (3) TO MONTH

YEAR TO MONTH

When you want a value to specify only one kind of time unit, the first and last
qualifiers are the same. For example, an interval of whole years is qualified
as YEAR TO YEAR or YEAR (5) TO YEAR, for an interval of up to 99,999 years.

The following examples show several forms of INTERVAL field qualifiers:

YEAR(5) TO MONTH

DAY (5) TO FRACTION(2)

DAY TO DAY

FRACTION TO FRACTION (4)

Related Information
For information about how to specify INTERVAL field qualifiers and use
INTERVAL data in arithmetic and relational operations, see the discussion of
the INTERVAL data type in the IBM Informix Guide to SQL: Reference.
4-206 IBM Informix Guide to SQL: Syntax

Jar Name
Jar Name
Use the Jar Name segment to specify the name of a jar ID. Use this segment
whenever you see a reference to Jar Name in a syntax diagram.

Syntax

If a Jar name is specified as a character string value to the sqlj.install_jar,
sqlj.replace_jar, or sqlj.remove_jar procedures, then any identifiers in the jar
name that are delimited identifiers will include the surrounding double
quote characters.

Before you can access a jar_id in any way (including its use in a CREATE
FUNCTION or CREATE PROCEDURE statement), it must be defined in the
current database with the install_jar() procedure. For more information, see
“EXECUTE PROCEDURE” on page 2-414.

Related Information
For information on how to update the three-part names of JAR files after you
rename the database, see the J/Foundation Developer’s Guide.

IDS

Element Purpose Restrictions Syntax
database Database in which to install or

access jar_id

Default is the current database.

Fully qualified database.package.jar_id
identifier must not exceed 255 bytes.

Database Name,
p. 4-189

jar_id The .jar file that contains the
Java class to be accessed

File must exist in database.package. Identifier, p. 4-189

package Name of the package Package must exist in database. Identifier, p. 4-189

jar_id

package

database

.

.

Jar Name
Segments 4-207

Literal Collection
Literal Collection
Use the Literal Collection segment to specify values for a collection data type.
For the syntax of expressions that return values of individual elements within
a collection, see “Collection Constructors” on page 4-108.

Syntax

Usage
You can specify literal collection values for SET, MULTISET, or LIST data types.

To specify a single literal-collection value, specify the collection type and the
literal values. The following SQL statement inserts four integer values into a
column called set_col that was declared as SET(INT NOT NULL):

INSERT INTO table1 (set_col) VALUES ("SET{6, 9, 9, 4}")

Specify an empty collection with an empty pair of braces ({ }) symbols. This
example inserts an empty list into n column list_col that was declared as
LIST(INT NOT NULL):

INSERT INTO table2 (list_col) VALUES ("LIST{}")

IDS

LIST

"

MULTISET

SET "

LIST

' { }

Literal
Collection

Element
Literal Value

p .4-209
Nested

Quotation
Marks

p. 4-210

Nested
Quotation

Marks
p. 4-210

MULTISET

SET '

,

{ }

Literal
Collection

Element
Literal Value

p .4-209
Nested

Quotation
Marks

p. 4-210

Nested
Quotation

Marks
p. 4-210

,
Literal Collection
4-208 IBM Informix Guide to SQL: Syntax

Literal Collection
A pair of single (') or double (") quotes must delimit the collection.

If you are passing a literal collection as an argument to an SPL routine, make
sure that there is a blank space between the parentheses that surround the
arguments and the quotation marks that indicate the beginning and end of
the literal collection. ♦

If you specify a collection as a literal value in a row-string literal, you can
omit the quotation marks around the collection itself. Only the outermost
quotation marks that delimit the row-string literal are necessary. No
quotation marks need surround the nested collection type. For an example,
see “Literals for Nested Rows” on page 4-221.

Element Literal Value

The diagram for “Literal Collection” on page 4-208 refers to this section.

Elements of a collection can be literal values for the following data types.

For a Collection of Type Literal Value Syntax

BOOLEAN t or f, representing TRUE or FALSE as a
quoted string.

CHAR, VARCHAR, NCHAR,
NVARCHAR, CHARACTER
VARYING, DATE

Quoted String, p. 4-243

DATETIME Literal DATETIME, p. 4-212

DECIMAL, MONEY, FLOAT,
INTEGER, INT8, SMALLFLOAT,
SMALLINT

Literal Number, p.4-216

INTERVAL Literal INTERVAL, p. 4-214

Opaque data types Quoted String, p. 4-243. The string literal
must be recognized by the input support
function for the associated opaque type.

ROW Type “Literal Row” on page 4-218. When the
collection element type is a named ROW
type, you do not need to cast the inserted
values to the named ROW type.

SQLE
Segments 4-209

Literal Collection
Important: You cannot specify the simple-large-object data types (BYTE and TEXT)
as the element type for a collection.

Quoted strings must be specified with a different type of quotation mark than
the quotation marks that encompass the collection, so that the database
server can parse the quoted strings. Thus, if you use double (") quotation
marks to specify the collection, use single (') quotation marks to specify
individual, quoted-string elements.

Nested Quotation Marks

The diagram for “Literal Collection” on page 4-208 refers to this section.

A nested collection is a collection that is the element type for another collection.

Whenever you nest collection literals, use nested quotation marks. In these
cases, you must follow the rule for nesting quotation marks. Otherwise, the
database server cannot correctly parse the strings.

The general rule is that you must double the number of quotation marks for
each new level of nesting. For example, if you use double (") quotation
marks for the first level, you must use two double quotation marks for the
second level, four double quotation marks for the third level, eight for the
fourth level, sixteen for the fifth level, and so on.

Likewise, if you use single (') quotes for the first level, you must use two
single quotation marks for the second level and four single quotation marks
for the third level. There is no limit to the number of levels you can nest, as
long as you follow this rule.

The following examples illustrate the case for two levels of nested collection
literals, using double (") quotation marks. Here table tab5 is a single-column
table whose only column, set_col, is a nested collection type.

The following statement creates the tab5 table:

CREATE TABLE tab5 (set_col SET(SET(INT NOT NULL) NOT NULL));

The following statement inserts values into the table tab5:

INSERT INTO tab5 VALUES ("SET{""SET{34, 56, 23, 33}""}")

For each literal value, the opening quotation mark and the closing quotation
mark must match. Thus, if you open a literal with two double quotes, you
must close that literal with two double quotes (""a literal value"").
4-210 IBM Informix Guide to SQL: Syntax

Literal Collection
To specify nested quotation marks within an SQL statement in an ESQL/C
program, use the C escape character for every double quote inside a single-
quote string. Otherwise, the ESQL/C preprocessor cannot correctly interpret
the literal collection value. For example, the preceding INSERT statement on
the tab5 table would appear in an ESQL/C program as follows:

EXEC SQL insert into tab5
values ('set{\"set{34, 56, 23, 33}\"}');

For more information, see the chapter on complex data types in the
IBM Informix ESQL/C Programmer’s Manual. ♦

If the collection is a nested collection, you must include the collection-
constructor syntax for each level of collection type. Suppose you define the
following column:

nest_col SET(MULTISET (INT NOT NULL) NOT NULL)

The following statement inserts three elements into the nest_col column:

INSERT INTO tabx (nest_col)
VALUES ("SET{'MULTISET{1, 2, 3}'}")

To learn how to use quotation marks in INSERT statements, see “Nested
Quotation Marks” on page 4-210.

E/C
Segments 4-211

Literal DATETIME
Literal DATETIME
The Literal DATETIME segment specifies a DATETIME value. Use this segment
when you see a reference to a literal DATETIME in a syntax diagram.

Syntax

Element Purpose Restrictions Syntax
dd Day of month, expressed in digits 0 ≤ dd ≤ 28, 29, 30, or 31 Literal Number, p. 4-216
fffff Fraction of a second, in digits 0 ≤ fffff ≤ 9999 Literal Number, p. 4-216
hh Hour of day, expressed in digits 0 ≤ hh ≤ 23 Literal Number, p. 4-216
mi Minute of hour, expressed in digits 0 ≤ mi ≤ 59 Literal Number, p. 4-216
mo Month of year, expressed in digits 1 ≤ mo ≤ 12 Literal Number, p. 4-216
space Blank space (ASCII 32) Only 1 blank character allowed Literal blank space
ss Second of minute, in digits 0 ≤ ss ≤ 59 Literal Number, p. 4-216
yyyy Year, expressed in digits You can specify up to 4 digits Literal Number, p. 4-216

DATETIME DATETIME
Field Qualifier

p. 4-65

)(Numeric Date

yyyy

-
mo

-
dd

space

hh

mi

ss

fffff

:

.

:

Numeric Date
and Time
4-212 IBM Informix Guide to SQL: Syntax

Literal DATETIME
Usage
You must specify both a numeric date and a DATETIME field qualifier for this
date in the Literal DATETIME segment. The DATETIME field qualifier must
correspond to the numeric date you specify. For example, if you specify a
numeric date that includes a year as the largest unit and a minute as the
smallest unit, you must specify YEAR TO MINUTE as the DATETIME field
qualifier.

If you specify 2 digits for the year, the database server uses the setting of the
DBCENTURY environment variable to expand the abbreviated year value to
four digits. If the DBCENTURY is not set, the first two digits of the current
year are used to expand the abbreviated year value.

The following examples show literal DATETIME values:

DATETIME (97-3-6) YEAR TO DAY

DATETIME (09:55:30.825) HOUR TO FRACTION

DATETIME (97-5) YEAR TO MONTH

The following example shows a literal DATETIME value used with the
EXTEND function:

EXTEND (DATETIME (1997-8-1) YEAR TO DAY, YEAR TO MINUTE)
- INTERVAL (720) MINUTE (3) TO MINUTE

Related Information
For discussions of the DATETIME data type and the DBCENTURY
environment variable, see the IBM Informix Guide to SQL: Reference.

For a discussion of how to customize DATETIME values for a locale, see the
IBM Informix GLS User’s Guide.
Segments 4-213

Literal INTERVAL
Literal INTERVAL
The Literal INTERVAL segment specifies a literal INTERVAL value. Use this
whenever you see a reference to a literal INTERVAL in a syntax diagram.

Syntax

Element Purpose Restrictions Syntax
dd Number of days -10**10 < dd < 10**10 Literal Number, p. 4-216
fffff Fractions of a second 0 ≤ fffff ≤ 9999 Literal Number, p. 4-216
hh Number of hours If not first, 0 ≤ hh ≤ 23 Literal Number, p. 4-216
mi Number of minutes If not first, 0 ≤ mi ≤ 59 Literal Number, p. 4-216
mo Number of months If not first, 0 ≤ mo ≤ 11 Literal Number, p. 4-216
space Blank space (ASCII 32) Only 1 blank character allowed Literal blank space
ss Number of seconds If not first, 0 ≤ ss ≤ 59 Literal Number, p. 4-216
yyyy Number of years -10**10 < yyyy < 10**10 Literal Number, p. 4-216

INTERVAL INTERVAL
Field Qualifier

p. 4-205

Numeric Time Span)(

dd

space

hh

mi

ss

fffff

.

-

:

:

yyyy

-
mo

-

+

+

Numeric Time Span
4-214 IBM Informix Guide to SQL: Syntax

Literal INTERVAL
Usage
Unlike DATETIME literals, INTERVAL literals can include the unary plus (+)
or unary minus (-) sign. If you specify no sign, the default is plus.

The precision of the first time unit can be specified by the INTERVAL qualifier.
Except for FRACTION, which can have no more than 5 digits of precision, the
first time unit can have up to 9 digits of precision, if you specified a nonde-
fault precision in the declaration of the INTERVAL column or variable.

The following examples show literal INTERVAL values:

INTERVAL (3-6) YEAR TO MONTH
INTERVAL (09:55:30.825) HOUR TO FRACTION
INTERVAL (40 5) DAY TO HOUR
INTERVAL (299995.2567) SECOND(6) TO FRACTION(4)

Only the last of these examples has nondefault precision. For the syntax of
declaring the precision of INTERVAL data types and the default values for
each time unit, refer to “INTERVAL Field Qualifier” on page 4-205.

Related Information
For information on how to use INTERVAL data in arithmetic and relational
operations, see the discussion of the INTERVAL data type in the IBM Informix
Guide to SQL: Reference.
Segments 4-215

Literal Number
Literal Number
A literal number is the base-10 representation of a real number as an integer,
as a fixed-point decimal number, or in exponential notation. Use the Literal
Number segment whenever you see a reference to a literal number in a
syntax diagram.

Syntax

Usage
You cannot include comma (,) or blank (ASCII 32). The unary plus (+) or
minus (-) sign can precede a literal number, mantissa, or exponent.

You cannot include non-ASCII digits in literal numbers, such as the Hindi
numbers that some nondefault locales support. ♦

Integer Literals

In many contexts, a literal number is restricted to an integer literal. An integer
has no fractional part and cannot include a decimal point. Built-in data types
of SQL that can be exactly represented as literal integers include INT8, INT,
SMALLINT, SERIAL, SERIAL8, and DECIMAL(p, 0).

If you use the representation of a number in a base other than 10 (such as a
binary, octal, or hexadecimal number) in any context where a literal integer
is valid, the database server will attempt to interpret the value as a base-10
literal integer. For most data values, the result will be incorrect.

Element Purpose Restrictions Syntax
digit Integer in the range 0 through 9 Must be ASCII digit. Literal entered from the keyboard.

digit

E
-

+

digit

e

. digit

. -

+

GLS
4-216 IBM Informix Guide to SQL: Syntax

Literal Number
The following examples show some valid literal integers:

10 -27 +25567

Thousands separators (such as comma symbols) are not valid in literal
integers, nor in any other literal number.

Fixed-Point Decimal Literals

Fixed-point decimal literals can exactly represent DECIMAL(p,s) and MONEY
values. These can include a decimal point:

-123.456 00123456 +123456.0

The digits to the right of the decimal point in these examples are the
fractional portions of the numbers.

Floating-Point Decimal Literals

Floating-point literals can exactly represent FLOAT, SMALLFLOAT, and
DECIMAL(p) values, using a decimal point or exponential notation, or both.
They can approximately represent real numbers in exponential notation. The
next examples show floating point numbers:

-123.45E6 1.23456E2 123456.0E-3

The E in the previous examples is the symbol for exponential notation. The
digit that follows E is the value of the exponent. For example, the number 3E5
(or 3E+5) means 3 multiplied by 10 to the fifth power, and the number 3E-5
means 3 multiplied by the reciprocal of 10 to the fifth power.

Literal Numbers and the MONEY Data Type

When you use a literal number as a MONEY value, do not include a currency
symbol or include commas. The DBMONEY environment variable or the
locale file can format how MONEY values are displayed in output.

Related Information
For discussions of numeric data types, such as DECIMAL, FLOAT, INTEGER,
and MONEY, see the IBM Informix Guide to SQL: Reference.
Segments 4-217

Literal Row
Literal Row
The Literal Row segment specifies the syntax for literal values of named and
unnamed ROW data types. For syntax that allows you to use expressions that
evaluate to field values, see “ROW Constructors” on page 4-106.

Syntax.

IDS

Element Purpose Restrictions Syntax
literal_opaque_type Literal representation

for an opaque data type
Must be a literal that is recognized by
the input support function for the
associated opaque type.

Defined by the
developer of the
opaque data type.

literal_BOOLEAN Literal representation of
a BOOLEAN value

Must be either 't' (= TRUE) or 'f'
(= FALSE) specified as a quoted string.

Quoted String,
p. 4-243

,

Field Literal Value) '(' ROW

Literal Row

Field Literal Value

Quoted String
p. 4-243

Literal Number
p. 4-216

Literal Collection
p. 4-208

literal_BOOLEAN

Literal DATETIME
p. 4-212

Literal INTERVAL
p. 4-214

literal_opaque_type

USER

)ROW (Field Literal Value

Literal Row

,

Field Literal Value)(ROW

Literal Row

' '
4-218 IBM Informix Guide to SQL: Syntax

Literal Row
Usage
You can specify literal values for named ROW and unnamed ROW data types.
A ROW constructor introduces a literal row value, which can optionally be
enclosed between quotation marks.

The format of the value for each field of the ROW type must be compatible
with the data type of the corresponding field.

Important: You cannot specify simple-large-object data types (BYTE or TEXT) as the
field type for a row.

Fields of a row can be literal values for the data types in the following table.

For a Field of Type Literal Value Syntax

BOOLEAN t or f, representing TRUE or FALSE

CHAR, VARCHAR, LVARCHAR,
NCHAR, NVARCHAR,
CHARACTER VARYING, DATE

Quoted String, p. 4-243

DATETIME Literal DATETIME, p. 4-212

DECIMAL, MONEY, FLOAT,
INTEGER, INT8, SMALLFLOAT,
SMALLINT

Literal Number, p.4-216

INTERVAL Literal INTERVAL, p. 4-214

Opaque data types Quoted String, p. 4-243

The string must be a literal that is recognized
by the input support function for the
associated opaque type.

Collection type (SET, MULTISET,
LIST)

“Literal Collection” on page 4-208

For information on literal collection values as
variable or column values, see “Nested
Quotation Marks” on page 4-210. For infor-
mation on literal collection values for a ROW
type, see “Literals for Nested Rows” on
page 4-221.

Another ROW type (named or
unnamed)

For information on ROW type values, see
“Literals for Nested Rows” on page 4-221.
Segments 4-219

Literal Row
Literals of an Unnamed Row Type

To specify a literal value for an unnamed ROW type, introduce the literal row
with the ROW constructor; you must enclose the values between parentheses.
For example, suppose that you define the rectangles table as follows:

CREATE TABLE rectangles
(

area FLOAT,
rect ROW(x INTEGER, y INTEGER, length FLOAT, width FLOAT),

)

The following INSERT statement inserts values into the rect column of the
rectangles table:

INSERT INTO rectangles (rect)
VALUES ("ROW(7, 3, 6.0, 2.0)")

Literals of a Named Row Type

To specify a literal value for a named ROW, type, introduce the literal row
with the ROW type constructor and enclose the literal values for each field in
parentheses. In addition, you can cast the row literal to the appropriate
named ROW type to ensure that the row value is generated as a named ROW
type. The following statements create the named ROW type address_t and the
employee table:

CREATE ROW TYPE address_t
(
street CHAR(20),
city CHAR(15),
state CHAR(2),
zipcode CHAR(9)
);

CREATE TABLE employee
(

name CHAR(30),
address address_t

);

The following INSERT statement inserts values into the address column of the
employee table:

INSERT INTO employee (address)
VALUES (
"ROW('103 Baker St', 'Tracy','CA', 94060)"::address_t)
4-220 IBM Informix Guide to SQL: Syntax

Literal Row
Literals for Nested Rows

If the literal value is for a nested row, specify the ROW type constructor for
each row level. If you include quotation marks as delimiters, they should
enclose the outermost row. For example, suppose that you create the
following emp_tab table:

CREATE TABLE emp_tab
(

emp_name CHAR(10),
emp_info ROW(stats ROW(x INT, y INT, z FLOAT))

);

The following INSERT statement adds a row to the emp_tab table:

INSERT INTO emp_tab
VALUES ('joe boyd', "ROW(ROW(8,1,12.0))")

Similarly, if the row-string literal contains a nested collection, only the
outermost literal row can be enclosed between quotation marks. Do not put
quotation marks around an inner, nested collection type.

Related Information
Related statements: CREATE ROW TYPE, INSERT, UPDATE, and SELECT

For information on ROW constructors, see the Expression segment. See also
the Collection Literal segment.
Segments 4-221

4-222 IBM Informix Guide to SQL: Syntax

Optimizer Directives
Optimizer Directives
The Optimizer Directives segment specifies keywords that you can use to
partially or fully specify the query plan of the optimizer. Use this segment
whenever you see a reference to Optimizer Directives in a syntax diagram.

Syntax

Usage
Optimizer directives are valid in any query of a DELETE, SELECT, or UPDATE
statement. Use one or more directives to partially or fully specify the query
plan of the optimizer. The scope of the directive is the current query only.

Directives are enabled by default. To obtain information about how specified
directives are processed, view the output of the SET EXPLAIN statement. To
disable directives, set the IFX_DIRECTIVES environment variable to 0 or OFF,
or set the DIRECTIVES parameter in the ONCONFIG file to 0.

Optimizer Directives as Comments

Optimizer directives require the SQL or C comment indicators as delimiters.
If {+ are the opening delimiters, you must use } as the closing delimiter.
If /* are the opening delimiters, then you must use */ as the closing delimiters.
If --+ are the opening delimiters, then no closing delimiter is needed.

Join-Method Directives
p. 4-227

--+

{+

/*+

}

*/

,

Join-Order Directive
p. 4-226

Explain-Mode Directives
p. 4-231

Access-Method Directives
p. 4-224

Optimization-Goal
Directives
p. 4-229

Optimizer Directives

IDS

Rewrite Method Directives
p. 4-232XPS

Optimizer Directives
An optimizer directive or a string of optimizer directives immediately
follows the DELETE, SELECT, or UPDATE keyword in the form of a comment.
After the comment symbol, the first character in an optimizer directive is
always a plus (+) sign. No blank space or other whitespace character is
allowed between the comment indicator and the plus sign.

You can use any of the following comment indicators:

� A double hyphen (--) delimiter

The double hyphen needs no closing symbol because it specifies only
the remainder of the current line as comment. When you use this
style, include the optimizer directive on only the current line.

� Braces ({ }) delimiters

The comment extends from the left brace ({) until the next right (})
brace; this can be in the same line or in some subsequent line.

� C-language style slash and asterisk (/* */) paired delimiters

The comment extends from the initial slash-asterisk (/*) pair until
the next asterisk-slash (*/) characters in the same line or in some
subsequent line.

In ESQL/C, the -keep command option to the esql compiler must be
specified when you use C-style comments. ♦

For more information on SQL comment indicators, see “How to Enter SQL
Comments” on page 1-6.

If you specify multiple directives in the same query, you must separate them
with a blank space, a comma, or any character that you choose. It is recom-
mended that you separate successive directives with a comma.

If an alias exists for a table, use the alias (rather than the actual table name) in
the optimizer directive specification. Because system-generated index names
begin with a blank character, use quotation marks to delimit such names.

Syntax errors in an optimizer directive do not cause a valid query to fail.
Use the SET EXPLAIN statement to obtain information related to such errors.

E/C
Segments 4-223

Optimizer Directives
Restrictions on Optimizer Directives

You can specify optimizer directives for any query in a DELETE, SELECT, or
UPDATE statement, unless it includes any of the following syntax elements:

� A query that accesses a outside the current database

� In ESQL/C, a statement with the WHERE CURRENT OF cursor clause

Access-Method Directives

Use the access-method directive to specify the manner in which the optimizer
should search the tables.

Use commas or blank spaces to separate elements within the parentheses.

E/C

Element Purpose Restrictions Syntax
alias Temporary alternative name declared

for a table in the FROM clause
If an alias is declared, it must be
used in the optimizer directive

Identifier,
p. 4-189

comments Text that documents the optimizer
directive

Must be outside the parenthesis but
inside the comment symbols

Character string

index Index for which to specify a query
plan directive

Must exist. With AVOID _INDEX, at
least one index is required

Database Object
Name, p. 4-46

synonym,
table

Synonym or table in a query for
which to specify a directive

Synonym and the table to which it
points must exist

Database Object
Name, p. 4-46

Access-Method
Directives

Back to Optimizer Directives
p. 4-222

AVOID_INDEX

()

(

FULL

AVOID_FULL (

index

"index"

table

synonym

alias

Table Reference

Table
Reference

Table
Reference

Table
Reference

comments

INDEX_ALLXPS

INDEX ,
4-224 IBM Informix Guide to SQL: Syntax

Optimizer Directives
The following table describes each of the access-method directives and
indicates how it affects the query plan of the optimize.

Both the AVOID_FULL and INDEX keywords specify that the optimizer
should avoid a full scan of a table. It is recommended, however, that you use
the AVOID_FULL keyword to specify the intent to avoid a full scan on the
table. In addition to specifying that the optimizer not use a full-table scan, the
negative directive allows the optimizer to use indexes that are created after
the access-method directive is specified.

In general, you can specify only one access-method directive per table. You
can, however, specify both AVOID_FULL and AVOID_INDEX for the same
table. When you specify both of these access-method directives, the
optimizer avoids performing a full scan of the table and it avoids using the
specified index or indexes.

This combination of negative directives allows the optimizer to use indexes
that are created after the access-method directives are specified.

Keywords Effect Optimizer Action

AVOID_FULL No full-table
scan on the
listed table

The optimizer considers the various indexes it
can scan. If no index exists, the optimizer
performs a full-table scan.

AVOID_INDEX Does not use
any of the
indexes listed

The optimizer considers the remaining indexes
and a full- table scan.If all indexes for a table
are specified, optimizer uses a full-table scan to
access the table.

FULL Performs a full-
table scan

Even if an index exists on a column, the
optimizer uses a full-table scan to access the
table.

INDEX Uses the index
specified to
access the table

If more than one index is specified, the
optimizer chooses the index that yields the
least cost. If no indexes are specified, then all
the available indexes are considered.

INDEX_ALL Access the table
using all listed
indexes (Multi-
index scan)

If more than one index is specified, all are used.
If only one is specified, optimizer follows an
INDEX SKIP SCAN using that index. If no
index is specified, then all available indexes
are considered. ♦

XPS
Segments 4-225

Optimizer Directives
Suppose that you have a table named emp that contains the following
indexes: loc_no, dept_no, and job_no. When you perform a SELECT that uses
the table in the FROM clause, you might direct the optimizer to access the
table in one of the following ways:

� Example using a positive directive:
SELECT {+INDEX(emp dept_no)}

In this example the access-method directive forces the optimizer to
scan the index on the dept_no column.

� Example using a negative directive:
SELECT {+AVOID_INDEX(emp loc_no, job_no), AVOID_FULL(emp)}

This example includes multiple access-method directives. These
access-method directives also force the optimizer to scan the index
on the dept_no column. If a new index, emp_no is created for table
emp, however, the optimizer can consider it.

Join-Order Directive

Use the ORDERED join-order directive to force the optimizer to join tables or
views in the order in which they appear in the FROM clause of the query.

For example, the following query forces the database server to join the dept
and job tables and then join the result with the emp table:

SELECT --+ ORDERED
name, title, salary, dname

FROM dept, job, emp WHERE title = 'clerk' AND loc = 'Palo Alto'
AND emp.dno = dept.dno
AND emp.job= job.job

Because no predicates occur between the dept table and the job table, this
query forces the database server to construct a Cartesian product.

Element Purpose Restrictions Syntax
comments Text that documents the directive Must appear between comment symbols. Character string

Back to Optimizer Directives
p. 4-222

Join-Order
Directive

ORDERED

comments
4-226 IBM Informix Guide to SQL: Syntax

Optimizer Directives
When your query involves a view, the placement of the ORDERED join-order
directive determines whether you are specifying a partial- or total-join order.

� Specifying partial-join order when you create a view

If you use the ORDERED directive when you create a view, the base
tables are joined contiguously in the order of the view definition.

For all subsequent queries on the view, the database server joins the
base tables contiguously in the order specified in the view definition.
When used in a view, the ORDERED directive does not affect the join
order of other tables named in the FROM clause in a query.

� Specifying total-join order when you query a view

When you specify the ORDERED join-order directive in a query that
uses a view, all tables are joined in the order specified, even those
tables that form views. If a view is included in the query, the base
tables are joined contiguously in the order of the view definition.

For examples of ORDERED with views, refer to your Performance Guide.

Join-Method Directives

Use join-method directives to influence how tables are joined in a query.

This diagram is simplified: /BROADCAST is not valid with AVOID_HASH. ♦

Element Purpose Restrictions Syntax
comments Text that documents the directive Must appear between comment symbols. Character string

/BROADCASTXPS

Back to Optimizer Directives
p. 4-222

Join-Method
Directives

USE_NL (

,

)

comments

Table Reference
p. 4-224

AVOID_HASH

,

/BUILD

(Table Reference
p. 4-224

USE_HASH

AVOID_NL

/PROBE

XPS
Segments 4-227

Optimizer Directives
Use commas or blank spaces to separate the elements within the parentheses.

The following table describes each of the join-method directives.

A join-method directive takes precedence over the join method forced by the
OPTCOMPIND configuration parameter.

When you specify the USE_HASH or AVOID_HASH directives (to use or avoid
a hash join, respectively), you can also specify the role of each table:

� /BUILD

With the USE_HASH directive, this keyword indicates that the speci-
fied table be used to construct a hash table. With the AVOID_HASH
directive, this keyword indicates that the specified table not be used
to construct a hash table.

� /PROBE

With the USE_HASH directive, this keyword indicates that the speci-
fied table be used to probe the hash table. With the AVOID_HASH
directive, this keyword indicates that the specified table not be used
to probe the hash table. You can specify multiple probe tables as long
as there is at least one table for which you do not specify PROBE.

Keyword Purpose

USE_NL Uses the specified tables as the inner table in a nested-loop join

If n tables are specified in the FROM clause, then at most n-1 tables
can be specified in the USE_NL join-method directive.

USE_HASH Uses a hash join to access the specified table

You can also choose whether the table will be used to create the
hash table or to probe the hash table.

AVOID_NL Does not use the specified table as inner table in a nested loop join

A table listed with this directive can still participate in a nested
loop join as the outer table.

AVOID_HASH Does not access the specified table using a hash join

You can optionally use a hash join, but impose restrictions on the
role of the table within the hash join.
4-228 IBM Informix Guide to SQL: Syntax

Optimizer Directives
� /BROADCAST

This BROADCAST directive forces a plan which broadcasts the base
table or derived table of a specific size. The directive must also
include either BUILD or PROBE. If the BUILD option is included, the
USE_HASH table is broadcast. If the PROBE option is included, the
join in which the USE_HASH table participates is broadcast. ♦

If neither the /BUILD nor the /PROBE keyword is specified, the optimizer
uses cost estimates to determine the role of the table.

In this example, the USE_HASH directive forces the optimizer to construct a
hash table on the dept table and consider only the hash table to join dept with
the other tables. Because no other directives are specified, the optimizer can
choose the least expensive join methods for the other joins in the query.

SELECT /*+ USE_HASH (dept /BUILD)
The optimizer must use dept to construct a hash table */
name, title, salary, dname
FROM emp, dept, job WHERE loc = 'Phoenix'

AND emp.dno = dept.dno AND emp.job = job.job

Optimization-Goal Directives

Use optimization-goal directives to specify the measure that is used to
determine the performance of a query result.

IDS

IDS

Element Purpose Restrictions Syntax
comments Text that documents the directive Must appear between comment symbols. Character string

Back to Optimizer Directives
p. 4-222

Optimization-Goal
Directives

FIRST_ROWS

commentsALL_ROWS
Segments 4-229

Optimizer Directives
The two optimization-goal directives are:

� FIRST_ROWS

This tells the optimizer to choose a plan that optimizes the process of
finding only the first screenful of rows that satisfies the query.
Use this option to decrease initial response time for queries that use
an interactive mode or that require the return of only a few rows.

� ALL_ROWS

This directive tells the optimizer to choose a plan that optimizes the
process of finding all rows that satisfy the query.

This form of optimization is the default.

An optimization-goal directive takes precedence over the OPT_GOAL
environment variable and the OPT_GOAL configuration parameter.

For information about how to set the optimization goal for an entire session,
see the SET OPTIMIZATION statement.

You cannot use an optimization-goal directive in the following contexts:

� In a view definition

� In a subquery

The following query returns the names of the employees who earned the top
fifty bonuses. The optimization-goal directive directs the optimizer to return
the first screenful of rows as fast as possible.

SELECT {+FIRST_ROWS
Return the first screenful of rows as fast as possible}
4-230 IBM Informix Guide to SQL: Syntax

Optimizer Directives
Explain-Mode Directives

Use the explain-mode directives to test and debug query plans and to print
information about the query plan to the sqexplain.out file.

The following table lists the effect of each explain-mode directive.

The EXPLAIN directive is primarily useful for testing and debugging query
plans. It is redundant when SET EXPLAIN ON is already in effect. It is not
valid in a view definition or in a subquery.

The next query executes and prints the query plan to the sqexplain.out file:

SELECT {+EXPLAIN}
c.customer_num, c.lname, o.order_date
FROM customer c, orders o WHERE c.customer_num = o.customer_num

The AVOID_EXECUTE directive prevents execution of a query on either the
local or remote site, if a remote table is part of the query. This directive does
not prevent nonvariant functions in a query from being evaluated.

Element Purpose Restrictions Syntax
comments Text that documents the directive Must appear between comment symbols. Character string

Back to Optimizer Directives
p. 4-222

Explain-Mode Directives

EXPLAIN

comments, AVOID_EXECUTE

Keyword Effect

EXPLAIN Turns SET EXPLAIN ON for the specified query

AVOID_EXECUTE Prevents the data manipulation statement from executing;
instead, the query plan is printed to the sqexplain.out file
Segments 4-231

Optimizer Directives
The following query does not return data but writes the query plan to the
sqexplain.out file:

SELECT {+EXPLAIN, AVOID_EXECUTE}
c.customer_num, c.lname, o.order_date

FROM customer c, orders o WHERE c.customer_num = o.customer_num

You must use both the EXPLAIN and AVOID_EXECUTE directives to see the
query plan of the optimizer (in the sqexplain.out file) without executing the
query. The comma (,) separating these two directives is optional.

If you omit the EXPLAIN directive when you specify the AVOID_EXECUTE
directive, no error is issued, but no query plan is written to the sqexplain.out
file and no DML statement is executed.

You cannot use the explain-mode directives in the following contexts:

� In a view definition

� In a trigger

� In a subquery

They are valid, however, in a SELECT statement within an INSERT statement.

Rewrite Method Directive

By default, the database server attempts to unnest correlated subqueries.
You can use the NESTED rewrite directive in the outermost query to prevent
the query plan from being rewritten with unnested subqueries.

XPS

Element Purpose Restrictions Syntax
comments Text that documents the directive Must appear between comment symbols. Character string

Back to Optimizer Directives
p. 4-222

NESTED

comments
4-232 IBM Informix Guide to SQL: Syntax

Optimizer Directives
Related Information

For information about the sqexplain.out file, see SET EXPLAIN.

For information about how to set optimization settings for an entire session,
see SET OPTIMIZATION.

For a discussion about optimizer directives and performance, see your
Performance Guide.

For information on the IFX_DIRECTIVES environment variable, see the
IBM Informix Guide to SQL: Reference.

For information on the DIRECTIVES parameter in the ONCONFIG file, see your
Administrator’s Reference.
Segments 4-233

Owner Name
Owner Name
The owner name specifies the owner of a database object. Use this segment
whenever you see a reference to Owner Name in a syntax diagram.
A synonym for owner name is authorization identifier.

Syntax

Usage
In an ANSI-compliant database, you must specify the owner of any database
object that you do not own. The ANSI term for owner name is schema name. ♦

In databases that are not ANSI-compliant, the owner name is optional. You do
not need to specify owner when you create database objects or use data access
statements. If you do not specify owner when you create a database object, the
database server assigns your login name as the owner of the object, in most
cases. For exceptions to this rule, see “Ownership of Created Database
Objects” on page 2-140 in CREATE FUNCTION and “Ownership of Created
Database Objects” on page 2-189 in CREATE PROCEDURE.

If you specify owner in data-access statements, the database server checks it
for correctness. Without quotation marks, owner is case insensitive. The
following four queries all can access data from the table kaths.tab1:

SELECT * FROM tab1
SELECT * FROM kaths.tab1
SELECT * FROM KATHS.tab1
SELECT * FROM Kaths.tab1

Element Purpose Restrictions Syntax
owner User name of the

owner of a database
object in a database

In Dynamic Server, the maximum length of owner
is 32 bytes. In Extended Parallel Server, the
maximum length of owner is 8 bytes.

Must conform to
the rules of your
operating system.

owner

'owner '
Owner Name

ANSI
4-234 IBM Informix Guide to SQL: Syntax

Owner Name
Using Quotation Marks

When you use quotation marks, owner is case sensitive. In other words,
quotation marks instruct the database server to read or store the name exactly
as typed when you create or access a database object. For example, suppose
that you have a table whose owner is Sam. You can use either one of the
following two statements to access data in the table:

SELECT * FROM table1
SELECT * FROM 'Sam'.table1

The first query succeeds because the owner name is not required. The second
query succeeds because the specified owner name matches the owner name
as it is stored in the database.

In a distributed query, if the owner name is not between quotation marks, the
remote database recognizes the case convention of the local database. For
example, if the local database is ANSI-compliant, then the remote database
processes the owner name in uppercase. If the local database is not ANSI-
compliant, the remote database processes the owner name in lowercase. ♦

Accessing Information from the System Catalog Tables

If you use the owner name as one of the selection criteria to access database
object information from one of the system catalog tables, the owner name is
case sensitive. Because this type of query requires that you use quotation
marks, you must type the owner name exactly as it is stored in the system
catalog table. Of the following two examples, only the second successfully
accesses information on the table Kaths.table1.

SELECT * FROM systables WHERE tabname = 'tab1' AND owner = 'kaths'
SELECT * FROM systables WHERE tabname = 'tab1' AND owner = 'Kaths'

User informix is the owner of the system catalog tables.

Tip: The USER keyword returns the login name exactly as it is stored on the system.
If the owner name is stored differently from the login name (for example, a mixed-case
owner name and an all lowercase login name), the owner = USER syntax fails.

IDS
Segments 4-235

Owner Name
ANSI-Compliant Database Restrictions and Case Sensitivity

If you specify the owner name when you create or rename a database object
in an ANSI-compliant database, you must include the owner name in data
access statements. You must include the owner name when you access a
database object that you do not own. ♦

The following table describes how the database server reads and stores owner
when you create, rename, or access a database object.

Because the database server automatically shifts owner to uppercase letters if
not between quotation marks, case-sensitive errors can cause queries to fail.
For example, if you are user nancy and you use the following statement, the
resulting view has the name nancy.njcust:

CREATE VIEW 'nancy'.njcust AS
SELECT fname, lname FROM customer WHERE state = 'NJ'

The following SELECT statement fails because it tries to match the name
NANCY.njcust to the actual owner and table name of nancy.njcust:

SELECT * FROM nancy.njcust

Tip: When you use the owner name as one of the selection criteria in a query (for
example, WHERE owner = 'kaths'), make sure that the quoted string matches the
owner name as it is stored in the database. If the database server cannot find the
database object or database, you might need to modify the query so that the quoted
string uses uppercase letters (for example, WHERE owner = 'KATHS').

Owner Name
Specification What the Database Server Does

Do not specify Reads or stores owner exactly as the login name is stored in
the system. Users must specify owner for a database object or
database they do not own.

Specify without
quotation marks

Reads or stores owner in uppercase letters

Enclose within
quotation marks

Reads or stores owner exactly as entered. For more infor-
mation on how the database server handles this notation,
see “Using Quotation Marks” on page 4-235 and “Accessing
Information from the System Catalog Tables” on page 4-235.

ANSI
4-236 IBM Informix Guide to SQL: Syntax

Purpose Options
Purpose Options
The CREATE ACCESS_METHOD and ALTER ACCESS_METHOD statements
specify purpose options with the following syntax.

Syntax

+

IDS

Element Meaning Restrictions Syntax
task A keyword that identifies a

purpose function
Keywords to which you can assign a
function (whose name cannot match
the keyword)

Task Purpose Category
in the table on p. 4-239.

value A keyword that identifies
configuration information

Predefined configuration keywords
to which you can assign values

Value Purpose Category
in the table on p. 4-239.

flag A keyword that indicates
which feature a flag enables

The interface specifies flag names Flag Purpose Category
in the table on p. 4-239.

external
_routine

The user-defined function that
performs a task

Must be registered in the database by
a CREATE FUNCTION statement

Database Object Name,
p. 4-46

string
_value

A value that is expressed as
one or more characters

Characters must be from the code set
of the database

Quoted String, p. 4-243

numeric
_value

A value of a real number Must be within the range of a
numeric data type

Literal Number, p. 4-216

Purpose Options

string_value

external_routinetask

value

numeric_value

flag

=

=

Segments 4-237

Purpose Options
Usage
The database server recognizes a registered access method as a set of
attributes, including a name and options called purpose options.

You can use purpose options to accomplish the following tasks:

� Specify which functions perform data access and manipulation
tasks, such as opening, reading, and closing a data source.

� Set configuration options, such as a storage-space type.

� Set flags, such as enabling rowid interpretation.

You specify purpose options when you create an access method with the
CREATE ACCESS_METHOD statement. To change the purpose options of an
access method, use the ALTER ACCESS_METHOD statement.

Each task, value, or flag keyword corresponds to a column name in the sysams
system catalog table. The keywords let you set the following attributes:

� Purpose function

A purpose-function attribute maps the name of a user-defined function
or method to a task keyword, such as am_create, am_beginscan, or
am_getnext. For a complete list of these keywords, see the “Task”
category in the table on page 4-239.
The external_routine specifies the corresponding function (C) that you
supply for the access method. Example setting:

am_create = FS_create

� Purpose flag

A purpose flag indicates whether an access method supports a given
SQL statement or keyword. Example setting:

am_rowids

� Purpose value

These string, character, or numeric values provide configuration
information that a flag cannot supply. Example setting:

am_sptype = 'X'
4-238 IBM Informix Guide to SQL: Syntax

Purpose Options
To enable a user-defined function or method as a purpose function, you must
first register the C function or Java method that performs the appropriate
tasks, using the CREATE FUNCTION statement, and then set the purpose
keyword equal to the registered function or method name. This example
creates a new access method. Another example on page 2-15 adds a purpose
method to an existing access method.

To enable a purpose flag, specify the name without a corresponding value.

To clear a purpose-option setting in the sysams table, use the DROP clause of
the ALTER ACCESS_METHOD statement.

Purpose Functions, Methods, Flags, and Values

The following table describes the possible settings for the sysams columns
that contain purpose functions or methods, flags, and values. The entries
appear in the same order as the corresponding sysams columns.

Keyword Explanation Category Default

 am_sptype A character that specifies from what type of storage space a
primary or secondary-access method can access data. The
am_sptype character can have any of the following settings:

� 'X' indicates the method accesses only extspaces.

� 'S ' indicates the method accesses only sbspaces.

� 'A' indicates the method can access extspaces and sbspaces.

Valid only for a new access method. You cannot change or add an
am_sptype value with ALTER ACCESS_METHOD. Do not set
am_sptype to 'D' or attempt to store a virtual table in a dbspace.

 Value Virtual-
Table
Interface
(C): 'A'

am_defopclass The default operator class for a secondary-access method. The
access method must exist before you can define its operator class,
so you set this value in the ALTER ACCESS_METHOD statement.

 Value None

am_keyscan A flag that, if set, indicates that am_getnext returns rows of index
keys for a secondary-access method. If a query selects only the
columns in the index key, the database server uses the row of
index keys that the secondary-access method puts in shared
memory, without reading the table.

 Flag Not set

am_unique A flag to set if a secondary-access method checks for unique keys Flag Not set

(1 of 3)
Segments 4-239

Purpose Options
 am_cluster A flag that you set if a primary- or secondary-access method
supports clustering of tables

 Flag Not set

am_rowids A flag that you set if a primary-access method can retrieve a row
from a specified address

 Flag Not set

am_readwrite A flag to set if a primary-access method supports data changes.
The default setting, not set, indicates that the virtual data is read-
only. For the C Virtual-Table Interface, set this flag if your appli-
cation will write data, to avoid the following problems:

� An INSERT, DELETE, UPDATE, or ALTER FRAGMENT
statement causes an SQL error.

� Function am_insert, am_delete, or am_update is not executed.

 Flag Not set

am_parallel A flag that the database server sets to indicate which purpose
functions or methods can execute in parallel in a primary or
secondary-access method. If set, the hexadecimal am_parallel
bitmap contains one or more of the following bit settings:

� The 1 bit is set for parallelizable scan.

� The 2 bit is set for parallelizable delete.

� The 4 bit is set for parallelizable update.

� The 8 bit is set for parallelizable insert.

Insertions, deletions, and updates are not supported in the Java
Virtual-Table Interface.

 Flag Not set

am_costfactor A value by which the database server multiplies the cost that the
am_scancost purpose function or method returns for a primary or
secondary-access method. An am_costfactor value from 0.1 to
0.9 reduces the cost to a fraction of the value that am_scancost
calculates. An am_costfactor value of 1.1 or greater increases the
am_scancost value.

Value 1.0

 am_create A keyword that you associate with a user-defined function or
method (UDR) name that creates a virtual table or virtual index

Task None

 am_drop A keyword that you associate with the name of a UDR that drops
a virtual table or virtual index

Task None

am_open A keyword that you associate with the name of a UDR that makes
a fragment, extspace, or sbspace available

Task None

Keyword Explanation Category Default

(2 of 3)
4-240 IBM Informix Guide to SQL: Syntax

Purpose Options
am_close A keyword that you associate with the name of a UDR that
reverses the initialization that am_open performs

Task None

am_insert A keyword that you associate with the name of a UDR that inserts
a row or an index entry

Task None

am_delete A keyword that you associate with the name of a UDR that deletes
a row or an index entry

Task None

am_update A keyword that you associate with the name of a UDR that
changes the values in a row or key

Task None

 am_stats A keyword that you associate with the name of a UDR that builds
statistics based on the distribution of values in storage spaces

Task None

am_scancost A keyword that you associate with the name of a UDR that calcu-
lates the cost of qualifying and retrieving data

Task None

 am_check A keyword that you associate with the name of a UDR that tests
the physical structure of a table or performs an integrity check on
an index

Task None

am_beginscan A keyword that you associate with the name of a UDR that sets up
a scan

Task None

am_endscan A keyword that you associate with the name of a UDR that
reverses the setup that am_beginscan initializes

Task None

 am_rescan A keyword that you associate with the name of a UDR that scans
for the next item from a previous scan to complete a join or
subquery

Task None

 am_getnext A keyword that you associate with the name of the required UDR
that scans for the next item that satisfies a query

Task None

am_getbyid A keyword that you associate with the name of a UDR that fetches
data from a specific physical address; am_getbyid is available
only for primary-access methods

Task None

am_truncate A keyword that you associate with the name of a UDR that deletes
all rows of a virtual table (primary-access method) or that deletes
all corresponding keys in a virtual index (secondary- access
method)

Task None

Keyword Explanation Category Default

(3 of 3)
Segments 4-241

Purpose Options
The following rules apply to the purpose-option specifications in the CREATE
ACCESS_METHOD and ALTER ACCESS_METHOD statements:

� To specify multiple purpose options in one statement, separate them
with commas.

� The CREATE ACCESS_METHOD statement must specify a user-
defined function or method name that corresponds to the
am_getnext keyword.

The ALTER ACCESS_METHOD statement cannot drop the function or
method name that corresponds to am_getnext but can modify it.

� The ALTER ACCESS_METHOD statement cannot add, drop, or modify
the am_sptype value.

� You can specify the am_defopclass value only with the ALTER
ACCESS_METHOD statement.

You must first register a secondary-access method with the CREATE
ACCESS_METHOD statement before you can assign a default opera-
tor class.

Related Information
Related statements: CREATE FUNCTION and CREATE OPCLASS

For the following topics, see the IBM Informix Virtual-Table Interface
Programmer’s Guide (for C):

� Managing storage spaces, executing in parallel, and calculating
statement costs

� Registering the access method and purpose functions

� Purpose-function reference

For the following topics, see the IBM Informix Virtual-Index Interface
Programmer’s Guide (for C):

� Managing storage spaces, executing in parallel, calculating
statement costs, bypassing table scans, and enforcing unique-index
constraints

� Registering the access method and purpose functions

� Purpose-function reference
4-242 IBM Informix Guide to SQL: Syntax

Quoted String
Quoted String
A quoted string is a string literal between quotation marks. Use this segment
whenever you see a reference to a quoted string in a syntax diagram.

Syntax

Usage
Use quoted strings to specify string literals in data-manipulation statements
and other SQL statements. For example, you can use a quoted string in an
INSERT statement to insert a value into a column of a character data type.

Element Purpose Restrictions Syntax
character Code set element

within quoted string
Cannot enclose between double quotes if the
DELIMIDENT environment variable is set.

Literal value from
the keyboard.

'

"

' '
" "

"

character

character

+

'

Quoted String
Segments 4-243

Quoted String
Restrictions on Specifying Characters in Quoted Strings

You must observe the following restrictions on character in quoted strings:

� If you are using the ASCII code set, you can specify any printable
ASCII character, including a single quote or double quote. For restric-
tions that apply to using quotes in quoted strings, see “Using Quotes
in Strings” on page 4-245.

� In some locales, you can specify non-ASCII characters, including
multibyte characters, that the locale supports. See the discussion of
quoted strings in the IBM Informix GLS User’s Guide. ♦

� If you enable newline characters for quoted strings, you can embed
newline characters in quoted strings. For further information, see
“Newline Characters in Quoted Strings” on page 4-245.

� After you set the DELIMIDENT environment variable, you cannot
use double quotes (") to delimit quoted strings. If DELIMIDENT is
set, the database server interprets strings enclosed in double quotes
as SQL identifiers, not quoted strings. If DELIMIDENT is not set, a
string between double quotes is a quoted string, not an identifier. For
further information, see “Using Quotes in Strings” on page 4-245.

� You can enter DATETIME and INTERVAL data values as quoted
strings. For the restrictions that apply to entering DATETIME and
INTERVAL data in quoted-string format, see “DATETIME and
INTERVAL Values as Strings” on page 4-246.

� Quoted strings that are used with the LIKE or MATCHES keyword in
a search condition can include wildcard characters that have a
special meaning in the search condition. For further information, see
“LIKE and MATCHES in a Condition” on page 4-246.

� When you insert a value that is a quoted string, you must observe a
number of restrictions. For further information, see “Inserting Values
as Quoted Strings” on page 4-246.

GLS
4-244 IBM Informix Guide to SQL: Syntax

Quoted String
Newline Characters in Quoted Strings

By default, the string constant must be written on a single line. That is, you
cannot use embedded newline characters in a quoted string. You can,
however, override this default behavior in one of two ways:

� To enable newline characters in quoted strings in all sessions, set the
ALLOW_NEWLINE parameter to 1 in the ONCONFIG file.

� To enable newline characters in quoted strings for the current
session, execute the built-in function IFX_ALLOW_NEWLINE.

In the following example, the user enables newline characters in quoted
strings for the current session:

EXECUTE PROCEDURE IFX_ALLOW_NEWLINE('T')

If newline characters in quoted strings are not enabled for a session, the
following statement is illegal and results in an error:

SELECT 'The quick brown fox
jumped over the old gray fence'
FROM customer
WHERE customer_num = 101

If you enable newline characters in quoted strings for the session, however,
the statement in the preceding example is valid and executes successfully.

For more information on the IFX_ALLOW_NEWLINE function, see
“IFX_ALLOW_NEWLINE Function” on page 4-164. For more information
on the ALLOW_NEWLINE parameter in the ONCONFIG file, see your Admin-
istrator’s Reference.

Using Quotes in Strings

The single quote (') has no special significance in string literals delimited by
double quotes. Conversely, double quote (") has no special significance in
strings delimited by single quotes. For example, these strings are valid:

"Nancy's puppy jumped the fence"
'Billy told his kitten, "No!"'

A string delimited by double quotes can include a double quote character by
preceding it with another double quote, as the following string shows:

"Enter ""y"" to select this row"
Segments 4-245

Quoted String
When the DELIMIDENT environment variable is set, double quotes can only
delimit identifiers, not strings. For more information on delimited identifiers,
see “Delimited Identifiers” on page 4-191.

DATETIME and INTERVAL Values as Strings

You can enter DATETIME and INTERVAL data in the literal forms described in
the “Literal DATETIME” on page 4-212 and “Literal INTERVAL” on
page 4-214, or you can enter them as quoted strings.

Valid literals that are entered as character strings are converted automatically
into DATETIME or INTERVAL values.

These statements enter INTERVAL and DATETIME values as quoted strings:

INSERT INTO cust_calls(call_dtime) VALUES ('1997-5-4 10:12:11')
INSERT INTO manufact(lead_time) VALUES ('14')

The format of the value in the quoted string must exactly match the format
specified by the INTERVAL or DATETIME qualifiers of the column. For the first
INSERT in the preceding example, the call_dtime column must be defined
with the qualifiers YEAR TO SECOND for the INSERT statement to be valid.

LIKE and MATCHES in a Condition

Quoted strings with the LIKE or MATCHES keyword in a condition can
include wildcard characters. For a complete description of how to use
wildcard characters, see “Condition” on page 4-24.

Inserting Values as Quoted Strings

In the default locale, if you are inserting a value that is a quoted string, you
must adhere to the following restrictions:

� Enclose CHAR, VARCHAR, NCHAR, NVARCHAR, DATE, DATETIME,
INTERVAL, and (for Dynamic Server) LVARCHAR values in quotation
marks.

� Specify DATE values in the mm/dd/yyyy format (or in the format that
the DBDATE or GL_DATE environment variable specifies, if set).

� You cannot insert strings longer than 256 bytes. ♦
� You cannot insert strings longer than 32 kilobytes. ♦

XPS

IDS
4-246 IBM Informix Guide to SQL: Syntax

Quoted String
� Numbers with decimal values must include a decimal separator.
Comma (,) is not valid as a decimal separator in the default locale.

� MONEY values cannot include a dollar sign ($) or commas.

� You can enter NULL in a column only if it accepts NULL values.

Related Information
For a discussion of the DELIMIDENT environment variable, see the
IBM Informix Guide to SQL: Reference.

For a discussion of the GLS aspects of quoted strings, see the IBM Informix GLS
User’s Guide.
Segments 4-247

Relational Operator
Relational Operator
A relational operator compares two expressions quantitatively. Use the
Relational Operator segment whenever you see a reference to a relational
operator in a syntax diagram.

Syntax

Usage
The relational operators of SQL have the following meanings.

+

<=
>

=

>=

<>

!=

<

Relational Operator

Relational
Operator Meaning

< Less than

<= Less than or equal to

> Greater than

= Equal to

>= Greater than or equal to

<> Not equal to

!= Not equal to
4-248 IBM Informix Guide to SQL: Syntax

Relational Operator
Usage
For number expressions, greater than means to the right on the real line.

For DATE and DATETIME expressions, greater than means later in time.

For INTERVAL expressions, greater than means a longer span of time.

For CHAR, VARCHAR, and LVARCHAR expressions, greater than means after in
code-set order. (For NCHAR and NVARCHAR expressions, greater than means
after in the localized collation order, if one exists; otherwise, it means in code-
set order.)

Locale-based collation order is used for NCHAR and NVARCHAR expressions.
So for NCHAR and NVARCHAR expressions, greater than means after in the
locale-based collation order. For more information on locale-based collation
order and the NCHAR and NVARCHAR data types, see the IBM Informix GLS
User’s Guide. ♦

Using Operator Functions in Place of Relational Operators

Each relational operator is bound to a particular operator function, as the
table shows. The operator function accepts two values and returns a boolean
value of true, false, or unknown.

Connecting two expressions with a relational operator is equivalent to
invoking the operator function on the expressions. For example, the next two
statements both select orders with a shipping charge of $18.00 or more.

Relational Operator Associated Operator Function

< lessthan()

<= lessthanorequal()

> greater than()

>= greaterthanorequal()

= equal()

<> notequal()

!= notequal()

GLS
Segments 4-249

Relational Operator
The >= operator in the first statement implicitly invokes the
greaterthanorequal() operator function.

SELECT order_num FROM orders
WHERE ship_charge >= 18.00

SELECT order_num FROM orders
WHERE greaterthanorequal(ship_charge, 18.00)

The database server provides the operator functions associated with the
relational operators for all built-in data types. When you develop a user-
defined data type, you must define the operator functions for that type for
users to be able to use the relational operator on the type.

If you define less_than(), greater_than(), and the other operator functions
for a user-defined type, then you should also define compare(). Similarly,
if you define compare(), then you should also define less_than(),
greater_than(), and the other operator functions. All of these functions must
be defined in a consistent manner, to avoid the possibility of incorrect query
results when UDT values are compared in the WHERE clause of a SELECT.

Collating Order for U.S. English Data

If you are using the default locale (U.S. English), the database server uses the
code-set order of the default code set when it compares the character expres-
sions that precede and follow the relational operator.

On UNIX, the default code set is the ISO8859-1 code set, which consists of the
following sets of characters:

� The ASCII characters have code points in the range of 0 to 127.

This range contains control characters, punctuation symbols,
English-language characters, and numerals.

� The 8-bit characters have code points in the range 128 to 255.

This range includes many non-English-language characters (such as
é, â, ö, and ñ) and symbols (such as £, ©, and ¿). ♦

In Windows, the default code set is Microsoft 1252. This code set includes
both the ASCII code set and a set of 8-bit characters. ♦

UNIX

Windows
4-250 IBM Informix Guide to SQL: Syntax

Relational Operator
This table lists the ASCII code set. The Num columns show ASCII code point
numbers, and the Char columns display corresponding ASCII characters.
In the default locale, ASCII characters are sorted according to their codeset
order. Thus, lowercase letters follow uppercase letters, and both follow
digits. In this table, ASCII 32 is the blank character, and the caret symbol (^)
stands for the CTRL key. For example, ^X means CONTROL-X.

Num Char Num Char Num Char Num Char Num Char Num Char Num Char

0 ^@ 20 ^T 40 (60 < 80 P 100 d 120 x

1 ^A 21 ^U 41) 61 = 81 Q 101 e 121 y

2 ^B 22 ^V 42 * 62 > 82 R 102 f 122 z

3 ^C 23 ^W 43 + 63 ? 83 S 103 g 123 {

4 ^D 24 ^X 44 , 64 @ 84 T 104 h 124 |

5 ^E 25 ^Y 45 - 65 A 85 U 105 i 125 }

6 ^F 26 ^Z 46 . 66 B 86 V 106 j 126 ~

7 ^G 27 esc 47 / 67 C 87 W 107 k 127 del

8 ^H 28 ^\ 48 0 68 D 88 X 108 l

9 ^I 29 ^] 49 1 69 E 89 Y 109 m

10 ^J 30 ^^ 50 2 70 F 90 Z 110 n

11 ^K 31 ^_ 51 3 71 G 91 [111 o

12 ^L 32 52 4 72 H 92 \ 112 p

13 ^M 33 ! 53 5 73 I 93] 113 q

14 ^N 34 " 54 6 74 J 94 ^ 114 r

15 ^O 35 # 55 7 75 K 95 _ 115 s

16 ^P 36 $ 56 8 76 L 96 ` 116 t

17 ^Q 37 % 57 9 77 M 97 a 117 u

18 ^R 38 & 58 : 78 N 98 b 118 v

19 ^S 39 ' 59 ; 79 O 99 c 119 w
Segments 4-251

Relational Operator
Support for ASCII Characters in Nondefault Code Sets

Most code sets for nondefault locales (called nondefault code sets) support the
ASCII characters. If you are using a nondefault locale, the database server
uses ASCII code-set order for any ASCII data in CHAR and VARCHAR expres-
sions, if the code set supports these ASCII characters. If the current collation
(as specified by DB_LOCALE or by SET COLLATION) supports a localized
collating order, however, that localized order is used when the database
server sorts NCHAR or NVARCHAR values.

Literal Numbers as Operands

You might obtain unexpected results if a literal number that you specify as an
operand is not in a format that can exactly represent the data type of another
value with which it is compared by a relational operator. Because of rounding
errors, for example, a relational operator like = or the equals() operator
function generally cannot return TRUE if one operand returns a FLOAT value
and the other an INTEGER. For information about which of the built-in data
types store values that can be exactly represented as literal numbers, see the
section “Literal Number” on page 4-216.

Related Information
For a discussion of relational operators in the SELECT statement, see the
IBM Informix Guide to SQL: Tutorial.

For a discussion of the GLS aspects of relational operators, see the
IBM Informix GLS User’s Guide.

GLS
4-252 IBM Informix Guide to SQL: Syntax

Return Clause
Return Clause
The Return clause specifies the data type of a value or values that a user-
defined function returns. You can use this segment in UDR definitions.

Syntax

Usage
For backward compatibility, you can continue to create SPL functions with
the CREATE PROCEDURE statement (that is, include a Return clause in the
CREATE PROCEDURE statement). You should use CREATE FUNCTION,
however, to create new SPL routines that return one or more values. ♦

After the Return clause has indicated what data types are to be returned, you
can use the RETURN statement of SPL at any point in the statement block to
return SPL variables that correspond to the values in the Return clause.

Element Purpose Restrictions Syntax
parameter Name that you declare here for a

returned parameter of the UDR
Must be unique among returned parameters of
UDRs. If any returned value of the UDR has a
name, then all must have names.

Identifier,
p. 4-189

RETURNS

RETURNING

REFERENCES BYTE

TEXT

,

IDS

SPL

Return Clause Back to CREATE FUNCTION p. 2-133
Back to CREATE PROCEDURE p. 2-182

Subset of SQL
Data Types

p. 4-254

parameter

parameterAS

AS

REFERENCES

BYTE

TEXT

Subset of SQL
Data Types

p. 4-254

IDS

IDS

IDS
Segments 4-253

Return Clause
Limits on Returned Values

An SPL function can specify more than one data type in the Return clause. ♦

An external function can specify only one data type in the Return clause, but
an external function can return more than one row of data if it is an iterator
function. For more information, see “ITERATOR” on page 4-260. ♦

Subset of SQL Data Types

Not all data types are valid in a Return clause. For more information, see the
table that follows. See also “Data Type” on page 4-49.

A user-defined function can return values of any built-in data type except
SERIAL, TEXT, or BYTE. ♦

A UDF can return values of any built-in data type except the complex, serial,
and large object data types that are not blank in the following table:

If you use a complex data type in the Return clause, the calling user-defined
routine must define variables of the appropriate complex types to hold the
values that the C or SPL user-defined function returns.

User-defined functions can return a value of OPAQUE or DISTINCT data types
that are defined in the database. ♦

The default precision of a DECIMAL that an SPL function returns is 16 digits.
For a function to return a DECIMAL with a different number of significant
digits, you must specify the precision explicitly in the Return clause. ♦

Data Type C Java SPL Data Type C Java SPL

BLOB ✔ ✔ ROW ✔ ✔

BYTE ✔ ✔ ✔ SET ✔ ✔

COLLECTION ✔ SERIAL ✔ ✔ ✔

CLOB ✔ ✔ SERIAL8 ✔ ✔ ✔

LIST ✔ TEXT ✔ ✔ ✔

MULTISET ✔

SPL

Ext

XPS

IDS

SPL
4-254 IBM Informix Guide to SQL: Syntax

Return Clause
Using the REFERENCES Clause to Point to a Simple Large Object

A user-defined function cannot return a BYTE or TEXT value (collectively
called simple large objects) directly. A user-defined function can, however, use
the REFERENCES keyword to return a descriptor that contains a pointer to a
BYTE or TEXT object.

The following example shows how to select a TEXT column within an SPL
routine and then return the value:

CREATE FUNCTION sel_text()
RETURNING REFERENCES text;
DEFINE blob_var REFERENCES text;
SELECT blob_col INTO blob_var

FROM blob_table
WHERE key-col = 10;

RETURN blob_var
END FUNCTION

In Extended Parallel Server, to re-create this example, use the CREATE
PROCEDURE statement instead of the CREATE FUNCTION statement. ♦

Named Return Parameters

You can declare names for the returned parameters of an SPL routine, or a
name for the single value that an external function can return.

If an SPL routine returns more than one value, you must either declare names
for all of the returned parameters, or else none of them can have names. The
names must be unique. Here is an example of named parameters:

CREATE PROCEDURE p (inval INT DEFAULT 0)
RETURNING INT AS serial_num,

CHAR(10) AS name,
INT AS points;

RETURN (inval + 1002), “Newton”, 100;
END PROCEDURE;

Executing this UDR would return:

serial_num name points
1002 Newton 100

XPS

IDS
Segments 4-255

Return Clause
There is no relationship between the names of return parameters and the
names of any variables in the body of the function or procedure. For example,
you can define a function to return an INTEGER AS xval, but in the body of
the same function, a variable called xval could be of the data type INTERVAL
YEAR TO MONTH.

Cursor and Noncursor Functions

A cursor function allows the fetching of the returned values one by one by
iterating the generated result set of returned values. Such a function is an
implicitly iterated function.

A function that returns only one set of values (such as one or more columns
from a single row of a table) is a noncursor function.

The Return clause can occur in a cursor function or in a noncursor function.
In the following example, the Return clause can return zero (0) or one value
if it occurs in a noncursor function. If this clause is associated with a cursor
function, however, it returns more than one row from a table, and each
returned row contains zero or one value.

RETURNING INT;

In the following example, the Return clause can return zero (0) or two values
if it occurs in a noncursor function. If this clause is associated with a cursor
function, however, it returns more than one row from a table, and each
returned row contains zero or two values.

RETURNING INT, INT;

In both of the preceding examples, the receiving function or program must
be written appropriately to accept the information that the function returns.
4-256 IBM Informix Guide to SQL: Syntax

Routine Modifier
Routine Modifier
A routine modifier specifies characteristics of how a user-defined routine
(UDR) behaves.

Syntax

Usage
When you drop an existing modifier, the database server sets the value of the
modifier to the default value, if a default exists.

Some modifiers are available only with user-defined functions. For infor-
mation on whether a specific routine modifier applies only to user-defined
functions (that is, if it does not apply to user-defined procedures), see the
description of the modifier in the sections that follow.

The options in this segment are not valid for SPL procedures.

IDS

Adding or Modifying a
Routine Modifier

p. 4-258

Dropping a
Routine Modifier

ITERATOR

NOT

Dropping a Routine
Modifier

NEGATOR

PARALLELIZABLE

CLASS

Ext

C

SPL

PERCALL_COST

HANDLESNULLS

SELFUNC

STACK

SELCONST

C

INTERNAL

VARIANT

Routine Modifier
Segments 4-257

Routine Modifier
Adding or Modifying a Routine Modifier

Use this segment to add or modify values for routine modifiers of a UDR.

You can add these modifiers in any order. If you list the same modifier more
than once, the last setting overrides any previous values.

Element Purpose Restrictions Syntax
class_name Virtual processor (VP) class in which

to run the external routine
Any C UDR must run in the CPU VP
or in a user-defined VP class.

Quoted String,
p. 4-243

cost CPU use cost for each invocation of a
C language UDR. Default is 0.

Integer; 1 ≤ cost ≤ 231-1 (highest
cost).

Literal Number,
p. 4-216

cost_func Name of a companion user-defined
cost function to invoke

Must have same owner as the UDR.
Execute privilege needed to invoke.

Identifier,
p. 4-189

neg_func Negator function that can be invoked
instead of the UDR

Must have same owner as the UDR.
Execute privilege needed to invoke.

Identifier,
p. 4-189

sel_func Name of a companion user-defined
selectivity function to invoke

Must have same owner as the UDR.
Execute privilege needed to invoke.

Identifier,
p. 4-189

selectivity CPU use cost for each invocation of a
C language UDR. Default is 0.

See “Concept of Selectivity” on
page 4-263.

Literal Number,
p. 4-216

stack_size Size (in bytes) of stack of the thread
that executes the C-language UDR

Must be a positive integer. Literal Number,
p. 4-216

ITERATOR

NOT

VARIANT

Adding or Modifying a
Routine Modifier

NEGATOR = neg_func

Back to Routine Modifier
p. 4-257

PARALLELIZABLE

CLASS = class_name

Ext

C

SPL

PERCALL_COST = 0

HANDLESNULLS

SELFUNC = sel_func

STACK = stack_size

COSTFUNC = cost_func

SELCONST = selectivity

C

INTERNAL cost
4-258 IBM Informix Guide to SQL: Syntax

Routine Modifier
Modifier Descriptions

The following sections describe the modifiers that you can use to help the
database server optimally execute a UDR.

CLASS

Use the CLASS modifier to specify the name of a virtual-processor (VP) class
in which to run an external routine. A user-defined VP class must be defined
before the UDR can be invoked.

You can execute C UDRs in the following types of VP classes:

� The CPU virtual-processor class (CPU VP)

� A user-defined virtual-processor class

If you omit the CLASS modifier to specify a VP class, the UDR runs in the CPU
VP. User-defined VP classes protect the database server from ill-behaved C
UDRs. An ill-behaved C UDR has at least one of the following characteristics:

� It runs in the CPU VP for a long time without yielding.

� It is not thread safe.

� It calls an unsafe operating-system routine.

A well-behaved C UDR has none of these characteristics. Execute only well-
behaved C UDRs in the CPU VP.

Warning: Execution of an ill-behaved C UDR in the CPU VP can cause serious inter-
ference with the operation of the database server. In addition, the UDR itself might
not produce correct results. For a more detailed discussion of ill-behaved UDRs, see
the IBM Informix DataBlade API Programmer’s Guide. ♦

By default, a UDR written in Java runs in a Java virtual processor class (JVP).
Therefore, the CLASS modifier is optional for a UDR written in Java. However,
use the CLASS modifier when you register a UDR written in Java to improve
readability of your SQL statements. ♦

COSTFUNC

Use the COSTFUNC modifier to specify the cost of a C UDR. The cost of the
UDR is an estimate of the time required to execute it.

Ext

C

Java

C

Segments 4-259

Routine Modifier
Occasionally, the cost of a UDR depends on its inputs. In that case, you can
use a user-defined function to calculate a cost that depends on input values.

To execute cost_func, you must have Execute privilege on it and on the UDR.

HANDLESNULLS

Use the HANDLESNULLS modifier to specify that a C UDR can handle
NULL values that are passed to it as arguments. If you do not specify
HANDLESNULLS for a C language UDR, and if you pass an argument with a
NULL value to it, the UDR does not execute, and returns a NULL value.

By default, a C language UDR does not handle NULL values. ♦

The HANDLESNULLS modifier is not available for SPL routines because SPL
routines handle NULL values by default. ♦

INTERNAL

Use the INTERNAL modifier with an external routine to specify that an SQL
or SPL statement cannot call the external routine. An external routine that is
specified as INTERNAL is not considered during routine resolution. Use the
INTERNAL modifier for external routines that define access methods,
language managers, and so on.

By default, an external routine is not internal; that is, an SQL or SPL statement
can call the routine.

ITERATOR

Use the ITERATOR modifier with external functions to specify that the
function is an iterator function. An iterator function is a function that returns
a single element per function call to return a set of data; that is, it is called
with an initial call and zero or more subsequent calls until the set is complete.

By default, an external C or Java language function is not an iterator function.

An SPL iterator function requires the RETURN WITH RESUME statement,
rather than the ITERATOR modifier. ♦

An iterator function requires a cursor. The cursor allows the client application
to retrieve the values one at a time with the FETCH statement. ♦

C

SPL

Ext

Ext

SPL

E/C
4-260 IBM Informix Guide to SQL: Syntax

Routine Modifier
For more information on how to write iterator functions, see IBM Informix
User-Defined Routines and Data Types Developer’s Guide and the IBM Informix
DataBlade API Programmer’s Guide.

For information about using an iterator function with a virtual table interface
in the FROM clause of a query, see “Iterator Functions” on page 2-603.

NEGATOR

Use the NEGATOR modifier with UDRs that return Boolean values.

The NEGATOR modifier names a companion user-defined function, called a
negator function, to the current function. A negator function takes the same
arguments as its companion function, in the same order, but returns the
Boolean complement.

That is, if a function returns TRUE for a given set of arguments, its negator
function returns FALSE when passed the same arguments, in the same order.
For example, the following functions are negator functions:

equal(a,b)
notequal(a,b)

Both functions take the same arguments, in the same order, but return
complementary Boolean values. When it is more efficient to do so, the
optimizer can use the negator function instead of the function you specify.

To invoke a user-defined function that has a negator function, you must have
the Execute privilege on both functions. In addition, the function must have
the same owner as its negator function.

PARALLELIZABLE

Use the PARALLELIZABLE modifier to indicate that an external routine can be
executed in parallel in the context of a parallelizable data query (PDQ).

By default, an external routine is non-parallelizable; that is, it executes in
sequence.

If your UDR has a complex data type as either a parameter or a returned
value, you cannot use the PARALLELIZABLE modifier.

If you specify the PARALLELIZABLE modifier for an external routine that
cannot be parallelizable, the database server returns a runtime error.

Ext
Segments 4-261

Routine Modifier
A C language UDR that calls only PDQ thread-safe DataBlade API functions is
parallelizable. These categories of DataBlade API functions are PDQ thread
safe:

� Data handling

An exception in this category is that collection manipulation func-
tions (mi_collection_*) are not PDQ thread safe.

� Session, thread, and transaction management

� Function execution

� Memory management

� Exception handling

� Callbacks

� Miscellaneous

For details of the DataBlade API functions that are included in each category,
see the IBM Informix DataBlade API Function Reference.

If your UDR calls a function that is not included in one of these categories, it
is not PDQ thread safe and therefore not parallelizable. ♦

To parallelize UDR calls, the database server must have multiple instances of
JVPs. UDRs written in Java that open a JDBC connection are not
parallelizable. ♦

PERCALL_COST

Use the PERCALL_COST modifier to specify the approximate CPU usage cost
that a C language UDR incurs each time it executes. The optimizer uses the
cost you specify to determine the order in which to evaluate SQL predicates
in the UDR for best performance. For example, the following query has two
predicates joined by a logical AND:

SELECT * FROM tab1 WHERE func1() = 10 AND func2() = 'abc';

In this example, if one predicate returns FALSE, the optimizer need not
evaluate the other predicate.

The optimizer uses the specified cost to order the predicates so that the least
expensive predicate is evaluated first. The CPU usage cost must be an integer
between 1 and 231-1, with 1 the lowest cost and 231-1 the most expensive.

C

Java

C

4-262 IBM Informix Guide to SQL: Syntax

Routine Modifier
To calculate an approximate cost per call, add the following two figures:

� The number of lines of code executed each time the C UDR is called

� The number of predicates that require an I/O access

The default cost per execution is 0. When you drop the PERCALL_COST
modifier, the cost per execution returns to 0.

SELCONST

Use the SELCONST modifier to specify the selectivity of a C UDR. The selec-
tivity of the UDR is an estimate of the fraction of the rows that the query will
select. That is, the number of times the UDR will need to be executed.

The value of selectivity constant, selconst, is a floating-point number
between 0 and 1 that represents the fraction of the rows for which you expect
the UDR to return TRUE.

SELFUNC

Use the SELFUNC modifier with a C UDR to name a companion user-defined
function, called a selectivity function, to the current UDR. The selectivity
function provides selectivity information about the current UDR to the
optimizer.

The selectivity of a UDR is an estimate of the fraction of the rows that the query
will select. That is, it is an estimate of the number of times the UDR will
execute.

To execute sel_func, you must have Execute privilege on it and on the UDR.

Concept of Selectivity

Selectivity refers to the number of rows that would qualify for a query that
does a search based on an equality predicate. The fewer the number of rows
that qualify, the more selective the query.

For example, the following query has a search condition based on the
customer_num column in the customer table:

SELECT * FROM customer WHERE customer_num = 102;

C

C

Segments 4-263

Routine Modifier
Because each row in the table has a different customer number, this query is
highly selective. In contrast, the following query is not selective:

SELECT * FROM customer WHERE state = 'CA';

Because most of the rows in the customer table are for customers in
California, more than half of the rows in the table would be returned.

Restrictions on the SELFUNC Modifier

The selectivity function that you specify must satisfy the following criteria:

� It must take the same number of arguments as the current C UDR.

� The data type of each argument must be SELFUNC_ARG.

� It must return a value of type FLOAT between 0 and 1, which repre-
sents the percentage of selectivity of the function. (1 is highly
selective; 0 is not at all selective.)

� It can be written in any language the database server supports.

A user who invokes the C UDR must have the Execute privilege both on that
UDR and on the selectivity function that the SELFUNC modifier specifies.

Both the C UDR and the selectivity function must have the same owner.

For information on how to use the mi_funcarg* functions to extract infor-
mation about the arguments of a selectivity function, see the IBM Informix
DataBlade API Programmer’s Guide.

STACK

Use the STACK modifier with a C UDR to override the default stack size that
the STACKSIZE configuration parameter specifies.

The STACK modifier specifies the size (in bytes) of the thread stack, which a
user thread that executes the UDR uses to hold information such as routine
arguments and returned values from functions.

A UDR needs to have enough stack space for all its local variables. For a
particular UDR, you might need to specify a stack size larger than the default
size to prevent stack overflow.

C

4-264 IBM Informix Guide to SQL: Syntax

Routine Modifier
When a UDR that includes the STACK modifier executes, the database server
allocates a thread-stack size of the specified number of bytes. Once the UDR
completes execution, subsequent UDRs execute in threads with a stack size
that the STACKSIZE configuration parameter specifies (unless any of these
subsequent UDRs have also specified the STACK modifier).

For more information about the thread stack, see your Administrator’s Guide
and the IBM Informix DataBlade API Function Reference.

VARIANT and NOT VARIANT

Use the VARIANT and NOT VARIANT modifiers with C user-defined
functions and SPL functions. A function is variant if it returns different results
when it is invoked with the same arguments or if it modifies a database or
variable state. For example, a function that returns the current date or time is
a variant function.

By default, user-defined functions are variant. If you specify NOT VARIANT
when you create or modify a user-defined function, the function cannot
contain any SQL statements.

If the user-defined function is nonvariant, the database server might cache
the returned values of expensive functions. You can create functional indexes
only on nonvariant functions. For more information on functional indexes,
see “CREATE INDEX” on page 2-144.

You can specify VARIANT or NOT VARIANT in this clause or in the EXTERNAL
Routine Reference. For more information, see “External Routine Reference”
on page 4-187. If you specify the modifier in both places, however, you must
use the same modifier in both clauses. ♦

Related Information
For more information on user-defined routines, see IBM Informix User-Defined
Routines and Data Types Developer’s Guide and the IBM Informix DataBlade API
Programmer’s Guide.

For more information about how these modifiers can affect performance, see
your Performance Guide.

C

SPL

C

Segments 4-265

Routine Parameter List
Routine Parameter List
Use the appropriate part of the Routine Parameter List segment whenever
you see a reference to a Routine Parameter List in a syntax diagram.

Syntax

Usage
A parameter is a formal argument in the declaration of a UDR. (When you
subsequently invoke a UDR that has parameters, you must substitute an
actual argument for the parameter, unless the parameter has a default value.)

The name of the parameter is optional for external routines. ♦

Element Purpose Restrictions Syntax
column Name of a column whose data

type is declared for parameter
Must exist in the specified table. Database Object

Name, p. 4-46
parameter Name of a parameter of the UDR Name is required for SPL routines. Identifier, p. 4-189
table Table that contains column The table must exist in the database. Identifier, p. 4-189
value Default used if UDR is called

with no value for parameter
Must be a literal, of the same data
type as parameter. For opaque types,
an input function must be defined.

Literal Number,
p. 4-216

Routine Parameter List

OUT

,

Parameter

Parameter

LIKE .

Subset of
SQL Data Type

p. 4-267

Ext

parameter

table column

REFERENCES BYTE

TEXT DEFAULT NULL

DEFAULT value

IDS
4-266 IBM Informix Guide to SQL: Syntax

Routine Parameter List
Extended Parallel Server supports no more than a single OUT parameter.
If one is specified, it must be the last item in the parameter list. ♦

The OUT parameters of UDFs of Dynamic Server are described in “Specifying
OUT Parameters for a User-Defined Routine” on page 4-269. ♦

When you create a UDR, you declare a name and data type for each parameter.
You can specify the data type directly, or use the LIKE or REFERENCES clause
to specify the data type. You can optionally specify a default value.

You can define any number of SPL routine parameters, but the total length of
all parameters passed to an SPL routine must be less than 64 kilobytes. ♦

No more than nine arguments to a UDR can be DECIMAL data types of SQL
that the UDR declares as BigDecimal data types of the Java language.

Any C language UDR that returns an opaque data type must specify
opaque_type in the var binary declaration of the C host variable. ♦

Subset of SQL Data Types

Serial and large-object data types are not valid as parameters. A UDR can
declare a parameter of any other data type defined in the database, including
any built-in data types except SERIAL, SERIAL8, TEXT, BYTE, CLOB, or BLOB.

On Dynamic Server, a parameter can also be a complex data type or a UDT. ♦

Complex types are not valid for parameters of UDRs written in Java. ♦

Using the LIKE Clause

Use the LIKE clause to specify that the data type of a parameter is the same as
a column defined in the database. If the ALTER TABLE statement changes the
data type of the column, the data type of the parameter also changes.

If you use the LIKE clause to declare any parameter, you cannot overload the
UDR. For example, suppose you create the following user-defined procedure:

CREATE PROCEDURE cost (a LIKE tableX.colY, b INT)
. . .
END PROCEDURE;

You cannot create another procedure named cost() in the same database with
two arguments.

XPS

IDS

SPL

Ext

IDS

Java

IDS
Segments 4-267

Routine Parameter List
You can, however, create a procedure named cost() with a number of
arguments other than two. (Another way to circumvent this restriction on the
LIKE clause is through user-defined data types.)

Using the REFERENCES Clause

Use the REFERENCES clause to specify that a parameter contains BYTE or
TEXT data. The REFERENCES keyword allows you to use a pointer to a BYTE
or TEXT object as a parameter. If you use the DEFAULT NULL option in the
REFERENCES clause, and you call the UDR without a parameter, a NULL value
is used as the default value.

Using the DEFAULT Clause

Use the DEFAULT keyword followed by an expression to specify a default
value for a parameter. If you provide a default value for a parameter, and the
UDR is called with fewer arguments than were defined for that UDR, the
default value is used. If you do not provide a default value for a parameter,
and the UDR is called with fewer arguments than were defined for that UDR,
the calling application receives an error.

The following example shows a CREATE FUNCTION statement that specifies
a default value for a parameter. This function finds the square of the i
parameter. If the function is called without specifying the argument for the i
parameter, the database server uses the default value 0 for the i parameter.

CREATE FUNCTION square_w_default
(i INT DEFAULT 0) {Specifies default value of i}

RETURNING INT; {Specifies return of INT value}

DEFINE j INT; {Defines routine variable j}
LET j = i * i; {Finds square of i and assigns it to j}
RETURN j; {Returns value of j to calling module}

END FUNCTION;

In Extended Parallel Server, to re-create this example, use the CREATE
PROCEDURE statement instead of the CREATE FUNCTION statement. ♦

Warning: When you specify a date value as the default value for a parameter, make
sure to specify 4 digits instead of 2 digits for the year. When you specify a 2-digit year,
the DBCENTURY environment variable setting can affect how the database server
interprets the date value, so the UDR might not use the default value that you
intended. For more information, see the “IBM Informix Guide to SQL: Reference.”

XPS
4-268 IBM Informix Guide to SQL: Syntax

Routine Parameter List
Specifying OUT Parameters for a User-Defined Routine

When you register a user-defined routine, you can use the OUT keyword
to specify that any parameter in the list is an OUT parameter. Each OUT
parameter corresponds to a value the routine returns indirectly, through a
pointer. The value that the routine returns through the pointer is an extra
value, in addition to any values that it returns explicitly.

After you have registered a user-defined function that has one or more OUT
parameters, you can use the function with a statement-local variable (SLV) in
an SQL statement. (For information about statement-local variables, see
“Statement-Local Variable Expressions” on page 4-169.)

If you specify any OUT parameters, and you use Informix-style parameters,
the arguments are passed to the OUT parameters by reference. The OUT
parameters are not significant in determining the routine signature.

For example, the following declaration of a C user-defined function allows
you to return an extra value through the y parameter:

int my_func(int x, int *y);

Register the C function with a CREATE FUNCTION statement similar to this:

CREATE FUNCTION my_func(x INT, OUT y INT)
RETURNING INT
EXTERNAL NAME "/usr/lib/local_site.so"
LANGUAGE C

END FUNCTION; ♦

For example, this Java method returns an extra value by passing an array:

public static String allVarchar(String arg1, String[] arg2)
throws SQLException
{
arg2[0] = arg1;
return arg1;
}

You would register the user-defined function with a CREATE FUNCTION
statement similar to the following example:

CREATE FUNCTION all_varchar(VARCHAR(10), OUT VARCHAR(7))
RETURNING VARCHAR(7)
WITH (class = "jvp")

EXTERNAL NAME
'informix.testclasses.jlm.Param.allVarchar(java.lang.String,
java.lang.String[])'
LANGUAGE JAVA; ♦

IDS

C

Java
Segments 4-269

Shared-Object Filename
Shared-Object Filename
Use a shared-object filename to specify a pathname to an executable object
file when you register or alter an external routine.

Syntax

Usage
The syntax by which you specify a shared-object filename depends on
whether the external routine is written in the C language or in the Java
language. Sections that follow describe each of these external languages.

IDS

EXT

C Shared-Object File
p. 4-271

C

Java
Java Shared-Object File

p. 4-272

Shared-Object File
4-270 IBM Informix Guide to SQL: Syntax

Shared-Object Filename
C Shared-Object File

To specify the location of a C shared-object file, specify the path to the dynam-
ically loaded executable file within a quoted pathname or as a variable.

The following rules affect pathname and filename specifications in C:

� A filename (with no pathname) can specify an internal function.

� You can omit the period (.) symbol if pathname is relative to the
current directory when the CREATE or ALTER statement is run.

� An absolute pathname must begin with a slash (/) symbol, and
each directory name must end with a slash (/) symbol. ♦

� An absolute pathname must begin with a backslash (\) symbol, and
each directory name must end with a backslash (\) symbol. ♦

� The filename at the end of pathname must have the .so file extension
and must refer to an executable file in a shared object library.

� Use a symbol only if the entry point to the dynamically loadable
executable object file has a different name from the UDR that you are
registering with CREATE FUNCTION or CREATE PROCEDURE.

C

Element Purpose Restrictions Syntax
environment_var Platform-independent indicator Must begin with a dollar sign ($) Identifier, p. 4-189
pathname Pathname to the file See notes that follow this table Identifier, p. 4-189
quote Either single (') or double ('')

quotation mark symbol
Opening and closing quotation
mark symbols must match

Literal symbol
(either ' or '')

symbol Entry point to the file Must be enclosed in parentheses Identifier, p. 4-189
variable Platform-independent indicator Must begin with a dollar sign ($) Identifier, p. 4-189

 variable

pathname

environment_var$
/
.

()symbol

quote quote

C Shared-Object File

$

UNIX

Windows
Segments 4-271

Shared-Object Filename
� If you specify a variable, it must contain the full pathname to the
executable file.

� You can include whitespace characters, such as blank spaces or tab
characters, within a quoted pathname.

Java Shared-Object File

To specify the name of a Java shared-object file, specify the name of the static
Java method to which the UDR corresponds and the location of the Java
binary that defines the method.

Before you can create a UDR written in the Java language, you must assign a
jar identifier to the external jar file with the sqlj.install_jar procedure. For
more information, see “sqlj.install_jar” on page 2-418.

Java

Element Purpose Restrictions Syntax
class_id Java class whose method imple-

ments the UDR
Class must exist in the .jar file
that Jar Name identifies

Must conform to rules for
Java identifiers

java_type Java data type for a parameter
in the Java-method signature

Must be defined in a JDBC class
or by an SQL-to-Java mapping

Must conform to rules for
Java identifiers

method_id Name of the Java method that
implements the UDR

Must exist in the Java class that
java_class_name specifies

Must conform to rules for
Java identifiers

package_id Name of package that contains
the Java class

Must exist Must conform to rules for
Java identifiers

quote Single (') or double ('')
quotation mark

Opening and closing quotation
marks must match

Literal symbol (' or '')
entered at the keyboard

Java Shared-Object File

quote quote: method_id

(java_type java_typeRETURNS

.

)

,

Back to Shared-Object Filename
p. 4-270

Jar Name
p. 4-207

class_idpackage_id .
4-272 IBM Informix Guide to SQL: Syntax

Shared-Object Filename
You can include the Java signature of the method that implements the UDR in
the shared-object filename.

� If you do not specify the Java signature, the routine manager deter-
mines the implicit Java signature from the SQL signature in the
CREATE FUNCTION or CREATE PROCEDURE statement.

It maps SQL data types to the corresponding Java data types with the
JDBC and SQL-to-Java mappings. For information on mapping user-
defined data types to Java data types, see “sqlj.setUDTExtName” on
page 2-422.

� If you do specify the Java signature, the routine manager uses this
explicit Java signature as the name of the Java method to use.

For example, if the Java method explosiveReaction() implements the Java
UDR sql_explosive_reaction() (as discussed in “sqlj.install_jar” on
page 2-418), its shared-object filename could be:

course_jar:Chemistry.explosiveReaction

The preceding shared-object filename provides an implicit Java signature.
The following shared-object filename is the equivalent with an explicit Java
signature:

course_jar:Chemistry.explosiveReaction(int)
Segments 4-273

Specific Name
Specific Name
Use a specific name to give a UDR a name that is unique in the database or
name space. Use the Specific Name segment whenever you see a reference to
a specific name in a syntax diagram.

Syntax

Usage
A specific name is a unique identifier that the CREATE PROCEDURE or CREATE
FUNCTION statement declares as an alternative name for a UDR.

Because you can overload routines, a database can have more than one UDR
with the same name and different parameter lists. You can assign a UDR a
specific name that uniquely identifies the specific UDR.

If you declare a specific name when you create the UDR, you can later use that
name when you alter, drop, grant, or revoke privileges, or update statistics
on that UDR. Otherwise, you need to include the parameter data types with
the UDR name, if the name alone does not uniquely identify the UDR.

Restrictions on the Owner Name

When you give a UDR a specific name, the owner must be the same authori-
zation identifier used in the function name or procedure name for the UDR that
you create. That is, whether or not you specify the owner name in either the
UDR name or the specific name or both, the owner names must match.

IDS

Element Purpose Restrictions Syntax
owner Owner of the

UDR
Must be same as owner of function or procedure name of this UDR.
See also “Restrictions on the Owner Name” on page 4-274.

Identifier,
p. 4-189

specific_id Uniquename
of the UDR

Must be no more than 128 characters long. See also “Restrictions on
the Specific_ID” on page 4-275.

Identifier,
p. 4-189

specific_id

.owner
4-274 IBM Informix Guide to SQL: Syntax

Specific Name
When you do not specify an owner name, the database server uses the user
ID of the person who creates the UDR. Therefore, if you specify the owner
name in one location and not the other, the owner name that you specify must
match your user ID.

Restrictions on the Specific_ID

In a database that is not ANSI-compliant, specific_id must be unique among
routine names within the database. Two UDRs cannot have the same
specific_id, even if they have different owners.

In an ANSI-compliant database, the combination owner.specific_id must be
unique. That is, the specific name must be unique among UDRs that have the
same owner.

The specific name must be unique within the schema. ♦

ANSI
Segments 4-275

Statement Block
Statement Block
Use a statement block to specify SPL and SQL operations to take place when
an SPL statement that includes this segment is executed. Use this segment
whenever you see a reference to a Statement Block in a syntax diagram.

Syntax

Usage
SPL and SQL statements can appear in a statement block. If the statement
block is empty, no operation takes place when control of execution within the
SPL routine passes to the empty SPL statement block.

Subset of SPL Statements Valid in the Statement Block

The diagram for the “Statement Block” on page 4-276 refers to this section.
You can use any of the following SPL statements in the statement block:

SPL

BEGIN END

EXECUTE FUNCTION Statement
p. 2-404

ON EXCEPTION
Statement

p. 3-39

DEFINE
Statement

p. 3-10

;

Subset of SPL
Statements

p. 4-276

EXECUTE PROCEDURE Statement
p. 2-414

IDS

Subset of SQL
Statements

p. 4-277

Statement Block

Statement Block

CALL
CONTINUE
EXIT
FOR

FOREACH
IF
LET
RAISE EXCEPTION

RETURN
SYSTEM
TRACE
WHILE
4-276 IBM Informix Guide to SQL: Syntax

Statement Block
SQL Statements Not Valid in an SPL Statement Block

The diagram for the “Statement Block” on page 4-276 refers to this section.
The following SQL statements are not valid in an SPL statement block:

For example, you cannot close the current database or select a new database
within an SPL routine. Likewise you cannot drop the current SPL routine
within the same routine. You can, however, drop another SPL routine.

You can use a SELECT statement in only two cases:

� You can use the INTO TEMP clause to put the results of the SELECT
statement into a temporary table.

� You can use the SELECT... INTO form of the SELECT statement to put
the resulting values into SPL variables.

If an SPL routine is later to be called as part of a data-manipulation statement,
additional restrictions exist. For more information, see “Restrictions on SPL
Routines in Data-Manipulation Statements” on page 4-279.

ALLOCATE COLLECTION
ALLOCATE DESCRIPTOR
ALLOCATE ROW
CLOSE
CLOSE DATABASE
CONNECT
CREATE DATABASE
CREATE FUNCTION
CREATE FUNCTION FROM
CREATE PROCEDURE
CREATE PROCEDURE FROM
DATABASE
DEALLOCATE COLLECTION
DEALLOCATE DESCRIPTOR
DEALLOCATE ROW
DECLARE
DESCRIBE
DISCONNECT

EXECUTE
EXECUTE IMMEDIATE
FETCH
FLUSH
FREE
GET DESCRIPTOR
INFO
LOAD
OPEN
OUTPUT
PREPARE
PUT
SET CONNECTION
SET DESCRIPTOR
UNLOAD
UPDATE STATISTICS
WHENEVER
Segments 4-277

Statement Block
Nested Statement Blocks

You can use the BEGIN and END keywords to delimit a statement block that
is nested within another statement block.

Scope of Reference of SPL Variables and Exception Handlers

The BEGIN-END keywords can limit the scope of SPL variables and exception
handlers. Declarations of variables and definitions of exception handlers
inside a BEGIN-END statement block are local to that statement block and are
not visible from outside the statement block. The following code uses a
BEGIN-END statement block to delimit the scope of reference of variables:

CREATE DATABASE demo;
CREATE TABLE tracker (

who_submitted CHAR(80), -- Show what code was running.
value INT, -- Show value of the variable.

 sequential_order SERIAL
-- Show order in which statements were executed.
);
CREATE PROCEDURE demo_local_var()
DEFINE var1 INT;
DEFINE var2 INT;
 LET var1 = 1;
 LET var2 = 2;
 INSERT INTO tracker (who_submitted, value)
 VALUES ('var1 param before sub-block', var1);
BEGIN

DEFINE var1 INT; -- same name as global parameter.
LET var1 = var2;
INSERT INTO tracker (who_submitted, value)
VALUES ('var1 var defined inside the "IF/BEGIN".', var1);

END
INSERT INTO tracker (who_submitted, value)

VALUES ('var1 param after sub-block (unchanged!)', var1);
END PROCEDURE;
EXECUTE PROCEDURE demo_local_var();
SELECT sequential_order, who_submitted, value FROM tracker
 ORDER BY sequential_order;

This example declares three variables, two of which are named var1. (Name
conflicts are created here to illustrate which variables are visible. Using the
same name for different variables is generally not recommended, because
conflicting names of variables can make your code more difficult to read.)

Because of the statement block, only one var1 variable is in scope at a time.

The var1 variable that is declared inside the statement block is the only var1
variable that can be referenced from within the statement block.
4-278 IBM Informix Guide to SQL: Syntax

Statement Block
The var1 variable that is declared outside the statement block is not visible
within the statement block. Because it is out of scope, it is unaffected by the
change in value to the var1 variable that takes place inside the statement
block. After all the statements run, the outer var1 still has a value of 1.

The var2 variable is visible within the statement block because it was not
superseded by a name conflict with a block-specific variable.

Restrictions on SPL Routines in Data-Manipulation Statements

If an SPL routine is called as part of an INSERT, UPDATE, DELETE, or SELECT
statement, the routine cannot execute any statement in the following list:

♦

If an SPL routine is called as part of an INSERT, UPDATE, DELETE, or SELECT
statement, the routine can execute only the following statements:

♦

ALTER ACCESS_METHOD
ALTER FRAGMENT
ALTER INDEX
ALTER OPTICAL CLUSTER
ALTER TABLE
BEGIN WORK
COMMIT WORK
CREATE ACCESS_METHOD
CREATE AGGREGATE
CREATE DISTINCT TYPE
CREATE OPAQUE TYPE
CREATE OPCLASS
CREATE ROLE
CREATE ROW TYPE
CREATE TRIGGER
DROP ACCESS_METHOD

DROP AGGREGATE
DROP INDEX
DROP OPCLASS
DROP OPTICAL CLUSTER
DROP ROLE
DROP ROW TYPE
DROP SYNONYM
DROP TABLE
DROP TRIGGER
DROP TYPE
DROP VIEW
RENAME COLUMN
RENAME TABLE
ROLLBACK WORK
SET CONSTRAINTS

SELECT
SET PLOAD FILE
SET DEBUG FILE TO

SET EXPLAIN
SET OPTIMIZATION

IDS

XPS
Segments 4-279

Statement Block
If the SPL routine is called within a statement that is not a data- manipulation
statement (namely EXECUTE FUNCTION or EXECUTE PROCEDURE), the SPL
routine can execute any statement that is not listed in the section “SQL State-
ments Not Valid in an SPL Statement Block” on page 4-277.

Transactions in SPL Routines

In a database that is not ANSI-compliant, you can use the BEGIN WORK and
COMMIT WORK statements in an SPL statement block to start a transaction,
finish a transaction, or start and finish a transaction in the same SPL routine.
If you start a transaction in a routine that is executed remotely, you must
finish the transaction before the routine exits.

As previously noted, however, the ROLLBACK WORK statement is not valid
in an SPL statement block.

Support for Roles and User Identity

You can use roles with SPL routines. You can execute role-related statements
(CREATE ROLE, DROP ROLE, and SET ROLE) and SET SESSION AUTHORI-
ZATION statements within an SPL routine. You can also grant privileges to
roles with the GRANT statement within an SPL routine. Privileges that a user
has acquired through enabling a role or by a SET SESSION AUTHORIZATION
statement are not relinquished when an SPL routine is executed.

For further information about roles, see the CREATE ROLE, DROP ROLE,
GRANT, REVOKE, and SET ROLE statements.

IDS
4-280 IBM Informix Guide to SQL: Syntax

A
Appendix
Reserved Words for IBM
Informix Dynamic Server
The SQL language has no “reserved words,” in the sense of a
character string that obeys the rules for identifiers (page 4-189)
but always produces a compilation error or runtime error. Your
application might encounter restricted functionality, however, or
unexpected results, if you define a user-defined function or
procedure whose name is the same as a built-in SQL function,
expression, or operator.

This appendix lists the keywords in the Informix implemen-
tation of the SQL language in Dynamic Server. In general, you
should not declare any of these keywords as SQL identifiers. If
you do, errors or syntactic ambiguities can occur if the identifier
appears in a context where the keyword is valid, and your code
will be more difficult to read and to maintain.

If you receive an error message that seems unrelated to the SQL
statement that caused the error, you might wish to review this
appendix to see if a keyword has been used as an identifier.

To avoid using a keyword as an identifier, you can qualify the
identifier with an owner name or modify the identifier. For
example, rather than name a database object CURRENT, you
might name it o_current or juanita.current. For a discussion
of potential problems in using keywords as identifiers, and of
additional workarounds for specific keywords, see “Potential
Ambiguities and Syntax Errors” on page 4-194. See also
IBM Informix Guide to SQL: Tutorial for more information about
using keywords as identifiers in SQL applications.

A

A

B

C

ABSOLUTE
ACCESS
ACCESS_METHOD
ADD
AFTER
AGGREGATE
ALIGNMENT
ALL
ALL_ROWS

ALLOCATE
ALTER
AND
ANSI
ANY
APPEND
AS
ASC
AT

ATTACH
AUDIT
AUTHORIZATION
AUTO
AUTOFREE
AVG
AVOID_EXECUTE
AVOID_SUBQF

BEFORE
BEGIN
BETWEEN
BINARY

BOOLEAN
BOTH
BUFFERED
BUILTIN

BY
BYTE

CACHE
CALL
CANNOTHASH
CARDINALITY
CASCADE
CASE
CAST
CHAR
CHAR_LENGTH
CHARACTER
CHARACTER_LENGTH
CHECK
CLASS
CLIENT

CLOSE
CLUSTER
CLUSTERSIZE
COARSE
COBOL
CODESET
COLLATION
COLLECTION
COLUMN
COMMIT
COMMITTED
COMMUTATOR
CONCURRENT
CONNECT

CONNECTION
CONST
CONSTRAINT
CONSTRAINTS
CONSTRUCTOR
CONTINUE
COPY
COSTFUNC
COUNT
CRCOLS
CREATE
CROSS
CURRENT
CURSOR
CYCLE
A-2 IBM Informix Guide to SQL: Syntax

D

D

E

F

DATABASE
DATAFILES
DATASKIP
DATE
DATETIME
DAY
DBA
DBDATE
DBMONEY
DBPASSWORD
DEALLOCATE
DEBUG
DEC
DEC_T
DECIMAL

DECLARE
DECODE
DEFAULT
DEFERRED
DEFERRED_PREPARE
DEFINE
DELAY
DELETE
DELIMITER
DELUXE
DEREF
DESC
DESCRIBE
DESCRIPTOR
DETACH

DIAGNOSTICS
DIRTY
DISABLED
DISCONNECT
DISTINCT
DISTRIBUTEBINARY
DISTRIBUTESREFERENCES
DISTRIBUTIONS
DOCUMENT
DOMAIN
DONOTDISTRIBUTE
DORMANT
DOUBLE
DROP
DTIME_T

EACH
ELIF
ELSE
ENABLED
END
ENUM
ENVIRONMENT
ERROR

ESCAPE
EXCEPTION
EXCLUSIVE
EXEC
EXECUTE
EXECUTEANYWHERE
EXISTS
EXIT

EXPLAIN
EXPLICIT
EXPRESS
EXPRESSION
EXTEND
EXTENT
EXTERNAL

FALSE
FAR
FETCH
FILE
FILLFACTOR
FILTERING
FIRST
FIRST_ROWS

FIXCHAR
FIXED
FLOAT
FLUSH
FOR
FOREACH
FOREIGN
FORMAT

FORTRAN
FOUND
FRACTION
FRAGMENT
FREE
FROM
FULL
FUNCTION
Reserved Words for IBM Informix Dynamic Server A-3

G - H
G - H

I

J - K

L

GENERAL
GET
GK
GLOBAL
GO

GOTO
GRANT
GROUP
HANDLESNULLS
HASH

HAVING
HIGH
HOLD
HOUR
HYBRID

IF
IFX_INT8_T
IFX_LO_CREATE_SPEC_T
IFX_LO_STAT_T
IMMEDIATE
IMPLICIT
IN
INCREMENT
INDEX
INDEXES

INDICATOR
INFORMIX
INIT
INNER
INSERT
INSTEAD
INT
INT8
INTEG
INTEGER

INTERNAL
INTERNALLENGTH
INTERVAL
INTO
INTRVL_T
IS
ISCANONICAL
ISOLATION
ITEM
ITERATOR

JOIN KEEP KEY

LABELEQ
LABELGE
LABELGLB
LABELGT
LABELLE
LABELLT
LABELLUB
LABELTOSTRING
LANGUAGE

LAST
LEADING
LEFT
LET
LEVEL
LIKE
LIST
LISTING
LOC_T

LOCAL
LOCATOR
LOCK
LOCKS
LOG
LONG
LOW
LOWER
LVARCHAR
A-4 IBM Informix Guide to SQL: Syntax

M

M

N

O

P

MATCHES
MAX
MAXERRORS
MAXLEN
MAXVALUE
MDY
MEDIAN

MEDIUM
MEMORY_RESIDENT
MIDDLE
MIN
MINUTE
MINVALUE
MODE

MODERATE
MODIFY
MODULE
MONEY
MONTH
MOUNTING
MULTISET

NAME
NCHAR
NEGATOR
NEW
NEXT
NO
NOCACHE

NOCYCLE
NOMAXVALUE
NOMIGRATE
NOMINVALUE
NON_RESIDENT
NONE
NOORDER

NORMAL
NOT
NOTEMPLATEARG
NULL
NUMERIC
NVARCHAR
NVL

OCTET_LENGTH
OF
OFF
OLD
ON
ONLY

OPAQUE
OPCLASS
OPEN
OPERATIONAL
OPTICAL
OPTIMIZATION

OPTION
OR
ORDER
OUT
OUTPUT
OUTER

PAGE
PARALLELIZABLE
PARAMETER
PASCAL
PASSEDBYVALUE
PDQPRIORITY
PERCALL_COST

PLI
PLOAD
PRECISION
PREPARE
PREVIOUS
PRIMARY
PRIOR

PRIVATE
PRIVILEGES
PROCEDURE
PUBLIC
PUT
Reserved Words for IBM Informix Dynamic Server A-5

R

R

S

RAISE
RANGE
RAW
READ
REAL
RECORDEND
REF
REFERENCES
REFERENCING
REGISTER
REJECTFILE
RELATIVE
RELEASE

REMAINDER
RENAME
REOPTIMIZATION
REPEATABLE
REPLICATION
RESERVE
RESOLUTION
RESOURCE
RESTART
RESTRICT
RESUME
RETAIN
RETURN
RETURNING

RETURNS
REUSE
REVOKE
RIGHT
ROBIN
ROLE
ROLLBACK
ROLLFORWARD
ROUND
ROUTINE
ROW
ROWID
ROWIDS
ROWS

SAMEAS
SAMPLES
SCHEDULE
SCHEMA
SCRATCH
SCROLL
SECOND
SECONDARY
SECTION
SELCONST
SELECT
SELFUNC
SEQUENCE
SERIAL
SERIAL8
SERIALIZABLE
SERVERUUID
SESSION
SET

SHARE
SHORT
SIGNED
SIZE
SKALL
SKINHIBIT
SKSHOW
SMALLFLOAT
SMALLINT
SOME
SPECIFIC
SQL
SQLCODE
SQLCONTEXT
SQLERROR
SQLSTATE
SQLWARNING
STABILITY
STACK
STANDARD

START
STATIC
STATISTICS
STDEV
STEP
STOP
STORAGE
STRATEGIES
STRING
STRINGTOLABEL
STRUCT
STYLE
SUBSTR
SUBSTRING
SUM
SUPPORT
SYNC
SYNONYM
SYSTEM
A-6 IBM Informix Guide to SQL: Syntax

T

T

U

V

W

X - Z

TABLE
TEMP
TEXT
THEN
TIME
TIMEOUT

TO
TODAY
TRACE
TRAILING
TRANSACTION
TRIGGER

TRIGGERS
TRIM
TRUE
TRUNCATE
TYPE
TYPEDEF

UNCOMMITTED
UNDER
UNION
UNIQUE

UNITS
UNKNOWN
UNLOCK
UNSIGNED
UPDATE

UPPER
USAGE
USE_SUBQF
USER
USING

VALUE
VALUES
VAR
VARCHAR

VARIABLE
VARIANCE
VARIANT
VARYING

VIEW
VIOLATIONS
VOID
VOLATILE

WAIT
WARNING
WHEN
WHENEVER

WHERE
WHILE
WITH
WITHOUT

WORK
WRITE

XLOAD XUNLOAD YEAR
Reserved Words for IBM Informix Dynamic Server A-7

B
Appendix
Reserved Words for
IBM Informix Extended
Parallel Server

The SQL language has no “reserved words,” in the sense of a
character string that obeys the rules for identifiers (page 4-189)
but always produces a compilation error or runtime error. Your
application might encounter restricted functionality, however,
or unexpected results, if you define an SPL routine whose name
is the same as a built-in SQL function, expression, or operator.

This appendix lists the keywords in the Informix implemen-
tation of the SQL language in Extended Parallel Server. In
general, you should not use any of these keywords as SQL identi-
fiers. If you do, errors or syntactic ambiguities can occur if the
identifier appears in a context where the keyword is valid, and
your code will be more difficult to read and to maintain.

If you receive an error message that seems unrelated to the SQL
statement that caused the error, you might wish to review this
appendix to see if a keyword has been used as an identifier.

To avoid using a keyword as an identifier, you can qualify the
identifier with an owner name or modify the identifier. For
example, rather than name a database object CURRENT, you
might name it o_current or juanita.current. For a discussion
of potential problems in using keywords as identifiers, and of
additional workarounds for specific keywords, see “Potential
Ambiguities and Syntax Errors” on page 4-194. See also
IBM Informix Guide to SQL: Tutorial for more information about
using keywords as identifiers in SQL applications.

A

A

B

C

D

ADD
AFTER
ALL
ALTER
AND

ANSI
ANY
APPEND
AS
ASC

ATTACH
AUDIT
AUTHORIZATION
AVG

BEFORE
BEGIN
BETWEEN

BITMAP
BOTH
BUFFERED

BY
BYTE

CACHE
CALL
CASCADE
CASE
CHAR
CHAR_LENGTH
CHARACTER
CHARACTER_LENGTH
CHECK

CLOSE
CLUSTER
CLUSTERSIZE
COARSE
COBOL
CODESET
COLUMN
COMMIT
COMMITTED

CONNECT
CONSTRAINT
CONSTRAINTS
CONTINUE
COPY
COUNT
CREATE
CURRENT
CURSOR

DATABASE
DATAFILES
DATASKIP
DATE
DATETIME
DAY
DBA
DBDATE
DBMONEY
DEBUG

DEC
DECIMAL
DECLARE
DECODE
DEFAULT
DEFERRED
DEFINE
DELETE
DELIMITER
DELUXE

DESC
DETACH
DIRTY
DISTINCT
DISTRIBUTIONS
DOCUMENT
DOUBLE
DROP
B-2 IBM Informix Guide to SQL: Syntax

E

E

F

G

H

I

EACH
ELIF
ELSE
END
ENVIRONMENT
ESCAPE

EXCEPTION
EXCLUSIVE
EXEC
EXECUTE
EXISTS
EXIT

EXPLAIN
EXPRESS
EXPRESSION
EXTEND
EXTENT
EXTERNAL

FETCH
FILE
FILLFACTOR
FILTERING
FIRST

FLOAT
FOR
FOREACH
FOREIGN
FORMAT

FORTRAN
FOUND
FRACTION
FRAGMENT
FROM

GK
GLOBAL

GO
GOTO

GRANT
GROUP

HASH
HAVING

HIGH
HOLD

HOUR
HYBRID

IF
IMMEDIATE
IN
INDEX
INDICATOR

INIT
INSERT
INT
INTEGER
INTERVAL

INTO
IS
ISOLATION
Reserved Words for IBM Informix Extended Parallel Server B-3

K

K

L

M

N

O

KEY

LABELEQ
LABELGE
LABELGT
LABELLE
LABELLT
LANGUAGE

LEADING
LET
LEVEL
LIKE
LISTING
LOCAL

LOCK
LOCKS
LOG
LOW

MATCHES
MAX
MAXERRORS
MEDIUM
MEMORY_RESIDENT

MIDDLE
MIN
MINUTE
MODE
MODIFY

MODULE
MONEY
MONTH
MOUNTING

NCHAR
NEW
NEXT
NO

NON_RESIDENT
NORMAL
NOT
NULL

NUMERIC
NVARCHAR
NVL

OCTET_LENGTH
OF
OFF
OLD
ON

ONLY
OPEN
OPERATIONAL
OPTICAL
OPTIMIZATION

OPTION
OR
ORDER
OUTER
B-4 IBM Informix Guide to SQL: Syntax

P

P

R

S

PAGE
PASCAL
PDQPRIORITY
PLI

PLOAD
PRECISION
PRIMARY
PRIVATE

PRIVILEGES
PROCEDURE
PUBLIC

RAISE
RANGE
RAW
READ
REAL
RECORDEND
RECOVER
REFERENCES
REFERENCING
REJECTFILE
RELEASE

REMAINDER
RENAME
REPEATABLE
RESERVE
RESOLUTION
RESOURCE
RESTRICT
RESUME
RETAIN
RETURN
RETURNING

RETURNS
REVOKE
RIDLIST
ROBIN
ROLLBACK
ROLLFORWARD
ROUND
ROW
ROWS

SAMEAS
SAMPLES
SCHEDULE
SCHEMA
SCRATCH
SCROLL
SECOND
SECTION
SELECT
SERIAL
SERIALIZABLE
SET

SHARE
SIZE
SKALL
SKINHIBIT
SKSHOW
SMALLFLOAT
SMALLINT
SOME
SQL
SQLCODE
SQLERROR
SHARE

STANDARD
START
STATIC
STATISTICS
STDEV
STEP
STOP
SUBSTRING
SUM
SYNC
SYNONYM
SYSTEM
Reserved Words for IBM Informix Extended Parallel Server B-5

T

T

U

V

W

X

Y

TABLE
TEMP
TEXT
THEN
TIMEOUT

TO
TRACE
TRAILING
TRANSACTION
TRIGGER

TRIM
TRUNCATE
TYPE

UNCOMMITTED
UNION
UNIQUE

UNITS
UNLOCK
UPDATE

USAGE
USING

VALUES
VARCHAR

VARIANCE
VARYING

VIEW
VIOLATIONS

WAIT
WHEN
WHENEVER

WHERE
WHILE
WITH

WORK
WRITE

XLOAD XUNLOAD

YEAR
B-6 IBM Informix Guide to SQL: Syntax

C
Appendix
Notices
IBM may not offer the products, services, or features discussed
in this document in all countries. Consult your local IBM repre-
sentative for information on the products and services currently
available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and
verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equiv-
alent agreement between us.
C-2 IBM Informix Guide to SQL: Syntax

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environ-
ments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measure-
ments will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to
change or withdrawal without notice, and represent goals and objectives
only.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for
the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.
Notices C-3

Trademarks
Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs. © Copyright IBM Corp. (enter the
year or years). All rights reserved.

If you are viewing this information softcopy, the photographs and color illus-
trations may not appear.

Trademarks
AIX; DB2; DB2 Universal Database; Distributed Relational Database
Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix;
C-ISAM; Foundation.2000TM; IBM Informix 4GL; IBM Informix

DataBlade Module; Client SDKTM; CloudscapeTM; CloudsyncTM;
IBM Informix Connect; IBM Informix Driver for JDBC; Dynamic
ConnectTM; IBM Informix Dynamic Scalable ArchitectureTM (DSA);
IBM Informix Dynamic ServerTM; IBM Informix Enterprise Gateway
Manager (Enterprise Gateway Manager); IBM Informix Extended Parallel
ServerTM; i.Financial ServicesTM; J/FoundationTM; MaxConnectTM; Object
TranslatorTM; Red Brick Decision ServerTM; IBM Informix SE;
IBM Informix SQL; InformiXMLTM; RedBack; SystemBuilderTM; U2TM;
UniData; UniVerse; wintegrate are trademarks or registered trademarks
of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Windows, Windows NT, and Excel are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.
C-4 IBM Informix Guide to SQL: Syntax

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
A
ABS function 4-114, 4-115
ABSOLUTE keyword, in FETCH

statement 2-424
Access control. See Privilege.
ACCESS keyword

in ALTER TABLE statement 2-71
in CREATE TABLE

statement 2-249
in INFO statement 2-487

Access method
attributes 4-238
default operator class 4-239
defined 4-238
index 2-145
modifying 2-14
primary 2-253
privileges needed

to alter 2-14
to create 2-102
to drop 2-369

purpose options 4-238
registering 2-102
secondary 2-145
sysams system catalog table

settings 4-238
ACCESS_METHOD keyword

in ALTER ACCESS_METHOD
statement 2-14

in CREATE ACCESS_METHOD
statement 2-102

in DROP ACCESS_METHOD
statement 2-369

ACOS function 4-149, 4-150

Action clause, in CREATE
TRIGGER statement

action list 2-288
syntax 2-281

Active set
constructing with OPEN

statement 2-518
retrieving with FETCH 2-426
sequential cursor 2-332

ADD CONSTRAINT keywords, in
ALTER TABLE statement 2-72

ADD keyword
in ALTER ACCESS_METHOD

statement 2-14
in ALTER FRAGMENT

statement 2-34
in ALTER FUNCTION

statement 2-39
in ALTER PROCEDURE

statement 2-44
in ALTER ROUTINE

statement 2-46
in ALTER TABLE statement 2-55,

2-78
ADD ROWIDS keywords, in

ALTER TABLE statement 2-54
ADD TYPE keywords, in ALTER

TABLE statement 2-78
AFTER keyword

in ALTER FRAGMENT
statement 2-19, 2-34

in CREATE TRIGGER
statement 2-281, 2-288

Aggregate functions
arguments 4-174
as arguments 4-6
AVG 4-175

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
COUNT 4-175
in ESQL 4-183
in EXISTS subquery 4-38
in expressions 2-587
in GROUP BY Clause 2-622
in ORDER BY clause 2-625
in SELECT statement 2-587
MAX 4-180
MIN 4-180
RANGE 4-180
STDEV 4-181
SUM 4-180
summary 4-183
syntax

AVG 4-171
COUNT 4-171
MAX 4-171
MIN 4-171
SUM 4-171

using DISTINCT 4-175
VARIANCE 4-182

AGGREGATE keyword
in CREATE AGGREGATE

statement 2-104
in DROP AGGREGATE

statement 2-370
Algebraic functions

ABS 4-115
MOD 4-115
POW 4-115
ROOT 4-115
ROUND 4-116
SQRT 4-117
TRUNC 4-117

Alias
for a collection-derived table 4-7
for a table or view 2-595

ALIGNMENT keyword, in
CREATE OPAQUE TYPE
statement 2-171

ALL keyword
beginning a subquery 2-618
in Condition segment 4-39
in CREATE INDEX

statement 2-166
in CREATE VIEW

statements 2-312
in DISCONNECT

statement 2-366

in Expression segment 4-171,
4-185

in GRANT FRAGMENT
statement 2-481

in GRANT statement 2-463, 2-474
in REVOKE FRAGMENT

statement 2-576
in REVOKE statement 2-560,

2-569
in SELECT statement 2-585
in SET Transaction Mode

statement 2-651, 2-725
with UNION operator 2-581,

2-638
ALLOCATE COLLECTION

statement 2-8
ALLOCATE DESCRIPTOR

statement 2-10
ALLOCATE ROW statement 2-12
Allocating memory

for a collection variable 2-8
for system-descriptor area 2-10

Allowing newline characters in
quoted strings 4-245

ALLOW_NEWLINE configuration
parameter 4-245

ALL_ROWS keyword
in Optimizer Directives

Segment 4-229
in SET OPTIMIZATION

statement 2-700
ALPHA class 4-162
ALS. See Global Language Support.
ALTER ACCESS_METHOD

statement 2-14
ALTER FRAGMENT

statement 2-16
am_readwrite purpose flag 4-240

ALTER keyword
in GRANT statement 2-463, 2-474
in REVOKE statement 2-560,

2-569
ALTER privilege 2-120, 2-562
ALTER SEQUENCE

statement 2-49
American National Standards

Institute. See ANSI compliance.
am_cluster purpose flag

description 4-240

am_costfactor purpose value
setting 4-240

am_defopclass purpose value
description 4-239

am_keyscan purpose flag
description 4-239

am_parallel purpose flag
description 4-240

am_readwrite purpose flag
description 4-240

am_rowids purpose flag
description 4-240

am_sptype purpose value
description 4-239

am_unique purpose flag
description 4-239

AND keyword
in Condition segment 4-24, 4-26,

4-42
in CREATE INDEX

statement 2-168
with BETWEEN keyword 2-615

ANSI compliance
-ansi flag 2-114, 2-204, 2-215,

2-261, 2-325
comment symbols 1-7
creating views 2-311
escape character 4-33
icon Intro-12
isolation level 2-431, 2-723
level Intro-20
list of SQL statements 1-13
owner names 4-46
SQLSTATE codes 2-447
table naming 2-555
table privileges 2-481
unbuffered logging 2-699
update cursors 2-327, 2-329, 2-347
updating rows 2-765
warning after DELETE 2-350

ANSI keyword, in CREATE
DATABASE statement 2-112

ANSI-compliant database
creating 2-114
database object naming 4-236
implicit transactions 2-345, 2-714
opaque-type naming 2-170
operator-class naming 2-177
procedure name 2-567, 2-786
2 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
table privileges 2-258
warning after opening 2-317
with BEGIN WORK 2-83

ANY keyword
in Condition segment 4-39
in SELECT statement 2-618

APPEND keyword
in SET DEBUG FILE TO

statement 2-661
in SET EXPLAIN statement 2-683
in SET PLOAD FILE

statement 2-707
Application

comment indicators 1-7
single-threaded 2-648
thread-safe 2-367, 2-648, 2-650

Application partitioning. 2-598
Argument 4-5
Arithmetic functions. See Algebraic

functions.
Arithmetic operators

binary 4-77
syntax 4-68
unary 4-78

Array elements 2-429
AS keyword

in ALTER FRAGMENT
statement 2-19

in Collection-Derived-Table
segment 4-7

in CONNECT statement 2-92
in CREATE CAST

statement 2-108
in CREATE DISTINCT TYPE

statement 2-115
in CREATE INDEX

statement 2-167
in CREATE TRIGGER statement

Delete triggers 2-284
Insert triggers 2-285
Select triggers 2-287
Update triggers 2-286
view column values 2-305

in CREATE VIEW
statement 2-310

in DROP CAST statement 2-371
in Expression segment 4-79
in GRANT FRAGMENT

statement 2-480

in GRANT statement 2-459
in SELECT statement Projection

clause 2-583
with display labels 2-589
with table aliases 2-595

AS REMAINDER keywords, in
ALTER FRAGMENT
statement 2-19

ASC keyword
in CREATE INDEX

statement 2-147
in SELECT statement 2-624, 2-627
order with nulls 2-627

Ascending sequence 2-50, 2-207
ASCII code set 4-251
ASCII keyword

in CREATE EXTERNAL TABLE
statement 2-128

in SELECT statement 2-636
ASIN function 4-149, 4-151
Assign support function 2-174,

2-496, 2-506, 2-510, 2-773
Associated statement 2-641
Asterisk (*)

arithmetic operator 4-77
as wildcard character 4-34

At (@) symbol 4-45, 4-47
AT keyword, in INSERT

statement 2-489
ATAN function 4-149, 4-151
ATAN2 function 4-149, 4-151
ATTACH keyword, in ALTER

FRAGMENT statement 2-19
Attached index 2-118, 2-157, 2-374,

2-645
Authorization identifier 2-194,

2-713, 4-234
AUTHORIZATION keyword

in CREATE SCHEMA
statement 2-203

in SET SESSION
AUTHORIZATION
statement 2-713

Autofree feature, in SET
AUTOFREE 2-640

AVG function 4-171, 4-175
AVOID HASH keyword, in

Optimizer Directives
segment 4-227

AVOID_EXECUTE keyword
in SET EXPLAIN statement 2-684
optimizer directive 4-231

AVOID_FULL keyword, in
Optimizer Directives
segment 4-224

AVOID_INDEX keyword, in
Optimizer Directives
segment 4-224

AVOID_NL keyword, in Optimizer
Directives segment 4-227

B
Background mode 3-47
Backslash (\)

as escape character 4-34
as wildcard character 4-33

Batch file 3-49
BEFORE keyword

in ALTER FRAGMENT
statement 2-19, 2-34

in ALTER TABLE statement 2-55
in CREATE TRIGGER

statement 2-281, 2-288
BEGIN keyword

in IF statement 3-34
in Statement Block segment 4-276

BEGIN WORK statement 2-82
BETWEEN keyword, in Condition

segment 4-26, 4-29
BigDecimal data type of Java 4-56,

4-267
Big-endian format 2-123
BINARY keyword, in CREATE

EXTERNAL TABLE
statement 2-122

Binary operators 2-105, 4-77
Binary-format integers 2-123
Bit-hashing function 2-622
BITMAP keyword, in CREATE

INDEX statement 2-144
Blank characters

DATETIME separator 4-212
in index names 2-377
in literal numbers 4-216
INTERVAL separator 4-214

BLOB data type 4-58
Index 3

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
copying to a file 4-138
copying to a smart large

object 4-140
creating from a file 4-135
declaration syntax 4-57
default value 2-218
handle values 4-88
size limit 4-58
storing 2-71, 2-249
unloading 2-755, 2-756

BLOB keyword
in Data Type segment 4-57
in DEFINE statement 3-10

BOOLEAN data type
description 4-50
unloading 2-754

Boolean expressions 4-24
BOTH keyword, in TRIM

expressions 4-152
BOUND_IMPL_PDQ keyword, in

SET ENVIRONMENT
statement 2-679

Braces ({ })
collection delimiters 4-208
comment indicator 1-7, 4-223

Brackets ([])
range delimiters 4-34
substring operator 2-626

BROADCAST optimizer
directive 4-229

B-tree index
btree_ops operator class 2-180
cleaner list 2-781
default operator class 2-180
secondary-access method 2-154
uses 2-154
with constraints 2-58

BUFFERED keyword
in CREATE DATABASE

statement 2-112
in SET LOG statement 2-698

BUFFERED LOG keywords, in
CREATE DATABASE 2-113

Buffered logging 2-698
Built-in aggregate

contrasted with user-
defined 2-105

defined 4-172
extending 2-105

Built-in data type
owner 2-115
privileges on 2-469
syntax 4-49

Built-in routines
jvpcontrol 2-409
sqlj.alter_java_path 2-421
sqlj.install_jar 2-418
sqlj.remove_jar 2-420
sqlj.replace_jar 2-419
sqlj.unsetUDTExtName 2-423

Built-in secondary-access
method 2-154

BY keyword
in ALTER SEQUENCE

statement 2-50
in CREATE SEQUENCE

statement 2-207
BYTE and TEXT columns, in

ALTER FRAGMENT 2-23
BYTE column, modifying 2-67
BYTE data

effect of isolation on
retrieval 2-695, 2-724

loading 2-506
storage location 4-58
unloading 2-755, 2-756

BYTE data type
declaration syntax 4-57
default value 2-218
with SET DESCRIPTOR 2-677
with SPL routines 3-11, 3-21

BYTE keyword
in Data Type segment 4-57
in DEFINE statement 3-10
in Return Clause segment 4-253

C
C keyword, in External Routine

Reference segment 4-187
CACHE keyword

in ALTER SEQUENCE
statement 2-51

in CREATE SEQUENCE
statement 2-209

Calculated expression, restrictions
with GROUP BY 2-622

CALL keyword, in WHENEVER
statement 2-789

CALL statement 3-4
CANNOTHASH keyword, in

CREATE OPAQUE TYPE
statement 2-171

CANNOTHASH modifier 2-622
CARDINALITY function 4-118
Caret (^) wildcard character 4-34
Cartesian product 2-608, 4-226
CASCADE keyword

in ALTER TABLE statement 2-59
in CREATE TABLE

statement 2-223
in DROP TABLE statement 2-388
in DROP VIEW statement 2-393
in REVOKE statement 2-557

Cascading deletes 2-61
CREATE TABLE with 2-61, 2-226
locking associated with 2-346
logging 2-346
multiple child tables 2-346

Cascading triggers
and triggering table 2-296
triggered actions 2-283

CASE keyword, in Expression
segment 4-90, 4-91

CASE statement 3-6
Case-conversion functions

INITCAP 4-161
LOWER 4-161
UPPER 4-161

Cast
built-in 2-110, 2-371
creating 2-108
dropping 2-371
explicit 2-109
function for 2-111
implicit 2-110
operator (::) 2-109
privileges 2-108
registering 2-108
symbol 4-80

CAST keyword
in DROP CAST statement 2-371
in Expression segment 4-79

cdrserver column 2-54, 2-235
cdrtime shadow column 2-54,

2-235
4 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Chaining synonyms 2-212
CHAR data type

defined 4-51
in INSERT 4-246

Character data types 4-50
CHARACTER VARYING data type

syntax 4-50
CHARACTER_LENGTH

function 4-131, 4-132
CHAR_LENGTH function 4-131,

4-132
Check constraints

description of 2-227
reject files 2-130
unloading data 2-130

CHECK keyword
in ALTER TABLE statement 2-62
in CREATE EXTERNAL TABLE

statement 2-125
in CREATE TABLE

statement 2-227
in CREATE VIEW

statement 2-310
CLASS keyword, in Routine

Modifier segment 4-258
CLASS_ORIGIN keyword, in GET

DIAGNOSTICS
statement 2-452

CLOB data type
copying to a file 4-138
copying to a smart large

object 4-140
creating from a file 4-135
default value 2-218
handle values 4-88
size limit 4-58
unloading 2-755, 2-756

CLOB keyword
in Data Type segment 4-57
in DEFINE statement 3-10

CLOSE DATABASE statement
prerequisites to close 2-88
syntax 2-88

CLOSE statement 2-85
CLUSTER keyword

in ALTER INDEX statement 2-41
in CREATE INDEX

statement 2-145
Clustered index 2-41, 2-146

Clustering, specifying support
for 4-240

COARSE keyword
in ALTER INDEX statement 2-41
in CREATE INDEX

statement 2-165
Code examples Intro-16
Code points, ASCII 4-251
Code set, ISO 8859-1 Intro-4
CODESET keyword

in CREATE EXTERNAL TABLE
statement 2-128

in SELECT statement 2-636
Cogroup name 2-127
Collating order 2-643, 4-250
COLLATION keyword, in SET

COLLATION statement 2-643
Collection constructors

example 4-109, 4-110
restrictions 4-109

Collection cursor
closing 2-87
DECLARE for ESQL/C

variable 2-339
defined 2-339
FOR EACH with 3-29
in SPL 3-29
inserting into 2-432, 2-544
opening 2-520

Collection data type 4-63
allocating memory 2-8
defining a column 4-63
deleting 2-349
element, searching for with

IN 4-31
IN operator 4-31
LIST 4-63
loading 2-510
MULTISET 4-63
returning number of

elements 4-118
selecting from 2-600
SET 4-63
unloading 2-754
updating 4-16

COLLECTION keyword
in ALLOCATE COLLECTION

statement 2-8

in DEALLOCATE COLLECTION
statement 2-318

in DEFINE statement 3-10
untyped collection variable 2-600

Collection Subquery segment 4-22
Collection variable

accessing 4-15
accessing values 4-15
associating cursor with 2-339
cursor for 2-432
deallocating memory for 2-318
in SELECT statement 2-600
manipulating values 4-16
opening a cursor 2-520
selecting from 2-600
selecting, inserting

elements 2-339
untyped 2-9, 2-319
updating 4-16
with DESCRIBE INPUT

statement 2-363
with DESCRIBE statement 2-356

Collection-derived table 4-7
collection cursor 2-341, 2-432,

2-544
collection variables with 4-15
INSERT statement with 2-502
row types in 4-10
row variables with 4-21
SELECT statement with 2-600,

4-15
SELECT statement with, fields

from row variable 2-601
TABLE keyword 4-8, 4-15, 4-21
UPDATE row variable with 2-775
UPDATE statement with 4-15,

4-21
where allowed 4-21

Collections
accessing a nested collection 4-20
accessing elements 4-8
allocating memory 2-8
constructors 4-108
deleting elements from 2-349
example of deleting

elements 4-17
example of inserting

elements 4-20
example of updating 4-19
Index 5

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
generating values for 4-108
inserting values into 2-496
nested 4-210
restrictions when accessing

elements 4-9
restrictions when defining 4-64
restrictions with inserting null

values 2-497
selecting from 2-600
specifying literal values 4-209
updating 2-772

Co-locality 2-160
Colon (:) symbol

DATETIME separator 4-212
INTERVAL separator 4-214
with database qualifier 4-47

Column
adding 2-55
adding a NOT NULL

constraint 2-68
changing the data type 2-68
check constraints 2-126
defining as primary key 2-222
dropping 2-63
expression 2-586, 4-82
inserting into 2-490
modifying with ALTER

TABLE 2-65
number, effect on triggers 2-277
order in Projection list 2-584
primary or foreign key 2-222
privileges 2-465
projection 4-83
referenced and referencing 2-223
removing a NOT NULL

constraint 2-68
renaming 2-549
specifying a subscript 2-626, 4-87
specifying check constraint

for 2-227
varying-length 4-51
virtual 2-313

Column definition clause 2-216
Column expression 2-633
Column name

dot notation 4-83
using functions as names 4-194
using keywords as names 4-195

Column substring 4-87

Column-level constraints 2-263
COLUMNS keyword, in INFO

statement 2-487
COMBINE keyword, in CREATE

AGGREGATE statement 2-104
Comma (,) symbol

in pathnames 4-137
list separator 2-570

Command file, comment
indicators 1-7

Comment symbol
braces ({ }) 1-6
double hyphen (--) 1-6
in application programs 1-7
in prepared statements 2-529

COMMIT keyword, in TRUNCATE
statement 2-750

COMMIT WORK statement
in ANSI-compliant

databases 2-91
in non-ANSI databases 2-91
syntax 2-90

COMMITTED keyword, in SET
TRANSACTION
statement 2-720

Committed Read isolation
level 2-692

COMMITTED READ keywords, in
SET ISOLATION
statement 2-691

Compacted index 2-155
Compare support function 2-174
Complex data type

loading element values 2-510
unloading 2-758

Complex numbers 4-56
Complex table expression 2-596
Complex view 2-299
Compliance icons Intro-12
Compliance with industry

standards Intro-20
Composite key 2-234
Compound assignment 3-36
COMPUTE_QUOTA keyword, in

SET ENVIRONMENT
statement 2-679

Concatenation operator (||) 4-68,
4-78

Concurrency
with SET ISOLATION 2-691
with SET TRANSACTION 2-723
with START VIOLATIONS

TABLE 2-731
CONCURRENT keyword, in

CONNECT statement 2-92
Condition

comparison 4-26, 4-27
IN operator 4-30
NOT IN operator 4-30

Condition segment
description of 4-24
join conditions 2-619
keywords

ALL 4-39
ANY 4-39
BETWEEN 4-29
EXISTS 4-38
IS NOT NULL 4-32
IS NULL 4-32
LIKE 4-32
MATCHES 4-32
NOT 4-32
SOME 4-39

null values 4-41
relational operators in 4-28
subquery in SELECT 4-36

Conditional expressions
CASE 4-89
DECODE 4-89
NVL 4-89

Configuration parameter
ALLOW_NEWLINE 4-245
DBSPACETEMP 2-267
DEF_TABLE_LOCKMODE 2-77,

2-254
DIRECTIVES 4-222
FILLFACTOR 2-155
OPTCOMPIND 4-228
SEQ_CACHE_SIZE 2-209
SYSSBSPACENAME 2-787

Conflict resolution 2-54
CONNECT keyword

in GRANT 2-461
in GRANT statement 2-460
in REVOKE statement 2-558

Connect privilege 2-461
CONNECT statement 2-92
6 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Connection
context 2-366, 2-647
current 2-93, 2-367, 2-650
default 2-366, 2-649
dormant 2-93, 2-366, 2-646
implicit 2-367, 2-649

CONNECTION_ALIAS keyword,
in GET DIAGNOSTICS
statement 2-452

Constant expression 4-95
in SELECT 2-587
inserting with PUT 2-540

Constraint
adding primary-key 2-74
adding referential 2-74
adding to a column with

data 2-69
adding unique 2-74
adding with ALTER TABLE 2-72,

2-73
B-tree indexes 2-146
checking 2-302
disabled 2-230
dropping a column 2-63
dropping with ALTER

TABLE 2-75
enabled 2-230
encountering violations while

adding 2-74
filtering 2-230, 2-656
limit on size 2-231
mode 2-230
modifying a column 2-65
multiple-column 2-231
name 2-229
number of columns

allowed 2-231
privileges needed to create 2-74
single-column 2-220
system catalog tables 2-229
transaction mode 2-725
with DROP INDEX 2-377

CONSTRAINT keyword
in ALTER TABLE statement 2-58,

2-72, 2-75
in CREATE TABLE

statement 2-228

CONSTRAINTS keyword
in SET CONSTRAINTS

statement 2-651
in SET Database Object Mode

statement 2-653, 2-654
in SET Transaction Mode

statement 2-725
Constructor functions

collections 4-108
row 4-106

Contact information Intro-20
CONTINUE keyword, in

WHENEVER statement 2-789
CONTINUE statement 3-9
Correlated subqueries 2-596, 4-37
Correlation name 2-292, 2-595

in routine 2-298
scope of 2-292
table of values 2-293

COS function 4-149, 4-150
Coserver number 2-127, 4-120
COSTFUNC keyword, in Routine

Modifier segment 4-257, 4-258
COUNT field

in ALLOCATE DESCRIPTOR
statement 2-11

in GET DESCRIPTOR
statement 2-439

in SET DESCRIPTOR
statement 2-670

with DESCRIBE INPUT
statement 2-362

with DESCRIBE statement 2-354
COUNT function

description 4-175
restriction with CREATE

TRIGGER statement 2-292
syntax 4-172

COUNT keyword. See COUNT
field; COUNT function.

CPU usage cost 4-262
CPU VP (virtual processor) 2-679
CRCOLS keyword

in CREATE TABLE
statement 2-235

CREATE AGGREGATE
statement 2-104

CREATE CAST statement 2-108

CREATE DATABASE
statement 2-112

CREATE DISTINCT TYPE
statement 2-115

CREATE DUPLICATE
statement 2-118

CREATE EXTERNAL TABLE
statement 2-121

CREATE FUNCTION
statement 2-133

CREATE INDEX statement 2-144
CREATE OPAQUE TYPE

statement 2-169
CREATE OPCLASS

statement 2-176
CREATE PROCEDURE

statement 2-182
CREATE PROCEDURE FROM

statement 2-192
CREATE ROLE statement 2-194
CREATE ROUTINE FROM

statement 2-196
CREATE ROW TYPE

statement 2-198
CREATE SCHEMA statement

defining a trigger 2-272
syntax 2-203

CREATE SCRATCH TABLE
statement 2-205

CREATE SEQUENCE
statement 2-206

CREATE SYNONYM statement
syntax 2-210

CREATE TABLE statement
constraints

check 2-227
composite keys 2-231, 2-234
distinct 2-221
example 2-233
foreign key 2-223
NOT NULL 2-217, 2-221
primary key 2-222
referential 2-223
restrictions 2-221
unique 2-221

fragmenting
by expression 2-239
by hash 2-242
by hybrid 2-243
Index 7

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
by range 2-244
round-robin 2-239

syntax 2-214
CREATE TEMP TABLE

statement 2-260
CREATE Temporary TABLE

statement 2-261
CREATE TRIGGER statement

no table expressions 2-596
syntax 2-269

CREATE VIEW statement 2-310,
2-596

Creation-time settings of
environment variables 2-289

CROCOLS keyword, in CREATE
Temporary TABLE
statement 2-265

Cross joins 2-604
CROSS keyword, in SELECT

statement 2-608
CTRL-J (newline), preserving in

quoted strings 4-245
Current database, specifying with

DATABASE 2-316
CURRENT DORMANT keywords,

in SET CONNECTION
statement 2-646

CURRENT function
as input for DAY function 4-100
example 2-499
in ALTER TABLE statement 2-56
in Condition segment 4-30
in CREATE TABLE

statement 2-217
in DEFINE statement 3-14
in expression 4-96
in INSERT statement 2-494, 2-499
in WHERE condition 4-100

CURRENT keyword
in DELETE statement 2-344
in DISCONNECT

statement 2-366
in FETCH statement 2-424
in SET CONNECTION

statement 2-646
in UPDATE statement 2-762,

2-774
CURRVAL operator 2-207, 4-103

Cursor
activating with OPEN 2-516
affected by transaction end 2-87
characteristics 2-332
closing 2-85
closing with ROLLBACK

WORK 2-579
declaring 2-323
for update

restricted statements 2-336
freeing automatically with SET

AUTOFREE 2-640
manipulation statements 1-11
opening 2-517
optimization statements 1-11
prepared statement with 2-338
program operations 2-327
read-only

restricted statements 2-336
retrieving values with

FETCH 2-424
select hold examples 2-334
stability 2-431, 2-721
statement identifier with 2-338
with INTO keyword in

SELECT 2-591
Cursor function 3-28, 4-256
CURSOR keyword, in DECLARE

statement 2-323
Cursor Stability isolation

level 2-431, 2-692
CURSOR STABILITY keywords, in

SET ISOLATION
statement 2-691

CYCLE keyword
in ALTER SEQUENCE

statement 2-51
in CREATE SEQUENCE

statement 2-208

D
Data

access statements 1-11
definition statements 1-10
inserting with LOAD 2-504
integrity statements 1-11
manipulation statements 1-10

Data distributions
confidence 2-783
on temporary tables 2-779
RESOLUTION 2-783

DATA field
in GET DESCRIPTOR

statement 2-439
in SET DESCRIPTOR

statement 2-672
with DESCRIBE INPUT

statement 2-362
with DESCRIBE statement 2-354

DATA keyword. See DATA field.
Data replication 2-54
Data type 4-49

alignment 2-116
casting 2-108, 4-80
changing with ALTER

TABLE 2-68
collection 4-63
complex 4-61
considerations for INSERT 2-495,

4-246
distinct 4-60
opaque 2-169
representation 2-116
simple large object 4-57
specifying with CREATE

VIEW 2-311
 See also each data type listed

under its own name.
Data type segment 4-49
Database

ANSI-compliant 2-317
closing with CLOSE

DATABASE 2-88
creating with CREATE

DATABASE 2-112
data warehousing 2-215
default isolation levels 2-693,

2-723
dropping 2-372
external 4-47
isolation level 2-720
lock 2-317
naming conventions 4-44
nonlogging database 2-300
OLTP 2-215
opening in exclusive mode 2-317
8 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
optimizing queries 2-779
remote 4-45
renaming 2-551
running in secondary mode 2-317

Database administrator
(DBA) 2-462, 2-559

privileges
granting 2-459
revoking 2-558

DATABASE keyword
in CLOSE DATABASE

statement 2-88
in DROP DATABASE

statement 2-372
Database object

naming 4-46
naming owner 4-234

Database object mode
for triggers 2-272
in SET Database Object Mode

statement 2-654
privileges required 2-652

Database Object Name
segment 4-46

DATABASE statement 2-316
Database-level privilege

passing grant ability 2-477
 See also Privilege.

DATAFILES keyword
in CREATE EXTERNAL TABLE

statement 2-126
in SELECT statement 2-632

Data-integrity violations 2-730,
2-748

DATASKIP configuration
parameter 2-659

Dataskip feature 2-448, 2-659
DATASKIP keyword, in SET

DATASKIP statement 2-659
DATE data type

declaration syntax 4-59
functions in 4-143

DATE function 4-143, 4-144
DATETIME data type 4-59

as quoted string 4-246
field qualifiers 4-65
in expression 4-101
in INSERT 4-246
literal values 4-212

DATETIME Field Qualifier
segment 4-65

DATETIME keyword, in Literal
DATETIME 4-212

datetime.h header file 2-675
DAY function 4-143, 4-145
DAY keyword

in DATETIME Field
Qualifier 4-65, 4-66

in INTERVAL Field
Qualifier 4-205, 4-214

in Literal DATETIME 4-212
DBA keyword

in CREATE FUNCTION
statement 2-133

in CREATE PROCEDURE
statement 2-182

in GRANT statement 2-460
in REVOKE statement 2-558

DBA privilege
with CREATE

ACCESS_METHOD
statement 2-102

with CREATE SCHEMA 2-204
with DROP DATABASE 2-372
with DROP TRIGGER

statement 2-391
DB-Access utility Intro-5
DBANSIWARN environment

variable 2-114, 2-204, 2-215,
2-261, 2-311

DBA-privileged UDR 2-184
DBBLOBBUF environment

variable 2-508, 2-756
DBCENTURY environment

variable 2-289, 2-505
DBDATE environment

variable 2-218, 2-754, 4-246
DBDELIMITER environment

variable 2-511, 2-758
DBINFO function 4-119
DBMONEY environment

variable 2-506, 2-754, 4-217
DBSERVERNAME function

in ALTER TABLE statement 2-56
in Condition segment 4-30
in CREATE TABLE

statement 2-217
in DEFINE statement 3-14

returning server name 4-98
dbspace number 4-130
DBSPACETEMP environment

variable 2-266, 2-267, 3-21
Dbspace, skipping if

unavailable 2-659
DBTIME environment

variable 2-506, 2-754
DBUPSPACE environment

variable 2-785
DB_LOCALE environment

variable 2-157, 2-317, 2-643,
2-688

DDL statements, summary 1-10
Deadlock 3-47
Deadlock detection 2-697
DEADLOCK_TIMEOUT setting in

ONCONFIG 2-697
DEALLOCATE COLLECTION

statement 2-318
DEALLOCATE DESCRIPTOR

statement 2-320
DEALLOCATE ROW

statement 2-322
DEBUG keyword, in SET DEBUG

FILE TO statement 2-661
Debugging sysdbopen()

routines 2-191
Decimal (.) point

DATETIME separator 4-212
INTERVAL separator 4-214
Jar Name separator 4-207
literal numbers 4-216, 4-247
owner-name separator 4-46

DECIMAL data type 4-54, 4-56
literal values 4-217

DECLARE statement
collection variables with 4-15
collection-derived table with 4-15
restrictions with SELECT with

ORDER BY 2-628
syntax 2-323
with SELECT statement 2-592

DECODE function 4-93
Default isolation level 2-723
DEFAULT keyword

in ALTER TABLE statement 2-56
in CONNECT statement 2-92
Index 9

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
in CREATE EXTERNAL TABLE
statement 2-128

in CREATE TABLE
statement 2-217

in DEFINE statement 3-10
in DISCONNECT

statement 2-366
in SET CONNECTION

statement 2-646, 2-649
in SET DATASKIP

statement 2-659
in SET Default Table Type

statement 2-663, 2-665
in SET ENVIRONMENT

statement 2-678
in SET PDQPRIORITY

statement 2-704
Default locale Intro-4
DEFAULT_ATTACH environment

variable 2-157
DEFERRED keyword, in SET

Transaction Mode
statement 2-725

Deferred-Prepare feature 2-666
DEFERRED_PREPARE keyword,

in SET DEFERRED_PREPARE
statement 2-666

DEFINE statement
default value clause 3-14
in Statement Block segment 4-276
syntax 3-10

DEF_TABLE_LOCKMODE setting,
in ONCONFIG 2-255, 2-696

Delete join 2-348
DELETE keyword

in CREATE TRIGGER
statement 2-269

in GRANT FRAGMENT
statement 2-481

in GRANT statement 2-463
in REVOKE FRAGMENT

statement 2-576
in REVOKE statement 2-560

DELETE statement
and triggers 2-290
cascading 2-346
collection columns with 2-349
collection variables with 4-15
collection-derived table with 4-15

OUT parameters 4-170
restrictions when using a

join 2-348
syntax 2-344
using joins 2-348
with SELECT... FOR

UPDATE 2-629
with update cursor 2-347
within a transaction 2-345

Delete trigger 2-273
Deleting from a specific table in a

table hierarchy 2-345
DELIMIDENT environment

variable 4-190, 4-193, 4-244,
4-246

Delimited identifiers
multibyte characters 4-192
non-ASCII characters 4-192
syntax 4-191

DELIMITED keyword
in CREATE EXTERNAL TABLE

statement 2-128
in SELECT statement 2-636

Delimiter
for LOAD input file 2-511
specifying with UNLOAD 2-758

DELIMITER keyword
in CREATE EXTERNAL TABLE

statement 2-128
in LOAD statement 2-504
in SELECT statement 2-635
in UNLOAD statement 2-753

DELUXE keyword, in CREATE
EXTERNAL TABLE
statement 2-128

Demonstration databases Intro-5
Dependencies, software Intro-4
DESC keyword

in CREATE INDEX
statement 2-147

in SELECT statement 2-624, 2-627
order with nulls 2-627

Descending sequence 2-50, 2-207
DESCRIBE INPUT statement

syntax 2-359
DESCRIBE statement

collection variable with 2-356
distinct data type with 2-445
opaque data type with 2-444

relation to GET
DESCRIPTOR 2-442

syntax 2-351
with SET DESCRIPTOR 2-677

DESCRIPTOR keyword
in ALLOCATE DESCRIPTOR

statement 2-10
in DEALLOCATE DESCRIPTOR

statement 2-320
in EXECUTE statement 2-395,

2-401
in FETCH statement 2-424
in OPEN statement 2-516
in PUT statement 2-539

Destroy support function 2-174,
2-349, 2-390

DETACH keyword, in ALTER
FRAGMENT statement 2-27

Detached index 2-120, 2-157, 2-159
Detached statement 2-642
dev/null output destination 2-707
Diagnostics table

creating with START
VIOLATIONS TABLE 2-729

how to stop 2-748
privileges 2-743
relationship to target table 2-735
relationship to violations

table 2-735
restriction on dropping 2-390
structure 2-742

Directive 4-222
DIRECTIVES configuration

parameter 4-222
Dirty Read isolation level 2-692
DIRTY READ keywords, in SET

ISOLATION statement 2-691
DISABLED keyword

CREATE TRIGGER
statement 2-272

in ALTER TABLE statement 2-58
in CREATE INDEX

statement 2-161
in CREATE TABLE

statement 2-228, 2-230
in CREATE TRIGGER

statement 2-272
in SET AUTOFREE

statement 2-640
10 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
in SET Database Object Mode
statement 2-654, 2-658

in SET DEFERRED_PREPARE
statement 2-666

DISCONNECT statement
ALL keyword 2-368
CURRENT keyword 2-367
DEFAULT option 2-366

DISK keyword, in CREATE
EXTERNAL TABLE
statement 2-126

Display labels
in CREATE VIEW

statement 2-312
in Projection clause 2-583
in SELECT statement 2-589, 2-633

Distinct data type 4-60
casting 2-116
casts and DROP TYPE 2-392
creating with CREATE DISTINCT

TYPE 2-115
DESCRIBE with 2-445
dropping with DROP TYPE 2-392
dynamic SQL with 2-445
GET DESCRIPTOR with 2-445
in dynamic SQL 2-677
privileges 2-115, 2-469
restrictions on source type 2-115
source data type 2-445, 2-677
Usage privilege 2-565
with SET DESCRIPTOR 2-677

DISTINCT keyword
in ALTER TABLE statement 2-57,

2-73
in CREATE DISTINCT TYPE

statement 2-115
in CREATE INDEX

statement 2-145, 2-166
in CREATE TABLE

statement 2-220, 2-231
in CREATE Temporary TABLE

statement 2-263, 2-264
in Expression segment 4-171,

4-185
in SELECT statement 2-585
in subquery 4-38

Distributed query 2-584
Distributions

dropping 2-782

medium 2-784
privileges required to

create 2-783
DISTRIBUTIONS keyword, in

UPDATE STATISTICS
statement 2-778, 2-784

divide() operator function 4-77
Division (/) symbol, arithmetic

operator 4-77
DML statements, summary 1-10
DOCUMENT keyword

in CREATE FUNCTION
statement 2-133

in CREATE PROCEDURE
statement 2-182

Documentation notes Intro-18
program item Intro-19

Documentation, types of Intro-17
documentation notes Intro-18
machine notes Intro-18
release notes Intro-18

Dominant table 2-604, 2-611
DORMANT keyword, in SET

CONNECTION
statement 2-646

Dot notation 4-83
Double hyphen (--) comment

indicator 4-223
DOUBLE PRECISION data

type 4-56
Double-hyphen (--) comment

indicator 1-6
DROP ACCESS_METHOD

statement 2-369
DROP AGGREGATE

statement 2-370
DROP CAST statement 2-371
DROP CONSTRAINT keywords, in

ALTER TABLE statement 2-75
DROP DATABASE

statement 2-372
DROP DISTRIBUTIONS keywords,

in UPDATE STATISTICS
statement 2-778

DROP DUPLICATE
statement 2-374

DROP FUNCTION
statement 2-375

DROP INDEX statement 2-377

DROP keyword
in ALTER ACCESS_METHOD

statement 2-14
in ALTER FRAGMENT

statement 2-36
in ALTER FUNCTION

statement 2-39
in ALTER PROCEDURE

statement 2-44
in ALTER ROUTINE

statement 2-46
in ALTER TABLE statement 2-63
in UPDATE STATISTICS

statement 2-778
DROP OPCLASS statement 2-378
DROP ROLE statement 2-381
DROP ROUTINE statement 2-382
DROP ROW TYPE statement 2-384
DROP SEQUENCE

statement 2-386
DROP SYNONYM statement 2-387
DROP TABLE statement 2-388
DROP TRIGGER statement 2-391
DROP TYPE keywords, in ALTER

TABLE statement 2-80
DROP TYPE statement 2-392
DROP VIEW statement 2-393
DS_ADM_POLICY configuration

parameter 2-712
DS_TOTAL_TMPSPACE

configuration parameter 2-681
DUPLICATE keyword

in CREATE DUPLICATE
statement 2-118

in DROP DUPLICATE
statement 2-374

Duplicate table
CREATE DUPLICATE 2-118

Duplicate values, in a query 2-585
Dynamic cursor names 2-325
Dynamic link library (DLL) 4-187
Dynamic log feature 3-47
Dynamic management

statements 1-11, 3-35
Dynamic parameters 2-361
Dynamic routine-name

specification 2-409
of SPL functions 2-409
of SPL procedures 2-415
Index 11

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Dynamic SQL 3-3

E
EACH keyword, in CREATE

TRIGGER statement 2-281,
2-288

East Asian locales 4-132
EBCDIC keyword

in CREATE EXTERNAL TABLE
statement 2-128

in SELECT statement 2-636
ELECT INTO clause

no table expressions 2-596
ELIF keyword, in IF statement 3-33
ELSE keyword

in CASE statement 3-6
in Expression segment 4-90, 4-91
in IF statement 3-33

ENABLED keyword
CREATE TRIGGER

statement 2-272
in ALTER TABLE statement 2-58
in CREATE INDEX

statement 2-161
in CREATE TABLE

statement 2-228, 2-230
in CREATE TRIGGER

statement 2-272
in SET AUTOFREE

statement 2-640
in SET Database Object Mode

statement 2-654, 2-658
in SET DEFERRED_PREPARE

statement 2-666
END CASE keywords, in CASE

statement 3-6
END EXCEPTION keywords, in

ON EXCEPTION
statement 3-39

END FOR keywords, in FOR
statement 3-23

END FOREACH keywords, in
FOREACH statement 3-27

END FUNCTION keywords, in
CREATE FUNCTION
statement 2-133

END IF keywords, in IF
statement 3-33

END keyword
in Expression segment 4-90, 4-91
in Statement Block segment 4-276

END PROCEDURE keywords, in
CREATE PROCEDURE
statement 2-182

END WHILE keywords, in WHILE
statement 3-54

Enterprise Replication 2-235
ENVIRONMENT keyword, in SET

ENVIRONMENT
statement 2-678

Environment variable
DBANSIWARN 2-311, 2-325
DBBLOBBUF 2-508, 2-756
DBCENTURY 2-289, 2-505
DBDATE 2-218, 2-505, 2-754,

4-246
DBDELIMITER 2-511
DBMONEY 2-506, 2-754
DBSPACETEMP 2-266
DBTIME 2-506, 2-754
DB_LOCALE 2-157, 2-317, 2-688
DEFAULT_ATTACH 2-157
DELIMIDENT 4-193, 4-244
GL_DATE 2-218, 2-505, 2-754,

4-246
GL_DATETIME 2-506, 2-754
IFX_DEF_TABLE_LOCKMODE

2-77, 2-254
IFX_DIRECTIVES 4-222
IFX_UPDDESC 2-353, 2-360
NODEFDAC 2-135, 2-185
OPTCOMPIND 2-716
OPT_GOAL 4-230
PDQPRIORITY 2-678, 2-679,

2-705, 2-716
STMT_CACHE 2-715
USETABLENAME 2-52, 2-389

Environment variables, setting with
SYSTEM statement 3-49

en_us.8859-1 locale Intro-4
equal() operator function 2-222,

4-249
Equal (=) sign

assignment operator 2-769
in purpose options 4-237

relational operator 4-248
Error checking

continuing after error in SPL
routine 3-42

error status with ON
EXCEPTION 3-40

with SYSTEM 3-47
with WHENEVER 2-791

ERROR keyword
in ALTER TABLE statement 2-58
in CREATE INDEX

statement 2-161
in CREATE TABLE

statement 2-228
in SET CONSTRAINTS

statement 2-651
in SET Database Object Mode

statement 2-654
in SET INDEXES statement 2-690
in WHENEVER statement 2-789
synonym for SQLERROR 2-792

ESCAPE keyword
in Condition segment 4-26, 4-32
in CREATE EXTERNAL TABLE

statement 2-128
in SELECT statement 2-636
with LIKE keyword 2-616, 4-35
with MATCHES keyword 2-617,

4-36
ESQL/C

collection cursor with
FETCH 2-432

collection cursor with PUT 2-544
cursor example 2-334
deallocating collection-variable

memory 2-318
deallocating row-variable

memory 2-322
inserting collection variables

with 2-497
inserting row variables 2-498

Exception handler 4-278
EXCEPTION keyword, in GET

DIAGNOSTICS
statement 2-452

EXCLUSIVE keyword
in DATABASE statement 2-316
in LOCK TABLE statement 2-513

Exclusive lock mode 2-513
12 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Executable file location 4-270
EXECUTE FUNCTION keywords

in DECLARE statement 2-323
in FOREACH statement 3-27
in INSERT statement 2-501
in Statement Block segment 4-276

EXECUTE FUNCTION
statement 2-404

and triggers 2-290
EXECUTE IMMEDIATE

statement 2-411
EXECUTE ON keywords

in GRANT statement 2-470
in REVOKE statement 2-566

EXECUTE PROCEDURE keywords
in DECLARE statement 2-323
in FOREACH statement 3-27
in INSERT statement 2-501
in Statement Block segment 4-276

EXECUTE PROCEDURE
statement 2-414

in FOREACH 3-27
in triggered action 2-290

EXECUTE statement 2-394
EXISTS keyword

beginning a subquery 2-617
in Condition segment 4-38
in Condition subquery 4-38

EXIT statement 3-22
EXP function 4-129
EXPLAIN keyword, SET EXPLAIN

statement 2-683
EXPLICIT keyword, in CREATE

CAST statement 2-108
Exponential function 4-129
Exponential number 4-217
Export support function 2-173,

2-755
Exportbinary support

function 2-174, 2-755
EXPRESS keyword, in CREATE

EXTERNAL TABLE
statement 2-128

Expression
boolean 4-26, 4-27
casting 4-79
list of 4-69
ordering by 2-627
smart large objects in 4-88

EXPRESSION keyword
in ALTER FRAGMENT

statement 2-31, 2-33
in CREATE INDEX

statement 2-159
in CREATE TABLE

statement 2-238
Expression segment

aggregate expressions 4-171
cast expressions 4-80
column expressions 4-82
combined expressions 4-77
list of expressions 4-69
syntax 4-68

EXTEND function 4-143, 4-146
extended_id column 2-444
Extensions to SQL

standard Intro-12
EXTENT keyword, in ALTER

TABLE statement 2-71
EXTENT SIZE keywords

in ALTER TABLE statement 2-71
in CREATE TABLE

statement 2-249, 2-251
Extent, revising the size 2-76
External function

as operator-class strategy
function 2-179

as operator-class support
function 2-180

CREATE FUNCTION 2-138
dropping 2-375
executing 2-404, 2-530
limits on return values 4-254
non-variant 4-188
OUT parameter 4-169
registering 2-138
variant 4-188

EXTERNAL keyword
in CREATE EXTERNAL TABLE

statement 2-122
in External Routine Reference

segment 4-187
in SELECT statement 2-632

External language 2-138
EXTERNAL NAME keywords

in ALTER FUNCTION
statement 2-39

in ALTER PROCEDURE
statement 2-44

in ALTER ROUTINE
statement 2-46

External procedure
creating body of 2-187
executing 2-530

External routine
as triggered action 2-290
CREATE PROCEDURE FROM

statement in 2-192
creating a function in 2-142
definition 2-184
pathname syntax 4-270
preparing 2-530
referencing 4-187

External Routine Reference
example 4-188
segment 4-187

External synonym 2-389
External table

creating 2-121
integer data types 2-123
NULL values 2-123
restrictions in joins and

subqueries 2-597
with SELECT statement 2-635

EXTYPEID field
in GET DESCRIPTOR

statement 2-439
in SET DESCRIPTOR

statement 2-672
with DESCRIBE INPUT

statement 2-362
with DESCRIBE statement 2-354

EXTYPELENGTH field
in GET DESCRIPTOR

statement 2-439
in SET DESCRIPTOR

statement 2-672
with DESCRIBE INPUT

statement 2-362
with DESCRIBE statement 2-354

EXTYPENAME field
in GET DESCRIPTOR

statement 2-439
in SET DESCRIPTOR

statement 2-672
Index 13

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
with DESCRIBE INPUT
statement 2-362

with DESCRIBE statement 2-354
EXTYPEOWNERLENGTH field

in GET DESCRIPTOR
statement 2-439

in SET DESCRIPTOR
statement 2-672

with DESCRIBE INPUT
statement 2-362

with DESCRIBE statement 2-354
EXTYPEOWNERNAME field

in GET DESCRIPTOR
statement 2-439

in SET DESCRIPTOR
statement 2-672

with DESCRIBE INPUT
statement 2-362

with DESCRIBE statement 2-354

F
Feature icons Intro-10
FETCH statement 2-424

as affected by CLOSE 2-86
collection variables with 4-15
collection-derived table with 4-15
relation to GET

DESCRIPTOR 2-440
with

concatenation operator 4-79
Field projection 2-771, 4-83
Field qualifier

for DATETIME 4-65
for INTERVAL 4-205, 4-214

FILE TO keywords
in SET DEBUG FILE TO

statement 2-661
in SET EXPLAIN statement 2-683
in SET PLOAD FILE

statement 2-707
FILETOBLOB function 4-134, 4-135
FILETOCLOB function 4-132,

4-134, 4-135
File, sending output with the

OUTPUT statement 2-525

FILLFACTOR keyword, in
CREATE INDEX
statement 2-155

FILTERING keyword
in ALTER TABLE statement 2-58
in CREATE INDEX

statement 2-161
in CREATE TABLE

statement 2-228, 2-230
in SET Database Object Mode

statement 2-654
FINAL keyword, in CREATE

AGGREGATE statement 2-104
finderr utility Intro-19
FIRST keyword

in FETCH statement 2-424
in SELECT statement 2-584

FIRST_ROWS keyword
in Optimizer Directives

Segment 4-229
in SET OPTIMIZATION

statement 2-700
FIXED keyword, in CREATE

EXTERNAL TABLE
statement 2-128

Fixed-format files 2-122
Fixed-length opaque data

type 2-170
Fixed-point numbers 4-217
FLOAT data type 4-56

literal values 4-217
systems not supporting 2-317

Floating-point numbers 4-217
FLUSH statement 2-435
Flushing an insert buffer 2-546
FOR EACH ROW keywords, in

CREATE TRIGGER
statement 2-281, 2-288

FOR keyword
in CONTINUE statement 3-9
in CREATE OPCLASS

statement 2-176
in CREATE SYNONYM

statement 2-210
in CREATE TRIGGER

statement 2-281, 2-288
in DECLARE statement 2-323
in EXIT statement 3-22
in FOREACH statement 3-27

in INFO statement 2-487
in SET AUTOFREE

statement 2-640
in SET CONSTRAINTS

statement 2-651
in SET Database Object Mode

statement 2-654
in SET INDEXES statement 2-690
in SET TRIGGERS

statement 2-728
in START VIOLATIONS TABLE

statement 2-729
in STOP VIOLATIONS TABLE

statement 2-748
in UPDATE STATISTICS

statement 2-778, 2-786
FOR READ ONLY keywords, in

DECLARE statement 2-323
FOR statement 3-23
FOR TABLE keywords, in UPDATE

STATISTICS statement 2-778
FOR UPDATE keywords

in DECLARE statement 2-323
in SELECT statement 2-581, 2-629
relation to UPDATE 2-774
with column list 2-328

FOREACH keyword
in CONTINUE statement 3-9
in EXIT statement 3-22

FOREACH statement
collection variables with 4-15
collection-derived table with 4-15
syntax 3-27

Foreign key
dropping 2-75
establishing 2-60, 2-223
examples 2-61, 2-234
multiple columns 2-73, 2-232

Foreign key constraint 2-233
FOREIGN KEY keywords

in ALTER TABLE statement 2-73
in CREATE TABLE

statement 2-231, 2-255
FORMAT keyword

in CREATE EXTERNAL TABLE
statement 2-128

in SELECT statement 2-632, 2-636
14 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
FRACTION keyword
as DATETIME field

qualifier 4-212
as INTERVAL field

qualifier 4-214
in DATETIME Field Qualifier

segment 4-65
in INTERVAL Field

Qualifier 4-205
INTERVAL qualifier 4-205

FRAGMENT BY keywords
in ALTER FRAGMENT

statement 2-31, 2-33
in CREATE INDEX

statement 2-159
in CREATE TABLE

statement 2-238
FRAGMENT keyword

in GRANT FRAGMENT
statement 2-480

Fragmentation
adding a fragment 2-34
adding rowids 2-54
altering fragments 2-16
arbitrary rule 2-240
attaching tables 2-19
built-in hash distribution

scheme 2-242
combining tables 2-19
Dataskip feature 2-659
defining a new strategy 2-19,

2-159
detaching a table fragment 2-27
dropping an existing

fragment 2-36
dropping rowids 2-54
fragment expressions 2-25
list of dbspaces 2-659
modifying an existing fragment

expression 2-37
number of rows in fragment 2-18
of indexes 2-159
of tables 2-238
of temporary tables 2-266
reading data from local

fragments 2-598
reinitializing strategy 2-33
remainder 2-36
reverting to nonfragmented 2-30

rowid 2-30
rowid columns with 2-239
running out of log/disk

space 2-18
strategy

by expression 2-239, 2-660
by round-robin 2-239, 2-660
range rule 2-240

text and byte data types 2-23
Fragmentation strategy,

modifying 2-29
Fragment-level privilege 2-482

granting 2-480
revoking 2-575

FRAGMENTS keyword, in INFO
statement 2-487

FREE statement 2-437
FROM keyword

in CREATE INDEX
statement 2-167

in DELETE statement 2-344
in LOAD statement 2-504
in PREPARE statement 2-527
in PUT statement 2-539
in REVOKE FRAGMENT

statement 2-575
in REVOKE statement 2-557
in SELECT statement 2-594
in TRIM expressions 4-152
in UPDATE statement 2-773

FULL keyword, in Optimizer
Directives Segment 4-224

FULL keyword, in SELECT
statement 2-608

Full outer joins 2-604
Function

altering with ALTER
FUNCTION 2-39

casting 2-111
creating indirectly from a stored

file 2-142
creating with CREATE

FUNCTION 2-133
creating with CREATE

FUNCTION FROM 2-141
dropping with DROP

FUNCTION 2-375
dropping with DROP

ROUTINE 2-382

modifying path to executable
file 2-40

modifying routine modifiers 2-40
nonvariant 4-188
shared library 4-132
smart large object 4-134
Specific Name 4-274
system catalog tables 2-137
thread-safe 4-262
variant 4-188

Function cursor
opening 2-518
reopening 2-518

Function expressions 4-113
FUNCTION keyword

in CREATE FUNCTION
statement 2-133

in DROP FUNCTION
statement 2-375

in GRANT statement 2-470
in REVOKE statement 2-566
in UPDATE STATISTICS

statement 2-786
Functional index 2-147, 2-148,

2-149
Functions, SQL

Algebraic 4-114
Case-conversion 4-161
Exponential 4-129
Length functions 4-131
Logarithmic 4-129
String-manipulation 4-152
Time 4-143
trigonometric 4-149

Function, SQL
ABS 4-115
ACOS 4-150
ASIN 4-151
ATAN 4-151
ATAN2 4-151
AVG 4-175
CARDINALTY 4-118
CASE expression 4-89
CHAR_LENGTH 4-132
COS 4-150
COUNT 4-175
CURRVAL 4-102, 4-103
DATE 4-144
DAY 4-145
Index 15

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
DECODE 4-93
EXP 4-129
EXTEND 4-146
FILETOBLOB 4-135
FILETOCLOB 4-135
HEX 4-130
IFX_REPLACE_MODULE 4-132
INITCAP 4-161
LENGTH 4-131
LOCOPY 4-140
LOG10 4-129
LOGN 4-130
LOTOFILE 4-138
LOWER 4-161
LPAD 4-159
MAX 4-180
MDY 4-147
MIN 4-180
MOD 4-115
MONTH 4-145
NEXTVAL 4-102
NVL 4-92
OCTET_LENGTH 4-132
POW 4-115
RANGE 4-180
REPLACE 4-158
ROOT 4-115
ROUND 4-116
RPAD 4-160
SIN 4-150
SQRT 4-117
STDEV 4-181
SUBSTR 4-156
SUM 4-180
TAN 4-150
TO_CHAR 4-147
TO_DATE 4-148
TRIM 4-152, 4-154
TRUNC 4-117
UPPER 4-161
VARIANCE 4-182
WEEKDAY 4-145
YEAR 4-145

Function, user-defined
definition 2-183

Fuzzy index 2-179

G
Generalized-key index

description 2-165
dropping a column 2-65
modifying a column 2-70
no renamed table 2-555
no table expressions 2-596
SELECT clause 2-166
WHERE clause 2-168

Generic B-tree index 2-154
GET DESCRIPTOR statement

syntax 2-439
use with FETCH statement 2-429

GET DIAGNOSTICS statement
exception clause 2-452
SQLSTATE codes 2-448
syntax 2-446

GK index 2-120, 2-144
GK INDEX keywords, in CREATE

INDEX statement 2-144
Global environment 3-12
GLOBAL keyword, in DEFINE

statement 3-10
Global Language Support

(GLS) Intro-4
Global variables 3-12
GL_DATE environment

variable 2-218, 2-505, 2-754,
4-246

GL_DATETIME environment
variable 2-506, 2-754, 4-148

GO TO keywords, in WHENEVER
statement 2-789

GOTO keyword, in WHENEVER
statement 2-793

GRANT FRAGMENT
statement 2-480

GRANT keyword
in GRANT FRAGMENT

statement 2-480
in GRANT statement 2-459

GRANT statement 2-459
greaterthan() operator

function 4-249
greaterthanorequal() operator

function 4-249
GROUP BY keywords, in SELECT

statement 2-621

H
Handle value 4-135
HANDLESNULLS keyword

in CREATE AGGREGATE
statement 2-104

in Routine Modifier
segment 4-258

Hash join 4-228
HASH keyword

in ALTER FRAGMENT
statement 2-31

in CREATE INDEX
statement 2-159

in CREATE TABLE
statement 2-238

HAVING keyword, in SELECT
statement 2-581

HEADINGS keyword, in OUTPUT
statement 2-525

Help Intro-17
HEX function 4-87, 4-130
HEX keyword, in CREATE

EXTERNAL TABLE
statement 2-122

Hexadecimal smart-large-object
identifier 4-138

HIGH INTEG keywords
in ALTER TABLE statement 2-71
in CREATE TABLE

statement 2-249
HIGH keyword

in SET OPTIMIZATION
statement 2-700

in SET PDQPRIORITY
statement 2-704

in UPDATE STATISTICS
statement 2-778

High-Performance Loader
(HPL) 2-173, 2-631

Hold cursor
definition of 2-332
insert cursor with hold 2-336
update cursor with hold 2-330

HOLD keyword
in DECLARE statement 2-323
in FOREACH statement 3-27
16 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
HOUR keyword
as DATETIME field

qualifier 4-212
as INTERVAL field

qualifier 4-205, 4-214
in DATETIME Field Qualifier

segment 4-65
HYBRID keyword

in ALTER FRAGMENT
statement 2-31

in CREATE INDEX
statement 2-159

in CREATE TABLE
statement 2-238, 2-244

Hyphen (-) symbol
DATETIME separator 4-212
INTERVAL separator 4-214

I
IBM-format binary, in external

tables 2-123
Icons Intro-10
IDATA field

in GET DESCRIPTOR
statement 2-439

in SET DESCRIPTOR
statement 2-672

with X/Open programs 2-442
Identifier 4-189
IF statement

relation to CASE statement 3-6
syntax 3-33

IFX_ALLOW_NEWLINE function
effect on quoted strings 4-245
syntax 4-164

IFX_DEF_TABLE_LOCKMODE
environment variable 2-77,
2-254

IFX_DIRECTIVES environment
variable 4-222

IFX_REPLACE_MODULE
function 4-132

IFX_TABLE_LOCKMODE
environment variable 2-696

IFX_UPDDESC environment
variable 2-353, 2-360

ILENGTH field
in GET DESCRIPTOR

statement 2-439
in SET DESCRIPTOR

statement 2-672
with X/Open programs 2-442

Ill-behaved C UDR 4-259
Imaginary numbers 4-56
IMMEDIATE keyword, in SET

Transaction Mode
statement 2-725

Implicit inner join 2-608
IMPLICIT keyword, in CREATE

CAST statement 2-108
Implicit transactions 2-714
IMPLICIT_PDQ keyword, in SET

ENVIRONMENT
statement 2-680

Import support function 2-173,
2-506

Important icons Intro-10
Importbinary support

function 2-173, 2-506
IN keyword

as a condition 2-615, 4-38
in ALTER FRAGMENT

statement 2-33
in ALTER TABLE statement 2-71
in Condition segment 4-30, 4-37
in CREATE DATABASE

statement 2-112
in CREATE DUPLICATE

statement 2-118
in CREATE INDEX

statement 2-156
in CREATE PROCEDURE

statement 2-182
in CREATE TABLE

statement 2-236, 2-238, 2-244,
2-245, 2-249

in CREATE Temporary TABLE
statement 2-266

in Data Type segment 4-57
in FOR statement 3-23
in LOCK TABLE statement 2-513
in ON EXCEPTION

statement 3-39

INCREMENT keyword
in ALTER SEQUENCE

statement 2-50
in CREATE SEQUENCE

statement 2-207
Index

bidirectional traversal 2-150
cleaner list. See B-tree cleaner list.
clustered fragments 2-146
compacted 2-155
composite 2-149
converting during

upgrade 2-778, 2-788
creating 2-144
delete flag 2-781
detached 2-159
disabled 2-164
displaying information for 2-488
Dropping with DROP

INDEX 2-377
effects of altering table

fragmentation 2-22
functional 2-148
fuzzy 2-179
memory resident 2-689
multilingual index 2-645
on ORDER BY columns 2-628
on temporary tables 2-633
provide for expansion 2-155
residency status 2-689, 2-708
ROOT argument 4-115
side-effect 2-179
unique 2-163

filtering to violations
table 2-656

restrictions 2-33
unique keys

specifying support for 4-239
INDEX keyword

in ALTER FRAGMENT
statement 2-16

in DROP INDEX statement 2-377
in GRANT statement 2-463
in Optimizer Directives

Segment 4-224
in REVOKE statement 2-560
in SET INDEX statement 2-689
in SET Residency statement 2-708
Index 17

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index Name. See Database Object
Name.

Index privilege 2-464, 2-562
INDEXES keyword

in INFO statement 2-487
in SET Database Object Mode

statement 2-653
in SET INDEXES statement 2-690

INDEX_ALL optimizer
directive 4-225

INDICATOR field
in GET DESCRIPTOR

statement 2-439
in SET DESCRIPTOR

statement 2-672
INDICATOR keyword

in EXECUTE FUNCTION
statement 2-406

in EXECUTE statement 2-395,
2-401

in FETCH statement 2-424
in PUT statement 2-539
in SELECT statement 2-591
 See also INDICATOR field.

Indicator variable, in
expression 4-183

INDICATOR variable. See
INDICATOR keyword.

Industry standards, compliance
with Intro-20

INFO statement, syntax 2-487
INFORMIX keyword

in CREATE EXTERNAL TABLE
statement 2-128

in External Routine Reference
segment 4-187

in SELECT statement 2-636
informix user name 2-372, 2-462,

4-46
INFORMIXDIR/bin

directory Intro-5
INFORMIXSERVER environment

variable 4-98
Informix-specific error

messages 2-447
INFORMIX.JVPCONTROL

function 2-409
Inheritance hierarchy

dropping tables 2-389

named ROW types 2-199, 2-384
INIT keyword

in ALTER FRAGMENT
statement 2-29

in CREATE AGGREGATE
statement 2-104

INITCAP function 4-161
Initial-cap characters, converting

to 4-161
Inner joins 2-604
INNER keyword, in SELECT

statement 2-608
Input support function 2-172
Insert buffer 2-546

counting inserted rows 2-436,
2-547

filling with constant values 2-540
inserting rows with a

cursor 2-492
storing rows with PUT 2-540
triggering flushing 2-546

Insert cursor 2-331
closing 2-86
declaring 2-325
in INSERT 2-492
in PUT 2-541
opening 2-519
reopening 2-520
result of CLOSE in SQLCA 2-86
with hold 2-336

INSERT INTO keywords
in INSERT 2-489
in LOAD 2-511

INSERT keyword
in CREATE TRIGGER

statement 2-269, 2-275
in DECLARE statement 2-323
in GRANT FRAGMENT

statement 2-481
in GRANT statement 2-463
in LOAD statement 2-504
in REVOKE FRAGMENT

statement 2-576
in REVOKE statement 2-560

INSERT statement 2-489
and triggers 2-290
AT clause 2-491
collection variables, with 4-15
collection-column values 2-496

collection-derived table,
with 2-502, 4-15

effect of transactions 2-493
ESQL/C 2-497, 2-498
filling insert buffer with

PUT 2-539
in dynamic SQL 2-503
insert triggers 2-273
inserting

rows through a view 2-491
rows with a cursor 2-492

into collection cursor 2-544
nulls 2-499
opaque variables 2-496
OUT parameters 4-170
row type field values 2-497
row variables 2-502
SERIAL and SERIAL8

columns 2-495
smart large objects with 4-88
specifying values to insert 2-494
syntax 2-489
using functions 2-498
VALUES clause, expressions

with 2-498
with DECLARE statement 2-323
with SELECT statement 2-500

Insert trigger 2-273
install_jar() procedure 2-138, 2-188
INSTEAD OF keywords, in

CREATE TRIGGER
statement 2-269

INSTEAD OF trigger 2-305
INT8 data type 4-54
INTEG keyword

in ALTER TABLE statement 2-71
in CREATE TABLE

statement 2-249
INTEGER data type 4-54

literal values 4-216
Integers, in external tables 2-123
INTERNAL keyword, in Routine

Modifier segment 4-258
INTERNALLENGTH keyword, in

CREATE OPAQUE TYPE
statement 2-169

International Standards
Organization (ISO) 2-454
18 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
INTERVAL data type
as quoted string 4-246
field qualifier, syntax 4-205
in expression 4-101
in INSERT 4-246
literal 4-214
loading 2-506
syntax 4-59, 4-214

INTERVAL keyword, in Literal
INTERVAL 4-214

INTO DESCRIPTOR keywords, in
EXECUTE 2-399

INTO EXTERNAL keywords, in
SELECT statement 2-635

INTO keyword
in DESCRIBE INPUT

statement 2-359
in DESCRIBE statement 2-351
in EXECUTE FUNCTION

statement 2-296, 2-406
in EXECUTE PROCEDURE

statement 2-296, 2-414
in EXECUTE statement 2-395
in FETCH statement 2-424
in FOREACH statement 3-27
in INSERT statement 2-489
in LOAD statement 2-504
in SELECT statement 2-590

INTO SCRATCH keywords, in
SELECT statement 2-637

INTO SQL DESCRIPTOR
keywords, in EXECUTE
statement 2-398

INTO TEMP clause
in SELECT statement 2-633
with UNION operator 2-637

IS keyword
in Condition segment 4-26
in WHERE clause 2-615

IS NOT NULL keywords, in
Condition segment 4-32

IS NULL keywords, in Condition
segment 4-32

ISAM error code 3-39, 3-43, 3-47
ISO 8859-1 code set Intro-4
ISO 9075 subclass 2-454
Isolation level

definitions 2-692, 2-722
with FETCH statement 2-431

ISOLATION LEVEL keywords, in
SET TRANSACTION
statement 2-720

Item descriptor 2-10
ITEM keyword, in Collection

Subquery segment 4-22
ITER keyword, in CREATE

AGGREGATE 2-104
Iterator function 2-603, 3-45, 3-46
iterator function 4-260
ITERATOR keyword, in Routine

Modifier segment 4-258
ITYPE field

in GET DESCRIPTOR
statement 2-439

in SET DESCRIPTOR
statement 2-672

with X/Open programs 2-442

J
Jagged rows 2-255
.jar filename extension 2-138
JAVA keyword, in External Routine

Reference segment 4-187
Java UDRs

CLASS routine modifier 4-257
creating functions 2-138
creating procedures 2-188
Getting JVP memory

information 2-410
Getting JVP thread

information 2-410
installing a Jar file 2-418
Java signature 4-273
jvpcontrol function 2-409
shared-object file 4-272
sqlj.alter_java_path

procedure 2-421
sqlj.replace_jar procedure 2-419
sqlj.setUDTExtName

procedure 2-422
sqlj.unsetUDTExtName

procedure 2-423
unmapping a user-defined

type 2-423

Java Virtual Processor Class
getting memory

information 2-410
getting thread information 2-410

Java virtual processor class
CLASS modifier 4-259

Java Virtual-Table Interface 2-102
JDBC connection 4-262
JDBC Driver built-in function 2-409
Join 45

condition 2-604
in Condition segment 2-619
in DELETE statement 2-348
in UPDATE statement 2-773
multiple-table join 2-620
outer 2-613
outer, Informix extension

syntax 2-621
self-join 2-620
types 2-604, 2-608

Join column. See Foreign key.
Join filter 2-609
Join on key query 2-167
Join-method directive 4-227
Join-order directive 4-226
JVPCLASSPATH configuration

parameter 2-422
jvpcontrol function 2-409
JVP. See Java Virtual Processor

Class.

K
KEEP ACCESS TIME keywords

in ALTER TABLE statement 2-71
in CREATE TABLE

statement 2-249
KEEP keyword, in ALTER TABLE

statement 2-71
keep option of esqlc 4-223
KEY keyword

in CREATE TABLE
statement 2-231

in CREATE Temporary Table
statement 2-264

Key-only index scan 2-165
Index 19

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
L
LANGUAGE keyword

in External Routine Reference
segment 4-187

in GRANT statement 2-472
in REVOKE statement 2-568

Language, privileges on 2-472,
2-568

Large object
constraints 2-221, 2-232
declaration syntax 4-57

LAST keyword, in FETCH
statement 2-424

LEADING keyword, in TRIM
expressions 4-152

LEFT keyword, in SELECT
statement 2-608

Left outer joins 2-604
LENGTH field

in GET DESCRIPTOR
statement 2-439

in SET DESCRIPTOR
statement 2-672

with DATETIME and INTERVAL
types 2-675

with DECIMAL and MONEY
types 2-675

with DESCRIBE INPUT
statement 2-362

with DESCRIBE statement 2-354
LENGTH function 2-587, 4-131
Length functions 4-131
lessthan() operator function 4-249
lessthanorequal() operator

function 4-249
LET statement 3-36
Lettercase conversion 4-161
LEVEL keyword

in SET SCHEDULE LEVEL
statement 2-712

in SET TRANSACTION
statement 2-720

Level-0 backup 2-215, 2-631
Library, shared 4-132
Light appends 2-79, 2-215, 2-271
Light scan 4-52
LIKE keyword

in Condition segment 4-26, 4-32

in DEFINE statement 3-10
in Routine Parameter List

segment 4-267
in SELECT statement 2-616
wildcard characters 2-616

like() operator function 4-33
LIST data type

columns, generating values
for 4-108

definition of 4-109
deleting elements from 2-349
unloading 2-754
updating elements in 2-776

LIST keyword
in DEFINE statement 3-17
in Expression segment 4-108
in Literal Collection 4-208

LISTING keyword
in CREATE FUNCTION

statement 2-133
in CREATE PROCEDURE

statement 2-182
List-mode format, in SET Database

Object Mode statement 2-653
LIST. See Collections.
Literal

collection, nested example 4-210
DATETIME 4-212

in ALTER TABLE
statement 2-56

in expression 4-96
in INSERT statement 2-494
with IN keyword 2-615

INTERVAL 4-214
in expression 4-96, 4-101
in INSERT statement 2-494

nested row 4-221
Number 4-216

in expression 4-96, 4-97
in INSERT 2-494
with IN keyword 4-31

Literal collection
quotation marks with 4-210
syntax 4-208

Literal number, exponential
notation 4-217

Literal Row segment 4-218
Literal values, specifying as default

values 2-218, 4-209

Little-endian format 2-123
LOAD statement 2-504
local command-line option 2-324,

2-395, 2-528
LOCAL keyword, in SELECT

statement 2-598
Local variable 3-16
Locale

default Intro-4
en_us.8859-1 Intro-4

Localized collation order 2-625,
2-643, 4-35, 4-252

LOCK keyword
in ALTER INDEX statement 2-41
in ALTER TABLE statement 2-76
in SET LOCK MODE

statement 2-696
LOCK MODE keywords

in ALTER INDEX statement 2-41
in ALTER TABLE statement 2-76
in CREATE INDEX

statement 2-165
in CREATE TABLE

statement 2-253
Lock table overflow 2-330
LOCK TABLE statement

syntax 2-513
use in transactions 2-82

Locking
during

inserts 2-493
updates 2-330, 2-765

exclusive lock 2-330
exclusive locks 2-513
in transactions 2-82
overriding row-level 2-514
promotable lock 2-330
releasing with COMMIT WORK

statement 2-90, 2-330
releasing with ROLLBACK

WORK statement 2-579
shared locks 2-513
types of locks 2-77, 2-253
update cursors effect on 2-330
update locks 2-694, 2-765
waiting period 2-696
when creating a referential

constraint 2-62, 2-225
20 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
with
FETCH statement 2-431
SET ISOLATION

statement 2-691
SET LOCK MODE

statement 2-696
SET TRANSACTION

statement 2-720
UNLOCK TABLE

statement 2-760
write lock 2-330

Locking granularity 2-165
LOCKS configuration

parameter 2-514
LOCKS keyword, in SET

ISOLATION statement 2-694
LOCOPY function 4-134, 4-140
Log file, for load and unload

jobs 2-707
LOG keyword

in ALTER TABLE statement 2-71
in CREATE DATABASE

statement 2-112
in CREATE TABLE

statement 2-249
in CREATE Temporary TABLE

statement 2-261
in SET LOG statement 2-698

LOG10 function 4-129
Logarithmic functions

LOG10 function 4-129
LOGN function 4-130

Logging
buffered versus unbuffered 2-698
cascading deletes 2-346
changing mode with SET

LOG 2-698
in CREATE DATABASE

statement 2-113
table type options 2-215
temporary tables 2-268
with triggers 2-304

Logical operator, in Condition
segment 4-42

LOGN function 4-129
Lohandles support function 2-174
Long transaction rollback 3-47
Loop

controlled 3-23

indefinite with WHILE 3-54
LOTOFILE function 4-134, 4-138
LOW keyword

in SET OPTIMIZATION
statement 2-700

in SET PDQPRIORITY
statement 2-704

in UPDATE STATISTICS
statement 2-778

LOWER function 4-161
Lower-case characters, converting

to 4-161
LPAD function 4-159

M
Machine notes Intro-18
Mail, sending from SPL

routines 3-48
Mantissa 4-216
MATCHES keyword

in Condition segment 4-26, 4-32
in SELECT statement 2-616
wildcard characters 2-617

matches() operator function 4-34
Materialized table expression 2-596
Materialized view 2-311
MAX function 4-171, 4-180
MAX keyword

in ALLOCATE DESCRIPTOR
statement 2-10

in CREATE TABLE
statement 2-245

in START VIOLATIONS TABLE
statement 2-729

MAX ROWS keywords, in START
VIOLATIONS TABLE
statement 2-729

MAX VIOLATIONS keywords, in
START VIOLATIONS TABLE
statement 2-729

MAXERRORS environment
variable 2-128

MAXERRORS keyword, in
CREATE EXTERNAL TABLE
statement 2-128

MAXLEN keyword, in CREATE
OPAQUE TYPE
statement 2-171

MAXSCAN keyword, in SET
ENVIRONMENT
statement 2-680

MAXVALUE keyword
in ALTER SEQUENCE

statement 2-50
in CREATE SEQUENCE

statement 2-208
MAX_PDQPRIORITY

configuration parameter 2-704
MDY function 4-143, 4-147
MEDIUM keyword, in UPDATE

STATISTICS statement 2-778
Membership operator 4-83
Memory

allocating for collection
variable 2-8

allocating for query 2-679
allocating for ROW variable 2-12
deallocating for collection

variable 2-318
deallocating for cursors 2-438,

2-640
deallocating for row

variable 2-322
deallocating prepared

objects 2-438, 2-642
MEMORY keyword, in EXECUTE

FUNCTION statement 2-409
MEMORY_RESIDENT keyword

in SET INDEX statement 2-689
in SET Residency

statement 2-690, 2-708
in SET TABLE statement 2-719

Message file for error
messages Intro-19

MESSAGE_LENGTH keyword, in
GET DIAGNOSTICS
statement 2-452

MESSAGE_TEXT keyword, in GET
DIAGNOSTICS
statement 2-452

MIN function 4-171, 4-180
MIN keyword, in CREATE TABLE

statement 2-245
Index 21

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Minus (-) sign
arithmetic operator 4-77
INTERVAL literals 4-214

minus() operator function 4-77
MINUTE keyword

in DATETIME Field Qualifier
segment 4-65

in INTERVAL Field
Qualifier 4-205

MINVALUE keyword
in ALTER SEQUENCE

statement 2-50
in CREATE SEQUENCE

statement 2-208
Missing arguments 4-6
Mixed-case characters, converting

to 4-161
MOD function 4-114, 4-115
MODE keyword

in ALTER INDEX statement 2-41
in ALTER TABLE statement 2-76
in CREATE DATABASE

statement 2-112
in CREATE INDEX

statement 2-165
in CREATE TABLE

statement 2-253
in LOCK TABLE statement 2-513
in SET LOCK MODE

statement 2-696
MODIFY keyword

in ALTER ACCESS_METHOD
statement 2-14

in ALTER FRAGMENT
statement 2-37

in ALTER FUNCTION
statement 2-39

in ALTER PROCEDURE
statement 2-44

in ALTER ROUTINE
statement 2-46

in ALTER TABLE statement 2-65
MODIFY NEXT SIZE keywords, in

ALTER TABLE statement 2-76
Modifying routine modifiers

with ALTER FUNCTION
statement 2-40

with ALTER PROCEDURE
statement 2-44

with ALTER ROUTINE
statement 2-46

Modulus 4-115
MONEY data type

literal values 4-217
loading 2-506
syntax 4-53

MONTH function 4-143, 4-145
MONTH keyword

in DATETIME Field Qualifier
segment 4-65

in INTERVAL Field
Qualifier 4-205

MORE keyword, in GET
DIAGNOSTICS
statement 2-451

Multibyte locales 4-132
Multi-index scan 4-225
Multilingual index 2-645
Multiple triggers

example 2-276
preventing overriding 2-303

Multiple-column constraints
in ALTER TABLE statement 2-73
in CREATE TABLE

statement 2-231
Multiplication sign (*), arithmetic

operator 4-77
Multirepresentational data 2-389,

2-772
Multirow query, destination of

returned values 2-427
MULTISET 46
MULTISET columns, generating

values for 4-108
MULTISET data type

collection subqueries 4-22
definition of 4-109
deleting elements from 2-349
unloading 2-754
updating elements in 2-776

MULTISET keyword
in Collection-Subquery

segment 4-22
in DEFINE statement 3-17
in Expression segment 4-108
in Literal Collection 4-208

MULTISET, creating from subquery
results 4-22

MULTISET. See Collections.
Multistatement text 2-536
Multithreaded application 2-648

N
NAME field

in GET DESCRIPTOR
statement 2-439

in SET DESCRIPTOR
statement 2-672

with DESCRIBE INPUT
statement 2-362

with DESCRIBE statement 2-354
NAME keyword

in ALTER FUNCTION
statement 2-39

in ALTER PROCEDURE
statement 2-44

in ALTER ROUTINE
statement 2-46

in External Routine Reference
segment 4-187

 See also NAME field.
Named row type

assigning with ALTER
TABLE 2-78

associating with a column 4-62
creating with CREATE ROW

TYPE 2-198
dropping with DROP ROW

TYPE 2-384
inheritance 2-199
privileges on 2-469
Under privilege 2-572
unloading 2-754, 2-758
updating fields 2-775

Naming convention
database 4-44
database objects 4-46

Natural logarithms 4-129
NCHAR data type

syntax 4-50
negate() operator function 4-78
Negator function 2-472, 4-261
NEGATOR keyword, in Routine

Modifier segment 4-258, 4-261
Nested loop join 4-228
22 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
NESTED optimizer directive 4-232
Nested ordering, in SELECT

statement 2-627
New features Intro-5
NEW keyword, in CREATE

TRIGGER statement 2-284,
2-285, 2-286

Newline characters in quoted
strings 4-245

NEXT keyword
in ALTER TABLE statement 2-76
in CREATE TABLE

statement 2-251
in FETCH statement 2-424

NEXT SIZE keywords
in ALTER TABLE statement 2-76
in CREATE TABLE

statement 2-251
NEXTVAL operator 2-207, 4-102
NO KEEP ACCESS TIME keywords

in ALTER TABLE statement 2-71
in CREATE TABLE

statement 2-249
NO keyword

in SET COLLATION
statement 2-643

NO LOG keywords
in ALTER TABLE statement 2-71
in CREATE TABLE

statement 2-249
in SELECT statement 2-632

NOCACHE keyword
in ALTER SEQUENCE

statement 2-51
in CREATE SEQUENCE

statement 2-209
NOCTCLE keyword

in CREATE SEQUENCE
statement 2-209

NOCYCLE keyword
in ALTER SEQUENCE

statement 2-51
NODEFDAC environment

variable 2-135, 2-141, 2-185,
2-567

effects on new routine 2-135,
2-185

effects on new table 2-258

GRANT statement with 2-467,
2-471

NOMAXVALUE keyword
in ALTER SEQUENCE

statement 2-50
in CREATE SEQUENCE

statement 2-208
NOMINVALUE keyword

in ALTER SEQUENCE
statement 2-50

in CREATE SEQUENCE
statement 2-208

Noncursor function 4-256
Nondefault code sets 4-252
NONE keyword, in SET ROLE

statement 2-710
Nonlogging temporary tables

creating 2-262
duration 2-268

Nonvariant functions 4-188
NON_RESIDENT keyword

in SET INDEX statement 2-689
in SET Residency

statement 2-690, 2-708
in SET TABLE statement 2-719

NOORDER keyword
in ALTER SEQUENCE

statement 2-51
in CREATE SEQUENCE

statement 2-209
NORMAL keyword

in ALTER INDEX statement 2-41,
2-43

in CREATE INDEX
statement 2-165

NOT CLUSTER keywords, in
ALTER INDEX 2-42

NOT FOUND keywords, in
WHENEVER statement 2-789

NOT keyword
in Condition segment 4-24, 4-26,

4-30, 4-32, 4-38
in Routine Modifier

segment 4-258
in SELECT statement 2-616
in SET LOCK MODE

statement 2-696
with BETWEEN keyword 2-615
with IN keyword 2-617

NOT NULL keywords
in ALTER TABLE statement 2-57
in collection data type

declarations 4-64
in CREATE EXTERNAL TABLE

statement 2-125
in CREATE ROW TYPE

statement 2-201
in CREATE TABLE

statement 2-220
in CREATE Temporary TABLE

statement 2-263
in DEFINE statement 3-17

NOT VARIANT keywords, in
External Routine Reference
segment 4-187

NOT WAIT keywords, in SET
LOCK MODE 2-696

notequal() operator function 4-249
NULL keyword

ambiguous as a routine
variable 4-201

in ALTER TABLE statement 2-56
in Argument segment 4-5
in Condition segment 4-26
in CREATE EXTERNAL TABLE

statement 2-122
in CREATE ROW TYPE

statement 2-202
in CREATE TABLE

statement 2-217
in CREATE Temporary TABLE

statement 2-263
in DEFINE statement 3-10
in Expression segment 4-90, 4-91,

4-93
in INSERT statement 2-494
in SET ROLE statement 2-710
in UPDATE statement 2-766,

2-768
Null value

checking for in SELECT
statement 2-396, 2-401

in IF statement 3-34
inserting with the VALUES

clause 2-499
invalid for collection types 4-64
loading 2-506
Index 23

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
returned implicitly by SPL
function 3-45

updating a column 2-767
used in Condition with NOT

operator 4-41
used in the ORDER BY

clause 2-627
with AND and OR

keywords 4-41
with NVL function 4-92
with WHILE statement 3-54

NULLABLE field
in GET DESCRIPTOR

statement 2-439
in SET DESCRIPTOR

statement 2-672
with DESCRIBE INPUT

statement 2-362
with DESCRIBE statement 2-354

NUMBER keyword, in GET
DIAGNOSTICS
statement 2-451

Numeric data type 4-52
NVARCHAR data type

collation 4-51
syntax 4-50

NVL function 4-92

O
Object mode. See Database object

mode.
Octal numbers 2-128, 2-636
OCTET_LENGTH function 4-131,

4-132
OF keyword

in CREATE DUPLICATE
statement 2-118

in CREATE TRIGGER
statement 2-269, 2-277, 2-278,
2-306

in CREATE VIEW
statement 2-310

in DECLARE statement 2-323
in DELETE statement 2-344
in DROP DUPLICATE

statement 2-374
in UPDATE statement 2-762

OF TYPE keywords
in CREATE TABLE

statement 2-255
in CREATE VIEW

statement 2-310
OFF keyword

in SET DATASKIP
statement 2-659

in SET ENVIRONMENT
statement 2-678

in SET EXPLAIN statement 2-683
in SET PDQPRIORITY

statement 2-704
in SET STATEMENT CACHE

statement 2-715
in TRACE statement 3-50

OLD keyword, in CREATE
TRIGGER statement 2-284,
2-286, 2-287

OLTP (on-line transaction
processing) 2-215

ON DELETE CASCADE keywords
in ALTER TABLE statement 2-59
in CREATE TABLE

statement 2-223
restrictions with triggers 2-273

ON EXCEPTION statement
placement of 3-40
syntax 3-39

ON EXECPTION keywords, in
Statement Block segment 4-276

ON keyword
in ALTER FRAGMENT

statement 2-16
in CREATE INDEX

statement 2-144
in CREATE TRIGGER

statement 2-271
in GRANT FRAGMENT

statement 2-480
in GRANT statement 2-463,

2-468, 2-472, 2-473
in REVOKE FRAGMENT

statement 2-575
in REVOKE statement 2-560,

2-565, 2-566, 2-568, 2-569
in SET DATASKIP

statement 2-659

in SET ENVIRONMENT
statement 2-678

in SET EXPLAIN statement 2-683
in SET STATEMENT CACHE

statement 2-715
in TRACE statement 3-50

oncheck utility 2-174
onconfig file, DIRECTIVES

setting 4-222
ONCONFIG parameters

ALLOW_NEWLINE 4-165
DATASKIP 2-659
DBSPACETEMP 2-267
DEADLOCK_TIMEOUT 2-697
DEF_TABLE_LOCKMODE 2-255
DS_ADM_POLICY 2-712
DS_TOTAL_TMPSPACE 2-681
FILLFACTOR 2-155
MAX_PDQPRIORITY 2-704
OPTCOMPIND 2-716
STMT_CACHE 2-715
STMT_CACHE_HITS 2-718
STMT_CACHE_NOLIMIT 2-718
STMT_CACHE_SIZE 2-718

oninit utility 4-124
Online help Intro-17
Online manuals Intro-17
ONLY keyword

in DELETE statement 2-344,
2-345

in SELECT statement 2-600
in SET TRANSACTION

statement 2-720
in TRUNCATE statement 2-750
in UPDATE statement 2-762,

2-763
in UPDATE STATISTICS

statement 2-778, 2-784
onmode utility 2-715
onstat utility 2-659
onutil utility 2-127, 2-132
Opaque data type

alignment of 2-171
as argument 2-171
associating with a column 4-60
creating 2-169
DESCRIBE with 2-444
dropping with DROP TYPE 2-392
extended identifier 2-444, 2-676
24 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
GET DESCRIPTOR with 2-444
in DELETE 2-349
in DROP TABLE 2-389
in dynamic SQL 2-676
in INSERT 2-496
in LOAD 2-510
in UPDATE 2-772
loading 2-506, 2-510
modifiers 2-171
name of 2-444, 2-676
naming 2-170
owner name 2-444, 2-676
support functions 2-172
unloading 2-755
with SET DESCRIPTOR 2-676

Opaque variable, inserting 2-496
OPEN statement 2-516
Open-Fetch-Close Optimization

(OPTOFC) 2-668
OPERATIONAL keyword

in ALTER TABLE statement 2-79
in CREATE TABLE 2-216
in CREATE TABLE

statement 2-214
in SELECT statement 2-632
in SET Default Table Type

statement 2-663
Operator class

btree_ops 2-180
creating 2-176
default 2-180, 4-239
default for B-Tree 2-180
definition 2-152, 2-176
dropping with DROP

OPCLASS 2-378
rtree_ops 2-180
specifying with CREATE

INDEX 2-147, 2-152
Operator function

divide() 4-77
equal() 4-249
greaterthan() 4-249
greaterthanorequal() 4-249
lessthan() 4-249
lessthanorequal() 4-249
like() 4-33
matches() 4-34
minus() 4-77
negate() 4-78

notequal() 4-249
plus() 4-77
positive() 4-78
times() 4-77

OPTCOMPIND configuration
parameter 4-228

OPTCOMPIND environment
variable 2-716

Optical Subsystem, list of
statements 1-12

Optimizer
and Optimizer Directives

segment 4-222
and SET OPTIMIZATION

statement 2-700
strategy functions 2-177
with UPDATE STATISTICS 2-787

Optimizer directives
AVOID_FULL 4-225
AVOID_INDEX 4-225
comment symbols 4-222
FULL 4-225
INDEX 4-225
INDEX_ALL 4-225
join-order 4-226
NESTED 4-232
not followed 2-608
ORDERED 4-226
restrictions 4-224, 4-225
segment 4-222

Optimizing
a database server 2-700
a query 2-683
across a network 2-702

OPTION keyword
in CREATE TRIGGER

statement 2-310
in GRANT FRAGMENT

statement 2-480
in GRANT statement 2-459

OPT_GOAL configuration
parameter 4-230

OPT_GOAL environment
variable 4-230

OR keyword
defined 4-42
in Condition segment 4-24

ORDER BY clause
no table expressions 2-596

ORDER BY keywords
in SELECT statement 2-624
restricted in INSERT 2-500

ORDER keyword
in ALTER SEQUENCE

statement 2-51
in CREATE SEQUENCE

statement 2-209
ORDERED keyword, in Optimizer

Directives segment 4-226
OUT keyword, in Routine

Parameter List segment 4-266
OUT parameters

user-defined function 4-269
with a statement-local

variable 4-166, 4-169
OUTPUT statement 2-525
Output support function 2-172
Overflow bin 2-451, 2-785
Overloaded routines 4-6, 4-48
Owner

case-sensitivity 4-235
in ANSI-compliant

database 2-481, 4-236
in CREATE SYNONYM 2-212
in Database Object Name

segment 4-46, 4-234
in DROP SEQUENCE 2-386
in Owner Name segment 4-234
in RENAME TABLE 2-554
in system catalog table 2-75

Owner Name segment 4-234
Owner-privileged UDR 2-184

P
Packed decimal 2-123
PACKED keyword, in CREATE

EXTERNAL TABLE
statement 2-122

PAGE keyword
in ALTER TABLE statement 2-76
in CREATE TABLE

statement 2-253
Page number 4-87
Page-level locking, in CREATE

TABLE 2-254
Index 25

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Parallel distributed queries, SET
PDQPRIORITY statement 2-704

Parallelizable data query
(PDQ) 4-261

PARALLELIZABLE keyword, in
Routine Modifier
segment 4-258

Parameter
BYTE or TEXT in SPL 3-21
dynamic 2-361
in CALL statement 3-5
in Java method 4-272
in UDRs 4-5

PARAMETER STYLE keywords, in
External Routine Reference
segment 4-187

Parameterizing
defined 2-401

Parent-child relationship 2-223
PASSEDBYVALUE keyword, in

CREATE OPAQUE TYPE
statement 2-171

PDQ
SET ENVIRONMENT

statement 2-678
SET PDQPRIORITY

statement 2-704
PDQ thread safe functions 4-262
PDQPRIORITY environment

variable 2-678, 2-704, 2-705,
2-716

PDQPRIORITY keyword, in SET
PDQPRIORITY statement 2-704

PERCALL_COST keyword, in
Routine Modifier
segment 4-257, 4-258

Percent (%) sign, as wildcard 4-33
Period (.) symbol

DATETIME separator 4-212
DECIMAL values 4-217
INTERVAL separator 4-214
MONEY values 4-217

Pipe character 2-128, 2-635, 2-758
PIPE keyword

in CREATE EXTERNAL TABLE
statement 2-126

in OUTPUT statement 2-525
Platform icons Intro-10

PLOAD keyword, in SET PLOAD
FILE statement 2-707

plus() operator function 4-77
Plus (+) sign

binary operator 4-77
in optimizer directives 4-223
unary operator 4-78

Polar coordinates 4-151
positive() operator function 4-78
POW function 4-114, 4-115
Precedence, dot notation 4-85
PRECISION field

in GET DESCRIPTOR
statement 2-439

in SET DESCRIPTOR
statement 2-672

with DESCRIBE INPUT
statement 2-362

with DESCRIBE statement 2-354
PREPARE statement 2-527

deferring 2-666
multistatement text 2-412
releasing resources with

FREE 2-438
Prepared statement

comment symbols in 2-529
DESCRIBE INPUT statement

with 2-359
DESCRIBE statement with 2-352
executing 2-394
parameterizing 2-401
prepared object limit 2-324, 2-528
setting PDQ priority 2-704
valid statement text 2-529

Preserving newline characters in
quoted strings 4-245

PREVIOUS keyword, in FETCH
statement 2-424

Primary key column, no NULL
default 2-218

PRIMARY KEY keywords
in ALTER TABLE statement 2-57,

2-73
in CREATE TABLE

statement 2-220, 2-231, 2-255
in CREATE Temporary TABLE

statement 2-263, 2-264

PRIMARY keyword, in CREATE
ACCESS_METHOD
statement 2-102

Primary-key constraint
data type conversion 2-68
defining column as 2-222
dropping 2-75
requirements for 2-57, 2-222
rules of use 2-223
using 2-222

PRIOR keyword, in FETCH
statement 2-424

PRIVATE keyword, in CREATE
SYNONYM statement 2-210

Privilege
alter 2-464
chaining grantors, effect of

REVOKE 2-571
Connect 2-461
database-level

granting 2-460
revoking 2-558

DBA 2-462, 2-559
Execute 2-470, 2-566
for triggered action 2-298
fragment-level

granting with GRANT
FRAGMENT 2-480

revoking 2-575
granting with GRANT 2-459
needed, to create a cast 2-108
needed, to drop an index 2-377
on a synonym 2-210
on a table fragment 2-480
on a view 2-311
on languages 2-472, 2-568
on named row type 2-469
on remote objects 2-710
on sequences 2-473, 2-568
permissions in system calls 3-47
public, NODEFDAC effect

on 2-467, 2-471
Resource 2-462
role name 2-475, 2-571
table-level

ANSI-compliant 2-467
column-specific 2-463
effect on view 2-467
revoking 2-561
26 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Usage 2-468
revoking 2-565

PRIVILEGES keyword
in GRANT statement 2-463
in INFO statement 2-487
in REVOKE statement 2-560

Procedure
creating from file 2-192
dropping with DROP

PROCEDURE 2-379
dropping with DROP

ROUTINE 2-382
modifying path to executable

file 2-45
modifying routine modifiers 2-44
privileges 2-184
specific name 4-274
stored. See SPL Routine.
system catalog tables for 2-187
user-defined, definition 2-183

Procedure cursor, opening 2-517
PROCEDURE keyword

in CREATE PROCEDURE
statement 2-182

in DEFINE statement 3-10
in DROP PROCEDURE

statement 2-379
in GRANT statement 2-470
in REVOKE statement 2-566
in TRACE statement 3-50
in UPDATE STATISTICS

statement 2-786
Procedure Name. See Database

Object Name.
Product icons Intro-10
Program group

Documentation notes Intro-19
Release notes Intro-19

Projection
column with dot notation 4-83
field with dot notation 4-83

Projection clause 2-583
Projection list 2-583
Projection list. See Select list.
Promotable lock 2-330
PUBLIC keyword

in CREATE SYNONYM
statement 2-210

in GRANT statement 2-474

in REVOKE statement 2-570
Purpose flags

adding and deleting 2-14
list of 4-239

Purpose functions
adding, changing, and

dropping 2-14
parallel-execution indicator 4-240
setting names for 4-240

Purpose options 4-239
Purpose values, adding, changing,

and dropping 2-14
Purpose, defined 4-238
PUT keyword

in ALTER TABLE statement 2-71
in CREATE TABLE

statement 2-249
PUT statement

collection variables with 4-15
collection-derived table with 4-15

Q
Qualifier, field

for DATETIME 4-65, 4-212
for INTERVAL 4-205, 4-214

Query
distributed 2-584
external databases 4-47
optimizing with Optimizer

Directives 4-222
optimizing with SET

OPTIMIZATION 2-700
piping results to another

program 2-526
priority level 2-704
remote databases 4-47
scheduling level for 2-712
sending results to an operating-

system file 2-525
sending results to another

program 2-526
Question mark (?)

as placeholder in PREPARE 2-527
as wildcard 4-34
dynamic parameters 2-361
naming variables in PUT 2-542

Quotation marks
double 4-193
effects of DELIMIDENT

environment variable 4-193
in owner name 4-235
literal in a quoted string 4-245
quoted string delimiter 4-243,

4-245
single 4-193
with delimited identifier 4-191

Quoted Pathname segment 4-270
Quoted string

DATETIME values as
strings 4-246

effects of DELIMIDENT
environment variable 4-193

in expression 4-96, 4-97
in INSERT 2-494, 4-246
INTERVAL values as

strings 4-246
maximum length 4-246
newline characters in 4-164, 4-245
segment 4-243
wildcards 4-246
with LIKE keywords 2-616

R
Radicand 4-115
RAISE EXCEPTION statement 3-43
Range fragmentation 2-52
RANGE function 4-171, 4-180
RANGE keyword, in CREATE

TABLE statement 2-244
RAW keyword 2-215

in ALTER TABLE statement 2-79
in CREATE TABLE 2-215
in CREATE TABLE

statement 2-214
in SELECT statement 2-632
in SET Default Table Type

statement 2-663
READ COMMITTED keywords, in

SET TRANSACTION
statement 2-720

READ ONLY keywords, in SET
TRANSACTION
statement 2-720
Index 27

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
READ UNCOMMITTED
keywords, in SET
TRANSACTION
statement 2-720

READ WRITE keywords, in SET
TRANSACTION
statement 2-720

REAL data type 4-56
Real numbers 4-56
Receive support function 2-172
RECORDEND environment

variable 2-129, 2-636
RECORDEND keyword

in CREATE EXTERNAL TABLE
statement 2-128

in SELECT statement 2-636
REFERENCES keyword

in ALTER TABLE statement 2-59
in CREATE TABLE

statement 2-223
in DEFINE statement 3-10
in GRANT statement 2-463
in INFO statement 2-487
in Return Clause segment 4-253
in REVOKE statement 2-560

References privilege 2-464, 2-562
displaying 2-488

REFERENCING keyword
in CREATE TRIGGER statement

Delete triggers 2-284
Insert triggers 2-285
Select triggers 2-287
Update triggers 2-286
view column values 2-305

INSTEAD OF triggers 2-306
Referential constraint 2-120

B-tree index 2-146
Dataskip feature 2-660
delete triggers 2-273
dropping 2-75
locking 2-225

Referential integrity 2-346
REJECTFILE keyword, in CREATE

EXTERNAL TABLE
statement 2-128, 2-129

Relational operator
IN 4-30
segment 4-248

with WHERE keyword in
SELECT 2-614

RELATIVE keyword, in FETCH
statement 2-424

Release notes Intro-18
program item Intro-19

REMAINDER IN keywords
in ALTER FRAGMENT

statement 2-31, 2-33, 2-34, 2-37
in CREATE INDEX

statement 2-159
in CREATE TABLE

statement 2-238, 2-244, 2-245
RENAME COLUMN

statement 2-549
RENAME DATABASE

statement 2-551
RENAME INDEX statement 2-552
RENAME SEQUENCE

statement 2-553
RENAME TABLE statement

ANSI-compliant naming 2-555
syntax 2-554

REOPTIMIZATION keyword, in
OPEN statement 2-516

Repeatable Read isolation
level 2-431, 2-693

REPEATABLE READ keywords
in SET ISOLATION

statement 2-691
in SET TRANSACTION

statement 2-720
REPLACE function 4-158
REPLICATION keyword, in BEGIN

WORK statement 2-82
Reserved words

as delimited identifiers 4-192
as identifiers 4-190
listed A-1, 1
SQL A-1, 1

Reserved words, SQL
list of A-1, 1
using in triggered action 2-290

RESOLUTION keyword, in
UPDATE STATISTICS
statement 2-784

Resource Grant Manager
(RGM) 2-706, 2-712

RESOURCE keyword
in GRANT statement 2-460
in REVOKE statement 2-558

Resource privilege 2-102, 2-462
RESTART keyword, in ALTER

SEQUENCE statement 2-50
RESTRICT keyword

in DROP ACCESS_METHOD
statement 2-369

in DROP OPCLASS
statement 2-378

in DROP ROW TYPE
statement 2-384

in DROP TABLE statement 2-388
in DROP TYPE statement 2-392
in DROP VIEW statement 2-393
in REVOKE statement 2-557

Result set 2-603
RESUME keyword

in ON EXCEPTION
statement 3-39

in RETURN statement 3-45
RETAIN UPDATE LOCKS

keywords, in SET ISOLATION
statement 2-691

RETURN statement
returning insufficient values 3-45
returning null values 3-45
syntax 3-45

Return value, declaring in CREATE
FUNCTION 4-253

RETURNED_SQLSTATE
field 2-350, 2-434

RETURNED_SQLSTATE keyword,
in GET DIAGNOSTICS
statement 2-452

RETURNING keyword
example 2-137, 2-139, 2-142
in CALL statement 3-4
in Return Clause Segment 4-253

RETURNS keyword
in Return Clause segment 4-253
in Shared-Object-Filename

segment 4-272
REVOKE FRAGMENT

statement 2-575
REVOKE statement 2-557
RGM (Resources Grant

Manager) 2-712
28 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
RIGHT keyword
in ANSI Joined Tables

segment 2-606
RIGHT keyword, in SELECT

statement 2-608
Right outer joins 2-604
Role

creating with CREATE ROLE
statement 2-194

default role 2-711
definition 2-194
dropping with DROP ROLE

statement 2-381
enabling with SET ROLE 2-710
establishing with CREATE,

GRANT, SET 2-475
granting name with

GRANT 2-475
revoking privileges with

REVOKE 2-571
scope of 2-710
setting with SET ROLE 2-710

ROLE keyword
in CREATE ROLE

statement 2-194
in DROP ROLE statement 2-381

ROLLBACK WORK statement 2-82
syntax 2-579
with WHENEVER 2-89, 2-580

ROOT function 4-114, 4-115
ROUND function 4-114, 4-116
ROUND ROBIN keywords

in ALTER FRAGMENT
statement 2-31

in CREATE TABLE
statement 2-238

Rounding error 4-252
Routine

as triggered action 2-298
checking references 2-298
creating with CREATE ROUTINE

FROM 2-196
dropping with DROP

ROUTINE 2-382
modifying

path to executable file 2-47
routine modifiers 2-46

privileges 2-184
specific name 4-274

ROUTINE keyword
in DROP ROUTINE

statement 2-382
in GRANT statement 2-470
in REVOKE statement 2-566
in UPDATE STATISTICS

statement 2-786
Routine manager 2-421
Routine modifier

CLASS 4-257
COSTFUNC 4-259
HANDLESNULLS 4-260
INTERNAL 4-260
ITERATOR 4-260
NEGATOR 4-261
NOT VARIANT 4-265
PARALLELIZABLE 4-261
PERCALL_COST 4-262
SELCONST 4-263
SELFUNC 4-263
STACK 4-264
VARIANT 4-265

Routine signature 4-269
Row

deleting 2-344
engine response to locked

row 2-696
finding location of 4-87
inserting

through a view 2-491
with a cursor 2-492

retrieving with FETCH 2-426
rowid definition 2-426
updating through a view 2-764
writing buffered rows with

FLUSH 2-435
ROW constructor, in Expression

segment 4-106
ROW keyword

in ALLOCATE ROW
statement 2-12

in ALTER TABLE statement 2-76
in CREATE ROW TYPE

statement 2-198
in CREATE TABLE

statement 2-253
in CREATE TRIGGER

statement 2-281, 2-288

in DROP ROW TYPE
statement 2-384

in Expression segment 4-106
in Literal Row segment 4-218

Row type
constructor syntax 4-106
dot notation with 4-83
in collection-derived tables 4-10
loading field values 2-506, 2-510
nested 4-221
privileges 2-469
selecting fields 2-588, 2-601
selecting from 2-601
unloading 2-754, 2-758
updating 2-770, 2-775

Row variable
accessing 4-21
allocating memory 2-12
deallocating memory for 2-322
inserting 2-497
inserting into 2-502
selecting from 2-601
updating 2-775

Rowid
adding column with INIT

clause 2-30
adding with ALTER TABLE 2-54
dropping from fragmented

tables 2-54
specifying support for 4-240
use in a column expression 4-87
use in fragmented tables 2-30
used as column name 4-197

rowid column 2-239, 2-628
ROWID keyword, in Expression

segment 4-82
ROWIDS keyword, in CREATE

TABLE statement 2-238
Row-level locking, in CREATE

TABLE 2-254
ROWS keyword, in START

VIOLATIONS TABLE
statement 2-729

Row-type columns, generating
values for 4-106

ROW_COUNT keyword, in GET
DIAGNOSTICS
statement 2-451

RPAD function 4-160
Index 29

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
RSAM access method 2-633
R-tree index

rtree_ops operator class 2-180
secondary-access method 2-154

S
sales_demo database Intro-5
SAMEAS keyword, in CREATE

EXTERNAL TABLE
statement 2-122

Sampled queries 2-598
SAMPLES OF keywords, in

SELECT statement 2-598
Sampling data 2-598, 2-782
sbspace

specifying in ALTER TABLE 2-71
specifying in CREATE

TABLE 2-249
SBSPACENAME parameter 2-249
SCALE field, with DESCRIBE

INPUT statement 2-362
SCALE field, with DESCRIBE

statement 2-354
SCALE keyword

in GET DESCRIPTOR
statement 2-439

in SET DESCRIPTOR
statement 2-672

SCALE keyword. See SCALE field.
Scan cost 2-14
Scan threads 2-680
SCHEDULE keyword, in SET

SCHEDULE LEVEL
statement 2-712

Scheduling level 2-712
Schema name 4-234
Scope of reference

global 3-12
in subqueries with UNION 2-639
local 3-16
static 2-292

SCRATCH keyword
in CREATE Temporary TABLE

statement 2-261
in SELECT statement 2-632
in SET Default Table Type

statement 2-663

Scratch table
creating 2-262, 2-637
duration 2-268
 See also Temporary tables.

Scroll cursor
definition of 2-332
with FETCH 2-425
WITH HOLD 2-695

SCROLL keyword, in DECLARE
statement 2-323

SECOND keyword
in DATETIME Field Qualifier

segment 4-65
in INTERVAL Field

Qualifier 4-205
INTERVAL qualifier 4-205

SECONDARY keyword, in
CREATE ACCESS_METHOD
statement 2-102

Secondary-access method
B-tree 2-154
default operator class 2-180
definition 2-145, 2-176
registering 2-102
R-tree 2-154
USING clause 2-153

Segment
defined 4-3
relation to SPL statements 4-3
relation to SQL statements 4-3

SELCONST keyword, in Routine
Modifier segment 4-257, 4-258

Select cursor
declaring 2-325
opening 2-517, 2-518
reopening 2-518

SELECT ITEM keywords, in
Collection-Subquery
segment 4-22

SELECT keyword
ambiguous use as routine

variable 4-201
in Collection Subquery

segment 4-22
in Condition segment 4-37, 4-38,

4-39
in CREATE INDEX

statement 2-166

in CREATE TRIGGER
statement 2-277, 2-312

in DECLARE statement 2-323
in GRANT statement 2-463, 2-474
in INSERT statement 2-489
in LET statement 3-36
in OUTPUT statement 2-525
in REVOKE statement 2-560,

2-569
in UNLOAD statement 2-753

Select list 2-583
SELECT statement

aggregate functions in 4-171
BETWEEN condition 2-615
collection variables with 4-15
collection with 2-600
collection-derived table with 4-15
column numbers 2-627
cursor for 2-629, 2-630
FIRST clause 2-584
FOR READ ONLY clause 2-630
FOR UPDATE clause 2-629
FROM clause 2-594
GROUP BY clause 2-621
HAVING clause 2-623
IN condition 2-615
in FOR EACH ROW trigger 2-283
in INSERT 2-500
indicator variables with 2-407
INTO clause with ESQL 2-590
INTO EXTERNAL clause 2-635
INTO SCRATCH clause 2-637
INTO TEMP clause 2-633
IS NULL condition 2-615
joining tables in WHERE

clause 2-619
LIKE or MATCHES

condition 2-617
null values in the ORDER BY

clause 2-627
ORDER BY clause 2-624
outer join 2-613
Projection clause 2-583
relational-operator

condition 2-614
restrictions in routine 4-277
restrictions with PREPARE 2-530
row type 2-588, 2-601
ROWID keyword 4-87
30 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
SELECT clause 2-583
select numbers 2-627
singleton 2-590
smart large objects with 4-88
SPL routine in 2-587
subquery with WHERE

keyword 2-614
syntax 2-581
UNION operator 2-637
use of expressions 2-586
user-defined routine in 2-587
with

DECLARE 2-323
FOREACH 3-27
LET 3-37

WITH NO LOG keywords 2-634
writing results to a file 2-753

Select trigger 2-277
Selecting from a specific table in a

table hierarchy 2-600
Selectivity

argument information 4-264
definition of 4-263

Selectivity function 4-263
Self-join

description 2-620
with aliases 2-595

SELFUNC keyword, in Routine
Modifier segment 4-257, 4-258

Send support function 2-173
Sequence

creating a synonym for 2-210
Sequence cache 2-209
Sequence generator 2-206
SEQUENCE keyword

ALTER SEQUENCE
statement 2-49

in CREATE SEQUENCE
statement 2-206

in DROP SEQUENCE
statement 2-386

in RENAME SEQUENCE
statement 2-553

Sequential cursor
definition of 2-332
with FETCH 2-425

SEQ_CACHE_SIZE configuration
parameter 2-51, 2-209

Serial column
nonsequential numbers in 2-242
resetting values 2-67
use with hash

fragmentation 2-242
SERIAL data type

inserting values 2-495
invalid default 2-217
length 4-54
resetting values 2-67, 2-496
value range 4-54

Serial key 2-660
SERIAL8 data type

inserting values 2-495
invalid default 2-217
value range 4-54

SERIALIZABLE keyword, in SET
TRANSACTION
statement 2-720

SERVER_NAME keyword, in GET
DIAGNOSTICS
statement 2-452

Session control block 4-122
accessed by DBINFO

function 4-122
defined 4-122

Session environment 2-189
Session ID 4-122
SESSION keyword, in SET

SESSION AUTHORIZATION
statement 2-713

SET AUTOFREE statement 2-640
SET clause of UPDATE

statement 2-766
SET COLLATION statement 2-643
SET columns, generating values

for 4-108
SET CONNECTION

statement 2-646
SET CONSTRAINTS

statement 2-651
SET data type

definition of 4-109
deleting elements from 2-349
unloading 2-754
updating elements in 2-776

SET data type. See also Collections.

SET Database Object Mode
statement

and START VIOLATIONS
TABLE 2-730

error options 2-657
list-mode format 2-653
syntax 2-652
table-mode format 2-654
with

CREATE TRIGGER
statement 2-302

data manipulation
statements 2-655

SET DATASKIP statement 2-659
SET DEBUG FILE TO statement

syntax 2-661
with TRACE statement 3-50

SET Default Table Space statement
syntax 2-665

SET Default Table Type statement
syntax 2-663

SET DEFERRED_PREPARE
statement 2-666

SET DESCRIPTOR statement 2-670
SET ENVIRONMENT

statement 2-678
SET EXPLAIN statement 2-687
SET INDEX statement 2-689
SET INDEXES statement 2-690
SET ISOLATION statement 2-691
SET keyword

in DEFINE statement 3-17
in Expression segment 4-108
in Literal Collection 4-208
in ON EXCEPTION

statement 3-39
in UPDATE statement 2-766

SET LOCK MODE statement 2-696
SET LOG statement 2-698
SET OPTIMIZATION

statement 2-700
SET PDQPRIORITY

statement 2-704
SET PLOAD FILE statement 2-707
SET Residency statement 2-708
SET ROLE statement 2-710
SET SCHEDULE LEVEL

statement 2-712
Index 31

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
SET SESSION AUTHORIZATION
statement 2-713

SET STATEMENT CACHE
statement 2-715

SET TABLE statement 2-719
SET Transaction Mode

statement 2-725
SET TRANSACTION

statement 2-720
SET TRIGGERS statement 2-728
setUDTExtName()

procedure 2-138, 2-188
Shadow columns 2-54
SHARE keyword, in LOCK TABLE

statement 2-513
Shared library functions 4-132,

4-187
Shared lock mode 2-513
Shared memory

index fragments 2-689
table fragments 2-719

Shared-object file 2-138, 4-187
Shell script 3-49
Side-effect index 2-179
Signature 4-48
Simple assignment, in SPL 3-36
Simple join 2-604
Simple large object

declaration syntax 4-57
declaring 4-57
loading 2-506, 2-508
unloading 2-755, 2-756

Simple table expression 2-596
Simple view 2-307
SIN function 4-149, 4-150
Single-threaded application 2-648
Singleton SELECT statement 2-584,

2-590, 2-768
SITENAME function

in ALTER TABLE statement 2-56
in Condition segment 4-30
in CREATE TABLE

statement 2-217
in DEFINE statement 3-14
See DBSERVERNAME function.

SIZE keyword
in ALTER TABLE statement 2-76
in CREATE EXTERNAL TABLE

statement 2-128

in CREATE TABLE
statement 2-249, 2-251

in SELECT statement 2-632
in TRUNCATE statement 2-750

Slash and asterisk (/* */) comment
indicator 4-223

Slot number 4-87
SMALLFLOAT data type 4-56

literal values 4-217
systems not supporting 2-317

SMALLINT data type, literal
values 4-216

Smart large object 4-58
accessing column data 4-88
copying to a file 4-138
copying to a smart large

object 4-140
creating from a file 4-132, 4-135
expressions with 4-88
extent size 2-250
functions for copying 4-134
generating filename for 4-139
handle values 4-88
loading values 2-506, 2-509
logging 2-250
storing 2-71, 2-249
unloading 2-755, 2-756

Software dependencies Intro-4
SOME keyword

beginning a subquery 2-618
in Condition segment 4-39

Sorting
in a combined query 2-637
in SELECT 2-624

SOURCEID field
in GET DESCRIPTOR

statement 2-439
in SET DESCRIPTOR

statement 2-672
SOURCETYPE field

in GET DESCRIPTOR
statement 2-439

in SET DESCRIPTOR
statement 2-672

Spatial data 2-389, 2-772
SPECIFIC FUNCTION keywords

in ALTER FUNCTION
statement 2-39

in GRANT statement 2-470

in REVOKE statement 2-566
in UPDATE STATISTICS

statement 2-786
SPECIFIC keyword

in CREATE FUNCTION
statement 2-133

in CREATE PROCEDURE
statement 2-182

in DROP FUNCTON
statement 2-375

in DROP PROCEDURE
statement 2-379

in DROP ROUTINE
statement 2-382

in GRANT statement 2-470
in REVOKE statement 2-566
in UPDATE STATISTICS

statement 2-786
Specific Name segment 4-274
SPECIFIC PROCEDURE keywords

in ALTER PROCEDURE
statement 2-44

in GRANT statement 2-470
in REVOKE statement 2-566
in UPDATE STATISTICS

statement 2-786
SPECIFIC ROUTINE keywords

in ALTER ROUTINE
statement 2-46

in GRANT statement 2-470
in REVOKE statement 2-566
in UPDATE STATISTICS

statement 2-786
SPL function

CREATE FUNCTION 2-137
cursors with 3-27
dropping 2-375
dynamic routine-name

specification 2-409
executing 2-404, 2-530
optimization 2-137
registering 2-137
registering from inside an

external routine 2-142
SPL keyword

in GRANT statement 2-472
in REVOKE statement 2-568
32 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
SPL procedure
creating with CREATE

PROCEDURE 2-187
dynamic routine-name

specification 2-415
executing 2-530
optimization 2-187
registering with CREATE

PROCEDURE 2-187
sysdbclose() 2-189
sysdbopen() 2-189

SPL routine
as triggered action 2-290
BYTE and TEXT data types 3-21
comment indicators 1-7
debugging 3-50
definition 2-184, 3-3
dropping with DROP

PROCEDURE 2-380
executing operating-system

commands 3-47
handling multiple rows 3-46
header 3-11
in SELECT statement 2-587
limits on parameters 4-267
modifying, restrictions on 2-383
naming output file for TRACE

statement 2-661
ownership of created

objects 2-189
preparing 2-530
receiving data from

SELECT 2-590
restrictions when used with DML

statements 4-279
sending mail 3-48
setting environment

variables 3-49
simulating errors 3-43
SQL-statement restrictions 4-277
See also the "IBM Informix Guide to

SQL: Tutorial."
SPL statements, description 3-3
sqexplain.out file 4-231
SQL

comments 1-6
compliance of statements with

ANSI standard 1-13
reserved words A-1, 1

statement types 1-9
SQL Communications Area

(SQLCA)
and EXECUTE statement 2-400
inserting rows 4-126
result after CLOSE 2-86
result after DATABASE 2-317
result after DELETE 2-350
result after DESCRIBE 2-352
result after DESCRIBE

INPUT 2-360
result after FETCH 2-433
result after FLUSH 2-435
result after OPEN 2-519
result after PUT 2-546
result after SELECT 2-593
warning when dbspace

skipped 2-659
SQL DESCRIPTOR keywords

in DESCRIBE INPUT
statement 2-359

in DESCRIBE statement 2-351
in EXECUTE statement 2-395,

2-401
in FETCH statement 2-424
in OPEN statement 2-516
in PUT statement 2-539

SQL expression. See Expression.
SQL statements, restrictions within

SPL routines 4-277
SQL statement. See Statement, SQL.
SQLCA. See SQL Communications

Area.
SQLCODE variable 2-350, 2-436,

2-791
sqld value 2-431
SQLDA (SQL Descriptor Area). See

sqlda structure.
sqlda structure

in DESCRIBE 2-351, 2-354
in DESCRIBE INPUT 2-359
in EXECUTE 2-397
in EXECUTE...INTO 2-399
in FETCH 2-430
in OPEN 2-396, 2-401, 2-516
in OPEN...USING

DESCRIPTOR 2-523
in PUT 2-539

SQLERRD array
number of inserted rows 2-436
value of inserted SERIAL8

value 4-126
SQLERROR keyword, in

WHENEVER statement 2-789
sqlexplain.out file 2-608
SQLJ built-in procedures 2-417
sqlj schema 2-418
SQLJ.ALTER_JAVA_PATH

procedure 2-421
SQLJ.INSTALL_JAR

procedure 2-418, 4-187
sqlj.install_jar procedure 4-272
SQLJ.REMOVE_JAR

procedure 2-420
SQLJ.REPLACE_JAR

procedure 2-419
SQLJ.SETUDTEXTNAME

procedure 2-422
SQLJ.UNSETUDTEXTNAME

procedure 2-423
SQLNOTFOUND

error conditions with EXECUTE
statement 2-400

with INSERT statement 2-500
SQLNOTFOUND value 2-633
SQLSTATE

errors and warnings 2-792
list of codes 2-448
not found condition 2-350, 2-433
runtime errors 2-791

sqlstypes.h header file 2-352, 2-360,
2-445, 2-674

SQLUNKNOWN data type 2-361
sqlvar structures 2-431
SQLWARNING keyword, in

WHENEVER statement 2-789
sqlxtype.h header file 2-674
SQRT function 4-114, 4-117
STACK keyword, in Routine

Modifier segment 4-257, 4-258
STACKSIZE configuration

parameter 4-264
STANDARD keyword

in ALTER TABLE statement 2-79
in CREATE TABLE

statement 2-214, 2-215
in SELECT statement 2-632
Index 33

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
in SET Default Table Type
statement 2-663

START keyword
in CREATE SEQUENCE

statement 2-208
START VIOLATIONS TABLE

statement 2-729
Statement block segment 4-276
Statement identifier

in DECLARE 2-323
in FREE 2-437, 2-438
in PREPARE 2-528

STATEMENT keyword, in SET
STATEMENT CACHE
statement 2-715

Statement-local variable (SLV)
data type of 4-168
declaration 4-167
definition 4-166
expression 4-169
name space of 4-168
OUT parameters 4-269
precedence of 4-168
scope of 4-169

Statement, SQL
ANSI-compliant 1-13
extensions to ANSI standard 1-13
how to enter 1-3

STATIC keyword
in ALTER TABLE statement 2-79
in CREATE TABLE

statement 2-214, 2-216
in SELECT statement 2-632
in SET Default Table Type

statement 2-663
STATUS keyword, in INFO

statement 2-487
Status, displaying with INFO

statement 2-488
STDEV function 4-171, 4-181
STEP keyword, in FOR

statement 3-23
STMT_CACHE configuration

parameter 2-715
STMT_CACHE environment

variable 2-715
STMT_CACHE_HITS

configuration parameter 2-718

STMT_CACHE_NOLIMIT
configuration parameter 2-718

STMT_CACHE_SIZE configuration
parameter 2-718

STOP keyword, in WHENEVER
statement 2-789

STOP VIOLATIONS TABLE
statement 2-748

Storage options, CREATE
Temporary TABLE 2-266

Stored Procedure Language
(SPL) 3-3

Stored procedure. See SPL Routine.
stores_demo database Intro-5

 See also Demonstration database.
Storing smart large objects 2-249
STRATEGIES keyword, in CREATE

OPCLASS statement 2-176
Strategy function 2-177
String-manipulation

functions 4-152
Structured Query Language. See

SQL.
STYLE keyword, in External

Routine Reference
segment 4-187

SUBCLASS_ORIGIN keyword, in
GET DIAGNOSTICS
statement 2-452

Subordinate
table 2-611

Subordinate table 2-604
Subquery

beginning with ALL, ANY, SOME
keywords 2-618

beginning with EXISTS
keyword 2-617, 4-38

beginning with IN
keyword 2-617, 4-38

correlated 4-37
definition of 2-614
in Condition segment 4-36
no FIRST keyword 2-584
with DISTINCT keyword 2-586
with UNION or UNION

ALL 2-638
Subscripting, on character

columns 2-626, 4-87
Subsecond precision 4-100

SUBSTR function 4-156
Substring

in column expression 4-87
in ORDER BY clause of

SELECT 2-626
SUBSTRING function 4-154, 4-158,

4-159, 4-160
Subtable, inherited

properties 2-257
SUM function 4-171, 4-180
superstores_demo database Intro-5
Support function

assigning 2-174, 2-496, 2-510,
2-773

comparing 2-174
defining 2-172
definition 2-179
destroy 2-174, 2-349, 2-390
export 2-173
exportbinary 2-174
import 2-173
importbinary 2-173
input 2-172
lohandles 2-174
output 2-172
receive 2-172
send 2-173

SUPPORT keyword, in CREATE
OPCLASS statement 2-176

Synonym
chaining 2-212
creating 2-210
difference from alias 2-210
dropping 2-387
external 2-389

SYNONYM keyword
in DROP SYNONYM

statement 2-387
Syntax conventions Intro-12,

Intro-14
Syntax diagrams Intro-13
sysaggregates system catalog

table 2-104, 2-370
sysams system catalog table 2-14,

2-102, 2-154, 2-369
columns in 4-238

sysblobs system catalog table 2-259
syscasts system catalog table 2-109,

2-371
34 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
syschecks system catalog
table 2-549

syscolattribs system catalog
table 2-250

syscolauth system catalog
table 2-198

syscolumns system catalog
table 2-259, 2-385, 2-673, 2-779

sysconstraints system catalog
table 2-72, 2-146, 2-377, 2-552

sysdbclose() procedure 2-190,
2-682

sysdbopen() procedure 2-189,
2-191, 2-682

sysdistrib system catalog
table 2-779, 2-787

sysfragauth system catalog
table 2-481

sysfragments system catalog
table 2-26, 4-121

sysindexes system catalog
table 2-229, 2-377, 2-779, 2-781

sysinherits system catalog
table 2-259, 2-385

sysmaster database 2-259, 4-123
sysobjstate system catalog

table 2-652
sysprocauth system catalog

table 2-137, 2-259
sysprocbody system catalog

table 2-137, 2-185, 2-186
sysprocedures system catalog

table 2-137, 2-418, 2-714
sysprocplan system catalog

table 2-137, 2-787
SYSSBSPACENAME onconfig

parameter 2-787
syssequences system catalog

table 2-209
systabauth system catalog

table 2-482
systables system catalog

table 2-259, 2-377, 2-779, 2-781,
4-121

System catalog
database entries 2-112
dropping tables 2-390
owner informix 4-46

System catalog tables
sysams 2-14, 2-102
syscasts 2-371
syscolauth 2-194
syscolumns 2-385, 2-779
sysconstraints 2-146, 2-229, 2-377
sysdepend 2-393
sysdistrib 2-779
sysfragauth 2-194, 2-482
sysfragments 2-552
sysindexes 2-229, 2-552, 2-779
sysinherits 2-385
sysobjstate 2-552, 2-652
sysprocauth 2-137, 2-187, 2-191,

2-194
sysprocbody 2-187, 2-191
sysprocedures 2-187, 2-191, 2-714
sysprocplan 2-137, 2-187, 2-191,

2-787
sysroleauth 2-194
syssequences 2-51, 2-209
systabauth 2-194, 2-199, 2-478
systables 2-377, 2-385, 2-779
systriggers 2-272, 2-391
sysusers 2-194, 2-201
sysviews 2-311
sysviolations 2-729
sysxtdtypeauth 2-169, 2-199,

2-259
sysxtdtypes 2-169, 2-199

System clock 4-95
System constants 4-95
System index 2-160
System name, as database

qualifier 4-45
System requirements

database Intro-4
software Intro-4

SYSTEM statement 3-47
System-descriptor area

assigning values to 2-670
creating 2-10
deallocating 2-320
item descriptors 2-10
OPEN using 2-402, 2-522
resizing 2-671
use with EXECUTE

statement 2-402
with DESCRIBE 2-354

with DESCRIBE INPUT 2-362
with EXECUTE...INTO 2-398

System-Monitoring Interface (SMI)
tables 4-123

systriggers system catalog
table 2-272, 2-391

sysusers system catalog
table 2-200, 2-259, 2-488

sysviews system catalog
table 2-311, 2-549, 2-555

sysviolations system catalog
table 2-729

sysxtdtypeauth system catalog
table 2-116, 2-169, 2-259, 2-468

sysxtdtypes system catalog
table 2-116, 2-169, 2-201, 2-259,
2-392, 2-468, 2-676, 2-677

T
Table

adding a constraint 2-72, 2-73
adding a constraint to a column

with data 2-69
alias in SELECT 2-594
creating 2-214
creating a synonym for 2-210
default privileges 2-482
defining fragmentation

strategy 2-238
diagnostic 2-742
diagnostics 2-271
dominant 2-604
dropping 2-374, 2-388
dropping a synonym 2-387
dropping a system table 2-390
duplicate 2-118, 2-374
engine response to locked

table 2-696
external 2-121, 2-271, 2-635
inheritance hierarchy 2-255
isolating 2-237
joins in Condition segment 2-619
loading data with the LOAD

statement 2-504
locking

with ALTER INDEX 2-42
with LOCK TABLE 2-513
Index 35

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
logging 2-262
memory-resident 2-708, 2-719
operational 2-271
permanent 2-267
privileges

column-specific 2-563
granting 2-463
revoking 2-561

privileges on 2-258
qualifiers 4-47
raw 2-271
read-only 2-118
renaming 2-554
residency status 2-708, 2-719
scratch 2-262, 2-271, 2-637
static 2-271
subordinate 2-604
system catalog 2-271
target 2-735
temporary 2-262, 2-271, 2-633,

2-779
typed 2-198
unlocking 2-760
updating statistics 2-779
violations 2-271, 2-734

Table expression 2-596
TABLE keyword

in ALTER FRAGMENT
statement 2-16

in ALTER TABLE statement 2-76
in Collection-Derived-Table

segment 4-7
in CREATE DUPLICATE

statement 2-118
in CREATE EXTERNAL TABLE

statement 2-121
in CREATE TABLE

statement 2-253
in Data Type segment 4-57
in DROP DUPLICATE

statement 2-374
in DROP TABLE statement 2-388
in RENAME TABLE

statement 2-554
in SET Residency statement 2-708
in SET TABLE statement 2-719
in START VIOLATIONS TABLE

statement 2-729

in STOP VIOLATIONS TABLE
statement 2-748

in TRUNCATE statement 2-750
in UNLOCK TABLE

statement 2-760
in UPDATE STATISTICS

statement 2-778
Table name, in INFO

statement 2-488
Table-level locking, in CREATE

TABLE 2-254
Table-level privilege, passing grant

ability 2-477
Table-mode format, in SET

Database Object Mode
statement 2-654

TABLES keyword, in INFO
statement 2-487

TABLE_SPACE keyword, in SET
Default Table Type
statement 2-665

TABLE_TYPE keyword, in SET
Default Table Type
statement 2-663

TAN function 4-149, 4-150
Target table

relationship to diagnostics
table 2-735, 2-748

relationship to violations
table 2-735, 2-748

TEMP keyword
in CREATE Temporary TABLE

statement 2-261
in SELECT statement 2-632
in SET Default Table Type

statement 2-663, 2-665
Temp table. See Temporary table.
Temporary table

and fragmentation 2-266
creating 2-261
creating constraints for 2-263
defining columns 2-263
differences from permanent

tables 2-267
duration 2-268
INFO statement restrictions 2-268
updating statistics 2-779
when deleted 2-268
where stored 2-266

TEMP_TAB_EXT_SIZE keyword,
in SET ENVIRONMENT
statement 2-682

TEMP_TAB_NEXT_SIZE keyword,
in SET ENVIRONMENT
statement 2-682

TEXT column, modifying 2-67
TEXT data type

declaration syntax 4-57
default value 2-218
loading 2-506
storage location 4-58
unloading 2-755, 2-756
with SET DESCRIPTOR 2-677
with SPL routines 3-11, 3-21

TEXT keyword
in CREATE EXTERNAL TABLE

statement 2-122
in Data Type segment 4-57
in DEFINE statement 3-10
in Return Clause segment 4-253

THEN keyword
in CASE statement 3-6
in Expression segment 4-90, 4-91
in IF statement 3-33

Thread 2-648
THREADS keyword, in EXECUTE

FUNCTION statement 2-409
Thread-safe application

description 2-367, 2-368, 2-648,
2-650

Time and date, getting current 4-99
Time data types 4-59
Time function

restrictions with GROUP
BY 2-622

use in Function Expressions 4-143
use in SELECT 2-587

TIME keyword
in ALTER TABLE statement 2-71
in CREATE TABLE

statement 2-249
Time unit

INTERVAL data types 4-206
times() operator function 4-77
Tip icons Intro-10
TMPSPACE_LIMIT keyword, in

SET ENVIRONMENT
statement 2-681
36 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
TO CLUSTER keywords, in ALTER
INDEX statement 2-41

TO keyword
in ALTER FRAGMENT

statement 2-37
in ALTER INDEX statement 2-41
in CONNECT statement 2-92
in DATETIME field qualifier 4-65
in Expression segment 4-143
in FOR statement 3-23
in GRANT FRAGMENT

statement 2-480
in GRANT statement 2-459
in INTERVAL Field

Qualifier 4-205
in OUTPUT statement 2-525
in RENAME COLUMN

statement 2-549
in RENAME DATABASE

statement 2-551
in RENAME INDEX

statement 2-552
in RENAME SEQUENCE

statement 2-553
in RENAME TABLE

statement 2-554
in SET DEBUG FILE TO

statement 2-662
in SET Default Table Type

statement 2-663, 2-665
in SET EXPLAIN statement 2-683
in SET ISOLATION

statement 2-691
in SET LOCK MODE

statement 2-696
in SET PLOAD FILE

statement 2-707
in SET SESSION

AUTHORIZATION
statement 2-713

in TRUNCATE statement 2-750
in UNLOAD statement 2-753
in WHENEVER statement 2-793

TO SIZE keywords, in TRUNCATE
statement 2-750

TODAY function
in ALTER TABLE statement 2-56
in Condition segment 4-30

in CREATE TABLE
statement 2-217

in DEFINE statement 3-14
in expression 4-96
in INSERT 2-494, 2-499

TO_CHAR function 4-143, 4-147
TO_DATE function 4-143

function, SQL
TO_DATE 4-148

TRACE statement 3-50
TRAILING keyword, in TRIM

expressions 4-152
Transaction

description of 2-84
example 2-84
read-only 2-723
statements that initiate 2-714
using cursors in 2-342

TRANSACTION keyword
in CONNECT statement 2-92
in SET TRANSACTION

statement 2-720
Transaction mode,

constraints 2-725
Trigger

database object modes for
setting 2-652

dropping a column 2-64
modifying a column 2-70
overriding 2-303

Trigger action 2-269
Trigger event 2-269

DELETE 2-275, 2-305
INSERT 2-285, 2-309
privileges on 2-274
SELECT 2-277, 2-307
UPDATE 2-276, 2-305

TRIGGER keyword
in DROP TRIGGER

statement 2-391
Triggered action

action on triggering view 2-307
action statements 2-290, 2-307
cascading 2-283
correlation names 2-298
effect of cursors 2-274
for multiple triggers 2-283, 2-307
list of actions 2-289
list syntax 2-307

WHEN condition 2-289
Triggering statement

consistent results 2-290
execution of 2-306
performance 2-275
UPDATE 2-277

Triggering view 2-306
TRIGGERS keyword, in SET

Database Object Mode
statement 2-653, 2-654, 2-728

Trigonometric function
ACOS function 4-150
ASIN function 4-151
ATAN function 4-151
ATAN2 function 4-151
COS function 4-150
SIN function 4-150
TAN function 4-150

Trigonometric functions 4-149
TRIM function 4-152
TRUNC function 4-114, 4-117
TRUNCATE statement 2-750
TYPE field

changing from BYTE or
TEXT 2-677

in GET DESCRIPTOR
statement 2-439

in SET DESCRIPTOR
statement 2-672

setting in X/Open
programs 2-674

with DESCRIBE INPUT
statement 2-362

with DESCRIBE statement 2-354
with X/Open programs 2-442

Type hierarchy 2-200
TYPE keyword

in ALTER TABLE statement 2-78,
2-79

in CREATE DISTINCT TYPE
statement 2-115

in CREATE ROW TYPE
statement 2-198

in CREATE TABLE
statement 2-255

in CREATE VIEW
statement 2-310

in DROP ROW TYPE
statement 2-384
Index 37

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
in DROP TYPE statement 2-392
in GRANT statement 2-468
in REVOKE statement 2-565
 See also TYPE field.

Typed collection variable 2-8, 3-18
Typed table

ADD TYPE Clause 2-78
altering 2-80
altering serial columns 2-67,

2-202
inheritance with 2-256
NOT NULL constraint 2-202

Typed view 2-311

U
UDR. See User-Defined Routine.
Unary minus (-) operator 4-215,

4-216
Unary plus (+) operator 4-215,

4-216
Unbuffered logging 2-698
UNCOMMITTED keyword, in SET

TRANSACTION
statement 2-722

UNDEFINED parameter value 4-6
UNDER keyword

in CREATE ROW TYPE
statement 2-198

in CREATE TABLE
statement 2-255

in GRANT statement 2-463, 2-468
in REVOKE statement 2-560,

2-565
UNDER ON TYPE keywords

in GRANT statement 2-468
in REVOKE statement 2-565

Under privilege 2-469
Underscore (_), as wildcard 4-33
Unicode 2-644
UNION operator

in collection subquery 4-23
in SELECT statement 2-581, 2-637
OUT parameters 4-170
restrictions on use 2-637

Union view 2-312
Unique constraint

dropping 2-75

rules of use 2-221, 2-224
UNIQUE keyword

in ALTER TABLE statement 2-57,
2-73

in CREATE INDEX
statement 2-145, 2-166

in CREATE TABLE
statement 2-220, 2-231

in CREATE Temporary TABLE
statement 2-263, 2-264

in Expression segment 4-171,
4-185

in SELECT 2-585
in subquery 4-38

UNITS keyword, in Expression
segment 4-96

Units of time, INTERVAL
values 4-214

UNIX operating system
default locale Intro-4
shell script 3-49

UNKNOWN truth values 4-41
UNLOAD statement 2-753
UNLOCK TABLE statement 2-760
Unnamed row data type

field definition 4-62
unloading 2-754, 2-758
updating fields 2-775

Unnested subquery 4-232
Untyped COLLECTION

variable 4-16
Untyped collection variable 2-8,

2-319, 2-600, 4-10, 4-63
Untyped row variable 2-12
Untyped view 2-311
Updatable view 2-315, 2-348
Update cursor

locking considerations 2-330
opening 2-517
restricted statements 2-336
use in DELETE 2-347

UPDATE keyword
in CREATE TRIGGER

statement 2-275, 2-276
in GRANT FRAGMENT

statement 2-481
in GRANT statement 2-463
in REVOKE FRAGMENT

statement 2-576

in REVOKE statement 2-560
in SET ISOLATION

statement 2-694
Update locks 2-694
Update privilege, with a

view 2-764
UPDATE statement

and transactions 2-764
and triggers 2-290
collection variables with 4-15,

4-16
collection-derived table with 4-15
cursor with 2-328
OUT parameters 4-170
smart large objects with 4-88
specifying support for 4-240
syntax 2-762
update triggers 2-273
updating through a view 2-764
with

SELECT...FOR UDATE 2-629
WHERE keyword 2-773

UPDATE STATISTICS
statement 2-778

Update trigger 2-276
Updating a specific table in a table

hierarchy 2-763
Upgrading the database

server 2-779, 2-788
UPPER function 4-161
Upper-case characters, converting

to 4-161
USAGE keyword

in GRANT statement 2-468, 2-472
in REVOKE statement 2-565,

2-568
USAGE ON LANGUAGE

keywords
in GRANT statement 2-472
in REVOKE statement 2-568

USAGE ON TYPE keywords
in GRANT statement 2-468
in REVOKE statement 2-565

USER function
as affected by ANSI

compliance 4-98
in ALTER TABLE statement 2-56
in Condition segment 4-30
38 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
in CREATE TABLE
statement 2-217

in DEFINE statement 3-14
in expression 4-96
in INSERT statement 2-494, 2-499
in Literal Row segment 4-218

User informix 2-115, 2-371, 2-709,
4-235

privileges associated with 2-462
User-defined access method

creating 2-102
modifying 2-14

User-defined aggregate
creating 2-104
definition 4-173
dropping 2-370
invoking 4-185

User-defined data type 4-60
maximum in one row 2-216, 4-61
privileges 2-468, 2-469
privileges, revoking 2-565

User-defined function 4-165
arguments 4-5
cursor 2-407
inserting data with 2-501
iterator 4-260
negator 4-261
noncursor 2-407
OUT parameters 4-169
selectivity 4-263
variant 4-188, 4-265

User-defined routine
arguments 2-171, 4-5
definition 2-183
dropping with DROP

ROUTINE 2-382
in SELECT statements 2-587
inserting data with 2-501
ownership of created

objects 2-140
privileges, revoking 2-566
REFERENCES keyword with

BYTE or TEXT data type 3-21
return values 4-253

User-defined VP class 4-259
Users, types of Intro-3
USETABLENAME environment

variable 2-52, 2-389

USE_HASH keyword, in Optimizer
Directives Segment 4-227

USE_NL keyword, in Optimizer
Directives Segment 4-227

USING BITMAP keywords, in
CREATE INDEX
statement 2-144

USING DESCRIPTOR keywords
in FETCH 2-430
in OPEN 2-516
in PUT 2-403
syntax in EXECUTE 2-401

USING keyword
in CREATE EXTERNAL TABLE

statement 2-121
in CREATE INDEX

statement 2-144, 2-153
in CREATE TABLE

statement 2-252
in DELETE statement 2-344
in EXECUTE statement 2-396,

2-401
in FETCH statement 2-424
in INTO EXTERNAL clause 2-632
in OPEN statement 2-516, 2-521
in PUT statement 2-539
in START VIOLATIONS TABLE

statement 2-729
USING SQL DESCRIPTOR

keywords
in DESCRIBE INPUT

statement 2-359, 2-362
in DESCRIBE statement 2-351,

2-354
in EXECUTE statement 2-402

Utilities
oncheck 2-174
oninit 4-124
onmode 2-715
onstat 2-659
onutil 2-127, 2-132

V
VALUE clause

after null value is fetched 2-443
relation to FETCH 2-443
use in GET DESCRIPTOR 2-441

use in SET DESCRIPTOR 2-671
VALUE keyword

in GET DESCRIPTOR
statement 2-439

in SET DESCRIPTOR
statement 2-670

VALUES clause
effect with PUT 2-541
in INSERT 2-494
syntax in INSERT 2-489

VALUES keyword, in INSERT
statement 2-494

VARCHAR data type 4-51
in LOAD statement 2-508
in UNLOAD statement 2-755

Variable
declaring in SPL 3-10
default values in SPL 3-14, 3-17
global 3-12
local 3-11, 3-16
PROCEDURE type 3-21
uninitialized 3-54
unknown values in IF 3-34

VARIABLE keyword, in CREATE
OPAQUE TYPE
statement 2-169

Variable-length UDT 2-216, 4-61
VARIANCE function 4-171, 4-182
Variant function 4-188, 4-265
VARIANT keyword

in External Routine Reference
segment 4-187

in Routine Modifier
segment 4-258

Varying-length opaque data
type 2-170, 2-171

Version string 4-124
View

altering table fragmentation 2-23
creating a synonym for 2-210
creating a view 2-310
dropping 2-393
dropping a column 2-64
materialized 2-311
modifying a column 2-70
privileges 2-467
typed 2-198, 2-311
union 2-312
untyped 2-311
Index 39

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
updatable 2-315
updating 2-764

VIEW keyword
in CREATE VIEW

statement 2-310
in DROP VIEW statement 2-393

VIEW keyword, in DROP VIEW
statement 2-393

VIOLATIONS keyword
in START VIOLATIONS TABLE

statement 2-729
in STOP VIOLATIONS TABLE

statement 2-748
Violations table

creating with START
VIOLATIONS TABLE 2-729

effect on concurrent
transactions 2-731

how to stop 2-748
privileges 2-736
relationship to diagnostics

table 2-230, 2-735
relationship to target table 2-735
restriction on dropping 2-390
structure 2-734

Virtual column 2-313
Virtual index 2-102
Virtual processor 2-679
Virtual-processor (VP) class 4-259

W
WAIT keyword, in the SET LOCK

MODE statement 2-696
Warning icons Intro-10
Warning, if dbspace skipped 2-659
WEEKDAY function 4-143
WHEN keyword

CREATE TRIGGER
statement 2-289

in CASE statement 3-6
in Expression segment 4-90, 4-91

WHENEVER statement 2-789
WHERE clause

in SELECT 2-581
in system descriptor area 2-10
joining tables 2-619
with a subquery 2-614

with ALL keyword 2-618
with ANY keyword 2-618
with BETWEEN keyword 2-615
with IN keyword 2-615
with IS keyword 2-615
with relational operator 2-614
with SOME keyword 2-618

WHERE CURRENT OF keywords
in DELETE statement 2-344
in UPDATE statement 2-762
with optimizer directives 4-224

WHERE keyword
in CREATE INDEX

statement 2-168
in DELETE statement 2-344
in UPDATE statement 2-762

WHILE keyword
in CONTINUE statement 3-9
in EXIT statement 3-22

WHILE statement
syntax 3-54
with NULL expressions 3-54

Wildcard character
asterisk (*) 4-34
backslash (\) 4-33, 4-34
brackets ([...]) 4-34
caret (^) 4-34
percent sign (%) 4-33
question mark (?) 4-34
underscore (_) 4-33
with LIKE 2-616, 4-33
with LIKE or MATCHES 4-246
with MATCHES 2-616, 4-34

Windows
batch file 3-49
default locale Intro-4

WITH APPEND keywords
in SET DEBUG FILE TO

statement 2-661
in SET EXPLAIN statement 2-683
in SET PLOAD FILE

statement 2-707
WITH BUFFERED LOG keywords,

in CREATE DATABASE 2-113
WITH CHECK OPTION keywords,

in CREATE VIEW
statement 2-310, 2-314

WITH COMMIT keywords, in
TRUNCATE statement 2-750

WITH CONCURRENT
TRANSACTION keywords, in
CONNECT statement 2-92

WITH CRCOLS keywords, in
CREATE Temporary TABLE
statement 2-265

WITH ERROR keywords
in ALTER TABLE statement 2-58
in CREATE INDEX

statement 2-161
in CREATE TABLE

statement 2-228, 2-230
in SET Database Object Mode

statement 2-654
WITH GRANT OPTION keywords

in GRANT FRAGMENT
statement 2-480

in GRANT statement 2-459
WITH HOLD keywords

in DECLARE statement 2-323
in FOREACH statement 3-27

WITH keyword
in ALTER FUNCTION

statement 2-39
in ALTER PROCEDURE

statement 2-44
in ALTER ROUTINE

statement 2-46
in ALTER SEQUENCE

statement 2-50
in CONNECT statement 2-92
in CREATE AGGREGATE

statement 2-104
in CREATE CAST

statement 2-108
in CREATE DATABASE

statement 2-112
in CREATE FUNCTION

statement 2-133
in CREATE INDEX

statement 2-161
in CREATE PROCEDURE

statement 2-182
in CREATE SEQUENCE

statement 2-208
in CREATE VIEW

statement 2-310
in DECLARE statement 2-323
40 IBM Informix Guide to SQL: Syntax

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
in GRANT FRAGMENT
statement 2-480

in GRANT statement 2-459
in OPEN statement 2-516
in SET CONSTRAINTS

statement 2-651
in SET Database Object Mode

statement 2-654
in SET DEBUG FILE TO

statement 2-661
in SET EXPLAIN statement 2-683
in SET INDEXES statement 2-690
in SET PLOAD FILE

statement 2-707
in TRUNCATE statement 2-750

WITH LISTING IN keywords
in CREATE FUNCTION

statement 2-133
in CREATE PROCEDURE

statement 2-182
WITH LOG keywords, in CREATE

DATABASE statement 2-112
WITH LOG MODE ANSI

keywords, in CREATE
DATABASE 2-113

WITH MAX keywords, in
ALLOCATE DESCRIPTOR
statement 2-10

WITH NO LOG keywords
in CREATE Temporary TABLE

statement 2-261
in SELECT statement 2-632, 2-634

WITH REOPTIMIZATION
keywords, in OPEN
statement 2-516

WITH RESUME keywords
in ON EXCEPTION

statement 3-39
in RETURN statement 3-45

WITH ROWIDS keywords
in ALTER FRAGMENT

statement 2-30
in CREATE TABLE

statement 2-238
WITHOUT ERROR keywords

in ALTER TABLE statement 2-58
in CREATE INDEX

statement 2-161

in CREATE TABLE
statement 2-228, 2-230

in SET Database Object Mode
statement 2-654

WITHOUT HEADINGS keywords,
in OUTPUT statement 2-525

WITHOUT keyword
in BEGIN WORK statement 2-82
in CREATE INDEX

statement 2-161
in OUTPUT statement 2-525
in SET CONSTRAINTS

statement 2-651
in SET Database Object Mode

statement 2-654
in SET INDEXES statement 2-690

Word length (32-bit or 64-bit) 4-125
WORK keyword

in BEGIN WORK statement 2-82
in COMMIT WORK

statement 2-90
in ROLLBACK WORK

statement 2-579
WORK WITHOUT REPLICATION

keywords, in BEGIN WORK
statement 2-82

WRITE keyword, in SET
TRANSACTION
statement 2-720

Write lock 2-330
Writing direction 4-155

X
X for storage in an extent

space 2-103, 4-239
xopen compiler option 2-674
X/Open compliance level Intro-20
X/Open mode

CONNECT statement 2-100
FETCH statement 2-425
OPEN statement 2-522
SET DESCRIPTOR

statement 2-674

Y
Y

value of MORE field 2-451
YEAR function 4-143, 4-145
YEAR keyword

in DATETIME data type 4-65
in DATETIME Field

Qualifier 4-212
in INTERVAL data type 4-214
in INTERVAL Field

Qualifier 4-205

Z
Zero 4-146

in UNLOAD file 2-754
invalid divisor 2-449, 4-115
returned value 4-133
scale and ROUND function 4-116
scale and TRUNC function 4-117
subseconds and CURRENT

function 4-100
Sunday and WEEKDAY

function 4-145
variance and STDEV

function 4-182
variance and VARIANCE

function 4-182
Zoned decimal 2-123
ZONED keyword, in CREATE

EXTERNAL TABLE
statement 2-122

Symbols
!, exclamation point, in smart-large-

object filename 4-139
", double quotes

delimiting SQL identifiers 4-191,
4-193, 4-244

literal in a quoted string 4-245
quoted string delimiter 4-243,

4-245
$INFORMIXDIR/etc/sqlhosts. See

sqlhosts file.
%, percent sign, as wildcard 4-33
Index 41

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
*, asterisk
arithmetic operator 4-77
as wildcard character 4-34
in Projection clause 2-583

+, plus sign
binary operator 4-77
in optimizer directives 4-223
unary operator 4-78, 4-215, 4-216

--, double hyphen, comment
indicator 1-6

-, minus sign
binary operator 4-75, 4-77
unary operator 4-215, 4-216

., period, dot notation 4-83
/, division symbol, arithmetic

operator 4-77
?, question mark

as placeholder in
PREPARE 2-521, 2-527

as wildcard 4-34
generating unique large-object

filename with 4-139
variables in PUT 2-542

[...], brackets
array subscripts 2-592
range delimiters 4-34
substring operator 2-626, 4-87

\, backslash
as wildcard character 4-33
escape character 2-758

^, caret, as wildcard character 4-34
_, underscore, as wildcard

character 4-33
{ }, braces

collection delimiters 4-208
comment indicators 1-6, 4-223

|, pipe character 2-128, 2-504, 2-635
||, concatenation operator 4-78
’, single quotes

literal in a quoted string 4-245
quoted string delimiter 4-243
42 IBM Informix Guide to SQL: Syntax

	IBM Informix Online Documentation
	Table of Contents
	Introduction
	In This Introduction
	About This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Databases

	New Features in Dynamic Server, Version 9.4
	New Features in Extended Parallel Server Version 8.4
	Performance Enhancements
	New SQL Functionality
	Version 8.4 Features from Version 7.3

	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Feature, Product, and Platform Icons
	Compliance Icons

	Syntax Conventions
	Elements That Can Appear on the Path
	How to Read a Syntax Diagram

	Example-Code Conventions

	Additional Documentation
	Related Reading
	Compliance with Industry Standards
	IBM Welcomes Your Comments

	Overview of SQL Syntax
	In This Chapter
	How to Enter SQL Statements
	How to Enter SQL Comments
	Categories of SQL Statements
	ANSI Compliance and Extensions

	SQL Statements
	In This Chapter
	ALLOCATE COLLECTION
	ALLOCATE DESCRIPTOR
	ALLOCATE ROW
	ALTER ACCESS_METHOD
	ALTER FRAGMENT
	ALTER FUNCTION
	ALTER INDEX
	ALTER PROCEDURE
	ALTER ROUTINE
	ALTER SEQUENCE
	ALTER TABLE
	BEGIN WORK
	CLOSE
	CLOSE DATABASE
	COMMIT WORK
	CONNECT
	CREATE ACCESS_METHOD
	CREATE AGGREGATE
	CREATE CAST
	CREATE DATABASE
	CREATE DISTINCT TYPE
	CREATE DUPLICATE
	CREATE EXTERNAL TABLE
	CREATE FUNCTION
	CREATE FUNCTION FROM
	CREATE INDEX
	CREATE OPAQUE TYPE
	CREATE OPCLASS
	CREATE PROCEDURE
	CREATE PROCEDURE FROM
	CREATE ROLE
	CREATE ROUTINE FROM
	CREATE ROW TYPE
	CREATE SCHEMA
	CREATE SCRATCH TABLE
	CREATE SEQUENCE
	CREATE SYNONYM
	CREATE TABLE
	CREATE TEMP TABLE
	CREATE Temporary TABLE
	CREATE TRIGGER
	CREATE VIEW
	DATABASE
	DEALLOCATE COLLECTION
	DEALLOCATE DESCRIPTOR
	DEALLOCATE ROW
	DECLARE
	DELETE
	DESCRIBE
	DESCRIBE INPUT
	DISCONNECT
	DROP ACCESS_METHOD
	DROP AGGREGATE
	DROP CAST
	DROP DATABASE
	DROP DUPLICATE
	DROP FUNCTION
	DROP INDEX
	DROP OPCLASS
	DROP PROCEDURE
	DROP ROLE
	DROP ROUTINE
	DROP ROW TYPE
	DROP SEQUENCE
	DROP SYNONYM
	DROP TABLE
	DROP TRIGGER
	DROP TYPE
	DROP VIEW
	EXECUTE
	EXECUTE FUNCTION
	EXECUTE IMMEDIATE
	�EXECUTE PROCEDURE
	FETCH
	FLUSH
	FREE
	GET DESCRIPTOR
	GET DIAGNOSTICS
	GRANT
	GRANT FRAGMENT
	INFO
	INSERT
	LOAD
	LOCK TABLE
	OPEN
	OUTPUT
	PREPARE
	PUT
	RENAME COLUMN
	RENAME DATABASE
	RENAME INDEX
	RENAME SEQUENCE
	RENAME TABLE
	REVOKE
	REVOKE FRAGMENT
	ROLLBACK WORK
	SELECT
	SET AUTOFREE
	SET COLLATION
	SET CONNECTION
	SET CONSTRAINTS
	SET Database Object Mode
	SET DATASKIP
	SET DEBUG FILE TO
	SET Default Table Type
	SET Default Table Space
	SET DEFERRED_PREPARE
	SET DESCRIPTOR
	SET ENVIRONMENT
	SET EXPLAIN
	SET INDEX
	SET INDEXES
	SET ISOLATION
	SET LOCK MODE
	SET LOG
	SET OPTIMIZATION
	SET PDQPRIORITY
	SET PLOAD FILE
	SET Residency
	SET ROLE
	SET SCHEDULE LEVEL
	SET SESSION AUTHORIZATION
	SET STATEMENT CACHE
	SET TABLE
	SET TRANSACTION
	SET Transaction Mode
	SET TRIGGERS
	START VIOLATIONS TABLE
	STOP VIOLATIONS TABLE
	TRUNCATE
	UNLOAD
	UNLOCK TABLE
	UPDATE
	UPDATE STATISTICS
	WHENEVER

	SPL Statements
	In This Chapter
	CALL
	CASE
	CONTINUE
	DEFINE
	EXIT
	FOR
	FOREACH
	IF
	LET
	ON EXCEPTION
	RAISE EXCEPTION
	RETURN
	SYSTEM
	TRACE
	WHILE

	Segments
	In This Chapter
	Arguments
	Collection-Derived Table
	Collection Subquery
	Condition
	Database Name
	Database Object Name
	Data Type
	DATETIME Field Qualifier
	Expression
	External Routine Reference
	Identifier
	INTERVAL Field Qualifier
	Jar Name
	Literal Collection
	Literal DATETIME
	Literal INTERVAL
	Literal Number
	Literal Row
	Optimizer Directives
	Owner Name
	Purpose Options
	Quoted String
	Relational Operator
	Return Clause
	Routine Modifier
	Routine Parameter List
	Shared-Object Filename
	Specific Name
	Statement Block

	Reserved Words for IBM Informix Dynamic Server
	Reserved Words for IBM�Informix Extended Parallel Server
	Notices
	Index

