IBM Informix
Guide to SQL

Syntax

IBM Informix Extended Parallel Server, Version 8.4
IBM Informix Dynamic Server, Version 9.4

March 2003
Part Nos. CT1SQNA (Volume 1) and CT1SRNA (Volume 2)

Note:
Before using this information and the product it supports, read the information in the appendix
entitled “Notices.”

This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2003. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

ii IBM Informix Guide to SQL: Syntax

Chapter 1

Table of Contents

Introduction
In This Introduction

About This Manual .
Types of Users .

Software Dependencies . .
Assumptions About Your Locale.
Demonstration Databases .

New Features in Dynamlc Server, Version 9.4 . .
New Features in Extended Parallel Server Ver510n 8. 4

Documentation Conventions
Typographical Conventions

Icon Conventions .

Syntax Conventions . .

Example-Code Conventions .
Additional Documentation .
Related Reading . .
Compliance with Industry Standards
IBM Welcomes Your Comments

Overview of SQL Syntax

In This Chapter . . .
How to Enter SQL Statements .
How to Enter SQL Comments .
Categories of SQL Statements
ANSI Compliance and Extensions

OO NJ U1 U b= b WW W

NN PR R R,
S O O NN oD O

1-3

1-6
1-9
1-13

Chapter 2 SQL Statements

In This Chapter . . . e e 27
ALLOCATE COLLECTION. e 2-8
ALLOCATE DESCRIPTOR 210
ALLOCATEROW 212
ALTER ACCESS_METHOD 214
ALTER FRAGMENT 216
ALTERFUNCTION 239
ALTERINDEX 24
ALTERPROCEDURE. 244
ALTERROUTINE 246
ALTERSEQUENCE 249
ALTERTABLE 252
BEGINWORK 28
CLOSE. . . . o)
CLOSE DATABASE e oo 288
COMMITWORK 29
CONNECT e e s 2292
CREATE ACCESS METHOD e e 21102
CREATE AGGREGATE 2104
CREATECAST 2108
CREATEDATABASE 2112
CREATE DISTINCTTYPE 2115
CREATE DUPLICATE 2118
CREATE EXTERNAL TABLE 2121
CREATE FUNCTION. 2133
CREATE FUNCTIONFROM 2141
CREATEINDEX 2144
CREATEOPAQUETYPE 2169
CREATEOPCLASS 2176
CREATEPROCEDURE 218
CREATE PROCEDUREFROM. 2192
CREATEROLE 21%
CREATEROUTINEFROM 219
CREATEROWTYPE 2198
CREATE SCHEMA. 2203
CREATE SCRATCH TABLE. 2205
CREATESEQUENCE. 2206
CREATESYNONYM 2210
CREATETABLE. 2214
CREATETEMPTABLE 2260
CREATE Temporary TABLE 2261

iv IBM Informix Guide to SQL: Syntax

CREATE TRIGGER .
CREATE VIEW
DATABASE.

DEALLOCATE COLLECTION .
DEALLOCATE DESCRIPTOR .

DEALLOCATE ROW
DECLARE .
DELETE .
DESCRIBE .
DESCRIBE INPUT
DISCONNECT

DROP ACCESS_METHOD

DROP AGGREGATE
DROP CAST

DROP DATABASE .
DROP DUPLICATE .
DROP FUNCTION .
DROP INDEX .

DROP OPCLASS .
DROP PROCEDURE
DROP ROLE

DROP ROUTINE.
DROP ROW TYPE
DROP SEQUENCE .
DROP SYNONYM .
DROP TABLE .

DROP TRIGGER .
DROP TYPE

DROP VIEW

EXECUTE .
EXECUTE FUNCTION.
EXECUTE IMMEDIATE

EXECUTE PROCEDURE .

FETCH

FLUSH

FREE . .
GET DESCRIPTOR .
GET DIAGNOSTICS
GRANT . R
GRANT FRAGMENT .
INFO .

INSERT .

2-269
2-310
2-316
2-318
2-320
2-322
2-323
2-344
2-351
2-359
2-366
2-369
2-370
2-371
2-372
2-374
2-375
2-377
2-378
2-379
2-381
2-382
2-384
2-386
2-387
2-388
2-391
2-392
2-393
2-394
2-404
2-411
2-414
2-424
2-435
2-437
2-439
2-446
2-459
2-480
2-487
2-489

Table of Contents v

LOAD 2504
LOCKTABLE 2513
OPEN . 2516
OUTPUT . 252
PREPARE. 2b27
PUT. 253
RENAMECOLUMN 2549
RENAME DATABASE 2551
RENAMEINDEX 2552
RENAMESEQUENCE 2553
RENAMETABLE 2554
REVOKE . 2557
REVOKE FRAGMENT 2575
ROLLBACKWORK 2579
SELECT . 258
SET AUTOFREE 2640
SETCOLLATION 2643
SET CONNECTION 2646
SET CONSTRAINTS 2651
SET Database ObjectMode 2-652
SET DATASKIP 265
SET DEBUGFILETO. 2661
SET Default Table Type 2-663
SET Default Table Space 2-665
SET DEFERRED_PREPARE. 2-666
SET DESCRIPTOR. 2670
SET ENVIRONMENT. 2678
SETEXPLAIN 2683
SETINDEX . 268
SETINDEXES 269
SETISOLATION 269
SETLOCKMODE. 269
SETLOG .. 269
SET OPTIMIZATION. 2700
SET PDQPRIORITY 2704
SETPLOADFILE 2707
SET Residency 2708
SETROLE. .270
SET SCHEDULELEVEL. 2712
SET SESSION AUTHORIZATION 2713
SET STATEMENTCACHE 2715
SETTABLE . 2719

vi IBM Informix Guide to SQL: Syntax

Chapter 3

Chapter 4

SET TRANSACTION
SET Transaction Mode .
SET TRIGGERS

START VIOLATIONS TABLE
STOP VIOLATIONS TABLE .

TRUNCATE

UNLOAD

UNLOCK TABLE
UPDATE .
UPDATE STATISTICS .
WHENEVER .

SPL Statements
In This Chapter
CALL.

CASE .
CONTINUE
DEFINE .

EXIT .

FOR . . .
FOREACH .

IF .

LET
ON EXCEPTION .
RAISE EXCEPTION .
RETURN
SYSTEM .
TRACE .
WHILE .

Segments

In This Chapter
Arguments . .
Collection-Derived Table .
Collection Subquery .
Condition

Database Name .
Database Object Name .
Data Type

DATETIME Field Quahfler
Expression .

External Routine Reference

2-720
2-725
2-728
2-729
2-748
2-750
2-753
2-760
2-762
2-778
2-789

3-4

3-6

3-9
3-10
3-22
3-23
3-27
3-33
3-36
3-39
3-43
3-45
3-47
3-50
3-54

43
4-5
4-7
4-22
4-24
4-44
4-46
4-49
4-65
4-67
4-187

Table of Contents vii

viii

Appendix A
Appendix B

Appendix C

Identifier .

INTERVAL Field Qualifier .

Jar Name .

Literal Collection
Literal DATETIME .
Literal INTERVAL .
Literal Number .
Literal Row .
Optimizer Directives .
Owner Name.
Purpose Options
Quoted String
Relational Operator
Return Clause

Routine Modifier
Routine Parameter List
Shared-Object Filename .
Specific Name
Statement Block .

Reserved Words for IBM Informix Dynamic Server

Reserved Words for IBM Informix Extended Parallel Server

Notices

Index

IBM Informix Guide to SQL: Syntax

4-189
4-205
4-207
4-208
4-212
4-214
4-216
4-218
4-222
4-234
4-237
4-243
4-248
4-253
4-257
4-266
4-270
4-274
4-276

Introduction

In This Introduction

About This Manual.
Types of Users .

Software Dependencies . .
Assumptions About Your Locale.
Demonstration Databases .

New Features in Dynamic Server, Version 9.4.
New Features in Extended Parallel Server Version 8. 4

Performance Enhancements .
New SQL Functionality .
Version 8.4 Features from Version 7 3

Documentation Conventions
Typographical Conventions

Icon Conventions .

Comment Icons
Feature, Product, and Platform Icons
Compliance Icons

Syntax Conventions .

Elements That Can Appear on the Path
How to Read a Syntax Diagram .
Example-Code Conventions

Additional Documentation .
Related Reading .
Compliance with Industry Standards

IBM Welcomes Your Comments

OO 00NN O Ql = B LWL W

—_
o

O
NN OO

[
N U1 W

N N ==
o O VW

2 |BM Informix Guide to SQL: Syntax

In This Introduction

This introduction provides an overview of the information in this manual
and describes the documentation conventions that it uses.

About This Manual

This manual describes the syntax of the structured query language (SQL) and
Stored Procedure Language (SPL) statements for Version 9.4 of IBM Informix
Dynamic Server and Version 8.4 of IBM Informix Extended Parallel Server.

This manual is a companion volume to the IBM Informix Guide to SQL:
Reference, the IBM Informix Guide to SQL: Tutorial, and the IBM Informix Database
Design and Implementation Guide. The IBM Informix Guide to SQL: Reference
provides reference information about the system catalog, the built-in SQL
data types, and environment variables that can affect SQL statements. The
IBM Informix Guide to SQL: Tutorial shows how to use basic and advanced SQL
and SPL routines to access and manipulate the data in your databases. The
IBM Informix Database Design and Implementation Guide shows how to use SQL
to implement and manage relational databases.

Types of Users

This manual is written for the following users:

m Database users
m Database administrators

m Database-application programmers

Introduction 3

Software Dependencies

4

This manual assumes that you have the following background:

m A working knowledge of your computer, your operating system,
and the utilities that your operating system provides

m Some experience working with relational databases or exposure to
database concepts

B Some experience with computer programming

If you have limited experience with relational databases, SQL, or your
operating system, refer to the Getting Started Guide for your database server
for a list of supplementary titles.

Software Dependencies

This manual assumes that you are using one of the following database
servers:

m IBM Informix Extended Parallel Server, Version 8.4

m IBM Informix Dynamic Server, Version 9.4

Assumptions About Your Locale

IBM Informix products can support many languages, cultures, and code sets.
All culture-specific information is brought together in a single environment,
called a Global Language Support (GLS) locale.

This manual assumes that you use the U.S. 8859-1 English locale as the
default locale. The default is en_us.8859-1 (ISO 8859-1) on UNIX platforms or
en_us.1252 (Microsoft 1252) for Windows environments. These locales
support U.S. English format conventions for dates, times, and currency, and
also support the ISO 8859-1 or Microsoft 1252 code set, which includes the
ASCII code set plus many 8-bit characters such as €, ¢, and .

If you plan to use non-ASCII characters in your data or in SQL identifiers, or
if you want to conform to localized collation rules of character data, you need
to specify an appropriate nondefault locale.

For instructions on how to specify a nondefaultlocale, additional syntax, and
other considerations related to GLS locales, see the IBM Informix GLS
Programmer’s Manual.

IBM Informix Guide to SQL: Syntax

Demonstration Databases

Demonstration Databases

The DB-Access utility, which is provided with your IBM Informix database
server products, includes one or more of the following demonstration
databases:

m The stores_demo database illustrates a relational schema with infor-
mation about a fictitious wholesale sporting-goods distributor.
Many examples in IBM Informix manuals are based on the
stores_demo database.

m The sales_demo database illustrates a dimensional schema for data-
warehousing applications. For conceptual information about dimen-
sional data modeling, see the IBM Informix Database Design and
Implementation Guide. ¢

m The superstores_demo database illustrates an object-relational
schema. The superstores_demo database contains examples of
extended data types, type and table inheritance, and user-defined
routines. ¢

For information about how to create and populate the demonstration
databases, see the IBM Informix DB-Access User’s Guide. For descriptions of the
databases and their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory on UNIX platforms and in the
%INFORMIXDIR % \bin directory in Windows environments.

New Features in Dynamic Server, Version 9.4

For a comprehensive list of new database server features, see the Getting
Started Guide. This section lists new features relevant to this manual. In
addition to documenting the new features that are listed in this section, this
manual corrects errata that have been identified since the previous edition.

The following list provides information about the new features for
IBM Informix Dynamic Server, Version 9.4, that this manual describes.

Introduction 5

New Features in Dynamic Server, Version 9.4

The following new SQL statements are documented in Chapter 2:

ALTER SEQUENCE RENAME SEQUENCE
CREATE SEQUENCE DESCRIBE INPUT
DROP SEQUENCE SET COLLATION

The following SQL statements support new syntax in Version 9.4:

ALTER FUNCTION DESCRIBE
ALTER PROCEDURE GRANT
CREATE FUNCTION REVOKE
CREATE PROCEDURE SELECT
CREATE SYNONYM SET EXPLAIN
CREATE TRIGGER SET Residency

The SET COLLATION statement can specify a localized collating order
for sorting NCHAR and NVARCHAR values that is different from
what DB_LOCALE specifies. Database objects such as indexes and
UDRs that perform sorting operations always use the collating order
that was in effect when they were created.

This release provides data definition language (DDL) statements to
support sequence objects, from which one or more users can generate
unique integers in the INT8 range. The GRANT and REVOKE state-
ments can control privileges on a sequence, and CREATE SYNONYM
can declare synonyms for sequence objects. New CURRVAL and
NEXTVAL operators can read and increment sequence objects.

The new DESCRIBE INPUT and DESCRIBE OUTPUT statements can
return information about multiple input and output parameters
prior to execution of a prepared statement.

The CREATE TRIGGER statement can create INSTEAD OF Triggers on
Views. You can use these to update views that in previous releases
did not support UPDATE operations.

The ORDER BY Clause of the SELECT statement can include column
names and expressions that did not appear in the Projection clause.

The FROM clause of the SELECT statement can include iterator
functions that create a virtual table.

The PDQ feature supports cursors that were declared WITH HOLD.
The new DESCRIBE INPUT statement supports dynamic queries.

IBM Informix Guide to SQL: Syntax

New Features in Extended Parallel Server Version 8.4

m The LOAD and UNLOAD statements for flat-file I/O can support file
sizes larger than the 2 Gigabyte limit of earlier release versions.

m User-defined functions can include multiple OUT parameters.
m SPL functions can declare named return parameters.

m Functional indexes can be based on more than 16 columns. The new
limit on index parts is language-dependent, but is greater than 90.

m The LVARCHAR data type can be declared with a new size parameter
that can be larger than the former upper limit of 2048 bytes.

m The functionality of the SET Residency statement is provided
automatically by the database server.

New Features in Extended Parallel Server Version 8.4

This manual describes new features in Version 8.4 of IBM Informix Extended
Parallel Server. The features fall into the following areas:

m Performance enhancements

m New SQL functionality

m Version 8.3 features from Dynamic Server, Version 7.30

Performance Enhancements

This manual describes the following performance enhancements to
Version 8.4 of IBM Informix Extended Parallel Server:

Insert cursors with simple large objects

Coarse-grain index locks

Updates with subquery in SET clause

Index on aggregates

New SQL Functionality

This manual describes the following new SQL functionality in Version 8.4 of
IBM Informix Extended Parallel Server:

m CASE statement in SPL
m Creating a table with RANGE fragmentation

Introduction 7

New Features in Extended Parallel Server Version 8.4

DELETE...USING statement to delete rows based on a table join
Globally detached indexes

Load and unload simple large objects to external tables
MIDDLE function

Referential integrity for globally detached indexes

TRUNCATE statement

Version 8.4 Features from Version 7.3

This manual describes the following features from Version 7.3 of Dynamic
Server in Version 8.4 of IBM Informix Extended Parallel Server:

Ability to retain update locks

ALTER FRAGMENT attach with remainders

ALTER TABLE to add or drop a foreign key constraint

ALTER TABLE to add, drop, or modify a column

Constraints on columns other than the fragmentation column
COUNT function

DBINFO provides all Version 7.3 information and adds the coserver
ID and dbspace name

Deferred constraints for all constraint types

Deferred referential-integrity constraints

Insert from SPL functions

NVL and DECODE functions

REPLACE, SUBSTR, LPAD, and RPAD string manipulation functions
RENAME COLUMN statement

TO_CHAR and TO_DATE functions for date conversion

Triggers

UPDATE SET clause subqueries

UPPER, LOWER, and INITCAP functions for case-insensitive search

Memory-resident tables

Violations table

IBM Informix Guide to SQL: Syntax

Documentation Conventions

Documentation Conventions

This section describes the conventions that this manual uses. These
conventions make it easier to gather information from this and other volumes
in the documentation set.

Typographical Conventions

This manual uses the following conventions to introduce new terms,
illustrate screen displays, describe command syntax, and so forth.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics.

italics Within syntax and code examples, variable values that you are

italics to specify appear in italics.

boldface Names of program entities (such as classes, events, and tables),

boldface environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace Information that the product displays and information that you

monospace enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

* This symbol indicates the end of product- or platform-specific
information.

- This symbol indicates a menu item. For example, “Choose

Tools—Options” means choose the Options item from the
Tools menu.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Introduction 9

Icon Conventions

Icon Conventions
Throughout the documentation, you will find text that is identified by several

different types of icons. This section describes these icons.

Comment Icons

Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,

cautions, or critical information
Important: 1dentifies paragraphs that contain significant

information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described

Feature, Product, and Platform Icons

Feature, product, and platform icons identify paragraphs that contain
feature-specific, product-specific, or platform-specific information.

Icon Description

Identifies information that is specific to C user-defined
routines (UDRs)

Identifies information that is specific to DB-Access

HI

E/C Identifies information that is specific to IBM Informix
ESQL/C

(1 of 2)

10 IBM Informix Guide to SQL: Syntax

Icon Conventions

Icon

Description

Identifies information that is specific to external routines,
that is, UDRs written in either C or Java language

GLS

Identifies information that relates to the IBM Informix
Global Language Support (GLS) feature

Identifies information or syntax that is specific to
IBM Informix Dynamic Server

Java

Identifies information that is specific to UDRs written in
Java

Identifies information that is specific to the UNIX
operating system

Identifies information that applies to all Windows
environments

Identifies information or syntax that is specific to
IBM Informix Extended Parallel Server

(2 of 2)

These icons can apply to an entire section or to one or more paragraphs
within a section. If an icon appears next to a section heading, the information
that applies to the indicated feature, product, or platform ends at the next
heading at the same or higher level. A ¢ symbol indicates the end of feature-,
product-, or platform-specific information that appears in one or more
paragraphs within a section.

Introduction 11

Syntax Conventions

Compliance Icons

Compliance icons indicate paragraphs that provide guidelines for complying
with a standard.

Icon Description

Identifies information that is specific to an ANSI-compliant
database

X/ Identifies functionality that conforms to X/Open

Identifies an Informix extension to ANSI SQL-92 entry-
level standard SQL

These icons can apply to an entire section or to one or more paragraphs
within a section. If an icon appears next to a section heading, the information
that applies to the indicated feature, product, or platform ends at the next
heading at the same or higher level. A ¢ symbol indicates the end of feature-,
product-, or platform-specific information that appears within one or more
paragraphs within a section.

Syntax Conventions

This section describes conventions for syntax diagrams. Each diagram
displays the sequences of required and optional keywords, terms, and
symbols that are valid in a given statement or segment, as Figure 1 shows.

Figure 1
Example of a Simple Syntax Diagram

SET EXPLAIN ON {

OFF

Each syntax diagram begins at the upper-left corner and ends at the upper-
right corner with a vertical terminator. Between these points, any path that
does not stop or reverse direction describes a possible form of the statement.

12 IBM Informix Guide to SQL: Syntax

Syntax Conventions

Syntax elements in a path represent terms, keywords, symbols, and segments
that can appear in your statement. The path always approaches elements
from the left and continues to the right, except in the case of separators in
loops. For separators in loops, the path approaches counterclockwise. Unless
otherwise noted, at least one blank character separates syntax elements.

Elements That Can Appear on the Path

You might encounter one or more of the following elements on a path.

Element Description

KEYWORD A word in UPPERCASE letters is a keyword. You must
spell the word exactly as shown; however, you can use
either uppercase or lowercase letters.

(..,@+%*-/) Punctuation and other nonalphanumeric characters
are literal symbols that you must enter exactly as
shown.

Vo [Single quotes are literal symbols that you must enter
as shown.]

variable A word in italics represents a value that you must
supply. A table immediately following the diagram
explains the value.

A reference in a box represents a subdiagram. Imagine
C'?al?,il:s) o that the subdiagram is spliced into the main diagram
p. 3-288 at this point. When a page number is not specified, the

ADD Clause

subdiagram appears on the same page. The aspect
ratio of a box is not significant.

Back to ADD Clause
p. 1-14

A reference in a box in the upper-right corner of a
subdiagram refers to the next higher-level diagram of
which this subdiagram is a member.

(10f3)

Introduction 13

Syntax Conventions

14

Element

Description

E/C

An icon is a warning that this path is valid only for
some products, or only under certain conditions.
Characters on the icons indicate what products or
conditions support the path.

These icons might appear in path of a syntax diagram:

Valid only for Dynamic Server.

XPS Valid only for Extended Parallel Server.

Valid only for external routines, that is,
UDRSs written in C and Java.

SPL Valid only if you are using IBM Informix
Stored Procedure Language (SPL)

E/C Valid only for INFORMIX-ESQL/C.

— ALL —

A shaded option is the default specification. This
option is in effect, unless you specify another path.

Syntax between a pair of arrows is a subdiagram.

The vertical line at the upper right terminates the
syntax diagram.

NOT

A branch below the main path indicates an optional
path. (Any term on the main path is required, unless
a branch can circumvent it.)

IBM Informix Guide to SQL: Syntax

(2 0f 3)

Syntax Conventions

Element Description
NOT FOUND A set of multiple branches indicates that a choice
among more than two different paths is available.
ERROR
WARNING

A loop indicates a path that you can repeat.

H
F) Punctuation along the top of the loop indicates the
variable

separator symbol for list items. If no symbol appears,
a blank space is the separator (except in the diagrams

§) for “Identifier” on page 4-189, “Literal Number” on
statement page 4-216, and “Quoted String” on page 4-243, which
allow no separators between characters within loops.

’ A gate (/3\) on a path indicates that you can use that
path only the indicated number of times, even if it is

size part of a larger loop. You can specify size no more than
three times within this statement segment.

(30f3)

How to Read a Syntax Diagram

Figure 2 shows a syntax diagram that uses most of the path elements that the
previous table lists.

Figure 2
Example of a Syntax Diagram

DELETE FROM table |
view L WHERE Condition
p. 4-5
synonym

~——CURRENT OF—cursor-

. Tip: For purposes of illustrating how to read syntax diagrams, this diagram has been
simplified, and does not reflect all of the options of the DELETE statement. See the
section “DELETE” on page 2-344” for the complete syntax of DELETE.

To use this diagram to construct a statement, start at the top left with the
keyword DELETE FROM. Then follow the diagram to the right, proceeding
through the options that you want.

Introduction 15

Example-Code Conventions

16

Figure 2 illustrates the following steps:

1. Type DELETE FROM.

2. You can delete a table, view, or synonym:
m Type the table name, view name, or synonym, as you desire.
m You can type WHERE to limit the rows to delete.

m If you type WHERE and you are using DB-Access or the SQL Editor,
you must include the Condition clause to specify a condition to
delete. To find the syntax for specifying a condition, go to the
“Condition” segment on the specified page.

m If you are using ESQL/C, you can include either the Condition
clause to delete a specific condition or the CURRENT OF cursor
clause to delete a row from the table.

3. Follow the diagram to the terminator.

Your DELETE statement is complete.

Example-Code Conventions

Examples of SQL code occur throughout this manual. Except where noted,
the code is not specific to any single IBM Informix application development
tool. If only SQL statements are listed in the example, they are not delimited
by semicolons. For instance, you might see the code in the following
example:

CONNECT TO stores_demo

DELETE FROM customer
WHERE customer num = 121

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules

for that product. For example, if you are using DB-Access, you must delimit

multiple statements with semicolons. If you are using an SQL API, you must

use EXEC SQL at the start of each statement and a semicolon (or other appro-
priate delimiter) at the end of the statement.

IBM Informix Guide to SQL: Syntax

Additional Documentation

Tip: Ellipses points in program fragments indicate that additional code (that a full
application would include) has been omitted to simplify presentation of the concept
under discussion. In addition, ellipses symbols never begin or end an example. In

most contexts, including literal ellipses symbols in SQL code will produce an error.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the manual for your product.

Additional Documentation

IBM Informix Dynamic Server documentation is provided in a variety of
formats:

Online manuals. The IBM Informix Online Documentation site at
http:/ /www.ibm.com/software/data/informix/pubs/library /
contains manuals provided for your use. This Web site enables you
to print chapters or entire books.

Online help. This facility provides context-sensitive help, an error
message reference, language syntax, and more.

Documentation notes and release notes. Documentation notes,
which contain additions and corrections to the manuals, and release
notes are located in the directory where the product is installed.

Please examine these files because they contain vital information
about application and performance issues.

Introduction 17

Additional Documentation

UNIX

18

On UNIX platforms in the default locale, the following online files
appear in the SINFORMIXDIR/release/en_us/0333 directory.

Online File

Purpose

ids_sqls_docnotes_9.40.html
(for Dynamic Server) or
xps_sqls_docnotes_8.40.html
(for Extended Parallel Server)

ids_unix_release_notes_9.40.html
and (in plain text format)
ids_unix_release_notes_9.40.txt
(for Dynamic Server) or
xps_release_notes_9.40.html

and (in plain text format)
xps_release_notes_9.40.txt

(for Extended Parallel Server)

ids_machine_notes_9.40.txt
(for Dynamic Server) or
xps_machine_notes_8.40.txt
(for Extended Parallel Server)

The documentation notes file for
your version of this manual describes
topics that are not covered in the
manual or that were modified since
publication.

The release notes file describes
feature differences from earlier
versions of IBM Informix products
and how these differences might
affect current products. This file also
contains information about any
known problems and their
workarounds.

The machine notes file describes any
special actions that you must take to
configure and use IBM Informix
products on your computer. Machine
notes are named for the product
described.

IBM Informix Guide to SQL: Syntax

UNIX

Related Reading

The following items appear in the Informix folder. To display this
folder, choose Start—Programs—Informix— Documentation Notes
or Release Notes from the task bar.

Program Group ltem Description

Documentation Notes This item includes additions or corrections to
manuals with information about features that
mightnotbe covered in the manuals or that have
been modified since publication.

Release Notes This item describes feature differences from
earlier versions of IBM Informix products and
how these differences might affect current
products. This file also contains information
about any known problems and their
workarounds.

Machine notes do not apply to Windows platforms. ¢

m Error message files. IBM Informix software products provide ASCII
files that contain error messages and their corrective actions.

To read the error messages on UNIX, you can use the finderr com-
mand to display the error messages online. ¢

To read error messages and corrective actions on Windows, use the
Informix Error Messages utility. To display this utility, choose
Start—Programs—Informix from the task bar. ¢

Related Reading

For a list of publications that provide an introduction to database servers and
operating-system platforms, refer to your Getting Started Guide.

Introduction 19

Compliance with Industry Standards

20

Compliance with Industry Standards

The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. IBM Informix SQL-based products are fully
compliant with SQL-92 Entry Level (published as ANSI X3.135-1992), which
is identical to ISO 9075:1992. In addition, many features of Informix database
servers comply with the SQL-92 Intermediate and Full Level and X/Open
SQL CAE (common applications environment) standards.

IBM Welcomes Your Comments

To help us with future versions of our manuals, let us know about any correc-
tions or clarifications that you would find useful. Include the following
information:

m The name and version of your manual

® Any comments that you have about the manual

m Your name, address, and phone number
Send electronic mail to us at the following address:
docinf@us.ibm.com

This address is reserved for reporting errors and omissions in our documen-
tation. For immediate help with a technical problem, contact Customer
Services.

IBM Informix Guide to SQL: Syntax

Overview of SQL Syntax

In This Chapter .

How to Enter SQL Statements .
How to Enter SQL Comments .
Categories of SQL Statements .

ANSI Compliance and Extensions

1-3
1-3
1-6

1-13

1-2 IBM Informix Guide to SQL: Syntax

In This Chapter

This chapter provides information about how to use the SQL statements, SPL
statements, and segments that are discussed in the later chapters of this book.
It is organized into the following sections.

Section Page Scope

“How to Enter SQL 1-3 How to use the statement diagrams and descrip-
Statements” tions to enter SQL statements correctly

“How to Enter SQL 1-6 How to enter comments for SQL statements
Comments”

“Categories of SQL 1-9 The SQL statements, listed by functional category
Statements”

“ANSI Compliance 1-13 The SQL statements, listed by degree of ANSI

and Extensions”

compliance

How to Enter SQL Statements

Statement descriptions are provided in this manual to help you to enter SQL
statements successfully. A statement description includes this information:

A brief introduction that explains what the statement does
A syntax diagram that shows how to enter the statement correctly
A table that explains each input parameter in the syntax diagram

Rules of usage, typically with examples that illustrate these rules

If a statement can include multiple clauses, this information is provided for

each clause.

Overview of SQL Syntax 1-3

How to Enter SQL Statements

14

Most statement descriptions conclude with references to related information
in this manual and in other manuals.

The major aids for entering SQL statements include:

m The combination of the syntax diagram and syntax table
m The examples of syntax that appear in the rules of usage

m The references to related information

Using Syntax Diagrams and Syntax Tables

Before you try to use the syntax diagrams in this chapter, it is helpful to read
the “Syntax Conventions” on page 12 of the Introduction. This section is the
key to understanding the syntax diagrams in the statement descriptions, and
explains the elements that can appear in a syntax diagram and the paths that
connect the elements to each other. This section also includes an example that
illustrates the elements of typical syntax diagrams. The narrative that follows
the example diagram shows how to read the diagram in order to enter the
statement successfully.

When a syntax diagram includes input specifications, such as identifiers,
expressions, filenames. host variables, or other terms, the syntax diagram is
followed by a table that describes how to enter the term without generating
errors. Each syntax table includes four columns:

m The Elements column lists the name of each variable term that
appears in the syntax diagram.

m The Purpose column briefly describes the term, and identifies the
default value, if the term has one.

m The Restrictions column summarizes the restrictions on the term,
such as acceptable ranges of values. (For some diagrams, restrictions
that cannot be tersely summarized appear in the Usage notes, rather
than in this column.)

m The Syntax column points to the SQL segment that gives the detailed
syntax for the term. For a few terms, such as the names of host
variables or literal characters, no page reference is provided.

The diagrams generally provide an intuitive notation for what is valid in a
given SQL statement, but for some statements, dependencies or restrictions
among syntax elements are identified only in the text of the Usage section.

IBM Informix Guide to SQL: Syntax

How to Enter SQL Statements

Using Examples

To understand the main syntax diagram and subdiagrams for a statement,
study the examples of syntax that appear in the rules of usage for each
statement. These examples have two purposes:

m To show how to accomplish specific tasks with the statement or its
clauses

m To show how to use the syntax of the statement or its clauses in a
concrete way

Tip: An efficient way to understand a syntax diagram is to find an example of the
syntax and compare it with the keywords and parameters in the syntax diagram. By
mapping the concrete elements of the example to the abstract elements of the syntax
diagram, you can understand the syntax diagram and use it more effectively.

For an explanation of the conventions used in the examples in this manual,
see “Example-Code Conventions” on page 16 of the Introduction.

These code examples are program fragments to illustrate valid syntax, rather
than complete SQL programs. In some code examples, ellipsis (. . .) symbols
indicate that additional code has been omitted. To save space, however,
ellipses are not shown at the beginning or end of the program fragments.

Using Related Information

For help in understanding the concepts and terminology in the SQL
statement description, check the “Related Information” section at the end of
each statement.

This section points to related information in this manual and other manuals
that helps you to understand the statement in question. The section provides
some or all of the following information:

m The names of related statements that might contain a fuller
discussion of topics in this statement

m The titles of other manuals that provide extended discussions of
topics in this statement

Tip: If you do not have extensive knowledge and experience with SQL, the
“IBM Informix Guide to SQL: Tutorial” gives you the basic SQL knowledge that you
need to understand and use the statement descriptions in this manual.

Overview of SQL Syntax 1-5

How to Enter SQL Comments

How to Enter SQL Comments

You can add comments to clarify the purpose or effect of particular SQL state-
ments. You can also use comment symbols during program development to
disable individual statements without deleting them from your source code.

Your comments can help you or others to understand the role of the
statement within a program, SPL routine, or command file. The code
examples in this manual sometimes include comments that clarify the role of
an SQL statement within the code, but your own SQL programs will be easier
to read and to maintain if you document them with frequent comments.

The following table shows the SQL comment indicators that you can enter in
your code. Here a Y in a column signifies that you can use the symbol with
the product or with the database type identified in the column heading. An
N in a column signifies that you cannot use the symbol with the indicated
product or database type. (For additional information about a special use of
comments, see the section “Optimizer Directives” on page 4-222.)

Comment

ANSI- Datahases

SPL Compliant Not ANSI

Symbol ESQL/C Routine DB-Access Databases Compliant Description

double Y
hyphen

(--)

braces N

(b

Y Y Y Y The double hyphen precedes a
comment within a single line. To
comment more than one line, youmust
put the double hyphen symbols at the
beginning of each comment line.

Y Y Y Y Braces enclose the comment. The {
precedes the comment, and the }
follows it. Braces can delimit single-
line or multiple-line comments, but
comments cannot be nested.

Characters within the comment are ignored by the database server.

The section “Optimizer Directives” on page 4-222 describes a context where
information that you specify within comments can influence query plans of
the database server, and where (besides comments in these two formats),
comments in the style of the C language are also valid. ¢

1-6 IBM Informix Guide to SQL: Syntax

SPL

E/C

How to Enter SQL Comments

If the product that you are using supports both comment symbols, your
choice of a comment symbol depends on requirements for ANSI compliance:

m Double hyphen (- -) complies with the ANSI/ISO standard for SQL.

m Braces ({}) are an Informix extension to the ANSI/ISO standard.

If ANSI compliance is not an issue, your choice of comment symbols is a
matter of personal preference. ¢

In DB-Access, you can use either comment symbol when you enter SQL state-
ments with the SQL editor and when you create SQL command files with the
SQL editor or a system editor. An SQL command file is an operating-system
file that contains one or more SQL statements. Command files are also known
as command scripts. For more information about command files, see the
discussion of command scripts in the IBM Informix Guide to SQL: Tutorial. For
information on how to create and modify command files with the SQL editor
or a system editor in DB-Access, see the IBM Informix DB-Access User’s Guide. ¢

You can use either comment symbol in any line of an SPL routine. See the
discussion of how to comment and document an SPL routine in the
IBM Informix Guide to SQL: Tutorial. &

In ESQL/C, the double hyphen (- -) can begin a comment that extends to the
end of the same line. For information on language-specific comment symbols
in ESQL/C programs, see the IBM Informix ESQL/C Programmer’s Manual. ¢

Examples of SQL Comment Symbols

These examples illustrate different ways to use the SQL comment indicators.

Examples of the Double-Hyphen Symbol

The next example uses the double hyphen (--) to include a comment after
an SQL statement. The comment appears on the same line as the statement.

SELECT * FROM customer -- Selects all columns and rows

The following example uses the same SQL statement and the same comment
as in the preceding example, but places the comment on a line by itself:

SELECT * FROM customer
-- Selects all columns and rows

Overview of SQL Syntax 1-7

How to Enter SQL Comments

SPL

GLS

In the following example, the user enters the same SQL statement as in the
preceding example but now enters a multiple-line comment:

SELECT * FROM customer
-- Selects all columns and rows
-- from the customer table

Examples of the Braces Symbols

This example uses braces ({ }) to delimita comment after an SQL statement.
In this example, the comment appears on the same line as the statement.

SELECT * FROM customer {Selects all columns and rows}

The next example uses the same SQL statement and the same comment as in
the preceding example, but the comment appears on a line by itself:

SELECT * FROM customer
{selects all columns and rows}

In the following example, the same SQL statement as in the preceding
example is followed by a multiple-line comment:

SELECT * FROM customer
{selects all columns and rows
from the customer table}

Non-ASCIl Characters in SQL Comments

You can enter non-ASCII characters (including multibyte characters) in SQL
comments if the database locale supports the non-ASCII characters. For
further information on the GLS aspects of SQL comments, see the IBM Informix
GLS User’s Guide.

1-8 IBM Informix Guide to SQL: Syntax

Categories of SQL Statements

Categories of SQL Statements

SQL statements are traditionally divided into these twelve logical categories:

Data definition statements. These data definition language (DDL)
statements can declare, rename, modify, or destroy database objects.

Data manipulation statements. These data manipulation language
(DML) statements can retrieve, insert, delete, or modify data values.

Cursor manipulation statements. These statements can declare,
open, and close cursors, which are data structures for operations on
multiple rows of data.

Cursor optimization statements. These statements can be used to
improve the performance of cursors.

Dynamic management statements. These statements support
memory management and allow users to specify at runtime the
details of DML operations.

Data access statements. These statements specify access privileges
and support concurrent access to the database by multiple users.

Data integrity statements. These implement transaction logging and
support the referential integrity of the database.

Optimization statements. These can be used to improve the perfor-
mance of operations on the database.

Routine definition statements. These can declare, define, modify,
execute, or destroy user-defined routines that the database stores.

Client/server connection statements. These can open or close a
connection between a database and a client application.

Auxiliary statements. These can provide information about the
database. (This is also a residual category for statements that are not
closely related to the other statement categories.)

Optical subsystem statements. These support storage and retrieval
of database objects in the optical subsystem, whose statements are
separately documented in IBM Informix Optical Subsystem Guide.)

The SQL statements of each category are listed in the pages that follow.

As their descriptions in Chapter 3 indicate, some statements (and options of
some statements, as designated with special icons in the syntax diagrams) are
specific to Dynamic Server or to Extended Parallel Server.

Overview of SQL Syntax 1-9

Categories of SQL Statements

Data Definition Statements

ALTER ACCESS_METHOD
ALTER FRAGMENT

ALTER FUNCTION

ALTER INDEX

ALTER PROCEDURE
ALTER ROUTINE

ALTER SEQUENCE

ALTER TABLE

CLOSE DATABASE
CREATE ACCESS_METHOD
CREATE AGGREGATE
CREATE CAST

CREATE DATABASE
CREATE DISTINCT TYPE
CREATE DUPLICATE
CREATE EXTERNAL TABLE
CREATE FUNCTION
CREATE FUNCTION FROM
CREATE INDEX

CREATE OPAQUE TYPE
CREATE OPCLASS
CREATE PROCEDURE

CREATE PROCEDURE FROM

CREATE ROLE

CREATE ROUTINE FROM
CREATE ROW TYPE
CREATE SCHEMA
CREATE SEQUENCE

Data Manipulation Statements

DELETE
INSERT
SELECT
UPDATE

IBM Informix Guide to SQL: Syntax

CREATE SYNONYM
CREATE TABLE
CREATE Temporary TABLE
CREATE TRIGGER
CREATE VIEW

DROP ACCESS_METHOD
DROP AGGREGATE
DROP CAST

DROP DATABASE
DROP DUPLICATE
DROP FUNCTION
DROP INDEX

DROP OPCLASS
DROP PROCEDURE
DROP ROLE

DROP ROUTINE
DROP ROW TYPE
DROP SEQUENCE
DROP SYNONYM
DROP TABLE

DROP TRIGGER
DROP TYPE

DROP VIEW
RENAME COLUMN
RENAME DATABASE
RENAME INDEX
RENAME SEQUENCE
RENAME TABLE

LOAD
TRUNCATE
UNLOAD

Categories of SQL Statements

Cursor Manipulation Statements

CLOSE
DECLARE
FETCH
FLUSH

FREE

OPEN

PUT

SET AUTOFREE

Cursor Optimization Statements

SET AUTOFREE

SET DEFERRED_PREPARE

Dynamic Management Statements

ALLOCATE COLLECTION
ALLOCATE DESCRIPTOR
ALLOCATE ROW
DEALLOCATE COLLECTION
DEALLOCATE DESCRIPTOR
DEALLOCATE ROW
DESCRIBE

DESCRIBE INPUT

Data Access Statements

GRANT

GRANT FRAGMENT
LOCK TABLE
REVOKE

REVOKE FRAGMENT
SET ISOLATION

Data Integrity Statements

BEGIN WORK

COMMIT WORK
ROLLBACK WORK

SET Database Object Mode
SET LOG

EXECUTE

EXECUTE IMMEDIATE
FREE

GET DESCRIPTOR

INFO

PREPARE

SET DEFERRED_PREPARE
SET DESCRIPTOR

SET LOCK MODE

SET ROLE

SET SESSION AUTHORIZATION
SET TRANSACTION

SET Transaction Mode

UNLOCK TABLE

SET PLOAD FILE

SET Transaction Mode
START VIOLATIONS TABLE
STOP VIOLATIONS TABLE

Overview of SQL Syntax 1-11

Categories of SQL Statements

1-12

Optimization Statements

—

SET Default Table Space SET PDQPRIORITY

SET Default Table Type SET Residency

SET ENVIRONMENT SET SCHEDULE LEVEL

SET EXPLAIN SET STATEMENT CACHE

SET OPTIMIZATION UPDATE STATISTICS
Routine Definition Statements

ALTER FUNCTION CREATE ROUTINE FROM

ALTER PROCEDURE DROP FUNCTION

ALTER ROUTINE DROP PROCEDURE

CREATE FUNCTION DROP ROUTINE

CREATE FUNCTION FROM EXECUTE FUNCTION

CREATE PROCEDURE EXECUTE PROCEDURE

CREATE PROCEDURE FROM SET DEBUG FILE TO
Auxiliary Statements

INFO SET COLLATION

OUTPUT SET DATASKIP

GET DIAGNOSTICS WHENEVER

Client/Server Connection Statements

CONNECT
DATABASE

DISCONNECT
SET CONNECTION

Optical Subsystem Statements

ALTER OPTICAL CLUSTER RELEASE
CREATE OPTICAL CLUSTER RESERVE
DROP OPTICAL CLUSTER SET MOUNTING TIMEOUT

Important: Optical Subsystem statements are described in the "IBM Informix
Optical Subsystem Guide.”

IBM Informix Guide to SQL: Syntax

ANSI Compliance and Extensions

ANSI Compliance and Extensions

The following lists show statements that are compliant with the ANSI SQL-92
standard at the entry level, statements that are ANSI compliant but include
Informix extensions, and statements that are Informix extensions to the ANSI
standard.

ANSI-Compliant Statements

CLOSE ROLLBACK WORK
COMMIT WORK SET SESSION AUTHORIZATION
EXECUTE IMMEDIATE SET TRANSACTION

ANSI-Compliant Statements with Informix Extensions

CONNECT FETCH

CREATE SCHEMA AUTHORIZATION GRANT

CREATE TABLE INSERT

CREATE Temporary TABLE OPEN

CREATE VIEW SELECT

DECLARE SET CONNECTION
DELETE SET Transaction Mode
DISCONNECT UPDATE

EXECUTE WHENEVER

Statements That Are Extensions to the ANSI Standard

ALLOCATE COLLECTION ALTER INDEX

ALLOCATE DESCRIPTOR ALTER OPTICAL CLUSTER
ALLOCATE ROW ALTER PROCEDURE
ALTER ACCESS_METHOD ALTER ROUTINE

ALTER FRAGMENT ALTER SEQUENCE

ALTER FUNCTION ALTER TABLE

BEGIN WORK

Overview of SQL Syntax 1-13

ANSI Compliance and Extensions

CLOSE DATABASE
CREATE ACCESS_METHOD
CREATE AGGREGATE
CREATE CAST

CREATE DATABASE
CREATE DISTINCT TYPE
CREATE DUPLICATE
CREATE EXTERNAL TABLE
CREATE FUNCTION
CREATE FUNCTION FROM
CREATE INDEX

DATABASE

DEALLOCATE COLLECTION
DEALLOCATE DESCRIPTOR
DEALLOCATE ROW
DESCRIBE

DESCRIBE INPUT

DROP ACCESS_METHOD
DROP AGGREGATE

DROP CAST

DROP DATABASE

DROP DUPLICATE

DROP FUNCTION

EXECUTE FUNCTION
EXECUTE PROCEDURE

GET DESCRIPTOR
GET DIAGNOSTICS

LOAD
OUTPUT

PREPARE

IBM Informix Guide to SQL: Syntax

CREATE OPAQUE TYPE
CREATE OPCLASS

CREATE OPTICAL CLUSTER
CREATE PROCEDURE
CREATE PROCEDURE FROM
CREATE ROLE

CREATE ROUTINE FROM
CREATE ROW TYPE
CREATE SEQUENCE
CREATE SYNONYM
CREATE TRIGGER

DROP INDEX
DROP OPCLASS
DROP OPTICAL CLUSTER
DROP PROCEDURE
DROP ROLE

DROP ROUTINE
DROP ROW TYPE
DROP SEQUENCE
DROP SYNONYM
DROP TABLE
DROP TRIGGER
DROP TYPE

DROP VIEW

FLUSH
FREE

GRANT FRAGMENT
INFO

LOCK TABLE

PUT

RELEASE

RENAME COLUMN
RENAME DATABASE
RENAME INDEX
RENAME SEQUENCE

SET AUTOFREE

SET COLLATION

SET Database Object Mode
SET DATASKIP

SET DEBUG FILE TO

SET Default Table Type
SET Default Table Space
SET DEFERRED_PREPARE
SET DESCRIPTOR

SET ENVIRONMENT

SET EXPLAIN

SET ISOLATION

TRUNCATE

UNLOAD
UPDATE STATISTICS

ANSI Compliance and Extensions

RENAME TABLE
RESERVE

REVOKE

REVOKE FRAGMENT

SET LOCK MODE

SET LOG

SET MOUNTING TIMEOUT
SET OPTIMIZATION

SET PDQPRIORITY

SET PLOAD FILE

SET RESIDENCY

SET ROLE

SET SCHEDULE LEVEL
SET STATEMENT CACHE
START VIOLATIONS TABLE
STOP VIOLATIONS TABLE

UNLOCK TABLE

Overview of SQL Syntax 1-15

SQL Statements

In This Chapter . 27
ALLOCATE COLLECTION. 28

ALLOCATE DESCRIPTOR 210
ALLOCATEROW 212
ALTER ACCESS_METHOD. 214
ALTER FRAGMENT 216
ALTERFUNCTION 239
ALTERINDEX . 24
ALTERPROCEDURE. 244
ALTERROUTINE 246
ALTERSEQUENCE 249
ALTERTABLE . 2b2
BEGINWORK . 28
CLOSE 28
CLOSEDATABASE 288
COMMITWORK 29
CONNECT 29
CREATE ACCESS_METHOD 2102
CREATE AGGREGATE 2104
CREATECAST . 2108
CREATEDATABASE 212
CREATE DISTINCTTYPE 2115
CREATE DUPLICATE. 2118
CREATE EXTERNALTABLE 2121
CREATEFUNCTION 2133
CREATE FUNCTIONFROM 214
CREATEINDEX. 2144

CREATEOPAQUETYPE. 2169
CREATEOPCLASS. 2176
CREATEPROCEDURE 218
CREATEPROCEDUREFROM 2192
CREATEROLE .21%
CREATEROUTINEFROM 219
CREATEROWTYPE 2198
CREATESCHEMA 2203
CREATE SCRATCHTABLE. 2205
CREATESEQUENCE 2206
CREATESYNONYM 2210
CREATETABLE. 2214
CREATETEMPTABLE 2260
CREATE Temporary TABLE. 2261
CREATETRIGGER 2269
CREATEVIEW . 2310
DATABASE . 2316
DEALLOCATE COLLECTION. 2318
DEALLOCATE DESCRIPTOR 2320
DEALLOCATEROW 2322
DECLARE. 2323
DELETE. 2344
DESCRIBE. .23
DESCRIBEINPUT 235
DISCONNECT . 2366
DROP ACCESS_METHOD 2369
DROP AGGREGATE 2370
DROPCAST237
DROPDATABASE 2372
DROP DUPLICATE. 2374
DROPFUNCTION 237
DROPINDEX. 2377
DROPOPCLASS. 2378
DROPPROCEDURE 2379
DROPROLE . 2381
DROPROUTINE 2382

2-2 |BM Informix Guide to SQL: Syntax

DROP ROW TYPE.
DROP SEQUENCE
DROP SYNONYM
DROP TABLE

DROP TRIGGER .
DROP TYPE.

DROP VIEW.

EXECUTE .
EXECUTE FUNCTION .
EXECUTE IMMEDIATE.
EXECUTE PROCEDURE
FETCH

FLUSH

FREE .o

GET DESCRIPTOR

GET DIAGNOSTICS .
GRANT .
GRANT FRAGMENT
INFO .

INSERT

LOAD .

LOCK TABLE

OPEN .

OUTPUT .

PREPARE.

pUT.
RENAME COLUMN . .
RENAME DATABASE .
RENAME INDEX . .
RENAME SEQUENCE .
RENAME TABLE .
REVOKE . .
REVOKE FRAGMENT .
ROLLBACK WORK .
SELECT

SET AUTOFREE

.2-384
.2-386
.2-387
.2-388
.2-391
.2-392
.2-393
.2-394
.2-404
.2-411
.2-414
.2-424
.2-435
.2-437
.2-439
.2-446
.2-459
.2-480
.2-487
.2-489
.2-504
.2-513
.2-516
.2-525
.2-527
.2-539
.2-549
.2-551
.2-552
.2-553
.2-554
.2-557
.2-575
.2-579
.2-581
.2-640

SQL Statements 2-3

SET COLLATION 2643
SET CONNECTION 2646
SET CONSTRAINTS 2651
SET Database ObjectMode 2-652
SETDATASKIP . 265
SET DEBUGFILETO 2661
SET Default Table Type 2-663
SET Default Table Space 2-665
SET DEFERRED_PREPARE 2-666
SET DESCRIPTOR 2670
SET ENVIRONMENT 2678
SETEXPLAIN . 2683
SETINDEX . 268
SETINDEXES. .269%
SETISOLATION.26
SETLOCKMODE 269
SETLOG . 269
SET OPTIMIZATION 2700
SET PDQPRIORITY. 2704
SETPLOADFILE 2707
SET Residency . 2708
SETROLE .. .270
SETSCHEDULELEVEL 2712
SET SESSION AUTHORIZATION. 2713
SET STATEMENTCACHE 2715
SETTABLE. .279
SET TRANSACTION27
SET TransactionMode. 2725
SETTRIGGERS . 2728
START VIOLATIONSTABLE 2729
STOP VIOLATIONSTABLE. 2748
TRUNCATE .2750
UNLOAD .2758
UNLOCKTABLE 2760
UPDATE 2762

2-4 |BM Informix Guide to SQL: Syntax

UPDATE STATISTICS2778
WHENEVER 278

SQL Statements 2-5

2-6 IBM Informix Guide to SQL: Syntax

In This Chapter

This chapter describes the syntax and semantics of SQL statements that are
recognized by Dynamic Server or Extended Parallel Server. Statements (and
statement segments, and notes describing usage) that are not marked by the
icon for one of these database servers are valid for both.

The statement descriptions appear in alphabetical order. For some state-
ments, important details of the semantics appear in other volumes of this
documentation set, as indicated by cross-references.

For many statements, the syntax diagram, or the table of terms immediately
following the diagram, or both, can includes references to syntax segments in
Chapter 4, “Segments.”

When the name of an SQL statement includes lowercase characters, such as
”CREATE Temporary TABLE,” it means that two or more different keywords
can follow the preceding uppercase keyword.

For an explanation of the structure of statement descriptions, see Chapter 1,
“Overview of SQL Syntax.”

SQL Statements 2-7

ALLOCATE COLLECTION

ALLOCATE COLLECTION

Use the ALLOCATE COLLECTION statement to allocate memory for a variable
E/C of a collection data type (such as LIST, MULTISET, or SET) or an untyped
collection variable. Use this statement with ESQL/C.

al

Syntax
ALLOCATE COLLECTION variable % I
Element Purpose Restrictions Syntax
variable Name of typed or untyped Must be an unallocated ESQL/C Must conform to language-
collection variable to allocate collection-type host variable specific rules for names

Usage

The ALLOCATE COLLECTION statement allocates memory for an ESQL/C
variable that can store the value of a collection data type.

To create a collection variable for an ESQL/C program

1. Declare the collection variable as a client collection variable in an
ESQL/C program.

The collection variable can be a typed or untyped collection variable.

2. Allocate memory for the collection variable with the ALLOCATE
COLLECTION statement.

The ALLOCATE COLLECTION statement sets SQLCODE (sqlca.sqlcode) to
zero (0) if the memory allocation was successful and to a negative error code
if the allocation failed.

You must explicitly release memory with the DEALLOCATE COLLECTION
statement. After you free the collection variable with the DEALLOCATE
COLLECTION statement, you can reuse the collection variable.

2-8 IBM Informix Guide to SQL: Syntax

ALLOCATE COLLECTION

Tip: The ALLOCATE COLLECTION statement allocates memory for an ESQL/C
collection variable only. To allocate memory for an ESQL/C row variable, use the
ALLOCATE ROW statement.

Examples

The following example shows how to allocate resources with the ALLOCATE
COLLECTION statement for the untyped collection variable, a_set:
EXEC SQL BEGIN DECLARE SECTION;
client collection a_set;

EXEC SQL END DECLARE SECTION;
ﬁXﬁC.SQL allocate collection :a_set;
The following example uses ALLOCATE COLLECTION to allocate resources
for a typed collection variable, a_typed_set:
EXEC SQL BEGIN DECLARE SECTION;

client collection set (integer not null) a_typed set;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a typed set;

Related Information
Related examples: Refer to the collection-variable example in PUT.
Related statements: ALLOCATE ROW and DEALLOCATE COLLECTION

For a discussion of collection data types in ESQL/C programs, see the
IBM Informix ESQL/C Programmer’s Manual.

SQL Statements 2-9

ALLOCATE DESCRIPTOR

E/C

ALLOCATE DESCRIPTOR

Use the ALLOCATE DESCRIPTOR statement to allocate memory for a system-
descriptor area. Use this statement with ESQL/C.

Syntax

ALLOCATE DESCRIPTORT "descriptor’ / L J ‘
descriptor_var WITH MAX items

L items_var /

-

descriptor_var
items

items_var

Element Purpose Restrictions Syntax
descriptor Quoted string that identifies a Use single (') quotes. Must be the Quoted String,
system-descriptor area unique name of an unallocated ~ p. 4-243

system-descriptor area

Host variable that contains thename Must contain name of an unallo- Language

of a system-descriptor area cated system-descriptor area specific
Number of item descriptors in Must be an unsigned INTEGER Literal Number,
descriptor. Default value is 100. greater than zero p-4-216

Host variable that contains the Data type must be INTEGER or ~ Language
number of items SMALLINT specific

Usage

The ALLOCATE DESCRIPTOR statement creates a system-descriptor area, which
is a location in memory to hold information that a DESCRIBE statement
obtains, or to hold information about the WHERE clause of a statement.

A system-descriptor area contains one or more fields called item descriptors.
Each item descriptor holds a data value that the database server can receive
or send. The item descriptors also contain information about the data, such
as data type, length, scale, precision, and nullability.

A system-descriptor area holds information that a DESCRIBE...USING SQL
DESCRIPTOR statement obtains or it holds information about the WHERE
clause of a dynamically executed statement.

2-10 IBM Informix Guide to SQL: Syntax

ALLOCATE DESCRIPTOR

If the name that you assign to a system-descriptor area matches the name of
an existing system-descriptor area, the database server returns an error. If
you free the descriptor with the DEALLOCATE DESCRIPTOR statement, you
can reuse the descriptor.

WITH MAX Clause

You can use the WITH MAX clause to indicate the maximum number of item
descriptors you need. When you use this clause, the COUNT field is set to the
number of items that you specify. If you do not specify the WITH MAX clause,
the default value of the COUNT field is 100. You can change the value of the
COUNT field with the SET DESCRIPTOR statement.

The following examples show valid ALLOCATE DESCRIPTOR statements.
Each example includes the WITH MAX clause. The first line uses embedded
variable names to identify the system-descriptor area and to specify the
desired number of item descriptors. The second line uses a quoted string to
identify the system-descriptor area and an unsigned integer to specify the
desired number of item descriptors.

EXEC SQL allocate descriptor :descname with max :occ;

EXEC SQL allocate descriptor 'descl' with max 3;

Related Information

Related statements: DEALLOCATE DESCRIPTOR, DECLARE, DESCRIBE,
EXECUTE, FETCH, GET DESCRIPTOR, OPEN, PREPARE, PUT, and SET
DESCRIPTOR

For more information on system-descriptor areas, refer to the IBM Informix
ESQL/C Programmer’s Manual.

SQL Statements 2-11

ALLOCATE ROW

ALLOCATE ROW

Use the ALLOCATE ROW statement to allocate memory for a ROW variable.

al

E/C Use this statement with ESQL/C.
Syntax
ALLOCATE ROW variable | I
Element Purpose Restrictions Syntax
variable Name of a typed or untyped Must be an unallocated ESQL/C Must conform to language-
ROW variable to allocate ROW-type host variable. specific rules for names.

Usage

The ALLOCATE ROW statement allocates memory for a variable that stores
ROW-type data.

To create a row variable using your ESQL/C program

1. Declare the ROW variable.
The ROW variable can be a typed or untyped ROW variable.

2. Allocate memory for the ROW variable with the ALLOCATE ROW
statement.

The ALLOCATE ROW statement sets SQLCODE (sqlca.sqlcode) to zero (0) if
the memory allocation was successful and to a negative error code if the
allocation failed.

You must explicitly release memory with the DEALLOCATE ROW statement.
Once you free the ROW variable with the DEALLOCATE ROW statement, you
can reuse the ROW variable.

Tip: The ALLOCATE ROW statement allocates memory for an ESQL/C row variable
only. To allocate memory for an ESQL/C collection variable, use the ALLOCATE

COLLECTION statement.

2-12 IBM Informix Guide to SQL: Syntax

ALLOCATE ROW

When you use the same ROW variable in multiple calls without deallocating
it, a memory leak on the client computer results. Because there is no way to
determine if a pointer is valid when it is passed, ESQL/C assumes that it is not
valid and assigns it to a new memory location.

Example

The following example shows how to allocate resources with the ALLOCATE
ROW statement for the typed ROW variable, a_row:

EXEC SQL BEGIN DECLARE SECTION;
row (a int, b int) a_row;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate row :a_row;

Related Information
Related statements: ALLOCATE COLLECTION and DEALLOCATE ROW

For a discussion of complex data types in ESQL/C programs, see the
IBM Informix ESQL/C Programmer’s Manual.

SQL Statements 2-13

ALTER ACCESS_METHOD

ALTER ACCESS_METHOD

The ALTER ACCESS_METHOD statement changes the attributes of a user-
defined access method in the sysams system catalog table.

Syntax
3
ALTER ACCESS_METHOD access_method MODIEY Pg;%gie
J p. 4-237
ADD
DROP purpose_keyword
Element Purpose Restrictions Syntax
access_method Name of the access The access method must be registered in the Database Object
method to alter sysams system catalog table with a previous Name, p. 4-46
CREATE ACCESS_METHOD statement
purpose_keyword A keyword that The keyword must be associated with the ~ Purpose Functions,
indicates which access method by a previous statement Methods, Flags, and
feature to change Values, p. 4-239

Usage

Use ALTER ACCESS_METHOD to modify the definition of a user-defined
access method. You must be the owner of the access method or have DBA
privileges to alter an access method.

When you alter an access method, you change the purpose-option specifica-
tions (purpose functions, purpose methods, purpose flags, or purpose
values) that define the access method. For example, you might alter an access
method to assign a new user-defined function or method name or to provide
a multiplier for the scan cost on a table.

If a transaction is in progress, the database server waits to alter the access
method until the transaction is committed or rolled back. No other users can
execute the access method until the transaction has completed.

2-14 IBM Informix Guide to SQL: Syntax

ALTER ACCESS_METHOD

Example

The following statement alters the remote user-defined access method:

ALTER ACCESS_METHOD remote
ADD am_scancost = FS_scancost,
ADD am_rowids,
DROP am_getbyid,
MODIFY am_costfactor = 0.9;

The preceding example makes the following changes to the access method:

m Adds a user-defined function or method named FS_scancost(),
which is associated in the sysams table with the am_scancost
keyword

m Sets (adds) the am_rowids flag

m Drops the user-defined function or method associated with the
am_getbyid keyword

m Modifies the am_costfactor value

Related Information
Related statements: CREATE ACCESS_METHOD and DROP ACCESS_METHOD

For detailed information about how to set purpose-option specifications, see
“Purpose Options” on page 4-237.

For more information on primary-access methods, see the IBM Informix
Virtual-Table Interface Programmer’s Guide.

For more information on secondary-access methods, see the IBM Informix
Virtual-Index Interface Programmer’s Guide.

For a discussion of privileges, see the GRANT statement or the IBM Informix
Database Design and Implementation Guide.

SQL Statements 2-15

ALTER FRAGMENT

ALTER FRAGMENT

Use the ALTER FRAGMENT statement to alter the distribution strategy or
storage location of an existing table or index.

Syntax

ALTER FRAGMENT OETABLE— surviving_table

ATTACH Clause

N— INDEX — surviving_index

p. 2-19

DETACH Clause
p. 2-27

INIT Clause

ADD Clause

p. 2-29

p. 2-34

DROP Clause

MODIFY Clause
p. 2-37

p. 2-36

T

page 2-17

Element Purpose Restrictions Syntax

surviving_index Index on which to modify the Must exist when the statement Database Object
distribution or storage executes Name, p. 4-46

surviving_table Table on which to modify the Must exist. See “Restrictions on the Database Object
distribution or storage ALTER FRAGMENT Statement” on ~ Name, p. 4-46

Usage

The ALTER FRAGMENT statement applies only to table fragments or index
fragments that are located at the current site (or cluster, for Extended Parallel

Server). No remote information is accessed or updated.

You must have the Alter or the DBA privilege to change the fragmentation
strategy of a table. You must have the Index or the DBA privilege to alter the

fragmentation strategy of an index.

2-16 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT

Warning: This statement can cause indexes to be dropped and rebuilt. Before under-
taking alter operations, check corresponding sections in your “Performance Guide”
to review effects and strategies.

Clauses of the ALTER FRAGMENT statement support the following tasks.

Clause Purpose

ATTACH Combines tables that contain identical table structures into a single
fragmented table

DETACH Detaches a table fragment or slice from a fragmentation strategy and
places it in a new table
INIT Provides the following options:
m Defines and initializes a fragmentation strategy on a table
m Creates a fragmentation strategy for tables
m Changes the order of evaluation of fragment expressions
m Alters the fragmentation strategy of an existing table or index

m Changes the storage location of an existing table

ADD Adds an additional fragment to an existing fragmentation list
DROP Drops an existing fragment from a fragmentation list
MODIFY Changes an existing fragmentation expression

Use the CREATE TABLE statement or the INIT clause of the ALTER FRAGMENT
statement to create fragmented tables.

Restrictions on the ALTER FRAGMENT Statement

You cannot use the ALTER FRAGMENT statement on a temporary table, an
external table, or on a view. If your table or index is not already fragmented,
the only clauses available to you are INIT and ATTACH.

You cannot use ALTER FRAGMENT on a generalized-key (GK) index. If the
surviving_table has hash fragmentation, the only clauses available are
ATTACH and INIT. You cannot use the ALTER FRAGMENT statement on any
table that has a dependent GK index defined on it. In addition, you cannot use
this statement on a table that has range fragmentation. ¢

SQL Statements 2-17

ALTER FRAGMENT

You cannot use ALTER FRAGMENT on a typed table that is part of a table
hierarchy. ¢

ALTER FRAGMENT and Transaction Logging

If your database uses logging, ALTER FRAGMENT is executed within a single
transaction. When the fragmentation strategy uses large numbers of records,
you might run out of log space or disk space. (The database server requires
extra disk space for the operation; it later frees the disk space).

When you run out of log space or disk space, try one of the following
procedures to make more space available:

m Turn off logging and turn it back on again at the end of the operation.
This procedure indirectly requires a backup of the root dbspace.

m Split the operations into multiple ALTER FRAGMENT statements,
moving a smaller portion of records each time.

For information about log-space requirements and disk-space requirements,
see your Administrator’s Guide. That guide also contains detailed instructions
about how to turn off logging. For information about backups, refer to your
IBM Informix Backup and Restore Guide.

Determining the Number of Rows in the Fragment

You can place as many rows into a fragment as the available space in the
dbspace allows.

To find out how many rows are in a fragment

1. Runthe UPDATE STATISTICS statement on the table. This step fills the
sysfragments system catalog table with the current table
information.

2. Query the sysfragments system catalog table to examine the npused
and nrows fields. The npused field gives you the number of data
pages used in the fragment, and the nrows field gives you the
number of rows in the fragment.

2-18 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT

ATTACH Clause

Use the ATTACH clause to combine tables that contain identical table
structures into a fragmentation strategy.

ATTACH Back to ALTER FRAGMENT
Clause p. 2-16

ble

—pp»—ATTACH surviving_ta > o
consumed_table/ AS expression% BEFORE dbspace
AFTER

~———/1\+— AS REMAINDER

Element Purpose Restrictions Syntax
consumed_ Table that loses its identity ~Must exist. Cannot include serial columns Database Object
table to be merged with nor unique, referential, or primary key Name, p. 4-46
surviving_table constraints. See also “General Restrictions
for the ATTACH Clause” on page 2-20.
dbspace Dbspace(s) that specifies Must exist. See also “Altering Hybrid- Identifier,
where the consumed table ~Fragmented Tables” on page 2-22. p. 4-189

expression exists in the
fragmentation list

expression Expression that defines Can include only columns from the Condition,
which rows are stored ina current table, and only data values froma p. 4-24;
fragment single row. See also “General Restrictions Expression,

for the ATTACH Clause” on page 2-20. p. 4-67

surviving_table Table on which to modify =~ Must exist. Cannot have any constraints. ~ Database Object
the distribution or storage See also “Restrictions on the ALTER Name, p. 4-46
FRAGMENT Statement” on page 2-17.

SQL Statements 2-19

ALTER FRAGMENT

To use this clause, you must have the DBA privilege, or else be the owner of
the specified tables. The ATTACH clause supports the following tasks:

m Creates a single fragmented table by combining two or more identi-
cally-structured, nonfragmented tables

(See “Combining Nonfragmented Tables to Create a Fragmented
Table” on page 2-21.)

m Attaches one or more tables to a fragmented table

(See “Attaching a Table to a Fragmented Table” on page 2-21.)

General Restrictions for the ATTACH Clause

Any tables that you attach must have been created previously in separate
dbspaces. You cannot attach the same table more than once.

All consumed tables listed in the ATTACH clause must have the same
structure as the surviving table. The number, names, data types, and relative
position of the columns must be identical.

The expression cannot include aggregates, subqueries, nor variant functions.

User-defined routines and references to fields of a row-type column are not
valid. You cannot attach a fragmented table to another fragmented table. ¢

Additional Restrictions on the ATTACH Clause Specific to XPS

In addition to the general restrictions, every consumed table must be of the
same usage type as the surviving table. For information about how to specify
the usage type of a table, refer to “Logging Options” on page 2-215.

The ATTACH clause is not valid under either of the following conditions:

m If the consumed tables contain data that belongs in some existing
fragment of the surviving table

m If existing data in the surviving table would belong in a new
fragment

Thus, you cannot use the ATTACH clause for data movement among
fragments. To perform this task, see the “INIT Clause” on page 2-29.

2-20 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT

Using the BEFORE, AFTER, and REMAINDER Options

The BEFORE and AFTER options allow you to place a new fragment either
before or after an existing dbspace. You cannot use the BEFORE and AFTER
options when the distribution scheme is round-robin.

When you attach a new fragment without an explicit BEFORE or AFTER
option, the database server places the added fragment at the end of the
fragmentation list, unless a remainder fragment exists. If a remainder
fragment exists, the new fragment is placed just before the remainder
fragment. You cannot attach a new fragment after the remainder fragment.

When you create or append to a hybrid-fragmented table, the positioning
specification (BEFORE, AFTER, or REMAINDER) applies to an entire dbslice.
You can use any dbspace in a dbslice to identify the dbslice for the BEFORE or
AFTER position. ¢

Combining Nonfragmented Tables to Create a Fragmented Table

When you transform tables with identical table structures into fragments in
a single table, you allow the database server to manage the fragmentation
instead of allowing the application to manage the fragmentation. The distri-
bution scheme can be round-robin or expression-based.

To make a single, fragmented table from two or more identically-structured,
nonfragmented tables, the ATTACH clause must contain the surviving table
in the attach list. The attach list is the list of tables in the ATTACH clause.

To include a rowid column in the newly-created single, fragmented table,
attach all tables first and then add the rowid with the ALTER TABLE
statement. ¢

Attaching a Table to a Fragmented Table

To attach a nonfragmented table to an already fragmented table, the
nonfragmented table must have been created in a separate dbspace and must
have the same table structure as the fragmented table. In the following
example, a round-robin distribution scheme fragments the table cur_acct,
and the table old_acct is a nonfragmented table that resides in a separate
dbspace. The example shows how to attach old_acct to cur_acct:

ALTER FRAGMENT ON TABLE cur_ acct ATTACH old acct

SQL Statements 2-21

ALTER FRAGMENT

When you attach one or more tables to a fragmented table, a consumed_table
must be nonfragmented. ¢

When you attach one or more tables to a fragmented table, a consumed_table
can be nonfragmented or have hash fragmentation.

If you specify a consumed_table that has hash fragmentation, the hash
column specification must match that of the surviving_table and any other
consumed_table involved in the attach operation. ¢

Altering Hybrid-Fragmented Tables

When you alter a hybrid-fragmented table with either an ATTACH or
DETACH clause, you need specify only one dbspace to identify the entire set
of dbspaces that are associated with a given expression in the base fragmen-
tation strategy of the table. The set of dbspaces associated with an expression
in the base fragmentation strategy of the table might have been defined as
one or more dbslices or a dbspaces. For more information, see “Fragmenting
by HYBRID” on page 2-243.

If you know the name of the dbslice but not the names any of the dbspaces
that it is made up of, you can name the first dbspace in the dbslice by
adding. 1 to the name of the dbslice. For example, if the dbslice were named
dbsl1, you could specify dbs11.1.

Effect of the ATTACH Clause

After an ATTACH operation, all consumed tables no longer exist. Any
constraints (CHECK or NOT NULL) that were on the consumed tables also no
longer exist. You must reference the records that were in the consumed tables
through the surviving table.

What Happens to Indexes?

In a logging database, an ATTACH operation extends any attached index on
the surviving table according to the new fragmentation strategy of the
surviving table. All rows in the consumed table are subject to these automat-
ically adjusted indexes. For information on whether the database server
completely rebuilds the index on the surviving table or reuses an index that
was on the consumed table, see your Performance Guide.

2-22 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT

In a nonlogging database, an ATTACH operation does not extend indexes on
the surviving table according to the new fragmentation strategy of the
surviving table. To extend the fragmentation strategy of an attached index
according to the new fragmentation strategy of the surviving table, you must
drop the index and re-create it on the surviving table. ¢

A detached index on the surviving table retains its same fragmentation
strategy. That is, a detached index does not automatically adjust to accom-
modate the new fragmentation of the surviving table. For more information
on what happens to indexes, see the discussion about altering table
fragments in your Performance Guide.

What Happens to BYTE and TEXT Columns?

Each BYTE and TEXT column in every table that is named in the ATTACH
clause must have the same storage type, either blobspace or tblspace. If the
BYTE or TEXT column is stored in a blobspace, the same column in all tables
must be in the same blobspace. If the BYTE or TEXT column is stored in a
tblspace, the same column must be stored in a tblspace in all tables. ¢

In Extended Parallel Server, BYTE and TEXT columns are stored in separate
fragments created for that purpose. If a table includes a BYTE or TEXT
column, the database server creates a separate, additional fragment in the
same dbspace as each regular table fragment. BYTE or TEXT columns are
stored in the separate fragment that is associated with the regular table
fragment where a given row resides.

When an ATTACH occurs, BYTE and TEXT fragments of the consumed table
become part of the surviving table and continue to be associated with the
same rows and data fragments as they were before the ATTACH. ¢

What Happens to Triggers and Views?

When you attach tables, triggers on the surviving table survive the ATTACH,
but triggers on the consumed table are automatically dropped. No triggers
are activated by the ATTACH clause, but subsequent data-manipulation
operations on the new rows can activate triggers.

Views on the surviving table survive the ATTACH operation, but views on the
consumed table are automatically dropped.

SQL Statements 2-23

ALTER FRAGMENT

XPS

2-24

What Happens with the Distribution Scheme?

You can attach a nonfragmented table to a table with any type of supported
distribution scheme. In general, the resulting table has the same fragmen-
tation strategy as the prior fragmentation strategy of the surviving_table.

When you attach two or more nonfragmented tables, however, the distri-
bution scheme can either be based on expression or round-robin.

The following table shows the distribution schemes that can result from
different distribution schemes of the tables mentioned in the ATTACH clause.

Prior Distribution Scheme Prior Distribution Scheme

of Surviving Table of Consumed Tahle Resulting Distribution Scheme
None None Round-robin or expression
Round-robin None Round-robin
Expression None Expression

L4

The following table shows the distribution schemes that can result from
different distribution schemes of the tables mentioned in the ATTACH clause.

Prior Distribution Scheme Prior Distribution Scheme

of Surviving Table of Consumed Tahle Resulting Distribution Scheme
None None Round-robin or expression
None Hash Hybrid

Round-robin None Round-robin

Expression None Expression

Hash None Hybrid

Hash Hash Hybrid

Hybrid None Hybrid

Hybrid Hash Hybrid

IBM Informix Guide to SQL: Syntax

When you attach a nonfragmented table to a table that has hash fragmen-
tation, the resulting table has hybrid fragmentation.

ALTER FRAGMENT

You can attach a table with a hash distribution scheme to a table that
currently has no fragmentation, hash fragmentation, or hybrid fragmen-
tation. In any of these situations, the resulting table has a hybrid distribution
scheme. ¢

The following examples illustrate the use of the ATTACH clause to create
fragmented tables with different distribution schemes.

Round-Robin Distribution Scheme

The following example combines nonfragmented tables pen_types and
pen_makers into a single, fragmented table, pen_types. Table pen_types
resides in dbspace dbsp1, and table pen_makers resides in dbspace dbsp2.
Table structures are identical in each table.

ALTER FRAGMENT ON TABLE pen_types ATTACH pen_types, pen _makers

After you execute the ATTACH clause, the database server fragments the table
pen_types round-robin into two dbspaces: the dbspace that contained
pen_types and the dbspace that contained pen_makers. Table pen_makers
is consumed, and no longer exists; all rows that were in table pen_makers are
now in table pen_types.

Expression Distribution Scheme

Consider the following example that combines tables cur_acct and new_acct
and uses an expression-based distribution scheme. Table cur_acct was origi-
nally created as a fragmented table and has fragments in dbspaces dbsp1 and
dbsp2. The first statement of the example shows that table cur_acct was
created with an expression-based distribution scheme. The second statement
of the example creates table new_acct in dbsp3 without a fragmentation
strategy. The third statement combines the tables cur_acct and new_acct.
Table structures (columns) are identical in each table.

CREATE TABLE cur_acct (a int) FRAGMENT BY EXPRESSION
a < 5 in dbspl,
a >= 5 and a < 10 in dbsp2;

CREATE TABLE new_acct (a int) IN dbsp3;

ALTER FRAGMENT ON TABLE cur_acct ATTACH new_acct AS a>=10;

SQL Statements 2-25

ALTER FRAGMENT

2-26

When you examine the sysfragments system catalog table after you alter the
fragment, you see that table cur_acct is fragmented by expression into three
dbspaces. For additional information about the sysfragments system catalog
table, see the IBM Informix Guide to SQL: Reference.

In addition to simple range rules, you can use the ATTACH clause to fragment
by expression with hash or arbitrary rules. For a discussion of all types of
expressions in an expression-based distribution scheme, see “FRAGMENT
BY Clause for Tables” on page 2-31.

Warning: When you specify a date value as the default value for a parameter, make
sure to specify 4 digits instead of 2 digits for the year. When you specify a 4-digit year,
the DBCENTURY environment variable has no effect on how the database server
interprets the date value. When you specify a 2-digit year, DBCENTURY can affect
how the database server interprets the date value, so the UDR might not use the
default value that you intended. For more information, see the “IBM Informix Guide
to SQL: Reference.”

Hybrid Fragmentation Distribution Scheme

Consider a case where monthly sales data is added to the sales_info table
defined below. Due to the large amount of data, the table is distributed
evenly across multiple coservers with a system-defined hash function. To
manage monthly additions of data to the table, it is also fragmented by a date
expression. The combined hybrid fragmentation is declared in the following
CREATE TABLE statement:

CREATE TABLE sales_info (order num INT, sale date DATE, ...)
FRAGMENT BY HYBRID (order num) EXPRESSION
sale date >= '01/01/1996' AND sale date < '02/01/1996"'
IN sales_slice_ 9601,
sale date >= '02/01/1996' AND sale date < '03/01/1996"'
IN sales_slice_ 9602,

sale date >= '12/01/1996' AND sale date < '01/01/1997'
IN sales_slice 9612

The data values for a new month are originally loaded from an external
source. The data values are distributed evenly across the name coservers on
which the sales_info table is defined, using a system-defined hash function
on the same column:

CREATE TABLE jan 97 (order num INT, sale date DATE, ...)
FRAGMENT BY HASH (order _num) IN sales_slice_ 9701
INSERT INTO jan 97 SELECT (...) FROM ...

IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT

After data values are loaded, you can attach the new table to sales_info. You
can issue the following ALTER FRAGMENT statement to attach the new table:

ALTER FRAGMENT ON TABLE sales_info ATTACH jan_ 97
AS sale date >= '01/01/1997' AND sale date < '02/01/1997'

DETACH Clause

Use the DETACH clause to detach a table fragment from a distribution scheme
and place the contents into a new nonfragmented table.

“ In Extended Parallel Server, the new table can also be a table with hash

fragmentation. ¢

For an explanation of distribution schemes, see “FRAGMENT BY Clause for
Tables” on page 2-31.

DETACH Back to ALTER FRAGMENT
Clause p. 2-16
—pp»————— DETACH dbspace new_table -

-

Element Purpose Restrictions Syntax

dbspace Dbspace that contains the fragment to be detached. With Must exist at the Identifier,
a hybrid-fragmented table, dbspace identifies a set of time of execution. p.4-189
dbspaces (XPS only). See “Altering Hybrid-Fragmented
Tables” on page 2-22.

new_table Nonfragmented table that results after you execute the Must not exist Database Object
ALTER FRAGMENT statement. (In XPS, this can also be before the time of Name, p. 4-46
a hash-fragmented table.) execution.

The new table that results from executing the DETACH clause does not inherit
any indexes or constraints from the original table. Only the data remains.

Similarly, the new table does not inherit any privileges from the original
table. Instead, the new table has the default privileges for any new table. For
further information on default table-level privileges, see the GRANT
statement on “Table-Level Privileges” on page 2-463.

The DETACH clause cannot be applied to a table if that table is the parent of a
referential constraint or if a rowid column is defined on the table.

SQL Statements 2-27

ALTER FRAGMENT

In Extended Parallel Server, you cannot use the DETACH clause if the table
has a dependent GK index defined on it. ¢

Detach That Results in a Nonfragmented Table

The following example shows the table cur_acct fragmented into two
dbspaces, dbsp1 and dbsp2:

ALTER FRAGMENT ON TABLE cur_acct DETACH dbsp2 accounts

This example detaches dbsp2 from the distribution scheme for cur_acct and
places the rows in a new table, accounts. Table accounts now has the same
structure (column names, number of columns, data types, and so on) as table
cur_acct, but the table accounts does not contain any indexes or constraints
from the table cur_acct. Both tables are now nonfragmented. The following
example shows a table that contains three fragments:

ALTER FRAGMENT ON TABLE bus_acct DETACH dbsp3 cli_acct

This statement detaches dbsp3 from the distribution scheme for bus_acct
and places the rows in a new table, cli_acct. Table cli_acct now has the same
structure (column names, number of columns, data types, and so on) as
bus_acct, but the table cli_acct does not contain any indexes or constraints
from the table bus_acct. Table cli_acct is a nonfragmented table, and table
bus_acct remains a fragmented table.

Detach That Results in a Table with Hash Fragmentation

The new table is a hash-fragmented table if the surviving_table had hybrid
fragmentation and the detached dbslice has more than one fragment. In a
hybrid-fragmented table, the dbslice is detached if you specify any dbspace
in that slice. For example, see the sales_info table discussed in the “Hybrid
Fragmentation Distribution Scheme” on page 2-26. Once the January 1997
data is available in sales_info, you might archive year-old sales_info data.

ALTER FRAGMENT ON TABLE sales_info
DETACH sales_slice 9601.1 jan_96

In this example, data from January 1996 is detached from the sales_info table
and placed in a new table called jan_96.

2-28 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT

INIT Clause
The INIT clause of ALTER FRAGMENT has the following syntax.
INIT Back to ALTER FRAGMENT
Clause p. 2-16

FRAGMENT BY Clause for Tables

—p»— INIT E p. 2-31
J IN dbspace

kWITH ROWIDS

FRAGMENT BY Clause for Indexes

p. 2-33
- IN abslice
Element Purpose Restrictions Syntax
dbslice Dbslice storing fragmented information Must exist at time of execution. Identifier, p. 4-189
dbspace Dbspace storing fragmented information Must exist at time of execution. Identifier, p. 4-189

The INIT clause can accomplish tasks like the following:

Move a nonfragmented table from one dbspace to another dbspace.
Convert a fragmented table to a nonfragmented table.
Fragment an existing not fragmented table without redefining it.

Convert a fragmentation strategy to another fragmentation strategy.

Fragment an existing index that is not fragmented without
redefining the index.

m Convert a fragmented index to a nonfragmented index. ¢

XPS You cannot use the INIT clause to change the fragmentation strategy of a table
that has a GK index. ¢

When you use the INIT clause to modify a table, the tabid value in the system
catalog tables changes for the affected table. The constrid of all unique and
referential constraints on the table also change.

For more information about the storage spaces in which you can store a table,
see “Using the IN Clause” on page 2-237.

SQL Statements 2-29

ALTER FRAGMENT

——-

Warning: When you execute the ALTER FRAGMENT statement with this clause, it
results in data movement if the table contains any data. If data moves, the potential
exists for significant logging, for the transaction being aborted as a long transaction,
and for a relatively long exclusive lock being held on the affected tables. Use this
statement when it does not interfere with day-to-day operations.

WITH ROWIDS Option

Nonfragmented tables contain a hidden column called rowid. By default,
fragmented tables do not contain this column unless it is explicitly created.
You can use the WITH ROWIDS option to add a new rowid column. The
database server assigns a unique rowid number to each row and automati-
cally creates an index that it can use to find the physical location of the row.
The rowid value of a row cannot be updated, but remains stable during the
existence of the row. Each row requires an additional 4 bytes to store the
rowid column after you specify the WITH ROWIDS option.

Important: The rowid column is a deprecated feature. You should use primary keys,
rather than the rowid column, as an access method.

Converting a Fragmented Table to a Nonfragmented Table

You might decide that you no longer want a table to be fragmented. You can
use the INIT clause to convert a fragmented table to a nonfragmented table.
The following example shows the original fragmentation definition as well as
how to use the ALTER FRAGMENT statement to convert the table:

CREATE TABLE checks (coll INT, col2 INT)
FRAGMENT BY ROUND ROBIN IN dbspl, dbsp2, dbsp3;

ALTER FRAGMENT ON TABLE checks INIT IN dbspl;

You must use the IN dbspace clause to place the table in a dbspace explicitly.

When you use the INIT clause to change a fragmented table to a
nonfragmented table, all attached indexes become nonfragmented indexes.
In addition, constraints that do not use existing user indexes (detached
indexes) become nonfragmented indexes. All newly nonfragmented indexes
exist in the same dbspace as the new nonfragmented table.

Using the INIT clause to change a fragmented table to a nonfragmented table
has no effect on the fragmentation strategy of detached indexes, nor of
constraints that use detached indexes.

2-30 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT

FRAGMENT BY Clause for Tables

Use the FRAGMENT BY portion of the INIT clause to fragment an existing non-
fragmented table, or to convert one fragmentation strategy to another.

FRAGMENT BY Back to INIT Clause
Clause for Tables p. 2-29
C oo
—p»— FRAGMENT BY ROUND ROBIN IN dbspace

’
EXPRESSIONLexpr—IN dbspacegy REMAIN?IN dbspace

Con (gace s C oo
\HASH—(coluﬂ) IN \(dbspace ’ dbspace)
’ dbslice

(EXPRESSION g expr IN dbslice

~ »—~REMAINDER—IN dbslice
’ 1 exprj dbspace
, J &gﬁpﬁ))
N HYBRID 7(CcolunD) dbspace (Cdbspace)

Element Purpose Restrictions Syntax

column Column to which fragmentation Must exist in the specified Identifier, p. 4-189
strategy applies table.

dbslice Dbslice that contains the table fragment Must be defined. Identifier, p. 4-189

dbspace Dbspace that contains the table Must specify at least two but Identifier, p. 4-189
fragment no more than 2,048 dbspaces.

expr Expression that defines a table fragment Must evaluate to a Boolean Expression, p. 4-67
by a range, hash, or arbitrary rule value (true or false).

In the HYBRID clause, column identifies the column or columns on which you
want to apply the hash portion of the hybrid table fragmentation strategy.
The expression can contain only columns from the current table and only data
values from a single row. No subqueries or aggregates are allowed. In
addition, the built-in CURRENT, DATE, and TIME functions are not valid.

SQL Statements 2-31

ALTER FRAGMENT

For more information on the available fragmentation strategies, see the
“FRAGMENT BY Clause” on page 2-238.

Changing an Existing Fragmentation Strategy on a Table

You can redefine a fragmentation strategy on a table if you decide that your
initial strategy does not fulfill your needs. When you alter a fragmentation
strategy, the database server discards the existing fragmentation strategy and
moves records to fragments as defined in the new fragmentation strategy.

The following example shows the statement that originally defined the
fragmentation strategy on the table account and then shows an ALTER
FRAGMENT statement that redefines the fragmentation strategy:

CREATE TABLE account (coll INT, col2 INT)
FRAGMENT BY ROUND ROBIN IN dbspl, dbsp2;
ALTER FRAGMENT ON TABLE account
INIT FRAGMENT BY EXPRESSION
coll < 0 IN dbspl,
col2 >= 0 IN dbsp2;

If an existing dbspace is full when you redefine a fragmentation strategy, you
must not use it in the new fragmentation strategy.

Defining a Fragmentation Strategy on a Nonfragmented Table

The INIT clause can define a fragmentation strategy on a nonfragmented
table, regardless of whether the table was created with a storage option:

CREATE TABLE balances (coll INT, col2 INT) IN dbspl;
ALTER FRAGMENT ON TABLE balances INIT

FRAGMENT BY EXPRESSION

coll <= 500 IN dbspl,

coll > 500 AND coll <=1000 IN dbsp2,

REMAINDER IN dbsp3;

When you use the INIT clause to fragment an existing nonfragmented table,
all indexes on the table become fragmented in the same way as the table. ¢

When you use the INIT clause to fragment an existing nonfragmented table,
indexes retain their existing fragmentation strategy. ¢

2-32 |BM Informix Guide to SQL: Syntax

ALTER FRAGMENT

FRAGMENT BY Clause for Indexes

The INIT FRAGMENT BY clause for indexes allows you to fragment an existing
index that is not fragmented without redefining the index. Use this clause to
define an expression-based distribution scheme for indexes.

FRAGMENT BY
Clause for Indexes

H
—p»— FRAGMENT BY EXPRESSION £ expr— IN dbspace)

Back to INIT Clause
p. 2-29

»— REMAINDER IN dbspace

-

Element Purpose

Restrictions Syntax

dbspace Dbspace that contains the fragmented ~ You must specify atleasttwobut Identifier, p. 4-189

information no more than 2,048 dbspaces.
expr Expression defining an index fragment Must return a Boolean value. Condition, p. 4-24;
by a range, hash, or arbitrary rule Expression, p. 4-67

You can convert an existing fragmentation strategy to another fragmentation
strategy. Any existing fragmentation strategy is discarded and records are
moved to fragments as defined in the new fragmentation strategy. You can
also convert a fragmented index to a nonfragmented index.

The expression can contain only columns from the current table and data
values from only a single row. No subqueries nor aggregates are allowed. The
built-in CURRENT, DATE, and TIME functions are not valid here.

Fragmenting Unique and System Indexes

You can fragment unique indexes only if the table uses an expression-based
distribution scheme. Any columns referenced in the fragment expression
must be indexed columns. If your ALTER FRAGMENT INIT statement fails to
meet either of these restrictions, the INIT fails, and work is rolled back.

You might have an attached unique index on a table fragmented by
Column A. If you use INIT to change the table fragmentation to Column B,
the INIT fails because the unique index is defined on Column A. To resolve
this issue, use the INIT clause on the index to detach it from the table fragmen-
tation strategy and fragment it separately.

SQL Statements 2-33

ALTER FRAGMENT

System indexes (such as those used in referential constraints and unique
constraints) use user indexes if the indexes exist. If no user indexes can be

used, system indexes remain nonfragmented and are moved to the dbspace

where the database was created. To fragment a system index, create the

fragmented index on the constraint columns and then use the ALTER TABLE
statement to add the constraint.

Detaching an Index from a Table-Fragmentation Strategy

You can detach an index from a table-fragmentation strategy with the INIT

clause, which causes an attached index to become a detached index. This

breaks any dependency of the index on the table fragmentation strategy.

ADD Clause

Use the ADD clause to add another fragment to an existing fragmentation list.

ADD Back to ALTER FRAGMENT
Clause p.2-16
—p»— ADD / new_dbspace J T
REMAINDER IN BEFOREf existing_dbspace
expression——IN new_dbspace AFTER

Element Purpose Restrictions Syntax

existing_dbspace Name of a dbspace in an Must exist at the time when Identifier, p. 4-189
existing fragmentation list you execute the statement

expression Expression that defines the new Must return a Boolean value ~ Condition, p. 4-24;
fragment that is to be added (true or false) Expression, p. 4-67

new_dbspace Name of dbspace tobe added to Must exist at the time when Identifier, p. 4-189
the fragmentation scheme you execute the statement

The expression can contain column names only from the current table and data
values only from a single row. No subqueries or aggregates are allowed. In
addition, the built-in CURRENT, DATE, and TIME functions are not valid here.

2-34 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT

Adding a New Dbspace to a Round-Robin Distribution Scheme

You can add more dbspaces to a round-robin distribution scheme. The
following example shows the original round-robin definition:

CREATE TABLE book (coll INT, col2 INT)
FRAGMENT BY ROUND ROBIN IN dbspl, dbsp4;

To add another dbspace, use the ADD clause, as in this example:

ALTER FRAGMENT ON TABLE book ADD dbsp3;

Adding Fragment Expressions

Adding a fragment expression to the fragmentation list in an expression-
based distribution scheme can relocate records from existing fragments into
the new fragment. When you add a new fragment into the middle of the
fragmentation list, all the data existing in fragments after the new one must
be re-evaluated. The next example shows the original expression definition:

FRAGMENT BY EXPRESSION
cl < 100 IN dbspl,
cl >= 100 AND cl < 200 IN dbsp2,
REMAINDER IN dbsp3;

To add another fragment to hold rows between 200 and 300, use the
following ALTER FRAGMENT statement:

ALTER FRAGMENT ON TABLE news ADD
cl >= 200 AND cl < 300 IN dbsp4;

Any rows that were formerly in the remainder fragment and that fit the
criteria c1 >= 200 and c1 < 300 are moved to the new dbspace.

Using the BEFORE and AFTER Options

The BEFORE and AFTER options allow you to place a new fragment either
before or after an existing dbspace. You cannot use the BEFORE and AFTER
options when the distribution scheme is round-robin.

When you attach a new fragment without an explicit BEFORE or AFTER
option, the database server places the added fragment at the end of the
fragmentation list, unless a remainder fragment exists. If a remainder
fragment exists, the new fragment is placed just before the remainder
fragment. You cannot attach a new fragment after the remainder fragment.

SQL Statements 2-35

ALTER FRAGMENT

Using the REMAINDER Option

You cannot add a remainder fragment when one already exists. When you
add a new fragment to the fragmentation list, and a remainder fragment
exists, the records in the remainder fragment are retrieved and re-evaluated.
Some of these records might move to the new fragment. The remainder
fragment always remains the last item in the fragment list.

[s | DROP Clause

Use the DROP clause to drop an existing fragment from a fragmentation list.

DROP Back to ALTER FRAGMENT
Clause p. 2-16
— p DROP — dbspace -
Element Purpose Restrictions Syntax
dbspace Name of dbspace that contains Must exist at the time when you Identifier, p. 4-189
the dropped fragment execute the statement.

You cannot drop one of the fragments when the table contains only two
fragments. You cannot drop a fragment in a table that is fragmented with an
expression-based distribution scheme if the fragment contains data that
cannot be moved to another fragment. If the distribution scheme contains a
REMAINDER option, or if the expressions were constructed in an overlapping
manner, you can drop a fragment that contains data.

When you want to make a fragmented table nonfragmented, use either the
INIT or DETACH clause.

When you drop a fragment from a dbspace, the underlying dbspace is not
affected. Only the fragment data values within that dbspace are affected.

When you drop a fragment, the database server attempts to move all the
records in the dropped fragment to another fragment. In this case, the desti-
nation fragment might not have enough space for the additional records.
When this happens, follow one of the procedures that are listed in “ALTER
FRAGMENT and Transaction Logging” on page 2-18 to increase your space,
and retry the procedure.

2-36 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT

The following examples show how to drop a fragment from a fragmentation
list. The first line shows how to drop an index fragment, and the second line
shows how to drop a table fragment.

ALTER FRAGMENT ON INDEX cust_indx DROP dbsp2;

ALTER FRAGMENT ON TABLE customer DROP dbspl;

MODIFY Clause

Use the MODIFY clause to change an existing fragment expression on an
existing dbspace. You can also use the MODIFY clause to move a fragment
expression from one dbspace to a different dbspace.

MODIFY
Clause

Back to ALTER FRAGMENT
p. 2-16

3
—pp»— MODIFY L mod_dbspace — TO E expression 7 IN new_dbspace L»
R

REMAINDE

-

Element Purpose Restrictions Syntax
expression Modified range, hash, or ~ Can specify columns in current table ~ Condition, p. 4-24;
arbitrary expression only and data from only a single row. Expression, p. 4-67
mod_ dbspace Modified dbspace Must exist when you execute the Identifier, p. 4-189
statement.
new_dbspace Dbspace that contains the Must exist when you execute the Identifier, p. 4-189
modified information statement.

The expression must evaluate to a Boolean value (true or false).

No subqueries nor aggregates are allowed in the expression. In addition, the
built-in CURRENT, DATE, and TIME functions are not allowed.

When you use the MODIFY clause, the underlying dbspaces are not affected.
Only the fragment data values within the dbspaces are affected.

You cannot change a REMAINDER fragment into a nonremainder fragment if
records within the REMAINDER fragment do not satisfy the new expression.

SQL Statements 2-37

ALTER FRAGMENT

2-38

When you use the MODIFY clause to change an expression without changing
the dbspace storage for the expression, you must use the same name for the
mod_dbspace and the new_dbspace, as in the following example:

ALTER FRAGMENT ON TABLE cust_acct
MODIFY dbspl TO acct_num < 65 IN dbspl

When you use the MODIFY clause to move an expression from one dbspace
to another, mod_dbspace is the name of the dbspace where the expression was
previously located, and new_dbspace is the new location for the expression:

ALTER FRAGMENT ON TABLE cust_acct
MODIFY dbspl TO acct_num < 35 IN dbsp2

Here the distribution scheme for the cust_acct table is modified so that all
row items in column acct_num that are less than 35 are now contained in the
dbspace dbsp2. These items were formerly contained in the dbspace dbsp1.

When you use the MODIFY clause to change the expression and to move it to
a new dbspace, you must change both the expression and the dbspace name.

If your indexes are attached indexes, and you modify the table, the index
fragmentation strategy is also modified.

Related Information
Related statements: CREATE TABLE, CREATE INDEX, and ALTER TABLE

For a discussion of fragmentation strategy, refer to the IBM Informix Database
Design and Implementation Guide.

For information on how to maximize performance when you make fragment
modifications, see your Performance Guide.

IBM Informix Guide to SQL: Syntax

ALTER FUNCTION

ALTER FUNCTION

Use the ALTER FUNCTION statement to change the routine modifiers or
pathname of a user-defined function.

Syntax

ALTER

T

Shared-

Specific Object
SPECIFIC FUNCTION - Name MODIFY EXTERNAL NAME =—] Filename
p. 4-274 p. 4-270

]
UNCTION function () WITH ((ADD Routine)4

Modifier
. 4-257
’ MODIFY- P
parameter_type DROP

T

Element Purpose Restrictions Syntax
function User-defined Must be registered in the database. If the name does Database Object
function to be not uniquely identify a function, you must enter one Name, p. 4-46
modified or more appropriate values for parameter_type.
parameter_type Data type ofa Must be the same data types (and specified in the Identifier,
parameter same order) as in the definition of function. p-4-189
Usage

The ALTER FUNCTION statement allows you to modify a user-defined
function to tune its performance. With this statement you can modify charac-
teristics that control how the function executes. You can also add or replace
related used-defined routines (UDRs) that provide alternatives for the
optimizer, which can improve performance.

All modifications take effect on the next invocation of the function.

To use the ALTER FUNCTION statement, you must be the owner of the UDR or
have the DBA privilege.

SQL Statements 2-39

ALTER FUNCTION

2-40 IBM Informix Gu

Keywords That Introduce Modifications

Use the following keywords to introduce what you modify in the UDR.

Keyword Purpose

ADD Introduces a routine modifier that you want to
add to the user-defined function

MODIFY Introduces a routine modifier for which you want
to modify a value

DROP Introduces a routine modifier that you want to
remove from the user-defined function

MODIFY EXTERNAL NAME Introduces a new location for the executable file
(for external functions only)

WITH Introduces all modifications

If the routine modifier is a BOOLEAN value, MODIFY sets the value to be T
(equivalent of using the keyword ADD to add the routine modifier). For
example, both of the following statements alter the funcl function so that it
can be executed in parallel in the context of a parallelizable data query:

ALTER FUNCTION funcl WITH (MODIFY PARALLELIZABLE)
ALTER FUNCTION funcl WITH (ADD PARALLELIZABLE)

See also “Altering Routine Modifiers Example” on page 2-48.

Related Information

Related Statements: ALTER PROCEDURE, ALTER ROUTINE, CREATE
FUNCTION, and CREATE PROCEDURE

For a discussion on how to create and use SPL routines, see the IBM Informix
Guide to SQL: Tutorial.

For a discussion on how to create and use external routines, see IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

For information about how to create C UDRs, see the IBM Informix DataBlade
API Programmer’s Guide.

ide to SQL: Syntax

ALTER INDEX

ALTER INDEX

Use the ALTER INDEX statement to change the clustering attribute or the
locking mode of an existing index.

Syntax

ALTER INDEX index | IDS [E /o) \ f CLUSTER
& NOT NORMAL

Q LOCK MODE COARSE

Element Purpose Restrictions Syntax
index Name of the index to be altered Must exist Database Object Name, p. 4-46

Usage

ALTER INDEX is valid only on indexes created explicitly with the CREATE
INDEX statement. It cannot modify indexes that were created implicitly to
support constraints, and it cannot modify an index on a temporary table.

“ You cannot change the collating order of an existing index. If you use ALTER
INDEX to modify an index after SET COLLATION has specified a non-default
collating order, the SET COLLATION statement has no effect on the index. ¢

TO CLUSTER Option

The TO CLUSTER option causes the database server to reorder the rows of the
physical table according to the indexed order.

The next example shows how you can use the ALTER INDEX TO CLUSTER
statement to order the rows in the orders table physically. The CREATE INDEX
statement creates an index on the customer_num column of the table. Then
the ALTER INDEX statement causes the physical ordering of the rows.

CREATE INDEX ix cust ON orders (customer num) ;
ALTER INDEX ix cust TO CLUSTER;

SQL Statements 2-41

ALTER INDEX

For an ascending index, TO CLUSTER puts rows in lowest-to-highest order.
For a descending index, the rows are reordered in highest-to-lowest order.

When you reorder, the entire file is rewritten. This process can take a long
time, and it requires sufficient disk space to maintain two copies of the table.

While a table is clustering, it is locked IN EXCLUSIVE MODE. When another
process is using the table to which the index name belongs, the database
server cannot execute the ALTER INDEX statement with the TO CLUSTER
option; it returns an error unless lock mode is set to WAIT. (When lock mode
is set to WAIT, the database server retries the ALTER INDEX statement.)

Over time, if you modify the table, you can expect the benefit of an earlier
cluster to disappear because rows are added in space-available order, not
sequentially. You can recluster the table to regain performance by issuing
another ALTER INDEX TO CLUSTER statement on the clustered index. You do
not need to drop a clustered index before you issue another ALTER INDEX TO
CLUSTER statement on a currently clustered index.

If you are using Extended Parallel Server, you cannot use the CLUSTER
option on STANDARD tables. ¢

TO NOT CLUSTER Option

The TO NOT CLUSTER option drops the cluster attribute on the index name
without affecting the physical table. Because only one clustered index per
table can exist, you must use the TO NOT CLUSTER option to release the
cluster attribute from one index before you assign it to another. The following
statements illustrate how to remove clustering from one index and how a
second index physically reclusters the table:

CREATE UNIQUE INDEX ix ord
ON orders (order num) ;

CREATE CLUSTER INDEX ixicust
ON orders (customer_num) ;

ALTER INDEX ix cust TO NOT CLUSTER;
ALTER INDEX ix ord TO CLUSTER;

The first two statements create indexes for the orders table and cluster the
physical table in ascending order on the customer_num column. The last two
statements recluster the physical table in ascending order on the order_num
column.

2-42 IBM Informix Guide to SQL: Syntax

ALTER INDEX

LOCK MODE Options

Use the LOCK MODE clause to specify the locking granularity of the index.

When you use the COARSE mode, index-level locks are acquired on the index
instead of item-level or page-level locks. This mode reduces the number of
lock calls on an index.

The COARSE mode offers performance advantages when you know the index
is not going to change; for example, when read-only operations are
performed on the index.

Use the NORMAL mode to have the database server place item-level or page-
level locks on the index as necessary. Use this mode when the index gets
updated frequently.

When the database server executes the LOCK MODE COARSE option, it
acquires an exclusive lock on the table for the duration of the ALTER INDEX
statement. Any transactions currently using a lock of finer granularity must
complete before the database server switches to the COARSE lock mode.

Related Information
Related statements: CREATE INDEX and CREATE TABLE

For a discussion of the performance implications of clustered indexes, see
your Performance Guide.

SQL Statements 2-43

ALTER PROCEDURE

ALTER PROCEDURE

Use the ALTER PROCEDURE statement to change the routine modifiers or
pathname of a previously defined external procedure.

Syntax

ALTER

PROCEDU
Shared-
Specific Object
SPECIFIC PROCEDURE- Name MODIFY EXTERNAL NAME =—{ Filename

J
WITH ((ADD Routine)

RE procedure () Modifier
. 4-257
, MODIFY- P
parameter_type DROP

p. 4-274 p. 4-270

-

Element

Purpose Restrictions Syntax

procedure

parameter_type

User-defined Must be registered in the database. If the name does Database Object
procedure to not uniquely identify a function, you must enter one Name,
modify or more appropriate values for parameter_type. p. 4-46

Data type ofa Must be the same data types (and specified in the Identifier,
parameter same order) as in the definition of procedure. p. 4-189

Usage

The ALTER PROCEDURE statement allows you to modify an external
procedure to tune its performance by modifying characteristics that control
how it executes. You can also add or replace related UDRs that provide alter-
natives for the optimizer, which can improve performance.

To use the ALTER PROCEDURE statement, you must be the owner of the UDR
or have the DBA privilege.

If the name is not unique among routines registered in the database, you
must enter one or more appropriate values for parameter_type.

All modifications take effect on the next invocation of the procedure.

2-44 IBM Informix Guide to SQL: Syntax

ALTER PROCEDURE

Use the following keywords to introduce the items in the external procedure
that you want to modify.

Keyword Purpose

ADD Introduces a routine modifier that you want to
add to the external procedure

MODIFY Introduces a routine modifier for which you want
to modify a value

DROP Introduces a routine modifier that you want to
remove from the external procedure

MODIFY EXTERNAL NAME Introduces a new location for the executable file,
(for external routines only) specifying a different pathname from the original

WITH Introduces all modifications

If the routine modifier is a BOOLEAN value, MODIFY sets the value to be T
(equivalent to using the keyword ADD to add the routine modifier). For
example, both of the following statements alter the procl procedure so that it
can be executed in parallel in the context of a parallelizable data query:

ALTER PROCEDURE procl WITH (MODIFY PARALLELIZABLE)
ALTER PROCEDURE procl WITH (ADD PARALLELIZABLE)

See also “Altering Routine Modifiers Example” on page 2-48.

Related Information

Related Statements: ALTER FUNCTION, ALTER ROUTINE, CREATE
FUNCTION, CREATE PROCEDURE, DROP PROCEDURE, and DROP ROUTINE

For a discussion on how to create and use SPL routines, see the IBM Informix
Guide to SQL: Tutorial.

For a discussion on how to create and use external routines, see IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

For information about how to create C UDRSs, see the IBM Informix DataBlade
API Programmer’s Guide.

SQL Statements 2-45

ALTER ROUTINE

ALTER ROUTINE

Use the ALTER ROUTINE statement to change the routine modifiers or
pathname of a previously defined user-defined routine (UDR).

Syntax

ALTER —— ROUTINE routine (WITH (Routing)|
p. 4-257
MODIFY
parameter_type DROP

Shared-

Specific Object
SPECIFIC ROUTINE - Name MODIFY EXTERNAL NAME =—{ Filename
p. 4-274 p. 4-270

Modifier

-

Element Purpose Restrictions Syntax

routine User-defined Must be registered in the database. If the name does Database
routine to not uniquely identify a routine, you must enter one or Object Name,
modify more appropriate values for parameter_type. p. 4-46

parameter_type ~ Data type ofa Must be the same data types (and specified in the Identifier,
parameter same order) as in the definition of routine. p. 4-189

Usage

The ALTER ROUTINE statement allows you to modify a previously defined
UDR to tune its performance by modifying characteristics that control how
the UDR executes. You can also add or replace related UDRs that provide
alternatives for the optimizer, which can improve performance.

This statement is useful when you do not know whether a UDR is a user-
defined function or a user-defined procedure. When you use this statement,
the database server alters the appropriate user-defined procedure or user-
defined function.

All modifications take effect on the next invocation of the UDR.

2-46 IBM Informix Guide to SQL: Syntax

ALTER ROUTINE

To use the ALTER ROUTINE statement, you must be the owner of the UDR or
have the DBA privilege.

Restrictions

If the name does not uniquely identify a UDR, you must enter one or more
appropriate values for parameter_type.

When you use this statement, the type of UDR cannot be ambiguous. The UDR
that you specify must refer to either a user-defined function or a user-defined
procedure. If either of the following conditions exist, the database server
returns an error:

m The name (and parameters) that you specify applies to both a user-
defined procedure and a user-defined function.

m The specific name that you specify applies to both a user-defined
function and a user-defined procedure.
Keywords That Introduce Modifications

Use the following keywords to introduce the items in the UDR that you want
to modify.

Keyword Purpose

ADD Introduces a routine modifier that you want to
add to the UDR

MODIFY Introduces a routine modifier for which you want

to modify a value

DROP Introduces a routine modifier that you want to
remove from the UDR

MODIFY EXTERNAL NAME Introduces a new location for the executable file
(for external UDRs only)

WITH Introduces all modifications

If the routine modifier is a BOOLEAN value, MODIFY sets the value to be T
(equivalent to using the keyword ADD to add the routine modifier).

SQL Statements 2-47

ALTER ROUTINE

For example, both of the following statements alter the funcl UDR so that it
can be executed in parallel in the context of a parallelizable data query
statement:

ALTER ROUTINE funcl WITH (MODIFY PARALLELIZABLE)
ALTER ROUTINE funcl WITH (ADD PARALLELIZABLE)

Altering Routine Modifiers Example

Suppose you have an external function funcl that is set to handle NULL
values and has a cost per invocation set to 40. The following ALTER ROUTINE
statement adjusts the settings of the function by dropping the ability to
handle NULL values, tunes the funcl by changing the cost per invocation to
20, and indicates that the function can execute in parallel:

ALTER ROUTINE funcl (CHAR, INT, BOOLEAN)
WITH (
DROP HANDLESNULLS,
MODIFY PERCALL COST = 20,
ADD PARALLELIZABLE
)

Because the name funcl is not unique to the database, the data type param-
eters are specified so that the routine signature would be unique. If this
function had a Specific Name, for example, raise_sal, specified when it was
created, you could identify the function with the following first line:

ALTER SPECIFIC ROUTINE raise_ sal

Related Information

Related Statements: ALTER FUNCTION, ALTER PROCEDURE, CREATE
FUNCTION, CREATE PROCEDURE, DROP FUNCTION, DROP PROCEDURE, and
DROP ROUTINE

For a discussion on how to create and use SPL routines, see the IBM Informix
Guide to SQL: Tutorial.

For a discussion on how to create and use external routines, see IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

For information about how to create C UDRs, see the IBM Informix DataBlade
API Programmer’s Guide.

2-48 IBM Informix Guide to SQL: Syntax

ALTER SEQUENCE

Syntax

ALTER SEQUENCE

Use the ALTER SEQUENCE statement to modify the definition of a sequence.

sequence C

ALTER SEQUENCE l /
owner -

DN

DN

INCREMENT - BY — step

I

\NOCYCLE
CYCLE

/1\—RESTART- WITH —restart CACHE - size
MAXVALUE —max -NOCACHE
NOMAXVALUE NOORDER
MINVALUE — min ORDER
NOMINVALUE
Element Purpose Restrictions Syntax
max New upper limit on values ~ Must be integer > CURRVAL and restart Literal Number, p. 4-216
min New lower limit on values ~ Must be integer < CURRVAL and restart Literal Number, p. 4-216
owner Owner of sequence Cannot be changed by this statement =~ Owner Name, p. 4-234
restart New first value in sequence Must be integer in the INT8 range Literal Number, p. 4-216
sequence Name of an existing Must exist. Cannot be a synonym. Identifier, p. 4-189
sequence
size New number of values to Integer > 2 but < cardinality of valuesin Literal Number, p. 4-216
preallocate in memory one cycle (= | (max - min)/step|)
step New interval between values Must be a nonzero integer Literal Number, p. 4-216

Usage

ALTER SEQUENCE redefines an existing sequence object. It only affects subse-
quently generated values (and any unused values in the sequence cache).

You cannot use the ALTER SEQUENCE statement to rename a sequence nor to
change the owner of a sequence.

SQL Statements 2-49

ALTER SEQUENCE

2-50

You must be the owner, or the DBA, or else have the ALTER privilege on the
sequence to modify its definition. Only elements of the sequence definition
that you specify explicitly in the ALTER SEQUENCE statement are modified.
An error occurs if you make contradictory changes, such as specifying both
MAXVALUE and NOMAXVALUE, or both the CYCLE and NOCYCLE options.

INCREMENT BY Option

Use the INCREMENT BY option to specify a new interval between successive
numbers in a sequence. The interval, or step value, can be a positive whole
number (for ascending sequences) or a negative whole number (for
descending sequences) in the INT8 range. The BY keyword is optional.

START WITH Option

Use the START WITH option to specify a new first number of the sequence.
The restart value must be an integer within the INT8 range that is greater than
or equal to the min value (for an ascending sequence) or that is less than or
equal to the max value (for a descending sequence), if min or max is specified
in the ALTER SEQUENCE statement. The WITH keyword is optional.

MAXVALUE or NOMAXVALUE Option

Use the MAXVALUE option to specify a new upper limit of values in the
sequence. The maximum value, or max, must be an integer in the INT8 range
thatis greater than sequence. CURRVAL and restart (or greater than the origin in
the original CREATE SEQUENCE statement, if restart is not specified).

Use the NOMAXVALUE option to replace the current limit with a new default
maximum of 2e64 for ascending sequences or -1 for descending sequences.

MINVALUE or NOMINVALUE Option

Use the MINVALUE option to specify a new lower limit of values in the
sequence. The minimum value, or min, must be an integer the INT8 range that
is less than sequence. CURRVAL and restart (or less than the origin in the original
CREATE SEQUENCE statement, if restart is not specified).

Use the NOMINVALUE option to replace the current lower limit with a default
of 1 for ascending sequences or - (2e64) for descending sequences.

IBM Informix Guide to SQL: Syntax

ALTER SEQUENCE

CYCLE or NOCYCLE Option

Use the CYCLE option to continue generating sequence values after the
sequence reaches the maximum (ascending) or minimum (descending) limit,
to replace the NOCYCLE attribute. After an ascending sequence reaches max,
it generates the min value for the next value. After a descending sequence
reaches min, it generates the max value for the next sequence value.

Use the NOCYCLE option to prevent the sequence from generating more
values after reaching the declared limit. Once the sequence reaches the limit,
the next reference to sequence. NEXTVAL returns an error message.

CACHE or NOCACHE Option

Use the CACHE option to specify a new number of sequence values that are
preallocated in memory for rapid access. The cache size must be a whole
number in the INT range that is less than the number of values in a cycle (or
less than | (max - min)/step |). The minimum size is 2 preallocated values.

Use NOCACHE to have no values preallocated in memory. (See also the
description of SEQ_CACHE_SIZE in “CREATE SEQUENCE” on page 2-206.)

ORDER or NOORDER Option

These keywords have no effect on the behavior of the sequence. The sequence
always issues values to users in the order of their requests, as if the ORDER
keyword were always specified. The ORDER and NOORDER keywords are
accepted by the ALTER SEQUENCE statement, however, for compatibility
with implementations of sequence objects in other dialects of SQL.

Related Information

Related statements: CREATE SEQUENCE, DROP SEQUENCE, RENAME
SEQUENCE, CREATE SYNONYM, DROP SYNONYM, GRANT, REVOKE, INSERT,
UPDATE, and SELECT

For information about the syssequences system catalog table in which
sequence objects are registered, see the IBM Informix Guide to SQL: Reference.

For information about initializing, generating, or reading values from a
sequence, see “NEXTVAL and CURRVAL Operators” on page 4-102.

SQL Statements 2-51

ALTER TABLE

ALTER TABLE

Use the ALTER TABLE statement to modify the definition of a table.

Syntax
ALTER TABLE \ table / Basic [,?*’2'?58"““3 |
synonym LogglngF;I-'\gl_:;E9 Options
Typed-Table Options
m p. 2-80
Element Purpose Restrictions Syntax
synonym Synonym for the tabletobe Synonym and its table mustexist; Database Object Name, p. 4-46
altered USETABLENAME is not set
table Name of table to be altered Must exist in current database ~ Database Object Name, p. 4-46
Usage
Altering a table on which a view depends might invalidate the view.
Warning: The clauses available with this statement have varying performance impli-
cations. Before you undertake alter operations, check corresponding sections in your

“Performance Guide” to review effects and strategies.

You cannot alter a temporary table. You also cannot alter a violations or
diagnostics table. In addition, you cannot add, drop, or modify a column if
the table that contains the column has a violation table or a diagnostics table
associated with it. If the USETABLENAME environment variable is set, you
cannot specify a synonym for the table in the ALTER TABLE statement.

XPS If a table has range fragmentation, only the Logging TYPE options and LOCK
MODE clause are valid. All other ALTER TABLE options return an error. ¢

If you have a static or raw table, the only information that you can alter is the
logging type of the table. That is, the Logging TYPE options are the only part
of the ALTER TABLE statement that you can use.

2-52 |BM Informix Guide to SQL: Syntax

ALTER TABLE

To use ALTER TABLE, you must meet one of the following conditions:

m You must have DBA privilege on the database containing the table.
m You must own the table.

B You must have the Alter privilege on the specified table and the
Resource privilege on the database where the table resides.

m Toadd areferential constraint, you must have the DBA or References
privilege on either the referenced columns or the referenced table.

m To drop a constraint, you must have the DBA privilege or be the
owner of the constraint. If you are the owner of the constraint but not
the owner of the table, you must have Alter privilege on the specified
table. You do not need the References privilege to drop a constraint.

Basic Tahle Options

The Basic Table Options segment of ALTER TABLE has the following syntax.

Basic Table Options | Back to ALTER TABLE
p. 2-52
ADD Clause)
p. 2-55 7 >
ADD CONSTRAINT Clause
p. 2-72
MODIFY Clause
p. 2-65
DROP CONSTRAINT Clause
p. 2-75
DROP Clause
p. 2-63
MODIFY NEXT SIZE Clause
p. 2-76

LOCK MODE Clause
p. 2-76

ADD TYPE Clause
p. 2-78

PUT Clause
p. 2-71

W ADD J ROWIDS J
DROP ADD TCRCOLS
DROP

)

SQL Statements 2-53

ALTER TABLE

You can use the Basic Table Options segment to modify the schema of a table
by adding, modifying, or dropping columns and constraints, or changing the
extent size or locking granularity of a table. The database server performs
alterations in the order that you specify. If any of the actions fails, the entire
operation is cancelled.

You can also associate a table with a named ROW type or specify a new
storage space to store large-object data. You can also add or drop rowid
columns and shadow columns for Enterprise Replication. You cannot,
however, specify these options in conjunction with any other alterations. ¢

Using the ADD ROWIDS Keywords

Use the ADD ROWIDS keywords to add a new column called rowid to a
fragmented table. (Fragmented tables do not contain the hidden rowid
column by default.) When you add a rowid column, the database server
assigns a unique number to each row that remains stable for the life of the
row. The database server creates an index that it uses to find the physical
location of the row. After you add the rowid column, each row of the table
contains an additional 4 bytes to store the rowid value.

Tip: Use the ADD ROWIDS clause only on fragmented tables. In nonfragmented
tables, the rowid column remains unchanged. It is recommended that you use
primary keys as an access method rather than exploiting the rowid column.

For additional information about the rowid column, refer to your Adminis-
trator’s Reference.

Using the DROP ROWIDS Keywords

The DROP ROWIDS keywords can drop a rowid column that you added (with
either the CREATE TABLE or ALTER FRAGMENT statement) to a fragmented
table. You cannot drop the rowid column of a nonfragmented table.

Using the ADD CRCOLS Keywords

The ADD CRCOLS keywords create shadow columns, cdrserver and cdrtime,
that Enterprise Replication uses for conflict resolution. These columns enable
the database server to use the time-stamp or SPL conflict-resolution rule.
For more information, refer to “Using the WITH CRCOLS Option” on

page 2-235 and to the IBM Informix Dynamic Server Enterprise Replication Guide.

2-54 |BM Informix Guide to SQL: Syntax

ALTER TABLE

[s | Using the DROP CRCOLS Keywords

Use the DROP CRCOLS keywords to drop the cdrserver and cdrtime shadow
columns. You cannot drop these columns if Enterprise Replication is in use.

ADD Clause

Use the ADD clause to add a column to a table.

ADD Back to Basic Table Options
Clause p. 2-53

H
a0 () -

_| Data
—»— new_column Type — \ / -
. 4- ingle-Column
p- 449 DEFAULT Cgonstraint BEFORE column

Clause Format
p. 2-56 p. 2-57
Element Purpose Restrictions Syntax
column Name of column before which ~ Must already exist in the table. Identifier, p. 4-189
new_column is to be placed
new_column Name of column that you are You cannot add a serial column Identifier, p. 4-189
adding if the table contains data.

The following restrictions apply to the ADD clause:

m You cannot add a serial column to a table if the table contains data

XPS m In Extended Parallel Server, you cannot add a column to a table that
has a bit-mapped index. ¢

SQL Statements 2-55

ALTER TABLE

Using the BEFORE Option

The BEFORE option specifies the column before which to add the new
columny(s). In the following example, the BEFORE option directs the database
server to add the item_weight column before the total_price column:
ALTER TABLE items
ADD (item_weight DECIMAL(6,2) NOT NULL
BEFORE total_price)

If you do not include the BEFORE option, the database server adds the new
column or list of columns to the end of the table definition by default.

DEFAULT Clause

Use the DEFAULT clause to specify at value that the database server should
insert in a column when an explicit value for the column is not specified.

DEFAULT Back to ADD Clause p. 2-55
Clause Back to MODIFY Clause p. 2-65
—pp»———— DEFAULT literal

NULL

USER

CURRENT / DATETIME Field

Qualifier p. 4-65

TODAY
SITENAME
DBSERVERNAME
Element Purpose Restrictions Syntax
literal Literal default value Must be appropriate for the data type of the column. Expression,
for the column See “Using a Literal as a Default Value” on page 2-218. p. 4-67

You cannot specify a default value for serial columns. If the table that you are
altering already has rows in it when you add a column that contains a default
value, the database server inserts the default value for all pre-existing rows.

2-56 IBM Informix Guide to SQL: Syntax

ALTER TABLE

The following example adds a column to the items table. In items, the new
column item_weight has a literal default value:
ALTER TABLE items
ADD item weight DECIMAL (6, 2) DEFAULT 2.00
BEFORE total_ price

In this example, each existing row in the items table has a default value of
2.00 for the item_weight column.

For more information about the options of the DEFAULT clause, refer to
“DEFAULT Clause” on page 2-217.

Single-Column Constraint Format

Use the Single-Column Constraint Format to associate constraints with a
specified column.

Single-Column
Constraint Format

Back to ADD Clause
p. 2-55

C Ju

— \ ~ i UNIQUE
NOT NULL L

ﬁ ~ DISTINCT M -
Constraint

Constraint N PRIMARY KEYJ Defizn_itsign
Definition p.
p. 2-58 _ REFERENCES J
Clause
p. 2-59

CHECK Clause
~— p. 2-62 -/

You cannot specify a primary-key or unique constraint on a new column if
the table contains data. In the case of a unique constraint, however, the table
can contain a single row of data. When you want to add a column with a
primary-key constraint, the table must be empty when you issue the ALTER
TABLE statement.

SQL Statements 2-57

ALTER TABLE

The following rules apply when you place primary-key or unique constraints
on existing columns:

m When you place a primary-key or unique constraint on a column or
set of columns, the database server creates an internal B-tree index on
the constrained column or set of columns unless a user-created index
was defined on the column or set of columns.

m When you place a primary-key or unique constraint on a column or
set of columns, and a unique index already exists on that column or
set of columns, the constraint shares the index. If the existing index
allows duplicates, however, the database server returns an error. You
must then drop the existing index before you add the constraint.

m When you place a primary-key or unique constraint on a column or
set of columns, and a referential constraint already exists on that
column or set of columns, the duplicate index is upgraded to unique
(if possible), and the index is shared.

You cannot place a unique constraint on a BYTE or TEXT column, nor can you
place referential constraints on columns of these types. A check constraint on
a BYTE or TEXT column can check only for ISNULL, ISNOT NULL, or LENGTH.

When you place a referential constraint on a column or set of columns, and
an index already exists on that column or set of columns, the index is
upgraded to unique (if possible) and the index is shared.

Using Not-Null Constraints with ADD

If a table contains data, when you add a column with a not-null constraint
you must also include a DEFAULT clause. If the table is empty, however, you
can add a column and apply only the not-null constraint. The following
statement is valid whether or not the table contains data:

ALTER TABLE items
ADD (item weight DECIMAL(6,2)
DEFAULT 2.0 NOT NULL
BEFORE total price)

Constraint Definition

In Dynamic Server, use the Constraint Definition portion of the ALTER TABLE
statement to declare the name of a constraint and to set the mode of the
constraint to disabled, enabled, or filtering. ¢

2-58 IBM Informix Guide to SQL: Syntax

ALTER TABLE

XPS In Extended Parallel Server, use the Constraint Definition portion of the
ALTER TABLE statement to declare the name of a constraint. ¢

|Constraint Definitionl Back to Single-Column Constraint Format p. 2-57
Back to Multiple-Column Constraint Format p. 2-73

L

. S
CONSTRAINT — constraint & ENABLED

DISABLED

FILTERING 1WITHOUT ERROR
WITH ERROR

Element Purpose Restrictions Syntax
constraint Name declared here to the constraint Must be unique. Identifier, p. 4-189

For more information about constraint-mode options, see “Choosing a
Constraint-Mode Option” on page 2-230.

REFERENCES Clause

The REFERENCES clause has the following syntax.

REFERENCES Back to Single-Column Constraint Format p. 2-57
Clause Back to Multiple-Column Constraint Format p. 2-73
—p»— REFERENCES table ; |
I ’ f j
(CCOIUD) \- ON DELETE CASCADE
Element Purpose Restrictions Syntax
column Referenced columnin See “Restrictions on Referential Identifier, p. 4-189
the referenced table Constraints” on page 2-60.
table The referenced table ~ The referenced and the referencing tables Database Object Name,
must reside in the same database. p- 4-46

SQL Statements 2-59

ALTER TABLE

The REFERENCES clause allows you to place a foreign-key reference on a
column. The referenced column can be in the same table as the referencing
column, or in a different table in the same database.

If the referenced table is different from the referencing table, the default is the
primary-key column. If the referenced table is the same as the referencing
table, there is no default.

Restrictions on Referential Constraints
You must have the REFERENCES privilege to create a referential constraint.

The following restrictions apply to the column that is specified (the referenced
column) in the REFERENCES clause:
m The referenced and referencing tables must be in the same database.

m The referenced column (or set of columns) must have a unique or
primary-key constraint.

m The referencing and referenced columns must be the same data type.

(The only exception is that a referencing column must be an integer
data type if the referenced column is a serial data type.)

® You cannot place a referential constraint on a BYTE or TEXT column.

m Constraints uses the collation in effect at their time of creation. ¢

m A column-level REFERENCES clause can include only a single
column name.

B The maximum number of columns in a table-level REFERENCES
clause is 16.

m The total length of the columns in a table-level REFERENCES clause
cannot exceed 390 bytes. ¢

m The total length of the columns in a table-level REFERENCES clause
cannot exceed 255 bytes. ¢

Default Values for the Referenced Column

If the referenced table is different from the referencing table, you do not need
to specify the referenced column; the default column is the primary-key
column (or columns) of the referenced table. If the referenced table is the
same as the referencing table, you must specify the referenced column.

2-60 IBM Informix Guide to SQL: Syntax

ALTER TABLE

The following example creates a new column in the cust_calls table,
ref_order. The ref_order column is a foreign key that references the
order_num column in the orders table.

ALTER TABLE cust_calls
ADD ref order INTEGER
REFERENCES orders (order_ num)
BEFORE user_ id

When you place a referential constraint on a column or set of columns, and a
duplicate or unique index already exists on that column or set of columns, the
index is shared.

Using the ON DELETE CASCADE Option

Use the ON DELETE CASCADE option if you want rows deleted in the child
table when corresponding rows are deleted in the parent table. If you do not
specify cascading deletes, the default behavior of the database server
prevents you from deleting data in a table if other tables reference it.

If you specify this option, later when you delete a row in the parent table, the
database server also deletes any rows associated with that row (foreign keys)
in a child table. The advantage of the ON DELETE CASCADE option is that it
allows you to reduce the quantity of SQL statements needed to perform delete
actions.

For example, in the stores_demo database, the stock table contains the
stock_num column as a primary key. The catalog table refers to the
stock_num column as a foreign key. The following ALTER TABLE statements
drop an existing foreign-key constraint (without cascading delete) and add a
new constraint that specifies cascading deletes:

ALTER TABLE catalog DROP CONSTRAINT aa

ALTER TABLE catalog ADD CONSTRAINT
(FOREIGN KEY (stock num, manu_code) REFERENCES stock
ON DELETE CASCADE CONSTRAINT ab)

With cascading deletes specified on the child table, in addition to deleting a
stock item from the stock table, the delete cascades to the catalog table that is
associated with the stock_num foreign key. This cascading delete works only
if the stock_num that you are deleting was not ordered; otherwise, the
constraint from the items table would disallow the cascading delete. For
more information, see “Restrictions on DELETE When Tables Have
Cascading Deletes” on page 2-346.

SQL Statements 2-61

ALTER TABLE

If a table has a trigger with a DELETE trigger event, you cannot define a
cascading-delete referential constraint on that table. You receive an error
when you attempt to add a referential constraint that specifies ON DELETE
CASCADE to a table that has a delete trigger.

For information about syntax restrictions and locking implications when you
delete rows from tables that have cascading deletes, see “Considerations
When Tables Have Cascading Deletes” on page 2-346.

Locks Held During Creation of a Referential Constraint

When you create a referential constraint, the database server places an
exclusive lock on the referenced table. The lock is released after you finish
with the ALTER TABLE statement or at the end of a transaction (if you are
altering the table in a database that uses transaction logging).

CHECK Clause

A check constraint designates a condition that must be met before data can be
inserted into a column.

CHECK Back to Single-Column Constraint Format p. 2-57
Clause Back to Multiple-Column Constraint Format p. 2-73
Condition
— B CHECK (— P a2a) -

2-62

During an insert or update, if a row returns false for any check constraint
defined on a table, the database server returns an error. No error is returned,
however, if a row returns NULL for a check constraint. In some cases, you
might want to use both a check constraint and a NOT NULL constraint.

Check constraints are defined using search conditions. The search condition
cannot contain user-defined routines, subqueries, aggregates, host variables,
or rowids. In addition, the condition cannot contain the variant built-in
functions CURRENT, USER, SITENAME, DBSERVERNAME, or TODAY.

The check constraint cannot include columns in different tables. When you
are using the ADD or MODIFY clause, the check constraint cannot depend
upon values in other columns of the same table.

IBM Informix Guide to SQL: Syntax

ALTER TABLE

The next example adds a new unit_price column to the items table and
includes a check constraint to ensure that the entered value is greater than o:

ALTER TABLE items
ADD (unit_price MONEY (6,2) CHECK (unit_price > 0))

To create a constraint that checks values in more than one column, use the
ADD CONSTRAINT clause. The following example builds a constraint on the
column that was added in the previous example. The check constraint now
spans two columns in the table.

ALTER TABLE items ADD CONSTRAINT CHECK (unit_price < total_price)

DROP Clause

Use the DROP clause to drop one or more columns from a table.

DROP Back to Basic Table Options
Clause p. 2-53

—p — prROP ——(: column j) -
column ———

-

Element Purpose Restrictions Syntax
column Nameofacolumn Must exist in the table. If any fragment expression referencesit, Identifier,
to be dropped or if it is the last column in the table, column cannot be dropped. p. 4-189

You cannot issue an ALTER TABLE DROP statement that would drop every
column from the table. At least one column must remain in the table.

You cannot drop a column that is part of a fragmentation strategy.

XPS In Extended Parallel Server, you cannot use the DROP clause if the table has
a dependent GK index. ¢

How Dropping a Column Affects Constraints

When you drop a column, all constraints on that column are also dropped:

m All single-column constraints are dropped.

m All referential constraints that reference the column are dropped.

SQL Statements 2-63

ALTER TABLE

m All check constraints that reference the column are dropped.

m If the column is part of a multiple-column primary-key or unique
constraint, the constraints placed on the multiple columns are also
dropped. This action, in turn, triggers the dropping of all referential
constraints that reference the multiple columns.

Because any constraints that are associated with a column are dropped when
the column is dropped, the structure of other tables might also be altered
when you use this clause. For example, if the dropped column is a unique or
primary key that is referenced in other tables, those referential constraints
also are dropped. Therefore the structure of those other tables is also altered.

How Dropping a Column Affects Triggers

In general, when you drop a column from a table, the triggers based on that
table remain unchanged. If the column that you drop appears in the action
clause of a trigger, however, dropping the column can invalidate the trigger.
The following statements illustrate the possible effects on triggers:

CREATE TABLE tabl (il int, i2 int, i3 int);

CREATE TABLE tab2 (i4 int, i5 int);

CREATE TRIGGER colltrig UPDATE OF i2 ON tabl
BEFORE (INSERT INTO tab2 VALUES(1,1));

ALTER TABLE tab2 DROP i4;

After the ALTER TABLE statement, tab2 has only one column. The colltrig
trigger is invalidated because the action clause as it is currently defined with
values for two columns cannot occur.

If you drop a column that occurs in the triggering column list of an UPDATE
trigger, the database server drops the column from the triggering column list.
If the column is the only member of the triggering column list, the database
server drops the trigger from the table. For more information on triggering
columns in an UPDATE trigger, see “CREATE TRIGGER” on page 2-269.

If a trigger is invalidated when you alter the underlying table, drop and then
re-create the trigger.

How Dropping a Column Affects Views

When you drop a column from a table, the views based on that table remain
unchanged. That is, the database server does not automatically drop the
corresponding columns from associated views.

2-64 IBM Informix Guide to SQL: Syntax

XPS

ALTER TABLE

The view is not automatically dropped because ALTER TABLE can change the
order of columns in a table by dropping a column and then adding a new
column with the same name. In this case, views based on the altered table
continue to work, but retain their original sequence of columns.

If a view is invalidated when you alter the underlying table, you must rebuild
the view.

How Dropping a Column Affects a Generalized-Key Index

In Extended Parallel Server, if you drop a column from a table that has a
dependent GK index, all GK indexes on the table that refer to the dropped
column are dropped. Any GK indexes on other tables that refer to the
dropped column are also dropped.

MODIFY Clause

Use the MODIFY clause to change the data type, length, or default value of a
column, or to allow or disallow NULL values in a column.

MODIFY
Clause

Back to Basic Table Options
p. 2-53

(g Modify,Cqumn 2)

_E
MODIFY Clause
Modify Column Clause

Modify Column
Clause
—p»— column—] Dati 1}89 -
p. 4-
\ DEFAULT Clause I \ Single-Column Constraint Format /

p. 2-56 p. 2-57

-

Element Purpose

Restrictions Syntax

column Column to modify = Must exist in table. Cannot be a collection data type. Identifier, p. 4-189

XPS

In Extended Parallel Server, you cannot use the MODIFY clause if the table
has a dependent GK index. ¢

SQL Statements 2-65

ALTER TABLE

“ You cannot change the data type of a column to a collection or a row type. ¢

When you modify a column, all attributes previously associated with that
column (that is, default value, single-column check constraint, or referential
constraint) are dropped. When you want certain attributes of the column to
remain, such as PRIMARY KEY, you must re-specify those attributes.

For example, if you are changing the data type of an existing column,
quantity, to SMALLINT, but you want to keep the default value (in this case,
1) and the NOT NULL column attribute, you can issue this statement:

ALTER TABLE items MODIFY (quantity SMALLINT DEFAULT 1 NOT NULL)

Tip: Both attributes are specified again in the MODIFY clause.

When you change the data type of a column, the database server does not
perform the modification in-place. The next example (for Dynamic Server
only) changes a VARCHAR(15) column to an LVARCHAR(3072) column:

ALTER TABLE stock MODIFY (description LVARCHAR(3072))

When you modify a column that has column constraints associated with it,
the following constraints are dropped:

m All single-column constraints are dropped.
m All referential constraints that reference the column are dropped.

m If the modified column is part of a multiple-column primary-key or
unique constraint, all referential constraints that reference the
multiple columns also are dropped.

For example, if you modify a column that has a unique constraint, the unique
constraint is dropped. If this column was referenced by columns in other
tables, those referential constraints are also dropped. In addition, if the
column is part of a multiple-column primary-key or unique constraint, the
multiple-column constraints are not dropped, but any referential constraints
placed on the column by other tables are dropped.

For another example, suppose that a column is part of a multiple-column
primary-key constraint. This primary key is referenced by foreign keys in two
other tables. When this column is modified, the multiple-column primary-
key constraint is not dropped, but the referential constraints placed on it by
the two other tables are dropped.

2-66 IBM Informix Guide to SQL: Syntax

ALTER TABLE

Using the MODIFY Clause in Different Situations

The characteristics of the object you are attempting to modify can affect how
you handle your modifications.

Altering BYTE and TEXT Columns

You can use the MODIFY clause to change a BYTE column to a TEXT column,
and vice versa. You cannot use the MODIFY clause, however, to change a BYTE
or TEXT column to any other type of column, and vice versa.

You can also use the MODIFY clause to change a BYTE column to a BLOB
column and a TEXT column to a CLOB column. ¢

Altering the Next Serial Number

You can use the MODIFY clause to reset the next value of a serial column. You
cannot set the next value below the current maximum value in the column
because that action can cause the database server to generate duplicate
numbers. You can set the next value, however, to any value higher than the
current maximum, which creates gaps in the sequence.

The following example sets the next serial number to 1000:
ALTER TABLE my table MODIFY (serial num serial (1000))

As an alternative, you can use the INSERT statement to create a gap in the
sequence of a serial column. For more information, see “Inserting Values into
Serial Columns” on page 2-495.

Altering the Next Serial Number of a Typed Table

You can set the initial serial number or modify the next serial number for a
row-type field with the MODIFY clause of the ALTER TABLE statement. (You
cannot set the start number for a serial field when you create a row type.)

Suppose you have row types parent, child1, child2, and child3.

CREATE ROW TYPE parent
CREATE ROW TYPE childl
CREATE ROW TYPE child2
CREATE ROW TYPE child3

a int);

s serial) UNDER parent;

b float, s8 serial8) UNDER childl;
d int) UNDER child2;

SQL Statements 2-67

ALTER TABLE

You then create corresponding typed tables:

CREATE TABLE OF TYPE parent;

CREATE TABLE OF TYPE childl UNDER parent;
CREATE TABLE OF TYPE child2 UNDER childl;
CREATE TABLE OF TYPE child3 UNDER child2;

To change the next SERIAL and SERIAL8 numbers to 75, you can enter the
following command:

ALTER TABLE child3tab MODIFY (s serial(75), s8 serial8(75))

When the ALTER TABLE statement executes, the database server updates
corresponding serial columns in the child1, child2, and child3 tables.

Altering the Structure of Tables

When you use the MODIFY clause, you can also alter the structure of other
tables. If the modified column is referenced by other tables, those referential
constraints are dropped. You must add those constraints to the referencing
tables again, using the ALTER TABLE statement.

When you change the data type of an existing column, all data is converted
to the new data type, including numbers to characters and characters to
numbers (if the characters represent numbers). The following statement
changes the data type of the quantity column:

ALTER TABLE items MODIFY (quantity CHAR(6))

When a primary-key or unique constraint exists, however, conversion takes
place only if it does not violate the constraint. If a data type conversion would
result in duplicate values (by changing FLOAT to SMALLFLOAT, for example,
or by truncating CHAR values), the ALTER TABLE statement fails.

Modifying Tables for NULL Values

You can modify an existing column that formerly permitted NULLs to
disallow NULLs, provided that the column contains no NULL values. To do
this, specify MODIFY with the same column name and data type and the NOT
NULL keywords. Those keywords create a not-null constraint on the column.

2-68 IBM Informix Guide to SQL: Syntax

ALTER TABLE

You can modify an existing column that did not permit NULLs to permit-
NULLs. To do this, specify MODIFY with the column name and the existing
data type, and omit the NOT NULL keywords. The omission of the NOT NULL
keywords drops the not-null constraint on the column. If a unique index
exists on the column, you can remove it using the DROP INDEX statement.

An alternative method of permitting NULLs in an existing column that did
not permit NULLs is to use the DROP CONSTRAINT clause to drop the not-null
constraint on the column.

Adding a Constraint When Existing Rows Violate the Constraint

If you use the MODIFY clause to add a constraint in the enabled mode and
receive an error message because existing rows would violate the constraint,
take the following steps to add the constraint successfully:

1. Add the constraint in the disabled mode.

Issue the ALTER TABLE statement again, but this time specify the DIS-
ABLED keyword in the MODIFY clause.

2. Start a violations and diagnostics table for the target table with the
START VIOLATIONS TABLE statement.

3. Issue the SET CONSTRAINTS statement to switch the database object
mode of the constraint to the enabled mode.

When you issue this statement, existing rows in the target table that
violate the constraint are duplicated in the violations table; however,
you receive an integrity-violation error message, and the constraint
remains disabled.

4. Issue a SELECT statement on the violations table to retrieve the
nonconforming rows that are duplicated from the target table.

You might need to join the violations and diagnostics tables to get all
the necessary information.

5. Take corrective action on the rows in the target table that violate the
constraint.

6. After you fix all the nonconforming rows in the target table, issue the
SET statement again to enable the constraint that were disabled.

Now the constraint is enabled, and no integrity-violation error mes-
sage is returned because all rows in the target table now satisfy the
new constraint.

SQL Statements 2-69

ALTER TABLE

XPS

How Modifying a Column Affects a Generalized-Key Index

In Extended Parallel Server, when you modify a column, all GK indexes that
reference the column are dropped if the column is used in the GK index in a
way that is incompatible with the new data type of the column.

For example, if a numeric column is changed to a character column, any GK
indexes involving that column are dropped if they involve arithmetic
expressions.

How Modifying a Column Affects Triggers

If you modify a column that appears in the triggering column list of an
UPDATE trigger, the trigger is unchanged.

When you modify a column in a table, the triggers based on that table remain
unchanged, but the column modification might invalidate the trigger.

The following statements illustrate the possible affects on triggers:

CREATE TABLE tabl (il int, i2 int, i3 int);

CREATE TABLE tab2 (i4 int, i5 int);

CREATE TRIGGER colltrig UPDATE OF i2 ON tabl
BEFORE (INSERT INTO tab2 VALUES(1,1));

ALTER TABLE tab2 MODIFY i4 char;

After the ALTER TABLE statement, column i4 accepts only character values.
Because character columns accept only values enclosed in quotation marks,
the action clause of the colltrig trigger is invalidated.

If a trigger is invalidated when you modify the underlying table, drop and
then re-create the trigger.

How Modifying a Column Affects Views

When you modify a column in a table, the views based on that table remain
unchanged. If a view is invalidated when you alter the underlying table, you
must rebuild the view.

2-70 IBM Informix Guide to SQL: Syntax

ALTER TABLE

[s | PUT Clause

Use the PUT clause to specify the storage space (an sbspace) for a column that
contains smart large objects. This clause can specify storage characteristics
for a new column or replace the storage characteristics of an existing column.

PUT Clause Back to Basic Table Options

p. 2-53

— - PUT — column — IN — (gspace)) >

~
p EXTENT SIZE —— kilobytes

tNO LOG
LOG
N HIGHINTEG
iNo KEEP ACCESS TIME
KEEP ACCESS TIME
#

Element Purpose Restrictions Syntax

column Column to store in the Must contain a user-defined, or Identifier, p. 4-189
specified sbspace complex, or BLOB, or CLOB data type.

kilobytes Number of kilobytes to Must be an integer value. Literal Number, p. 4-216

allocate for the extent size

sbspace Name of an area of storage The sbspace must exist. Identifier, p. 4-189

for smart large objects
|

When you modify the storage characteristics of a column, all attributes previ-
ously associated with the storage space for that column are dropped. When
you want certain attributes to remain, you must respecify those attributes.
For example, to retain logging, you must respecify the LOG keyword.

The format column field is not valid here. That is, the smart large object that
you are storing cannot be one field of a ROW type.

SQL Statements 2-71

ALTER TABLE

When you modify the storage characteristics of a column that holds smart
large objects, the database server does not alter smart large objects that
already exist, but applies the new storage characteristics to only those smart
large objects that are inserted after the ALTER TABLE statement takes effect.

For more information on the available storage characteristics, refer to the
counterpart of this section in the CREATE TABLE statement, “PUT Clause” on
page 2-249. For a discussion of large-object characteristics, refer to “Large-
Object Data Types” on page 4-57.

ADD CONSTRAINT Clause

Use the ADD CONSTRAINT clause to specify a constraint on a new or existing
column or on a set of columns.

ADD CONSTRAINT Back to Basic Table Options
Clause p. 2-53
Multiple-Column Constraint Format
—»— ADD CONSTRAINT p. 2:73 T
J
(L Multiple-Column Constraint Format))
p. 2-73

For example, to add a unique constraint to the fname and Iname columns of
the customer table, use the following statement:

ALTER TABLE customer ADD CONSTRAINT UNIQUE (lname, fname)
To declare a name for the constraint, change the preceding statement:

ALTER TABLE customer
ADD CONSTRAINT UNIQUE (lname, fname) CONSTRAINT u_cust

When you do not specify a name for a new constraint, the database server
provides one. You can find the name of the constraint in the sysconstraints
system catalog table. For more information about the sysconstraints system
catalog table, see the IBM Informix Guide to SQL: Reference.

When you add a constraint, the collating order must be the same as when the
table was created. ¢

2-72 IBM Informix Guide to SQL: Syntax

ALTER TABLE

Multiple-Column Constraint Format

Use the Multiple-Column Constraint Format option to assign a constraint to
one column or a set of columns.

Multiple-Column Back to ADD CONSTRAINT Clause
Constraint Format p. 2-72

UNIQUE (co/umn) >

~DISTINCT CHECK Clause %

PRIMARY KEY. p-2:62 Constraint
Definition
’ p. 2-58
REFERENCES
Clause
(Q‘ column)| b. 2-59

FOREIGN KEY
Element Purpose Restrictions Syntax
column A column on which the constraint is placed No more than 16 columns. Identifier, p. 4-216

A multiple-column constraint has these restrictions:

m It can include no more than 16 column names.
“ m The total length of the list of columns cannot exceed 390 bytes. ¢
XPS m The total length of the list of columns cannot exceed 255 bytes. ¢

You can declare a name for the constraint and set its mode by means of
“Constraint Definition” on page 2-58.

SQL Statements 2-73

ALTER TABLE

Adding a Primary-Key or Unigue Constraint

When you place a primary-key or unique constraint on a column or set of
columns, those columns must contain unique values. The database server
checks for existing constraints and indexes:

m Ifauser-created unique index already exists on that column or set of
columns, the constraint shares the index.

m If a user-created index that allows duplicates already exists on that
column or set of columns, the database server returns an error.

In this case, you must drop the existing index before adding the pri-
mary-key or unique constraint.

m If a referential constraint already exists on that column or set of
columns, the duplicate index is upgraded to unique (if possible) and
the index is shared.

m If no referential constraint or user-created index exists on that
column or set of columns, the database server creates an internal
B-tree index on the specified columns.

When you place a referential constraint on a column or set of columns, and
an index already exists on that column or set of columns, the index is shared.

If you own the table or have the Alter privilege on the table, you can create a
check, primary-key, or unique constraint on the table and specify yourself as
the owner of the constraint. To add a referential constraint, you must have the
References privilege on either the referenced columns or the referenced table.
When you have the DBA privilege, you can create constraints for other users.

Recovery from Constraint Violations

If you use the ADD CONSTRAINT clause to add a constraint in the enabled
mode, you receive an error message because existing rows would violate the
constraint. For a procedure to add the constraint successfully, see “Adding a
Constraint When Existing Rows Violate the Constraint” on page 2-69.

2-74 IBM Informix Guide to SQL: Syntax

ALTER TABLE

DROP CONSTRAINT Clause

Use the DROP CONSTRAINT clause to drop a named constraint.

DROP CONSTRAINT Back to Basic Table Options
Clause p. 2-53

H
—p»— DROP CONSTRAINT L: constraint j) .
constraint——

-

Element Purpose Restrictions Syntax
constraint Constraint to be dropped Must exist. Database Object Name, p. 4-46
I

To drop an existing constraint, specify the DROP CONSTRAINT keywords
and the name of the constraint. Here is an example of dropping a constraint:

ALTER TABLE manufact DROP CONSTRAINT con_name

If no name is specified when the constraint is created, the database server
generates the name. You can query the sysconstraints system catalog table
for the name and owner of a constraint. For example, to find the name of the
constraint placed on the items table, you can issue the following statement:

SELECT constrname FROM sysconstraints
WHERE tabid = (SELECT tabid FROM systables
WHERE tabname = 'items')

When you drop a primary-key or unique constraint that has a corresponding
foreign key, the referential constraints are dropped. For example, if you drop
the primary-key constraint on the order_num column in the orders table and
order_num exists in the items table as a foreign key, that referential
relationship is also dropped.

SQL Statements 2-75

ALTER TABLE

MODIFY NEXT SIZE Clause

Use the MODIFY NEXT SIZE clause to change the size of new extents.

MODIFY NEXT SIZE Back to Basic Table Options p. 2-53
Clause Back to Typed-Table Options p. 2-80

—pp»———————— MODIFY NEXT SIZE —— kilobytes |

e —

Element Purpose Restrictions Syntax

kilobytes Length (in kilobytes) assigned here for Minimum length is four times the disk- ~ Expression,
the next extent for this table page size on your system. p- 4-67

For example, if you have a 2-kilobyte page system, the minimum length is
8 kilobytes. The maximum length is equal to the chunk size. The following
example specifies an extent size of 32 kilobytes:

ALTER TABLE customer MODIFY NEXT SIZE 32

When you use this clause, the size of existing extents does not change. You
cannot change the size of existing extents without unloading all of the data.

To change the size of existing extents, you must unload all the data, modify
the extent and next-extent sizes in the CREATE TABLE statement of the
database schema, re-create the database, and reload the data. For information
about how to optimize extents, see your Administrator’s Guide.

LOCK MODE Clause
Use the LOCK MODE keywords to change the locking granularity of a table.
LOCK MODE Back to Basic Table Options
Clause p. 2-53
———— LOCK MODE (PAGE) >
ROW
——TABLE

T —

2-76 IBM Informix Guide to SQL: Syntax

ALTER TABLE

The following table describes the locking-granularity options available.

Granularity

Purpose

PAGE

ROW

TABLE
(XPS only)

Obtains and releases one lock on a whole page of rows

This is the default locking granularity. Page-level locking is especially
useful when you know that the rows are grouped into pages in the
same order that you are using to process all the rows. For example, if
you are processing the contents of a table in the same order as its
cluster index, page locking is especially appropriate.

Obtains and releases one lock per row

Row-level locking provides the highest level of concurrency. If you are
using many rows at one time, the lock-management overhead can
become significant. You can also exceed the maximum number of locks
available, depending on the configuration of your database server.

Places a lock on the entire table

This type of lock reduces update concurrency in comparison to row
and page locks. A table lock reduces the lock-management overhead
for a table. Multiple read-only transactions can still access the table.

Precedence and Default Behavior

The LOCK MODE setting in an ALTER TABLE statement takes precedence over
the settings of the IFX_DEF_TABLE_LOCKMODE environment variable and
the DEF_TABLE_LOCKMODE configuration parameter. For information about
the IFX_DEF_TABLE_LOCKMODE environment variable, refer to the

IBM Informix Guide to SQL: Reference. For information about the
DEF_TABLES_LOCKMODE configuration parameter, refer to the IBM Informix
Dynamic Server Administrator’s Reference.

SQL Statements 2-77

ALTER TABLE

ADD TYPE Clause

Use the ADD TYPE clause to convert a table that is not based on a named ROW

data type into a typed table.

Table Options

ADD TYPE Back to Basic
Clause p. 2-53
—pp»—— ADDTYPE —— row_type_name

-

Element Purpose Restrictions Syntax
row_type_name Name of the row type being The field types of this ROW type must match Data Type,
added to the table the column types of the table. p- 4-49

To add a named ROW type to a table, all of the following must be true:

m The named ROW type already exists.

m The named ROW type fields match the column types in the table.

® You have the Usage privilege on the table.

When you use the ADD TYPE clause, you assign a named ROW data type to a
table whose columns match the fields of the ROW type. The table cannot be a

fragmented table that has rowids.

You cannot combine the ADD TYPE clause with any clause that changes the

structure of the table. No other ADD, DROP, or MODIFY clause is valid in the
The ADD TYPE
clause does not allow you to change column data types. (To change the data

same ALTER TABLE statement that has the ADD TYPE clause.

type of a column, use the MODIFY clause.)

2-78 IBM Informix Guide to SQL: Syntax

ALTER TABLE

Logging TYPE Options

Use the Logging TYPE options to specify that the table have particular charac-
teristics that can improve various bulk operations on it.

Logging TYPE Options | Back to ALTER TABLE
p. 2-52

STANDARD) o

—»——— TYPE —(
é RAW
:OPERATIONAL
STATIC
Other than the default option (STANDARD) that is used for online transaction

processing (OLTP) databases, these Logging TYPE options are used primarily
to improve performance in data warehousing databases.

A table can have any of the following logging characteristics.

Option Purpose

STANDARD Logging table that allows rollback, recovery, and restoration
from archives. This is the default. Use this type for recovery and
constraints functionality on OLTP databases.

RAW Nonlogging table that cannot have indexes or referential
constraints but can be updated. Use this type for quickly loading
data. In XPS, raw tables take advantage of light appends and
avoid the overhead of logging, checking constraints, and
building indexes.

OPERATIONAL Logging table that uses light appends and cannot be restored

(XPS only) from archive. Use this type on tables that are refreshed
frequently. Light appends allow the quick addition of many
TOWS.

STATIC Nonlogging table that can contain index and referential

(XPS only) constraints but cannot be updated. Use this type for read-only

operations because there is no logging or locking overhead.

SQL Statements 2-79

ALTER TABLE

Warning: Use raw tables for fast loading of data. It is recommended that you alter the
logging type to STANDARD and perform a level-0 backup before you use the table in
a transaction or modify the data within the table. If you must use a raw table within
a transaction, either set the isolation level to Repeatable Read or lock the table in
exclusive mode to prevent concurrency problems.

For more information on these logging types of tables, refer to your Adminis-
trator’s Guide.

The Logging TYPE options have the following restrictions:
m Youmust perform a level-0 archive before the logging type of a table

can be altered to STANDARD from any other logging type.

m If you want to change the logging type of a table to RAW, you must
drop all indexes on the table before you do so.

m If you have triggers defined on the table, you cannot change the
logging type to RAW or STATIC. Such tables do not support triggers.

m The table cannot be a SCRATCH or TEMP table, and you cannot
change any of these types of tables to a SCRATCH or TEMP table.

m The table cannot have a dependent GK index. ¢

Typed-Table Options
The Typed-Table options support operations on tables of a ROW data type.
¥
Typed-Table Back to ALTER TABLE
Options p. 2-52
| D,
— |
ADD CONSTRAINT
Clause
p-272 DROP CONSTRAINT Clause
p. 2-75
DROP TYPE
MODIFY NEXT
1 SIZE Clause
LOCK MODE Clause p- 2-76
p. 2-76

————

2-80 IBM Informix Guide to SQL: Syntax

ALTER TABLE

In Dynamic Server, the database server performs the actions in the ALTER
TABLE statement in the order that you specify. If any action fails, the entire
operation is cancelled.

Altering Subtables and Supertables

The following considerations apply to tables that are part of inheritance
hierarchies:

m For subtables, ADD CONSTRAINT and DROP CONSTRAINT are not
allowed on inherited constraints.

m For supertables, ADD CONSTRAINT and DROP CONSTRAINT
propagate to all subtables.

DROP TYPE Option

Use the DROP TYPE option to drop the type from a table. DROP TYPE removes
the association between a table and a named-row type. You must drop the
type from a typed table before you can modify, drop, or change the data type
of a column in the table.

If a table is part of a table hierarchy, you cannot drop its type unless it is the
last subtype in the hierarchy. That is, you can only drop a type from a table if
that table has no subtables. When you drop the type of a subtable, it is
automatically removed from the hierarchy. The table rows are deleted from
all indexes defined by its supertables.

Related Information

Related statements: CREATE TABLE, DROP TABLE, LOCK TABLE, and SET
Database Object Mode

For discussions of data-integrity constraints and the ON DELETE CASCADE
option, see the IBM Informix Guide to SQL: Tutorial.

For a discussion of database and table creation, see the IBM Informix Database
Design and Implementation Guide.

For information on how to maximize performance when you make table
modifications, see your Performance Guide.

SQL Statements 2-81

BEGIN WORK

BEGIN WORK

Use the BEGIN WORK statement to start a transaction (a series of database
operations that the COMMIT WORK or ROLLBACK WORK statement
terminates). Use the BEGIN WORK WITHOUT REPLICATION statement to start
a transaction that does not replicate to other database servers.

Syntax

BEGIN

\
\WORKi —WITHOUT REPLICATIONJ

E/C

Usage

Each row that an UPDATE, DELETE, or INSERT statement affects during a
transaction is locked and remains locked throughout the transaction. A trans-
action that contains many such statements or that contains statements that
affect many rows can exceed the limits that your operating system or the
database server configuration imposes on the maximum number of simulta-

neous locks.

If no other user is accessing the table, you can avoid locking limits and reduce
locking overhead by locking the table with the LOCK TABLE statement after
you begin the transaction. Like other locks, this table lock is released when
the transaction terminates. The example of a transaction on “Example of
BEGIN WORK” on page 2-84 includes a LOCK TABLE statement.

Important: Issue the BEGIN WORK statement only if a transaction is not in progress.
If you issue a BEGIN WORK statement while you are in a transaction, the database
server returns an error.

In ESQL/C, if you use the BEGIN WORK statement within a UDR called by a
WHENEVER statement, specify WHENEVER SQLERROR CONTINUE and
WHENEVER SQLWARNING CONTINUE before the ROLLBACK WORK
statement. These statements prevent the program from looping if the
ROLLBACK WORK statement encounters an error or a warning. ¢

2-82 IBM Informix Guide to SQL: Syntax

E/C

BEGIN WORK

The WORK keyword is optional in a BEGIN WORK statement. The following
two statements are equivalent:

BEGIN;

BEGIN WORK;

BEGIN WORK and ANSI-Compliant Databases

In an ANSI-compliant database, you do not need the BEGIN WORK statement
because transactions are implicit; every SQL statement occurs within a trans-
action. The database server generates a warning when you use a BEGIN
WORK statement immediately after any of the following statements:
DATABASE

COMMIT WORK

CREATE DATABASE

ROLLBACK WORK

The database server returns an error when you use a BEGIN WORK statement
after any other statement in an ANSI-compliant database.

BEGIN WORK WITHOUT REPLICATION

When you use Enterprise Replication for data replication, you can use the
BEGIN WORK WITHOUT REPLICATION statement to start a transaction that
does not replicate to other database servers.

You cannot execute BEGIN WORK WITHOUT REPLICATION as a stand-alone
embedded statement in an ESQL/C application. Instead you must execute
this statement indirectly. You can use either of the following methods:

m You can use a combination of the PREPARE and EXECUTE statements
to prepare and execute the BEGIN WORK WITHOUT REPLICATION
statement.

m You can use the EXECUTE IMMEDIATE statement to prepare and
execute BEGIN WORK WITHOUT REPLICATION in a single step.

You cannot use the DECLARE cursor CURSOR WITH HOLD with the BEGIN
WORK WITHOUT REPLICATION statement.

SQL Statements 2-83

BEGIN WORK

For more information about data replication, see the IBM Informix Dynamic
Server Enterprise Replication Guide.

Example of BEGIN WORK

The following code fragment shows how you might place statements within
a transaction. The transaction is made up of the statements that occur
between the BEGIN WORK and COMMIT WORK statements. The transaction
locks the stock table (LOCK TABLE), updates rows in the stock table
(UPDATE), deletes rows from the stock table (DELETE), and inserts a row into
the manufact table (INSERT).

BEGIN WORK;
LOCK TABLE stock;
UPDATE stock SET unit_price = unit_price * 1.10

WHERE manu_code = 'KAR';
DELETE FROM stock WHERE description = 'baseball bat';
INSERT INTO manufact (manu_code, manu name, lead_time)
VALUES ('LYM', 'LYMAN', 14);

COMMIT WORK;

The database server must perform this sequence of operations either
completely or not at all. When you include all of these operations within a
single transaction, the database server guarantees that all the statements are
completely and perfectly committed to disk, or else the database is restored
to the same state that it was in before the transaction began.

Related Information

Related statements: COMMIT WORK and ROLLBACK WORK

For discussions of transactions and locking, see the IBM Informix Guide to SQL:
Tutorial.

2-84 IBM Informix Guide to SQL: Syntax

CLOSE

E/C CLOSE

Use the CLOSE statement when you no longer need to refer to the rows that
a select or function cursor retrieved, or to flush and close an insert cursor.

Use this statement with ESQL/C.

Syntax

CLOSE cursor_id- J ‘
\“— cursor_id_var

Element Purpose Restrictions Syntax
cursor_id Name of cursor to be closed Must have been declared. Identifier, p. 4-189
cursor_id_var Host variable that contains the =~ Host variable must be a Must conform to language-
value of cursor_id character data type. specific rules for names.
Usage

Closing a cursor makes the cursor unusable for any statements except OPEN
or FREE and releases resources that the database server had allocated to the

cursor. A CLOSE statement treats a cursor that is associated with an INSERT

statement differently than one that is associated with a SELECT or EXECUTE
FUNCTION (or EXECUTE PROCEDURE) statement.

In a database that is not ANSI-compliant, you can close a cursor that has not
been opened or that has already been closed. No action is taken in these cases.

m In an ANSI-compliant database, the database server returns an error if you
close a cursor that was not open. ¢

Closing a Select or Function Cursor

When a cursor identifier is associated with a SELECT or EXECUTE FUNCTION
(or EXECUTE PROCEDURE) statement, closing the cursor terminates the
SELECT or EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement.

SQL Statements 2-85

CLOSE

The database server releases all resources that it might have allocated to the
active set of rows, for example, a temporary table that it used to hold an
ordered set. The database server also releases any locks that it might have
held on rows that were selected through the cursor. If a transaction contains
the CLOSE statement, the database server does not release the locks until you
execute COMMIT WORK or ROLLBACK WORK.

After you close a select or function cursor, you cannot execute a FETCH
statement that names that cursor until you have reopened it.

Closing an Insert Cursor

When a cursor identifier is associated with an INSERT statement, the CLOSE
statement writes any remaining buffered rows into the database. The number
of rows that were successfully inserted into the database is returned in the
third element of the sqlerrd array, sqlca.sqlerrd[2], in the sqlca structure. For
information on how to use SQLERRD to count the total number of rows that
were inserted, see “Error Checking” on page 2-546.

The SQLCODE field of the sqlca structure, sqlca.sqlcode, indicates the result
of the CLOSE statement for an insert cursor. If all buffered rows are success-
fully inserted, SQLCODE is set to zero. If an error is encountered, the

sqlca.sqlcode field in the SQLCODE is set to a negative error message number.

When SQLCODE is zero, the row buffer space is released, and the cursor is
closed; that is, you cannot execute a PUT or FLUSH statement that names the
cursor until you reopen it.

Tip: When you encounter an SQLCODE error, a corresponding SQLSTATE error
value also exists. For information about how to get the message text, check the GET
DIAGNOSTICS statement.

If the insert is not successful, the number of successfully inserted rows is
stored in sqlerrd. Any buffered rows that follow the last successfully inserted
row are discarded. Because the insert fails, the CLOSE statement fails also,
and the cursor is not closed. For example, a CLOSE statement can fail if insuf-
ficient disk space prevents some of the rows from being inserted. In this case,
a second CLOSE statement can be successful because no buffered rows exist.
An OPEN statement can also be successful because the OPEN statement
performs an implicit close.

2-86 IBM Informix Guide to SQL: Syntax

CLOSE

Closing a Collection Cursor

You can declare both select and insert cursors on collection variables. Such
cursors are called collection cursors. Use the CLOSE statement to deallocate
resources that have been allocated for the collection cursor.

For more information on how to use a collection cursor, see “Fetching from a
Collection Cursor” on page 2-432 and “Inserting into a Collection Cursor” on
page 2-544.

Using End of Transaction to Close a Cursor

The COMMIT WORK and ROLLBACK WORK statements close all cursors
except those that are declared with a hold. It is better to close all cursors
explicitly, however. For select or function cursors, this action simply makes
the intent of the program clear. It also helps to avoid a logic error if the WITH
HOLD clause is later added to the declaration of a cursor.

For an insert cursor, it is important to use the CLOSE statement explicitly so
that you can test the error code. Following the COMMIT WORK statement,
SQLCODE reflects the result of the COMMIT statement, not the result of
closing cursors. If you use a COMMIT WORK statement without first using a
CLOSE statement, and if an error occurs while the last buffered rows are being
written to the database, the transaction is still committed.

For how to use insert cursors and the WITH HOLD clause, see “DECLARE”
on page 2-323.

In an ANSI-compliant database, a cursor cannot be closed implicitly. You
must issue a CLOSE statement. ¢

Related Information

Related statements: DECLARE, FETCH, FLUSH, FREE, OPEN, PUT, and SET
AUTOFREE

For an introductory discussion of cursors, see the IBM Informix Guide to SQL:
Tutorial.

For a more advanced discussion of cursors, see the IBM Informix ESQL/C
Programmer’s Manual.

SQL Statements 2-87

CLOSE DATABASE

CLOSE DATABASE

Use the CLOSE DATABASE statement to close the current database.

Syntax

CLOSE DATABASE |

Usage

When you issue a CLOSE DATABASE statement, you can issue only the
following SQL statements immediately after it:

CONNECT

CREATE DATABASE

DATABASE

DROP DATABASE

DISCONNECT

(The DISCONNECT statement is valid here only if an explicit connec-
tion existed before CLOSE DATABASE was executed.)

Issue the CLOSE DATABASE statement before you drop the current database.

If your database supports transaction logging, and if you have started a
transaction, you must issue a COMMIT WORK statement before you can use
the CLOSE DATABASE statement.

The following example shows how to use the CLOSE DATABASE statement to
drop the current database:

DATABASE stores_demo

CLOSE DATABASE
DROP DATABASE stores_demo

2-88 IBM Informix Guide to SQL: Syntax

E/C

CLOSE DATABASE

In ESQL/C, the CLOSE DATABASE statement cannot appear in a multi-
statement PREPARE operation.

If you use the CLOSE DATABASE statement within a UDR called by a
WHENEVER statement, specify WHENEVER SQLERROR CONTINUE and
WHENEVER SQLWARNING CONTINUE before the ROLLBACK WORK
statement. This action prevents the program from looping if the ROLLBACK
WORK statement encounters an error or a warning.

When you issue the CLOSE DATABASE statement, any declared cursors are no
longer valid. You must re-declare any cursors that you want to use. ¢

In an ANSI-compliant database, if no error is encountered while you exit from
DB-Access in non-interactive mode without issuing the CLOSE DATABASE,
COMMIT WORK, or DISCONNECT statement, the database server automati-
cally commits any open transaction. ¢

Related Information

Related statements: CONNECT, CREATE DATABASE, DATABASE,
DISCONNECT, and DROP DATABASE

SQL Statements 2-89

COMMIT WORK

COMMIT WORK

Use the COMMIT WORK statement to commit all modifications made to the
database from the beginning of a transaction.

Syntax

2-90

COMMIT

\WORKI |

Usage

The COMMIT WORK statement informs the database server that you reached
the end of a series of statements that must succeed as a single unit. The
database server takes the required steps to make sure that all modifications
that the transaction makes are completed correctly and saved to disk.

Use COMMIT WORK only at the end of a multistatement operation in a
database with transaction logging, when you are sure that you want to keep
all changes made to the database from the beginning of a transaction.

The COMMIT WORK statement releases all row and table locks.

The WORK keyword is optional ina COMMIT WORK statement. The following
two statements are equivalent:

COMMIT;
COMMIT WORK;

The following example shows a transaction bounded by BEGIN WORK and
COMMIT WORK statements.

BEGIN WORK;
DELETE FROM call_ type WHERE call code = 'O';
INSERT INTO call_type VALUES ('S', 'order status');

COMMIT WORK;

In this example, the user first deletes the row from the call_type table where
the value of the call_code column is 0. The user then inserts a new row in the
call_type table where the value of the call_code column is s. The database
server guarantees that both operations succeed or else neither succeeds.

IBM Informix Guide to SQL: Syntax

E/C

COMMIT WORK

In ESQL/C, the COMMIT WORK statement closes all open cursors except those
that were declared using the WITH HOLD option. ¢

Issuing COMMIT WORK in a Database That Is Not ANSI Compliant

In a database that is not ANSI compliant, but that supports transaction
logging, if you initiate a transaction with a BEGIN WORK statement, you must
issue a COMMIT WORK statement at the end of the transaction. If you fail to
issue a COMMIT WORK statement in this case, the database server rolls back
any modifications that the transaction made to the database.

If you do not issue a BEGIN WORK statement, however, each statement
executes within its own transaction. These single-statement transactions do
not require either a BEGIN WORK statement or a COMMIT WORK statement.

Issuing COMMIT WORK in an ANSI-Compliant Database

In an ANSI-compliant database, you do not need BEGIN WORK to mark the
beginning of a transaction. You only need to mark the end of each trans-
action, because a transaction is always in effect. A new transaction starts
automatically after each COMMIT WORK or ROLLBACK WORK statement.

You must, however, issue an explicit COMMIT WORK statement to mark the
end of each transaction. If you fail to do so, the database server rolls back any
modifications that the transaction made to the database.

In an ANSI-compliant database, however, if no error is encountered while
you exit from DB-Access in non-interactive mode without issuing the CLOSE
DATABASE, COMMIT WORK, or DISCONNECT statement, the database server
automatically commits any open transaction. ¢

Related Information

Related statements: BEGIN WORK, ROLLBACK WORK, and DECLARE

For a discussion of concepts related to transactions, see the IBM Informix Guide
to SQL: Tutorial.

SQL Statements 2-91

CONNECT

CONNECT

Use the CONNECT statement to connect to a database environment.

Syntax
Database
CONNECT TO Environment %
2% | pry e [
6/ connection USER
AS J connection_var SIZL_JSS
DEFAULT J

C WITH CONCURRENT TRANSACTION J

-

Element Purpose Restrictions Syntax
connection Case-sensitive name that you Must be unique among ~ Quoted String, p. 4-243
declare here for a connection connection names.
connection_var Host variable that stores thename Must be a fixed-length Language specific
of connection character data type.
Usage

The CONNECT statement connects an application to a database environment,
which can be a database, a database server, or a database and a database
server. If the application successfully connects to the specified database
environment, the connection becomes the current connection for the appli-
cation. SQL statements fail if the application has no current connection to a
database server. If you specify a database name, the database server opens
that database. You cannot include CONNECT within a PREPARE statement.

An application can connect to several database environments at the same
time, and it can establish multiple connections to the same database
environment, provided each connection has a unique connection name.

2-92 BM Informix Guide to SQL: Syntax

CONNECT

On UNIX, the only restriction on establishing multiple connections to the
same database environment is that an application can establish only one
connection to each local server that uses the shared-memory connection
mechanism. To find out whether a local server uses the shared-memory
connection mechanism or the local-loopback connection mechanism,
examine the $SINFORMIXDIR/etc/sqlhosts file. For more information on the
sqlhosts file, refer to your Administrator’s Guide. ¢

On Windows, the local connection mechanism is named pipes. Multiple
connections to the local server from one client can exist. ¢

Only one connection is current at any time; other connections are dormant.
The application cannot interact with a database through a dormant
connection. When an application establishes a new connection, that
connection becomes current, and the previous current connection becomes
dormant. You can make a dormant connection current with the SET
CONNECTION statement. See also “SET CONNECTION” on page 2-646.

Privileges for Executing the CONNECT Statement

The current user, or PUBLIC, must have the Connect database privilege on the
database specified in the CONNECT statement. The user who executes the
CONNECT statement cannot have the same user name as an existing role in
the database.

For information on how to use the USER clause to specify an alternate user
name when the CONNECT statement connects to a database server on a
remote host, see “USER Clause” on page 2-99.

Connection Identifiers

The optional connection name is a unique identifier that an application can
use to refer to a connection in subsequent SET CONNECTION and
DISCONNECT statements. If the application does not provide a connection
name (or a connection-host variable), it can refer to the connection using the
database environment. If the application makes more than one connection to
the same database environment, however, each connection must have a
unique connection name.

After you associate a connection name with a connection, you can refer to the
connection using only that connection name.

SQL Statements 2-93

CONNECT

Connection Context

Each connection encompasses a set of information that is called the connection
context. The connection context includes the name of the current user, the
information that the database environment associates with this name, and
information on the state of the connection (such as whether an active trans-
action is associated with the connection). The connection context is saved
when an application becomes dormant, and this context is restored when the
application becomes current again. (For more information, see “Making a
Dormant Connection the Current Connection” on page 2-646.)

DEFAULT Option

Use the DEFAULT option to request a connection to a default database server,
called a default connection. The default database server can be either local or
remote. To designate the default database server, set its name in the
environment variable INFORMIXSERVER. This form of the CONNECT
statement does not open a database.

If you select the DEFAULT option for the CONNECT statement, you must use
the DATABASE statement or the CREATE DATABASE statement to open or
create a database in the default database environment.

The Implicit Connection with DATABASE Statements

If you do not execute a CONNECT statement in your application, the first SQL
statement must be one of the following database statements (or a single
statement PREPARE for one of the following statements):

m DATABASE
m CREATE DATABASE
m DROP DATABASE

If one of these database statements is the first SQL statement in an application,
the statement establishes a connection to a database server, which is known
as an implicit connection. If the database statement specifies only a database
name, the database server name is obtained from the DBPATH environment
variable. This situation is described in “Specifying the Database
Environment” on page 2-98.

2-94 BM Informix Guide to SQL: Syntax

CONNECT

An application that makes an implicit connection can establish other
connections explicitly (using the CONNECT statement) but cannot establish
another implicit connection unless the original implicit connection is discon-
nected. An application can terminate an implicit connection using the
DISCONNECT statement.

After any implicit connection is made, that connection is considered to be the
default connection, regardless of whether the database server is the default
that the INFORMIXSERVER environment variable specifies. This feature
allows the application to refer to the implicit connection if additional explicit
connections are made, because the implicit connection has no identifier.

For example, if you establish an implicit connection followed by an explicit
connection, you can make the implicit connection current by issuing the SET
CONNECTION DEFAULT statement. This means, however, that once you
establish an implicit connection, you cannot use the CONNECT DEFAULT
statement, because the implicit connection is now the default connection.

The database statements can always be used to open a database or create a
new database on the current database server.

WITH CONCURRENT TRANSACTION Option

The WITH CONCURRENT TRANSACTION clause lets you switch to a different
connection while a transaction is active in the current connection. If the
current connection was not established using the WITH CONCURRENT
TRANSACTION clause, you cannot switch to a different connection if a trans-
action is active; the CONNECT or SET CONNECTION statement fails, returning
an errot, and the transaction in the current connection continues to be active.

In this case, the application must commit or roll back the active transaction in
the current connection before it switches to a different connection.

The WITH CONCURRENT TRANSACTION clause supports the concept of
multiple concurrent transactions, where each connection can have its own
transaction and the COMMIT WORK and ROLLBACK WORK statements affect
only the current connection.The WITH CONCURRENT TRANSACTION clause
does not support global transactions in which a single transaction spans
databases over multiple connections. The COMMIT WORK and ROLLBACK
WORK statements do not act on databases across multiple connections.

SQL Statements 2-95

CONNECT

2-96

The following example illustrates how to use the WITH CONCURRRENT
TRANSACTION clause:

main ()

EXEC SQL connect to 'a@srvl' as 'A';

EXEC SQL connect to 'b@srv2' as 'B' with concurrent transaction;
EXEC SQL connect to 'c@srv3' as 'C' with concurrent transaction;

/*
Execute SQL statements in connection 'C' , starting a
transaction
*/
EXEC SQL set connection 'B'; -- switch to connection 'B'
/*

Execute SQL statements starting a transaction in 'B'.
Now there are two active transactions, one each in 'B’'
and 'C'.

*/

EXEC SQL set connection 'A'; -- switch to connection 'A!

/*
Execute SQL statements starting a transaction in 'A'.
Now there are three active transactions, one each in 'A',

'B' and 'C'.
*/
EXEC SQL set connection 'C'; -- ERROR, transaction active in 'A'
/*

SET CONNECTION 'C' fails (current connection is still 'A')
The transaction in 'A' must be committed/rolled back since
connection 'A' was started without the CONCURRENT TRANSACTION
clause.

*/
EXEC SQL commit work;-- commit tx in current connection ('A')

/*
Now, there are two active transactions, in 'B' and in 'C',
which must be committed/rolled back separately

*/

EXEC SQL set connection 'B'; -- switch to connection 'B'

EXEC SQL commit work; -- commit tx in current connection ('B')
EXEC SQL set connection 'C'; -- go back to connection 'C'

EXEC SQL commit work; -- commit tx in current connection ('C’'

EXEC SQL disconnect all;

}

Warning: When an application uses the WITH CONCURRENT TRANSACTION
clause to establish multiple connections to the same database environment, a deadlock
condition can occut.

IBM Informix Guide to SQL: Syntax

CONNECT

Database Environment

Database Back to CONNECT p. 2-92
Environment Back to SET CONNECTION p. 2-646
— 'dbname' -
'@ dbservername'
'dbname @ dbservername'
db_var

Element Purpose Restrictions Syntax
db_var Host variable that contains a Must be a fixed-length character data type, Language

valid database environment (in whose contents are in a format from the specific

one of the formats in the syntax syntax diagram.

diagram)
dbname Database to which to connect Must already exist. Identifier,

p- 4-189

dbservername Name of the database server to Must already exist; blank space is not valid Identifier,

which a connection is made between @ symbol and dbservername. See also p. 4-189

“Restrictions on dbservername.”

UNIX

If the DELIMIDENT environment variable is set, any quotation (') marks in
the database environment must be single. If DELIMIDENT is not set, then
either single (') or double (") quotation marks are valid here.

Restrictions on dbhservername
If you specify dbservername, it must satisfy the following restrictions.
m If the database server that you specify is not online, you receive an

error.

m On UNIX, the database server that you specify in dbservername must
match the name of a database server in the sqlhosts file. ¢

m On Windows, dbservername must match the name of a database
server in the sqlhosts subkey in the registry. It is recommended that
you use the setnet32 utility to update the registry. ¢

SQL Statements 2-97

CONNECT

Specifying the Database Environment

You can specify a database server and a database, or a database server only,
or a database only. How a database is located and opened depends on
whether you specify a database server name in the database environment
expression.

Only Database Server Specified

The @dbservername option establishes a connection to the database server
only; it does not open a database. When you use this option, you must subse-
quently use the DATABASE or CREATE DATABASE statement (or a PREPARE
statement for one of these statements and an EXECUTE statement) to open a
database.

Database Server and Database Specified

If you specify both a database server and a database, your application
connects to the database server, which locates and opens the database.

Only Database Specified

The dbname option establishes a connection to the default database server or
to another database server in the DBPATH environment variable. It also
locates and opens the named database. (The same is true of the db_var option
if this specifies only a database name.)

If you specify only dbname, its database server is read from the DBPATH
environment variable. The database server in the INFORMIXSERVER
environment variable is always added before the DBPATH value.

On UNIX, set the INFORMIXSERVER and DBPATH environment variables as
the following example (for the C shell) shows:

setenv INFORMIXSERVER srvA
setenv DBPATH //srvB://sxvC

2-98 BM Informix Guide to SQL: Syntax

CONNECT

On Windows, choose Start—Programs—Informix—setnet32 from the Task
Bar and set the INFORMIXSERVER and DBPATH environment variables:

set INFORMIXSERVER = srvA
set DBPATH = //srvA://srvB://sxrvC

¢
The next example shows the resulting DBPATH that your application uses:
//srvA://sxrvB://srvC

The application first establishes a connection to the database server that
INFORMIXSERVER specifies. The database server uses parameters in the
configuration file to locate the database. If the database does not reside on the
default database server, or if the default database server is not online, the
application connects to the next database server in DBPATH. In the previous
example, that database server would be srvB.

USER Clause

The USER clause specifies information that is used to determine whether the
application can access the target computer on a remote host.

USER
Clause

Back to CONNECT
p. 2-92

—FUSERT'user_id ' J USING validation_var———pm~
user_id_var

Element Purpose Restrictions Syntax
user_id Valid login name See “Restrictions on the User Identifier Quoted String,
Parameter” on page 2-100. p- 4-243
user_id_var Host variable that contains Must be a fixed-length character data Language
user_id type; same restrictions as user_id. specific
validation_var ~ Host variable that contains a Must be a fixed-length character data Language
valid password for login name type. See “Restrictions on the specific
in user_id or user_id_var Validation Variable Parameter” on
page 2-100.

—

SQL Statements 2-99

CONNECT

E/C

X/0

The USER clause is required when the CONNECT statement connects to the
database server on a remote host. Subsequent to the CONNECT statement, all
database operations on the remote host use the specified user name.

Restrictions on the Validation Variable Parameter

On UNIX, the password stored in validation_var must be a valid password and
must exist in the /etc/passwd file. If the application connects to a remote
database server, the password must exist in this file on both the local and
remote database servers. ¢

On Windows, the password stored in validation_var must be a valid password
and must be the one entered in User Manager. If the application connects to
a remote database server, the password must exist in the domain of both the
client and the server. ¢

Restrictions on the User Identifier Parameter

On UNIX, the login name you specify in user_id must be a valid login name
and must exist in the /etc/passwd file. If the application connects to a remote
server, the login name must exist in this file on both the local and remote
database servers. ¢

On Windows, the login name that you specify in user_id must be a valid login
name and must exist in User Manager. If the application connects to a remote
server, the login name must exist in the domain of both the client and the
server. ¢

The connection is rejected if the following conditions occur:

m The specified user lacks the privileges to access the database named
in the database environment.

m Thespecified user does not have the required permissions to connect
to the remote host.

m You supply a USER clause but do not include the USING
validation_var phrase.

In compliance with the X/Open specification for the CONNECT statement, the
ESQL/C preprocessor allows a CONNECT statement that has a USER clause
without the USING validation_var specification. If the validation_var is not
present, however, the database server rejects the connection at runtime. ¢

2-100 BM Informix Guide to SQL: Syntax

CONNECT

Use of the Default User ID

If you do not supply the USER clause, the default user ID is used to attempt
the connection. The default user ID is the login name of the user running the
application. In this case, you obtain network permissions with the standard
authorization procedures. For example, on UNIX, the default user ID must
match a user ID in the /etc/hosts.equiv file. On Windows, you must be a
member of the domain, or if the database server is installed locally, you must
be a valid user on the computer where it is installed.

Related Information

Related Statements: DISCONNECT, SET CONNECTION, DATABASE, and
CREATE DATABASE

For more information about sqlhosts, refer to your Administrator’s Guide.

SQL Statements 2-101

CREATE ACCESS_METHOD

CREATE ACCESS_METHOD

“ Use the CREATE ACCESS_METHOD statement to register a new access method
in the sysams system catalog table.

Syntax

3
CREATE TSECONDARYTACCESS_METHOD access_method —— (g Purpgsz %;ﬁons :)4

PRIMARY
Element Purpose Restrictions Syntax
access Name declared here for the Must be unique among access-method Database Object
_method new access method names in the sysams system catalog table. Name, p. 4-46
Usage

The CREATE ACCESS_METHOD statement adds a user-defined access method
to a database.

When you create an access method, you specify purpose functions or
methods, purpose flags, or purpose values as attributes of the access method,
and you associate purpose keywords in the sysams system catalog table with
user-defined functions or methods.

The am_getnext keyword is required in the Purpose Options list. You must
use this to specify a UDR (or the name of a method) to scan for the next item
that satisfies a query. For information on how to set purpose options, refer to
“Purpose Options” on page 4-237.

The PRIMARY keyword specifies a user-defined primary-access method for a
virtual table. The SECONDARY keyword specifies creating a user-defined

secondary-access method for a virtual index. The SECONDARY keyword (and
creating virtual indexes) is not supported in the Java Virtual-Table Interface.

You must have the DBA or Resource privilege to create an access method.

2-102 IBM Informix Guide to SQL: Syntax

CREATE ACCESS_METHOD

The following statement creates a secondary-access method named T-tree
that resides in an sbspace:

CREATE SECONDARY ACCESS_METHOD T_tree
(

am_getnext = ttree_getnext,
am_unique,

am_cluster,

am_sptype = 'S’

)i

In the preceding example, the am_getnext keyword is associated with the
user-defined function ttree_getnext(). The T_tree access method supports
unique keys and clustering.

The following statement creates a primary-access method named
am_tabprops that resides in an extspace.

CREATE PRIMARY ACCESS METHOD am_tabprops
(

am_open = FS_open,

am_close = FS_close,

am_beginscan = FS_beginScan,

am_create = FS_create,

am_scancost = FS_scanCost,

am_endscan = FS_endScan,
am_getnext = FS getNext,
am_getbyid = FS_getById,

am_drop = FS drop,
am_rowids,
am_sptype = ‘X’

)i

Related Information
Related statements: ALTER ACCESS_METHOD and DROP ACCESS_METHOD

For detailed information about how to set purpose-option specifications, see
“Purpose Options” on page 4-237.

For more information on primary-access methods, see the IBM Informix
Virtual-Table Interface Programmer’s Guide.

For more information on secondary-access methods, see the IBM Informix
Virtual-Index Interface Programmer’s Guide (C only).

For a discussion of privileges, see the GRANT or REVOKE statements or the
IBM Informix Database Design and Implementation Guide.

SQL Statements 2-103

CREATE AGGREGATE

CREATE AGGREGATE

“ Use the CREATE AGGREGATE statement to create a new aggregate function

and register it in the sysaggregates system catalog table. User-defined aggre-
gates extend the functionality of the database server by performing
aggregate computations that the user implements.

Syntax

CREATE AGGREGATE \

]
/ aggregate —— WITH —— () —‘

INIT = init_func -

Owner Name
p. 4-234

ITER = iter_func

COMBINE = comb_func ﬁ FINAL = final_func
/ HANDLESNULLS
Element Purpose Restrictions Syntax
aggregate Name of the new aggregate Must be unique among names of Identifier, p. 4-189

built-in aggregates and UDRs
comb_func Function that merges one partial Must specify the combined function Database Object

result into the other and returns both for parallel queries and for Name, p. 4-46
the updated partial result sequential queries
final_func Function that converts a partial If this is omitted, then the returned =~ Database Object
result into the result type value is the final result of iter_func Name, p. 4-46
init_func ~ Function that initializes the data Must be able to handle NULL Database Object
structures required for the arguments Name, p. 4-46

aggregate computation

iter_func ~ Function that merges a single =~ Must specify an iterator function. If = Database Object
value with a partial resultand inif_func is omitted, iter_func mustbe Name, p. 4-46
returns updated partial result ~ able to handle NULL arguments

2-104 IBM Informix Guide to SQL: Syntax

CREATE AGGREGATE

Usage

You can specify the INIT, ITER, COMBINE, FINAL, and HANDLESNULLS
modifiers in any order.

Important: You must specify the ITER and COMBINE modifiers in a CREATE
AGGREGATE statement. You do not have to specify the INIT, FINAL, and
HANDLESNULLS modifiers in a CREATE AGGREGATE statement.

The ITER, COMBINE, FINAL, and INIT modifiers specify the support functions
for a user-defined aggregate. These support functions do not have to exist at
the time you create the user-defined aggregate.

If you omit the HANDLESNULLS modifier, rows with NULL aggregate
argument values do not contribute to the aggregate computation. If you
include the HANDLESNULLS modifier, you must define all the support
functions to handle NULL values as well.

Extending the Functionality of Aggregates

Dynamic Server provides two ways to extend the functionality of aggregates.
Use the CREATE AGGREGATE statement only for the second of the two cases.

m Extensions of built-in aggregates

A built-in aggregate is an aggregate that the database server pro-
vides, such as COUNT, SUM, or AVG. These support only built-in
data types. To extend a built-in aggregate so that it supports a user-
defined data type (UDT), you must create user-defined routines that
overload the binary operators for that aggregate. For further infor-
mation on extending built-in aggregates, see the IBM Informix User-
Defined Routines and Data Types Developer’s Guide.

m Creation of user-defined aggregates

A user-defined aggregate is an aggregate that you define to perform
an aggregate computation that the database server does not provide.
You can use user-defined aggregates with built-in data types,
extended data types, or both. To create a user-defined aggregate, use
the CREATE AGGREGATE statement. In this statement, you name the
new aggregate and specify the support functions that compute the
aggregate result. These support functions perform initialization,
sequential aggregation, combination of results, and type conversion.

SQL Statements 2-105

CREATE AGGREGATE

2-106

Example of Creating a User-Defined Aggregate
The following example defines a user-defined aggregate named average:

CREATE AGGREGATE average
WITH (
INIT = average init,
ITER = average iter,
COMBINE = average combine,
FINAL = average_final
)

Before you use the average aggregate in a query, you must also use CREATE
FUNCTION statements to create the support functions specified in the
CREATE AGGREGATE statement.

The following table gives an example of the task that each support function
might perform for average.

Keyword Support Function Effect

INIT average_init Allocates and initializes an extended data type
storing the current sum and the current row count

ITER average_iter For each row, adds the value of the expression to
the current sum and increments the current row
count by one

COMBINE average_combine Adds the current sum and the current row count
of one partial result to the other and returns the
updated result

FINAL average_final Returns the ratio of the current sum to the current
row count and converts this ratio to the result type

Parallel Execution

The database server can break up an aggregate computation into several
pieces and compute them in parallel. The database server uses the INIT and
ITER support functions to compute each piece sequentially. Then the
database server uses the COMBINE function to combine the partial results
from all the pieces into a single result value. Whether an aggregate is parallel
is an optimization decision that is transparent to the user.

IBM Informix Guide to SQL: Syntax

CREATE AGGREGATE

Related Information
Related statements: CREATE FUNCTION and DROP AGGREGATE

For information about how to invoke a user-defined aggregate, see “User-
Defined Aggregates” on page 4-173 in the Expression segment.

For a description of the sysaggregates system catalog table that stores data
about user-defined aggregates, see the IBM Informix Guide to SQL: Reference.

For a discussion of user-defined aggregates, see IBM Informix User-Defined
Routines and Data Types Developer’s Guide.

SQL Statements 2-107

CREATE CAST

CREATE CAST
“ Use the CREATE CAST statement to register a cast that converts data from one

data type to another.

Syntax

CREATE TEXPLICIT CAST— (source_type—AS— target_type l / H
IMPLICIT WITH — function

-

Element Purpose Restrictions Syntax

function User-defined function ~ See “WITH Clause” on page 2-111. Database
that you register to Object Name,
implement the cast p. 4-46

source_type Data type to be Must exist in the database at the time when the cast Data Type,
converted is registered. See also “Source and Target Data p. 4-49

Types” on page 2-109.
target_type Data type that results ~ The same restrictions that apply for the source_type Data Type,
from the conversion (as listed above) also apply for the target_type. p- 4-49

Usage

A cast is a mechanism that the database server uses to convert one data type
to another. The database server uses casts to perform the following tasks:

m Tocompare two values in the WHERE clause of a SELECT, UPDATE, or
DELETE statement
m To pass values as arguments to user-defined routines
m To return values from user-defined routines
To create a cast, you must have the necessary privileges on both the source
data type and the target data type. All users have permission to use the built-in

data types. To create a cast to or from an OPAQUE, DISTINCT, or named ROW
data type, however, requires the Usage privilege on that data type.

2-108 BM Informix Guide to SQL: Syntax

CREATE CAST

The CREATE CAST statement registers a cast in the syscasts system catalog
table. For more information on syscasts, see the chapter on system catalog
tables in the IBM Informix Guide to SQL: Reference.

Source and Target Data Types

The CREATE CAST statement defines a cast that converts a source data type to
a target data type. Both the source data type and target data type must exist in the
database when you execute the CREATE CAST statement to register the cast.
The source data type and the target data type have the following restrictions:

m Either the source data type or the target data type, but not both, can be
a built-in type.

m Neither the source data type nor the target data type can be a distinct
type of the other.

m Neither the source data type nor the target data type can be a collection
data type.

Explicit and Implicit Casts

To process queries with multiple data types often requires casts that convert
data from one data type to another. You can use the CREATE CAST statement
to create the following kinds of casts:

m Use the CREATE EXPLICIT CAST statement to define an explicit cast.
m Use the CREATE IMPLICIT CAST statement to define an implicit cast.

Explicit Casts

An explicit cast is a cast that you must specifically invoke, with either the
CAST AS keywords or with the cast operator (::). The database server does
not automatically invoke an explicit cast to resolve data type conversions.
The EXPLICIT keyword is optional; by default, the CREATE CAST statement
creates an explicit cast.

The following CREATE CAST statement defines an explicit cast from the
rate_of_return opaque data type to the percent distinct data type:

CREATE EXPLICIT CAST (rate_of_ return AS percent
WITH rate to_prcnt)

SQL Statements 2-109

CREATE CAST

The following SELECT statement explicitly invokes this explicit cast in its
WHERE clause to compare the bond_rate column (of type rate_of_return) to
the initial_APR column (of type percent):

SELECT bond_rate FROM bond
WHERE bond rate::percent > initial APR

Implicit Casts

The database server invokes built-in casts to convert from one built-in data
type to another built-in type that is not directly substitutable. For example,
the database server performs conversion of a character type such as CHAR to
a numeric type such as INTEGER through a built-in cast.

An implicit cast is a cast that the database server can invoke automatically
when it encounters data types that cannot be compared with built-in casts.
This type of cast enables the database server to automatically handle conver-
sions between other data types.

To define an implicit cast, specify the IMPLICIT keyword in the CREATE CAST
statement. For example, the following CREATE CAST statement specifies that
the database server should automatically use the prent_to_char() function to
convert from the CHAR data type to a distinct data type, percent:

CREATE IMPLICIT CAST (CHAR AS percent WITH char to prcnt)

This cast only supports automatic conversion from the CHAR data type to
percent. For the database server to convert from percent fo CHAR, you also
need to define another implicit cast, as follows:

CREATE IMPLICIT CAST (percent AS CHAR WITH prcnt_to_ char)

The database server automatically invokes the char_to_prent() function to
evaluate the WHERE clause of the following SELECT statement:

SELECT commission FROM sales_rep WHERE commission > "25%"

Users can also invoke implicit casts explicitly. For more information on how
to explicitly invoke a cast function, see “Explicit Casts” on page 2-109.

When a built-in cast does not exist for conversion between data types, you
can create user-defined casts to make the necessary conversion.

2-110 IBM Informix Guide to SQL: Syntax

CREATE CAST

WITH Clause

The WITH clause of the CREATE CAST statement specifies the name of the
user-defined function to invoke to perform the cast. This function is called
the cast function. You must specify a function name unless the source data type
and the farget data type have identical representations. Two data types have
identical representations when the following conditions are met:

m Both data types have the same length and alignment

m Both data types are passed by reference or both are passed by value
The cast function must be registered in the same database as the cast at the
time the cast is invoked, but need not exist when the cast is created. The
CREATE CAST statement does not check permissions on the specified function
name, or even verify that the cast function exists. Each time a user invokes the

cast explicitly or implicitly, the database server verifies that the user has the
Execute privilege on the cast function.

Related Information

Related statements: CREATE FUNCTION, CREATE DISTINCT TYPE, CREATE
OPAQUE TYPE, CREATE ROW TYPE, and DROP CAST

For more information about data types, casting, and conversion, see the Data
Types segment in this manual and the IBM Informix Guide to SQL: Reference.

For examples that show how to create and use casts, see the IBM Informix
Database Design and Implementation Guide.

SQL Statements 2-111

CREATE DATABASE

CREATE DATABASE

Use the CREATE DATABASE statement to create a new database.

Syntax

CREATE DATABASE— database |
\ IN - dbspace AWITH LOG
EJFFEREDI
LOG MODE ANSI

-

Element Purpose Restrictions Syntax
database Name that you declare here for the Must be unique among the names of Database Name,
new database that you are creating databases on the database server. p. 4-44
dbspace The dbspace to store the data for this Must already exist. Identifier,
database; default is the root dbspace p. 4-189
Usage

This statement is an extension to ANSI-standard syntax. (The ANSI/ISO
standard for the SQL language does not specify any syntax for construction
of a database, the process by which a database comes into existence.)

The database that CREATE DATABASE specifies becomes the current database.

The database name that you use must be unique within the database server
environment in which you are working. The database server creates the
system catalog tables that describe the structure of the database.

When you create a database, you alone can access it. It remains inaccessible
to other users until you, as DBA, grant database privileges. For information
on how to grant database privileges, see “"GRANT” on page 2-459.

E/C In ESQL/C, the CREATE DATABASE statement cannot appear in a
multistatement PREPARE operation. ¢

2-112 IBM Informix Guide to SQL: Syntax

CREATE DATABASE

If you do not specify the dbspace, the database server creates the system
catalog tables in the root dbspace. The following statement creates the
vehicles database in the root dbspace:

CREATE DATABASE vehicles

The following statement creates the vehicles database in the research
dbspace:

CREATE DATABASE vehicles IN research

In Extended Parallel Server you can create a database in the dbspace of the
primary coserver (coserver 1) only. ¢

Logging Options

The logging options of the CREATE DATABASE statement determine the type
of logging that is done for the database.

In the event of a failure, the database server uses the log to re-create all
committed transactions in your database.

If you do not specify the WITH LOG option, you cannot use transactions or
the statements that are associated with databases that have logging (BEGIN
WORK, COMMIT WORK, ROLLBACK WORK, SET IMPLICIT TRANSACTION,
SET LOG, and SET ISOLATION).

If you are using Extended Parallel Server, the CREATE DATABASE statement
always creates a database with logging. If you do not specify the WITH LOG
option, the unbuffered log type is used by default. ¢

Designating Buffered Logging

The following example creates a database that uses a buffered log:
CREATE DATABASE vehicles WITH BUFFERED LOG

If you use a buffered log, you marginally enhance the performance of logging
at the risk of not being able to re-create the last few transactions after a failure.
(See the discussion of buffered logging in the IBM Informix Database Design and
Implementation Guide.)

SQL Statements 2-113

CREATE DATABASE

ANSI-Compliant Databases

When you use the LOG MODE ANSI option in the CREATE DATABASE
statement, the database that you create is an ANSI-compliant database. The
following example creates an ANSI-compliant database:

CREATE DATABASE employees WITH LOG MODE ANSI

ANSI-compliant databases are different from databases that are not ANSI
compliant in several ways, including the following features:

m All statements are automatically contained in transactions.
m All databases use unbuffered logging.
m Owner-naming is enforced.

You must use the owner name when you refer to each table, view,
synonym, index, or constraint, unless you are the owner.

m For databases, the default isolation level is REPEATABLE READ.

m Default privileges on objects differ from those in databases that are
not ANSI compliant. Users do not receive PUBLIC privilege to tables
and synonyms by default.

Other slight differences exist between databases that are ANSI compliant and
those that are not. These differences are noted with the related SQL statement
in this manual. For a detailed discussion of the differences between ANSI
compliant databases and databases that are not ANSI-compliant, see the
IBM Informix Database Design and Implementation Guide.

Creating an ANSI-compliant database does not mean that you automatically
get warnings for Informix extensions to the ANSI/ISO standard for SQL
syntax when you run the database. You must also use the -ansi flag or the
DBANSIWARN environment variable to receive such warnings.

For additional information about -ansi and DBANSIWARN, see the
IBM Informix Guide to SQL: Reference.

Related Information

Related statements: CLOSE DATABASE, CONNECT, DATABASE, and DROP
DATABASE

2-114 IBM Informix Guide to SQL: Syntax

CREATE DISTINCT TYPE

CREATE DISTINCT TYPE

Use the CREATE DISTINCT TYPE statement to create a new distinct data type.

Syntax

CREATE DISTINCT TYPE

distinct_type AS source_ typeg’ I

e —

Element Purpose Restrictions Syntax

type

distinct_type Name that you In an ANSI-compliant database, the combination of the ~ Data Type,
declare here for the owner and data type must be unique within the database. p. 4-49
new distinct data In a database that is not ANSI compliant, the name must

be unique among names of data types in the database.

source_type ~ Name of an existing Must be either a built-in data type or one created with the DataType,
type on which the =~ CREATE DISTINCT TYPE, CREATE OPAQUE TYPE, or p. 4-49
new typeisbased = CREATE ROW TYPE statement.

Usage

A distinct type is a data type based on a built-in data type or on an existing
opaque data type, a named-row data type, or another distinct data type.
Distinct data types are strongly typed. Although the distinct type has the
same physical representation as data of its source type, values of the two
types cannot be compared without an explicit cast from one type to the other

To create a distinct type in a database, you must have the Resource privilege.
Any user with the Resource privilege can create a distinct type from one of
the built-in data types, which user informix owns.

Important: You cannot create a distinct type on the SERIAL or SERIALS data type.

To create a distinct type from an opaque type, a named-ROW type, or another
distinct type, you must be the owner of the data type or have the Usage
privilege on the data type.

Once a distinct type is defined, only the type owner and the DBA can use it.
The owner of the type can grant other users the Usage privilege on the type.

SQL Statements 2-115

CREATE DISTINCT TYPE

2-116

A distinct type has the same storage structure as its source type. The
following statement creates the distinct type birthday, based on the built-in
DATE data type:

CREATE DISTINCT TYPE birthday AS DATE

Although Dynamic Server uses the same storage format for the distinct type
as it does for its source type, a distinct type and its source type cannot be
compared in an operation unless one type is explicitly cast to the other type.

Privileges on Distinct Types

To create a distinct type, you must have the Resource privilege on the
database. When you create the distinct type, only you, the owner, have Usage
privilege on this type. Use the GRANT or REVOKE statements to grant or
revoke Usage privilege to other database users.

To find out what privileges exist on a particular type, check the sysxtdtypes
system catalog table for the owner name and the sysxtdtypeauth system
catalog table for additional data type privileges that might have been
granted. For more information on system catalog tables, see the IBM Informix
Guide to SQL: Reference.

The DB-Access utility can also display privileges on distinct types. ¢

Support Functions and Casts

When you create a distinct type, Dynamic Server automatically defines two
explicit casts:

m A cast from the distinct type to its source type
m A cast from the source type to the distinct type

Because the two data types have the same representation (the same length
and alignment), no support functions are required to implement the casts.

You can create an implicit cast between a distinct type and its source type. To
create an implicit cast, use the Table Options clause to specify the format of
the external data. You must first drop the default explicit cast, however,
between the distinct type and its source type.

IBM Informix Guide to SQL: Syntax

CREATE DISTINCT TYPE

All support functions and casts that are defined on the source type can be
used on the distinct type. Casts and support functions that are defined on the
distinct type, however, Use the Table Options clause to specify the format of
the external data.are not available to the source type.

Manipulating Distinct Types

When you compare or manipulate data of a distinct type and its source type,
you must explicitly cast one type to the other in the following situations:
m Toinsert or update a column of one type with values of the other type

m To use a relational operator to add, subtract, multiply, divide,
compare, or otherwise manipulate two values, one of the source type
and one of the distinct type

For example, suppose you create a distinct type, dist_type, that is based on
the NUMERIC data type. You then create a table with two columns, one of
type dist_type and one of type NUMERIC.

CREATE DISTINCT TYPE dist_type AS NUMERIC;
CREATE TABLE t (coll dist_type, col2 NUMERIC) ;

To directly compare the distinct type and its source type or assign a value of
the source type to a column of the distinct type, you must cast one type to the
other, as the following examples show:

INSERT INTO tab (coll) VALUES (3.5::dist_type);

SELECT coll, col2
FROM t WHERE (coll::NUMERIC) > col2;

SELECT coll, col2, (coll + col2::dist_type) sum col
FROM tab;

Related Information

Related statements: CREATE CAST, CREATE FUNCTION, CREATE OPAQUE
TYPE, CREATE ROW TYPE, DROP TYPE, and DROP ROW TYPE

For information and examples that show how to use and cast distinct types,
see the IBM Informix Guide to SQL: Tutorial.

For more information on when you might create a distinct type, see
IBM Informix User-Defined Routines and Data Types Developer’s Guide.

SQL Statements 2-117

CREATE DUPLICATE

CREATE DUPLICATE
“ Use the CREATE DUPLICATE statement to create a duplicate copy of an

existing table for read-only use in a specified dbslice or in specified dbspaces
across coservers.

Syntax

D,
IN (dbspace) |
1 db.:ice J |

-

CREATE DUPLICATE OF TABLE table

Element Description Restrictions Syntax

dbslice Name of a dbslice in which to ~ Must exist and must contain at most one Database Object
duplicate one fragment of table dbspace on each target coserver. Name

dbspace. Name of a dbspace in which to Must exist and must not already contain an Database Object
duplicate one fragment of table original or duplicate fragment of table. Name

table Name of the original table from Must already exist in the database. See also Database Object
which to create a duplicate “Supported Operations” on page 2-120. Name

Usage

If the original table resides entirely on a single coserver, you can create
duplicate copies of small tables across coservers for read-only use. For each
attached index of the original table, a similarly defined index is built on each
table duplicate, using the same dbspaces as the table.

Because query operators read the local copy of the table, duplicating small
tables across coservers might improve the performance of some queries.

If a local copy of a duplicated table exists but is not available because the
dbspace that stores it is offline (or for some similar reason), a query that
requires access to the table fails. The database server does not attempt to
access the original table.

2-118 IBM Informix Guide to SQL: Syntax

CREATE DUPLICATE

The location of a duplicated table can be either a dbslice or a comma-
separated list of dbspaces. You can combine dbslices and lists of dbspaces in
a single CREATE DUPLICATE statement.

m If the original table is not fragmented, the dbspace list need provide
only a single dbspace on each coserver.

For example, if the table tab1 is not fragmented, enter the following
statement to create a duplicate on the remaining three of the four
coservers if the original table is stored in the dbspace db1 on coserver
1 and db2 is on coserver 2, db3 is on coserver 3, and db4 is on
coserver 4.

CREATE DUPLICATE OF TABLE tabl IN (db2, db3, db4)

m If the original table is fragmented with one fragment in the first
dbspace of several dbslices that contain dbspaces on all coservers,
you can create duplicate copies of the table in the remaining
dbspaces of the dbslice.

For example, you might create the tab3 table in the first dbspace of
three dbslices, each of which contains a dbspace on each coserver, as
follows:
CREATE TABLE tab3 (...)
FRAGMENT BY HASH (....) IN dbsll.l, dbsl2.1, dbsl3.l
To duplicate the tab3 table across the remaining coservers, use the
following statement:

CREATE DUPLICATE OF TABLE tab3 IN dbsll, dbsl2, dbsl3

B You can mix dbslice names and dbspace lists in the same CREATE
DUPLICATE statement. For example, instead of using dbspaces in a
dbslice, for the previous example you might enter the following
statement in which dbsp2a is on coserver 2, dbsp3a is on coserver 3,
and dbsp4a is on coserver 4:

CREATE DUPLICATE OF TABLE tab3 IN
dbsll, dbsl2, (dbsp2a, dbsp3a, dbsp4a)

The first fragment of the original table is duplicated into dbsl1, which
contains a dbspace on each coserver, the second fragment into dbsl2, which
also contains a dbspace on each coserver, and the third fragment into the list
of dbspaces.

SQL Statements 2-119

CREATE DUPLICATE

2-120

Only one fragment of a duplicated table can reside in any single dbspace. You
cannot list an existing dbspace of the duplicated table in the list of dbspaces
into which it is duplicated, but it is not an error for an existing dbspace to be
a member of a dbslice that specifies duplication dbspaces. Matching
dbspaces in the dbslice are ignored.

The CREATE DUPLICATE statement requires the ALTER privilege.

Supported Operations
The following operations are permitted on duplicated tables:

SELECT

UPDATE STATISTICS
LOCK and UNLOCK
SET RESIDENCY
DROP TABLE

You cannot duplicate a table in certain circumstances. The table must not:

Have GK or detached indexes

Use range fragmentation

Be a temporary table

Be a violations or diagnostic table
Contain BYTE, TEXT, or SERIAL columns

Have referential constraints

The CREATE DUPLICATE statement does not support incremental dupli-
cation. It also does not support multiple duplicates of the same table on a
single coserver, nor duplication of tables that are fragmented across
coservers.

If you need to take a dbspace offline and it contains a copy of a duplicated
table, or if you need to update data in a duplicated table, first drop all dupli-
cates of the table, as described in “DROP DUPLICATE.”

Related Statement

DROP DUPLICATE

IBM Informix Guide to SQL: Syntax

I

XPS

CREATE EXTERNAL TABLE

CREATE EXTERNAL TABLE

Use the CREATE EXTERNAL TABLE statement to define an external source that
is not part of your database to load and unload data for your database.

Syntax

CREATE EXTERNAL TABLE _ table_{ Definition |- USING: (

Column DATAFILES
Clause
p.2-126

)

p. 2-122

Table Table
Options Options
J J
p. 2-128 p. 2-128

-

Element Purpose Restrictions Syntax
table Name declared here fora Must be unique among names of tables, views, =~ Database Object
table to store external data and synonyms in the current database. Name, p. 4-46

Usage

The left-hand portion of the syntax diagram declares the name of the table
and defines its columns and any column-level constraints.

The portion that follows the USING keyword specifies external files that the
database server opens when you use the external table, and additional
options for characteristics of the external table.

After executing the CREATE EXTERNAL TABLE statement, you can move data
to and from the external source with an INSERT INTO ... SELECT statement. See
the section “INTO EXTERNAL Clause” on page 2-635 for more information
about loading the results of a query into an external table.

SQL Statements 2-121

CREATE EXTERNAL TABLE

Column Definition

Column
Definition

Back to CREATE EXTERNAL TABLE
p. 2-121

template

—»T SAMEAS
)

C column—{ p. 4-49

Data Type

EXTERNAL

p. 2-217

Data Type
p. 4-49

'PACKED(p, s)" NULL— 'null_string'

'ZONED(p, s)"

'BINARY(n)'

Default j \L Column-Level
Clause Constraints

p. 2-125

-

Element Purpose Restrictions Syntax

column One column name for each For each column, you must Identifier, p. 4-189
column of the external table specify a built-in data type

n Number of 8-bit bytes to For FIXED format binary n=2 for 16-bit integers;
represent the integer integers; big-endian byte order n=4 for 32-bit integers

4 Precision (total number of digits) For FIXED-format files only Literal Number, p. 4-216

s Scale (digits in fractional part) ~ For FIXED-format files only Literal Number, p. 4-216

null_string Value to be interpreted as NULL See “Defining NULL Values” on Quoted String, p. 4-243

page 2-123.

template Existing table with the same Cannot be subset of columns nor Database Object Name,

schema as the external table differ in any column data type p. 4-46

Using the SAMEAS Clause

clause for FIXED-format files.

2-122 IBM Informix Guide to SQL: Syntax

The SAMEAS template clause uses all the column names and data types from
the template table in the definition of new table. You cannot, however, use
indexes in the external table definition, and you cannot use the SAMEAS

CREATE EXTERNAL TABLE

Using the EXTERNAL Keyword

Use the EXTERNAL keyword to specify a data type for each column of your
external table that has a data type different from the internal table. For
example, you might have a VARCHAR column in the internal table that you
want to map to a CHAR column in the external table.

You must specify an external type for every column that is in fixed format.
You cannot specify an external type for delimited format columns except for
BYTE and TEXT columns where your specification is optional. For more infor-
mation, see “TEXT and HEX External Types” on page 2-124.

Integer Data Types

Besides valid Informix integer data types, you can specify packed decimal,
zoned decimal, and IBM-format binary representation of integers. For packed
or zoned decimal, specify precision (total number of digits in the number) and
scale (number of digits that are to the right of the decimal point). Packed
decimal representation can store two digits, or a digit and a sign, in each byte.
Zoned decimal requires (p + 1) bytes to store p digits and the sign.

Big-Endian Format

The database server also supports two IBM-format binary representations of
integers: BINARY(2) for 16-bit integer storage and BINARY(4) for 32-bit
integer storage. The most significant byte of each number has the lowest
address; that is, binary-format integers are stored big-end first (big-endian
format) in the manner of IBM and Motorola processors. Intel processors and
some others store binary-format integers little-end first, a storage method
that the database server does not support for external data.

Defining NULL Values

The packed decimal, zoned decimal, and binary data types do not have a
natural NULL value, so you must define a value to be interpreted as a NULL
when loading or unloading data from an external source. You can define the
null_string as a number outside the set of numbers stored in the data file (for
example, -9999.99). You can also define a bit pattern in the field as a
hexadecimal pattern, such as Oxffff, that is to be interpreted as a NULL.

SQL Statements 2-123

CREATE EXTERNAL TABLE

The database server uses the NULL representation for a FIXED-format
external table to both interpret values as the data is loaded into the database
and to format NULL values into the appropriate data type when data is
unloaded to an external table.

The following examples are of column definitions with NULL values for a
FIXED-format external table:

i smallint external “binary (2)” null “-32767”"

1li integer external “binary (4)” null “-99999”

d decimal (5,2) external “packed (5,2)” null “Ooxffffff~
z decimal (4,2) external “zoned (4,2)” null “0xO0f0f0f0of”
zl decimal (3,2) external “zoned (3,2)” null “-1.00"

If the packed decimal or zoned decimal is stored with all bits cleared to
represent a NULL value, the null_string can be defined as 0x0. The following
rules apply to the value assigned to a null_string:

The NULL representation must fit into the length of the external field.
If a bit pattern is defined, the null_string is not case sensitive.

If a bit pattern is defined, the null_string must begin with ox.

For numeric fields, the left-most fields are assigned zeros by the
database server if the bit pattern does not fill the entire field.

m If the NULL representation is not a bit pattern, the NULL value must
be a valid number for that field.

Warning: If a row that contains a NULL value is unloaded into an external table and
the column that receives the NULL value has no NULL value defined, the database
server inserts a zero into the column.

TEXT and HEX External Types

An Informix BYTE or TEXT column can be encoded in either the TEXT or HEX
external type. You can use only delimited BYTE and TEXT formats with these
external types. Fixed formats are not allowed. In addition, you cannot use
these external types with any other type of delimited-format columns (such
as character columns).

You do not need to specify these external types. If you do not define an
external column specifically, Informix TEXT columns default to TEXT and
Informix BYTE columns default to HEX.

The database server interprets two adjacent field delimiters as a NULL value.

2-124 IBM Informix Guide to SQL: Syntax

CREATE EXTERNAL TABLE

User-defined delimiters are limited to one byte each. During unloading,
delimiters and backslash (\) symbols are escaped. During loading, any
character that follows a backslash is interpreted as a literal. In TEXT format,
nonprintable characters are directly embedded in the data file. For delimiter
rules in a multibyte locale, see the IBM Informix GLS User’s Guide.

For more information on BYTE and TEXT data, see your Administrator’s Guide.

Manipulating Data in Fixed Format Files

For files in FIXED format, you must declare the column name and the
EXTERNAL item for each column to set the name and number of characters.
For FIXED-format files, the only data type allowed is CHAR. You can use the
keyword NULL to specify what string to interpret as a NULL value.

Column-Level Gonstraints

Use column-level constraints to limit the type of data that is allowed in a
column. Constraints at the column level are limited to a single column.

Column-Level Back to Column-Definition
Constraints p. 2-122
T o g
Condition J
NOT NULL CHECK — (| o424)

Using the Not-Null Constraint

If you do not indicate a default value for a column, the default is NULL unless
you place a not-null constraint on the column. In that case, no default value
exists for the column. If you place a not-null constraint on a column (and no
default value is specified), the data in the external table must have a value set
for the column when loading through the external table.

When no reject file exists and no value is encountered, the database server
returns an error and the loading stops. When a reject file exists and no value
is encountered, the error is reported in the reject file and the load continues.

SQL Statements 2-125

CREATE EXTERNAL TABLE

Using the CHECK Constraint

Check constraints allow you to designate conditions that must be met before
data can be assigned to a column during an INSERT or UPDATE statement.
When a reject file does not exist and a row evaluates to false for any check
constraint defined on a table during an insert or update, the database server
returns an error. When there is a reject file and a row evaluates to false for a
check constraint defined on the table, the error is reported in the reject file
and the statement continues to execute.

Check constraints are defined with search conditions. The search condition
cannot contain subqueries, aggregates, host variables, or SPL routines. In
addition, it cannot include the built-in functions CURRENT, USER, SITENAME,
DBSERVERNAME, or TODAY. When you define a check constraint at the
column level, the only column that the check constraint can check against is
the column itself. In other words, the check constraint cannot depend upon
values in other columns of the table.

DATAFILES Clause

The DATAFILES clause specifies external files that are opened when you use
external tables.

DATAFILES
Clause

Back to CREATE EXTERNAL TABLE p. 2-121
Back to INTO EXTERNAL Clause p. 2-632

’ 'l)>

—» DATAFILES (L ' T DISK7—:T coserver_num 7 :T fixed_path
PIPE coserver_group formatted_path

Element

Purpose Restrictions Syntax

coserver_group Coserver group that contains the external data Must exist. Identifier, p. 4-189
coserver_num Numeric ID of coserver containing the external data Must exist. Literal Number, p. 4-216

fixed_path Pathname for input or output files in the definition Must exist. Must conform to
of the external table operating-system rules.
formatted_path Formatted pathname that uses pattern-matching Must exist. Must conform to
characters operating-system rules.

S e

2-126 IBM Informix Guide to SQL: Syntax

CREATE EXTERNAL TABLE

You can use cogroup names and coserver numbers when you describe the
input or output files for the external table definition. You can identify the
DATAFILES either by coserver number or by cogroup name. A coserver
number contains only digits. A cogroup name is a valid identifier that begins
with a letter but otherwise contains any combination of letters, digits, and
underscore symbols.

If you use only some of the available coservers for reading or writing files,
you can designate these coservers as a cogroup using onutil and then use the
cogroup name, rather than explicitly specifying each coserver and file
separately. Whenever you use all coservers to manage external files, you can
use the predefined coserver_group.

For examples of the DATAFILES clause, see “Examples” on page 2-131.

Using Formatting Characters

You can use a formatted pathname to designate a filename. If you use a
formatted pathname, you can take advantage of the substitution characters
%c, %n, and %r(first ... last).

Formatting String Effect

%oC Replaced with the number of the coserver that manages the file

%on Replaced with the name of the node on which the coserver that
manages the file resides

%r(first ... last) Specifies multiple files on a single coserver

Important: The formatted pathname option does not support the %o formatting
string.

SQL Statements 2-127

CREATE EXTERNAL TABLE

Table Options

These options specify additional characteristics that define the table.

Table Back to CREATE EXTERNAL TABLE
Options p. 2-121
,
#FORMAT ' —— DELIMITED —" /D -
INFORMIX EBCDIC —'—/
FIXED ~——CODESET— ' =<—(ASCII
\— DEFAULT —DELIMITER— ' field_delimiter" _—
\—ESCAPE fRECORDENDf' record_delimiter'—”
N\-EXPRESS fMAXERRORS—num_errorsg
\—DELUXE — REJECTFILE " filename' ——/|
- / SIZE— num_rowsy

-

quoted_string

record_delimiter

contained in the external table number
ASCII character that represents ~ Only a single character is

the escape valid
Character to separate records. For nonprinting
Default is Newline (\n). characters, use octal

Element Purpose Restrictions Syntax

field_delimiter ~ Character to separate fields. For nonprinting Quoted String, p. 4-243
Default is pipe (1) character characters, use octal

filename Full pathname for conversion See “Reject Files” on Must conform to
error messages from coservers page 2-130. operating-system rules.

NUum_errors Errors per coserver beforeload ~ Value ignored unless Literal Number, p. 4-216
operations are terminated MAXERRORS is set

NUMmM_rows Approximate number of rows Cannot be a negative Literal Number, p. 4-216

Quoted String, p. 4-243

Quoted String, p. 4-243

operations, regardless of the number of errors or nu

2-128 IBM Informix Guide to SQL: Syntax

The num_errors specification is ignored during unload tasks. If MAXERRORS
environment variable is not set, the database server processes all data in load

m_errors value.

CREATE EXTERNAL TABLE

If the RECORDEND environment variable is not set, record_delimiter defaults
to the Newline character (\n). To specify a nonprinting character as the
record delimiter or field delimiter, you must encode it as the octal represen-
tation of the ASCII character. For example, "\006' can represent CTRL-F.

Use the table options keywords as the following table describes. You can use
each keyword whenever you plan to load or unload data unless only one of
the two modes is specified.

Keyword Purpose

CODESET Specifies the type of code set of the data

DEFAULT Specifies replacing missing values in delimited input files with

(load only) column defaults (if they are defined) instead of NULLSs, so input
files can be sparsely populated. Files do not need an entry for every
column in the file where a default is the value to be loaded.

DELIMITER Specifies the character that separates fields in a delimited text file

DELUXE Sets a flag causing the database server to load data in deluxe mode

(load only) Deluxe mode is required for loading into STANDARD tab]es.

ESCAPE Defines a character to mark ASCII special characters in ASCII-text-
based data files

EXPRESS Sets a flag that causes the database server to attempt to load data
in express mode. If you request express mode but indexes or
unique constraints exist on the table or the table contains BYTE or
TEXT data, or the target table is not RAW or OPERATIONAL, the
load stops with an error message that reports the problem.

FORMAT Specifies the format of the data in the data files

MAXERRORS Sets the number of errors that are allowed per coserver before the
database server stops the load

RECORDEND Specifies the character that separates records in a delimited text file

REJECTFILE Sets the full pathname where all coservers write data-conversion
errors. If not specified or if files cannot be opened, any error ends
the load job abnormally. See also “Reject Files” on page 2-130.

SIZE The approximate number of rows in the external table. This can

improve performance when external table is used in a join query.

SQL Statements 2-129

CREATE EXTERNAL TABLE

Important: Check constraints on external tables are designed to be evaluated only
— when loading data. The database server cannot enforce check constraints on external
tables because the data can be freely altered outside the control of the database server.
If you want to restrict rows that are written to an external table during unload, use
a WHERE clause to filter the rows.

Reject Files

Rows that have conversion errors during a load or rows that violate check
constraints on the external table are written to a reject file on the coserver that
performs the conversion. Each coserver manages its own reject file. The
REJECTFILE clause declares the name of the reject file on each coserver.

You can use the formatting characters $c and %n (but not %r) in the filename
format. Use the $c formatting characters to make the filenames unique. For
more information on how to format characters, see the section “Using
Formatting Characters” on page 2-127.

If you perform another load to the same table during the same session, any
earlier reject file of the same name is overwritten.

Reject file entries have the following format:

coserver-number, filename, record, reason-code,
field-name: bad-line

The following table describes these elements of the reject file:

Element Purpose

coserver-number Number of the coserver from which the file is read

filename Name of the input file

record Record number in the input file where the error was detected
reason-code Description of the error

field-name External field name where the first error in the line occurred, or

'<none>' if the rejection is not specific to a particular column

bad-line Line that caused the error (delimited or fixed-position character
files only): up to 80 characters

2-130 IBM Informix Guide to SQL: Syntax

CREATE EXTERNAL TABLE

The reject file writes the coserver-number, filename, record, field-name, and
reason-code in ASCII. The bad-line information varies with the type of input file.

m For delimited files or fixed-position character files, up to 80
characters of the bad-line are copied directly into the reject file.

m For Informix internal data files, the bad-line is not placed in the reject
file because you cannot edit the binary representation in a file; but the
Use the Table Options clause to specify the format of the external
data.coserver-number, filename, record, reason-code, and field-name are
still reported in the reject file so you can isolate the problem.

Errors that can cause a row to be rejected include the following.

Error Text Explanation

CONSTRAINT constraint name This constraint was violated.

CONVERT_ERR Any field encounters a conversion error.

MISSING_DELIMITER No delimiter was found.

MISSING_RECORDEND No recordend was found.

NOT NULL A NULL was found in field-name.

ROW_TOO_LONG The input record is longer than 32 kilobytes.
Examples

The examples in this section show how to specify the DATAFILES field.

Assume that the database server is running on four nodes, and one file is to
be read from each node. All files have the same name. The DATAFILES speci-
fication can then be as follows:

DATAFILES ("DISK:cogroup all:/work2/unload.dir/mytbl")

SQL Statements 2-131

CREATE EXTERNAL TABLE

Now, consider a system with 16 coservers where only three coservers have
tape drives attached (for example, coservers 2, 5, and 9). If you define a
cogroup for these coservers before you run load and unload commands, you
can use the cogroup name rather than a list of individual coservers when you
execute the commands. To set up the cogroup, run onutil.

% onutil
1> create cogroup tape_ group
2> from coserver.2, coserver.5, coserver.9;
Cogroup successfully created.
Then define the file locations for named pipes:
DATAFILES ("PIPE:tape group:/usr/local/TAPE.%c")
The filenames expand as follows:
DATAFILES ("pipe:2:/usr/local/TAPE.2",
"pipe:5:/usr/local/TAPE.5",
"pipe:9:/usr/local/TAPE.9")

If, instead, you want to process three files on each of two coservers, define the
files as follows:

DATAFILES ("DISK:1:/work2/extern.dir/mytbl.%r(1..3)",
"DISK:2:/work2/extern.dir/mytbl.%r(4..6)")

The expanded list follows:

DATAFILES ("disk:1:/work2/extern.dir/mytbl.1",
"disk:1:/work2/extern.dir/mytbl.2",
"disk:1:/work2/extern.dir/mytbl.3",
"disk:2:/work2/extern.dir/mytbl.4",

"disk:2:/work2/extern.dir/mytbl.5",
"disk:2:/work2/extern.dir/mytbl.6")

Related Information
Related statements: INSERT and SET PLOAD FILE
See also the “INTO Table Clauses” of SELECT.

For more information on external tables, refer to your Administrator’s
Reference.

2-132 IBM Informix Guide to SQL: Syntax

CREATE FUNCTION

CREATE FUNCTION

Use the CREATE FUNCTION statement to create a user-defined function,
register an external function, or to write and register an SPL function.

Syntax

CREATE FUNCTION — function()* Return /—{
i) \ Routine f Clause
DBA p. 4-253

Parameter List
p. 4-266

J
CSPECIFIC% Specific Name WlTH(g Routine Modifier z)

p. 4-274

C,

p. 4-257 U
Statement Block

— p. 4-276 END FUNCTION
External Routine Reference J 1)

— p.4-187)

T ’ WITH LISTING IN 'pathname'J
Quoted String))
DOCUMENT p. 4-243

Element Purpose Restrictions Syntax

function ~ Name of new function You must have the appropriate language Database Object Name,
that is defined here privileges. See “"GRANT” on page 2-459 p. 4-46

and “Naming a Function” on page 2-135.

pathname Pathname to a filein ~ The specified pathname must exist on the The path and filename
which compile-time ~ computer where the database resides. must conform to your
warnings are stored operating-system rules.

Tip: If you are trying to create a function from text of source code that is in a separate

file, use the CREATE FUNCTION FROM statement.

SQL Statements 2-133

CREATE FUNCTION

E/C

Usage

The database server supports user-defined functions written in the following
languages:

m Stored Procedure Language (SPL)
An SPL function can return one or more values.

B One of the external languages (C or Java) that Dynamic Server
supports (external functions)

An external function must return exactly one value.

For information on how this manual uses the terms UDR, function, and
procedure as well as recommended usage, see “Relationship Between
Routines, Functions, and Procedures” on page 2-183 and “Using CREATE
PROCEDURE Versus CREATE FUNCTION” on page 2-183, respectively.

The entire length of a CREATE FUNCTION statement must be less than
64 kilobytes. This length is the literal length of the statement, including
whitespace characters such as blank spaces and tabs.

You can use a CREATE FUNCTION statement only within a PREPARE
statement. If you want to create a user-defined function for which the text is
known at compile time, you must put the text in a file and specify this file
with the CREATE FUNCTION FROM statement. ¢

Functions use the collating order that was in effect when they were created.
See SET COLLATION for information about using non-default collation ¢

Privileges Necessary for Using CREATE FUNCTION

You must have the Resource privilege on a database to create a function
within that database.

Before you can create an external function, you must also have the Usage
privilege on the language in which you will write the function. For more
information, see “GRANT” on page 2-459. ¢

By default, the Usage privilege on SPL is granted to PUBLIC. You must also
have at least the Resource privilege on a database to create an SPL function
within that database. ¢

2-134 IBM Informix Guide to SQL: Syntax

CREATE FUNCTION

DBA Keyword and Privileges on the Created Function

The level of privilege necessary to execute a UDR depends on whether the
UDR is created with the DBA keyword.

If you create a UDR with the DBA keyword, it is known as a DBA-privileged
UDR. You need the DBA privilege to create or execute a DBA-privileged UDR.

If you omit the DBA keyword, the UDR is known as an owner-privileged UDR.

If you create an owner-privileged UDR in an ANSI-compliant database,
anyone can execute the UDR. ¢

If you create an owner-privileged UDR in a database that is not ANSI
compliant, the NODEFDAC environment variable prevents privileges on that
UDR from being granted to PUBLIC. If this environment variable is set, the
owner of a UDR must grant the Execute privilege for that UDR to other users.

If an external function has a negator function, you must grant the Execute
privilege on both the external function and its negator function before users
can execute the external function. ¢

Naming a Function

Because Dynamic Server offers routine overloading, you can define more than
one function with the same name, but different parameter lists. You might
want to overload functions in the following situations:

m You create a user-defined function with the same name as a built-in
function (such as equal()) to process a new user-defined data type.

m You create type hierarchies, in which subtypes inherit data represen-
tation and functions from supertypes.

B You create distinct types, which are data types that have the same
internal storage representation as an existing data type, but have
different names and cannot be compared to the source type without
casting. Distinct types inherit support functions from their source

types.

For a brief description of the routine signature that uniquely identifies each
user-defined function, see “Routine Overloading and Naming UDRs with a
Routine Signature” on page 4-48.

SQL Statements 2-135

CREATE FUNCTION

2-136

Using the SPECIFIC Clause to Specify a Specific Name

You can specify a specific name for a user-defined function. A specific name
is a name that is unique in the database. A specific name is useful when you
are overloading a function.

DOCUMENT Clause

The quoted string in the DOCUMENT clause provides a synopsis and
description of the UDR. The string is stored in the sysprocbody system
catalog table and is intended for the user of the UDR. Anyone with access to
the database can query the sysprocbody system catalog table to obtain a
description of one or all of the UDRs stored in the database.

For example, the following query obtains a description of the SPL function
update_by_pct, that “SPL Functions” on page 2-137 shows:

SELECT data FROM sysprocbody b, sysprocedures p
WHERE b.procid = p.procid
--join between the two catalog tables

AND p.procname = 'update_by pct'
-- look for procedure named update by pct
AND b.datakey = 'D'-- want user document;

The preceding query returns the following text:

USAGE: Update a price by a percentage
Enter an integer percentage from 1 - 100
and a part id number

A UDR or application program can query the system catalog tables to fetch
the DOCUMENT clause and display it for a user.

You can use a DOCUMENT clause at the end of the CREATE FUNCTION
statement, whether or not you use the END FUNCTION keywords. ¢

WITH LISTING IN Clause

The WITH LISTING IN clause specifies a filename where compile time
warnings are sent. After you compile a UDR, this file holds one or more
warning messages.

If you do not use the WITH LISTING IN clause, the compiler does not generate
a list of warnings.

IBM Informix Guide to SQL: Syntax

UNIX

CREATE FUNCTION

If you specify a filename but not a directory, this listing file is created in your
home directory on the computer where the database resides. If you do not
have a home directory on this computer, the file is created in the root
directory (the directory named “/”). ¢

If you specify a filename but not a directory, this listing file is created in your
current working directory if the database is on the local computer. Otherwise,
the default directory is %INFORMIXDIR% \bin. ¢

SPL Functions

SPL functions are UDRs written in SPL that return one or more values. To
write and register an SPL function, use a CREATE FUNCTION statement.
Embed appropriate SQL and SPL statements between the CREATE FUNCTION
and END FUNCTION keywords. You can also follow the function with the
DOCUMENT and WITH FILE IN options.

SPL functions are parsed, optimized (as far as possible), and stored in the
system catalog tables in executable format. The body of an SPL function is
stored in the sysprocbody system catalog table. Other information about the
function is stored in other system catalog tables, including sysprocedures,
sysprocplan, and sysprocauth. For more information about these system
catalog tables, see the IBM Informix Guide to SQL: Reference.

The END FUNCTION keywords are required in every SPL function, and a
semicolon (;) must follow the clause that immediately precedes the
statement block. The following code example creates an SPL function:

CREATE FUNCTION update by pct (pct INT, pid CHAR(10))
RETURNING INT;
DEFINE n INT;
UPDATE inventory SET price = price + price * (pct/100)
WHERE part_id = pid;
LET n = price;
RETURN price;
END FUNCTION
DOCUMENT "USAGE: Update a price by a percentage",
"Enter an integer percentage from 1 - 100",
"and a part id number™"
WITH LISTING IN '/tmp/warn file'

For more information on how to write SPL functions, see the chapter about
SPL routines in IBM Informix Guide to SQL: Tutorial.

See also the section “Transactions in SPL Routines” on page 4-280.

SQL Statements 2-137

CREATE FUNCTION

You can include valid SQL or SPL language statements in SPL functions. See,
however, the following sections in Chapter 4 that describe restrictions on SQL
and SPL statements within SPL routines: “Subset of SPL Statements Valid in
the Statement Block” on page 4-276; “SQL Statements Not Valid in an SPL
Statement Block” on page 4-277; and “Restrictions on SPL Routines in Data-
Manipulation Statements” on page 4-279.

External Functions

External functions are functions you write in an external language (that is, a
programming language other than SPL) that Dynamic Server supports.

To create a C user-defined function

1. Write the C function.

2. Compile the function and store the compiled code in a shared library
(the shared-object file for C).

3. Register the function in the database server with the CREATE
FUNCTION statement.

To create a user-defined function written in the Java language

1. Write a Java static method, which can use the JDBC functions to
interact with the database server.

2. Compile the Java source file and create a .jar file (the shared-object
file for Java).

3. Execute the install_jar() procedure with the EXECUTE PROCEDURE
statement to install the jar file in the current database.

4. If the UDR uses user-defined types, create a map between SQL data
types and Java classes.

Use the setUDTExtName() procedure that is explained in
“EXECUTE PROCEDURE” on page 2-414.

5. Register the UDR with the CREATE FUNCTION statement.

Rather than storing the body of an external routine directly in the database,
the database server stores only the pathname of the shared-object file that
contains the compiled version of the routine. When it executes the external
routine, the database server invokes the external object code.

2-138 IBM Informix Guide to SQL: Syntax

CREATE FUNCTION

The database server stores information about an external function in system
catalog tables, including sysprocbody and sysprocauth. For more infor-
mation on the system catalog, see the IBM Informix Guide to SQL: Reference.

Example of Registering a C User-Defined Function

The following example registers an external C user-defined function named
equal() in the database. This function takes two arguments of the type
basetypel and returns a single Boolean value. The external routine reference
name specifies the path to the C shared library where the function object code
is actually stored. This library contains a C function basetypel_equal(),
which is invoked during execution of the equal() function.

CREATE FUNCTION equal (argl basetypel, arg2 basetypel)
RETURNING BOOLEAN;

EXTERNAL NAME
"/usr/lib/basetypel/lib/libbtypel.so (basetypel equal)"
LANGUAGE C

END FUNCTION

Example of Registering a User-Defined Function Written in the Java
Language

The following CREATE FUNCTION statement registers the user-defined
function, sql_explosive_reaction(). This function is discussed in
“sqlj.install_jar” on page 2-418.
CREATE FUNCTION sgl_explosive reaction(int) RETURNS int
WITH (class="jvp")

EXTERNAL NAME "course_jar:Chemistry.explosiveReaction"
LANGUAGE JAVA

This function returns a single INTEGER value. The EXTERNAL NAME clause
specifies that the Java implementation of the sql_explosive_reaction()
function is a method called explosiveReaction(), which resides in the
Chemistry Java class that resides in the course_jar jar file.

SQL Statements 2-139

CREATE FUNCTION

2-140

Ownership of Created Database Objects

The user who creates an owner-privileged UDR owns any database objects
that are created by the UDR when the UDR is executed, unless another owner
is specified for the created database object. In other words, the UDR owner,
not the user who executes the UDR, is the owner of any database objects
created by the UDR unless another owner is specified in the statement that
creates the database object.

For example, assume that user mike creates this user-defined function:

CREATE FUNCTION funcl () RETURNING INT;
CREATE TABLE tabl (colx INT) ;
RETURN 1;

END FUNCTION

If user joan now executes function funcl, user mike, not user joan, is the
owner of the newly created table tab1.

In the case of a DBA-privileged UDR, however, the user who executes a UDR
(rather than the UDR owner) owns any database objects created by the UDR,
unless another owner is specified for the database object within the UDR.

For example, assume that user mike creates this user-defined function:

CREATE DBA FUNCTION func2 () RETURNING INT;
CREATE TABLE tab2 (coly INT);
RETURN 1;

END FUNCTION

If user joan now executes function func2, user joan, not user mike, is the
owner of the newly created table tab2.

See also the section “Support for Roles and User Identity” on page 4-280.

Related Information

Related statements: ALTER FUNCTION, ALTER ROUTINE, CREATE
PROCEDURE, CREATE FUNCTION FROM, DROP FUNCTION, DROP ROUTINE,
GRANT, EXECUTE FUNCTION, PREPARE, REVOKE, and UPDATE STATISTICS

Chapter 3 of this manual describes the syntax of the SPL language. For a
discussion on how to create and use SPL routines, see the IBM Informix Guide
to SQL: Tutorial.

IBM Informix Guide to SQL: Syntax

al

CREATE FUNCTION FROM

For a discussion on how to create and use external routines, see IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

For information about how to create C UDRSs, see the IBM Informix DataBlade
API Programmer’s Guide.

For more information on the NODEFDAC environment variable and the
related system catalog tables (sysprocedures, sysprocplan, sysprocbody and
sysprocauth), see the IBM Informix Guide to SQL: Reference.

CREATE FUNCTION FROM

Use the CREATE FUNCTION FROM statement to access a user-defined
function whose CREATE FUNCTION statement resides in a separate file.

Syntax

CREATE FUNCTION FROM \ ! file" f %
file_var

Element Purpose Restrictions Syntax

file Path and filename of a file that contains the Must exist and contain Must conform to
full CREATE FUNCTION statement text. exactly one CREATE operating-system
Default pathname is current directory. FUNCTION statement. rules.

file_var ~ Variable storing value of file Same as for file. Language specific

SQL Statements 2-141

CREATE FUNCTION FROM

2-142

Usage

An ESQL/C program cannot directly create a user-defined function. That is,
it cannot contain the CREATE FUNCTION statement.

To create these functions within an ESQL/C program

1. Create a source file with the CREATE FUNCTION statement.

2. Use the CREATE FUNCTION FROM statement to send the contents of
this source file to the database server for execution.

The file that you specify in the file parameter can contain only one
CREATE FUNCTION statement.

For example, suppose that the following CREATE FUNCTION statement is in
a separate file, called del_ord.sql:

CREATE FUNCTION delete_order(p_order num int)
RETURNING int, int;
DEFINE item count int;
SELECT count (*) INTO item count FROM items
WHERE order_num = p_order_num;
DELETE FROM orders WHERE order num = p_order_ num;
RETURN p_order_num, item_count;
END FUNCTION;

In the ESQL/C program, you can access the delete_order() SPL function with
the following CREATE FUNCTION FROM statement:

EXEC SQL create function from 'del ord.sql';

If you are not sure whether the UDR in the file is a user-defined function or a
user-defined procedure, use the CREATE ROUTINE FROM statement.

The filename that you provide is relative. If you provide a simple filename
with no pathname (as in the preceding example), the client application looks
for the file in the current directory.

Important: The ESQL/C preprocessor does not process the contents of the file that you
specify. It just sends the contents to the database server for execution. Therefore, there
is no syntactic check that the file that you specify in CREATE FUNCTION FROM
actually contains a CREATE FUNCTION statement. To improve readability of the
code, however, It is recommended that you match these two statements.

IBM Informix Guide to SQL: Syntax

CREATE FUNCTION FROM

Related Information

Related statements: CREATE FUNCTION, CREATE PROCEDURE, CREATE
PROCEDURE FROM, and CREATE ROUTINE FROM

SQL Statements 2-143

CREATE INDEX

CREATE INDEX

Use the CREATE INDEX statement to create an index for one or more columns
in a table, or on values returned by a UDR using columns as arguments.

Syntax
CREATE INDEX — index— ON table %
Index-Type f synonym LOCK MODE f
Options ynony — Options
p. 2-145 p. 2-165
C Index-Key)
Specification
p. 2-147 FILLFACTOR Storage &3
Option Options K
. 2-1 . 2-1 Index
XPS P 55 P %6 Modes L
USING Access- _ p. 2-161
Method Clause USING BITMAP :
p. 2-153)
GK SELECT Clause /
N GK INDEX — index — ON — static- (— p. 2-166 -) USING BITMAPJ
Element Purpose Restrictions Syntax
index Name declared here for anew index = Must be unique among index Database Object
names in the database Name, p. 4-46
static Table on which a Generalized Key Table must exist and be static; ~ Database Object
index is created it cannot be a virtual table Name, p. 4-46
synonym, Name or synonym of a standard or Synonym and its table must exist Database Object
table temporary table to be indexed in the current database Name, p. 4-46

2-144 IBM Inform

Usage

When you issue the CREATE INDEX statement, the table is locked in exclusive
mode. If another process is using the table, CREATE INDEX returns an error.

Indexes use the collation that was in effect when CREATE INDEX executed. ¢

ix Guide to SQL: Syntax

CREATE INDEX

A secondary-access method (sometimes referred to as an index-access method) is
a set of database server functions that build, access, and manipulate an index
structure such as a B-tree, R-tree, or an index structure that a DataBlade
module provides, in order to speed up the retrieval of data.

Neither synonym nor table can refer to a virtual table. ¢

If you are using Extended Parallel Server, use the USING BITMAP keywords
to store the list of records in each key of the index as a compressed bitmap.
The storage option is not compatible with a bitmap index because bitmap
indexes must be fragmented in the same way as the table. ¢

Index-Type Options

The index-type options let you specify the characteristics of the index.

Index-Type
Options

_>

Back to CREATE INDEX
p. 2-144

DISTINCT
AN -

\UNIQUEJ \CLUSTERI

UNIQUE or DISTINCT Option

Use the UNIQUE or DISTINCT keyword to require that the column(s) on
which the index is based accepts only unique data. If you do not specify the
UNIQUE or DISTINCT keyword, the index allows duplicate values in the
indexed column. The following example creates a unique index:

CREATE UNIQUE INDEX c_num ix ON customer (customer num)

A unique index prevents duplicate values in the customer_num column.
A column with a unique index can have, at most, one NULL value.

The DISTINCT keyword is a synonym for the keyword UNIQUE, so the
following statement has the same effect as the previous example:

CREATE DISTINCT INDEX c_num_ix ON customer (customer num)
The index in both examples is maintained in ascending order, which is the

default order.

SQL Statements 2-145

CREATE INDEX

You can also prevent duplicates in a column or set of columns by creating a
unique constraint with the CREATE TABLE or ALTER TABLE statement. You
cannot specify an R-tree secondary-access method for a UNIQUE index key.
For more information on how to create unique constraints, see the CREATE
TABLE or ALTER TABLE statements.

How Indexes Affect Primary-Key, Unique, and Referential Constraints

The database server creates internal B-tree indexes for primary-key, unique,
and referential constraints. If a primary-key, unique, or referential constraint
is added after the table is created, any user-created indexes on the
constrained columns are used, if appropriate. An appropriate index is one
that indexes the same columns that are used in the primary-key, referential,
or unique constraint. If an appropriate user-created index is not available, the
database server creates a nonfragmented internal index on the constrained
column or columns.

CLUSTER Option

Use the CLUSTER keyword to reorder the rows of the table in the order that
the index designates. The CREATE CLUSTER INDEX statement fails if a
CLUSTER index already exists on the same table.

CREATE CLUSTER INDEX c_clust_ix ON customer (zipcode)

This statement creates an index on the customer table that physically orders
the table by zip code.

If the CLUSTER option is specified in addition to fragments on an index, the
data is clustered only within the context of the fragment and not globally
across the entire table.

Some secondary-access methods (such as R-tree) do not support clustering.
Before you specify CLUSTER for your indeX, be sure that it uses an access
method that supports clustering. ¢

If you are using Extended Parallel Server, you cannot use the CLUSTER
option on STANDARD tables. In addition, you cannot use the CLUSTER option
and storage options in the same CREATE INDEX statement (see “Storage
Options” on page 2-156). When you create a clustered index the constrid

of any unique or referential constraints on the associated table changes.

The constrid is stored in the sysconstraints system catalog table. ¢

2-146 IBM Informix Guide to SQL: Syntax

CREATE INDEX

Index-Key Specification

Use the Index-Key Specification portion of the CREATE INDEX statement to
specify the key value for the index, an operator class, and whether the index
will be sorted in ascending or descending order.

Index-Key
Specification

Back to CREATE INDEX
p. 2-144

—»(C
s

L function— (

column \ ASCT—2) >
j DESC

’ DS
Cfuncico/j) j ~— op_class
*

this index

Element Purpose Restrictions Syntax
column Column or columns used See “Using a Column as the Index Key” on Identifier,
as a key to this index page 2-148. p- 4-189
function User-defined function Must be a nonvariant function that does not returna Database
used as a key to this index large object data type. Cannot be a built-in algebraic, Object Name,
exponential, log, or hex function. p- 4-46
func_col Column(s) on which the See “Using a Column as the Index Key” on Identifier,
user-defined function acts page 2-148. p- 4-189

op_class Operator class associated If the secondary-access method in the USING clause Identifier,
with column or function for has no default operator class, you must specify one p. 4-189

here. (See “Using an Operator Class” on page 2-152.)

The index-key value can be one or more columns that contain built-in data
types. When multiple columns are listed, the concatenation of the set of
columns is treated as a single composite column for indexing.

In addition, the index-key value can be one of the following types:

A column of type LVARCHAR(size), if size is fewer than 387 bytes
One or more columns that contain user-defined data types

One or more values that a user-defined function returns (referred to
as a functional index)

A combination of columns and functions ¢

SQL Statements 2-147

CREATE INDEX

2-148

Using a Column as the Index Key

These restrictions apply to a column or columns specified as the index key:

All the columns must exist and must be in the table being indexed.

The maximum number of columns and total width of all columns
depends on the database server. See “Creating Composite Indexes”
on page 2-149.

You cannot add an ascending index to a column or column list that
already has a unique constraint on it. See “Using the ASC and DESC
Sort-Order Options” on page 2-149.

You cannot add a unique index to a column or column list that has a
primary-key constraint on it. The reason is that defining the column
or column list as the primary key causes the database server to create
a unique internal index on the column or column list. So you cannot
create another unique index on this column or column list with the

CREATE INDEX statement.

The number of indexes that you can create on the same column or the
same set of columns is restricted. See “Restrictions on the Number of
Indexes on a Set of Columns” on page 2-152.

You cannot create an index on a column of an external table.

The column cannot be of a collection data type. ¢

Using a Function as an Index Key
You can create functional indexes within an SPL routine.

You can also create an index on a nonvariant user-defined function that does
not return a large object.

A functional index can be a B-tree index, an R-tree index, or a user-defined
secondary-access method.

Functional indexes are indexed on the value that the specified function
returns, rather than on the value of a column. For example, the following
statement creates a functional index on table zones using the value that the
function Area() returns as the key:

CREATE INDEX zone_func_ind ON zones (Area(length,width));

IBM Informix Guide to SQL: Syntax

CREATE INDEX

Creating Composite Indexes

A simple index lists only one column (or for IDS, only one column or function)
in its Index Key Specification. Any other index is a composite index. You
should list the columns in a composite index in the order from most-
frequently used to least-frequently used.

If you use SET COLLATION to specify a non-default locale, you can create
multiple indexes on the same set of columns, using different collations.
(Such indexes would be useful only on NCHAR or NVARCHAR columns.) ¢

The following example creates a composite index using the stock_num and
manu_code columns of the stock table:

CREATE UNIQUE INDEX st man ix ON stock (stock num, manu_code)

The UNIQUE keyword prevents any duplicates of a given combination of
stock_num and manu_code. The index is in ascending order by default.

You can include up to 16 columns in a composite index. The total width of all
indexed columns in a single COMPOSITE index cannot exceed 380 bytes. ¢

An index key part is either a column in a table, or the result of a user-defined
function on one or more columns. A composite index can have up to 16 key
parts that are columns, or up to 341 key parts that are values returned by a
UDR. This limit is language-dependent, and applies to UDRs written in SPL or
Java; functional indexes based on C language UDRs can have up to 102 key
parts. A composite index can have any of the following items as an index key:

] One or more columns

m One or more values that a user-defined function returns (referred to
as a functional index)

m A combination of columns and user-defined functions

The total width of all indexed columns in a single CREATE INDEX statement
cannot exceed 390 bytes, except for functional indexes of Dynamic Server,
whose language-dependent limits are described earlier in this section. ¢

Using the ASC and DESC Sort-Order Options

The ASC option specifies an index maintained in ascending order; this is the
default order. The DESC option can specify an index that is maintained in
descending order. These ASC and DESC options are valid with B-trees only.

SQL Statements 2-149

CREATE INDEX

2-150

Effects of Unique Constraints on Sort Order Options

When a column or list of columns is defined as unique in a CREATE TABLE or
ALTER TABLE statement, the database server implements that UNIQUE
CONSTRAINT by creating a unique ascending index. Thus, you cannot use the
CREATE INDEX statement to add an ascending index to a column or column
list that is already defined as unique.

However, you can create a descending index on such columns, and you can
include such columns in composite ascending indexes in different combina-
tions. For example, the following sequence of statements is valid:

CREATE TABLE customer (

customer num SERIAL(101) UNIQUE,
fname CHAR (15),

lname CHAR (15) ,

company CHAR (20) ,

addressi1 CHAR (20) ,

address?2 CHAR (20) ,

city CHAR (15) ,

state CHAR (2) ,

zipcode CHAR (5) ,

phone CHAR (18)

)

CREATE INDEX c_templ ON customer (customer num DESC)
CREATE INDEX c_temp2 ON customer (customer num, zipcode)

In this example, the customer_num column has a unique constraint placed
on it. The first CREATE INDEX statement places an index sorted in descending
order on the customer_num column. The second CREATE INDEX includes the
customer_num column as part of a composite index. For more information
on composite indexes, see “Creating Composite Indexes” on page 2-149.

Bidirectional Traversal of Indexes

If you do not specify the ASC or DESC keywords when you create an index on
a column, key values are stored in ascending order by default; but the bidirec-
tional-traversal capability of the database server lets you create just one index
on a column and use that index for queries that specify sorting of results in
either ascending or descending order of the sort column.

Because of this capability, it does not matter whether you create a single-
column index as an ascending or descending index. Whichever storage order
you choose for an index, the database server can traverse that index in
ascending or descending order when it processes queries.

IBM Informix Guide to SQL: Syntax

CREATE INDEX

If you create a composite index on a table, however, the ASC and DESC
keywords might be required. For example, if you want to enter a SELECT
statement whose ORDER BY clause sorts on multiple columns and sorts each
column in a different order and you want to use an index for this query, you
need to create a composite index that corresponds to the ORDER BY columns.
For example, suppose that you want to enter the following query:

SELECT stock num, manu_code, description, unit_price
FROM stock ORDER BY manu_code ASC, unit_price DESC

This query sorts first in ascending order by the value of the manu_code
column and then in descending order by the value of the unit_price column.
To use an index for this query, you need to issue a CREATE INDEX statement
that corresponds to the requirements of the ORDER BY clause. For example,
you can enter either of the following statements to create the index:

CREATE INDEX Stock_idxl ON stock
(manu_code ASC, unit price DESC) ;

CREATE INDEX Stock_ide ON stock
(manu_code DESC, unit_ price ASC);

The composite index that was used for this query (stock_idx1 or stock_idx2)
cannot be used for queries in which you specify the same sort direction for
the two columns in the ORDER BY clause. For example, suppose that you
want to enter the following queries:

SELECT stock num, manu_code, description, unit price
FROM stock ORDER BY manu_code ASC, unit_price ASC;

SELECT stock num, manu_code, description, unit price
FROM stock ORDER BY manu_code DESC, unit_price DESC;

If you want to use a composite index to improve the performance of these

queries, you need to enter one of the following CREATE INDEX statements.
You can use either one of the created indexes (stock_idx3 or stock_idx4) to
improve the performance of the preceding queries.

CREATE INDEX stock_idx3 ON stock
(manu_code ASC, unit price ASC);

CREATE INDEX stock_idx4 ON stock
(manu_code DESC, unit price DESC);

You can create no more than one ascending index and one descending index
on a single column. Because of the bidirectional-traversal capability of the
database server, you only need to create one of the indexes. Creating both
would achieve exactly the same results for an ascending or descending sort
on the stock_num column.

SQL Statements 2-151

CREATE INDEX

Restrictions on the Number of Indexes on a Set of Columns

You can create multiple indexes on a set of columns, provided that each index
has a unique combination of ascending and descending columns. For
example, to create all possible indexes on the stock_num and manu_code
columns of the stock table, you could create four indexes:

m The ix1 index on both columns in ascending order
m The ix2 index on both columns in descending order

m The ix3 index on stock_num in ascending order and on manu_code
in descending order

m Theix4index on stock_num in descending order and on manu_code
in ascending order

Because of the bidirectional-traversal capability of the database server, you
do not need to create these four indexes. You only need to create two indexes:

m The ix1 and ix2 indexes achieve the same results for sorts in which
the user specifies the same sort direction (ascending or descending)
for both columns, so you only need one index of this pair.

m The ix3 and ix4 indexes achieve the same results for sorts in which
the user specifies different sort directions for the two columns
(ascending on the first column and descending on the second column
or vice versa). Thus, you only need to create one index of this pair.
(See also “Bidirectional Traversal of Indexes” on page 2-150.)

Dynamic Serve can also suppport multiple indexes on the same combination
of ascending and descending columns, if each index has a different collating
order; see “SET COLLATION” on page 2-643.

Using an Operator Class

An operator class is the set of operators associated with a secondary-access
method for query optimization and building the index. You must specify an
operator class when you create an index if either one of the following is true:

m No default operator class for the secondary-access method exists. (A
user-defined access method can provide no default operator class.)

m You want to use an operator class that is different from the default
operator class that the secondary-access method provides.

2-152 IBM Informix Guide to SQL: Syntax

CREATE INDEX

If you use an alternative access method, and if the access method has a
default operator class, you can omit the operator class here; but if you do not
specify an operator class and the secondary-access method does not have a
default operator class, the database server returns an error. For more infor-
mation, see “Default Operator Classes” on page 2-180. The following CREATE
INDEX statement creates a B-tree index on the cust_tab table that uses the
abs_btree_ops operator class for the cust_num key:

CREATE INDEX c_numl_ix ON cust_tab (cust_num abs_btree ops) ;

USING Access-Method Clause

The USING clause specifies the secondary-access method for the new index.

USING Access-Method Back to CREATE INDEX
Clause p. 2-144
J
—p»——————— USING —— sec_acc_method —(L parameter = valuel) -

Element Purpose Restrictions Syntax

parameter Secondary-access-method See the user documentation for your Quoted String,
parameter for this index user-defined access method. p- 4-243

sec_acc_method Secondary-access method Method can be a B-tree, R-tree, or user- Identifier, p. 4-189
for this index defined access method, such as one that

a DataBlade module defines.

value Value of the specified Must be a valid literal value for parameter Quoted String,

parameter in this secondary-access method. p- 4-243 or Literal

Number, p. 4-216

A secondary-access method is a set of routines that perform all of the operations
needed for an index, such as create, drop, insert, delete, update, and scan.

SQL Statements 2-153

CREATE INDEX

The database server provides the following secondary-access methods:

m The generic B-tree index is the built-in secondary-access method.

A B-tree index is good for a query that retrieves a range of data val-
ues. The database server implements this secondary-access method
and registers it as btree in the system catalog tables.

m The R-tree method is a registered secondary-access method.

An R-tree index is good for searches on multidimensional data. The
database server registers this secondary-access method as rtree in the
system catalog tables of a database. An R-tree secondary-access
method is not valid for a UNIQUE index key. For more information
on R-tree indexes, see the IBM Informix R-Tree Index User’s Guide.

The access method that you specify must be a valid access method in the
sysams system catalog table. The default secondary-access method is B-tree.

If the access method is B-tree, you can create only one index for each unique
combination of ascending and descending columnar or functional keys with
operator classes. (This does not apply to other secondary-access methods.)
By default, CREATE INDEX creates a generic B-tree index. If you want to
create an index with a secondary-access method other than B-tree, you must
specify the name of the secondary-access method in the USING clause.

Some user-defined access methods are packaged as DataBlades. Some
DataBlade modules provide indexes that require specific parameters when
you create them. For more information about user-defined access methods,
refer to your access-method or DataBlade documentation.

The following example (for a database that implements R-tree indexes)
creates an R-tree index on the location column that contains an opaque data
type, point, and performs a query with a filter on the location column.

CREATE INDEX loc_ix ON TABLE emp (location) USING rtree;

SELECT name FROM emp WHERE location N_equator_ equals point('500, 0');
The following CREATE INDEX statement creates an index that uses the
secondary-access method fulltext, which takes two parameters:

WORD_SUPPORT and PHRASE_SUPPORT. It indexes a table t, which has two
columns: i, an integer column, and data, a TEXT column.

CREATE INDEX tx ON t (data)
USING fulltext (WORD_SUPPORT='‘'PATTERN’,
PHRASE_SUPPORT='MAXIMUM’) ;

2-154 IBM Informix Guide to SQL: Syntax

CREATE INDEX

FILLFACTOR Option

The FILLFACTOR option takes effect only when you build an index on a table
that contains more than 5,000 rows and uses more than 100 table pages, when
you create an index on a fragmented table, or when you create a fragmented
index on a nonfragmented table.

Use the FILLFACTOR option to provide for expansion of an index at a later
date or to create compacted indexes.

FILLFACTOR Back to CREATE INDEX
Option p. 2-144
—P FILLFACTOR —— percent -
Element Purpose Restrictions Syntax
percent Percentage of each index page that is filled by index 1 < percent< 100 Literal Number,
data when the index is created. The default is 90. p. 4-216

When the index is created, the database server initially fills only that
percentage of the nodes specified with the FILLFACTOR value.

The FILLFACTOR can also be set as a parameter in the ONCONFIG file. The
FILLFACTOR clause on the CREATE INDEX statement overrides the setting in
the ONCONFIG file. For more information about the ONCONFIG file and the
parameters you can use, see your Administrator’s Guide.

Providing a Low Percentage Value

If you provide a low percentage value, such as 50, you allow room for growth
in your index. The nodes of the index initially fill to a certain percentage and
contain space for inserts. The amount of available space depends on the
number of keys in each page as well as the percentage value.

For example, with a 50-percent FILLFACTOR value, the page would be half
full and could accommodate doubling in size. A low percentage value can
result in faster inserts and can be used for indexes that you expect to grow.

SQL Statements 2-155

CREATE INDEX

Providing a High Percentage Value

If you provide a high percentage value, such as 99, your indexes are
compacted, and any new index inserts result in splitting nodes. The
maximum density is achieved with 100 percent. With a 100-percent
FILLFACTOR value, the index has no room available for growth; any
additions to the index result in splitting the nodes.

A 99-percent FILLFACTOR value allows room for at least one insertion per
node. A high percentage value can result in faster selects and can be used for
indexes that you do not expect to grow or for mostly read-only indexes.

Storage Options

The storage options specify the distribution scheme of an index. You can use
the IN clause to specify a storage space for the entire index, or you can use the
FRAGMENT BY clause to fragment the index across multiple storage spaces.

Storage Back to CREATE INDEX
Options p. 2-144
IN dbspace |
— dbslice
— exispace FRAGMENT BY
Clause for Indexes
p. 2-159
Element Purpose Restrictions Syntax
dbslice The dbslice that contains all of the index fragments =~ Must exist. Identifier, p. 4-189
dbspace The dbspace in which to store the index Must exist. Identifier, p. 4-189
extspace Name assigned by the onspaces command to a Must exist. See the documentation for
storage area outside the database server your access method.

2-156 IBM Informix Guide to SQL: Syntax

CREATE INDEX

When you specify one of the storage options, you create a detached index.
Detached indexes are indexes that are created with a specified distribution
scheme. Even if the distribution scheme specified for the index is identical to
that specified for the table, the index is still considered to be detached. If the
distribution scheme of a table changes, all detached indexes continue to use
their own distribution scheme.

For information on locally-detached and globally-detached indexes, see
“FRAGMENT BY Clause for Indexes” on page 2-159. If you are using
Extended Parallel Server, you cannot use the CLUSTER option and storage
options in the same CREATE INDEX statement. See “CLUSTER Option” on
page 2-146. ¢

In some earlier releases of Dynamic Server, if you did not use the storage
options to specify a distribution scheme, then by default the index inherited
the distribution scheme of the table on which it was built. Such an index is
called an attached index. In this release, CREATE INDEX creates new indexes as
detached indexes by default, but supports existing attached indexes that
were created by earlier release versions. An attached index is created in the
same dbspace (or dbspaces, if the table is fragmented) as the table on which
it is built. If the distribution scheme of a table changes, all attached indexes
start using the new distribution scheme.

Only B-tree indexes that are nonfragmented and that are on nonfragmented
tables can be attached. All other indexes, including extensibility related
indexes, such as R-trees and UDT indexes, must be detached. You cannot
create an attached index using a collating order different from that of the
table, nor different from what DB_LOCALE specifies. For information on how
to create attached indexes, see the description of the DEFAULT_ATTACH
environment variable in IBM Informix Guide to SQL: Reference. ¢

IN Clause

Use the IN clause to specify a storage space to hold the entire index. The
storage space that you specify must already exist.

Use the IN dbspace clause to specify the dbspace where you want your index
to reside. When you use this clause, you create a detached index.

SQL Statements 2-157

CREATE INDEX

XPS

The IN dbspace clause allows you to isolate an index. For example, if the
customer table is created in the custdata dbspace, but you want to create an
index in a separate dbspace called custind, use the following statements:

CREATE TABLE customer
IN custdata EXTENT SIZE 16
CREATE INDEX idx cust ON customer (customer num)

IN custind

Storing an Index in a dbslice

If you are using Extended Parallel Server, the IN dbslice clause allows you to
fragment an index across multiple dbspaces. The database server fragments
the table by round-robin in the dbspaces that make up the dbslice at the time
when the table is created.

Storing an Index in an extspace

In general, use this option in conjunction with the “USING Access-Method
Clause” on page 2-153. You can also store an index in an sbspace. For more
information, refer to the user documentation for your custom access method.

2-158 IBM Informix Guide to SQL: Syntax

CREATE INDEX

FRAGMENT BY Clause for Indexes

Use the FRAGMENT BY clause to create a detached index and to define its
fragmentation strategy across multiple dbspaces.

FRAGMENT BY
Clause for Indexes

Back to Storage Options
p. 2-156

—p» FRAGMENT BY

)
EXPRESSION g expr—IN dbspacels REMAIN

I?IN dbspaceﬂ

’ expr
HASH (Cco/umn) —IN dbslice ——|
;)
HYBRID—(CCOIUID)fEXPRESSION (dbspace ,gpace)
),
C expr IN dbslice »~<REMAINDER—IN dbslice —/
’ expr dbspace ~
(@p@) ,
dbspace (CdbspQ)

Element Purpose Restrictions Syntax

column Column on which to fragment the index Must exist in the current table Identifier, p. 4-189

dbslice Dbslice storing all the index fragments Must exist Identifier, p. 4-189

dbspace Dbspace in which to store the index You must specify atleast 2, butno Identifier, p. 4-189
fragment that expr defines more than 2,048 dbspace names

expr Expression defining which index keys ~ See “Restrictions on Fragmen- Expression, p. 4-67;

each fragment stores tation Expressions,” page 2-160. Condition, p. 4-24

To specify a fragmented index, the IN keyword introduces the storage space
where an index fragment is to be stored. If you list multiple dbspace names
after the IN keyword, use parentheses to delimit the dbspace list.

SQL Statements 2-159

CREATE INDEX

Restrictions on Fragmentation Expressions
The following restrictions apply to the expression:

m FEach fragment expression can contain columns only from the current
table, with data values only from a single row.

B The columns contained in a fragment expression must be the same as
the indexed columns or a subset of the indexed columns.

m The expression must return a Boolean (true or false) value.

m No subqueries, aggregates, user-defined routines, nor references to
fields of a ROW type column are allowed.

m The built-in CURRENT, DATE, and TIME functions are not allowed.

You can fragment indexes on any column of a table, even if the table spans
multiple coservers. The columns that you specify in the FRAGMENT BY clause
do not have to be part of the index key.

Detached indexes can be either locally detached or globally detached. A
locally detached index is an index in which, for each data tuple in a table, the
corresponding index tuple is guaranteed to be on the same coserver. The
table and index fragmentation strategies do not have to be identical as long
as co-locality can be guaranteed. If the data tuple and index tuple co-locality
do not exist, then the index is a globally-detached index. For performance impli-
cations of globally-detached indexes, see your Performance Guide.

For more information on expression, hash, and hybrid distribution schemes,
see “Fragmenting by EXPRESSION” on page 2-239, “Fragmenting by
HASH” on page 2-242, and “Fragmenting by HYBRID” on page 2-243,
respectively, in the description of the CREATE TABLE statement. ¢

Fragmentation of System Indexes

System indexes (such as those used in referential constraints and unique
constraints) utilize user indexes if they exist. If no user indexes can be
utilized, system indexes remain nonfragmented and are moved to the
dbspace where the database was created.

To fragment a system index, create the fragmented index on the constraint
columns, and then add the constraint using the ALTER TABLE statement.

2-160 IBM Informix Guide to SQL: Syntax

CREATE INDEX

Fragmentation of Unique Indexes

You can fragment unique indexes only with a table that uses an expression-
based distribution scheme. The columns referenced in the fragment
expression must be part of the indexed columns. If your CREATE INDEX
statement fails to meet either of these restrictions, the CREATE INDEX fails,
and work is rolled back.

Fragmentation of Indexes on Temporary Tables

You can fragment a unique index on a temporary table only if the underlying
table uses an expression-based distribution scheme. That is, the CREATE
Temporary TABLE statement that defines the temporary table must specify an
explicit expression-based distribution scheme.

If you try to create a fragmented, unique index on a temporary table for
which you did not specify a fragmentation strategy when you created the
table, the database server creates the index in the first dbspace that the
DBSPACETEMP environment variable specifies.For more information on the
DBSPACETEMP environment variable, see the IBM Informix Guide to SQL:
Reference.

For more information on the default storage characteristics of temporary
tables, see “Where Temporary Tables are Stored” on page 2-266.

Index Modes

Use the index modes to control the behavior of the index during INSERT,
DELETE, and UPDATE operations.

Index Modes

Back to CREATE INDEX
p. 2-144

ENABLED .
: DISABLED WITHOUT ERROR
FILTERING WITH ERROR

SQL Statements 2-161

CREATE INDEX

The following table explains the index modes.

Purpose

DISABLED

ENABLED

FILTERING

The database server does not update the index after insert, delete,
and update operations that modify the base table. The optimizer does
not use the index during the execution of queries.

The database server updates the index after insert, delete, and update
operations that modify the base table. The optimizer uses the index
during query execution. If an insert or update operation causes a
duplicate key value to be added to a unique index, the statement fails.

The database server updates a unique index after insert, delete, and
update operations that modify the base table. (This option is not
available with duplicate indexes.)

The optimizer uses the index during query execution. If an insert or
update operation causes a duplicate key value to be added to a
unique index in filtering mode, the statement continues processing,
but the bad row is written to the violations table associated with the
base table. Diagnostic information about the unique-index violation
is written to the diagnostics table associated with the base table.

If you specify filtering for a unique index, you can also specify one of the
following error options.

Error Option

Purpose

WITHOUT ERROR A unique-index violation during an insert or update

operation returns no integrity-violation error to the user.

WITH ERROR Any unique-index violation during an insert or update

operation returns an integrity-violation error to the user.

2-162 IBM Informix Guide to SQL: Syntax

CREATE INDEX

Specifying Modes for Unique Indexes

You must observe the following rules when you specify modes for unique
indexes in CREATE INDEX statements:

You can set the mode of a unique index to enabled, disabled, or
filtering.

If you do not specify a mode, then by default the index is enabled.

For an index set to filtering mode, if you do not specify an error
option, the default is WITHOUT ERROR.

When you add a new unique index to an existing base table and
specify the disabled mode for the index, your CREATE INDEX
statement succeeds even if duplicate values in the indexed column
would cause a unique-index violation.

When you add a new unique index to an existing base table and
specify the enabled or filtering mode for the index, your CREATE
INDEX statement succeeds provided that no duplicate values exist in
the indexed column that would cause a unique-index violation.
However, if any duplicate values exist in the indexed column, your
CREATE INDEX statement fails and returns an error.

When you add a new unique index to an existing base table in the
enabled or filtering mode, and duplicate values exist in the indexed
column, erroneous rows in the base table are not filtered to the viola-
tions table. Thus, you cannot use a violations table to detect the
erroneous rows in the base table.

Adding a Unique Index When Duplicate Values Exist in the Column

If you attempt to add a unique index in the enabled mode but receive an error
message because duplicate values are in the indexed column, take the
following steps to add the index successfully:

1.

2.

Add the index in the disabled mode. Issue the CREATE INDEX
statement again, but this time specify the DISABLED keyword.

Start a violations and diagnostics table for the target table with the
START VIOLATIONS TABLE statement.

SQL Statements 2-163

CREATE INDEX

Issue a SET Database Object Mode statement to switch the mode of
the index to enabled. When you issue this statement, existing rows in
the target table that violate the unique-index requirement are dupli-
cated in the violations table. However, you receive an integrity-
violation error message, and the index remains disabled.

Issue a SELECT statement on the violations table to retrieve the
nonconforming rows that are duplicated from the target table. You
might need to join the violations and diagnostics tables to get all the
necessary information.

Take corrective action on the rows in the target table that violate the
unique-index requirement.

After you fix all the nonconforming rows in the target table, issue the
SET Database Object Mode statement again to switch the disabled
index to the enabled mode. This time the index is enabled, and no
integrity violation error message is returned because all rows in the
target table now satisfy the new unique-index requirement.

Specifying Modes for Duplicate Indexes

You must observe the following rules when you specify modes for duplicate
indexes in CREATE INDEX statements:

You can set a duplicate index to enabled or disabled mode. Filtering
mode is available only for unique indexes.

If you do not specify the mode of a duplicate index, by default the
index is enabled.

How the Database Server Treats Disabled Indexes

Whether a disabled index is a unique or duplicate index, the database server
effectively ignores the index during data-manipulation (DML) operations.

When an index is disabled, the database server stops updating it and stops
using it during queries, but the catalog information about the disabled index
is retained. You cannot create a new index on a column or set of columns if a
disabled index on that column or set of columns already exists. Similarly, you
cannot create an active (enabled) unique, foreign-key, or primary-key
constraint on a column or set of columns if the indexes on which the active
constraint depends are disabled.

2-164 IBM Informix Guide to SQL: Syntax

[xps | LOCK MODE Options

Generalized-Key Indexes

The LOCK MODE options specify the locking granularity of the index.

LOCK MODE

Options COARSE
—p»——— LOCK MODE L NORMAL

—

Back to CREATE INDEX
p. 2-144

XPS

In COARSE lock mode, index-level locks are acquired on the index instead of
item-level or page-level locks. This mode reduces the number of lock calls on
an index. Use the coarse-lock mode when you know the index is not going to
change, that is, when read-only operations are performed on the index.

If you specify no lock mode, the default is NORMAL. That is, the database
server places item-level or page-level locks on the index as necessary.

Generalized-Key Indexes

If you are using Extended Parallel Server, you can create generalized-key
(GK) indexes. Keys in a conventional index consist of one or more columns of
the STATIC table that is being indexed. A GK index stores information about
the records in a STATIC table based on the results of a query.

GK indexes provide a form of pre-computed index capability that allows
faster query processing, especially in data-warehousing environments. The
optimizer can use the GK index to improve performance.

A GK index is defined on a table when that table is the one being indexed. A
GK index depends on a table when the table appears in the FROM clause of the
index. Before you create a GK index, keep the following issues in mind:

m All tables used in a GK index must be STATIC tables. If you try to
change the type of a table to a non-static type while a GK index
depends on that table, the database server returns an error.

m Any table involved in a GK index must be a STATIC type. UPDATE,
DELETE, INSERT, and LOAD operations are not valid on such a table
until the dependent GK index is dropped and the table type changes.

Key-only index scans are not available with GK indexes.

SQL Statements 2-165

Generalized-Key Indexes

SELECT Clause for Generalized-Key Index

If you are using Extended Parallel Server, the options of the GK SELECT clause
are a subset of the options of “SELECT” on page 2-581. The GK SELECT clause
has the following syntax.

GK SELECT Back to CREATE INDEX
Clause

p. 2-144

— g SELECT ALL b 467 / FROM >
Clause
DISTINCT et \ GK f
WHERE

3
Expression) GK

*
\— UNIQUE table. pC.IIé’:l_L#sGes
synonym.
alias.

Element Purpose Restrictions Syntax
alias Temporary name assigned to the You cannot use an alias for the table Identifier, p. 4-189
table in the FROM clause on which the index is built
synonymnt, Synonym or table from which to The synonym and the table to Database Object
table retrieve data which it points must exist Name, p. 4-46
The following restrictions apply to expressions in the GK SELECT clause:
m [t cannot refer to any SPL routine.
m It cannot include the USER, TODAY, CURRENT, DBINFO built-in
functions, nor any function that refers to a point in time or interval.
2-166 IBM Informix Guide to SQL: Syntax

Generalized-Key Indexes

‘ FROM Clause for Generalized-Key Index

GK FROM
Clause

—pp»—FROM

Back to GK SELECT Clause
p. 2-166

iindexed7 table |
o)|]

table

)
\ synonym2/ LAS L alias f

-

Element Purpose Restrictions Syntax

alias Temporary name for a table You cannot use an alias with Identifier, p. 4-189
indexed_table.

indexed_table, Table on which the index is The FROM clause must include Database Object

synonyml being built the indexed table. Name, p. 4-46

synonym2, Synonym or table from which to The synonym and the table to ~ Database Object

table retrieve data which it points must exist. Name, p. 4-46

All tables that appear in the FROM clause must be local static tables. That is,
no views, non-static, or remote tables are allowed.

The tables that are mentioned in the FROM clause must be transitively joined
on key to the indexed table. Table A is transitively joined on key to table B if
A and B are joined with equal joins on the unique-key columns of A. For
example, suppose tables A, B, and C each have col1 as a primary key. In the
following example, B is joined on key to A and C is joined on key to B. Cis
transitively joined on key to A.

CREATE GK INDEX gki
(SELECT A.coll, A.col2 FROM A, B, C
WHERE A.coll = B.coll AND B.coll = C.coll)

SQL Statements 2-167

Generalized-Key Indexes

WHERE Clause for Generalized-Key Index

GK WHERE

Clause

Back to GK SELECT Clause
p. 2-166

AND

Join
p. 2-619

Condition)
—p»———WHERE p. 4-24 J -

GLS

2-168

The WHERE clause for a GK index has the following limitations:

m It cannot include USER, TODAY, CURRENT, nor DBINFO built-in
functions, nor any functions that refer to time or a time interval.
It cannot refer to any SPL routine.

It cannot have any subqueries.
It cannot use any aggregate function.
It cannot have any IN, LIKE, or MATCH clauses.

Related Information

Related statements: ALTER INDEX, CREATE OPCLASS, CREATE TABLE, DROP
INDEX, RENAME INDEX, and SET Database Object Mode

For a discussion of the structure of indexes, see your Administrator’s Reference.

For a discussion of the different types of indexes and information about
performance issues with indexes, see your Performance Guide.

For a discussion of the GLS aspects of the CREATE INDEX statement, see the
IBM Informix GLS User’s Guide. ¢

For information about operator classes, refer to the CREATE OPCLASS
statement and IBM Informix User-Defined Routines and Data Types Developer’s
Guide.

For information about the indexes that DataBlade modules provide, refer to
your DataBlade module user’s guide.

IBM Informix Guide to SQL: Syntax

CREATE OPAQUE TYPE

CREATE OPAQUE TYPE

Use the CREATE OPAQUE TYPE statement to create an opaque data type.

Syntax

CREATE OPAQUE TYPE — type — (INTERNALLENGTH = k length J)
VARIABLE j
b

E ,Q Opaque-Type Modifier
2-171

p.

-

Element Purpose

Restrictions Syntax

length ~ Number of bytes needed to store Positive integer returned when sizeof() Literal Number,

a value of this data type directive is applied to the type structure. p.4-216
type Name that you declare here for Mustbe unique among data typenames Identifier, p. 4-189;
the new opaque data type in the database. Data Type, p. 4-49
Usage

The CREATE OPAQUE TYPE statement registers a new opaque type in the
sysxtdtypes system catalog table.

To create an opaque type, you must have the Resource privilege on the
database. When you create the opaque type, only you, the owner, have the
Usage privilege on this type. Use the GRANT or REVOKE statements to grant
or revoke the Usage privilege to other database users.

To view the privileges on a data type, check the sysxtdtypes system catalog
table for the owner name and the sysxtdtypeauth system catalog table for
additional type privileges that might have been granted.

For details of system catalog tables, see the IBM Informix Guide to SQL:
Reference.

SQL Statements 2-169

CREATE OPAQUE TYPE

The DB-Access utility can also display privileges on opaque types. ¢

Declaring a Name for an Opaque Type

The name that you declare for an opaque data type is an SQL identifier. When
you create an opaque type, the name must be unique within a database.

When you create an opaque type in an ANSI-compliant database, owner.type
combination must be unique within the database.

The owner name is case sensitive. If you do not put quotes around the owner
name, the name of the opaque-type owner is stored in uppercase letters. ¢

INTERNALLENGTH Modifier

The INTERNALLENGTH modifier specifies the storage size that is required for
the opaque type as fixed length or varying length.

Fixed-Length Opaque Types

A fixed-length opaque type has an internal structure of fixed size. To create a
fixed-length opaque type, specify the size of the internal structure, in bytes,
for the INTERNALLENGTH modifier. The next example creates a fixed-length
opaque type called fixlen_typ and allocates 8 bytes for this type.

CREATE OPAQUE TYPE fixlen typ (INTERNALLENGTH=8, CANNOTHASH)

Varying-Length Opaque Types

A varying-length opaque type has an internal structure whose size might
vary from one value to another. For example, the internal structure of an
opaque type might hold the actual value of a string up to a certain size but
beyond this size it might use an LO-pointer to a CLOB to hold the value.

To create a varying-length opaque data type, use the VARIABLE keyword
with the INTERNALLENGTH modifier. The following statement creates a
variable-length opaque type called varlen_typ:

CREATE OPAQUE TYPE varlen typ
(INTERNALLENGTH=VARIABLE, MAXLEN=1024)

2-170 IBM Informix Guide to SQL: Syntax

CREATE OPAQUE TYPE

Opaque-Type Modifier

| Opaque-Type Modifier | Back to CREATE OPAQUE TYPE
p. 2-169
— |
MAXLEN = length
CANNOTHASH
PASSEDBYVALUE
ALIGNMENT = align_value
Element Purpose Restrictions Syntax
align_value Byte boundary on which to alignan Must be 1, 2, 4, or 8, depending on the C Literal
opaque type that is passed to a user- definition of the opaque type and hardware Number,
defined routine. Default is 4 bytes. and compiler used to build the object file p. 4-216
for the type.
length Maximum length to allocate for Must be a positive integer £ 32 kilobytes. Literal
instances of varying-length opaque Do not specify for fixed-length data types. Number,
types. Default is 2 kilobytes. Values that exceed this length return errors. p. 4-216

Modifiers can specify the following optional information for opaque types:

B MAXLEN specifies the maximum length for varying-length types.

m CANNOTHASH specifies that the database server cannot use the
built-in hash function on the opaque type.

m ALIGNMENT specifies the byte boundary on which the database
server aligns the opaque type.

m PASSEDBYVALUE specifies that an opaque type of 4 bytes or fewer is
passed by value.

By default, opaque types are passed to user-defined routines by reference.

SQL Statements 2-171

CREATE OPAQUE TYPE

Defining an Opaque Type

To define the opaque type to the database server, you must provide the
following information in the C or Java language:

A data structure that serves as the internal storage of the opaque type

The internal storage details of the type are hidden, or opaque. Once
you define a new opaque type, the database server can manipulate it
without knowledge of the C or Java structure in which it is stored.

Support functions that allow the database server to interact with this
internal structure

The support functions tell the database server how to interact with
the internal structure of the type. These support functions must be
written in the C or Java programming language.

Additional user-defined functions that other support functions or
end users can invoke to operate on the opaque type (optional)

Possible support functions include operator functions and cast func-
tions. Before you can use these functions in SQL statements, they
must be registered with the appropriate CREATE CAST, CREATE PRO-
CEDURE, or CREATE FUNCTION statement.

The following table summarizes the support functions for an opaque type.

Function Description Invoked
input() Converts the opaque type from its external When a client application sends a
LVARCHAR representation to its internal character representation of the
representation opaque type in an INSERT,
UPDATE, or LOAD statement
output() Converts the opaque type from its internal When the database server sends a
representation to its external LVARCHAR character representation of the
representation opaque type as a result of a SELECT
or FETCH statement
receive() Converts the opaque type from its internal When a client application sends an

representation on the client computer to its
internal representation on the server computer

Provides platform-independent results
regardless of differences between client and
server computer types

internal representation of the
opaque type in an INSERT,
UPDATE, or LOAD statement

2-172 IBM Informix Guide to SQL: Syntax

(10f3)

CREATE OPAQUE TYPE

Function

Description

Invoked

send()

Converts the opaque type from its internal repre-
sentation on the server computer to its internal
representation on the client computer

Provides platform-independent results
regardless of differences between client and
database server computer types

When the database server sends an
internal representation of the
opaque type as aresult of a SELECT
or FETCH statement

db_receive()

Converts the opaque type from its internal repre-
sentation on the local database to the
DBSENDRECYV type for transfer to an external
database on the local server

When a local database receives a
dbsendrecv type from an external
database on the local database
server

db_send()

Converts the opaque type from its internal repre-
sentation on the local database to the
DBSENDRECYV type for transfer to an external
database on the local server

When a local database sends a
dbsendrecv type to an external
database on the local database
server

server_receive()

Converts the opaque type from its internal repre-
sentation on the local server computer to the
SRVSENDRECV type for transfer to a remote
database server

Use any name for this function.

When the local database server
receives a srvsendrecv type from a
remote database server

server_send()

Converts the opaque type from its internal repre-
sentation on the local server computer to the
SRVSENDRECYV type for transfer to a remote
database server

Use any name for this function.

When the local database server
sends a srvsendrecv type to a
remote database server

import() Performs any tasks needed to convert from the ~ When DB-Access (LOAD) or the
external (character) representation of an opaque High-Performance Loader (HPL)
type to the internal format for a bulk copy initiates a bulk copy from a text file
to a database
export () Performs any tasks needed to convert from the =~ When DB-Access (UNLOAD) or the
internal representation of an opaque type to the High Performance Loader initiates
external (character) format for a bulk copy abulk copy from a database to a text
file
importbinary() Performs any tasks needed to convert from the =~ When DB-Access (LOAD) or the

internal representation of an opaque type on the
client computer to the internal representation on
the server computer for a bulk copy

High Performance Loader initiates
a bulk copy from a binary file to a
database

(20f3)

SQL Statements 2-173

CREATE OPAQUE TYPE

Function Description Invoked
exportbinary() Performs any tasks needed to convert from the =~ When DB-Access (UNLOAD) or the
internal representation of an opaque type on the High Performance Loader initiates
server computer to the internal representationon a bulk copy from a database to a
the client computer for a bulk copy binary file
assign() Performs any processing required before storing When the database server executes
the opaque type to disk INSERT, UPDATE, or LOAD, before
This support function must be named assign(). it stores the opaque type to disk
destroy() Performs any processing necessary before When the database server executes
removing a row that contains the opaque type ~ the DELETE or DROP TABLE,
This support function must be named destroy(). before 1t removes the opaque type
from disk
lohandles() Returns a list of the LO-pointer structures When the database server must
(pointers to smart large objects) in an opaque search opaque types for references
type to smart large objects: when
oncheck runs, or an archive is
performed
compare() Compares two values of the opaque type and When the database server
returns an integer value to indicate whether the encounters an ORDER BY,
first value is less than, equal to, or greater than =~ UNIQUE, DISTINCT, or UNION
the second value clause in a SELECT statement, or
when CREATE INDEX creates a B-
tree index
(3 0of 3)
After you write the necessary support functions for the opaque type, use the
CREATE FUNCTION statement to register these support functions in the same
database as the opaque type. Certain support functions convert other data
types to or from the new opaque type. After you create and register these
support functions, use the CREATE CAST statement to associate each function
with a particular cast. The cast must be registered in the same database as the
support function.
After you have written the necessary C language or Java language source
code to define an opaque data type, you then use the CREATE OPAQUE TYPE
statement to register the opaque data type in the database.
2-174 IBM Informix Guide to SQL: Syntax

CREATE OPAQUE TYPE

Related Information

Related statements: CREATE CAST, CREATE DISTINCT TYPE, CREATE
FUNCTION, CREATE ROW TYPE, CREATE TABLE, and DROP TYPE

For a description of an opaque type, see the IBM Informix Guide to SQL:
Reference.

For information on how to define an opaque type, see IBM Informix User-
Defined Routines and Data Types Developer’s Guide.

For information on how to use the Java language to define an opaque type,
see the J/Foundation Developer’s Guide.

For information about the GLS aspects of the CREATE OPAQUE TYPE
statement, refer to the IBM Informix GLS User’s Guide.

SQL Statements 2-175

CREATE OPCLASS

CREATE OPCLASS

Use the CREATE OPCLASS statement to create an operator class for a secondary-
access method.

Syntax

CREATE OPCLASS—— opclass —— FOR —— sec_acc_method

STRATEGIES D

ad

]
Strategy Specification) ()
&y 2P)— SUPPORT —(support_function)

p. 2-178

sec_acc_method

support_function

Element Purpose Restrictions Syntax
opclass Name that you declare here for =~ Must be unique among operator Database Object
operator class classes within the database.

Secondary-access method with Must already exist and must be Identifier,
which the specified operator class registered in the sysams system p. 4-189
is being associated catalog table.

Support function that the Must be listed in the order Identifier,
secondary-access method requires expected by the access method. p. 4-189

Usage

An operator class is the set of operators that Dynamic Server associates with
the specified secondary-access method for query optimization and building
the index. A secondary-access method (sometimes referred to as an index
access method) is a set of database server functions that build, access, and
manipulate an index structure such as a B-tree, R-tree, or an index structure
that a DataBlade module provides.

The database server provides the B-tree and R-tree secondary-access
methods. For more information on the btree secondary-access method, see
“Default Operator Classes” on page 2-180.

2-176 IBM Informix Guide to SQL: Syntax

CREATE OPCLASS

Define a new operator class when you want one of the following:

m Anindex to use a different order for the data than the sequence that
the default operator class provides

m A setof operators that is different from any existing operator classes
that are associated with a particular secondary-access method

You must have the Resource privilege or be the DBA to create an operator
class. The actual name of an operator class is an SQL identifier. When you
create an operator class, opclass name must be unique within a database.

When you create an operator class in an ANSI-compliant database,
owner.opclass_name must be unique within the database. The owner name is
case sensitive. If you do not put quotes around the owner name, the name of
the operator-class owner is stored in uppercase letters. ¢

The following CREATE OPCLASS statement creates a new operator class
called abs_btree_ops for the btree secondary-access method:

CREATE OPCLASS abs_btree_ops FOR btree
STRATEGIES (abs_1lt, abs_lte, abs_eq, abs gte, abs gt)
SUPPORT (abs_cmp)

An operator class has two kinds of operator-class functions:

m Strategy functions

Specify strategy functions of an operator class in the STRATEGY
clause of the CREATE OPCLASS statement. In the preceding CREATE
OPCLASS code example, the abs_btree_ops operator class has five
strategy functions.

m Support functions

Specify support functions of an operator class in the SUPPORT clause.
In the preceding CREATE OPCLASS code example, the abs_btree_ops
operator class has one support function.

STRATEGIES Clause

Strategy functions are functions that end users can invoke within an SQL
statement to operate on a data type. The query optimizer uses the strategy
functions to determine if a particular index can be used to process a query.

SQL Statements 2-177

CREATE OPCLASS

If an index exists on a column or user-defined function in a query, and the
qualifying operator in the query matches one of the strategy functions in the
Strategy Specification list, the optimizer considers using the index for the
query. For more information on query plans, see your Performance Guide.

When you create a new operator class, you specify the strategy functions for
the secondary-access method in the STRATEGIES clause. The Strategy Specifi-
cation lists the name of each strategy function. List these functions in the
order that the secondary-access method expects. For the specific order of
strategy operators for the default operator classes for a B-tree index and an R-
tree index, see IBM Informix User-Defined Routines and Data Types Developer’s
Guide.

Strategy Specification

| strategy Specification | Back to CREATE OPCLASS, p. 2-176 |

—»— strategy_function

l(i—@i input_type))
k output typef

-

Element Purpose Restrictions Syntax
input_type Data type of the input argument A strategy function takes two ~ Data Type,
for the strategy function for which input arguments and one p. 4-49
you want to use a specific optional output argument.
secondary-access method
output_type Data type of the optional output ~ This is an optional output Data Type,
argument for the strategy function argument for side-effect indexes. p. 4-49
strategy_function ~Name of a strategy function to Must be listed in the order that ~ Database Object
associate with the specified the specified secondary-access ~ Name, p. 4-46
operator class method expects.

2-178 IBM Informix Guide to SQL: Syntax

CREATE OPCLASS

The strategy_function is an external function. The CREATE OPCLASS statement
does not verify that a user-defined function of the name you specify exists.
However, for the secondary-access method to use the strategy function, the
external function must be:

m Compiled in a shared library
m Registered in the database with the CREATE FUNCTION statement

Optionally, you can specify the signature of a strategy function in addition to
its name. A strategy function requires two input parameters and an optional
output parameter. To specify the function signature, specify:

m Aninput data type for each of the two input parameters of the strategy
function, in the order that the strategy function uses them

m Optionally, one output data type for an output parameter of the
strategy function

You can specify UDTs as well as built-in data types. If you do not specify the
function signature, the database server assumes that each strategy function
takes two arguments of the same data type and returns a BOOLEAN value.

Indexes on Side-Effect Data

Side-effect data are additional values that a strategy function returns after a
query that contains the strategy function. For example, an image DataBlade
module might use a fuzzy index to search image data. The index ranks the
images according to how closely they match the search criteria. The database
server returns the rank value as side-effect data with the qualifying images.

SUPPORT Clause

Support functions are functions that the secondary-access method uses
internally to build and search the index. Specify these functions for the
secondary-access method in the SUPPORT clause of CREATE OPCLASS.

You must list the names of the support functions in the order that the
secondary-access method expects. For the specific order of support operators
for the default operator classes for a B-tree index and an R-tree index, refer to
“Default Operator Classes” on page 2-180.

SQL Statements 2-179

CREATE OPCLASS

2-180

The support function is an external function. CREATE OPCLASS does not
verify that anamed support function exists. For the secondary-access method
to use a support function, however, the support function must be:

m Compiled in a shared library
m Registered in the database with the CREATE FUNCTION statement

Default Operator Classes

Each secondary-access method has a default operator class that is associated
with it. By default, the CREATE INDEX statement associates the default
operator class with an index. For example, the following CREATE INDEX
statement creates a B-tree index on the zipcode column and automatically
associates the default B-tree operator class with this column:

CREATE INDEX zip_ ix ON customer (zipcode)

For each of the secondary-access methods that Dynamic Server provides, it
provides a default operator class, as follows:

m The default B-tree operator class is a built-in operator class.

The database server implements the operator-class functions for this
operator class and registers it as btree_ops in the system catalog
tables of a database.

m The default R-tree operator class is a registered operator class.

The database server registers this operator class as rtree_ops in the
system catalog tables. The database server does not implement the
operator-class functions for the default R-tree operator class.

Important: To use an R-tree index, you must install a spatial DataBlade module such
as the Geodetic DataBlade module or any other third-party DataBlade module that
implements the R-tree index. These implement the R-tree operator-class functions.

DataBlade modules can provide other types of secondary-access methods. If
a DataBlade module provides a secondary-access method, it might also
provide a default operator class. For more information, refer to your
DataBlade module user’s guide.

IBM Informix Guide to SQL: Syntax

CREATE OPCLASS

Related Information

Related statements: CREATE FUNCTION, CREATE INDEX, and DROP OPCLASS

For information on support functions and how to create and extend an
operator class, see IBM Informix User-Defined Routines and Data Types
Developer’s Guide.

For more about R-tree indexes, see the IBM Informix R-Tree Index User’s Guide.

For information about the GLS aspects of the CREATE OPCLASS statement,
refer to the IBM Informix GLS User’s Guide.

SQL Statements 2-181

CREATE PROCEDURE

CREATE PROCEDURE

Use the CREATE PROCEDURE statement to create a user-defined procedure.
(To create a procedure from text of source code that is in a separate file, use
the CREATE PROCEDURE FROM statement.)

Syntax

CREATE PROCEDURE procedure () f—{
:DBA: & j \ Routine [

. function ParS_Q?;%FGLISt

Em = ,
Specific ()
‘\ gleturn SPECIFIC | Name m7W|TH(Routine)
g 2_[1235% p. 4-274 Modifier

p. 4-257

C . Statement Block
—; _

b 4576 [~ END PROCEDURE —
RN | External Routine Reference J K Y

p.4-187)
L (o ’ 1) WITH LISTING IN 'pathname'—|
DOCUMENT Quoted String)

p. 4-243

Element Purpose Restrictions Syntax
function, Name declared here ~ (XPS) The name must be unique amongall Database Object Name,
procedure for anew SPL function SPL routines in the database. p- 4-46

or procedure (IDS) See “Naming a Procedure in

Dynamic Server” on page 2-185.

pathname File to store compile- Must exist on the computer where the Must conform to naming

time warnings database resides. rules of operating system.

2-182 IBM Informix Guide to SQL: Syntax

E/C

XPS

CREATE PROCEDURE

Usage

The entire length of a CREATE PROCEDURE statement must be less than
64 kilobytes. This length is the literal length of the CREATE PROCEDURE
statement, including blank space, tabs, and other whitespace characters.

In ESQL/C, you can use CREATE PROCEDURE only as text within a PREPARE
statement. If you want to create a procedure for which the text is known at
compile time, you must use a CREATE PROCEDURE FROM statement. ¢

Routines use the collating order that was in effect when they were created.
See SET COLLATION for information about using non-default collation ¢

Using CREATE PROCEDURE Versus CREATE FUNCTION

In Extended Parallel Server, besides using this statement to create SPL proce-
dures, yoau must use CREATE PROCEDURE to write and register an SPL
routine that returns one or more values (that is, an SPL function). Extended
Parallel Server does not support the CREATE FUNCTION statement. ¢

In Dynamic Server, although you can use CREATE PROCEDURE to write and
register an SPL routine that returns one or more values (that is, an SPL
function), it is recommended that you use CREATE FUNCTION instead. To
register an external function, you must use CREATE FUNCTION.

Use the CREATE PROCEDURE statement to write and register an SPL
procedure or to register an external procedure. ¢

For information on how terms such as user-defined procedures and user-
defined functions are used in this manual, see “Relationship Between
Routines, Functions, and Procedures” on page 2-183.

Tip: If you are trying to create a procedure from text that is in a separate file, use the
CREATE PROCEDURE FROM statement.

Relationship Between Routines, Functions, and Procedures

A procedure is a routine that can accept arguments but does not return any
values. A function is a routine that can accept arguments and returns one or
more values. User-defined routine (UDR) is a generic term that includes both
user-defined procedures and user-defined functions. For information about
named and unnamed returned values, see “Return Clause” on page 4-253.

SQL Statements 2-183

CREATE PROCEDURE

a m
o
-

SPL

You can write a UDR in SPL (SPL routine) or in an external language (external
routine) that the database server supports. Where the term UDR appears in the
manual, it can refer to both SPL routines and external routines.

The term user-defined procedure refers to SPL procedures and external proce-
dures. User-defined function refers to SPL functions and external functions.

In earlier IBM Informix products, the term stored procedure was used for both
SPL procedures and SPL functions. In this manual, the term SPL routine
replaces the term stored procedure. When it is necessary to distinguish
between an SPL function and an SPL procedure, the manual does so. ¢

The term external routine applies to an external procedure or an external
function. When it is necessary to distinguish between an external function
and an external procedure, the manual does so. ¢

Extended Parallel Server does not support external routines, but the term
user-defined routine (UDR) encompasses both SPL routines and external
routines. Wherever the term UDR appears, it is applicable to SPL routines. ¢

Privileges Necessary for Using CREATE PROCEDURE

You must have the Resource privilege on a database to create a user-defined
procedure within that database.

Before you can create an external procedure, you must also have the Usage
privilege on the language in which you will write the procedure. For more
information, see “GRANT” on page 2-459. ¢

By default, the Usage privilege on SPL is granted to PUBLIC. You must also
have at least the Resource privilege on a database to create an SPL procedure
within that database. ¢

DBA Keyword and Privileges on the Created Procedure

If you create a UDR with the DBA keyword, it is known as a DBA-privileged
UDR. You need the DBA privilege to create or execute a DBA-privileged UDR.
If you omit the DBA keyword, the UDR is known as an owner-privileged UDR.

If you create an owner-privileged UDR in an ANSI-compliant database,
anyone can execute the UDR. ¢

2-184 IBM Informix Guide to SQL: Syntax

XPS

CREATE PROCEDURE

If you create an owner-privileged UDR in a database that is not ANSI
compliant, the NODEFDAC environment variable prevents privileges on that
UDR from being granted to PUBLIC. If this environment variable is set, the
owner of a UDR must grant the Execute privilege for that UDR to other users.

Naming a Procedure in Extended Parallel Server

In Extended Parallel Server, the name for any SPL routine that you create
must be unique among the names of all SPL routines in the database.

Naming a Procedure in Dynamic Server

Because Dynamic Server offers routine overloading, you can define more than
one user-defined routine (UDR) with the same name, but different parameter
lists. You might want to overload UDRs in the following situations:

m You create a UDR with the same name as a built-in routine (such as
equal()) to process a new user-defined data type.

m You create type hierarchies in which subtypes inherit data represen-
tation and UDRs from supertypes.

m You create distinct types, which are data types that have the same
internal storage representation as an existing data type, but have
different names and cannot be compared to the source type without
casting. Distinct types inherit UDRs from their source types.

For a brief description of the routine signature that uniquely identifies each
UDR, see “Routine Overloading and Naming UDRs with a Routine
Signature” on page 4-48.

Using the SPECIFIC Clause to Specify a Specific Name

You can specify a specific name for a user-defined procedure. A specificname
is a name that is unique in the database. A specific name is useful when you
are overloading a procedure.

DOCUMENT Clause

The quoted string in the DOCUMENT clause provides a synopsis and
description of a UDR. The string is stored in the sysprocbody system catalog
table and is intended for the user of the UDR.

SQL Statements 2-185

CREATE PROCEDURE

UNIX

Anyone with access to the database can query the sysprocbody system
catalog table to obtain a description of one or all the UDRs stored in the
database. A UDR or application program can query the system catalog tables
to fetch the DOCUMENT clause and display it for a user.

For example, to find the description of the SPL procedure raise_prices, shown
in “SPL Procedures” on page 2-187, enter a query such as this example:

SELECT data FROM sysprocbody b, sysprocedures p
WHERE b.procid = p.procid
--join between the two catalog tables

AND p.procname = 'raise_ prices'
-- look for procedure named raise prices
AND b.datakey = 'D';-- want user document

The preceding query returns the following text:

USAGE: EXECUTE PROCEDURE raise prices(xxx)
xxx = percentage from 1 - 100

You can use a DOCUMENT clause at the end of the CREATE PROCEDURE
statement, whether or not you use the END PROCEDURE keywords. ¢

Using the WITH LISTING IN Option

The WITH LISTING IN clause specifies a filename where compile time
warnings are sent. After you compile a UDR, this file holds one or more
warning messages. This listing file is created on the computer where the
database resides.

If you do not use the WITH LISTING IN clause, the compiler does not generate
a list of warnings.

If you specify a filename but not a directory, this listing file is created in your
home directory on the computer where the database resides. If you do not
have a home directory on this computer, the file is created in the root
directory (the directory named “/”). ¢

If you specify a filename but not a directory, this listing file is created in your
current working directory if the database is on the local computer. Otherwise,
the default directory is %INFORMIXDIR%\bin. ¢

2-186 IBM Informix Guide to SQL: Syntax

SPL

CREATE PROCEDURE

SPL Procedures

SPL procedures are UDRs written in Stored Procedure Language (SPL) that do
not return a value. To write and register an SPL routine, use the CREATE
PROCEDURE statement. Embed appropriate SQL and SPL statements between
the CREATE PROCEDURE and END PROCEDURE keywords. You can also
follow the UDR definition with the DOCUMENT and WITH FILE IN options.

SPL routines are parsed, optimized (as far as possible), and stored in the
system catalog tables in executable format. The body of an SPL routine is
stored in the sysprocbody system catalog table. Other information about the
routine is stored in other system catalog tables, including sysprocedures,
sysprocplan, and sysprocauth.

If the Statement Block portion of the CREATE PROCEDURE statement is
empty, no operation takes place when you call the procedure. You might use
such a procedure in the development stage when you want to establish the
existence of a procedure but have not yet coded it.

If you specify an optional clause after the parameter list, you must place a
semicolon after the clause that immediately precedes the Statement Block.

The following example creates an SPL procedure:

CREATE PROCEDURE raise prices (per cent INT)
UPDATE stock SET unit_price =
unit price + (unit_price * (per cent/100));
END PROCEDURE
DOCUMENT "USAGE: EXECUTE PROCEDURE raise prices(xxx)",
"xxx = percentage from 1 - 100 "
WITH LISTING IN '/tmp/warn file'

External Procedures

External procedures are procedures you write in an external language that the
database server supports.

To create a C user-defined procedure

1. Write a C function that does not return a value.

2. Compile the C function and store the compiled code in a shared
library (the shared-object file for C).

3. Register the C function in the database server with the CREATE
PROCEDURE statement.

SQL Statements 2-187

CREATE PROCEDURE

NEVE]

To create a user-defined procedure written in the Java language

1. Write a Java static method, which can use the JDBC functions to
interact with the database server.

Compile the Java source and create a jar file (the shared-object file).

Execute the install_jar() procedure with the EXECUTE PROCEDURE
statement to install the jar file in the current database.

4. If the UDR uses user-defined types, create a mapping between SQL
data types and Java classes, using the setUDTExtName() procedure
that is explained in “EXECUTE PROCEDURE” on page 2-414.

5. Register the UDR with the CREATE PROCEDURE statement. (If an
external routine returns a value, you must register it with the
CREATE FUNCTION statement, rather than CREATE PROCEDURE.)

Rather than storing the body of an external routine directly in the database,
the database server stores only the pathname of the shared-object file that
contains the compiled version of the routine. The database server executes an
external routine by invoking the external object code.

Registering a User-Defined Procedure

This example registers a C user-defined procedure named check_owner()
that takes one argument of the type LVARCHAR. The external routine
reference specifies the path to the C shared library where the procedure object
code is stored. This library contains a C function unix_owner(), which is
invoked during execution of the check_owner() procedure.

CREATE PROCEDURE check owner (owner lvarchar)
EXTERNAL NAME "/usr/lib/ext lib/genlib.so(unix owner)"
LANGUAGE C

END PROCEDURE

*

This example registers a user-defined procedure named showusers() that is
written in the Java language:

CREATE PROCEDURE showusers ()
WITH (CLASS = "jvp") EXTERNAL NAME ‘admin_jar:admin.showusers‘
LANGUAGE JAVA

The EXTERNAL NAME clause specifies that the Java implementation of the
showusers() procedure is a method called showusers(), which resides in the
admin Java class that resides in the admin_jar jar file. ¢

2-188 IBM Informix Guide to SQL: Syntax

CREATE PROCEDURE

Ownership of Created Database Objects

The user who creates an owner-privileged UDR owns any database objects
that the UDR creates when the UDR is executed, unless another owner is
specified for the created database object. In other words, the UDR owner, not
the user who executes the UDR, is the owner of any database objects created
by the UDR unless another owner is specified in the statement that creates the
database object.

In the case of a DBA-privileged UDR, however, the user who executes the
UDR, not the UDR owner, owns any database objects that the UDR created
unless another owner is specified for the database object within the UDR.

For examples, see “Ownership of Created Database Objects” on page 2-140 in
the description of the CREATE FUNCTION statement.

Using sysbdopen() and sysdbclose() Stored Procedures

To set the initial environment for one or more sessions, create and install the
sysdbopen() SPL procedure. The main function of these procedures is to
initialize a session’s properties without requiring the properties to be
explicitly defined within the session. These procedures are executed
whenever users connect to a database where the procedures are installed.
Such procedures are useful if users access databases through client applica-
tions that cannot modify application code or set environment options or
environment variables.

You can also create the sysdbclose() SPL procedure which is executed when
a user disconnects from the database.

You can include valid SQL or SPL language statements that are appropriate
when a database is opened or closed. See the following sections for restric-
tions on SQL and SPL statements within SPL routines:

m “Subset of SPL Statements Valid in the Statement Block” on

page 4-276

m “SQL Statements Not Valid in an SPL Statement Block” on
page 4-277

m “Restrictions on SPL Routines in Data-Manipulation Statements” on
page 4-279

SQL Statements 2-189

CREATE PROCEDURE

2-190

Important: The sysdbopen() and sysdbclose() procedures are exceptions to the
scope rule for stored procedures. In ordinary user-created stored procedures, the scope
of variables and statements is local. SET PDQPRIORITY and SET ENVIRONMENT
statement settings do not persist when these SPL procedures exit. However, in
sysdbopen() and sysdbclose() procedures, statements that set the session
environment remain in effect until another statement resets the options.

For example, you might create the following procedure, which sets the
isolation level to Dirty Read and turns on the IMPLICIT_PDQ environment
option, to be executed when any user connect to the database:

create procedure public.sysdbopen ()
set role engineer;
end procedure

Procedures do not accept arguments or return values. The sysdbopen() and
sysdbclose() procedures must be executed from the connection coserver and
must be installed in each database where you want to execute them. You can
create the following four SPL procedures.

Procedure Name Description

user.sysdbopen() This procedure is executed when the specified user opens the
database as the current database.

public.sysdbopen() If no user.sysdbopen() procedure applies, this procedure is
executed when any user opens the database as the current
database. To avoid duplicating SPL code, you can call this
procedure from a user-specific procedure.

user.sysdbclose() This procedure is executed when the specified user closes the
database, disconnects from the database server, or the user
session ends. If the sysdbclose() procedure did not exist
when a session opened the database, however, it is not
executed when the session closes the database.

public.sysdbclose() If no user.sysdbopen() procedure applies, this procedure is
executed when the specified user closes the database, discon-
nects from the database server, or the user session ends.
If the sysdbclose() procedure did not exist when a session
opened the database, however, it is not executed when the
session closes the database.

See also the section “Transactions in SPL Routines” on page 4-280.

IBM Informix Guide to SQL: Syntax

CREATE PROCEDURE

Make sure that you set permissions appropriately to allow intended users to
execute the SPL procedure statements. For example, if the SPL procedure
executes a command that writes output to a local directory, permissions must
be set to allow users to write to this directory. If you want the procedure to
continue if permission failures occur, include an ON EXCEPTION error
handler for this condition.

See also the section “Support for Roles and User Identity” on page 4-280.

Warning: If a sysdbopen() procedure fails, the database cannot be opened. If a
sysdbclose() procedure fails, the failure is ignored. While you are writing and
debugging a sysdbopen() procedure, set the DEBUG environment variable to
NODBPROC before you connect to the database. When DEBUG is set to NODBPROC
the procedure is not executed, and failures cannot prevent the database from opening.
Failures from these procedures can be generated by the system or simulated by the
procedures with the SPL statement RAISE EXCEPTION. For more information, refer
to “RAISE EXCEPTION” on page 3-43.

Only a user with DBA privileges can install these procedures. For security
reasons, non-DBAs cannot prevent execution of these procedures. For some
applications, however, such as ad hoc query applications, users can execute
commands and SQL statements that subsequently change the environment.
For general information about how to write and install SPL procedures, refer
to the chapter about SPL routines in IBM Informix Guide to SQL: Tutorial.

Related Information

Related statements: ALTER FUNCTION, ALTER PROCEDURE, ALTER
ROUTINE, CREATE FUNCTION, CREATE FUNCTION FROM, CREATE
PROCEDURE FROM, DROP FUNCTION, DROP PROCEDURE, DROP ROUTINE,
EXECUTE FUNCTION, EXECUTE PROCEDURE, GRANT, PREPARE, REVOKE,
and UPDATE STATISTICS

For a discussion of how to create and use SPL routines, see the IBM Informix
Guide to SQL: Tutorial. For a discussion of external routines, see IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

For information about how to create C UDRSs, see the IBM Informix DataBlade
API Programmer’s Guide. For more information on the NODEFDAC
environment variable and the related system catalog tables (sysprocedures,
sysprocplan, sysprocbody and sysprocauth), see the IBM Informix Guide to
SQL: Reference.

SQL Statements 2-191

CREATE PROCEDURE FROM

I

E/C

CREATE PROCEDURE FROM

Use the CREATE PROCEDURE FROM statement to access a user-defined
procedure. The actual text of the CREATE PROCEDURE statement resides in a
separate file. Use this statement with ESQL/C.

In Extended Parallel Server, use this statement to access any SPL routine.
Extended Parallel Server does not support the CREATE FUNCTION FROM
statement. ¢

Syntax

CREATE PROCEDURE FROM \ ' file' f |
file_var

-

Element Purpose Restrictions Syntax

file Pathname and filename of file that ~ Must exist, and can contain only one Must conform to
contains full text of a CREATE CREATE PROCEDURE statement. the rules of the
PROCEDURE statement. Default Se also “Default Directory That operating system.
pathname is the current directory. Holds the File” on page 2-193.

file_var Name of a program variable that Character data type; contents have Language specific
contains file specification same restrictions as file.

Usage

You cannot create a user-defined procedure directly in an ESQL/C program.
That is, the program cannot contain the CREATE PROCEDURE statement.

To use a user-defined procedure in an ESQL/C program

1. Create a source file with the CREATE PROCEDURE statement.

2. Usethe CREATE PROCEDURE FROM statement to send the contents of
this source file to the database server for execution.

The file can contain only one CREATE PROCEDURE statement.

2-192 [BM Informix Guide to SQL: Syntax

o 00

CREATE PROCEDURE FROM

For example, suppose that the following CREATE PROCEDURE statement is in
a separate file, called raise_pr.sql:

CREATE PROCEDURE raise prices(per cent int)
UPDATE stock -- increase by percentage;
SET unit_price = unit_price +

(unit_price * (per cent / 100));

END PROCEDURE;

In the ESQL/C program, you can access the raise_prices() SPL procedure with
the following CREATE PROCEDURE FROM statement:

EXEC SQL create procedure from 'raise pr.sql';

If you are not sure whether the UDR in the file is a user-defined function or a
user-defined procedure, use the CREATE ROUTINE FROM statement. ¢

Procedures use the collating order that was in effect when they were created.
See SET COLLATION for information about using non-default collation ¢

Default Directory That Holds the File

The filename (and any pathname) that you specify is relative.

On UNIX, if you specify a simple filename instead of a full pathname in the
file parameter, the client application looks for the file in your home directory
on the computer where the database resides. If you do not have a home
directory on this computer, the default directory is the root directory. ¢

On Windows, if you specify a filename but not a directory in the file
parameter, the client application looks for the file in your current working
directory if the database is on the local computer. Otherwise, the default
directory is %INFORMIXDIR%\bin. ¢

Important: The ESQL/C preprocessor does not process the contents of the file that you
specify. It just sends the contents to the database server for execution. Therefore, there
is no syntactic check that the file that you specify in CREATE PROCEDURE FROM

actually contains a CREATE PROCEDURE statement. To improve readability of the

code, however, it is recommended that you match these two statements.

Related Information

Related statements: CREATE PROCEDURE, CREATE FUNCTION FROM, and
CREATE ROUTINE FROM

SQL Statements 2-193

CREATE ROLE

CREATE ROLE

Use the CREATE ROLE statement to create a new role.

Syntax Usage

CREATE ROLE role |
L' role 'J

Element Purpose Restrictions Syntax
role Name declared here fora Must be unique among role names in the database. Identifier,
role that the DBA created The maximum number of bytes in role is 32. p-4-189

The database administrator (DBA) can use the CREATE ROLE statement to
create a new role. A role can be considered as a classification, with privileges
on database objects granted to the role. The DBA can assign the privileges of
a related work task, such as engineer, to a role and then grant that role to
users, instead of granting the same set of privileges to every user.

The role name is an authorization identifier. It cannot be a user name that is
known to the database server or to the operating system of the database
server. The role name cannot already be listed in the username column of the
sysusers system catalog table, nor in the grantor or grantee columns of the
systabauth, syscolauth, sysprocauth, and sysroleauth system catalog tables.

“ Also, the role name cannot already be listed in the grantor or grantee
columns of the sysfragauth system catalog table. ¢

After arole is created, the DBA can use the GRANT statement to grant the role
to users or to other roles. When a role is granted to a user, the user must use
the SET ROLE statement to enable the role. Only then can the user use the
privileges of the role.

The CREATE ROLE statement, when used with the GRANT and SET ROLE
statements, allows a DBA to create one set of privileges for a role and then
grant the role to many users, instead of granting the same set of privileges to
many users.

2-194 IBM Informix Guide to SQL: Syntax

CREATE ROLE

A role exists until either the DBA or a user to whom the role was granted with
the WITH GRANT OPTION uses the DROP ROLE statement to drop the role.

To create the role engineer, enter the following statement:

CREATE ROLE engineer

Related Information
Related statements: DROP ROLE, GRANT, REVOKE, and SET ROLE

For a discussion on how to use roles, see the IBM Informix Database Design and
Implementation Guide.

SQL Statements 2-195

CREATE ROUTINE FROM

CREATE ROUTINE FROM
“ Use the CREATE ROUTINE FROM statement to access a user-defined routine

(UDR). The actual text of the CREATE FUNCTION or CREATE PROCEDURE
statement resides in a separate file.

Syntax

CREATE ROUTINE FROM — ' file* — ‘
file_var

Element Purpose Restrictions Syntax

file Pathname and filename of file that contains Must exist and can contain only one = Operating-
the text of a CREATE PROCEDURE or CREATE FUNCTION or CREATE system
CREATE FUNCTION statement PROCEDURE statement. dependent
Default path is current directory.

file_var Name of a program variable that contains file Must be a character data type; Language
specification contents must satisfy file restrictions. specific

Usage

An IBM Informix ESQL/C program cannot directly define a UDR. That is, it
cannot contain the CREATE FUNCTION or CREATE PROCEDURE statement.

To use a UDR in an ESQL/C program
1. Create a source file with the CREATE FUNCTION or CREATE
PROCEDURE statement.

2. Use the CREATE ROUTINE FROM statement to send the contents of
this source file to the database server for execution.

The file that you specify can contain only one CREATE FUNCTION or
CREATE PROCEDURE statement.

The filename that you provide is relative. If you provide no pathname, the
client application looks for the file in the current directory.

2-196 IBM Informix Guide to SQL: Syntax

CREATE ROUTINE FROM

If you do not know at compile time whether the UDR in the file is a function
or a procedure, use the CREATE ROUTINE FROM statement in the ESQL/C
program. If you do know if the UDR is a function or a procedure, it is recom-
mended that you use the matching statement to access the source file:

m To access user-defined functions, use CREATE FUNCTION FROM.
m To access user-defined procedures, use CREATE PROCEDURE FROM.

Use of the matching statements improves the readability of the code.

Routines use the collating order that was in effect when they were created.
See SET COLLATION for information about using non-default collation ¢

Related Information

Related statements: CREATE FUNCTION, CREATE FUNCTION FROM, CREATE
PROCEDURE, and CREATE PROCEDURE FROM

SQL Statements 2-197

CREATE ROW TYPE

CREATE ROW TYPE

“ Use the CREATE ROW TYPE statement to create a named row type.

Syntax

’
CREATE ROW TYPE — row_type (L Field Definition i)

j p. 2-201

|
\ f ‘
UNDER supertype

-_

Element

Purpose Restrictions Syntax

row_type

supertype

Name that you declare here fora See “Procedure for Creating a Subtype” on Identifier,
new named row data type page 2-200. p-4-189
Name of the supertype within =~ Must already exist as a named row type. Data type,
an inheritance hierarchy p. 4-49

2-198

Usage

The CREATE ROW TYPE statement creates a named ROW data type. You can
assign a named ROW type to a table or view to create a typed table or typed

view. You can also define a column as a named ROW type. Although you can
assign a ROW type to a table to define the schema of the table, ROW types are
not the same as table rows. Table rows consist of one or more columns; ROW
types consist of one or more fields, defined using the Field Definition syntax.

A named ROW type is valid in most contexts where you can specify a data
type. Named ROW types are strongly typed. No two named ROW types are
equivalent, even if they are structurally equivalent.

ROW types without names are called unnamed ROW types. Any two unnamed
ROW types are considered equivalent if they are structurally equivalent. For
more information, see “Row Data Types” on page 4-62.

Privileges on named ROW type columns are the same as privileges on any
column. For more information, see “Table-Level Privileges” on page 2-463.
(To see what privileges you have on a column, check the syscolauth system
catalog table, which is described in the IBM Informix Guide to SQL: Reference.)

IBM Informix Guide to SQL: Syntax

CREATE ROW TYPE

Privileges on Named Row Data Types

This table indicates which privileges you must have to create a ROW type.

Task Privileges Required

Create a named ROW type Resource privilege on the database

Create a named ROW type as a subtype Under privilege on the supertype, as
under a supertype well as the Resource privilege

For information about Resource and Under privileges, and the ALL keyword
in the context of privileges, see the GRANT statement.

To find out what privileges exist on a ROW type, check the sysxtdtypes
system catalog table for the owner name and the sysxtdtypeauth system
catalog table for privileges that might have been granted.

Privileges on a typed table (a table that is assigned a named ROW type) are
the same as privileges on any table. For more information, see “Table-Level
Privileges” on page 2-463.

To find out what privileges you have on a given table, check the systabauth
system catalog table. For more information on system catalog tables, see the
IBM Informix Guide to SQL: Reference.

Inheritance and Named ROW Types

A named ROW type can belong to an inheritance hierarchyj, as either a
subtype or a supertype. Use the UNDER clause in the CREATE ROW TYPE
statement to create a named ROW type as a subtype.

The supertype must also be a named ROW type. If you create a named ROW
type under an existing supertype, then the new type name row_type becomes
the name of the subtype.

When you create a named ROW type as a subtype, the subtype inherits all
fields of the supertype. In addition, you can add new fields to the subtype
that you create. The new fields are specific to the subtype alone.

You cannot substitute a ROW type in an inheritance hierarchy for its
supertype or for its subtype.

SQL Statements 2-199

CREATE ROW TYPE

2-200

For example, consider a type hierarchy in which person_t is the supertype
and employee_t is the subtype. If a column is of type person_t, the column
can only contain person_t data. It cannot contain employee_t data. Likewise,
if a column is of type employee_t, the column can only contain employee_t
data. It cannot contain person_t data.

Creating a Subtype

In most cases, you add new fields when you create a named ROW type as a
subtype of another named ROW type (its supertype). To create the fields of a
named ROW type, use the field definition clause, as described in “Field
Definition” on page 2-201. When you create a subtype, you must use the
UNDER keyword to associate the supertype with the named ROW type that
you want to create. The following statement creates the employee_t type
under the person_t type:

CREATE ROW TYPE employee_t (salary NUMERIC(10,2),
bonus NUMERIC(10,2)) UNDER person_t;

The employee_t type inherits all the fields of person_t and has two
additional fields: salary and bonus; but the person_t type is not altered.

Type Hierarchies

When you create a subtype, you create a type hierarchy. In a type hierarchy,
each subtype that you create inherits its properties from a single supertype.
If you create a named ROW type customer_t under person_t, customer_t
inherits all the fields of person_t. If you create another named ROW type,
salesrep_t under customer_t, salesrep_t inherits all the fields of customer_t.

Thus, salesrep_t inherits all the fields that customer_t inherited from
person_t as well as all the fields defined specifically for customer_t. For a
discussion of type inheritance, refer to the IBM Informix Guide to SQL: Tutorial.

Procedure for Creating a Subtype

Before you create a named ROW type as a subtype in an inheritance hierarchy,
check the following information:

m Verify that you are authorized to create new data types. You must
have the Resource privilege on the database. You can find this infor-
mation in the sysusers system catalog table.

IBM Informix Guide to SQL: Syntax

CREATE ROW TYPE

m Verify that the supertype exists. You can find this information in the
sysxtdtypes system catalog table.

m Verify that you are authorized to create subtypes to that supertype.
You must have the Under privilege on the supertype. You can find
this information in the sysusers system catalog table.

m Verify that the name that you assign to the named ROW type is
unique within the database. In an ANSI-compliant database, the
owner.type combination must be unique within the database. In a
database that is not ANSI-compliant, the name must be unique
among data type names in the database. To verify whether the name
you want to assign to a new data type is unique within the schema,
check the sysxtdtypes system catalog table. The name must not be
the name of an existing data type.

m If you are defining fields for the ROW type, check that no duplicate
field names exist in both new and inherited fields.

Important: When you create a subtype, do not redefine fields that it inherited for its
supertype. If you attempt to redefine these fields, the database server returns an error.

You cannot apply constraints to named ROW types, but you can specify
constraints when you create or alter a table that uses named ROW types.

Field Definition

Use the field definition portion of CREATE ROW TYPE to define a new field in
a named ROW type.

Field Definition Back to CREATE ROW TYPE

—p»— field —— data_type .
L NOT NULL J

Element Purpose Restrictions Syntax

data_type Data type of the field See “Restrictions on Serial and Simple-Large- Identifier,
Object Data Types” on page 2-202. p-4-189

field Name of a field in data_type ~ Must be unique among field names of this row Identifier,
type and of its supertype. p-4-189

—

SQL Statements 2-201

CREATE ROW TYPE

2-202

The NOT NULL constraint on named ROW type field applies to corresponding
columns when the named ROW type is used to create a typed table.

Restrictions on Serial and Simple-Large-0bject Data Types

Serial and simple-large-object data types cannot be nested within a table.
Therefore, if a ROW type contains a BYTE, TEXT, SERIAL, or SERIALS field, you
cannot use the ROW type to define a column in a table that is not based on a
ROW type. For example, the following code example produces an error:

CREATE ROW TYPE serialtype (s serial, s8 serials);
CREATE TABLE tabl (coll serialtype) --INVALID CODE

You cannot create a ROW type that has a BYTE or TEXT value that is stored in
a separate storage space. That is, you cannot use the IN clause to specify the
storage location. For example, the following example produces an error:

CREATE ROW TYPE rowl (fieldl byte IN blobspacel) --INVALID CODE

Across a table hierarchy, you can use only one SERIAL and one SERIALS. That
is, if a supertable table contains a SERIAL column, no subtable can contain a
SERIAL column. However, a subtable can have a SERIAL8 column (as long as
no other subtables contain a SERIAL8 column). Consequently, when you
create the named ROW types on which the table hierarchy is to be based, they
can contain at most one SERIAL and one SERIALS field among them.

You cannot set the starting SERIAL or SERIALS value with CREATE ROW TYPE.
To modify the value for a serial field, you must use either the MODIFY clause
of the ALTER TABLE statement or the INSERT statement to insert a value that
is larger than the current maximum (or default) serial value.

Serial fields in ROW types havte performance implications across a table

hierarchy. To insert data into a subtable whose supertable (or its supertable)
contains the serial counter, the database server must also open the supertable,
update the serial value, and close the supertable, thus adding extra overhead.

Related Information

Related statements: DROP ROW TYPE, CREATE TABLE, CREATE CAST, GRANT,
and REVOKE

For a discussion of named ROW types, see the IBM Informix Database Design
and Implementation Guide and the IBM Informix Guide to SQL: Reference.

IBM Informix Guide to SQL: Syntax

CREATE SCHEMA

CREATE SCHEMA

Use the CREATE SCHEMA statement to issue a block of data definition
language (DDL) and GRANT statements as a logical unit. Use this statement
with DB-Access.

SQLE

Syntax
CREATE SCHEMA AUTHORIZATION user CREATE ;’_AZB_'QE Sratement
CREATE VIEW Statement
p. 2-310
GRANT Statement
p. 2-459

CREATE OPTICAL CLUSTER Statement
See the “IBM Informix Optical Subsystem

CREATE INDEX Statement

p. 2-144
CREATE SYNONYM Statement
p. 2-210
CREATE TRIGGER Statement
p. 2-269
CREATE ROW TYPE Statement
p. 2-198
CREATE OPAQUE TYPE Statement
p. 2-169
CREATE DISTINCT TYPE Statement
p. 2-115
CREATE CAST Statement
p. 2-108
Element Purpose Restrictions Syntax
user User who owns the If you have DBA privileges, you can specify the name of Identifier,
database objects that this any user. Otherwise, you must have the Resource p-4-189
statement creates privilege and you must specify your own user name.

SQL Statements 2-203

CREATE SCHEMA

Usage

The CREATE SCHEMA statement allows the DBA to specify an owner for all
database objects that the CREATE SCHEMA statement creates. You cannot
issue CREATE SCHEMA until you create the database that stores the objects.

Users with the Resource privilege can create a schema for themselves. In this
case, user must be the name of the person with the Resource privilege who is
running the CREATE SCHEMA statement. Anyone with the DBA privilege can
also create a schema for someone else. In this case, user can identify a user
other than the person who is running the CREATE SCHEMA statement.

You can put CREATE and GRANT statements in any logical order, as the
following example shows. Statements are considered part of the CREATE
SCHEMA statement until a semicolon or an end-of-file symbol is reached.

CREATE SCHEMA AUTHORIZATION sarah
CREATE TABLE mytable (mytime DATE, mytext TEXT)
GRANT SELECT, UPDATE, DELETE ON mytable TO rick
CREATE VIEW myview AS
SELECT * FROM mytable WHERE mytime > '12/31/1997'
CREATE INDEX idxtime ON mytable (mytime) ;

Creating Database Objects Within CREATE SCHEMA

All database objects that a CREATE SCHEMA statement creates are owned by
user, even if you do not explicitly name each database object. If you are the
DBA, you can create database objects for another user. If you are not the DBA,
specifying an owner other than yourself results in an error message.

You can only grant privileges with the CREATE SCHEMA statement; you
cannot revoke or drop privileges.

If you create a database object or use the GRANT statement outside a CREATE
SCHEMA statement, you receive warnings if you use the -ansi flag or set
DBANSIWARN.

Related Information

Related statements: CREATE INDEX, CREATE SYNONYM, CREATE TABLE,
CREATE VIEW, and GRANT

For a discussion of how to create a database, see the IBM Informix Database
Design and Implementation Guide.

2-204 IBM Informix Guide to SQL: Syntax

CREATE SCRATCH TABLE

XPS CREATE SCRATCH TABLE
Use the CREATE SCRATCH TABLE statement to create a non-logging
temporary table in the current Extended Parallel Server database.
Syntax

CREATE —— SCRATCH —— TABLE table Sc[gaet]fi:rr:it-il;?r?le 4{

Scratch Table
Definition

’ J
(Column £ Multiple-Column
—— Definition »—~ Constraint Format) \

|
Scratch Table /

Options

p. 2-216 p. 2-264

| Scratch Table Options |

k— \ g
N dbslice LOCK MODE——(PAGE 1 — j

Access-
dbspace Method
Clause
FRAGMENT BY Clause N
b. 2-238 TABLE p. 2-252
Element Purpose Restrictions Syntax
dbslice Name of dbslice to store table Must already exist. Identifier, p. 4-189
dbspace Name of dbspace to store table. Default is the ~ Must already exist. Identifier, p. 4-189
dbspace that stores the current database.
table Name that you declare here for a nonlogging Must be unique in the Database Object
temporary table current session. Name, p. 4-46

Usage

CREATE SCRATCH TABLE is a special case of the CREATE Temporary TABLE
statement. See “CREATE Temporary TABLE” on page 2-261.

SQL Statements 2-205

CREATE SEQUENCE

Syntax

CREATE SEQUENCE

Use the CREATE SEQUENCE statement to create a new sequence. A sequernce is
a database object from which multiple users can generate unique integers.

CREATE SEQUENCE \ f
owner -

sequence

C

).

DN

INCREMENT - BY — step

I

ny<i;TOCYCLE
CYCLE

START — WITH — origin CACHE size
MAXVALUE —max: -NOCACHE
NOMAXVALUE NOORDER
MINVALUE — min ORDER
NOMINVALUE
Element Purpose Restrictions Syntax
max Upper limit of values Must be an integer > origin Literal number, p. 4-216
min Lower limit of values Must be an integer less than origin Literal number, p. 4-216
origin First number in the sequence Must be an integer in INT8 range Literal number, p. 4-216
owner Owner of sequence Must be aauthorization identifier Owner Name, p. 4-234
sequence Name that you declare here for the Must be unique among sequence, Identifier, p. 4-189
new sequence table, view, and synonym names
size Number of values that are preallo- Integer > 1, but < cardinality of Literal number, p. 4-216
cated in memory acycle (= | (max - min)/step 1)
step Interval between successive values Nonzero integer in INT range Literal number, p. 4-216

2-206

Usage

IBM Informix Guide to SQL: Syntax

A sequence (sometimes called a sequence generator) returns a monotonically
ascending or descending series of unique integers, one at a time. The CREATE
SEQUENCE statement defines a new sequence and declares its identifier.

CREATE SEQUENCE

Authorized users of a sequence can request a new value by including the
sequence.NEXTVAL expression in SQL statements. The sequence. CURRVAL
expression returns the current value of the specified sequence.

Generated values logically resemble the SERIALS data type, but are unique
within the sequence. Because the database server generates the values,
sequences support a much higher level of concurrency than a serial column
can. The values are independent of transactions; a generated value cannot be
rolled back, even if the transaction in which it was generated fails.

You can use a sequence to generate primary key values automatically, using
one sequence for many tables, or each table can have its own sequence.

CREATE SEQUENCE can specify the following characteristics of a sequence:

Initial value
Size and sign of the increment between values.
Maximum and minimum values

Whether the sequence recycles values after reaching its limit

How many values are preallocated in memory for rapid access

A database can support multiple sequences concurrently, but the name of a
sequence must be unique within the current database among the names of
tables, temporary tables, views, synonyms, and sequences.

In an ANSI-compliant database, the owner.sequence combination must be
unique among tables, temporary tables, views, synonyms, and sequences. ¢

An error occurs if you include contradictory options, such as specifying both
the MINVALUE and NOMINVALUE options, or both CACHE and NOCACHE.

INCREMENT BY Option

Use the INCREMENT BY option to specify the interval between successive
numbers in the sequence. The interval, or step value, can be a positive whole
number (for an ascending sequence) or a negative whole number (for a
descending sequence) in the INT8 range. The BY keyword is optional.

If you do not specify any step value, the default interval between successive
generated values is 1, and the sequence is an ascending sequence.

SQL Statements 2-207

CREATE SEQUENCE

2-208

START WITH Option

Use the START WITH option to specify the first number of the sequence. This
origin value must be an integer within the INT8 range that is greater than or
equal to the min value (for an ascending sequence) or that is less than or equal
to the max value (for a descending sequence), if min or max is specified in the
CREATE SEQUENCE statement. The WITH keyword is optional.

If you do not specify an origin value, the default initial value is min for an
ascending sequence or max for a descending sequence. (The “"MAXVALUE or
NOMAXVALUE Option” and “MINVALUE or NOMINVALUE Option”
sections that follow describe the max and min specifications respectively.)

MAXVALUE or NOMAXVALUE Option

Use the MAXVALUE option to specify the upper limit of values in a sequence.
The maximum value, or max, must be an integer in the INT8 range that is
greater than the value of the origin.

If you do not specify a max value, the default is NOMAXVALUE. This default
setting supports values that are less than or equal to 2e64 for ascending
sequences, or less than or equal to -1 for descending sequences.

MINVALUE or NOMINVALUE Option

Use the MINVALUE option to specify the lower limit of values in a sequence.
The minimum value, or min, must be an integer in the INT8 range that is less
than the value of the origin.

If you do not specify a min value, the default is NOMINVALUE. This default
setting supports values that are greater than or equal to 1 for ascending
sequences, or greater than or equal to - (2e64) for descending sequences.

CYCLE or NOCYCLE Option

Use the CYCLE option to continue generating sequence values after the
sequence reaches the maximum (ascending) or minimum (descending) limit.
After an ascending sequence reaches the max value, it generates the min value
for the next sequence value. After a descending sequence reaches the min
value, it generates the max value for the next sequence value.

IBM Informix Guide to SQL: Syntax

CREATE SEQUENCE

The defaultis NOCYCLE. At this default setting, the sequence cannot generate
more values after reaching the declared limit. Once the sequence reaches the
limit, the next reference to sequence NEXTVAL returns an error.

CACHE or NOCACHE Option

Use the CACHE option to specify the number of sequence values that are
preallocated in memory for rapid access. This feature can enhance the perfor-
mance of a heavily used sequence. The cache size must be a positive whole
number in the INT range. If you specify the CYCLE option, then size must be
less than the number of values in a cycle (or less than | (max - min)/step).
The minimum is 2 preallocated values. The default is 20 preallocated values.

The NOCACHE keyword specifies that no generated values (that is, zero) are
preallocated in memory for this sequence object.

The configuration parameter SEQ_CACHE_SIZE specifies the maximum
number of sequence objects that can have preallocated values in the sequence
cache. If this configuration parameter is not set, then by default no more than
10 different sequence objects can be defined with the CACHE option.

ORDER or NOORDER Option

These keywords have no effect on the behavior of the sequence. The sequence
always issues values to users in the order of their requests, as if the ORDER
keyword were always specified. The ORDER and NOORDER keywords are
accepted by the CREATE SEQUENCE statement for compatibility with imple-
mentations of sequence objects in other dialects of SQL.

Related Information

Related statements: ALTER SEQUENCE, DROP SEQUENCE, RENAME
SEQUENCE, CREATE SYNONYM, DROP SYNONYM, GRANT, REVOKE, INSERT,
UPDATE, and SELECT

For information about the syssequences system catalog table in which
sequence objects are registered, see the IBM Informix Guide to SQL: Reference.

For information about initializing a sequence and generating or reading
values from a sequence, see “NEXTVAL and CURRVAL Operators” on
page 4-102.

SQL Statements 2-209

CREATE SYNONYM

CREATE SYNONYM

Use the CREATE SYNONYM statement to declare and register an alternative
name for an existing table, view, or sequence object.

Syntax

CREATE SYNONYM synonym FOR L table |
E PUBLIC{ .|Eb view
!sequence

PRIVATE

e

Element Purpose Restrictions Syntax

sequence Name of a local sequence Must exist in current database Identifier, p. 4-189
table, Name of table or view for which Must exist in current database, orina Database Object
view synonym is being created database specified in a qualifier Name, p. 4-46

synonym Synonym declared here for the =~ Must be unique among table object ~ Database Object

name of a table, view, or sequence names; see also Usage notes. Name, p. 4-46
|

Usage

Users have the same privileges for a synonym that they have for the database
object that the synonym references. The syssynonyms, syssyntable, and
systables system catalog tables maintain information about synonyms.

You cannot create a synonym for a synonym in the same database.

The identifier of the synonym must be unique among the names of tables,
temporary tables, views, and sequence objects in the same database. (See,
however, the section “Synonyms with the Same Name” on page 2-212.)

Once a synonym is created, it persists until the owner executes the DROP
SYNONYM statement. (This persistence distinguishes a synonym from an
alias that you can declare in the FROM clause of a SELECT statement; the alias
is in scope only during execution of that SELECT statement.) If a synonym
refers to a table, view, or sequence in the same database, the synonym is
automatically dropped if the referenced table, view, or sequence is dropped.

2-210 IBM Informix Guide to SQL: Syntax

CREATE SYNONYM

Synonyms for Remote and External Tables and Views

A synonym can be created for any table or view in any database on your
database server. This example declares a synonym for a table outside your
current database, in the payables database of your current database server.

CREATE SYNONYM mysum FOR payables:jean.summary

You can also create a synonym for a table or view that exists in a database of
a database server that is not your current database server. Both database
servers must be online when you create the synonym. In a network, the
remote database server verifies that the table or view referenced by the
synonym exists when you create the synonym. The next example reates a
synonym for a table supported by a remote database server:

CREATE SYNONYM mysum FOR payables@phoenix:jean.summary

The identifier mysum now refers to the table jean.summary, which is in the
payables database on the phoenix database server. If the summary table is
dropped from the payables database, the mysum synonym is left intact.
Subsequent attempts to use mysum return the error Table not found.

You cannot create synonyms, however, for these external objects:

m Typed tables (including any table that is part of a table hierarchy)
m Tables or views that contain any extended data types.

m Sequence objects outside the local database ¢

PUBLIC and PRIVATE Synonyms

If you use the PUBLIC keyword (or no keyword at all), anyone who has access
to the database can use your synonym. If the database is not ANSI-compliant,
a user does not need to know the name of the owner of a public synonym.
Any synonym in a database that is not ANSI compliant and was created in an
Informix database server earlier than Version 5.0 is a public synonym.

In an ANSI-compliant database, all synonyms are private. If you use the
PUBLIC or PRIVATE keywords, the databasde server issues a syntax error. ¢

If you use the PRIVATE keyword to declare a synonym in a database that is
not ANSI-compliant, the unqualified synonym can be used by its owner.
Other users must qualify the synonym with the name of the owner.

SQL Statements 2-211

CREATE SYNONYM

Synonyms with the Same Name

In an ANSI-compliant database, the owner.synonym combination must be
unique among all synonyms, tables, views. and sequences . You must specify
owner when you refer to a synonym that you do not own, as in this example:

CREATE SYNONYM emp FOR accting.employee ¢

In a database that is not ANSI-compliant, no two public synonyms can have
the same identifier, and the identifier of a synonym must also be unique
among the names of tables, views, and sequences in the same database.

The owner.synonym combination of a private synonym must be unique
among all the synonyms in the database. That is, more than one private
synonym with the same name can exist in the same database, but a different
user must own each of these synonyms. The same user cannot create both a
private and a public synonym that have the same name. For example, the
following code generates an error:

CREATE SYNONYM our custs FOR customer;
CREATE PRIVATE SYNONYM our_custs FOR cust_calls;-- ERROR!!!

A private synonym can be declared with the same name as a public synonym
only if the two synonyms have different owners. If you own a private
synonym, and a public synonym exists with the same name, the database
server resolves the unqualified name as the private synonym. (In this case,
you must specify owner.synonym to reference the public synonym.) If you use
DROP SYNONYM with the unqualified synonym identifier when your private
synonym and the public synonym of another user both have the same
identifier, only your private synonym is dropped. If you repeat the same
DROP SYNONYM statement, the database server drops the public synonym.

Chaining Synonyms

If you create a synonym for a table or view that is not in the current database,
and this table or view is dropped, the synonym stays in place. You can create
a new synonym for the dropped table or view with the name of the dropped
table or view as the synonym, which points to another external or remote
table or view. (Synonyms for external sequence objects are not supported.)

In this way, you can move a table or view to a new location and chain
synonyms together so that the original synonyms remain valid. (You can
chain up to 16 synonyms in this manner.)

2-212 IBM Informix Guide to SQL: Syntax

CREATE SYNONYM

The following steps chain two synonyms together for the customer table,
which will ultimately reside on the zoo database server (the CREATE TABLE
statements are not complete):

1. In the stores_demo database on the database server that is called
training, issue the following statement:

CREATE TABLE customer (lname CHAR(15)...)

2. On the database server called accntg, issue the following statement:
CREATE SYNONYM cust FOR stores_demo@training:customer

3. On the database server called zoo, issue the following statement:
CREATE TABLE customer (lname CHAR(15)...)

4. On the database server called training, issue the following
statement:

DROP TABLE customer
CREATE SYNONYM customer FOR stores_demo@zoo:customer

The synonym cust on the accntg database server now points to the customer
table on the zoo database server.

The following steps show an example of chaining two synonyms together
and changing the table to which a synonym points:

1. On the database server called training, issue the following
statement:

CREATE TABLE customer (lname CHAR(15)...)
2. On the database server called accntg, issue the following statement:
CREATE SYNONYM cust FOR stores_demo@training:customer

3. On the database server called training, issue the following
statement:

DROP TABLE customer
CREATE TABLE customer (lastname CHAR(20)...)

The synonym cust on the acentg database server now points to a new version
of the customer table on the training database server.

Related Information
Related statement: DROP SYNONYM

For a discussion of concepts related to synonyms, see the IBM Informix
Database Design and Implementation Guide.

SQL Statements 2-213

CREATE TABLE

CREATE TABLE

Use the CREATE TABLE statement to create a new table in the current
database, to place data-integrity constraints on columns, to designate where
the table should be stored, to indicate the size of its initial and subsequent
extents, and to specify how to lock the new table.

You can use the CREATE TABLE statement to create relational-database tables
or typed tables (object-relational tables). For information on how to create
temporary tables, see “CREATE Temporary TABLE” on page 2-261.

Syntax

CREATE

Table
Definition

STANDARD TABLE— table —| Table |—]
J Definition
RAW STATIC——
f()PERATIONAL

C

=

’
Column Definition £ Multiple-Column)4 Options
p. 2-216 Constraint Format p. 2-235
p. 2-231

OF TYPE Clause
! p. 2-255

Element Purpose

Restrictions Syntax

table Name that you declare Must be unique among names of tables, synonyms, Database Object
here for the new table views, and sequences within the current database Name, p. 4-46

Usage

When you create a new table, every column must have a data type associated
with it. The fable name must be unique among all the names of tables, views,
sequences, and synonyms within the same database, but the names of
columns need only be unique among the column names of the same table.

2-214 |BM Informix Guide to SQL: Syntax

E/C

-

CREATE TABLE

In an ANSI-compliant database, the combination owner.table must be unique
within the database. ¢

In DB-Access, using the CREATE TABLE statement outside the CREATE
SCHEMA statement generates warnings if you use the -ansi flag or set
DBANSIWARN. ¢

In ESQL/C, using the CREATE TABLE statement generates warnings if you use
the -ansi flag or set DBANSIWARN. ¢

For information about the DBANSIWARN environment variable, refer to the
IBM Informix Guide to SQL: Reference.

Logging Options

Use the Logging Type options to specify characteristics that can improve
performance in various bulk operations on the table. Other than the default
option (STANDARD) that is used for OLTP databases, these logging options
are used primarily to improve performance in data warehousing databases.

A table can have either of the following logging characteristics.

Logging Type Description

STANDARD Logging table that allows rollback, recovery, and restoration from
archives. This type is the default. Use this type of table for all the
recovery and constraints functionality that OLTP databases require.

RAW Nonlogging table that cannot have indexes or referential constraints
but can be updated. Use this type of table for quickly loading data. .

By using raw tables with Extended Parallel Server, you can take advantage of
light appends and avoid the overhead of logging, checking constraints, and
building indexes. ¢

Warning: Use raw tables for fast loading of data, but set the logging type to
STANDARD and perform a level-0 backup before you use the table in a transaction or
modify the data within the table. If you must use a raw table within a transaction,
either set the isolation level to Repeatable Read or lock the table in exclusive mode to
prevent concurrency problems.

SQL Statements 2-215

CREATE TABLE

XPS Extended Parallel Server supports two additional logging type options.

Option

Effect

OPERATIONAL

STATIC

Logging table that uses light appends; it cannot be restored from
archive. Use this type on tables that are refreshed frequently,
because light appends allow the quick addition of many rows.

Nonlogging table that can contain index and referential
constraints but cannot be updated. Use this type for read-only
operations, because no logging or locking overhead occurs. 4

Column Definition

For more information on these logging types of tables, refer to your
Administrator’s Guide.

Use the column definition portion of CREATE TABLE to list the name, data
type, default values, and constraints of a single column.

Column
Definition

————column

Data Type
p. 4-49

Back to CREATE TABLE
p. 2-214

<

DEFAULT
Clause
p. 2-217

8

<

Single-Column
Constraint Format
p. 2-220

/>

-

Element Purpose

Restrictions

Syntax

column Name of a column in the table

Must be unique in this table.

Identifier, p. 4-189 I

2-216 IBM Informix Guide to SQL: Syntax

Because of the maximum row size limit of 32,767 bytes, no more than 195
columns in the table can be of the data types BYTE, TEXT, ROW, LVARCHAR,
NVARCHAR, VARCHAR, and varying-length UDTs. Similarly, no more than
97 columns can be of COLLECTION data types (SET, LIST, and MULTISET).

As with any SQL identifier, syntactic ambiguities can occur if the column
name is a keyword. For information on reserved words for Dynamic Server,
see Appendix A, “Reserved Words for IBM Informix Dynamic Server.”

CREATE TABLE

For more information on reserved words for Extended Parallel Server, see
Appendix B, “Reserved Words for IBM Informix Extended Parallel Server.”
For more information on the ambiguities that can occur, see “Using
Keywords as Column Names” on page 4-195.

“ If you define a column of a table to be of a named ROW type, the table does

not adopt any constraints of the named ROW. ¢

DEFAULT Clause

Use the DEFAULT clause to specify the default value for the database server
to insert into a column when no explicit value for the column is specified.

DEFAULT Back to Column Definition
Clause p. 2-216
—»— DEFAULT NULL |
i / DATETIME
literal CURRENT Field Qualifier
USER p.- 465
TODAY
L SITENAME
DBSERVERNAME
Element Purpose Restrictions Syntax
literal String of alphabetic or Must be an appropriate data type for the column. See Expression,
numeric characters “Using a Literal as a Default Value” on page 2-218. p- 4-67

You cannot specify default values for SERIAL or SERIAL8 columns.

Using NULL as a Default Value

If you specify no default value for a column, the default is NULL unless you
place a NOT NULL constraint on the column. In this case, no default exists.

If you specify NULL as the default value for a column, you cannot specify a
NOT NULL constraint as part of the column definition. (For details of NOT
NULL constraints, see”Using the NOT NULL Constraint” on page 2-221.)

SQL Statements 2-217

CREATE TABLE

NULL is not a valid default value for a column that is part of a primary key.

If the column is BYTE or TEXT data type, NULL is the only valid default value.

If the column is BLOB or CLOB data type, NULL is the only valid default

value. ¢

Using a Literal as a Default Value

You can designate a literal value as a default value. A literal value is a string
of alphabetic or numeric characters. To use a literal value as a default value,
you must adhere to the syntax restrictions in the following table.

For Columns of Data Type

Format of Default Value

BOOLEAN

CHAR, CHARACTER VARYING, DATE,

VARCHAR, NCHAR, NVARCHAR
DATETIME

DECIMAL, MONEY, FLOAT,
SMALLFLOAT

INTEGER, SMALLINT, DECIMAL,

MONEY, FLOAT, SMALLFLOAT, INT8

INTERVAL

Opaque data types (IDS only)

Use 't' or 'f' (respectively for
true or false) as a Quoted String,
p.4-243

Quoted String, p. 4-243. See note that
follows for DATE.

Literal DATETIME, p. 4-212
Literal Number, p. 4-216 (DECIMAL)

Literal Number, p. 4-216 (INTEGER)
Literal INTERVAL, p. 4-214

Quoted String, p. 4-243 in Single-
Column Constraint format (p. 2-220)

DATE literals must be of the format that the DBDATE (or else GL_DATE)
environment variable specifies. In the default locale, if neither DBDATE nor
GL_DATE is set, DATE literals must be of the mm/dd/yyyy format.

2-218 IBM Informix Guide to SQL: Syntax

Using a Built-in Function as a Default Value

CREATE TABLE

You can specify a built-in function as the default column value. The following
table lists built-in functions that you can specify, the data type requirements,
and the recommended size (in bytes) for their corresponding columns.

Built-In Function

Data Type Requirement

Recommended Size

CURRENT

DBSERVERNAME

SITENAME

TODAY

USER

DATETIME column with
matching qualifier

CHAR, VARCHAR, NCHAR,
NVARCHAR, or CHARACTER
VARYING column

CHAR, VARCHAR, NCHAR,
NVARCHAR, or CHARACTER
VARYING column

DATE column

CHAR, VARCHAR, NCHAR,
NVARCHAR, or CHARACTER
VARYING column

Enough bytes to accom-
modate the longest
DATETIME value for
locale

128 bytes

128 bytes

Enough bytes to accom-
modate the longest DATE
value for locale

32 bytes

These column sizes are recommended because, if the column length is too
small to store the default value during INSERT or ALTER TABLE operations,
the database server returns an error.

You cannot designate a built-in function (that is, CURRENT, USER, TODAY,
SITENAME, or DBSERVERNAME) as the default value for a column that holds
opaque or distinct data types. ¢

For descriptions of these functions, see “Constant Expressions” on page 4-95.

SQL Statements 2-219

CREATE TABLE

The following example creates a table called accounts. In accounts, the
acc_num, acc_type, and acc_descr columns have literal default values. The
acc_id column defaults to the login name of the user.

CREATE TABLE accounts (
acc_num INTEGER DEFAULT 1,
acc_type CHAR(1) DEFAULT 'A',
acc_descr CHAR(20) DEFAULT 'New Account',
acc_id CHAR(32) DEFAULT USER)

Single-Column Constraint Format

Use the Single-Column Constraint format to associate one or more
constraints with a column, in order to perform any of the following tasks:
m Create one or more data-integrity constraints for a column.
m Specify a meaningful name for a constraint.

m Specify the constraint-mode that controls the behavior of a constraint
during INSERT, DELETE, and UPDATE operations.

Single-Column

Back to Column Definition

Constraint Format p. 2-216
—DISTINCT) .
REFERENCES ﬁ
NOT NULL UNIQUE Clause
; PRIMARY KEY p. 2-223
Constraint
Constraint Definition CHECK Clause Definition
p. 2-228 p. 2-227 p. 2-228

The following example creates a standard table with two constraints: num, a
primary-key constraint on the acc_num column; and code, a unique
constraint on the acc_code column:

CREATE TABLE accounts (
acc_num INTEGER PRIMARY KEY CONSTRAINT num,
acc_code INTEGER UNIQUE CONSTRAINT code,
acc_descr CHAR(30)

The constraints used in this example are defined in the following sections.

2-220 IBM Informix Guide to SQL: Syntax

CREATE TABLE

Restrictions on Using the Single-Column Constraint Format

The single-column constraint format cannot specify a constraint thatinvolves
more than one column. Thus, you cannot use the single-column constraint
format to define a composite key. For information on multiple-column
constraints, see “Multiple-Column Constraint Format” on page 2-231.

You cannot place unique, primary-key, or referential constraints on BYTE or
TEXT columns. You can, however, check for NULL or non-NULL values with
a check constraint.

You cannot place unique constraints, primary-key constraints, or referential
constraints on BLOB or CLOB columns. ¢

Using the NOT NULL Constraint

Use the NOT NULL keywords to require that a column receive a value during
insert or update operations. If you place a NOT NULL constraint on a column
(and no default value is specified), you must enter a value into this column
when you insert a row or update that column in a row. If you do not enter a
value, the database server returns an error, because no default value exists.

The following example creates the newitems table. In newitems, the column
manucode does not have a default value nor does it allow NULLs.

CREATE TABLE newitems (
newitem_num INTEGER,
manucode CHAR (3) NOT NULL,
promotype INTEGER,
descrip CHAR(20))

You cannot specify NULL as the explicit default value for a column and also
specify the NOT NULL constraint.

Using the UNIQUE or DISTINCT Constraints

Use the UNIQUE or DISTINCT keyword to require that a column or set of
columns accepts only unique data values. You cannot insert values that
duplicate the values of some other row into a column that has a unique
constraint. When you create a UNIQUE or DISTINCT constraint, the database
server automatically creates an internal index on the constrained column or
columns. (In this context, the keyword DISTINCT is a synonym for UNIQUE.)

SQL Statements 2-221

CREATE TABLE

You cannot place a unique constraint on a column that already has a primary-
key constraint.

You cannot place a unique constraint on a BYTE or TEXT column.

You cannot place a unique or primary-key constraint on a BLOB or CLOB
column.

Opaque data types support a unique constraint only where a secondary-
access method supports uniqueness for that type. The default secondary-
access method is a generic B-tree, which supports the equal() operator
function. Therefore, if the definition of the opaque type includes the equal()
function, a column of that opaque type can have a unique constraint. ¢

The following example creates a simple table that has a unique constraint on
one of its columns:

CREATE TABLE accounts
(acc_name CHAR(12),
acc_num SERIAL UNIQUE CONSTRAINT acc_num)

For an explanation of the constraint name, refer to “Declaring a Constraint
Name” on page 2-229.

Using the PRIMARY KEY Constraint

A primary key is a column (or a set of columns, when you use the multiple-
column constraint format) that contains a non-NULL, unique value for each
row in a table. When you create a PRIMARY KEY constraint, the database
server automatically creates an internal index on the column or columns that
make up the primary key.

You can designate only one primary key for a table. If you define a single
column as the primary key, then it is unique by definition. You cannot
explicitly give the same column a unique constraint.

You cannot place a unique or primary-key constraint on a BLOB or CLOB
column.

Opaque types support a primary key constraint only where a secondary-
access method supports the uniqueness for that type. The default secondary-
access method is a generic B-tree, which supports the equal() function.
Therefore, if the definition of the opaque type includes the equal() function,
a column of that opaque type can have a primary-key constraint. ¢

2-222 |BM Informix Guide to SQL: Syntax

CREATE TABLE

You cannot place a primary-key constraint on a BYTE or TEXT column.

In the previous two examples, a unique constraint was placed on the column
acc_num. The following example creates this column as the primary key for
the accounts table:

CREATE TABLE accounts

(acc_name CHAR(12),
acc_num SERIAL PRIMARY KEY CONSTRAINT acc_num)

REFERENCES Clause

Use the REFERENCES clause to establish a referential relationship:

m Within a table (that is, between two columns of the same table)

m Between two tables (in other words, create a foreign key)

REFERENCES
Clause

—p»— REFERENCES — table

Back to Single-Column Constraint Format p. 2-220
Back to Multiple-Column Constraint Format p. 2-231

o

I(Ccolumnj)f _ ON DELETE CASCADE

-

Element Purpose Restrictions Syntax
column Name of the referenced column See “Restrictions on Referential Identifier, p.4-189
or columns Constraints” on page 2-224.
table Name of the referenced table Must reside in the same database Database Object
as the referencing table. Name, p. 4-46

The referencing column (the column being defined) is the column or set of
columns that refers to the referenced column or set of columns. The refer-
encing column(s) can contain NULL and duplicate values, but values in the
referenced column (or set of columns) must be unique.

The relationship between referenced and referencing columns is called a
parent-child relationship, where the parent is the referenced column (primary
key) and the child is the referencing column (foreign key). The referential
constraint establishes this parent-child relationship.

SQL Statements 2-223

CREATE TABLE

XPS

When you create a referential constraint, the database server automatically
creates an internal index on the constrained column or columns.

Restrictions on Referential Constraints
You must have the References privilege to create a referential constraint.

When you use the REFERENCES clause, you must observe the following
restrictions:

m The referenced and referencing tables must be in the same database.

m The referenced column (or set of columns when you use the
multiple-column constraint format) must have a unique or primary-
key constraint.

m The data types of the referencing and referenced columns must be
identical.

The only exception is that a referencing column must be an integer
data type if the referenced column is a serial.

m You cannot place a referential constraint on a BYTE or TEXT column.

m When you use the single-column constraint format, you can
reference only one column.

m When you use the multiple-column constraint format, the maximum
number of columns in the REFERENCES clause is 16, and the total
length of the columns cannot exceed 380 bytes. ¢

m When you use the multiple-column constraint format, the maximum
number of columns in the REFERENCES clause is 16, and the total
length of the columns cannot exceed 390 bytes.

m You cannot place a referential constraint on a BLOB or CLOB
column. ¢

Default Values for the Referenced Column

If the referenced table is different from the referencing table, you do not need
to specify the referenced column; the default column is the primary-key
column (or columns) of the referenced table. If the referenced table is the
same as the referencing table, you must specify the referenced column.

2-224 |BM Informix Guide to SQL: Syntax

CREATE TABLE

Referential Relationships Within a Table

You can establish a referential relationship between two columns of the same
table. In the following example, the emp_num column in the employee table
uniquely identifies every employee through an employee number. The
mgr_num column in that table contains the employee number of the
manager who manages that employee. In this case, mgr_num references
emp_num. Duplicate values appear in the mgr_num column because
managers manage more than one employee.

CREATE TABLE employee
(
emp num INTEGER PRIMARY KEY,
mgr_num INTEGER REFERENCES employee (emp_num)
)

Locking Implications of Creating a Referential Constraint

When you create a referential constraint, an exclusive lock is placed on the
referenced table. The lock is released when the CREATE TABLE statement is
finished. If you are creating a table in a database with transactions, and you
are using transactions, the lock is released at the end of the transaction.

Example That Uses the Single-Column Constraint Format

The following example uses the single-column constraint format to create a
referential relationship between the sub_accounts and accounts tables. The
ref num column in the sub_accounts table references the acc_num column
(the primary key) in the accounts table.

CREATE TABLE accounts (
acc_num INTEGER PRIMARY KEY,
acc_type INTEGER,
acc_descr CHAR(20))
CREATE TABLE sub_accounts (
sub_acc INTEGER PRIMARY KEY,
ref num INTEGER REFERENCES accounts (acc_num),
sub_descr CHAR(20))

When you use the single-column constraint format, you do not explicitly
specify the ref_num column as a foreign key. To use the FOREIGN KEY
keyword, use the “Multiple-Column Constraint Format” on page 2-231.

SQL Statements 2-225

CREATE TABLE

Using the ON DELETE CASCADE Option

Use the ON DELETE CASCADE option to specify whether you want rows
deleted in a child table when corresponding rows are deleted in the parent
table. If you do not specify cascading deletes, the default behavior of the
database server prevents you from deleting data in a table if other tables
reference it.

If you specify this option, later when you delete a row in the parent table, the
database server also deletes any rows associated with that row (foreign keys)
in a child table. The principal advantage to the cascading-deletes feature is
that it allows you to reduce the quantity of SQL statements you need to
perform delete actions.

For example, the all_candy table contains the candy_num column as a
primary key. The hard_candy table refers to the candy_num column as a
foreign key. The following CREATE TABLE statement creates the hard_candy
table with the cascading-delete option on the foreign key:

CREATE TABLE all candy
(candy_num SERIAL PRIMARY KEY,
candy maker CHAR(25)) ;

CREATE TABLE hard candy
(candy num INT,
candy flavor CHAR(20),
FOREIGN KEY (candy num) REFERENCES all_candy
ON DELETE CASCADE)

Because the ON DELETE CASCADE option is specified for the child table,
when an item from the all_candy table is deleted, the delete cascades to the
corresponding rows of the hard_candy table.

For information about syntax restrictions and locking implications when you
delete rows from tables that have cascading deletes, see “Considerations
When Tables Have Cascading Deletes” on page 2-346.

2-226 IBM Informix Guide to SQL: Syntax

CREATE TABLE

CHECK Clause

Use the CHECK clause to designate conditions that must be met before data
can be assigned to a column during an INSERT or UPDATE statement.

CHECK Back to Single-Column Constraint Format p. 2-220
Clause Back to Multiple-Column Constraint Format p. 2-231
Condition
—————oHeck ——— ({ SR 1) -

The condition cannot include a user-defined function or procedure. ¢

During an insert or update, if the check constraint of a row evaluates to false,
the database server returns an error. The database server does not return an
error if a row evaluates to NULL for a check constraint. In some cases, you
might want to use both a check constraint and a NOT NULL constraint.

Using a Search Condition

You use search conditions to define check constraints. The search condition
cannot contain the following items: user-defined routines, subqueries, aggre-
gates, host variables, or rowids. In addition, the search condition cannot
contain the following built-in functions: CURRENT, USER, SITENAME,
DBSERVERNAME, or TODAY.

Warning: When you specify a date value in a search condition, make sure you specify
4 digits for the year, so that the DBCENTURY environment variable has no effect on
the condition. When you specify a 2-digit year, the DBCENTURY environment
variable can produce unpredictable results if the condition depends on an abbreviated
year value. For more information on the DBCENTURY environment variable, see the
“IBM Informix Guide to SQL: Reference.” More generally, the database server saves
the settings of environment variables from the time of creation of check constraints.
If any of these settings are subsequently changed in a way that can affect the evalu-
ation of a condition in a check constraint, the new settings are disregarded, and the
original environment variable settings are used when the condition is evaluated.

With a BYTE or TEXT column, you can check for NULL or not-NULL values.
This constraint is the only constraint allowed on a BYTE or TEXT column.

SQL Statements 2-227

CREATE TABLE

Restrictions When Using the Single-Column Constraint Format

When you use the single-column constraint format to define a check

constraint, the check constraint cannot depend on values in other columns of
the table. The following example creates the my_accounts table that has two
columns with check constraints, each in the single-column constraint format:

CREATE TABLE my_ accounts (
chk id SERIAL PRIMARY KEY,
acctl MONEY CHECK (acctl BETWEEN O AND 99999),
acct2 MONEY CHECK (acct2 BETWEEN 0 AND 99999))

Both acctl and acct2 are columns of MONEY data type whose values must be
between 0 and 99999. If, however, you want to test that acctl has a larger
balance than acct2, you cannot use the single-column constraint format. To
create a constraint that checks values in more than one column, you must use
the “Multiple-Column Constraint Format” on page 2-231.

Constraint Definition

Use the constraint definition portion of CREATE TABLE for these purposes:

m To declare a name for the constraint

“ m To set a constraint to disabled, enabled, or filtering mode ¢
Constraint Back to Single-Column Constraint Format p. 2-220
Definition Back to Multiple-Column Constraint Format p. 2-231

U i g
CONSTRAINT — constraint
ENABLED
DISABLED
FILTERING tWITHOUT ERROR
WITH ERROR

Element Purpose Restrictions Syntax
constraint Name of constraint Must be unique among index names Database Object Name, p. 4-46

2-228 IBM Informix Guide to SQL: Syntax

CREATE TABLE

Declaring a Constraint Name

The database server implements the constraint as an index. Whenever you
use the single- or multiple-column constraint format to place a data
restriction on a column, but without declaring a constraint name, the database
server creates a constraint and adds a row for that constraint in the syscon-
straints system catalog table. The database server also generates an identifier
and adds a row to the sysindexes system catalog table for each new primary-
key, unique, or referential constraint that does not share an index with an
existing constraint. Even if you declare a name for a constraint, the database
server generates the name that appears in the sysindexes table.

If you want, you can specify a meaningful name for the constraint. The name
must be unique among the names of constraints and indexes in the database.

Constraint names appear in error messages having to do with constraint
violations. You can use this name when you use the DROP CONSTRAINT
clause of the ALTER TABLE statement.

In addition, you specify a constraint name when you change the mode of
constraint with the SET Database Object Mode statement or the SET Trans-
action Mode statement. ¢

When you create a constraint of any type, the combination of the owner name
and constraint name must be unique within the database. ¢

The system catalog table that holds information about indexes is the
sysindices table. ¢

Constraint Names That the Database Server Generates

If you do not specify a constraint name, the database server generates a
constraint name using the following template:

<constraint type><tabid> <constraintids>

In this template, constraint_type is the letter u for unique or primary-key
constraints, r for referential constraints, ¢ for check constraints, and n for NOT
NULL constraints. In the template, tabid and constraintid are values from the
tabid and constrid columns of the systables and sysconstraints system
catalog tables, respectively. For example, the constraint name for a unique
constraint might look like 7 u111_14" (with a leading blank space).

SQL Statements 2-229

CREATE TABLE

If the generated name conflicts with an existing identifier, the database server
returns an error, and you must then supply an explicit constraint name.

The generated index name in sysindexes (or sysindices) has this format:
[blankspace] <tabid> <constraintid>

For example, the index name might be something like “ 111_14 “ (with
quotation marks used here to show the blank space).

[s | Choosing a Constraint-Mode Option

Use the constraint-mode options to control the behavior of constraints in
INSERT, DELETE, and UPDATE operations. These are the options.

Mode Purpose

DISABLED Does not enforce the constraint during INSERT, DELETE, and
UPDATE operations.

ENABLED Enforces the constraint during INSERT, DELETE, and UPDATE
operations. If a target row causes a violation of the constraint, the
statement fails. This mode is the default.

FILTERING Enforces the constraint during INSERT, DELETE, and UPDATE
operations. If a target row causes a violation of the constraint, the
statement continues processing. The database server writes the row
in question to the violations table associated with the target table and
writes diagnostic information to the associated diagnostics table.

If you choose filtering mode, you can specify the WITHOUT ERROR or WITH
ERROR options. The following list explains these options.

Error Option Purpose

WITHOUT ERROR Does not return an integrity-violation error when a filtering-
mode constraint is violated during an insert, delete, or update
operation. This is the default error option.

WITH ERROR Returns an integrity-violation error when a filtering-mode
constraint is violated during an insert, delete, or update
operation

2-230 IBM Informix Guide to SQL: Syntax

CREATE TABLE

To set the constraint mode after the table exists, see “SET Database Object
Mode” on page 2-652. For information about where the database server
stores rows that violate a constraint set to FILTERING, see “START VIOLA-
TIONS TABLE” on page 2-729.

Multiple-Column Constraint Format

Use the multiple-column constraint format to associate one or more columns
with a constraint. This alternative to the single-column constraint format
allows you to associate multiple columns with a constraint.

Multiple-Column Back to CREATE TABLE p. 2-214
Constraint Format Back to OF TYPE Clause p. 2-255

H
UNIQUE (Ccolumn) >
DISTINﬂ a
PRIMARY KEY t

{ ’) REFERENCES Constraint
Clause N
FOREIGN KEY — (~~column—-) | o 555 p. 2-228
CHECK Clause
p. 2-227
Element Purpose Restrictions Syntax

column Columns on which to place constraint Not BYTE, TEXT, BLOB, nor CLOB Identifier, p.4-189

You can include a maximum of 16 columns in a constraint list. The total
length of all columns cannot exceed 380 bytes.

When you define a unique constraint (by using the UNIQUE or DISTINCT
keyword), a column cannot appear in the constraint list more than once.

Using the multiple-column constraint format, you can perform these tasks:

m Create data-integrity constraints for a set of one or more columns
m Specify a mnemonic name for a constraint

m Specify the constraint-mode option that controls the behavior of a
constraint during insert, delete, and update operations

SQL Statements 2-231

CREATE TABLE

When you use this format, you can create composite primary and foreign
keys, or define check constraints that compare data in different columns.

Restrictions with the Multiple-Column Constraint Format

When you use the multiple-column constraint format, you cannot define any
default values for columns. In addition, you cannot establish a referential
relationship between two columns of the same table.

To define a default value for a column or establish a referential relationship
between two columns of the same table, refer to “Single-Column Constraint
Format” on page 2-220 and “Referential Relationships Within a Table” on
page 2-225 respectively.

Using Large-Object Types in Constraints

You cannot place unique, primary-key, or referential (FOREIGN KEY)
constraints on BYTE or TEXT columns. You can, however, check for NULL or
non-NULL values with a check constraint.

“ You cannot place unique or primary-key constraints on BLOB or CLOB
columns. ¢

You can find detailed discussions of specific constraints in these sections.

Constraint For more information, see For an example, see

CHECK “CHECK Clause” on “Defining Check Constraints
page 2-227 Across Columns” on page 2-233

DISTINCT “Using the UNIQUE or “Examples of the Multiple-
DISTINCT Constraints” on ~ Column Constraint Format” on
page 2-221 page 2-233

FOREIGN KEY “Using the FOREIGN KEY “Defining Composite Primary
Constraint” on page 2-233 and Foreign Keys” on page 2-234

PRIMARY KEY “Using the PRIMARY KEY “Defining Composite Primary
Constraint” on page 2-222 and Foreign Keys” on page 2-234

UNIQUE “Using the UNIQUE or “Examples of the Multiple-
DISTINCT Constraints” on ~ Column Constraint Format” on
page 2-221 page 2-233

2-232 IBM Informix Guide to SQL: Syntax

CREATE TABLE

Using the FOREIGN KEY Constraint

A foreign key joins and establishes dependencies between tables. That is, it
creates a referential constraint. (For more information on referential
constraints, see the “REFERENCES Clause” on page 2-223.)

A foreign key references a unique or primary key in a table. For every entry
in the foreign-key columns, a matching entry must exist in the unique or
primary-key columns if all foreign-key columns contain non-NULL values.

You cannot specify BYTE or TEXT columns as foreign keys.

You cannot specify BLOB or CLOB columns as foreign keys. ¢

Examples of the Multiple-Column Constraint Format

The following example creates a standard table, called accounts, with a
unique constraint, called acc_num, using the multiple-column constraint
format. (Nothing in this example, however, would prevent you from using
the single-column constraint format to define this constraint.)

CREATE TABLE accounts
(acc_name CHAR(12),
acc_num SERIAL,
UNIQUE (acc_num) CONSTRAINT acc_num)

For constraint names, see “Declaring a Constraint Name” on page 2-229.

Defining Check Constraints Across Columns

When you use the multiple-column constraint format to define check
constraints, a check constraint can apply to more than one column in the
same table. (You cannot, however, create a check constraint whose condition
uses a value from a column in another table.)

This example compares two columns, acctl and acct2, in the new table:

CREATE TABLE my_accounts
(
Chk_id SERIAL PRIMARY KEY,
acctl MONEY,
acct2 MONEY,
CHECK (0 < acctl AND acctl < 99999),
CHECK (0 < acct2 AND acct2 < 99999),
CHECK (acctl > acct2)
)

SQL Statements 2-233

CREATE TABLE

In this example, the acctl column must be greater than the acct2 column, or
the insert or update fails.

Defining Composite Primary and Foreign Keys

When you use the multiple-column constraint format, you can create a
composite key. A composite key specifies multiple columns for a primary-key
or foreign-key constraint.

The next example creates two tables. The first table has a composite key that
acts as a primary key, and the second table has a composite key that acts as a
foreign key.

CREATE TABLE accounts (
acc_num INTEGER,
acc_type INTEGER,
acc_descr CHAR(20),
PRIMARY KEY (acc_num, acc_type))

CREATE TABLE sub_accounts (
sub_acc INTEGER PRIMARY KEY,
ref num INTEGER NOT NULL,
ref type INTEGER NOT NULL,
sub_descr CHAR(20),
FOREIGN KEY (ref num, ref type) REFERENCES accounts
(acc_num, acc_type))

In this example, the foreign key of the sub_accounts table, ref_num and
ref_type, references the composite key, acc_num and acc_type, in the
accounts table. If, during an insert or update, you tried to insert a row into
the sub_accounts table whose value for ref_num and ref_type did not
exactly correspond to the values for acc_num and acc_type in an existing row
in the accounts table, the database server would return an error.

A referential constraint must have a one-to-one relationship between refer-
encing and referenced columns. In other words, if the primary key is a set of
columns (a composite key), then the foreign key also must be a set of columns
that corresponds to the composite key.

Because of the default behavior of the database server, when you create the
foreign-key reference, you do not have to reference the composite-key
columns (acc_num and acc_type) explicitly. You can rewrite the references
section of the previous example as follows:

FOREIGN KEY (ref num, ref type) REFERENCES accounts

2-234 IBM Informix Guide to SQL: Syntax

CREATE TABLE

Options

The CREATE TABLE options let you specify storage locations, extent size,
locking modes, and user-defined access methods.

Back to CREATE TABLE
p. 2-214
e = TS
k L Storage Loggtil\cfr%DE ﬂ Accegls-Method f
Options ause
WITH CRCOLS p.p2-236 p. 2-253 0. 5052

Using the WITH CRCOLS Option

Use the WITH CRCOLS keywords to create two shadow columns that Enter-
prise Replication uses for conflict resolution. The first column, cdrserver,
contains the identity of the database server where the last modification
occurred. The second column, cdrtime, contains the time stamp of the last
modification. You must add these columns before you can use time-stamp or
user-defined routine conflict resolution.

For most database operations, the cdrserver and cdrtime columns are
hidden. For example, if you include the WITH CRCOLS keywords when you
create a table, the cdrserver and cdrtime columns:

m Do not appear when you issue the statement
SELECT * from tablename

m Do not appear in DB-Access when you ask for information about the
columns of the table

m Are not included in the number of columns (ncols) in the systables
system catalog table entry for tablename

To view the contents of cdrserver and cdrtime, explicitly name the columns
in a SELECT statement, as the following example shows:

SELECT cdrserver, cdrtime from tablename
For more information about how to use this option, refer to the IBM Informix

Dynamic Server Enterprise Replication Guide.

SQL Statements 2-235

CREATE TABLE

Storage Options

Use the storage-option portion of CREATE TABLE to specify the storage space
and the size of the extents for the table.

Storage Options Back to Options
p. 2-235
IN dbspace & EXTENT SIZE

Options
) p. 2-251
— dbslice PUT Clause
p. 2-249
ISl extspace
FRAGMENT BY Clause
p. 2-238
Element Purpose Restrictions Syntax
dbslice Dbslice to store the table Must already exist. Identifier, p. 4-189
dbspace Dbspace to store the table Must already exist. Identifier, p. 4-189

extspace Name declared in the onspaces command to Must already exist. See documentation for your
a storage area outside the database server access method.

If you use the “USING Access-Method Clause” on page 2-252 to specify an
access method, that method must support the storage space.

You can specify a dbspace for the table that is different from the storage
location for the database, or you can fragment the table into several dbspaces.
If you do not specify the IN clause or a fragmentation scheme, the database
server stores the table in the dbspace where the current database resides.

“ You can use the PUT clause to specify storage options for smart large objects.
For more information, see “PUT Clause” on page 2-249.
Tip: If your table has columns that contain simple large objects (TEXT or BYTE), you
can specify a separate blobspace for each object. For information on storing simple

large objects, refer to “Large-Object Data Types” on page 4-57. ¢

2-236 IBM Informix Guide to SQL: Syntax

XPS

CREATE TABLE

Using the IN Clause

Use the IN clause to specify a storage space for a table. The storage space that
you specify must already exist.

Storing Data in a dbspace

You can use the IN clause to isolate a table. For example, if the history
database is in the dbs1 dbspace, but you want the family data placed in a
separate dbspace called famdata, use the following statements:

CREATE DATABASE history IN dbsl

CREATE TABLE family
(

id_num SERIAL(101) UNIQUE,
name CHAR (40) ,

nickname CHAR (20) ,

mother CHAR (40) ,

father CHAR (40)

)

IN famdata

For more information about how to store and manage your tables in separate
dbspaces, see your Administrator’s Guide.

Storing Data in a dbslice

If you are using Extended Parallel Server, the IN dbslice clause allows you to
fragment a table across a group of dbspaces that share the same naming
convention. The database server fragments the table by round-robin in the
dbspaces that make up the dbslice at the time the table is created.

To fragment a table across a dbslice, you can use either the IN dbslice syntax
or the FRAGMENT BY ROUND ROBIN IN dbslice syntax.
Storing Data in an extspace

In general, use the extspace storage option in conjunction with the “USING
Access-Method Clause” on page 2-252. For more information, refer to the
user documentation for your custom-access method.

SQL Statements 2-237

CREATE TABLE

FRAGMENT BY Clause

Use the FRAGMENT BY clause to create fragmented tables and specify their

distribution scheme .

FRAGMENT BY
Clause for Tables

—WFRAGMENT BY ROUND ROBIN
~WITH ROWIDS /

EXPRESSION

Back to Storage Options
p. 2-236

——IN dbslice7->

J

expresszon— IN dbspace

AN
N

N\-HASH

L
N\ HYBRID 7(Ccolumn

USING opclass.

(gwp)

»— REMAINDER IN dbspace-)

IN Q;D
hul

)— EXPRESSIONj IN dbslice —]
3
(expression IN dbspace TEMAINDE? dbspace-/
dbslice expression dbslice J
3)
_| RANGE
Method Clause (dbspace) (dbspace)
p. 2-044 —\
Element Purpose Restrictions Syntax
column Column to which to apply the Must be a column within the table. Identifier,
fragmentation strategy p- 4-189
dbslice, Dbslice or dbspace to store the ~ The dbslice must be defined. You can specify ~ Identifier,
dbspace table fragment no more than 2,048 dbspaces (but at least 2). p. 4-189
expression Expression that defines a table =~ Columns can be from the current table only, Expression,
fragment using a range, hash, or and data values can be from only a single row. p. 4-67
arbitrary rule Value returned must be Boolean (true or false).
opclass No default operator class Must be defined and must be associated with Identifier,
a B-tree index. p. 4-189
2-238 IBM Informix Guide to SQL: Syntax

CREATE TABLE

When you fragment a table, the IN keyword introduces the storage space
where a table fragment is to be stored.

Using the WITH ROWIDS Option

Nonfragmented tables contain a hidden column called rowid, but by default,
fragmented tables have no rowid column. You can use the WITH ROWIDS
keywords to add the rowid column to a fragmented table. Each row is
automatically assigned a unique rowid value that remains stable for the life
of the row, and that the database server can use to find the physical location
of the row. Each row requires an additional 4 bytes to store the rowid.

Important: This is a deprecated feature. Use primary keys as an access method rather
than the rowid column.

You cannot use the WITH ROWIDS clause with typed tables.

Fragmenting by ROUND ROBIN

In a round-robin distribution scheme, specify at least two dbspaces where
you want the fragments to be placed. As records are inserted into the table,
they are placed in the first available dbspace. The database server balances
the load between the specified dbspaces as you insert records and distributes
the rows in such a way that the fragments always maintain approximately
the same number of rows. In this distribution scheme, the database server
must scan all fragments when it searches for a row.

With Extended Parallel Server, you can specify a dbslice to fragment a table
across a group of dbspaces that share the same naming convention. For a
syntax alternative to FRAGMENT BY ROUND ROBIN IN dbslice that achieves the
same results, see “Storing Data in a dbslice” on page 2-237. ¢

Use the PUT clause to specify round-robin fragmentation for smart large
objects. For more information, see the “PUT Clause” on page 2-249. ¢

Fragmenting by EXPRESSION

In an expression-based distribution scheme, each fragment expression in a rule
specifies a storage space. Each fragment expression in the rule isolates data
and aids the database server in searching for rows.

SQL Statements 2-239

CREATE TABLE

8

To fragment a table by expression, specify one of the following rules:

m Range rule

A range rule specifies fragment expressions that use a range to spec-
ify which rows are placed in a fragment, as the next example shows:

FRAGMENT BY EXPRESSION cl < 100 IN dbspl,
cl >= 100 AND cl < 200 IN dbsp2, cl >= 200 IN dbsp3

m Arbitrary rule

An arbitrary rule specifies fragment expressions based on a pre-

defined SQL expression that typically uses OR clauses to group data,

as the following example shows:
FRAGMENT BY EXPRESSION
zip_num = 95228 OR zip_num

zip num = 91120 OR zip num
REMAINDER IN dbsp5

95443 IN dbsp2,
92310 IN dbsp4,

Warning: See the note about the DBCENTURY environment variable and date values
in fragment expressions in the section “Logging Options” on page 2-215.

The USING Opclass Option

With the USING option, you can specify a nondefault operator class for the
fragmentation strategy. The secondary-access method of the chosen operator
class must have a B-tree index structure.

In the following example, the abs_btree_ops operator class specifies several
user-defined strategy functions that order integers based on their absolute
values:

CREATE OPCLASS abs_btree_ops FOR btree
STRATEGIES (abs_1lt, abs_lte, abs_eq, abs _gte, abs_gt)
SUPPORT (abs_cmp)

For the fragmentation strategy, you can specify the abs_btree_ops operator
class in the USING clause and use its strategy functions to fragment the table,
as follows:

FRAGMENT BY EXPRESSION USING abs_btree ops
(abs_1t (x,345)) IN dbspl,
(abs_gte(x,345) AND abs_lte(x,500)) IN dbsp2,
(abs_gt (x,500)) IN dbsp3

For information on how to create and extend an operator class, see
IBM Informix User-Defined Routines and Data Types Developer’s Guide.

2-240 IBM Informix Guide to SQL: Syntax

CREATE TABLE

User-Defined Functions in Fragment Expressions

For rows that include user-defined data types, you can use comparison
conditions or user-defined functions to define the range rules. In the
following example, comparison conditions define the range rules for the
long1 column, which contains an opaque data type:

FRAGMENT BY EXPRESSION

longl < '3001' IN dbspl,

longl BETWEEN '3001' AND '6000' IN dbsp2,

longl > '6000' IN dbsp3

An implicit, user-defined cast converts 3001 and 6000 to the opaque type.

Alternatively, you can use user-defined functions to define the range rules for
the opaque data type of the long1 column:

FRAGMENT BY EXPRESSION

(lessthan(longl, '3001')) IN dbspl,
(greaterthanorequal (longl, '3001') AND
lessthanorequal (long, '6000')) IN dbsp2,
(greaterthan(longl, '6000')) IN dbsp3

Explicit user-defined functions require parentheses around the entire
fragment expression before the IN clause, as the previous example shows.

User-defined functions in a fragment expression can be written in SPL or in
the C or Java language. These functions must satisfy four requirements:
They must evaluate to a Boolean value.

They must be nonvariant.

They must reside within the same database as the table.

They must not generate OUT parameters.

For information on how to create user-defined functions for fragment expres-
sions, refer to IBM Informix User-Defined Routines and Data Types Developer’s
Guide.

Using the REMAINDER Keyword

Use the REMAINDER keyword to specify the storage space in which to store
valid values that fall outside the specified expression or expressions.

If you do not specify a remainder, and a row is inserted or updated such that
it no longer belongs to any dbspace, the database server returns an error.

SQL Statements 2-241

CREATE TABLE

XPS

Fragmenting by HASH

A hash-distribution scheme distributes the rows as you insert them, so that
the fragments maintain approximately the same number of rows. In this
distribution scheme, the database server can eliminate fragments when it
searches for a row because the hash is known internally. For example, if you
have a large database, as in a data-warehousing environment, you can
fragment your tables across disks that belong to different coservers. If you
expect to perform many queries that scan most of the data, a system-defined
hash-distribution scheme can balance the I/O processing. The following
example uses eight coservers with one dbspace defined on each coserver.

CREATE TABLE customer
(
cust_id integer,
descr char (45),
level char(15),
sale type char(10),
channel char(30),
corp char (45),
cust char (45),
vert_mkt char(30),
state_prov char(20),
country char(15),
org_cust_id char(20)

)

FRAGMENT BY HASH (Cust_id) IN
customerl_spc,
customer2_spc,
customer3_spc,
customer4_spc,
customer5_spc,
customeré6_spc,
customer7_spc,
customer8_spc

EXTENT SIZE 20 NEXT SIZE 16

You can also specify a dbslice. When you specify a dbslice, the database server
fragments the table across the dbspaces that make up the dbslice.

Serial Columns in HASH-Distribution Schemes

If you base table fragmentation on a SERIAL or SERIALS column, only a hash-
distribution scheme is valid. In addition, the serial column must be the only
column in the hashing key. (These restrictions apply only to fable distribu-
tions. Fragmentation schemes for indexes that are based on SERIAL or SERIALS
columns are not subject to these restrictions.)

2-242 |BM Informix Guide to SQL: Syntax

CREATE TABLE

The following excerpt is from a CREATE TABLE statement:

CREATE TABLE customer
(

cust_id serial,

)
FRAGMENT BY HASH (cust_id) IN customerl_spc, customer2_spc

You might notice a difference between serial-column values in fragmented
and nonfragmented tables. The database server assigns serial values round-
robin across fragments, so a fragment might contain values from noncon-
tiguous ranges. For example, if there are two fragments, the first serial value
is placed in the first fragment, the second serial value is placed in the second
fragment, the third value is placed in the first fragment, and so on.

Fragmenting by HYBRID

The HYBRID clause allows you to apply two distribution schemes to the same
table. You can use a combination of hash- and expression-distribution
schemes or a combination of range-distribution schemes on a table. This
section discusses the hash and expression form of hybrid fragmentation. For
details of range fragmentation, see “RANGE Method Clause” on page 2-244.

In hybrid fragmentation, the EXPRESSION clause determines the base
fragmentation strategy of the table, associating an expression with a set of
dbspaces (dbspace, dbslice, or dbspacelist format) for data storage. The hash
column(s) determines the dbspace within the specified set of dbspaces.

When you specify a dbslice, the database server fragments the table across
the dbspaces that make up the dbslice. Similarly, if you specify a dbspace list,
the database server fragments the table across the dbspaces in that list. In the
next example, my_hybrid, distributes rows based on two columns of the
table. The value of coll determines in which dbslice the row belongs.

The hash value of col2 determines in which dbspace (within the previously
determined dbslice) to insert into.

CREATE TABLE my hybrid
(coll INT, col2 DATE, col3 CHAR(10))
HYBRID (col2) EXPRESSION coll < 100 IN dbslicel,
coll >= 100 and coll < 200 IN dbslice2,REMAINDER IN dbslice3

For more information on an expression-based distribution scheme, see
“Fragmenting by EXPRESSION” on page 2-239.

SQL Statements 2-243

CREATE TABLE

XPS

RANGE Method Clause

You can use a range-fragmentation method as a convenient alternative to
fragmenting by the EXPRESSION or HYBRID clauses. This provides a method
to implicitly and uniformly distribute data whose fragmentation column
values are dense or naturally uniform.

In a range-fragmented table, each dbspace stores a contiguous, completely
bound and non-overlapping range of integer values over one or two
columns. In other words, the database server implicitly clusters rows within
the fragments, based on the range of the values in the fragmentation column.

RANGE Method

Back to FRAGMENT BY Clause

Clause p. 2-238
)
Range)
(— __| Definition |)__
RANGE -(— column p. 2-245)—IN dbspace/\ .
dbslice REMAINDER IN dbspace
Range Range IN
HYBRID — (RANGE —(column —| Definition |)) RANGE — (- column-) —{ ~ Clause
p. 2-245 p. 2-245
Range Range IN
_ _ _ _| Definition | ')_| Clause
HYBRID — (RANGE —(column)) RANGE — (column — Defion 1) - Clause,

-

fragment

Element Purpose Restrictions Syntax
column Column on which to apply the Must be in the current table and must be of Identifier,
fragmentation strategy data type INT or SMALL INT. p-4-189
dbslice Dbslice that contains the dbspaces Must exist when you execute the statement. Identifier,
where the table fragments reside p-4-189
dbspace Dbspace that contains the table Must exist when you execute the statement. Identifier,

The maximum number of dbspaces is 2048. p. 4-189

For hybrid strategies with two range definitions, the second column must be
different column name from the first. For hybrid strategies with exactly one
range definition, both occurrences of column must specify the same column.

If you list more than one dbslice, including a remainder dbslice, each dbslice
must contain the same number of dbspaces. Unless you are specifying the
dbspace in the REMAINDER option, you must specify at least two dbspaces.

2-244 IBM Informix Guide to SQL: Syntax

CREATE TABLE

Range Definition

Use the range definition to specify the minimum and maximum values of the
entire range.

Range Back to RANGE Method Clause
Definition p. 2-244

— max_val ——
\ MIN — min_vaI/ \MAX/

Element Purpose Restrictions Syntax

max_val Maximum value in the Must be an INT or SMALLINT greater than Literal Number,
range or equal to the min_val if min_val is supplied. p.4-216

min_val Minimum value in the Must be an INT or SMALLINT less than or Literal Number,
range; the defaultis 0. equal to max_val. p- 4-216

You do not need to specify a minimum value. The minimum and maximum
values define the exact range of values to allocate for each storage space.

Range IN Clause
Use the IN clause to specify the storage spaces in which to distribute the data.
Range IN Back to RANGE Method Clause
Clause p. 2-244
— IN C dbslice > |
1 Q_’ f \ REMAINDER IN dbslice
(dbspace) 1 Q— ’
(dbspace)

Element Purpose Restrictions Syntax
dbslice Dbslice that contains the dbspaces to store table fragments Must exist. Identifier, p.4-189

dbspace Dbspace to store the table fragment Must exist. Identifier, p. 4-189

SQL Statements 2-245

CREATE TABLE

If you specify more than one dbslice, including a remainder dbslice, each
dbslice must contain the same number of dbspaces.

Unless you are specifying the dbspace in the REMAINDER option, the
minimum number of dbspaces that you can specify is two. The maximum
number of dbspaces that you can specify is 2,048.

When you use a range-fragmentation method, the number of integer values
between the minimum and maximum specified values must be equal to or
greater than the number of storage spaces specified so that the database
server can allocate non-overlapping contiguous ranges across the dbspaces.
For example, the following code returns an error, because the allocations for
the range cannot be distributed across all specified dbspaces:

CREATE TABLE Tabl (Coll INT...)
FRAGMENT BY RANGE (Coll MIN 5 MAX 7)
IN dbl, db2, db3, db4, db5, dbé -- returns an error

The error for this example occurs because the specified range contains three
values (5, 6, and 7), but six dbspaces are specified; three values cannot be
distributed across six dbspaces.

Using the REMAINDER Keyword

Use the REMAINDER keyword to specify the storage space in which to store
valid values that fall outside the specified expression or expressions.

If you do not specify a remainder and a row is inserted or updated such that
itno longer belongs to any storage space, the database server returns an error.

Restrictions

If you fragment a table with range fragmentation, you cannot perform the
following operations on the table after it is created:
m You cannot change the fragmentation strategy (ALTER FRAGMENT).
® You cannot rename the columns of the table (RENAME COLUMN).
m You cannot alter the table in any way except to change the table type
or to change the lock mode.

That is, the Usage-TYPE options and the Lock Mode clause are the only valid
options of ALTER TABLE for a table that has range fragmentation.

2-246 IBM Informix Guide to SQL: Syntax

CREATE TABLE

Examples

The following examples illustrate range fragmentation in its simple and
hybrid forms.

Simple Range-Fragmentation Strategy
The following example shows a simple range-fragmentation strategy:
CREATE TABLE Tabl (Coll INT...)
FRAGMENT BY RANGE (Coll MIN 100 MAX 200)

IN dbl, db2, db3, db4

In this example, the database server fragments the table according to the
following allocations.

Storage Space Holds Values Storage Space Holds Values
db1 100 <= Col1 < 125 db3 150 <= Col1 < 175
db2 125 <= Coll < 150 db4 175 <= Coll < 200

The previous table shows allocations that can also be made with an
expression-based fragmentation scheme:

. FRAGMENT BY EXPRESSION

Coll >= 100 AND Coll < 125 IN dbl
Coll >= 125 AND Coll < 150 IN db2
Coll >= 150 AND Coll < 175 IN db3
Coll >= 175 AND Coll < 200 IN db4

As the examples show, the range-fragmentation example requires much less
coding to achieve the same results. The same is true for the hybrid-range
fragmentation compared to hybrid-expression fragmentation methods.

Column-Major-Range Allocation

The following example demonstrates the syntax for column-major-range
allocation, a hybrid-range fragmentation strategy:

CREATE TABLE tab2 (col2 INT, colx char (5))
FRAGMENT BY HYBRID
(RANGE (col2 MIN 100 MAX 220))
RANGE (col2)
IN dbsll, dbsl2, dbsl3

SQL Statements 2-247

CREATE TABLE

This type of fragmentation creates a distribution across dbslices and provides
a further subdivision within each dbslice (across the dbspaces in the dbslice)
such that when a query specifies a value for coll (for example, WHERE coll
= 127), the query uniquely identifies a dbspace. To take advantage of the
additional subdivision, you must specify more than one dbslice.

Row-Major-Range Allocation

The following example demonstrates the syntax for row-major-range
allocation, a hybrid-range fragmentation strategy:

CREATE TABLE tab3 (col3 INT, colx char (5))
FRAGMENT BY HYBRID
(RANGE (col3))
RANGE (col3 MIN 100 MAX 220)
IN dbsll, dbsl2, dbsl3

This fragmentation strategy is the counterpart to the column-major-range
allocation. The advantages and restrictions are equivalent.

Independent-Range Allocation

The following example demonstrates the syntax for an independent-range
allocation, a hybrid-range fragmentation strategy:

CREATE TABLE tab4 (col4 INT, colx char (5), col5 INT)
FRAGMENT BY HYBRID
(RANGE (col4 MIN 100 MAX 200))
RANGE (col5 MIN 500 MAX 800)
IN dbsll, dbsl2, dbsl3

In this type of range fragmentation, the two columns are independent, and
therefore the range allocations are independent. The range allocation for a
dbspace on both columns is the conjunctive combination of the range
allocation on each of the two independent columns.

This type of fragmentation does not provide subdivisions within either
column. With this type of fragmentation, a query that specifies values for
both columns (such as, WHERE col4 = 128 and col5 = 650) uniquely
identifies the dbspace at the intersection of the two dbslices identified by the
columns independently.

2-248 IBM Informix Guide to SQL: Syntax

CREATE TABLE

PUT Clause

Use the PUT clause to specify the storage spaces and characteristics for each
column that will contain smart large objects.

PUT Clause

— - PUT

Back to Storage Options
p. 2-236

column - IN — (Csbspace) > |

1 |)

“——EXTENT SIZE — kbytes—

\TNO LOG f
LOG

N HIGHINTEG —

W\IO KEEP ACCESS TIME —
KEEP ACCESS TIME —

Element Purpose Restrictions Syntax
column Column to store in sbspace Must contain a user-defined, complex, Identifier, p. 4-189
BLOB, or CLOB data type.
kbytes Number of kilobytes to allocate Must be an integer value. Literal Number,
for the extent size p. 4-216
sbspace. Name of an area of storage Must exist. Identifier, p. 4-189

The column cannot be in the form column.field. That is, the smart large object
that you are storing cannot be one field of a ROW type.

A smart large object is contained in a single sbspace. The SBSPACENAME
configuration parameter specifies the system default in which smart large
objects are created unless you specify another area.

SQL Statements 2-249

CREATE TABLE

Specifying more than one sbspace distributes the smart large objects in a
round-robin distribution scheme, so that the number of smart large objects in
each space is approximately equal. The syscolattribs system catalog table
contains one row for each sbspace that you specify in the PUT clause.

When you fragment smart large objects across different sbspaces you can
work with smaller sbspaces. If you limit the size of an sbspace, backup and
archive operations can perform more quickly. For an example that uses the
PUT clause, see “Alternative to Full Logging” on page 2-251.

Six storage options are available to store BLOB and CLOB data:

Option Purpose

EXTENT SIZE Specifies how many kilobytes in a smart-large-object extent.
The database server might round the EXTENT SIZE up so that the
extents are multiples of the sbspace page size.

HIGH INTEG Produces user-data pages that contain a page header and a page
trailer to detect incomplete writes and data corruption.
This is the default data-integrity behavior.

KEEP ACCESS Records, in the smart-large-object metadata, the system time
TIME when the smart large object was last read or written.

LOG Follows the logging procedure used with the current database log
for the corresponding smart large object. This option can generate
large amounts of log traffic and increase the risk of filling the
logical log. (See also “Alternative to Full Logging” on page 2-251.)

NO KEEP Does not record the system time when the smart large object was
ACCESS TIME last read or written. This provides better performance than the
KEEP ACCESS TIME option, and is the default tracking behavior.

NO LOG Turns off logging. This option is the default behavior.

If a user-defined or complex data type contains more than one large object,
the specified large-object storage options apply to all large objects in the type
unless the storage options are overridden when the large object is created.

Important: The PUT clause does not affect the storage of simple-large-object data
types (BYTE and TEXT). For information on how to store BYTE and TEXT data, see
“Large-Object Data Types” on page 4-57.

2-250 IBM Informix Guide to SQL: Syntax

CREATE TABLE

Alternative to Full Logging

Instead of full logging, you can turn off logging when you load the smart
large object initially and then turn logging back on once the object is loaded.

Use the NO LOG option to turn off logging. If you use NO LOG, you can
restore the smart-large-object metadata later to a state in which no structural
inconsistencies exist. In most cases, no transaction inconsistencies will exist
either, but that result is not guaranteed.

The following statement creates the greek table. Data values for the table are
fragmented into the dbs1 and dbs2 dbspaces. The PUT clause assigns the
smart-large-object data in the gamma and delta columns to the sb1 and sb2
sbspaces, respectively. The TEXT data values in the eps column are assigned
to the blb1 blobspace.

CREATE TABLE greek

(alpha INTEGER,

beta VARCHAR(150),

gamma CLOB,

delta BLOB,

eps TEXT IN blbl)
FRAGMENT BY EXPRESSION
alpha <= 5 IN dbsl, alpha > 5 IN dbs2
PUT gamma IN (sbl), delta IN (sb2)

EXTENT SIZE Options

The EXTENT SIZE options can define the size of extents assigned to the table.

| EXTENT SIZE Options | Back to Storage Options

p. 2-236

—P \\\- ///f —\\\ ///,
EXTENT SIZE— first_kilobytes NEXT SIZE — next_kilobytes

Element

Purpose Restrictions Syntax

first_kilobytes

next_kilobytes

Length in kilobytes of the first ~ Must return a positive number; Expression, p.4-67
extent for the table; defaultis 16. maximum is the chunk size.
Length in kilobytes of each Must return a positive number; Expression, p.4-67
subsequent extent; default is 16. maximum is the chunk size.

—_— e

SQL Statements 2-251

CREATE TABLE

The minimum length of first_kilobytes (and of next_kilobytes) is four times the
disk-page size on your system. For example, if you have a 2-kilobyte page
system, the minimum length is 8 kilobytes.

The next example specifies a first extent of 20 kilobytes and allows the rest of
the extents to use the default size:

CREATE TABLE emp_info
(
f name CHAR (20) ,
1_name CHAR (20) ,
position CHAR (20) ,
start_date DATETIME YEAR TO DAY,
comments VARCHAR (255)

)
EXTENT SIZE 20

If you need to revise the extent sizes of a table, you can modify the extent and
next-extent sizes in the generated schema files of an unloaded table. For
example, to make a database more efficient, you might unload a table, modify
the extent sizes in the schema files, and then create and load a new table. For
information about how to optimize extents, see your Administrator’s Guide.

USING Access-Method Clause

The USING Access Method clause can specify an access method.

Clause

USING Access-Method Back to Options

p. 2-235

—p» USING —

Specific C) .

Name
(config_ keyword \ f)
= —' config_value '

-

Element

Purpose Restrictions Syntax

config_keyword

config_value

Configuration keyword associated No more than 18 bytes. The Literal keyword
with the specified access method access method must exist.

Value of the specified configuration No more than 236 bytes. Mustbe Quoted String,
keyword defined by the access method. p. 4-243

2-252 |BM Informix Guide to SQL: Syntax

CREATE TABLE

A primary-access method is a set of routines that perform all of the opera-
tions you need to make a table available to a database server, such as create,
drop, insert, delete, update, and scan. The database server provides a built-in
primary-access method.

You store and manage a virtual table either outside of the database server in
an extspace or inside the database server in an sbspace. (See “Storage
Options” on page 2-236.) You can access a virtual table with SQL statements.
Access to a virtual table requires a user-defined primary-access method.

DataBlade modules can provide other primary-access methods to access
virtual tables. When you access a virtual table, the database server calls the
routines associated with that access method rather than the built-in table
routines. For more information on these other primary-access methods, refer
to your access-method documentation.

You can retrieve a list of configuration values for an access method from a
table descriptor (mi_am_table_desc) using the MI_TAB_AMPARAM macro.
Not all keywords require configuration values.

The access method must already exist. For example, if an access method
called textfile exists, you can specify it with the following syntax:
CREATE TABLE mybook
(...

IN myextspace
USING textfile (DELIMITER=':"')

LOCK MODE Options

Use the LOCK MODE options to specify the locking granularity of the table.

LOCK MODE Back to Options
Options p. 2-235
—®—— LOCK MODE PAGE
ROW —
—TABLE

You can subsequently change the lock mode of the table with the ALTER
TABLE statement.

SQL Statements 2-253

CREATE TABLE

The following table describes the locking-granularity options available.

Granularity

Effect

PAGE

ROW

TABLE
(XPS only)

Obtains and releases one lock on a whole page of rows

This is the default locking granularity. Page-level locking is especially
useful when you know that the rows are grouped into pages in the
same order that you are using to process all the rows. For example, if
you are processing the contents of a table in the same order as its
cluster index, page locking is appropriate.

Obtains and releases one lock per row

Row-level locking provides the highest level of concurrency. If you
are using many rows at one time, however, the lock-management
overhead can become significant. You can also exceed the maximum
number of locks available, depending on the configuration of your
database server.

Places a lock on the entire table

This type of lock reduces update concurrency compared to row and

page locks. A table lock reduces the lock-management overhead for

the table With table locking, multiple read-only transactions can still
access the table.

Precedence and Default Behavior

In Dynamic Server, you do not have to specify the lock mode each time you
create a new table. You can globally set the locking granularity of all new
tables in the following environments:

m Database session of an individual user

You can set the IFX_DEF_TABLE_LOCKMODE environment variable
to specify the lock mode of new tables during your current session.

m Database server (all sessions on the database server)

If you are a DBA, you can set the DEF_TABLE_LOCKMODE configura-
tion parameter in the ONCONFIG file to determine the lock mode of
all new tables in the database server.

If you are not a DBA, you can set the IFX_DEF_TABLE_LOCKMODE
environment variable for the database server, before you run oninit,
to determine the lock mode of all new tables in the database server.

2-254 |BM Informix Guide to SQL: Syntax

CREATE TABLE

The LOCK MODE setting in a CREATE TABLE statement takes precedence over
the settings of the IFX_DEF_TABLE_LOCKMODE environment variable and
the DEF_TABLE_LOCKMODE configuration parameter.

If CREATE TABLE specifies no LOCK MODE setting, the default mode depends
on the setting of the IFX_DEF_TABLE_LOCKMODE environment variable or
the DEF_TABLE_LOCKMODE configuration parameter. For information about
IFX_DEF_TABLE_LOCKMODE, refer to the IBM Informix Guide to SQL:
Reference. For information about the DEF_TABLES_LOCKMODE configuration
parameter, refer to the Administrator’s Reference.

OF TYPE Clause

Use the OF TYPE clause to create a typed table for an object-relational database.
A typed table is a table that has a named-row type assigned to it.

OF TYPE Clause | Back to CREATE TABLE

— g OF TYPE—row._type—(

p.2-214

C

p. 2-201

) Options |—p
’
- ,. — [Multiple-Column
Field Definition } , \.| Constraint Format UNDER supertable

p. 2-231

e

Element Purpose Restrictions Syntax

row_type Name of the row type on which Must be a named-row data type Data Type, p. 4-49;
this table is based that exists in the database. Identifier, p. 4-189

supertable Name of the table from which ~ Must already exist as a typed Database Object
this table inherits its properties table. Name, p. 4-46

If you use the UNDER clause, the row_type must be derived from the row type
of the supertable. A type hierarchy must already exist in which the named-row
type of the new table is a subtype of the named-row type of the supertable.

Jagged rows are any set rows from a table hierarchy in which the number of
columns is not fixed among the typed tables within the hierarchy. Some APIs,
such as ESQL/C and JDBC, do not support queries that return jagged rows.

SQL Statements 2-255

CREATE TABLE

When you create a typed table, the columns of the table are not named in the
CREATE TABLE statement. Instead, the columns are specified when you create
the row type. The columns of a typed table correspond to the fields of the
named-row type. You cannot add additional columns to a typed table.

For example, suppose you create a named-row type, student_t, as follows:

CREATE ROW TYPE student t
(namee VARCHAR (30) ,
average REAL,
birthdate DATETIME YEAR TO DAY)

If a table is assigned the type student_t, the table is a typed table whose
columns are of the same name and data type (and in the same order) as the
fields of the type student_t. For example, the following CREATE TABLE
statement creates a typed table named students whose type is student_t:

CREATE TABLE students OF TYPE student_t
The students table has the following columns:

name VARCHAR (30)
average REAL
birthdate DATETIME

For more information about ROW types, refer to the CREATE ROW TYPE
statement on page 2-198.

Using Large-0bject Data in Typed Tables

Use the BLOB or CLOB instead of BYTE or TEXT data types when you create a
typed table that contains columns for large objects. For backward compati-
bility, you can create a named-row type that contains BYTE or TEXT fields and
use that type to re-create an existing (untyped) table as a typed table.
Although you can use a row type that contains BYTE or TEXT fields to create
a typed table, you cannot use such a row type as a column. You can use a row
type that contains BLOB or CLOB fields in both typed tables and columns.

Using the UNDER Clause

Use the UNDER clause to specify inheritance (that is, define the table as a
subtable). The subtable inherits properties from the supertable which it is
under. In addition, you can define new properties specific to the subtable.

2-256 IBM Informix Guide to SQL: Syntax

CREATE TABLE

Continuing the example shown in “OF TYPE Clause” on page 2-255, the
following statements create+ a typed table, grad_students, that inherits all of
the columns of the students table, but also has columns for adviser and
field_of_study that correspond to fields in the grad_student_t row type.

CREATE ROW TYPE grad_student_t
(adviser CHAR (25) ,
field of study CHAR(40)) UNDER student t;

CREATE TABLE grad_students OF TYPE grad_student_t UNDER students;

When you use the UNDER clause, the subtable inherits these properties:

All columns in the supertable

All constraints defined on the supertable
All indexes defined on the supertable
Referential integrity

The access method

The storage option (including fragmentation strategy)

If a subtable defines no fragments, but if its supertable has fragments
defined, then the subtable inherits the fragments of the supertable.

m All triggers defined on the supertable

Tip: Any heritable attributes that are added to a supertable after subtables have been
created will automatically be inherited by existing subtables. You do not need to add
all heritable attributes to a supertable before you create its subtables.

Restrictions on Table Hierarchies

Inheritance occurs in one direction only, namely from supertable to subtable.
Properties of subtables are not inherited by supertables. The section “System
Catalog Information” on page 2-259 lists the inherited database objects for
which the system catalog maintains no information regarding subtables.

No two tables in a table hierarchy can have the same data type. For example,
the final line of the next code example is invalid, because the tables tab2 and
tab3 cannot have the same row type (rowtype2):

create row type rowtypel (...);

create row type rowtype2 (...) under rowtypel;

create table tabl of type rowtypel;

create table tab2 of type rowtype2 under tabl;
--Invalid -->create table tab3 of type rowtype2 under tabl;

SQL Statements 2-257

CREATE TABLE

Privileges on Tables

The privileges on a table describe both who can access the information in the
table and who can create new tables. For more information about privileges,
see “GRANT” on page 2-459.

m In an ANSI-compliant database, no default table-level privileges exist. You
must grant these privileges explicitly. ¢

When set to yes, the environment variable NODEFDAC prevents default
privileges from being granted to PUBLIC on a new table in a database that is
not ANSI compliant.

For information about how to prevent privileges from being granted to
PUBLIC, see the NODEFDAC environment variable in the IBM Informix Guide
to SQL: Reference. For additional information about privileges, see the

IBM Informix Guide to SQL: Tutorial.

Default Index Creation Strategy for Constraints

When you create a table with unique or primary-key constraints, the
database server creates an internal, unique, ascending index for each
constraint.

When you create a table with a referential constraint, the database server
creates an internal, nonunique, ascending index for each column specified in
the referential constraint.

The database server stores this internal index in the same location that the
table uses. If you fragment the table, the database server stores the index
fragments in the same dbspaces as the table fragments or in some cases, the
database dbspace.

If you require an index fragmentation strategy that is independent of the
underlying table fragmentation, do not include the constraint when you
create the table. Instead, use the CREATE INDEX statement to create a unique
index with the desired fragmentation strategy. Then use the ALTER TABLE
statement to add the constraint. The new constraint uses the previously
defined index.

— Important: In a database without logging, detached checking is the only kind of
constraint checking available. Detached checking means that constraint checking is
performed on a row-by-row basis.

2-258 IBM Informix Guide to SQL: Syntax

XPS

CREATE TABLE

System Catalog Information

When you create a table, the database server adds basic information about
the table to the systables system catalog table and column information to
syscolumns system catalog table. The sysblobs system catalog table contains
information about the location of dbspaces and simple large objects. The
syschunks table in the sysmaster database contains information about the
location of smart large objects.

The systabauth, syscolauth, sysfragauth, sysprocauth, sysusers, and sysxt-
dtypeauth tables contain information about the privileges that various
CREATE TABLE options require. The systables, sysxtdtypes, and sysinherits
system catalog tables provide information about table types.

Constraints, indexes, and triggers are recorded in the system catalog for the
supertable, but not for subtables that inherit them. Fragmentation infor-
mation, however, is recorded for both supertables and subtables. For more
information about inheritance, refer to the IBM Informix Guide to SQL: Tutorial.

Related Information

Related statements: ALTER TABLE, CREATE INDEX, CREATE DATABASE,
CREATE EXTERNAL TABLE, CREATE ROW TYPE, CREATE Temporary TABLE,
DROP TABLE, SET Database Object Mode, and SET Transaction Mode

See also SET Default Table Type and SET Default Table Space. ¢

For discussions of database and table creation, including discussions on data
types, data-integrity constraints, and tables in hierarchies, see the
IBM Informix Database Design and Implementation Guide.

For information about the system catalog tables that store information about
objects in the database, see the IBM Informix Guide to SQL: Reference.

For information about the syschunks table (in the sysmaster database) that
contains information about the location of smart large objects, see your
Administrator’s Reference.

SQL Statements 2-259

CREATE TEMP TABLE

CREATE TEMP TABLE

Use the CREATE TEMP TABLE statement to create a temporary table in the
current database.

Syntax

CREATE TEMP TABLE table D;?r?ilt?on 4|

Table Definition
H)

(Column Definition) Opti
——(p. 2-263) o [

3
! Multiple-Column
’ Constraint Format WITH NO LOG
p. 2-264

Element Purpose Restrictions Syntax
table Name declared here for a table Must be unique in database. Database Object Name, p. 4-46

Usage

The CREATE TEMP TABLE statement is a special case of the CREATE
Temporary TABLE statement. The CREATE Temporary TABLE statement can
also create a SCRATCH table in an Extended Parallel Server database.

The syntax of the CREATE TEMP TABLE statement is a subset of the syntax that
the CREATE TABLE statement supports.

For the complete syntax and semantics of the CREATE TEMP TABLE
statement, see “CREATE Temporary TABLE” on page 2-261.

2-260 BM Informix Guide to SQL: Syntax

CREATE Temporary TABLE

CREATE Temporary TABLE

Use the CREATE Temporary TABLE statement to create a temporary table in
the current database.

Syntax
CREATE TEMP TABLE table Table H
J Definition
——SCRATCH
Table Definition
- .
Column Definition Options
(p. 2-263 e) p. 2-266
—
(Multiple-Column
’ Constraint Format WITH NO LOG
p. 2-264
Element Purpose Restrictions Syntax
table Name declared here for a table Must be unique in session. Database Object Name, p. 4-46
Usage

You must have the Connect privilege on the database to create a temporary
table. The temporary table is visible only to the user who created it.

In DB-Access, using the CREATE Temporary TABLE statement outside the
CREATE SCHEMA statement generates warnings if you set DBANSIWARN. ¢

E/C The CREATE Temporary TABLE statement generates warnings if you use the
-ansi flag or set the DBANSIWARN environment variable. ¢

Using the TEMP Option

Once you create a TEMP table, you can build indexes on the table.

SQL Statements 2-261

CREATE Temporary TABLE

Using the SCRATCH Option

Use the SCRATCH keyword to reduce the overhead of transaction logging. A
scratch table is a nonlogging temporary table that does not support indexes
or referential constraints. A scratch table is identical to a TEMP table created
with the WITH NO LOG option. Operations on scratch tables are not included
in transaction-log operations.

Naming a Temporary Table

A temporary table is associated with a session, not with a database. When
you create a temporary table, you cannot create another temporary table with
the same name (even for another database) until you drop the first temporary
table or end the session. The name must be different from the name of any
other table, view, or synonym in the current database, but it need not be
different from the temporary table names that are used by other users.

In an ANSI-compliant database, the combination owner.table must be unique
in the database. ¢

Using the WITH NO LOG Option

You should use a SCRATCH table rather than a TEMP...WITH NO LOG table.
The behavior of a temporary table that you create with the WITH NO LOG
option is the same as that of a SCRATCH table. ¢

Use the WITH NO LOG option to reduce the overhead of transaction logging.
If you specify WITH NO LOG, operations on the temporary table are not
included in the transaction-log operations. The WITH NO LOG option is
required on all temporary tables that you create in temporary dbspaces.

If you use the WITH NO LOG option in a database that does not use logging,
the WITH NO LOG keywords are ignored. If your database does not have
logging, any table behaves as if the WITH NO LOG option were specified. ¢

Once you turn off logging on a temporary table, you cannot turn it back on;
a temporary table is, therefore, always logged or never logged.

The following temporary table is not logged in a database that uses logging:

CREATE TEMP TABLE tab2 (fname CHAR(15), lname CHAR(15))
WITH NO LOG

2-262 IBM Informix Guide to SQL: Syntax

CREATE Temporary TABLE

Column Definition

Use the column definition portion of CREATE Temporary TABLE to list the
name, data type, default value, and constraints of a single column.

Column Back to CREATE Temporary TABLE
Definition p. 2-261
— = column Date:l'lzge -
p. 4-
\ DEFAULT / \ Single-Column /
Clause Constraint Format
p. 2-217 p. 2-263

Element Purpose Restrictions Syntax

column Name of a column in the table =~ Must be unique in its table. Identifier, p. 4-189

This portion of the CREATE Temporary TABLE statement is almost identical to
the corresponding section in the CREATE TABLE statement. The difference is
that fewer types of constraints are allowed in a temporary table.

Single-Column Constraint Format

Use the single-column constraint format to create one or more data-integrity
constraints for a single column in a temporary table.

Single-Column Back to Column Definition
Constraint Format p. 2-263
—P \ / UNIQUE -
NOT NULL —DISTINCT:{
PRIMARY KEY
CHECK Clause
p. 2-227

This is a subset of the syntax of “Single-Column Constraint Format” on
page 2-220 that the CREATE TABLE statement supports.

SQL Statements 2-263

CREATE Temporary TABLE

You can find detailed discussions of specific constraints in these sections.

Constraint For more information, see

CHECK “CHECK Clause” on page 2-227

DISTINCT “Using the UNIQUE or DISTINCT Constraints” on page 2-221
NOT NULL “Using the NOT NULL Constraint” on page 2-221

PRIMARY KEY “Using the PRIMARY KEY Constraint” on page 2-222

UNIQUE “Using the UNIQUE or DISTINCT Constraints” on page 2-221

Constraints that you define on temporary tables are always enabled.

Multiple-Column Constraint Format

Use the multiple-column constraint format to associate one or more columns
with a constraint. This alternative to the single-column constraint format
allows you to associate multiple columns with a constraint.

Multiple-Column Back to CREATE Temporary TABLE
Constraint Format p. 2-261

(column1)

— UNIQUE
l“ —DISTINCT
PRIMARY KEY
CHECK Clause
p. 2-227
Element Purpose Restrictions Syntax

column Name of the column or columns Must be unique in a table, but the same name Identifier,
on which the constraintis placed can be in different tables of the same database. p. 4-189

This is a subset of the syntax of “Multiple-Column Constraint Format” on
page 2-231 that the CREATE TABLE statement supports.

2-264 IBM Informix Guide to SQL: Syntax

CREATE Temporary TABLE

This alternative to the single-column constraint segment of CREATE
Temporary TABLE can associate multiple columns with a constraint.
Constraints that you define on temporary tables are always enabled.

The following table indicates where you can find detailed discussions of
specific constraints.

Constraint

For more information, see

For an example, see

CHECK

DISTINCT

PRIMARY KEY

UNIQUE

“CHECK Clause” on
page 2-227

“Using the UNIQUE or
DISTINCT Constraints” on
page 2-221

“Using the PRIMARY KEY
Constraint” on page 2-222

“Using the UNIQUE or
DISTINCT Constraints” on
page 2-221

“Defining Check Constraints
Across Columns” on page 2-233

“Examples of the Multiple-
Column Constraint Format” on
page 2-233

“Defining Composite Primary
and Foreign Keys” on page 2-234

“Examples of the Multiple-
Column Constraint Format” on
page 2-233

Options

The CREATE Temporary TABLE Options let you specify storage locations,
locking modes, and user-defined access methods. You cannot specify initial
and next extents for a temporary table. Extents for a temporary table are

always eight pages.
Back to CREATE Temporary TABLE
p. 2-261
0 |
Storage f\ LOCK MODE [1 USING [
k ~—] Options Options ACce&s-Method
WITH CRCOLS p. 2-266 p. 2-253 o 5“12856‘2

This is a subset of the syntax of “Options” on page 2-235 that the CREATE
TABLE statement supports.

SQL Statements 2-265

CREATE Temporary TABLE

Storage Options

Use the storage-option portion of the CREATE Temporary Table statement to
specify the distribution scheme for the table.

XPS If you are using Extended Parallel Server, you can fragment a temporary
table across multiple dbspaces that different coservers manage. ¢

Storage Back to Options
Options p. 2-265
*\
- oo W &i
L PUT Clause L EXTENT
— dbslice p. 2-249 SIZE
Options
p. 2-251
— extspace
\ FRAGMENT BY Clause
p. 2-238
Element Purpose Restrictions Syntax
dbspace Dbspace in which to store the table. Default is the Must already exist ~ Identifier, p. 4-189
dbspace that stores the current database
dbslice Name of the dbslice in which to store the table Must already exist Identifier, p. 4-189
extspace Name that onspaces assigned to a storage area Must already exist ~ See documentation
outside the database server for access method.

To create a fragmented, unique index on a temporary table, you must specify
an explicit expression-based distribution scheme for a temporary table in the
CREATE Temporary TABLE statement.

Where Temporary Tables are Stored

The distribution scheme that you specify with the CREATE Temporary TABLE
statement (either with the IN clause or the FRAGMENT BY clause) takes prece-
dence over the information that the DBSPACETEMP environment variable
and the DBSPACETEMP configuration parameter specify.

2-266 1BM Informix Guide to SQL: Syntax

XPS

XPS

CREATE Temporary TABLE

For temporary tables for which you do not specify an explicit distribution
scheme, each temporary table that you create round-robins to a dbspace that
the DBSPACETEMP environment variable or the DBSPACETEMP configu-
ration parameter specifies if the environment variable is not set.

For example, if you create three temporary tables, the first one goes into the
dbspace called tempspcl, the second one goes into tempspc2, and the third
one goes into tempspc3.

This behavior also applies to temporary tables that you create with
SELECT..INTO TEMP or SELECT...INTO SCRATCH.

For more information on the DBSPACETEMP environment variable, see the
IBM Informix Guide to SQL: Reference. For more information on the DBSPAC-
ETEMP configuration parameter, see your Administrator’s Reference.

The following example shows how to insert data into a temporary table
called result_tmp to output to a file the results of a user-defined function
(f_one) that returns multiple rows:

CREATE TEMP TABLE result tmp(...);
INSERT INTO result_ tmp EXECUTE FUNCTION f one();
UNLOAD TO 'file' SELECT * FROM templ;

In Extended Parallel Server, to re-create this example, use the CREATE
PROCEDURE statement instead of the CREATE FUNCTION statement. ¢

Differences between Temporary and Permanent Tables
Compared to permanent tables, temporary tables differ in these ways:

m They have fewer types of constraints available.
m They have fewer options that you can specify.
m They are not preserved.

For more information, see “Duration of Temporary Tables” on
page 2-268.

m They are not visible to other users or sessions.
m They do not appear in the system catalogs.
You can use the following data definition statements on a temporary table

from a secondary coserver: CREATE Temporary TABLE, CREATE INDEX,
CREATE SCHEMA, DROP TABLE, and DROP INDEX. ¢

SQL Statements 2-267

CREATE Temporary TABLE

XPS

The INFO statement and the Info Menu option of DB-Access cannot reference
temporary tables. ¢

Duration of Temporary Tables
The duration of a temporary table depends on whether or not it is logged.
Alogged temporary table exists until one of the following situations occurs:

m The application disconnects.
m A DROP TABLE statement is issued on the temporary table.

m The database is closed.
When any of these events occur, the temporary table is deleted.

Nonlogging temporary tables include tables that were created using the
WITH NO LOG option of CREATE TEMP TABLE and all SCRATCH tables.

A nonlogging temporary table exists until one of the following events occurs:

m The application disconnects.
m A DROP TABLE statement is issued on the temporary table.

Because these tables do not disappear when the database is closed, you can
use a nonlogging temporary table to transfer data from one database to
another while the application remains connected.

Related Information

Related statements: ALTER TABLE, CREATE TABLE, CREATE DATABASE, DROP
TABLE, and SELECT

See also SET Default Table Type and SET Default Table Space. ¢

For additional information about the DBANSIWARN and DBSPACETEMP
environment variables, refer to the IBM Informix Guide to SQL: Reference.

For additional information about the ONCONFIG parameter DBSPACETEMP,
see your Administrator’s Guide.

2-268 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER

CREATE TRIGGER

Use the CREATE TRIGGER statement to define a trigger on a table or on a view.

Syntax

CREATE TRIGGER

Trigger on a Table

Owner Name
p. 4-234 p. 2-270

- |

trigger p. 2270 |

Cm j aﬂ ENABLED
INSTEAD OF —| Trigger on a View \—l DISABLED

-

Element Purpose Restrictions Syntax
trigger Name that you declare here Must be unique among the names of Identifier, p. 4-189
for a new trigger triggers in the current database

Usage

A trigger, unless disabled, automatically executes a specified set of SQL state-
ments, called the trigger action, when a specified trigger event occurs.

The trigger event that initiates the trigger action can be an INSERT, DELETE,
UPDATE, or (for triggers on IDS tables only) a SELECT statement. The event
must specify the table or view on which the trigger is defined. (SELECT or
UPDATE events for triggers on tables can also specify one or more columns.)

You can use the CREATE TRIGGER statement in two distinct ways:

m Define a trigger on a table in the current database.

m Define an INSTEAD OF trigger on a view in the current database. ¢

Any SQL statement that is an instance of the trigger event is called a triggering
statement. When the event occurs, triggers defined on tables and triggers
defined on views differ in whether the triggering statement is executed:

m For tables, the trigger event and the trigger action both execute.

m For views, only the trigger action executes, instead of the event. ¢

SQL Statements 2-269

CREATE TRIGGER

This syntax defines the event and action of a trigger on a table or on a view:

Defining a Trigger Event and Action

Trigger on a Table Back to CREATE TRIGGER
p. 2-269

Action Clause
DELETE ON — table o e -
’ Correlated
Table
OLD >
~-SELECT OFCcolumn Declaration pAgt_lggs J
p. 2-284 :
H

N _ . OoLD NEW

UPDATE ON —table Declaration Declaration

p. 2-284 p. 2-285

__ Action Clause | /
INSERT ON —table p. 2-281

Trigger on a View Back to CREATE TRIGGER
p. 2-269

INSTEAD OF
Triggered Action
p. 2-306

—INSERT ON-view. FOR EACH ROW—]

AS
C REFERENCING NEWQ new
DELETE ON— view AS
\ / OLDA old

REFERENCINGj‘
UPDATE OvaiewlREFERENCING NEW \ / new
AS

-

_>

Element Purpose Restrictions Syntax

column The name of a column in the triggering table. Must exist Identifier, p. 4-189
new, old Old or new correlation name that you declare here. Unique in this trigger Identifier, p. 4-189
table, Name or synonym of the triggering table or view. Must exist in the Database Object
view The table or view can include an owner. qualifier.. current database Name, p. 4-46

- e

2-270 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER

The left-hand portion of this diagram (including the table or view) defines the
trigger event (sometimes called the triggering event). The rest of the diagram
declares correlation names and defines the trigger action (sometimes called
the triggered action). (For triggers on tables, see “Action Clause” on page 2-281
and “Correlated Table Action” on page 2-288. For INSTEAD OF triggers on
views, see “The Action Clause of INSTEAD OF Triggers” on page 2-306.)

This diagram simplifies the syntax of correlation names in UPDATE events.
You can declare either the old or the new name first, and the REFERENCING
keyword is not repeated if both an old and a new correlation are declared.

Rules for Triggers

To create a trigger on a table or a view, you must own the table or view, or
have DBA status. For the relationship between privileges of the trigger owner
and of other users, see “Privileges to Execute Trigger Actions” on page 2-298.

The table on which you create a trigger must exist in the current database.
You cannot create a trigger on any of the following types of tables:
m adiagnostics table, a violations table, or a table in another database
m araw table, a temporary table, or a system catalog table
You cannot create a trigger on a static table nor on a scratch table. When you

create a trigger on an operational table, the table cannot use light appends.
For more information on light appends, see the Administrator’s Guide. ¢

You must observe these rules when you define an INSTEAD OF trigger:

You can define an INSTEAD OF trigger only on a view, not on a table.
The view must be local to the current database.

The view cannot be an updatable view WITH CHECK OPTION.

No WHEN clause nor SELECT event is valid in an INSTEAD OF trigger,
No BEFORE or AFTER action is valid in an INSTEAD OF trigger.

No OF column clause is valid in an INSTEAD OF UPDATE trigger.
Any INSTEAD OF triggered action must specify FOR EACH ROW.
The triggered action cannot include EXECUTE PROCEDURE INTO.

If multiple tables underly the view, only its owner can create the trigger, but
that owner can grant DML privileges on the view to other users. ¢

SQL Statements 2-271

CREATE TRIGGER

“ In DB-Access, if you want to define a trigger as part of a schema, place the
CREATE TRIGGER statement inside a CREATE SCHEMA statement. ¢

E/C If you are embedding the CREATE TRIGGER statement in an ESQL/C program,
you cannot use a host variable in the trigger definition. ¢

You can use the DROP TRIGGER statement to remove an existing trigger.
If you use DROP TABLE or DROP VIEW to remove triggering tables or views
from the database, all triggers on those tables or views are also dropped.

Trigger Modes

You can set a trigger mode to enable or disable a trigger when you create it.

Trigger Modes Back to CREATE TRIGGER
p. 2-269

DISABLED X
—»—L ENABLED |

You can create triggers on tables or on views in ENABLED or DISABLED mode.

m When a trigger is created in ENABLED mode, the database server
executes the trigger action when the trigger event is encountered.
(If you specify no mode, ENABLED is the default mode.)

m When a trigger is created in DISABLED mode, the trigger event does
not cause execution of the trigger action. In effect, the database server
ignores the trigger and its action, even though the systriggers system
catalog table maintains information about the disabled trigger.

You can use the SET TRIGGERS option of the Database Object Mode statement
to set an existing trigger to the ENABLED or DISABLED mode.

After a DISABLED trigger is enabled by the SET TRIGGERS statement, the
database server can execute the trigger action when the trigger event is
encountered, but the trigger does not perform retroactively. The database
server does not attempt to execute the trigger for rows that were inserted,
deleted, or updated while the trigger was disabled and before it was enabled.

Warning: Because the behavior of a trigger varies according to its ENABLED or

DISABLED mode, be cautious about disabling a trigger. If disabling a trigger will

eventually destroy the semantic integrity of the database, do not disable the trigger.

2-272 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER

Triggers and SPL Routines

You cannot define a trigger in an SPL routine that is called inside a DML (data
manipulation language) statement. Thus, the following statement returns an
error if the sp_items procedure includes the CREATE TRIGGER statement:

INSERT INTO items EXECUTE PROCEDURE sp_items

(The DML statements are listed in “Data Manipulation Statements” on

page 1-10.) SPL variables are not valid in CREATE TRIGGER statements. An
SPL routine called by a trigger cannot perform INSERT, DELETE, or UPDATE
operations on any table or view that is not local to the current database.

See also “Rules for SPL Routines” on page 2-298 for additional restrictions on
SPL routines that are invoked in triggered actions.

Trigger Events

The trigger event specifies what DML statements can initiate the trigger. The
event can be an INSERT, DELETE, or UPDATE operation on the table or view, or
(for IDS tables only) a SELECT operation that manipulates the fable. You must
specify exactly one trigger event. Any SQL statement that is an instance of the
trigger event is called a triggering statement.

For each table, you can define only one trigger that is activated by an INSERT
statement and only one trigger that is activated by a DELETE statement. The
same table, however, can have multiple triggers that are activated by UPDATE
or SELECT statements, provided that each trigger specifies a disjunct set of
columns in defining the UPDATE or SELECT event on the table.

The INSTEAD OF trigger replaces the trigger event with a triggered action.
A view can have no more than one INSTEAD OF trigger defined for each type
of event (INSERT, DELETE, or UPDATE). You can, however, define a trigger on
one or more other views, each with its own INSTEAD OF trigger. ¢

You cannot specify a DELETE event if the triggering table has a referential
constraint that specifies ON DELETE CASCADE.

You are responsible for guaranteeing that the triggering statement returns the
same result with and without the trigger action. See also the sections “Action
Clause” on page 2-281 and “Triggered-Action List” on page 2-288.

A triggering statement from an external database server can activate the
trigger.

SQL Statements 2-273

CREATE TRIGGER

As the following example shows, an insert trigger on newtab, managed by
dbserverl, is activated by an INSERT statement from dbserver2. The trigger
executes as if the insert originated on dbserverl.

-- Trigger on stores_demo@dbserverl:newtab
CREATE TRIGGER ins_tr INSERT ON newtab
REFERENCING new AS post_ins
FOR EACH ROW (EXECUTE PROCEDURE nt pct (post_ins.mc));
-- Triggering statement from dbserver2
INSERT INTO stores_demo@dbserverl:newtab
SELECT item num, order num, quantity, stock num, manu_code,
total price FROM items;

Trigger Events with Cursors

For triggers on tables, if the triggering statement uses a cursor, each part of
the trigger action (including BEFORE, FOR EACH ROW, and AFTER, if these are
specified for the trigger) is activated for each row that the cursor processes.

This behavior differs from what occurs when a triggering statement does not
use a cursor and updates multiple rows. In this case, any BEFORE and AFTER
triggered actions execute only once, but the FOR EACH ROW action list is
executed for each row processed by the triggering statement. For additional
information about trigger actions, see “Action Clause” on page 2-281.

Privileges on the Trigger Event

You must have appropriate Insert, Delete, Update, or Select privilege on the
triggering table or view to execute a triggering INSERT, DELETE, UPDATE, or
SELECT statement as the trigger event. The triggering statement might still
fail, however, if you do not also have the privileges necessary to execute one
of the SQL statements in the trigger action. When the trigger actions are
executed, the database server checks your privileges for each SQL statement
in the trigger definition, as if the statement were being executed indepen-
dently of the trigger. For information on the privileges needed to execute the
trigger actions, see “Privileges to Execute Trigger Actions” on page 2-298.

Performance Impact of Triggers

The INSERT, DELETE, UPDATE, and SELECT statements that initiate triggers
might appear to execute slowly because they activate additional SQL state-
ments, and the user might not know that other actions are occurring.

2-274 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER

The execution time for a trigger event depends on the complexity of the
trigger action and whether it initiates other triggers. The time increases as the
number of cascading triggers increases. For more information on triggers
that initiate other triggers, see “Cascading Triggers” on page 2-300.

INSERT Events and DELETE Events

INSERT and DELETE events on tables are defined by those keywords and by
the ON table clause, using the following syntax.

INSERT or DELETE Back to Trigger on a Table
Event on a Table p. 2-270

ﬁINSERTTONi table |
DELETE

Element Purpose Restrictions Syntax
table Name of the triggering table Must exist in the database Identifier, p. 4-189

An insert trigger is activated when an INSERT statement includes the
specified table (or a synonym for table) in its INTO clause. Similarly, a delete
trigger is activated when a DELETE statement includes the specified table (or
a synonym for table) in its FROM clause.

“ For triggers on views, the INSTEAD OF keywords must immediately precede
the INSERT, DELETE, or UPDATE keyword that specifies the type of trigger
event, and the name or synonym of a view (rather than of a table) must follow
the ON keyword. The section “INSTEAD OF Triggers on Views” on

page 2-305 describes s the syntax for defining INSTEAD OF trigger events. ¢

No more than one insert trigger, and no more than one delete trigger, can be
defined on the same table.

If you define a trigger on a child table within a table hierarchy, and the child
table supports cascading deletes, then a DELETE operation on the parent table
activates the delete trigger on the child table.

See also the section “Re-Entrancy of Triggers” on page 2-294 for information
about dependencies and restrictions on the actions of insert triggers and
delete triggers.

SQL Statements 2-275

CREATE TRIGGER

UPDATE Event

UPDATE events (and SELECT events) can include an optional column list.

UPDATE Back to Trigger on a Table
Event

ﬁ ; j p. 2-270
—p———————— UPDATE \OF column

/ ON_table — pp

-

Element Purpose Restrictions Syntax
column Column that activates the trigger Must exist in the triggering table Identifier, p. 4-189
table Name of the triggering table Must exist in the database Identifier, p. 4-189

If you define more than one update trigger on the same table, the column list
is required, and the column lists for each trigger must be mutually exclusive.
If you omit the OF column list, updating any column activates the trigger.

“ The OF column clause is not valid for an INSTEAD OF trigger on a view. ¢
An UPDATE on the triggering table can activate the trigger in two cases:

m The UPDATE statement references any column in the column list.

m The UPDATE event definition has no OF column list specification.

Whether it updates one column or more than one column from the column
list, a triggering UPDATE statement activates the update trigger only once.

Defining Multiple Update Triggers

Multiple update triggers on the same table cannot include the same columns.
In the following example, trig3 is not valid on the items table because its
column list includes stock_num, which is a triggering column in trig1.

CREATE TRIGGER trigl UPDATE OF item num, stock num ON items
REFERENCING OLD AS pre NEW AS post
FOR EACH ROW (EXECUTE PROCEDURE procl()) ;

CREATE TRIGGER trig2 UPDATE OF manu_code ON items
BEFORE (EXECUTE PROCEDURE proc2()) ;

-- Illegal trigger: stock num occurs in trigl

CREATE TRIGGER trig3 UPDATE OF order num, stock num ON items
BEFORE (EXECUTE PROCEDURE proc3()) ;

2-276 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER

When an UPDATE statement updates multiple columns that have different
triggers, the column numbers of the triggering columns determine the order
of trigger execution. Execution begins with the smallest triggering column
number and proceeds in order to the largest triggering column number. The
following example shows that table taba has four columns (a, b, c, d):

CREATE TABLE taba (a int, b int, ¢ int, d int)

Define trigl as an update on columns a and ¢, and define trig2 as an update
on columns b and d, as the following example shows:

CREATE TRIGGER trigl UPDATE OF a, c¢ ON taba
AFTER (UPDATE tabb SET y =y + 1);

CREATE TRIGGER trig2 UPDATE OF b, d ON taba
AFTER (UPDATE tabb SET z = z + 1);

The following example shows a triggering statement for the update trigger:
UPDATE taba SET (b, c) = (b + 1, ¢ + 1)

Then trigl for columns a and ¢ executes first, and trig2 for columns b and d
executes next. In this case, the smallest column number in the two triggers is
column 1 (a), and the next is column 2 (b).

[ibs | SELECT Event

DELETE and INSERT events are defined by those keywords (and the ON table
clause), but SELECT and UPDATE events also support an optional column list.

SELECT Back to Trigger on a Table
0

Event ﬁ ’ j p
—»———SELECT \OF column I ON— table ———p»

Element Purpose Restrictions Syntax
column Column that activates the trigger Must exist in the triggering table Identifier, p. 4-189
table Name of the triggering table Must exist in the database Identifier, p. 4-189

If you define more than one select trigger on the same table, the column list is
required, and the column lists for each trigger must be mutually exclusive.

SQL Statements 2-277

CREATE TRIGGER

A SELECT on the triggering table can activate the trigger in two cases:

m The SELECT statement references any column in the column list.
m The SELECT event definition has no OF column list specification.

(Sections that follow, however, describe additional circumstances that can
affect whether or not a SELECT statement activates a select trigger.)

Whether it specifies one column or more than one column from the column
list, a triggering SELECT statement activates the select trigger only once.

The action of a select trigger cannot include an UPDATE, INSERT, or DELETE
on the triggering table. The action of a select trigger can include UPDATE,
INSERT, and DELETE actions on tables other than the triggering table.
The following example defines a select trigger on one column of a table:
CREATE TRIGGER mytrig
SELECT OF cola ON mytab REFERENCING OLD AS pre
FOR EACH ROW (INSERT INTO newtab ('for each action'))

You cannot specify a SELECT event for an INSTEAD OF trigger on a view.

Circumstances When a Select Trigger is Activated
A query on the triggering table activates a select trigger in these cases:

The SELECT statement is a standalone SELECT statement.
The SELECT statement occurs within a UDR called in a select list.
The SELECT statement is a subquery in a select list.

The SELECT statement occurs within a UDR called by EXECUTE
PROCEDURE or EXECUTE FUNCTION.

m The SELECT statement selects data from a supertable in a table
hierarchy. In this case the SELECT statement activates select triggers
for the supertable and all the subtables in the hierarchy. ¢

For information on SELECT statements that do not activate a select trigger, see
“Circumstances When a Select Trigger is Not Activated” on page 2-280.

Standalone SELECT Statements

A select trigger is activated if the triggering column appears in the select list
of the projection clause of a standalone SELECT statement.

2-278 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER

For example, if a select trigger is defined to execute whenever column col1 of
table tab1 is selected, then both of the following standalone SELECT state-
ments activate the select trigger:

SELECT * FROM tabl;
SELECT coll FROM tabl;

SELECT Statements Within UDRs in the Select List

A select trigger is activated by a UDR if the UDR contains a SELECT statement
within its statement block, and the UDR also appears in the select list of the
projection clause of a SELECT statement. For example, assume that a UDR
named my_rtn contains this SELECT statement in its statement block:

SELECT coll FROM tabl

Now suppose that the following SELECT statement invokes the my_rtn UDR
in its select list:

SELECT my_ rtn() FROM tab2

This SELECT statement activates the select trigger defined on column col1 of
table tab1 when the my_rtn UDR is executed.

UDRs That EXECUTE PROCEDURE and EXECUTE FUNCTION Call

A select trigger is activated by a UDR if the UDR contains a SELECT statement
within its statement block and the UDR is called by an EXECUTE PROCEDURE
or (for IDS triggers only) the EXECUTE FUNCTION statement. For example,
assume that the user-defined procedure named my_rtn contains the
following SELECT statement in its statement block:

SELECT coll FROM tabl
Now suppose that the following statement invokes the my_rtn procedure:
EXECUTE PROCEDURE my_rtn()

This statement activates the select trigger defined on column col1 of table
tab1 when the SELECT statement within the statement block is executed.

Subqueries in the Select List

A select trigger can be activated by a subquery that appears in the select list
of the projection clause of a SELECT statement.

SQL Statements 2-279

CREATE TRIGGER

For example, if a select trigger was defined on col1 of tab1, the subquery in
the following SELECT statement activates that trigger:

SELECT (SELECT coll FROM tabl WHERE coll=1), colx, col y FROM tabz

Select Triggers in Table Hierarchies

A subtable inherits the select triggers that are defined on its supertable. When
you select from a supertable, the SELECT statement activates the select
triggers on the supertable and the inherited select triggers on the subtables in
the table hierarchy.

For example, assume that table tab1 is the supertable and table tab2 is the

subtable in a table hierarchy. If the select trigger trigl is defined on table tab1,
a SELECT statement on table tab1 activates the select trigger trig1 for the rows
in table tab1 and the inherited select trigger trigl for the rows in table tab2.

If you add a select trigger to a subtable, this select trigger can override the
select trigger that the subtable inherits from its supertable. For example, if the
select trigger trigl is defined on column col1 in supertable tab1, the subtable
tab2 inherits this trigger. But if you define a select trigger named trig2 on
column col1l in subtable tab2, and a SELECT statement selects from col1l in
supertable tab1, this SELECT statement activates trigger trigl for the rows in
table tab1 and trigger trig2 (not trigger trig1) for the rows in table tab2. In
other words, the trigger that you add to the subtable overrides the trigger
that the subtable inherits from the supertable.

Circumstances When a Select Trigger is Not Activated

A SELECT statement on the triggering table does not activate a select trigger
in certain circumstances:

m If a subquery or UDR that contains the triggering SELECT statement
appears in any clause of a SELECT statement other than the select list,
the select trigger is not activated.

For example, if the subquery or UDR appears in the WHERE clause or
HAVING clause of a SELECT statement, the SELECT statement within
the subquery or UDR does not activate the select trigger.

m If the trigger action of a select trigger calls a UDR that includes
a triggering SELECT statement, the select trigger on the SELECT in the
UDR is not activated. Cascading select triggers are not supported.

2-280 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER

If a SELECT statement contains a built-in aggregate or user-defined
aggregate in its select list, the select trigger is not activated. For
example, the following SELECT statement does not activate a select
trigger defined on col1 of tab1:

SELECT MIN(coll) FROM tabl
A SELECT statement that includes the UNION or UNION ALL
operator does not activate a select trigger.
The SELECT clause of INSERT does not activate a select trigger.

If the select list of a SELECT includes the DISTINCT or UNIQUE
keywords, the SELECT statement does not activate a select trigger.

Select triggers are not supported on scroll cursors.

If a SELECT statement refers to a remote triggering table, the select
trigger is not activated on the remote database server.

Columns in the ORDER BY list of a query activate no select triggers
(nor any other triggers) unless also listed in the Projection clause. ¢

Action Clause

Action Back to Trigger on a Table
Clause p. 2-270
Al'ritggete_dt Triggered \
RE -] Action LIS FOR EACH ROW-]Action List

»— BEFO p. 2-288 b. 2-288 \ — / -

riggere:
AFTER — Action List

p. 2-288

The action clause defines trigger actions and can specify when they occur.
You must define at least one trigger action, using the keywords BEFORE, FOR
EACH ROW, or AFTER to indicate when the action occurs relative to execution
of the triggering statement.

You can specify actions for any or all of these three options on a single trigger,
but any BEFORE action list must be specified first, and any AFTER action list
must be specified last. For more information on the action clause when a
REFERENCING clause is also specified, see “Correlated Table Action” on
page 2-288.

SQL Statements 2-281

CREATE TRIGGER

ﬁ ><
o
(2]

BEFORE Actions

The list of BEFORE trigger actions execute once before the triggering
statement executes. Even if the triggering statement does not process
any rows, the database server executes the BEFORE trigger actions.

FOR EACH ROW Actions

After a row of the triggering table is processed, the database server executes
all of the statements of the FOR EACH ROW trigger action list; this cycle is
repeated for every row that the triggering statement processes. (But if the
triggering statement does not insert, delete, update, or select any rows, the
database server does not execute the FOR EACH ROW trigger actions.)

You cannot define FOR EACH ROW actions on tables that have globally-
detached indexes. ¢

The FOR EACH ROW action list of a select trigger is executed once for each

instance of a row. For example, the same row can appear more than once in
the result of a query joining two tables. For more information on FOR EACH
ROW actions, see “Guaranteeing Row-Order Independence” on page 2-283. ¢

AFTER Actions

The specified set of AFTER trigger actions executes once after the action of the
triggering statement is complete. If the triggering statement does not process
any rows, the AFTER trigger actions still execute.

Actions of Multiple Triggers

When an UPDATE statement activates multiple triggers, the trigger actions
merge. Assume that taba has columns a, b, ¢, and d, as this example shows:

CREATE TABLE taba (a int, b int, ¢ int, d int)

Next, assume that you define trigl on columns a and ¢, and trig2 on columns
b and d. If both triggers specify BEFORE, FOR EACH ROW, and AFTER actions,
then the trigger actions are executed in the following order:

1. BEFORE action list for trigger (a, c)

2. BEFORE action list for trigger (b, d)

2-282 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER

3. FOREACH ROW action list for trigger (a, c)
4. FOREACH ROW action list for trigger (b, d)
5. AFTER action list for trigger (a, c)
6. AFTER action list for trigger (b, d)

The database server treats all the triggers that are activated by the same
triggering statement as a single trigger, and the trigger action is the merged-
action list. All the rules that govern a trigger action apply to the merged list
as one list, and no distinction is made between the two original triggers.

Guaranteeing Row-Order Independence

In a FOR EACH ROW triggered-action list, the result might depend on the
order of the rows being processed. You can ensure that the result is
independent of row order by following these suggestions:

m Avoid selecting the triggering table in the FOR EACH ROW section.

If the triggering statement affects multiple rows in the triggering
table, the result of the SELECT statement in the FOR EACH ROW sec-
tion varies as each row is processed. This condition also applies to
any cascading triggers. See “Cascading Triggers” on page 2-300.

m In the FOR EACH ROW section, avoid updating a table with values
derived from the current row of the triggering table.

If the trigger actions modify any row in the table more than once, the
final result for that row depends on the order in which rows from the
triggering table are processed.

m Avoid modifying a table in the FOR EACH ROW section that is
selected by another statement in the same FOR EACH ROW trigger
action, including any cascading trigger actions.

If FOR EACH ROW actions modify a table, the changes might not be complete
when a subsequent action of the trigger refers to the table. In this case, the
result might differ, depending on the order in which rows are processed.

The database server does not enforce rules to prevent these situations
because doing so would restrict the set of tables from which a trigger action
can select. Furthermore, the result of most trigger actions is independent of
row order. Consequently, you are responsible for ensuring that the results of
the trigger actions are independent of row order.

SQL Statements 2-283

CREATE TRIGGER

RERERENCING Clauses

The REFERENCING clause for any event declares a correlation name that can
be used to qualify column values in the triggering table. They enable FOR
EACH ROW actions to reference new values in the result of trigger events.

They also enable FOR EACH ROW actions to reference old column values that
existed in the triggering table prior to modification by trigger events.

REFERENCING Clause for Delete

REFERENCING Back to Trigger on a Table
Clause for Delete p. 2-270
—pp»——— REFERENCING OoLD \ / correlation |
AS
Element Purpose Restrictions Syntax
correlation Name that you declare here for old column Must be unique within this Identifier,
value for use within the trigger action CREATE TRIGGER statement. p- 4-189

The correlation is a qualifier for the column value in the triggering table before
the triggering statement executed. The correlation is in scope in the FOR EACH
ROW trigger action list. See “Correlated Table Action” on page 2-288.

To use a correlation name in a trigger action to refer to an old column value,
prefix the column name with the correlation name and a period (.) symbol.
For example, if the NEW correlation name is post, refer to the new value for
the column fname as post.fname.

If the trigger event is a DELETE statement, using the NEW correlation name as
a qualifier causes an error, because the column has no value after the row is
deleted. For the rules that govern the use of correlation names, see “Using
Correlation Names in Triggered Actions” on page 2-292.

You can use the REFERENCING clause for Delete only if you define a FOR
EACH ROW trigger action.

XPS The OLD correlation value cannot be a BYTE or TEXT value. That is, it cannot
refer to a BYTE or TEXT column. ¢

2-284 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER

REFERENCING Clause for Insert

REFERENCING Back to Trigger on a Table
Clause for Insert p. 2-270
—pp»———— REFERENCING NEW \ f correlation —— P
AS

-

Element Purpose Restrictions Syntax
correlation Name that you declare here for a new column Must be unique within this Identifier,
value for use within the trigger action CREATE TRIGGER statement. p. 4-189

The correlation is a name for the new column value after the triggering
statement has executed. Its scope of reference is only the FOR EACH ROW
trigger action list; see “Correlated Table Action” on page 2-288. To use the
correlation name, precede the column name with the correlation name,
followed by a period (.) symbol. Thus, if the NEW correlation name is post,
refer to the old value for the column fname as post.fname.

If the trigger event is an INSERT statement, using the OLD correlation name as
a qualifier causes an error, because no value exists before the row is inserted.
For the rules that govern how to use correlation names, see “Using Corre-
lation Names in Triggered Actions” on page 2-292. You can use the INSERT
REFERENCING clause only if you define a FOR EACH ROW trigger action.

The following example illustrates use of the INSERT REFERENCING clause.
This example inserts a row into backup_tablel for every row that is inserted
into tablel. The values that are inserted into coll and col2 of backup_tablel
are an exact copy of the values that were just inserted into tablel.

CREATE TABLE tablel (coll INT, col2 INT);
CREATE TABLE backup_ tablel (coll INT, col2 INT);
CREATE TRIGGER before_trig

INSERT ON tablel REFERENCING NEW AS new

FOR EACH ROW

(

INSERT INTO backup_ tablel (coll, col2)

VALUES (new.coll, new.col2)

)

As the preceding example shows, the INSERT REFERENCING clause allows
you to refer to data values produced by the trigger action.

SQL Statements 2-285

CREATE TRIGGER

REFERENCING Clause for Update

REFERENCING Back to Trigger on a Table
Clause for Update p. 2-270

—p»———REFERENCING OLD l f correlation L’
NEWJ AS

Element Purpose Restrictions Syntax

correlation Name that you declare here for old or new Must be unique within this Identifier,
column value for use within the trigger action = CREATE TRIGGER statement. p. 4-189

The OLD correlation is the name of the value of the column in the triggering
table before execution of the triggering statement; the NEW correlation
identifies the corresponding value after the triggering statement executes.

The scope of reference of the correlation names that you declare here is only
within the FOR EACH ROW trigger action list. See “Correlated Table Action”
on page 2-288.

To refer to an old or new column value, prefix the column name with the
correlation name and a period (.) symbol. For example, if the NEW correlation
name is post, you can refer to the new value in column fname as post.fname.

If the trigger event is an UPDATE statement, you can define both OLD and
NEW correlation names to refer to column values before and after the
triggering UPDATE statement. For rules that govern the use of correlation
names, see “Using Correlation Names in Triggered Actions” on page 2-292.

You can use the UPDATE REFERENCING clause only if you define a FOR EACH
ROW trigger action.

XPS The OLD correlation value cannot be a BYTE or TEXT value. That is, it cannot
refer to a BYTE or TEXT column. ¢

2-286 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER

“ ‘ REFERENCING Clause for Select

REFERENCING Back to Trigger on a Table
Clause for Select p. 2-270
—p»————————— REFERENCING OLD \ I correlation -
AS
Element Purpose Restrictions Syntax
correlation Name that you declare here for old column Must be unique within this Identifier,
value for use within the trigger action CREATE TRIGGER statement. p. 4-189

This clause has the same syntax as the “REFERENCING Clause for Delete”
on page 2-284. The scope of reference of the correlation name that you declare
here is only within the FOR EACH ROW trigger action list. See “Correlated
Table Action” on page 2-288.

You use the correlation name to refer to an OLD column value by preceding
the column name with the correlation name and a period (.) symbol. For
example, if the OLD correlation name is pre, you can refer to the old value for
the column fname as pre.fname.

If the trigger event is a SELECT statement, using the NEW correlation name as
a qualifier causes an error because the column does not have a NEW value
after the column is selected. For the rules that govern the use of correlation
names, see “Using Correlation Names in Triggered Actions” on page 2-292.

You can use the SELECT REFERENCING clause only if you define a FOR EACH
ROW trigger action.

SQL Statements 2-287

CREATE TRIGGER

Correlated Tahle Action

Correlated Table Back to CREATE TRIGGER
Action p. 2-269
Triggered-
Triggered- / p. 2-288 \ Triggered- /
BEFORE - Action List AFTER A Action List
p. 2-288 p. 2-288

If the CREATE TRIGGER statement contains an INSERT REFERENCING clause,
a DELETE REFERENCING clause, an UPDATE REFERENCING clause, or (for
Dynamic Server only) a SELECT REFERENCING clause, you must include a
FOR EACHROW triggered-action list in the action clause. You can also include
BEFORE and AFTER triggered-action lists, but they are optional.

For information on the BEFORE, FOR EACH ROW, and AFTER triggered-action
lists, see “Action Clause” on page 2-281.

XPS You cannot have FOR EACH ROW actions on tables that have globally-
detached indexes. ¢

Triggered-Action List

Triggered Back to Action Clause p. 2-281
Action List Back to Correlated Table Action p. 2-288
J
J
INSERT Statement)
— (p. 2-489)

DELETE Statement

p. 2-323
UPDATE Statement
p. 2762 EXECUTE
Conditi
WHEN—({ 5424) PROCEDURE

t
8 | EXECUTE FUNCTION S;,_“;.Tff

K_ Statement

p. 2-404

2-288 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER

For a trigger on a table, the trigger action consists of an optional WHEN
condition and the action statements. You can specify a triggered-action list
for each WHEN clause, or you can specify a single list (of one or more trigger
actions) if you include no WHEN clause.

Database objects that are referenced explicitly in the trigger action or in the
definition of the trigger event, such as tables, columns, and UDRs, must exist
when the CREATE TRIGGER statement defines the new trigger.

Warning: When you specify a date expression in the WHEN condition or in an action
statement, make sure to specify 4 digits instead of 2 digits for the year. For more about
abbreviated years, see the description of DBCENTURY in the “IBM Informix Guide to
SQL: Reference,” which also describes how the behavior of some database objects can
be affected by environment variable settings. Like fragmentation expressions, check
constraints, and UDRs, triggers are stored in the system catalog with the creation-
time settings of environment variables that can affect the evaluation of expressions
like the WHEN(condition).The database server ignores any subsequent changes to
those settings when evaluating expressions in those database objects.

WHEN Condition

The WHEN condition makes the triggered action dependent on the outcome
of a test. When you include a WHEN condition in a triggered action, the state-
ments in the triggered action list execute only if the condition evaluates to
true. If the WHEN condition evaluates to false or unknown, then the state-
ments in the triggered action list are not executed.

If the triggered action is in a FOR EACH ROW section, its condition is evaluated
for each row. For example, the triggered action in the following trigger
executes only if the condition in the WHEN clause is true:

CREATE TRIGGER up_price
UPDATE OF unit_price ON stock
REFERENCING OLD AS pre NEW AS post
FOR EACH ROW WHEN (post.unit price > pre.unit_price * 2)
(INSERT INTO warn_tab VALUES (pre.stock_num, pre.order_num,
pre.unit_price, post.unit_price, CURRENT))

An SPL routine that executes inside the WHEN condition carries the same
restrictions as a UDR that is called in a data-manipulation statement.That is,
the SPL routine cannot contain certain SQL statements. For information on
which statements are restricted, see “Restrictions on SPL Routines in Data-
Manipulation Statements” on page 4-279. ¢

SQL Statements 2-289

CREATE TRIGGER

Action Statements

The triggered-action statements can be INSERT, DELETE, UPDATE, EXECUTE
FUNCTION, or EXECUTE PROCEDURE statements. If the action list contains
multiple statements, and the WHEN condition is satisfied (or is absent), then
these statements execute in the order in which they appear in the list.

UDRs as Triggered Actions
User-defined functions and procedures can be triggered actions.

Use the EXECUTE FUNCTION statement to call any user-defined function. Use
the EXECUTE PROCEDURE statement to call any user-defined procedure. ¢

Use the EXECUTE PROCEDURE statement to execute any SPL routine. ¢

For restrictions on using SPL routines as triggered actions, see “Rules for SPL
Routines” on page 298 and “Rules for Triggers” on page 2-271.

Achieving a Consistent Result

To guarantee that the triggering statement returns the same result with and
without the triggered actions, make sure that the triggered actions in the
BEFORE and FOR EACH ROW sections do not modify any table referenced in
the following clauses:

WHERE clause

SET clause in the UPDATE statement

SELECT clause

EXECUTE PROCEDURE clause or EXECUTE FUNCTION clause in a
multiple-row INSERT statement

Using Reserved Words

If you use the INSERT, DELETE, UPDATE, or EXECUTE reserved words as an
identifier in any of the following clauses inside a triggered action list, you
must qualify them by the owner name, the table name, or both:

m FROM clause of a SELECT statement

m INTO clause of the EXECUTE PROCEDURE or EXECUTE FUNCTION
statement

2-290 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER

m GROUP BY clause
m SET clause of the UPDATE statement

You get a syntax error if these keywords are not qualified when you use these
clauses inside a triggered action.

If you use the keyword as a column name, it must be qualified by the table
name; for example, table.update. If both the table name and the column
name are keywords, they must be qualified by the owner name (for example,
owner.insert.update). If the owner name, table name, and column name are
all keywords, the owner name must be in quotes; for example,
'delete'.insert.update. (These are general rules regarding reserved words as
identifiers, rather than special cases for triggers. Your code will be easier to
read and to maintain if you avoid using the keywords of SQL as identifiers.)

The only exception is when these keywords are the first table or column name
in the list, and you do not have to qualify them. For example, delete in the
following statement does not need to be qualified because it is the first
column listed in the INTO clause:

CREATE TRIGGER tl UPDATE OF b ON tabl
FOR EACH ROW (EXECUTE PROCEDURE p2 () INTO delete, d)

The following statements show examples in which you must qualify the
column name or the table name:

m FROM clause of a SELECT statement

CREATE TRIGGER tl INSERT ON tabl
BEFORE (INSERT INTO tab2 SELECT * FROM tab3,
'ownerl' .update)

m INTO clause of an EXECUTE PROCEDURE statement

CREATE TRIGGER t3 UPDATE OF b ON tabl
FOR EACH ROW (EXECUTE PROCEDURE p2 () INTO
d, tabl.delete)

(Note that an INSTEAD OF trigger on a view cannot include the
EXECUTE PROCEDURE INTO statement among its trigger actions.) ¢
m GROUP BY clause of a SELECT statement

CREATE TRIGGER t4 DELETE ON tabl
BEFORE (INSERT INTO tab3 SELECT deptno, SUM(exp)
FROM budget GROUP BY deptno, budget.update)

m SET clause of an UPDATE statement

CREATE TRIGGER t2 UPDATE OF a ON tabl
BEFORE (UPDATE tab2 SET a = 10, tab2.insert = 5)

SQL Statements 2-291

CREATE TRIGGER

Using Correlation Names in Triggered Actions

These rules apply when you use correlation names in triggered actions:

m You can use the correlation names for the old and new column values
in SQL statements of the FOR EACH ROW triggered-action list and in
the WHEN condition.

m The old and new correlation names refer to all rows affected by the
triggering statement.

B You cannot use the correlation name to qualify a column name in the
GROUP BY, the SET, or the COUNT DISTINCT clause.

m The scope of reference of the correlation names is the entire trigger
definition. This scope is statically determined, meaning that it is
limited to the trigger definition; it does not encompass cascading
triggers or columns that are qualified by a table name in a UDR that
is a triggered action.

When to Use Correlation Names

In SQL statements of the FOR EACH ROW list, you must qualify all references
to columns in the triggering table with either the old or new correlation
name, unless the statement is valid independent of the triggered action.

In other words, if a column name inside a FOR EACH ROW triggered action
list is not qualified by a correlation name, even if it is qualified by the
triggering table name, it is interpreted as if the statement is independent of
the triggered action. No special effort is made to search the definition of the
triggering table for the non-qualified column name.

For example, assume that the following DELETE statement is a triggered
action inside the FOR EACH ROW section of a trigger:

DELETE FROM tabl WHERE col_c = col_c2

For the statement to be valid, both col_c and col_c2 must be columns from
tab1l. If col_c2 is intended to be a correlation reference to a column in the
triggering table, it must be qualified by either the old or the new correlation
name. If col_c2 is not a column in tab1 and is not qualified by either the old
or new correlation name, you get an error.

In a statement that is valid independent of the triggered action, a column
name with no correlation qualifier refers to the current value in the database.

2-292 |BM Informix Guide to SQL: Syntax

CREATE TRIGGER

In the triggered action for trigger t1 in the next example, mgr in the WHERE
clause of the correlated subquery is an unqualified column in the triggering
table. In this case, mgr refers to the current column value in empsal because
the INSERT statement is valid independent of the triggered action.

CREATE DATABASE dbl;

CREATE TABLE empsal (empno INT, salary INT, mgr INT);
CREATE TABLE mgr (eno INT, bonus INT) ;

CREATE TABLE biggap (empno INT, salary INT, mgr INT);

CREATE TRIGGER tl UPDATE OF salary ON empsal
AFTER (INSERT INTO biggap SELECT * FROM empsal WHERE salary <
(SELECT bonus FROM mgr WHERE eno = mgr));

In a triggered action, an unqualified column name from the triggering table
refers to the current column value, but only when the triggered statement is
valid independent of the triggered action.

Qualified Versus Unqualified Value

This table summarizes the value retrieved when the column name is
qualified by the old OR BY THE NEW correlation name.

Trigger Event old.col new.col

INSERT No value (error) Inserted value
UPDATE (column updated) Original value Current value (N)
UPDATE (column not updated) Original value Current value (U)
DELETE Original value No value (error)

Refer to the following key when you read the previous table.

Term Meaning

Original value Value before the triggering statement
Current value Value after the triggering statement
(N) Cannot be changed by triggered action

) Canbe updated by triggered statements; value might be different
from original value because of preceding triggered actions

SQL Statements 2-293

CREATE TRIGGER

Outside a FOR EACH ROW triggered-action list, you cannot qualify a column
from the triggering table with either the old correlation name or the new
correlation name; it always refers to the current value in the database.

Statements in the trigger action list use whatever collating order was in effect
when the trigger was created, even if a diferent collation is in effect when the
trigger action is executed. See SET COLLATION for details of how to specify
a collating order different from what DB_LOCALE specifies. ¢

Re-Entrancy of Triggers

In some cases a trigger can be re-entrant. In these cases the triggered action
can reference the triggering table. In other words, both the trigger event and
the triggered action can operate on the same table. The following list summa-
rizes the situations in which triggers can be re-entrant and the situations in
which triggers cannot be re-entrant:

m The trigger action of an update trigger cannot be an INSERT or
DELETE of the table that the trigger event updated.

m Similarly, the trigger action of an update trigger cannot be an
UPDATE of a column that the trigger event updated. (But the trigger
action of an update trigger can update a column that was not
updated by the trigger event.)

For example, assume that the following UPDATE statement, which

updates columns a and b of tab1, is the triggering statement:
UPDATE tabl SET (a, b) = (a + 1, b + 1)

Now consider the trigger actions in the following example. The first

UPDATE statement is a valid trigger action, but the second one is not,

because it updates column b again.

UPDATE tabl SET c
UPDATE tabl SET b

c + 1; -- OK
b+ 1; -- INVALID

2-294 |BM Informix Guide to SQL: Syntax

CREATE TRIGGER

If the trigger has an UPDATE event, the trigger action can be an
EXECUTE PROCEDURE or EXECUTE FUNCTION statement with an
INTO clause that references a column that was updated by the trigger
event or any other column in the triggering table.

When an EXECUTE PROCEDURE or EXECUTE FUNCTION statement is
the trigger action, the INTO clause for an UPDATE trigger is valid only
in FOR EACH ROW trigger actions, and column names that appear in
the INTO clause must be from the triggering table.

This statement illustrates the appropriate use of the INTO clause:

CREATE TRIGGER upd_totpr UPDATE OF quantity ON items
REFERENCING OLD AS pre_upd NEW AS post_upd
FOR EACH ROW (EXECUTE PROCEDURE
calc_totpr(pre_upd.quantity,post_upd.quantity,
pre_upd.total price) INTO total_ price)
The column that follows the INTO keyword must be in the triggering

table, but need not have been updated by the trigger event.

When the INTO clause appears in the EXECUTE PROCEDURE or EXE-
CUTE FUNCTION statement, the database server updates the
specified columns with values returned from the UDR, immediately
upon returning from the UDR.

If the trigger has an INSERT event, the trigger action cannot be an
INSERT or DELETE statement that references the triggering table.

If the trigger has an INSERT event, the trigger action can be an
UPDATE statement that references a column in the triggering table.
This column cannot, however, be a column for which a value was
supplied by the trigger event.
If the trigger has an INSERT event, and the trigger action updates the
triggering table, the columns in both statements must be mutually
exclusive. For example, assume that the triggering statement inserts
values for columns cola and colb of table tab1:

INSERT INTO tabl (cola, colb) VALUES (1,10)
Now consider the following trigger actions. The first UPDATE is
valid, but the second one is not, because it updates column colb even
though the trigger event already supplied a value for column colb:

UPDATE tabl SET colc=100; --OK
UPDATE tabl SET colb=100; --INVALID

SQL Statements 2-295

CREATE TRIGGER

m If the trigger has an INSERT event, the trigger action can be an
EXECUTE PROCEDURE or EXECUTE FUNCTION statement with an
INTO clause that references a column that was supplied by the
trigger event or a column that was not supplied by the trigger event.

When an EXECUTE PROCEDURE or EXECUTE FUNCTION statement is
the trigger action, you can specify the INTO clause for an INSERT trig-
ger only when the trigger action occurs in the FOR EACH ROW list.
In this case, the INTO clause can contain only column names from the
triggering table.

The following statement illustrates the valid use of the INTO clause:

CREATE TRIGGER ins_totpr INSERT ON items
REFERENCING NEW AS new_ins
FOR EACH ROW (EXECUTE PROCEDURE calc_totpr
(0, new_ins.quantity, 0) INTO total price).
The column that follows the INTO keyword can be a column in the
triggering table that was supplied by the trigger event, or a column
in the triggering table that was not supplied by the trigger event.

When the INTO clause appears in the EXECUTE PROCEDURE or (for
Dynamic Server only) the EXECUTE FUNCTION statement, the data-
base server immediately updates the specified columns with values
returned from the UDR.

m If the trigger action is a SELECT statement, the SELECT statement can
reference the triggering table. The SELECT statement can be a trigger
action in the following instances:

o TheSELECT statement appears in a subquery in the WHEN clause
or in a trigger-action statement.

0 The trigger action is a UDR, and the SELECT statement appears
inside the UDR.

Re-Entrancy and Cascading Triggers

The cases when a trigger cannot be re-entrant apply recursively to all
cascading triggers, which are considered part of the initial trigger. In
particular, this rule means that a cascading trigger cannot update any
columns in the triggering table that were updated by the original triggering
statement, including any nontriggering columns affected by that statement.
For example, assume this UPDATE statement is the triggering statement:

UPDATE tabl SET (a, b) = (a + 1, b + 1)

2-296 IBM Informix Guide to SQL: Syntax

XPS

CREATE TRIGGER

In the cascading triggers of the next example, trig2 fails at runtime because it
references column b, which the triggering UPDATE statement updates:

CREATE TRIGGER trigl UPDATE OF a ON tabl-- Valid
AFTER (UPDATE tab2 set e = e + 1);

CREATE TRIGGER trig2 UPDATE of e ON tab2-- Invalid
AFTER (UPDATE tabl set b = b + 1);

Now consider the following SQL statements. When the final UPDATE
statement is executed, column a is updated and the trigger trigl is activated.

The trigger action again updates column a with an EXECUTE PROCEDURE
INTO statement.

CREATE TABLE templ (a int, b int, e int);
INSERT INTO templ VALUES (10, 20, 30);

CREATE PROCEDURE proc(val int) RETURNING int,int;
RETURN val+10, val+20;
END PROCEDURE;

CREATE TRIGGER trigl UPDATE OF a ON templ
FOR EACH ROW (EXECUTE PROCEDURE proc(50) INTO a, e);

CREATE TRIGGER trig2 UPDATE OF e ON templ
FOR EACH ROW (EXECUTE PROCEDURE proc(100) INTO a, e);

UPDATE templ SET (a,b) = (40,50);

In Extended Parallel Server, to re-create this example, use the CREATE
PROCEDURE statement instead of the CREATE FUNCTION statement. ¢

Several questions arise from this example of cascading triggers. First, should
the update of column a activate trigger trigl again? The answer is no.
Because the trigger was activated, it is not activated a second time. If the
trigger action is an EXECUTE PROCEDURE INTO or EXECUTE FUNCTION INTO
statement, the only triggers that are activated are those that are defined on
columns that are mutually exclusive from the columns updated until then (in
the cascade of triggers) in that table. Other triggers are ignored.

Another question that arises from the example is whether trigger trig2
should be activated. The answer is yes. The trigger trig2 is defined on
column e. Until now, column e in table temp1 has not been modified. Trigger
trig2 is activated.

SQL Statements 2-297

CREATE TRIGGER

A final question that arises from the example is whether triggers trigl and
trig2 should be activated after the trigger action in trig2 is performed. The
answer is no. Neither trigger is activated. By this time columns a and e have
been updated once, and triggers trigl and trig2 have been executed once. The
database server ignores and does not activate these triggers. For more about
cascading triggers, see “Cascading Triggers” on page 2-300.

As noted earlier, an INSTEAD OF trigger on a view cannot include the
EXECUTE PROCEDURE INTO statement among its trigger actions. In addition,
an error results if two views each have INSERT INSTEAD OF triggers with
actions defined to perform insert operations on the other view. ¢

Rules for SPL Routines

In addition to the rules listed in “Re-Entrancy of Triggers” on page 2-294, the
following rules apply to an SPL routine that is specified as a trigger action:

m The SPL routine cannot be a cursor function (one that returns more
than one row) in a context where only one row is expected.

m You cannot use the old or new correlation name inside the SPL
routine. If you need to use the corresponding values in the routine,
you must pass them as parameters. The routine should be
independent of triggers, and the old or new correlation name does
not have any meaning outside the trigger.

When you use an SPL routine as a trigger action, the database objects that the
routine references are not checked until the routine is executed.

See also the SPL restrictions in “Rules for Triggers” on page 2-271.

Privileges to Execute Trigger Actions

If you are not the trigger owner, but the privileges of the owner include WITH
GRANT OPTION, you inherit the privileges of the owner (with grant option)
in addition to your own privileges for each triggered SQL statement. If the
trigger action is a UDR, you need Execute privilege on the UDR, or the trigger
owner must have Execute privilege with grant option.

2-298 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER

While executing the UDR, you do not carry the privileges of the trigger
owner; instead you receive the privileges granted with the UDR, as follows:

1. Privileges for a DBA UDR

When a UDR is registered with the CREATE DBA keywords and you
are granted the Execute privilege on the UDR, the database server
automatically grants you temporary DBA privileges that are avail-
able only when you are executing the UDR.

2. Privileges for a UDR without DBA restrictions

If the UDR owner has the WITH GRANT OPTION right for the neces-
sary privileges on the underlying database objects, you inherit these
privileges when you are granted the Execute privilege.

For a UDR without DBA restrictions, all non-qualified database objects that
the UDR references are implicitly qualified by the name of the UDR owner.

If the UDR owner has no WITH GRANT OPTION privilege, you have your
original privileges on the underlying database objects when the UDR
executes. For more information on privileges on SPL routines, refer to the
IBM Informix Guide to SQL: Tutorial.

A view that has no INSTEAD OF trigger has only Select (with grant option)
privilege. If an INSTEAD OF trigger is created on it, however, then the view
has Insert (with grant option) privilege during creation of the trigger. The
view owner can now grant only Select and Insert privileges to others. This is
independent of the trigger action. It is not necessary to obtain Execute (with
grant option) privilege on the procedure or function. By default, Execute
(without grant option) privilege is granted on each UDR in the action list.

You can use roles with triggers. Role-related statements (CREATE ROLE,
DROP ROLE, and SET ROLE) and SET SESSION AUTHORIZATION statements
can appear within a UDR that the trigger action invokes. Privileges that

a user has acquired through enabling a role or through a SET SESSION
AUTHORIZATION statement are not relinquished when a trigger is executed.

On a complex view (with columns from more than one table), only the owner
or DBA can create an INSTEAD OF trigger. The owner receives Select privi-
leges when the trigger is created. Only after obtaining the required Execute
privileges can the view owner grant privileges to other users. When the
trigger on the complex view is dropped, all these privileges are revoked ¢

SQL Statements 2-299

CREATE TRIGGER

Creating a Trigger Action That Anyone Can Use

For a trigger to be executable by anyone who has the privileges to execute the
triggering statement, you can ask the DBA to create a DBA-privileged UDR
and grant you the Execute privilege with the WITH GRANT OPTION right.

You then use the DBA-privileged UDR as the trigger action. Anyone can
execute the trigger action because the DBA-privileged UDR carries the WITH
GRANT OPTION right. When you activate the UDR, the database server
applies privilege-checking rules for a DBA.

Cascading Triggers

In this section and in sections that follow, any references to nonlogging
databases do not apply to Extended Parallel Server. (In Extended Parallel
Server, all databases support transaction logging.) ¢

The database server allows triggers other than select triggers to cascade,
meaning that the trigger actions of one trigger can activate another trigger.
(For further information on the restriction against cascading select triggers,
see “Circumstances When a Select Trigger is Not Activated” on page 2-280.)

The maximum number of triggers in a cascading series is 61; the initial
trigger plus a maximum of 60 cascading triggers. When the number of
cascading triggers in a series exceeds the maximum, the database server
returns error number -748, with the following message:

Exceeded limit on maximum number of cascaded triggers.

2-300 [BM Informix Guide to SQL: Syntax

CREATE TRIGGER

The next example illustrates a series of cascading triggers that enforce refer-
ential integrity on the manufact, stock, and items tables in the stores_demo
database. When a manufacturer is deleted from the manufact table, the first
trigger, del_manu, deletes all the items of that manufacturer from the stock
table. Each DELETE in the stock table activates a second trigger, del_items,
that deletes all items of that manufacturer from the items table. Finally, each
DELETE in the items table triggers SPL routine log_order, creating a record of
any orders in the orders table that can no longer be filled.

CREATE TRIGGER del_manu
DELETE ON manufact REFERENCING OLD AS pre_del
FOR EACH ROW (DELETE FROM stock
WHERE manu_code = pre del.manu_code) ;

CREATE TRIGGER del_stock
DELETE ON stock REFERENCING OLD AS pre del
FOR EACH ROW (DELETE FROM items
WHERE manu_code = pre del.manu_code) ;

CREATE TRIGGER del items
DELETE ON items REFERENCING OLD AS pre del
FOR EACH ROW (EXECUTE PROCEDURE log order (pre_del.order num)) ;

When you are not using logging, referential integrity constraints on both the
manufact and stock tables prohibit the triggers in this example from
executing. When you use logging, however, the triggers execute successfully
because constraint checking is deferred until all the trigger actions are
complete, including the actions of cascading triggers. For more information
about how constraints are handled when triggers execute, see “Constraint
Checking” on page 2-302.

The database server prevents loops of cascading triggers by not allowing you
to modify the triggering table in any cascading trigger action, except an
UPDATE statement that does not modify any column that the triggering
UPDATE statement updated, or an INSERT statement. An INSERT trigger can
define UPDATE trigger actions on the same table.

SQL Statements 2-301

CREATE TRIGGER

2-302 IBM Informix G

Constraint Checking

When you use logging, the database server defers constraint checking on the
triggering statement until after the statements in the triggered-action list
execute. This is equivalent to executing a SET CONSTRAINTS ALL DEFERRED
statement before executing the triggering statement. After the trigger action
is completed, the database server effectively executes a SET CONSTRAINTS
constraint IMMEDIATE statement to check the constraints that were deferred.
This action allows you to write triggers so that the trigger action can resolve
any constraint violations that the triggering statement creates. For more
information, see “SET Database Object Mode” on page 2-652.

Consider the following example, in which the table child has constraint r1,
which references the table parent. You define trigger trigl and activate it with
an INSERT statement. In the trigger action, trigl checks to see if parent has a
row with the value of the current cola in child; if not, it inserts it.

CREATE TABLE parent (cola INT PRIMARY KEY) ;
CREATE TABLE child (cola INT REFERENCES parent CONSTRAINT rl);
CREATE TRIGGER trigl INSERT ON child

REFERENCING NEW AS new

FOR EACH ROW

WHEN ((SELECT COUNT (*) FROM parent

WHERE cola = new.cola) = 0)

-- parent row does not exist

(INSERT INTO parent VALUES (new.cola));

When you insert a row into a table that is the child table in a referential
constraint, the row might not exist in the parent table. The database server
does not immediately return this error on a triggering statement. Instead, it
allows the trigger action to resolve the constraint violation by inserting the
corresponding row into the parent table. As the previous example shows,
you can check within the trigger action to see whether the parent row exists,
and if so, you can provide logic to bypass the INSERT action.

For a database without logging, the database server does not defer constraint
checking on the triggering statement. In this case, the database server
immediately returns an error if the triggering statement violates a constraint.

You cannot use the SET Transaction Mode statement in a trigger action. The
database server checks this restriction when you activate a trigger, because
the statement could occur inside a UDR.

Rows that cause constraint violations might appear in the violations table
even if a later trigger action corrects the violation. ¢

uide to SQL: Syntax

CREATE TRIGGER

Preventing Triggers from Overriding Each Other

When you activate multiple triggers with an UPDATE statement, a trigger can
possibly override the changes that an earlier trigger made. If you do not want
the trigger actions to interact, you can split the UPDATE statement into

multiple UPDATE statements, each of which updates an individual column.

As another alternative, you can create a single update trigger for all columns
that require a trigger action. Then, inside the trigger action, you can test for
the column being updated and apply the actions in the desired order. This
approach, however, is different than having the database server apply the
actions of individual triggers, and it has the following disadvantages:

m If the triggering UPDATE statement sets a column to the current
value, you cannot detect the UPDATE, so the trigger action is skipped.
You might wish to execute the trigger action, even though the value
of the column has not changed.

m If the trigger has a BEFORE action, it applies to all columns, because
you cannot yet detect whether a column has changed.

External Tables

The trigger action can affect tables of other database servers. The following
example shows an update trigger on dbserverl, which triggers an UPDATE
to items on dbserver2:

CREATE TRIGGER upd_nt UPDATE ON newtab
REFERENCING new AS post
FOR EACH ROW (UPDATE stores_demo@dbserver2:items
SET quantity = post.gty WHERE stock num = post.stock
AND manu_code = post.mc)

If, however, a statement from an external database server initiates a trigger
whose action affects tables in an external database, the trigger actions fail.

SQL Statements 2-303

CREATE TRIGGER

For example, the following combination of trigger action and triggering
statement results in an error when the triggering statement executes:

-- Trigger action from dbserverl to dbserver3:

CREATE TRIGGER upd nt UPDATE ON newtab

REFERENCING new AS post

FOR EACH ROW (UPDATE stores_demo@dbserver3:items
SET quantity = post.gty WHERE stock num = post.stock
AND manu_code = post.mc) ;

-- Triggering statement from dbserver2:

UPDATE stores_demo@dbserverl:newtab
SET gty = gty * 2 WHERE s_num = 5
AND mc = 'ANZ';

Logging and Recovery

You can create triggers for databases, with and without logging. If the trigger
fails in a database that has transaction logging, the triggering statement and
trigger actions are rolled back, as if the actions were an extension of the
triggering statement, but the rest of the transaction is not rolled back.

In a database that does not have transaction logging, however, you cannot
roll back when the triggering statement fails. In this case, you are responsible
for maintaining data integrity in the database. The UPDATE, INSERT, or
DELETE action of the triggering statement occurs before the trigger actions in
the FOR EACH ROW section. If the trigger action fails for a database without
logging, the application must restore the row that was changed by the
triggering statement to its previous value.

If a trigger action calls a UDR, but the UDR terminates in an exception-
handling section, any actions that modify data inside that section are rolled
back with the triggering statement. In the following partial example, when
the exception handler traps an error, it inserts a row into the table logtab:

ON EXCEPTION IN (-201)
INSERT INTO logtab values (errno, errstr);
RAISE EXCEPTION -201

END EXCEPTION

When the RAISE EXCEPTION statement returns the error, however, the
database server rolls back this INSERT because it is part of the trigger actions.
If the UDR is executed outside a trigger action, the INSERT is not rolled back.

2-304 BM Informix Guide to SQL: Syntax

CREATE TRIGGER

The UDR that implements a trigger action cannot contain any BEGIN WORK,
COMMIT WORK, or ROLLBACK WORK statements. If the database has trans-
action logging, you must either begin an explicit transaction before the
triggering statement, or the statement itself must be an implicit transaction.
In any case, no other transaction-related statement is valid inside the UDR.

You can use triggers to enforce referential actions that the database server
does not currently support. In a database without logging, you are respon-
sible for maintaining data integrity when the triggering statement fails.

" os | INSTEAD OF Triggers on Views

Use INSTEAD OF triggers to perform a specified trigger action on a view,
rather than execute the triggering INSERT, DELETE, or UPDATEevent.

CREATE TRIGGER trigger INSTEAD OF ——{ Trigger on ﬁ ENABLED 7—4
DISABLED
Trigger on a View

—»VINSERT ON— view
AS
REFERENCING NEWAn

N DELETE ON — view

INSTEAD OF »
Triggered Action
p. 2-306

FOR EACH ROW—

~

iASi
REFERENCING (OLD old'/

xUPDATE ON— view: L

REFERENCING NEWW new
AS

J
Element Purpose Restrictions Syntax
new Name for old value in view column Must be unique within this statement Identifier, p. 4-189
old Name for new value in view column. Must be unique within this statement Identifier, p. 4-189

SQL Statements 2-305

CREATE TRIGGER

Element Purpose Restrictions Syntax
trigger ~ Name declared here for the trigger ~ Must be unique among the names of Database Object
triggers in the database Name, p. 4-46
view Name or synonym of the triggering The view or synonym must existin =~ Database Object
view. Can include owner. qualifier. ~ the current database. Name, p. 4-46

You can use the trigger action to update the table(s) underlying the view, in
some cases updating an otherwise “non-updatable” view. You can also use
INSTEAD OF triggers to substitute other actions when INSERT, DELETE, or
UPDATE statements reference specific columns within the database.

In the optional REFERENCING clause of an INSTEAD OF UPDATE trigger, the
new correlation name can appear before or after the old correlation name.

The specified view is sometimes called the triggering view. The left-hand
portion of this diagram (including the view specification) defines the trigger
event. The rest of the diagram defines correlation names and the trigger action.

“ The Action Clause of INSTEAD OF Triggers

When the trigger event for the specified view is encountered, the SQL state-
ments of the trigger action are executed, instead of the triggering statement.
Triggers defined on a view support the following syntax in the action clause.

INSTEAD OF Back to Trigger on a View
Triggered Action ’ p. 2-305
INSERT Statement)
—R(g p. 2-489 e) >
DELETE Statement
N p. 2-323 /
\J UPDATE Statement v
p. 2762 EXECUTE
K PROCEDURE J
Statement
EXECUTE
FUNCTION p. 2-414
_| Statement J
p. 2-404

2-306 [BM Informix Guide to SQL: Syntax

CREATE TRIGGER

This is not identical to the syntax of the trigger action for a trigger on a table,
as described in the section “Triggered-Action List” on page 288. Because no
WHEN (condition) is supported, the same trigger action is executed whenever
the INSTEAD OF trigger event is encountered, and only one action list can be
specified, rather than a separate list for each condition.

Rules for INSTEAD OF Triggers on Views

You must be either the owner of the view or have the DBA status to create an
INSTEAD OF trigger on a view. The owner of a simple view (based on one
table) has Insert, Update, ans Delete privileges. For information about the
relationship between the privileges of the trigger owner and the privileges of
other users, see “Privileges to Execute Trigger Actions” on page 2-298.

An INSTEAD OF trigger defined on a view cannot violate the “Rules for
Triggers” on page 2-271, and must observe the following additional rules:
You can define an INSTEAD OF trigger only on a view, not on a table.
The view must be local to the current database.

The view cannot be an updatable view WITH CHECK OPTION.

No SELECT event or WHEN clause is valid in an INSTEAD OF trigger,
No BEFORE nor AFTER action is valid in an INSTEAD OF trigger.

No OF column clause is valid in an INSTEAD OF UPDATE trigger.
Every INSTEAD OF trigger must specify FOR EACH ROW.

The triggered action cannot include EXECUTE PROCEDURE INTO.

A view can have no more than one INSTEAD OF trigger defined for each type
of event (INSERT, DELETE, or UPDATE). It is possible, however, to define a
trigger on one or more other views, each with its own INSTEAD OF trigger.

Updating Views

INSERT, DELETE, or UPDATE statements can directly modify a view only if all
of the following are true of the SELECT statement that defines the view:

m All of the columns in the view are from a single table.
m No columns in the projection list are aggregate values.
m No UNIQUE or DISTINCT keyword in the SELECT projection list

SQL Statements 2-307

CREATE TRIGGER

m No GROUP BY clause nor UNION operator in the view definition

m The query selects no calculated values and no literal values

By using INSTEAD OF triggers, however, you can circumvent these restric-
tions on the view, if the trigger action modifies the base table(s).

Example of an INSTEAD OF Trigger on a View

Suppose that dept and emp are tables that list departments and employees:

CREATE TABLE dept (
deptno INTEGER PRIMARY KEY,
deptname CHAR(20),
manager num INT
)i
CREATE TABLE emp (
empno INTEGER PRIMARY KEY,
empname CHAR(20),
deptno INTEGER REFERENCES dept (deptno),
startdate DATE
)i
ALTER TABLE dept ADD CONSTRAINT (FOREIGN KEY (manager num)
REFERENCES emp (empno)) ;

The next statement defines manager_info, a view of columns in the dept and
emp tables that includes all the managers of each department:

CREATE VIEW manager_ info AS
SELECT d.deptno, d.deptname, e.empno, e.empname
FROM emp e, dept d WHERE e.empno = d.manager_num;

The following CREATE TRIGGER statement creates manager_info_insert, an
INSTEAD OF trigger that is designed to insert rows into the dept and emp
tables through the manager_info view:

CREATE TRIGGER manager_ info_insert

INSTEAD OF INSERT ON manager info --defines trigger event
REFERENCING NEW AS n --new manager data
FOR EACH ROW --defines trigger action

(EXECUTE PROCEDURE instab (n.deptno, n.empno)) ;

CREATE PROCEDURE instab (dno INT, eno INT)

INSERT INTO dept (deptno, manager num) VALUES (dno, eno);

INSERT INTO emp (empno, deptno) VALUES (eno. dno) ;emp (empno)) ;
END PROCEDURE;

2-308 [BM Informix Guide to SQL: Syntax

CREATE TRIGGER

After the tables, view, trigger, and SPL routine have been created, the
database server treats the following INSERT statement as a triggering event:

INSERT INTO manager_info(deptno, empno) VALUES (08, 4232);

This triggering INSERT statement is not executed, but this event causes

the trigger action to be executed instead, invoking the instab() SPL routine.
The INSERT statements in the SPL routine insert new values into both the emp
and dept base tables of the manager_info view.

Related Information

Related statements: CREATE PROCEDURE, CREATE VIEW, DROP TRIGGER,
EXECUTE PROCEDURE, and SET Database Object Mode

For a task-oriented discussion of triggers, and for examples of INSTEAD OF
DELETE (and UPDATE) triggers on views, see the IBM Informix Guide to SQL:
Tutorial. For performance implications of triggers, see your Performance Guide.

SQL Statements 2-309

CREATE VIEW

CREATE VIEW

Use the CREATE VIEW statement to create a new view that is based on one or
more existing tables and views in the database.

Syntax

CREATE VIEW— view

Subset of |

AS— SELECT 1
Statement \ /
p. 2-312 WITH CHECK OPTION

(oot)

— OF TYPE row_type

Element Purpose Restrictions Syntax

column A column in the view See “Naming View Columns” p. 2-313. Identifier, p. 4-189

row_type Named-row type for typed view Must exist before you assign it to a view. Data Type, p. 4-49

view Name that you declare here for Must be unique among view, table, and = Database Object
the view synonym names in the database. Name, p. 4-46

Usage

A view is a virtual table, defined by a SELECT statement. Except for the state-
ments in the following list, you can specify the name or synonym of a view
in any SQL statement where the name of a table is syntactically valid:

ALTER FRAGMENT CREATE TRIGGER START VIOLATIONS TABLE
CREATE INDEX RENAME TABLE = STOP VIOLATIONS TABLE
CREATE TABLE UPDATE STATISTICS

“Updating Through Views” on page 2-315 prohibits “non-updatable” views
in INSERT, DELETE, or UPDATE statements (where other views are valid).

2-310 [BM Informix Guide to SQL: Syntax

CREATE VIEW

To create a view, you must have the Select privilege on all columns from
which the view is derived.You can query a view as if it were a table, and in
some cases, you can update it as if it were a table; but a view is not a table.

The view consists of the set of rows and columns that the SELECT statement
in the view definition returns each time you refer to the view in a query.

In some cases, the database server merges the SELECT statement of the user
with the SELECT statement defining the view, and executes the combined
statements. In other cases, a query against a view might execute more slowly
than expected, if the complexity of the view definition causes the database
server to create a temporary table (referred to as a “materialized view”).
For more information on materialized views, see the Performance Guide.

The view reflects changes to the underlying tables with one exception. If a
SELECT * specification defines the view, the view has only the columns that
existed in the underlying tables at the time when the view was defined by
CREATE VIEW. Any new columns that are subsequently added to the under-
lying tables with the ALTER TABLE statement do not appear in the view.

The view inherits the data types of the columns in the tables from which the
view is derived. The database server determines data types of virtual
columns from the nature of the expression.

The SELECT statement is stored in the sysviews system catalog table. When
you subsequently refer to a view in another statement, the database server
performs the defining SELECT statement while it executes the new statement.

In DB-Access, if you create a view outside the CREATE SCHEMA statement,
you receive warnings if you use the -ansi flag or set the DBANSIWARN
environment variable. ¢

The following statement creates a view that is based on the person table.
When you create a view like this, which has no OF TYPE clause, the view is
referred to as an untyped view.

CREATE VIEW vl AS SELECT * FROM person

Typed Views

You can create typed views if you have Usage privileges on the named-ROW
type or if you are its owner or the DBA. If you omit the OF TYPE clause, rows
in the view are considered untyped, and default to an unnamed-ROW type.

SQL Statements 2-311

CREATE VIEW

Typed views, like typed tables, are based on a named-ROW type. Each
column in the view corresponds to a field in the named-ROW type. The
following statement creates a typed view that is based on the table person.

CREATE VIEW v2 OF TYPE person_t AS SELECT * FROM person

To create a typed view, you must include an OF TYPE clause. When you create
a typed view, the named-ROW type that you specify immediately after the OF
TYPE keywords must already exist.

Subset of SELECT Statements Valid in View Definitions

You cannot create a view on a temporary table. The FROM clause of the
SELECT statement cannot contain the name of a temporary table.

If Select privileges are revoked from a user for a table that is referenced in the
SELECT statement defining a view that the same user owns, then that view is
dropped, unless it also includes columns from tables in another database.

You cannot create a view on typed tables (including any table that is part of
a table hierarchy) in a remote database. ¢

Do not use display labels in the select list of the projection clause. Display
labels in the select list are interpreted as column names.

The SELECT statement in CREATE VIEW cannot include the FIRST, the INTO
TEMP, or the ORDER BY clauses. For complete information about SELECT
statement syntax and usage, see “SELECT” on page 2-581.

Union Views

A view that contains a UNION or UNION ALL operator in its SELECT
statement is known as a union view. Certain restrictions apply to union views:

m Ifa CREATE VIEW statement defines a union view, you cannot specify
the WITH CHECK OPTION keywords in the CREATE VIEW statement.

m All restrictions that apply to UNION or UNION ALL operations in
standalone SELECT statements also apply to UNION and UNION ALL
operations in the SELECT statement of a union view.

For a list of these restrictions, see “Restrictions on a Combined SELECT” on
page 2-637. For an example of a CREATE VIEW statement that defines a union
view, see “Naming View Columns.”

2-312 IBM Informix Guide to SQL: Syntax

CREATE VIEW

Naming View Columns

The number of columns that you specify in the column list must match the
number of columns returned by the SELECT statement that defines the view.
If you do not specify a list of columns, the view inherits the column names of
the underlying tables. In the following example, the view herostock has the
same column names as the ones in the SELECT statement:

CREATE VIEW herostock AS

SELECT stock num, description, unit price, unit, unit_ descr

FROM stock WHERE manu_code = 'HRO'

You must specify at least one column name in the following circumstances:

If you provide names for some of the columns in a view, then you
must provide names for all the columns. That is, the column list must
contain an entry for every column that appears in the view.

If the SELECT statement returns an expression, the corresponding
column in the view is called a virtual column. You must provide a
name for virtual columns. In the following example, the user must
specify the column parameter because the select list of thr projection
clause of the SELECT statement contains an aggregate expression:

CREATE VIEW newview (firstcol, secondcol) AS
SELECT sum(cola), colb FROM oldtab

You must also specify a column name in cases where the selected
columns have duplicate column names without the table qualifiers.
For example, if both orders.order_num and items.order_num
appear in the SELECT statement, the CREATE VIEW statement, must
provide two separate column names to label them:
CREATE VIEW someorders (custnum,ocustnum,newprice) AS
SELECT orders.order num, items.order num,
items.total price*1.5
FROM orders, items

WHERE orders.order num = items.order num
AND items.total price > 100.00

Here custnum and ocustnum replace the identical column names.

The CREATE VIEW statement must also provide column names in the
column list when the SELECT statement includes a UNION or UNION
ALL operator and the names of the corresponding columns in the
SELECT statements are not identical.

SQL Statements 2-313

CREATE VIEW

m Code in the following example must specify the column list because
the second column in the first SELECT statement has a different name
from the second column in the second SELECT statement:

CREATE VIEW myview (cola, colb) AS
SELECT colx, coly from firsttab

UNION
SELECT colx, colz from secondtab

Using a View in the SELECT Statement

You can define a view in terms of other views, but you must abide by the
restrictions on creating views that are discussed in the IBM Informix Database
Design and Implementation Guide.

WITH CHECK OPTION Keywords

The WITH CHECK OPTION keywords instruct the database server to ensure
that all modifications that are made through the view to the underlying tables
satisfy the definition of the view.

The following example creates a view that is named palo_alto, which uses all
the information in the customer table for customers in the city of Palo Alto.
The database server checks any modifications made to the customer table
through palo_alto because the WITH CHECK OPTION is specified.

CREATE VIEW palo_alto AS
SELECT * FROM customer WHERE city = 'Palo Alto'
WITH CHECK OPTION

You can insert into a view a row that does not satisfy the conditions of the
view (that is, a row that is not visible through the view). You can also update
a row of a view so that it no longer satisfies the conditions of the view.

For example, if the view was created without the WITH CHECK OPTION
keywords, you could insert a row through the view where the city is Los
Altos, or you could update a row through the view by changing the city from
Palo Alto to Los Altos.

To prevent such inserts and updates, you can add the WITH CHECK OPTION
keywords when you create the view. These keywords ask the database server
to test every inserted or updated row to ensure that it meets the conditions
that are set by the WHERE clause of the view. The database server rejects the
operation with an error if the row does not meet the conditions.

2-314 BM Informix Guide to SQL: Syntax

CREATE VIEW

Even if the view was created with the WITH CHECK OPTION keywords,
however, you can perform inserts and updates through the view to change
columns that are not part of the view definition. A column is not part of the
view definition if it does not appear in the WHERE clause of the SELECT
statement that defines the view.

Updating Through Views

If a view is built on a single table, the view is updatable if the SELECT statement
that defined the view did not contain any of the following elements:
Columns in the select list that are aggregate values

Columns in the select list that use the UNIQUE or DISTINCT keyword
A GROUP BY clause

A UNION operator

The query selects calculated values or literal values

(You can DELETE from a view that selects calculated values from a single
table, but INSERT and UPDATE are not valid operations on such views.)

In an updatable view, you can update the values in the underlying table by
inserting values into the view. If a view is built on a table that has a derived
value for a column, however, that column is not updatable through the view,
but other columns in the view can be updated.

See also “Updating Views” on page 2-307 for information about using
INSTEAD OF triggers to update views that are based on more than one table,
or that include columns containing aggregates or other calculated values.

Important: You cannot update or insert rows in a remote table through views that
were created using the WITH CHECK OPTION keywords.
Related Information

Related statements: CREATE TABLE, CREATE TRIGGER, DROP VIEW, GRANT,
SELECT, and SET SESSION AUTHORIZATION

For a discussion of views, see the IBM Informix Database Design and Implemen-
tation Guide.

SQL Statements 2-315

DATABASE

DATABASE

Use the DATABASE statement to open an accessible database as the current
database.

Syntax

DATABASE—— database \ f |
EXCLUSIVE

Element Purpose Restrictions Syntax
database Name of the database to select The database must exist Database Name, p. 4-44

Usage

You can use the DATABASE statement to select any database on your database
server. To select a database on another database server, specify the name of
the database server with the database name.

If you include the name of the current (or another) database server with the
database name, the database server name cannot be uppercase. (See “Database
Name” on page 4-44 for the syntax of specifying the database server name.)

Issuing a DATABASE statement when a database is already open closes the
current database before opening the new one. Closing the current database
releases any cursor resources that the database server holds, invalidating any
cursors that you have declared up to that point. If the user specification was
changed through a SET SESSION AUTHORIZATION statement, the original
user name is restored when the new database is opened.

The current user (or PUBLIC) must have the Connect privilege on the
database that is specified in the DATABASE statement. The current user
cannot have the same user name as an existing role in the database.

DATABASE is not a valid statement in multistatement PREPARE operations.

2-316 IBM Informix Guide to SQL: Syntax

E/C

GLS

DATABASE

SQLCA.SQLWARN Settings Immediately after DATABASE Executes

Immediately after DATABASE executes, you can identify characteristics of the
specified database by examining warning flags in the sqlca structure.
m If the first field of sqlca.sqlwarn is blank, no warnings were issued.

m Thesecond sqlca.sqlwarn field is set to the letter w if the database that
was opened supports transaction logging.

m The third field is set to w if database is an ANSI-compliant database. ¢
m The fourth field is set to w if database is a Dynamic Server database.

m The fifth field is set to w if database converts all floating-point data to
DECIMAL format. (System lacks FLOAT and SMALLFLOAT support.)

m Theseventh field is set to w if database is the secondary server (that is,
running in read-only mode) in a data-replication pair.

m The eighth field is set to w if database has DB_LOCALE set to a locale
different from the DB_LOCALE setting on the client system. ¢

EXCLUSIVE Keyword

The EXCLUSIVE keyword opens the database in exclusive mode and prevents
access by anyone but the current user. To allow others access to the database,
you must first execute the CLOSE DATABASE statement and then reopen the
database without the EXCLUSIVE keyword. The following statement opens
the stores_demo database on the training database server in exclusive mode:

DATABASE stores_demo@training EXCLUSIVE

If another user has already opened the database, exclusive access is denied,
an error is returned, and no database is opened.

Related Information

Related statements: CLOSE DATABASE, CONNECT, DISCONNECT, and SET
CONNECTION

For discussions of how to use different data models to design and implement
a database, see the IBM Informix Database Design and Implementation Guide.

For descriptions of the sqlca structure, see the IBM Informix Guide to SQL:
Tutorial or the IBM Informix ESQL/C Programmer’s Manual.

SQL Statements 2-317

DEALLOCATE COLLECTION

al

E/C

DEALLOCATE COLLECTION

Use the DEALLOCATE COLLECTION statement to release memory for a
collection variable that was previously allocated with the ALLOCATE
COLLECTION statement. Use this statement with ESQL/C.

Syntax

DEALLOCATE COLLECTION . variable %

|
I e —

Element Purpose Restrictions Syntax

variable Name that identifies a typed or Must be the name of an ESQL/C Name must conform to
untyped collection variable for collection variable that has language-specific rules for
which to deallocate memory already been allocated names of variables

2-318

Usage

The DEALLOCATE COLLECTION statement frees all the memory that is
associated with the ESQL/C collection variable that variable identifies.

You must explicitly release memory resources for a collection variable with
DEALLOCATE COLLECTION. Otherwise, deallocation occurs automatically at
the end of the program.

The DEALLOCATE COLLECTION statement releases resources for both typed
and untyped collection variables.

Tip: The DEALLOCATE COLLECTION statement deallocates memory for an ESQL/C
collection variable only. To deallocate memory for an ESQL/C row variable, use the
DEALLOCATE ROW statement.

If you deallocate a nonexistent collection variable or a variable that is not an
ESQL/C collection variable, an error results. Once you deallocate a collection
variable, you can use the ALLOCATE COLLECTION to reallocate resources and
you can then reuse a collection variable.

IBM Informix Guide to SQL: Syntax

DEALLOCATE COLLECTION

Example

This example shows how to deallocate resources with the DEALLOCATE
COLLECTION statement for the untyped collection variable, a_set:

EXEC SQL BEGIN DECLARE SECTION;
client collection a_set;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_set;

EXEC SQL deallocate collection :a_set;

Related Information

Related example: refer to the collection variable example in PUT.
Related statements: ALLOCATE COLLECTION and DEALLOCATE ROW

For a discussion of collection data types, see the IBM Informix ESQL/C
Programmer’s Manual.

SQL Statements 2-319

DEALLOCATE DESCRIPTOR

E/C

DEALLOCATE DESCRIPTOR

Use the DEALLOCATE DESCRIPTOR statement to free a previously allocated,
system-descriptor area. Use this statement with ESQL/C.

Syntax

DEALLOCATE DESCRIPTOR L 'descriptor ' J %
descriptor_var

Element Purpose Restrictions Syntax

descriptor Name of a system- Use single quotes. System-descriptor ~ Quoted String,
descriptor area area must already be allocated p-4-243

descriptor_var ~ Host variable that System-descriptor area must already =~ Name must conform
contains the name of a be allocated, and the variable must to language-specific
system-descriptor area already have been declared rules for names

Usage

The DEALLOCATE DESCRIPTOR statement frees all the memory that is
associated with the system-descriptor area that descriptor or descriptor_var
identifies. It also frees all the item descriptors (including memory for data
items in the item descriptors).

You can reuse a descriptor or descriptor variable after it is deallocated.
Otherwise, deallocation occurs automatically at the end of the program.

If you deallocate a nonexistent descriptor or descriptor variable, an error
results.

You cannot use the DEALLOCATE DESCRIPTOR statement to deallocate an
sqlda structure. You can use it only to free the memory that is allocated for a
system-descriptor area.

2-320 [BM Informix Guide to SQL: Syntax

DEALLOCATE DESCRIPTOR

The following examples show valid DEALLOCATE DESCRIPTOR statements.
The first line uses an embedded-variable name, and the second line uses a
quoted string to identify the allocated system-descriptor area.

EXEC SQL deallocate descriptor :descname;

EXEC SQL deallocate descriptor 'descl';

Related Information

Related statements: ALLOCATE DESCRIPTOR, DECLARE, DESCRIBE, EXECUTE,
FETCH, GET DESCRIPTOR, OPEN, PREPARE, PUT, and SET DESCRIPTOR

For more information on system-descriptor areas, refer to the IBM Informix
ESQL/C Programmer’s Manual.

SQL Statements 2-321

DEALLOCATE ROW

al

DEALLOCATE ROW

Use the DEALLOCATE ROW statement to release memory for a ROW variable.

E/C Use this statement with ESQL/C.
Syntax
DEALLOCATE ROW : variable % I
Element Purpose Restrictions Syntax
variable Typed or untyped row variable Must be declared and allocated Language specific

Usage

DEALLOCATE ROW frees all the memory that is associated with the ESQL/C
typed or untyped row variable that variable identifies. If you do not explicitly
release memory resources with DEALLOCATE ROW. deallocation occurs
automatically at the end of the program. To deallocate memory for an
ESQL/C collection variable, use the DEALLOCATE COLLECTION statement.

After you deallocate a ROW variable, you can use the ALLOCATE ROW
statement to reallocate resources, and you can then reuse a ROW variable. The
following example shows how to deallocate resources for the ROW variable,
a_row, using the DEALLOCATE ROW statement:

EXEC SQL BEGIN DECLARE SECTION; row (a int, b int) a_row;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate row :a_row;

EXEC SQL deallocate row :a_row;

Related Information
Related statements: ALLOCATE ROW and DEALLOCATE COLLECTION

For a discussion of ROW data types, see the IBM Informix Guide to SQL: Tutorial.
For complex data types, see the IBM Informix ESQL/C Programmer’s Manual.

2-322 BM Informix Guide to SQL: Syntax

DECLARE

E/C DECLARE

Use the DECLARE statement to associate a cursor with a set of rows. Use this
statement with ESQL/C.

Syntax

Subset of

DECLARE — cursor_id CURSOR FOR—IEM{ INSERT 7—{
E J Statement
—WITH HOLD p. 2-330

: cursor_id_var

Subset of FOR READ ONLY ,
Statement () /
p. 2-336 -FOR UPDATE——OF column

SELECT Statement J

SCROLL CURSOR \ f FOR p. 2-581
WITH HOLD statement_ id—J
& CURSOR FOR SELECT with f statement_id_varQ
Colleot_ll_(;rgieDenved EXECUTE |
0. 2-339 PROCEDURE
: EXECUTE Statement
FUNCTION p. 2-414
INSERT with L Statement Y,
Collection-Derived p. 2-414
Table W,
— p. 2-341
Element Purpose Restrictions Syntax
column Column to update with cursor Mustexist, butneed notbelistedin Identifier, p. 4-189
the Select list of Projection clause
cursor_id Name declared here for cursor Must be unique among names of Identifier, p. 4-189
cursors and prepared objects
cursor_id_var Variable holding cursor_id Must have a character data type =~ Language specific
statement_id Name of prepared statement Declared in PREPARE statement Identifier, p. 4-189

statement_id_var Variable holding statement_id =~ Must have a character data type Language specific

e et bl il

SQL Statements 2-323

DECLARE

Usage

A cursor is an identifier that you associate with a group of rows. DECLARE
associates the cursor with one of the following database objects:

m With an SQL statement, such as SELECT, EXECUTE FUNCTION (or
EXECUTE PROCEDURE), or INSERT

Each of these SQL statements creates a different type of cursor. For
more information, see “Overview of Cursor Types” on page 2-325.

m With the statement identifier (statement id or statement id variable) of a
prepared statement

You can prepare one of the previous SQL statements and associate the
prepared statement with a cursor. For more information, see “Asso-
ciating a Cursor with a Prepared Statement” on page 2-338.

m With a collection variable in an ESQL/C program

The name of the collection variable appears in the FROM clause of a
SELECT or the INTO clause of an INSERT. For more information, see
“Associating a Cursor with a Collection Variable” on page 2-339. ¢

DECLARE assigns an identifier to the cursor, specifies its uses, and directs the
ESQL/C preprocessor to allocate storage for it. DECLARE must precede any
other statement that refers to the cursor during program execution.

The maximum length of a DECLARE statement is 64 kilobytes. The number of
cursors and prepared objects that can exist concurrently in a single program
is limited by the available memory. To avoid exceeding the limit, use the FREE
statement to release some prepared statements or cursors.

A program can consist of one or more source-code files. By default, the scope
of reference of a cursor is global to a program, so a cursor that was declared
in one source file can be referenced from a statement in another file. In a
multiple-file program, if you want to limit the scope of cursor names to the
files in which they are declared, you must preprocess all of the files with the
-local command-line option.

Multiple cursors can be declared for the same prepared statement identifier.
For example, the following ESQL/C example does not return an error:

EXEC SQL prepare idl from 'select * from customer';
EXEC SQL declare x cursor for idi;

EXEC SQL declare y scroll cursor for idil;

EXEC SQL declare z cursor with hold for idil;

2-324 BM Informix Guide to SQL: Syntax

DECLARE

If you include the -ansi compilation flag (or if DBANSIWARN is set),
warnings are generated for statements that use dynamic cursor names or
dynamic statement identifiers, and (for Dynamic Server only) statements that
use collection-derived tables. Some error checking is performed at runtime,
such as these typical checks:

m Invalid use of sequential cursors as scroll cursors
m Use of undeclared cursors
m Invalid cursor names or statement names (empty)
Checks for multiple declarations of a cursor of the same name are performed

at compile time only if the cursor or statement is specified as an identifier.
The following example uses a host variable to store the cursor name:

EXEC SQL declare x cursor for select * from customer;

stcopy ("x", s);
EXEC SQL declare :s cursor for select * from customer;

A cursor uses the collating order of the session when the cursor was declared,
even if this is different from the collation of the session at runtime. ¢

Overview of Cursor Types

Cursors are typically required for data manipulation language (DML) opera-
tions on more than one row of data (or on an ESQL/C collection variable). You
can declare the following types of cursors with the DECLARE statement:

m A select cursor is a cursor associated with A SELECT statement.

m A function cursor is a cursor associated with an EXECUTE FUNCTION
(OR EXECUTE PROCEDURE) statement.

m An insert cursor is a cursor associated with an INSERT statement.

Sections that follow describe each of these cursor types. Cursors can also
have sequential, scroll, and hold characteristics (but an insert cursor cannot be
a scroll cursor). These characteristics determine the structure of the cursor;
see “Cursor Characteristics” on page 2-332. In addition, a select or function
cursor can specify read-only or update mode. For more information, see “Select
Cursor or Function Cursor” on page 2-326.

Tip: Function cursors behave the same as select cursors that are enabled as update
cursors.

SQL Statements 2-325

DECLARE

XPS

A cursor that is associated with a statement identifier can be used with an
INSERT, SELECT, EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement
that is prepared dynamically, and to use different statements with the same
cursor at different times. In this case, the type of cursor depends on the
statement that is prepared at the time the cursor is opened. (See “Associating
a Cursor with a Prepared Statement” on page 2-338.)

Select Gursor or Function Cursor

When an SQL statement returns more than one group of values to an ESQL/C
program, you must declare a cursor to save the multiple groups, or rows, of
data and to access these rows one at a time. You must associate the following
SQL statements with cursors:

m If youassociate a SELECT statement with a cursor, the cursor is called
a select cursor.

A select cursor is a data structure that represents a specific location
within the active set of rows that the SELECT statement retrieved.

m If you associate an EXECUTE FUNCTION (or EXECUTE PROCEDURE)
statement with a cursor, the cursor is called a function cursor.

The function cursor represents the columns or values that a user-
defined function returns. Function cursors behave the same as select
cursors that are enabled as update cursors.

In Extended Parallel Server, to create a function cursor, you must use the
EXECUTE PROCEDURE statement. Extended Parallel Server does not support
the EXECUTE FUNCTION statement. ¢

In Dynamic Server, for backward compatibility, if an SPL function was
created with the CREATE PROCEDURE statement, you can create a function
cursor with the EXECUTE PROCEDURE statement. With external functions,
you must use the EXECUTE FUNCTION statement. ¢

When you associate a SELECT or EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement with a cursor, the statement can include an INTO
clause. However, if you prepare the SELECT or EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement, you must omit the INTO clause in the
PREPARE statement and use the INTO clause of the FETCH statement to
retrieve the values from the collection cursor.

2-326 BM Informix Guide to SQL: Syntax

DECLARE

A select or function cursor can scan returned rows of data and to move data
row by row into a set of receiving variables, as the following steps describe:

1. DECLARE
Use DECLARE to define a cursor and associate it with a statement.
2. OPEN

Use OPEN to open the cursor. The database server processes the
query until it locates or constructs the first row of the active set.

3. FETCH

Use FETCH to retrieve successive rows of data from the cursor.
4. CLOSE

Use CLOSE to close the cursor when its active set is no longer needed.
5. FREE

Use FREE to release the resources that are allocated for the cursor.

Using the FOR READ ONLY Option

Use the FOR READ ONLY keywords to define a cursor as a read-only cursor.
A cursor declared to be read-only cannot be used to update (or delete) any
row that it fetches.

The need for the FOR READ ONLY keywords depends on whether your
database is ANSI compliant or not ANSI compliant.

In a database that is not ANSI compliant, the cursor that the DECLARE
statement defines is a read-only cursor by default, so you do not need to
specify the FOR READ ONLY keywords if you want the cursor to be a read-
only cursor. The only advantage of specifying the FOR READ ONLY keywords
explicitly is for better program documentation.

In an ANSI-compliant database, the cursor associated with a SELECT
statement through the DECLARE statement is an update cursor by default,
provided that the SELECT statement conforms to all of the restrictions for
update cursors listed in “Subset of SELECT Statement Associated with
Cursors” on page 2-336. If you want a select cursor to be read only, you must
use the FOR READ ONLY keywords when you declare the cursor. ¢

The database server can use less stringent locking for a read-only cursor than
for an update cursor.

SQL Statements 2-327

DECLARE

The following example creates a read-only cursor:

EXEC SQL declare z_curs cursor for
select * from customer ansi
for read only;

Using the FOR UPDATE Option

Use the FOR UPDATE option to declare an update cursor. You can use the
update cursor to modify (update or delete) the current row.

In an ANSI-compliant database, you can use a select cursor to update or
delete data if the cursor was not declared with the FOR READ ONLY keywords
and it follows the restrictions on update cursors that are described in “Subset
of SELECT Statement Associated with Cursors” on page 2-336. You do not
need to use the FOR UPDATE keywords when you declare the cursor. ¢

The following example declares an update cursor:

EXEC SQL declare new_curs cursor for
select * from customer notansi
for update;

In an update cursor, you can update or delete rows in the active set. After you
create an update cursor, you can update or delete the currently selected row
by using an UPDATE or DELETE statement with the WHERE CURRENT OF
clause. The words CURRENT OF refer to the row that was most recently
fetched; they take the place of the usual test expressions in the WHERE clause.

An update cursor lets you perform updates that are not possible with the
UPDATE statement because the decision to update and the values of the new
data items can be based on the original contents of the row. Your program can
evaluate or manipulate the selected data before it decides whether to update.
The UPDATE statement cannot interrogate the table that is being updated.

You can specify particular columns that can be updated. The columns need
not appear in the Select list of the Projection clause.

Using FOR UPDATE with a List of Columns

When you declare an update cursor, you can limit the update to specific
columns by including the OF keyword and a list of columns. You can modify
only those named columns in subsequent UPDATE statements. The columns
need not be in the select list of the SELECT clause.

2-328 BM Informix Guide to SQL: Syntax

DECLARE

The next example declares an update cursor and specifies that this cursor can
update only the fname and Iname columns in the customer_notansi table:

EXEC SQL declare name_curs cursor for
select * from customer notansi
for update of fname, lname;

By default, unless declared as FOR READ ONLY, a select cursor in a database
that is ANSI compliant is an update cursor, so the FOR UPDATE keywords are
optional. If you want an update cursor to be able to modify only some of the
columns in a table, however, you must specify these columns in the FOR
UPDATE OF column list. ¢

The principal advantage to specifying columns is documentation and
preventing programming errors. (The database server refuses to update any
other columns.) An additional advantage is improved performance, when
the SELECT statement meets the following criteria:

m The SELECT statement can be processed using an index.

m The columns that are listed are not part of the index that is used to
process the SELECT statement.

If the columns that you intend to update are part of the index that is used to
process the SELECT statement, the database server keeps a list of each
updated row, to ensure that no row is updated twice. If the OF keyword
specifies which columns can be updated, the database server determines
whether or not to keep the list of updated rows. If the database server deter-
mines that the work of keeping the list is unnecessary, performance
improves. If you do not use the OF column list, the database server always
maintains a list of updated rows, although the list might be unnecessary.

The following example contains ESQL/C code that uses an update cursor
with a DELETE statement to delete the current row.

Whenever the row is deleted, the cursor remains between rows. After you
delete data, you must use a FETCH statement to advance the cursor to the
next row before you can refer to the cursor in a DELETE or UPDATE statement.

EXEC SQL declare q_curs cursor for
select * from customer where lname matches :last_name for update;

EXEC SQL open g_curs;
for (;;)

EXEC SQL fetch g_curs into :cust_rec;

if (strncmp (SQLSTATE, "00", 2) != 0)
break;

SQL Statements 2-329

DECLARE

/* Display customer values and prompt for answer */
printf ("\n%s %s", cust_rec.fname, cust_rec.lname);
printf ("\nDelete this customer? ");

scanf ("%$s", answer) ;

if (answer[0] == 'y')
EXEC SQL delete from customer where current of g curs;
if (strncmp (SQLSTATE, "00", 2) != 0)
break;
}
printf ("\n") ;

EXEC SQL close g_curs;

Locking with an Update Cursor

The FOR UPDATE keywords notify the database server that updating is
possible and cause it to use more stringent locking than with a select cursor.
You declare an update cursor to let the database server know that the
program might update (or delete) any row that it fetches as part of the
SELECT statement. The update cursor employs promotable locks for rows that
the program fetches. Other programs can read the locked row, but no other
program can place a promotable lock (also called a write lock). Before the
program modifies the row, the row lock is promoted to an exclusive lock.

It is possible to declare an update cursor with the WITH HOLD keywords, but
the only reason to do so is to break a long series of updates into smaller trans-
actions. You must fetch and update a particular row in the same transaction.

If an operation involves fetching and updating a large number of rows, the
lock table that the database server maintains can overflow. The usual way to
prevent this overflow is to lock the entire table that is being updated. If this
action is impossible, an alternative is to update through a hold cursor and to
execute COMMIT WORK at frequent intervals. You must plan such an appli-
cation carefully, however, because COMMIT WORK releases all locks, even
those that are placed through a hold cursor.

Subset of INSERT Statement Associated with a Sequential Cursor

As indicated in the diagram for “DECLARE” on page 2-323, to create an
insert cursor, you associate a sequential cursor with a restricted form of the
INSERT statement. The INSERT statement must include a VALUES clause; it
cannot contain an embedded SELECT statement.

2-330 [BM Informix Guide to SQL: Syntax

DECLARE

The following example contains ESQL/C code that declares an insert cursor:

EXEC SQL declare ins_cur cursor for
insert into stock values
(:stock_no, :manu_code, :descr, :u_price, :unit, :u_desc) ;

The insert cursor simply inserts rows of data; it cannot be used to fetch data.
When an insert cursor is opened, a buffer is created in memory. The buffer
receives rows of data as the program executes PUT statements. The rows are
written to disk only when the buffer is full. You can flush the buffer (that is,
to write its contents into the database) when it is less than full, using the
CLOSE, FLUSH, or COMMIT WORK statements. This topic is discussed further
under the CLOSE, FLUSH, and PUT statements.

You must close an insert cursor to insert any buffered rows into the database
before the program ends. You can lose data if you do not close the cursor
properly. For a complete description of INSERT syntax and usage, see
“INSERT” on page 2-489.

Insert Cursor

When you associate an INSERT statement with a cursor, the cursor is called an
insert cursor. An insert cursor is a data structure that represents the rows that
the INSERT statement is to add to the database. The insert cursor simply
inserts rows of data; it cannot be used to fetch data. To create an insert cursor,
you associate a cursor with a restricted form of the INSERT statement. The
INSERT statement must include a VALUES clause; it cannot contain an
embedded SELECT statement.

Create an insert cursor if you want to add multiple rows to the database in an
INSERT operation. An insert cursor allows bulk insert data to be buffered in
memory and written to disk when the buffer is full, as these steps describe:

1. Use DECLARE to define an insert cursor for the INSERT statement.

2. Open the cursor with the OPEN statement. The database server
creates the insert buffer in memory and positions the cursor at the
first row of the insert buffer.

3. Copy successive rows of data into the insert buffer with the PUT
statement.

SQL Statements 2-331

DECLARE

4. The database server writes the rows to disk only when the buffer is
full. You can use the CLOSE, FLUSH, or COMMIT WORK statement to
flush the buffer when it is less than full. This topic is discussed
further under the PUT and CLOSE statements.

5. Close the cursor with the CLOSE statement when the insert cursor is
no longer needed. You must close an insert cursor to insert any
buffered rows into the database before the program ends. You can
lose data if you do not close the cursor properly.

6. Free the cursor with the FREE statement. The FREE statement releases
the resources that are allocated for an insert cursor.

Using an insert cursor is more efficient than embedding the INSERT statement
directly. This process reduces communication between the program and the
database server and also increases the speed of the insertions.

In addition to select and function cursors, insert cursors can also have the
sequential cursor characteristic. To create an insert cursor, you associate a
sequential cursor with a restricted form of the INSERT statement. (For more
information, see “Insert Cursor” on page 2-331.) The following example
contains IBM Informix ESQL/C code that declares a sequential insert cursor:

EXEC SQL declare ins_cur cursor for
insert into stock values
(:stock_no, :manu_code, :descr, :u_price, :unit, :u_desc) ;

Cursor Characteristics

You can declare a cursor as a sequential cursor (the default), a scroll cursor
(by using the SCROLL keyword), or a hold cursor (by using the WITH HOLD
keywords). The SCROLL and WITH HOLD keywords are not mutually
exclusive. Sections that follow explain these structural characteristics.

A select or function cursor can be either a sequential or a scroll cursor. An
insert cursor can only be a sequential cursor. Select, function, and insert
cursors can optionally be hold cursors.

Creating a Sequential Cursor by Default

If you use only the CURSOR keyword, you create a sequential cursor, which
can fetch only the next row in sequence from the active set. The sequential
cursor can read through the active set only once each time it is opened.

2-332 BM Informix Guide to SQL: Syntax

DECLARE

If you are using a sequential cursor for a select cursor, on each execution of
the FETCH statement, the database server returns the contents of the current
row and locates the next row in the active set.

The following example creates a read-only sequential cursor in a database
that is not ANSI compliant and an update sequential cursor in an ANSI-
compliant database:

EXEC SQL declare s_cur cursor for
select fname, lname into :st_fname, :st_lname
from orders where customer num = 114;

In addition to select and function cursors, insert cursors can also have the
sequential cursor characteristic. To create an insert cursor, you associate a
sequential cursor with a restricted form of the INSERT statement. (For more
information, see “Insert Cursor” on page 2-331.) The following example
declares a sequential insert cursor:

EXEC SQL declare ins_cur cursor for
insert into stock values
(:stock no, :manu_code, :descr, :u_price, :unit, :u_desc) ;

Using the SCROLL Keyword to Create a Scroll Cursor

Use the SCROLL keyword to create a scroll cursor, which can fetch rows of the
active set in any sequence.

The database server retains the active set of the cursor as a temporary table
until the cursor is closed. You can fetch the first, last, or any intermediate
rows of the active set as well as fetch rows repeatedly without having to close
and reopen the cursor. (See FETCH.)

On a multiuser system, the rows in the tables from which the active-set rows
were derived might change after the cursor is opened and a copy is made in
the temporary table. If you use a scroll cursor within a transaction, you can
prevent copied rows from changing either by setting the isolation level to
Repeatable Read or by locking the entire table in share mode during the
transaction. (See SET ISOLATION and LOCK TABLE.)

The following example creates a scroll cursor for a SELECT statement:
DECLARE sc_cur SCROLL CURSOR FOR SELECT * FROM orders

You can create scroll cursors for select and function cursors but not for insert
cursors. Scroll cursors cannot be declared as FOR UPDATE.

SQL Statements 2-333

DECLARE

Using the WITH HOLD Keywords to Create a Hold Cursor

Use the WITH HOLD keywords to create a hold cursor. A hold cursor allows
uninterrupted access to a set of rows across multiple transactions. Ordinarily,
all cursors close at the end of a transaction. A hold cursor does not close; it
remains open after a transaction ends.

A hold cursor can be either a sequential cursor or a scroll cursor.

You can use the WITH HOLD keywords to declare select and function cursors
(sequential and scroll), and insert cursors. These keywords follow the
CURSOR keyword in the DECLARE statement. The following example creates
a sequential hold cursor for a SELECT:

DECLARE hld cur CURSOR WITH HOLD FOR
SELECT customer num, lname, city FROM customer

You can use a select hold cursor as the following ESQL/C code example
shows. This code fragment uses a hold cursor as a master cursor to scan one
set of records and a sequential cursor as a detail cursor to point to records that
are located in a different table. The records that the master cursor scans are
the basis for updating the records to which the detail cursor points. The
COMMIT WORK statement at the end of each iteration of the first WHILE loop
leaves the hold cursor c_master open but closes the sequential cursor c_detail
and releases all locks. This technique minimizes the resources that the
database server must devote to locks and unfinished transactions, and it
gives other users immediate access to updated rows.

2-334 BM Informix Guide to SQL: Syntax

DECLARE

EXEC SQL BEGIN DECLARE SECTION;
int p_custnum, int save_status; long p_orddate;
EXEC SQL END DECLARE SECTION;

EXEC SQL prepare st_1 from

'select order_date from orders where customer num = ? for update';
EXEC SQL declare c_detail cursor for st_1;
EXEC SQL declare c_master cursor with hold for

select customer num from customer where city = 'Pittsburgh';

EXEC SQL open c_master;

if (SQLCODE==0) /* the open worked */
EXEC SQL fetch c_master into :p_custnum; /* discover first customer */
while (SQLCODE==0) /* while no errors and not end of pittsburgh customers */

EXEC SQL begin work; /* start transaction for customer p_ custnum */
EXEC SQL open c_detail using :p_custnum;

if (SQLCODE==0) /* detail open succeeded */
EXEC SQL fetch c_detail into :p_orddate; /* get first order */
while (SQLCODE==0) /* while no errors and not end of orders */
EXEC SQL update orders set order date = '08/15/94"'
where current of c_detail;
if (status==0) /* update was ok */

EXEC SQL fetch c_detail into :p_orddate; /* next order */

if (SQLCODE==SQLNOTFOUND) /* correctly updated all found orders */
EXEC SQL commit work; /* make updates permanent, set status */
else /* some failure in an update */

{

save_status = SQLCODE; /* save error for loop control */
EXEC SQL rollback work;
SQLCODE = save status; /* force loop to end */

if (SQLCODE==0) /* all updates, and the commit, worked ok */
EXEC SQL fetch c_master into :p_custnum; /* next customer? */
}

EXEC SQL close c_master;

Use either the CLOSE statement to close the hold cursor explicitly or the
CLOSE DATABASE or DISCONNECT statements to close it implicitly. The
CLOSE DATABASE statement closes all cursors.

Releases earlier than Version 9.40 of Dynamic Server) do not support the
PDQPRIORITY feature with cursors that were declared WITH HOLD. ¢

SQL Statements 2-335

DECLARE

XPS

Using an Insert Cursor with Hold

If you associate a hold cursor with an INSERT statement, you can use transac-
tions to break a long series of PUT statements into smaller sets of PUT
statements. Instead of waiting for the PUT statements to fill the buffer and
cause an automatic write to the database, you can execute a COMMIT WORK
statement to flush the row buffer. With a hold cursor, COMMIT WORK
commits the inserted rows but leaves the cursor open for further inserts. This
method can be desirable when you are inserting a large number of rows,
because pending uncommitted work consumes database server resources.

Subset of SELECT Statement Associated with Cursors

As indicated in the syntax diagram for “DECLARE” on page 2-323, not all
SELECT statements can be associated with a read-only or update cursor.

If the DECLARE statement includes one of these options, you must observe
certain restrictions on the SELECT statement that is included in the DECLARE
statement (either directly or as a prepared statement).

If the DECLARE statement includes the FOR READ ONLY option, the SELECT
statement cannot have a FOR READ ONLY nor FOR UPDATE option. (For a
description of SELECT syntax and usage, see “SELECT” on page 2-581.)

If the DECLARE statement includes the FOR UPDATE option, the SELECT
statement must conform to the following restrictions:

m The statement can select data from only one table.

m The statement cannot include any aggregate functions.

m The statement cannot include any of the following clauses or
keywords: DISTINCT, FOR READ ONLY, FOR UPDATE, GROUP BY,
INTO TEMP, ORDER BY, UNION, or UNIQUE.

m In Extended Parallel Server, the statement cannot include the INTO
EXTERNAL and INTO SCRATCH clauses. ¢

2-336 BM Informix Guide to SQL: Syntax

DECLARE

Examples of Cursors in Non-ANSI Compliant Databases

In a database that is not ANSI compliant, a cursor associated with a SELECT
statement is a read-only cursor by default. The following example declares a
read-only cursor in a non-ANSI compliant database:

EXEC SQL declare cust_curs cursor for
select * from customer notansi;

If you want to make it clear in the program code that this cursor is a read-only
cursor, specify the FOR READ ONLY option as the following example shows:

EXEC SQL declare cust_curs cursor for
select * from customer notansi for read only;

If you want this cursor to be an update cursor, specify the FOR UPDATE
option in your DECLARE statement. This example declares an update cursor:

EXEC SQL declare new_curs cursor for
select * from customer notansi for update;

If you want an update cursor to be able to modify only some columns in a
table, you must specify those columns in the FOR UPDATE clause. The
following example declares an update cursor that can update only the fname
and lname columns in the customer_notansi table:

EXEC SQL declare name_curs cursor for
select * from customer notansi for update of fname, lname;

Examples of Cursors in ANSI-Compliant Databases

In an ANSI-compliant database, a cursor associated with a SELECT statement
is an update cursor by default.

The following example declares an update cursor in an ANSI-compliant
database:

EXEC SQL declare x_curs cursor for select * from customer ansi;

To make it clear in the program documentation that this cursor is an update
cursor, you can specify the FOR UPDATE option as in this example:

EXEC SQL declare x curs cursor for
select * from customer ansi for update;

SQL Statements 2-337

DECLARE

If you want an update cursor to be able to modify only some of the columns
in a table, you must specify these columns in the FOR UPDATE option. The
following example declares an update cursor and specifies that this cursor
can update only the fname and Iname columns in the customer_ansi table:

EXEC SQL declare y curs cursor for
select * from customer ansi for update of fname, lname;

If you want a cursor to be a read-only cursor, you must override the default
behavior of the DECLARE statement by specifying the FOR READ ONLY
option in your DECLARE statement. The following example declares a
read-only cursor:

EXEC SQL declare z_curs cursor for
select * from customer ansi for read only;

Associating a Cursor with a Prepared Statement

The PREPARE statement lets you assemble the text of an SQL statement at
runtime and pass the statement text to the database server for execution. If
you anticipate that a dynamically prepared SELECT, EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement that returns values could produce more
than one row of data, the prepared statement must be associated with a
cursor. (See PREPARE.)

The result of a PREPARE statement is a statement identifier (statement id or id
variable), which is a data structure that represents the prepared statement text.
To declare a cursor for the statement text, associate a cursor with the
statement identifier.

You can associate a sequential cursor with any prepared SELECT or EXECUTE
FUNCTION (or EXECUTE PROCEDURE) statement. You cannot associate a
scroll cursor with a prepared INSERT statement or with a SELECT statement
that was prepared to include a FOR UPDATE clause.

After a cursor is opened, used, and closed, a different statement can be
prepared under the same statement identifier. In this way; it is possible to use
a single cursor with different statements at different times. The cursor must
be redeclared before you use it again.

2-338 BM Informix Guide to SQL: Syntax

DECLARE

The following example contains ESQL/C code that prepares a SELECT
statement and declares a sequential cursor for the prepared statement text.
The statement identifier st_1 is first prepared from a SELECT statement that
returns values; then the cursor c¢_detail is declared for st_1.

EXEC SQL prepare st_1 from
'select order_date
from orders where customer_num = ?';
EXEC SQL declare c_detail cursor for st _1;

If you want to use a prepared SELECT statement to modify data, add a FOR
UPDATE clause to the statement text that you want to prepare, as the
following ESQL/C example shows:

EXEC SQL prepare sel_1 from
'select * from customer for update';
EXEC SQL declare sel_curs cursor for sel 1;

Associating a Cursor with a Collection Variable

The DECLARE statement allows you to declare a cursor for an ESQL/C
collection variable. Such a cursor is called a collection cursor. You use a
collection variable to access the elements of a collection (SET, MULTISET, LIST)
column. Use a cursor when you want to access one or more elements in a
collection variable.

The Collection-Derived Table segment identifies the collection variable for
which to declare the cursor. For more information, see “Collection-Derived
Table” on page 4-7.

Select with a Collection-Derived Table
The diagram for “DECLARE” on page 2-323 refers to this section.

To declare a select cursor for a collection variable, include the Collection-
Derived Table segment with the SELECT statement that you associate with the
collection cursor. A select cursor allows you to select one or more elements
from the collection variable. (For a description of SELECT syntax and usage,
see “SELECT” on page 2-581.)

SQL Statements 2-339

DECLARE

2-340

1.
2.

When you declare a select cursor for a collection variable, the DECLARE
statement has the following restrictions:

It cannot include the FOR READ ONLY keywords as cursor mode.
The select cursor is an update cursor.
It cannot include the SCROLL or WITH HOLD keywords.

The select cursor must be a sequential cursor.

In addition, the SELECT statement that you associate with the collection
cursor has the following restrictions:

It cannot include the following clauses or options: WHERE, GROUP
BY, ORDER BY, HAVING, INTO TEMP, and WITH REOPTIMIZATION.

It cannot contain expressions in the select list.

If the collection contains elements of opaque, distinct, built-in, or
other collection data types, the select list must be an asterisk (*).

Column names in the select list must be simple column names.

These columns cannot use the following syntax:
database@server:table.column --INVALID SYNTAX

It must specify the name of the collection variable in the FROM clause.

You cannot specify an input parameter (the question-mark (?) sym-
bol) for the collection variable. Likewise you cannot use the virtual
table format of the Collection-Derived Table segment.

Using a SELECT Cursor with a Collection Variable

A collection cursor that includes a SELECT statement with the Collection-
Derived Table clause provides access to the elements in a collection variable.

To select more than one element

Create a client collection variable in your ESQL/C program.

Declare the collection cursor for the SELECT statement with the
DECLARE statement.

To modify elements of the collection variable, declare the select cur-
sor as an update cursor with the FOR UPDATE keywords. You can
then use the WHERE CURRENT OF clause of the DELETE and UPDATE
statements to delete or update elements of the collection.

IBM Informix Guide to SQL: Syntax

DECLARE

3. Open this cursor with the OPEN statement.

Fetch the elements from the collection cursor with the FETCH
statement and the INTO clause.

5. Ifnecessary, perform any updates or deletes on the fetched data and
save the modified collection variable in the collection column.

Once the collection variable contains the correct elements, use the
UPDATE or INSERT statement to save the contents of the collection
variable in the actual collection column (SET, MULTISET, or LIST).

6. Close the collection cursor with the CLOSE statement.
This DECLARE statement declares a select cursor for a collection variable:

EXEC SQL BEGIN DECLARE SECTION;
client collection set (integer not null) a set;
EXEC SQL END DECLARE SECTION;

EXEC SQL declare set_curs cursor for select * from table(:a_set);

For an extended code example that uses a collection cursor for a SELECT
statement, see “Fetching from a Collection Cursor” on page 2-432.

Insert with a Collection-Derived Table

To declare an insert cursor for a collection variable, include the Collection-
Derived Table segment in the INSERT statement associated with the collection
cursor. An insert cursor can insert one or more elements in the collection. For
a description of INSERT syntax and usage, see “INSERT” on page 2-489.

The insert cursor must be a sequential cursor. That is, the DECLARE statement
cannot specify the SCROLL keyword.

When you declare an insert cursor for a collection variable, the Collection-
Derived Table clause of the INSERT statement must contain the name of the
collection variable. You cannot specify an input parameter (the question-
mark (?) symbol) for the collection variable. However, you can use an input
parameter in the VALUES clause of the INSERT statement. This parameter
indicates that the collection element is to be provided later by the FROM
clause of the PUT statement.

A collection cursor that includes an INSERT statement with the Collection-
Derived Table clause allows you to insert more than one element into a
collection variable.

SQL Statements 2-341

DECLARE

2-342

To insert more than one element

Create a client collection variable in your ESQL/C program.

Declare the collection cursor for the INSERT statement with the
DECLARE statement.

Open the cursor with the OPEN statement.

Put the elements into the collection cursor with the PUT statement
and the FROM clause.

Once the collection variable contains all the elements, use the
UPDATE statement or the INSERT statement on a table name to save
the contents of the collection variable in a collection column (SET,
MULTISET, or LIST).

Close the collection cursor with the CLOSE statement.

This example declares an insert cursor for the a_set collection variable:

EXEC SQL BEGIN DECLARE SECTION;

client collection multiset (smallint not null) a mset;
int an_element;

EXEC SQL END DECLARE SECTION;

EXEC SQL declare mset_curs cursor for

insert into table(:a_mset) values (?);

EXEC SQL open mset curs;
while (1)

EXEC SQL put mset curs from :an_element;

To insert the elements into the collection variable, use the PUT statement with
the FROM clause. For a code example that uses a collection cursor for an
INSERT statement, see “Inserting into a Collection Cursor” on page 2-544.

Using Cursors with Transactions

To roll back a modification, you must perform the modification within a
transaction. A transaction in a database that is not ANSI compliant begins
only when the BEGIN WORK statement is executed.

In an ANSI-compliant database, transactions are always in effect. ¢

IBM Informix Guide to SQL: Syntax

DECLARE

The database server enforces these guidelines for select and update cursors
to ensure that modifications can be committed or rolled back properly:

m Open an insert or update cursor within a transaction.
m Include PUT and FLUSH statements within one transaction.

m Modify data (update, insert, or delete) within one transaction.

The database server lets you open and close a hold cursor for an update
outside a transaction; however, you should fetch all the rows that pertain to
a given modification and then perform the modification all within a single
transaction. You cannot open and close a hold cursor or an update cursor
outside a transaction.

The following example uses an update cursor within a transaction:

EXEC SQL declare g curs cursor for
select customer_num, fname, lname from customer
where lname matches :last name for update;
EXEC SQL open g _curs;
EXEC SQL begin work;
EXEC SQL fetch g curs into :cust_rec; /* fetch after begin */
EXEC SQL update customer set lname = 'Smith'
where current of g curs;
/* no error */
EXEC SQL commit work;

When you update a row within a transaction, the row remains locked until
the cursor is closed or the transaction is committed or rolled back. If you
update a row when no transaction is in effect, the row lock is released when
the modified row is written to disk. If you update or delete a row outside a
transaction, you cannot roll back the operation.

In a database that uses transactions, you cannot open an insert cursor outside
a transaction unless it was also declared with the WITH HOLD keywords.

Related Information

Related statements: CLOSE, DELETE, EXECUTE PROCEDURE, FETCH, FREE,
INSERT, OPEN, PREPARE, PUT, SELECT, and UPDATE

For discussions of cursors and data modification, see the IBM Informix Guide
to SQL: Tutorial.

For more advanced issues related to cursors or using cursors with collection
variables, see the IBM Informix ESQL/C Programmer’s Manual.

SQL Statements 2-343

DELETE

DELETE

Use the DELETE statement to delete one or more rows from a table, or one or
more elements in an SPL or ESQL/C collection variable.

DELETE

Syntax
~
imi Condition
Optimizer] /
Directives WHERE p. 4-24

p. 4-222

USING
+
Elm

XPS

Collection-

Derived E/C
Table — WHERE CURRENT OF cursor_id
SPL

p. 4-7 \
Element Purpose Restrictions Syntax
alias Temporary name for a table You cannot use an alias for an indexed table Identifier, p. 4-189
cursor_id ~ Previously declared cursor Must have been declared FOR UPDATE. Identifier, p. 4-189
synonym, Table, view, or synonym The table or view (or the synonym and the Database Object

table, view

2-344

with row(s) to be deleted table or view to which it points) must exist Name, p. 4-46

Usage

If you use DELETE without a WHERE clause (to specify either a condition or
the active set of the cursor), all rows in the table are deleted.

In a database with explicit transaction logging, any DELETE statement that
you execute outside a transaction is treated as a single transaction.

If you specify a view name, the view must be updatable. For an explanation
of an updatable view, see “Updating Through Views” on page 2-315.

IBM Informix Guide to SQL: Syntax

>

DELETE

The database server locks each row affected by a DELETE statement within a
transaction for the duration of the transaction. The type of lock that the
database server uses is determined by the lock mode of the table, as set by a
CREATE TABLE or ALTER TABLE statement, as follows:

m If the lock mode is ROW, the database server acquires one lock for
each row affected by the delete.

m In Extended Parallel Server, if the lock mode is PAGE, the database
server acquires one lock for each page affected by the delete. ¢

If the number of rows affected is very large and the lock mode is ROW, you
might exceed the limits your operating system places on the maximum
number of simultaneous locks. If this occurs, you can either reduce the scope
of the DELETE statement or lock the table in exclusive mode before you
execute the statement.

If you omit the WHERE clause while working at the SQL menu, DB-Access
prompts you to verify that you want to delete all rows from a table. You do
not receive a prompt if you run execute DELETE within a command file. ¢

In an ANSI-compliant database, data manipulation language (DML) state-
ments are always in a transaction. You cannot execute a DELETE statement
outside a transaction. ¢

On Dynamic Server, the FROM keyword that immediately follows DELETE
can be omitted if the DELIMIDENT environment variable has been set. ¢

Using the ONLY Keyword

If you use DELETE to remove rows of a supertable, rows from both the
supertable and its subtables can be deleted. To delete rows from the
supertable only, specify the ONLY keyword before the table name.

DELETE FROM ONLY (super_tab)
WHERE name = "johnson"

Warning: If you use the DELETE statement on a supertable and omit the ONLY
keyword and WHERE clause, all rows of the supertable and its subtables are deleted.

You cannot specify the ONLY keyword if you plan to use the WHERE CURRENT OF
clause to delete the current row of the active set of a cursor.

SQL Statements 2-345

DELETE

Considerations When Tables Have Cascading Deletes

When you use the ON DELETE CASCADE option of the REFERENCES clause of
either the CREATE TABLE or ALTER TABLE statement, you specify that you
want deletes to cascade from one table to another. For example, in the
stores_demo database, the stock table contains the column stock_num as a
primary key. The catalog and items tables each contain the column
stock_num as foreign keys with the ON DELETE CASCADE option specified.
When a delete is performed from the stock table, rows are also deleted in the
catalog and items tables, which are referenced through the foreign keys.

To have DELETE actions cascade to a table that has a referential constraint on
a parent table, you need the Delete privilege only on the parent table that you
reference in the DELETE statement.

If a DELETE without a WHERE clause is performed on a table that one or more
child tables reference with cascading deletes, the database server deletes all
rows from that table and from any affected child tables.

For an example of how to create a referential constraint that uses cascading
deletes, see “Using the ON DELETE CASCADE Option” on page 2-226.

Restrictions on DELETE When Tables Have Cascading Deletes

You cannot use a child table in a correlated subquery to delete a row from a
parent table. If two child tables reference the same parent table, and one child
specifies cascading deletes but the other child does not, then if you attempt
to delete a row that applies to both child tables from the parent table, the
DELETE fails, and no rows are deleted from the parent or child tables.

Locking and Logging Implications of Cascading Deletes

During deletes, the database server places locks on all qualifying rows of the
referenced and referencing tables.

Transaction logging is required for cascading deletes. If logging is turned off
in a database that is not ANSI-compliant, even temporarily, deletes do not
cascade, because you cannot roll back any actions. For example, if a parent
row is deleted, but the system fails before the child rows are deleted, the
database will have dangling child records, in violation of referential integrity.
After logging is turned back on, however, subsequent deletes cascade. ¢

2-346 BM Informix Guide to SQL: Syntax

DELETE

Using the WHERE Keyword to Introduce a Condition

Use the WHERE condition clause to specify which rows you want to delete
from the table. The condition after the WHERE keyword is equivalent to the
condition in the SELECT statement. For example, the next statement deletes all
the rows of the items table where the order number is less than 1034:

DELETE FROM items WHERE order num < 1034

If you include a WHERE clause that selects all rows in the table, DB-Access
gives no prompt and deletes all rows. ¢

If you are deleting from a supertable in a table hierarchy, a subquery in the
WHERE clause cannot reference a subtable.

When deleting from a subtable, a subquery in the WHERE clause can
reference the supertable only in SELECT...FROM ONLY (supertable)... syntax. ¢

Using the WHERE CURRENT OF Keywords

The WHERE CURRENT OF clause deletes the current row of the active set of a
cursor. When you include this clause, the DELETE statement removes the row
of the active set at the current position of the cursor. After the deletion, no
current row exists; you cannot use the cursor to delete or update a row until
you reposition the cursor with a FETCH statement.

You access the current row of the active set of a cursor with an update cursor.
Before you can use the WHERE CURRENT OF clause, you must first create an
update cursor by using the FOREACH statement (SPL) or the DECLARE
statement with the FOR UPDATE clause (ESQL/C).

Unless they are declared with the FOR READ ONLY keywords, all select
cursors are potentially update cursors in an ANSI-compliant database. You
can use the WHERE CURRENT OF clause with any select cursor that was not
declared with the FOR READ ONLY keywords. ¢

You cannot use WHERE CURRENT OF if you are selecting from only one table
in a table hierarchy. That is, this clause is not valid with the ONLY keyword.

The WHERE CURRENT OF clause can be used to delete an element from a
collection by deleting the current row of the collection-derived table that a
collection variable holds. For more information, see “Collection-Derived
Table” on page 4-7. ¢

SQL Statements 2-347

DELETE

E/C

Using the USING or FROM Keyword to Introduce a Join Condition

To delete information from a table based on information contained in one or
more other tables, use the USING keyword or a second FROM keyword to
introduce the list of tables that you want to join in the WHERE clause. When
you use this syntax, the WHERE clause can include any complex join.

If you do not list a join in the WHERE clause, the database server ignores the
tables listed after the introductory keyword (either USING or FROM). That is,
the query performs as if the list of tables was not included.

You can use a second FROM keyword to introduce the list of tables, but your
code will be easier to read if you use the USING keyword instead.

When you use a delete join, the entire operation occurs as a single transaction.
For example, if a delete join query is supposed to delete 100 rows and an error
occurs after the 50th row, the first 50 rows that are already deleted will
reappear in the table. ¢

When you introduce a list of tables that you want to join in the WHERE clause,
the following restrictions for the DELETE statement exist:

m You must list the target table (the one from which rows are to be
deleted) and any table that will be part of a join after the USING (or
second FROM) keyword.

The WHERE clause cannot contain outer joins.
The target table cannot be a static or external table.

The statement cannot contain cursors.

If the target table is a view, the view must be updatable.

That implies that the SELECT statement that defines the view cannot
contain any of the following syntax elements:

o Aggregate expressions

0 UNIQUE or DISTINCT keywords
0 UNION operator

o GROUP BY keywords

The next example deletes the rows from the lineitem table whose corre-
sponding rows in the order table show a qty of less than one.

DELETE FROM lineitem USING order o, lineitem 1
WHERE o.gty < 1 AND o.order_num = 1l.order_ num

2-348 BM Informix Guide to SQL: Syntax

E/C

SPL

DELETE

A delete join makes it easier to incorporate new data into a database. For
example, you can:

1. Store new values in a temporary table.

2. Use a delete join (DELETE...USING statement) to remove any records
from the temporary table that already exist in the table into which
you want to insert the new records.

3. Insert the remaining records into the table.

In addition, you can use this syntax instead of deleting from the results of a
SELECT statement that includes a join.

Deleting Rows That Contain Opaque Data Types

Some opaque data types require special processing when they are deleted.
For example, if an opaque data type contains spatial or multirepresentational
data, it might provide a choice of how to store the data: inside the internal
structure or, for large objects, in a smart large object.

To accomplish this process, call a user-defined support function called
destroy(). When you use DELETE to remove a row that contains one of these
opaque types, the database server automatically invokes destroy() for the
opaque type. This function decides how to remove the data, regardless of
where it is stored. For more information on the destroy() support function,
see IBM Informix User-Defined Routines and Data Types Developer’s Guide.

Deleting Rows That Contain Collection Data Types

When a row contains a column that is a collection data type (LIST, MULTISET,
or SET), you can search for a particular element in the collection, and delete
the row or rows in which the element is found.

For example, the following statement deletes any rows from the new_tab
table in which the set_col column contains the element jimmy smith:

DELETE FROM new_tab WHERE 'jimmy smith' IN set_col

You can also use a collection variable to delete values in a collection column
by deleting one or more individual elements in a collection. For more infor-
mation, see “Collection-Derived Table” on page 4-7, and the examples in
“Example of Deleting from a Collection in ESQL/C” on page 4-17 and
“Example of Deleting from a Collection” on page 4-18. ¢

SQL Statements 2-349

DELETE

SQLSTATE Values in an ANSI-Compliant Database

If no rows satisfy the WHERE clause of a DELETE operation on a table in an
ANSI-compliant database, the database server issues a warning. You can
detect this warning condition in either of the following ways:

m The GET DIAGNOSTICS statement sets the RETURNED_SQLSTATE
field to the value 02000. In an SQL API application, the SQLSTATE
variable contains this same value.

m InanSQL APlapplication, the sqlca.sqlcode and SQLCODE variables
contain the value 100.

The database server also sets SQLSTATE and SQLCODE to these values if the
DELETE ... WHERE statement is part of a multistatement prepared object, and
the database server returns no rows.

SQLSTATE Values in a Database That Is Not ANSI-Compliant

In a database that is not ANSI compliant, the database server does not return
a warning when it finds no rows satisfying the WHERE clause of a DELETE
statement. In this case, the SQLSTATE code is 00000 and the SQLCODE code
is zero (0). If the DELETE . . . WHERE is part of a multistatement prepared
object, however, and no rows are returned, the database server does issue a
warning. It sets SQLSTATE to 02000 and sets the SQLCODE value to 100.

Related Information

Related Statements: DECLARE, FETCH, GET DIAGNOSTICS, INSERT, OPEN,
SELECT, and UPDATE

For discussions of the DELETE statement, SPL routines, statement modifi-
cation, cursors, and the SQLCODE code, see the IBM Informix Guide to SQL:
Tutorial.

For information on how to access row and collections with ESQL/C host
variables, see the chapter on complex data types in the IBM Informix ESQL/C
Programmer’s Manual.

For a discussion of the GLS aspects of the DELETE statement, see the
IBM Informix GLS User’s Guide.

2-350 [BM Informix Guide to SQL: Syntax

DESCRIBE

DESCRIBE
E/C .. .
Use the DESCRIBE statement to obtain information about output parameters
and other features of a prepared statement before you execute it. Use this
statement with ESQL/C. (See also “DESCRIBE INPUT” on page 2-359.)
Syntax
DESCRIBE statement _id_v‘y \USING SQL DESCRIPTORldescriptor_var
statement_id INTO 'descriptor
OUTPUT sqlda_pointer
Element Purpose Restrictions Syntax
descriptor Name of a system- System-descriptor area must Quoted String, p. 4-243
descriptor area already be allocated
descriptor_var Host variable thatidentifies Must contain the name of an Language-specific rules
a system-descriptor area allocated system-descriptor area for names
sqlda_pointer Pointer to an sqlda Cannot begin with dollar ($) sign See the sqlda structure in
structure nor colon (). An sqlda structureis the IBM Informix ESQL/C

required if dynamic SQL is used. Programmer’s Manual
statement_id Statement identifier for a Must be defined in a previous PREPARE, p. 2-527;

prepared SQL statement PREPARE statement Identifier, p. 4-189
statement Host variable that contains Must be declared in a previous Language-specific rules
_id_var the value of statement_id PREPARE statement for names

SQL Statements 2-351

DESCRIBE

Usage
DESCRIBE can provide information at runtime about a prepared statement:

m The type of SQL statement that was prepared.
m Whether an UPDATE or DELETE statement contains a WHERE clause.

m For a SELECT, EXECUTE FUNCTION (or EXECUTE PROCEDURE),
INSERT, or UPDATE statement, the DESCRIBE statement also returns
the number, data types, and size of the values, and the name of the
column or expression that the query returns. ¢

m ForaSELECT, EXECUTE PROCEDURE, or INSERT statement, DESCRIBE
also returns the number, data types, and size of the values, and the
name of the column or expression that the query returns. ¢

With this information, you can write code to allocate memory to hold
retrieved values and display or process them after they are fetched.

The OUTPUT Keyword

The OUTPUT keyword specifies that only information about output param-
eters of the prepared statement are stored in the sqlda descriptor area. If you
omit this keyword, DESCRIBE can return input parameters, but only for
INSERT statements (and for UPDATE, if the IFX_UPDESC environment
variable is set in the environment where the database server is initialized).

Describing the Statement Type

The DESCRIBE statement takes a statement identifier from a PREPARE
statement as input. When the DESCRIBE statement executes, the database
server sets the value of the SQLCODE field of the sqlca to indicate the
statement type (that is, the keyword with which the statement begins). If the
prepared statement text contains more than one SQL statement, the DESCRIBE
statement returns the type of the first statement in the text.

SQLCODE is set to zero to indicate a SELECT statement without an INTO TEMP
clause. This situation is the most common. For any other SQL statement,
SQLCODE is set to a positive integer. You can test the number against the
constant names that are defined. In ESQL/C, the constant names are defined
in the sqlstypes.h header file.

2-352 BM Informix Guide to SQL: Syntax

DESCRIBE

The DESCRIBE statement (and the DESCRIBE INPUT statement) use the
SQLCODE field differently from any other statement, possibly returning a
nonzero value when it executes successfully. You can revise standard error-
checking routines to accommodate this behavior, if desired.

Checking for the Existence of a WHERE Clause

If the DESCRIBE statement detects that a prepared statement contains an
UPDATE or DELETE statement without a WHERE clause, the DESCRIBE
statement sets the sqlca.sqlwarn.sqlwarn4 variable to w.

When you do not specify a WHERE clause in either a DELETE or UPDATE
statement, the database server performs the delete or update operation
on the entire table. Check the sqlca.sqlwarn.sqlwarn4 variable to avoid
unintended global changes to your table.

Describing a Statement with Runtime Parameters

If the prepared statement contains parameters for which the number of
parameters or parameter data types is to be supplied at runtime, you can
describe these input values. If the prepared statement text includes one of the
following statements, the DESCRIBE statement returns a description of each
column or expression that is included in the list:

EXECUTE FUNCTION (or EXECUTE PROCEDURE)
INSERT

SELECT (without an INTO TEMP clause)
UPDATE

The IFX_UPDDESC environment variable must be set before you can
usn DESCRIBE to obtain information about an UPDATE statement. For
more information, see the IBM Informix Guide to SQL: Reference. ¢

The description includes the following information:

m The data type of the column, as defined in the table
m The length of the column, in bytes

m The name of the column or expression

SQL Statements 2-353

DESCRIBE

For a prepared INSERT or UPDATE statement, DESCRIBE returns only the
dynamic parameters (those expressed with a question mark (?) symbol).
Using the OUTPUT keyword, however, prevents these from being returned.

You can specify a destination for the returned informations as a new or
existing system-descriptor area, or as a pointer to an sqlda structure.

A system-descriptor area conforms to the X/Open standards. ¢

Using the SQL DESCRIPTOR Keywords

Use the USING SQL DESCRIPTOR clause to store the description of a prepared
statement list in a previously allocated system-descriptor area.

Use the INTO SQL DESCRIPTOR clause to create a new system-descriptor
structure and store the description of a statement list in that structure.

To describe one of the previously mentioned statements into a system-
descriptor area, DESCRIBE updates the system-descriptor area in these ways:

m It sets the COUNT field in the system-descriptor area to the number
of values in the statement list. An error results if COUNT is greater
than the number of item descriptors in the system-descriptor area.

m Itsets the TYPE, LENGTH, NAME, SCALE, PRECISION, and NULLABLE
fields in the system-descriptor area.

If the column has an opaque data type, the database server sets the
EXTYPEID, EXTYPENAME, EXTYPELENGTH, EXTYPEOWNER-
LENGTH, and EXTYPEOWNERNAME fields of the item descriptor. ¢

m Itallocates memory for the DATA field for each item descriptor, based
on the TYPE and LENGTH information.

After a DESCRIBE statement is executed, the SCALE and PRECISION fields
contain the scale and precision of the column, respectively. If SCALE and
PRECISION are set in the SET DESCRIPTOR statement, and TYPE is set to
DECIMAL or MONEY, the LENGTH field is modified to adjust for the scale and
precision of the decimal value. If TYPE is not set to DECIMAL or MONEY, the
values for SCALE and PRECISION are not set, and LENGTH is unaffected.

You must modify system-descriptor-area information with SET DESCRIPTOR
statements to show the address in memory that is to receive the described
value. You can change the data type to another compatible type. This change
causes data conversion to take place when data values are fetched.

2-354 BM Informix Guide to SQL: Syntax

DESCRIBE

You can use the system-descriptor area in prepared statements that support
a USING SQL DESCRIPTOR clause, such as EXECUTE, FETCH, OPEN, and PUT.

The following examples show the use of a system descriptor in a DESCRIBE
statement. In the first example, the system descriptor is a quoted string; in the
second example, it is an embedded variable name.

main ()

{

EXEC SQL allocate descriptor 'descl' with max 3;
EXEC SQL prepare cursl FROM 'select * from tab';
EXEC SQL describe cursl using sqgl descriptor 'descl';

}

EXEC SQL describe cursl using sqgl descriptor :desclvar;

Using the INTO sqgida Pointer Clause

Use the INTO sglda_pointer clause to allocate memory for an sqlda structure

and store its address in an sqlda pointer. The DESCRIBE statement fills in the
allocated memory with descriptive information. Unlike the USING clause, the
INTO clause creates new sqlda structures to store the output from DESCRIBE.

The DESCRIBE statement sets the sqlda.sqld field to the number of values in
the statement list. The sqlda structure also contains an array of data
descriptors (sqlvar structures), one for each value in the statement list. After
a DESCRIBE statement is executed, the sqlda.sqlvar structure has the sqltype,
sqllen, and sqlname fields set.

If the column has an opaque data type, DESCRIBE...INTO sets the sqlxid,
sqltypename, sqltypelen, sqlownerlen, and sqlownername fields of the
item descriptor. ¢

The DESCRIBE statement allocates memory for an sqlda pointer once it is
declared in a program. The application program, however, must designate
the storage area of the sqlda.sqlvar.sqldata fields.

SQL Statements 2-355

DESCRIBE

[s | Describing a Collection Variable

The DESCRIBE statement can provide information about a collection variable
when you use the USING SQL DESCRIPTOR or INTO clause.

You must perform the DESCRIBE statement after you open the select or insert
cursor. Otherwise, DESCRIBE cannot get information about the collection
variable because it is the OPEN...USING statement that specifies the name of
the collection variable to use.

2-356 BM Informix Guide to SQL: Syntax

DESCRIBE

The next ESQL/C code fragment dynamically selects the elements of the
:a_set collection variable into a system-descriptor area called descl:

EXEC SQL BEGIN DECLARE SECTION;
client collection a_set;
int i, set_count;
int element type, element value;
EXEC SQL END DECLARE SECTION;
EXEC SQL allocate collection :a_set;
EXEC SQL allocate descriptor 'descl';
EXEC SQL select set_col into :a_set from tablel;
EXEC SQL prepare set_id from
'select * from table(?)'
EXEC SQL declare set_curs cursor for set_id;
EXEC SQL open set_ curs using :a_set;
EXEC SQL describe set_id using sgl descriptor 'descl';
do
{
EXEC SQL fetch set_curs using sqgl descriptor 'descl';
EXEC SQL get descriptor 'descl' :set_count = count;
for (i = 1; i <= set_count; i++)
{
EXEC SQL get descriptor 'descl' value :i
:element_type = TYPE;
switch
{
case SQLINTEGER:
EXEC SQL get descriptor 'descl' value :i
:element value = data;
} /* end switch */
} /* end for */
} while (SQLCODE == 0);
EXEC SQL close set curs;
EXEC SQL free set_curs;
EXEC SQL free set_id;
EXEC SQL deallocate collection :a_set;
EXEC SQL deallocate descriptor 'descl';

Related Information

Related statements: ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR,
DECLARE, DESCRIBE INPUT, EXECUTE, FETCH, GET DESCRIPTOR, OPEN,
PREPARE, PUT, and SET DESCRIPTOR

SQL Statements 2-357

DESCRIBE

For a task-oriented discussion of the DESCRIBE statement, see the
IBM Informix Guide to SQL: Tutorial.

For more information about how to use a system-descriptor area and sqlda,
refer to the IBM Informix ESQL/C Programmer’s Manual.

2-358 BM Informix Guide to SQL: Syntax

DESCRIBE INPUT

DESCRIBE INPUT

Use the DESCRIBE INPUT statement to return input parameter information
before a prepared statement is executed. Use this statement with ESQL/C.

E/C

Syntax

DESCRIBE INPUTjstatemem‘ vaﬁUSING SQL DESCRIPTORTdescrIptor
statement_id INTO descriptor_var

——— sqlda_pointer

Element Purpose Restrictions Syntax

descriptor Name of a system- System-descriptor area must Quoted String, p. 4-243
descriptor area already be allocated

descriptor_var Host variable thatidentifies Must contain the name of an Language-specific rules
a system-descriptor area allocated system-descriptor area for names

sqlda_pointer Pointer to an sqlda Cannot begin with dollar ($) sign See the sqlda structure in
structure or colon (). An sqlda structure is the IBM Informix ESQL/C

required if dynamic SQL is used Programmer’s Manual.

statement_id Statement identifier for a Must be defined in a previously =~ PREPARE, p. 2-527;
prepared SQL statement executed PREPARE statement Identifier, p. 4-189

statement_var Host variable that contains Variable and statement_id both Language-specific rules

the value of statement_id must be declared for names
|

Usage

The DESCRIBE INPUT and the DESCRIBE OUTPUT statements can return infor-
mation about a prepared statement to an SQL Descriptor Area (sqlda):

m For a SELECT, EXECUTE FUNCTION (or PROCEDURE), INSERT, or
UPDATE statement, the DESCRIBE statement (with no INPUT
keyword) returns the number, data types, and size of the returned
values, and the name of the column or expression.

m For a SELECT, EXECUTE FUNCTION, EXECUTE PROCEDURE, DELETE,
INSERT, or UPDATE statement, the DESCRIBE INPUT statement
returns all the input parameters of a prepared statement.

SQL Statements 2-359

DESCRIBE INPUT

Tip: Dynamic Server versions earlier than 9.40 do not support the INPUT keyword.
For compatibility with legacy applications, DESCRIBE without INPUT is supported.
In new applications, you should use DESCRIBE INPUT statements to provide infor-
mation about dynamic parameters in the WHERE clause, in subqueries, and in other
syntactic contexts where the old form of DESCRIBE cannot provide information.

With this information, you can write code to allocate memory to hold
retrieved values that you can display or process after they are fetched.

The IFX_UPDDESC environment variable does not need to be set before you
can use DESCRIBE INPUT to obtain information about an UPDATE statement.

Describing the Statement Type

This statement takes a statement identifier from a PREPARE statement as
input. After DESCRIBE INPUT executes, the SQLCODE field of the sqlca
indicates the statement type (that is, the keyword with which the statement
begins). If a prepared object contains more than one SQL statement, DESCRIBE
INPUT returns the type of the first statement in the prepared text.

SQLCODE is set to zero to indicate a SELECT statement without an INTO TEMP
clause. This situation is the most common. For any other SQL statement,
SQLCODE is set to a positive integer. You can compare the number with the
named constants that are defined in the sqlstypes.h header file.

The DESCRIBE and DESCRIBE INPUT statements use SQLCODE differently
from other statements, under some circumstances returning anonzero value
after successful execution. You can revise standard error-checking routines to
accommodate this behavior, if desired.

Checking for Existence of a WHERE Clause

If the DESCRIBE INPUT statement detects that a prepared object contains an
UPDATE or DELETE statement without a WHERE clause, the database server
sets the sqlca.sqlwarn.sqlwarn4 variable to w.

When you do not specify a WHERE clause in either a DELETE or UPDATE
statement, the database server performs the delete or update action on the
entire table. Check the sqlca.sqlwarn.sqlwarn4 variable after DESCRIBE
INPUT executes to avoid unintended global changes to your table.

2-360 [BM Informix Guide to SQL: Syntax

DESCRIBE INPUT

Describing a Statement with Dynamic Runtime Parameters

If the prepared statement specifies a set of parameters whose cardinality or
data types must be supplied at runtime, you can describe these input values.
If the prepared statement text includes one of the following statements,
the DESCRIBE INPUT statement returns a description of each column or
expression that is included in the list:

m EXECUTE FUNCTION (or EXECUTE PROCEDURE)

m INSERT or SELECT

m UPDATE or DELETE
The description includes the following information:

The data type of the column, as defined in the table
The length of the column, in bytes

The name of the column or expression

Information about dynamic parameters (parameters that are expressed
as question (?) mark symbols within the prepared statement).

If the database server cannot infer the data type of an expression parameter,
the DESCRIBE INPUT statement returns SQLUNKNOWN as the data type.

You can specify a destination for the returned informations as a new or
existing system-descriptor area, or as a pointer to an sqlda structure.

SQL Statements 2-361

DESCRIBE INPUT

Using the SQL DESCRIPTOR Keywords

Specify INTO SQL DESCRIPTOR to create a new system-descriptor structure
and store the description of a prepared statement list in that structure.

Use the USING SQL DESCRIPTOR clause to store the description of a prepared
statement list in a previously allocated system-descriptor area. Executing the
DESCRIBE INPUT . . . USING SQL DESCRIPTOR statement updates an existing
system-descriptor area in the following ways:

m Itallocates memory for the DATA field for each item descriptor, based
on the TYPE and LENGTH information.

m [t sets the COUNT field in the system-descriptor area to the number
of values in the statement list. An error results if COUNT is greater
than the number of item descriptors in the system-descriptor area.

m Itsets the TYPE, LENGTH, NAME, SCALE, PRECISION, and NULLABLE
fields in the system-descriptor area.

For columns of opaque data types, the DESCRIBE INPUT statement sets
the EXTYPEID, EXTYPENAME, EXTYPELENGTH, EXTYPEOWNERLENGTH, and
EXTYPEOWNERNAME fields of the item descriptor.

After a DESCRIBE INPUT statement executes, the SCALE and PRECISION fields
contain the scale and precision of the column, respectively. If SCALE and
PRECISION are set in the SET DESCRIPTOR statement, and TYPE is set to
DECIMAL or MONEY, the LENGTH field is modified to adjust for the decimal
scale and precision. If TYPE is not set to DECIMAL or MONEY, the values for
SCALE and PRECISION are not set, and LENGTH is unaffected.

You must modify the system-descriptor-area information with the SET
DESCRIPTOR statement to specify the address in memory that is to receive the
described value. You can change the data type to another compatible type.
This causes data conversion to take place when the data values are fetched.

You can also use the system-descriptor area in other statements that support
a USING SQL DESCRIPTOR clause, such as EXECUTE, FETCH, OPEN, and PUT.

2-362 [BM Informix Guide to SQL: Syntax

DESCRIBE INPUT

The following examples show the use of a system descriptor in a DESCRIBE
statement. In the first example, the system descriptor is a quoted string; in the
second example, it is an embedded variable name.

main ()

{

EXEC SQL allocate descriptor 'descl' with max 3;
EXEC SQL prepare cursl FROM 'select * from tab';
EXEC SQL describe cursl using sqgl descriptor 'descl';

}

EXEC SQL describe cursl using sqgl descriptor :desclvar;

A system-descriptor area conforms to the X/Open standards. ¢

Using the INTO sqgida Pointer Clause

The INTO sqlda_pointer clause allocates memory for an sqlda structure and
store its address in an sqlda pointer. The DESCRIBE INPUT statement fills in
the allocated memory with descriptive information.

The DESCRIBE INPUT statement sets the sqlda.sqld field to the number of
values in the statement list. The sqlda structure also contains an array of data
descriptors (sqlvar structures), one for each value in the statement list. After
a DESCRIBE statement is executed, the sqlda.sqlvar structure has the sqltype,
sqllen, and sqlname fields set.

If the column has an opaque data type, DESCRIBE INPUT . . . INTO sets the
sqlxid, sqltypename, sqltypelen, sqlownerlen, and sqlownername fields of
the item descriptor. ¢

The DESCRIBE INPUT statement allocates memory for an sqlda pointer once
it is declared in a program. The application program, however, must
designate the storage area of the sqlda.sqlvar.sqldata fields.

Describing a Collection Variable

The DESCRIBE INPUT statement can provide information about a collection
variable if you use the INTO or USING SQL DESCRIPTOR clause.

You must execute the DESCRIBE INPUT statement after you open the select or
insert cursor. Otherwise, DESCRIBE INPUT cannot get information about the
collection variable because it is the OPEN . . . USING statement that specifies
the name of the collection variable to use.

SQL Statements 2-363

DESCRIBE INPUT

The next ESQL/C program fragment dynamically selects the elements of the
:a_set collection variable into a system-descriptor area called descl:

EXEC SQL BEGIN DECLARE SECTION;

client collection a_set;

int i, set_count;

int element type, element value;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_set;
EXEC SQL allocate descriptor 'descl';
EXEC SQL select set_col into :a_set from tablel;
EXEC SQL prepare set_id from
'select * from table(?)'

EXEC SQL declare set_ curs cursor for set_id;
EXEC SQL open set_curs using :a_set;
EXEC SQL describe set id using sgl descriptor 'descl';

EXEC SQL fetch set curs using sqgl descriptor 'descl';

EXEC SQL get descriptor 'descl' :set_count = count;
for (i = 1; i <= set_count; i++)

EXEC SQL get descriptor 'descl' value :i
:element type = TYPE;
switch
{
case SQLINTEGER:
EXEC SQL get descriptor 'descl' value :i
:element_value = data;

} /* end switch */
} /* end for */
} while (SQLCODE == 0);

EXEC SQL close set_curs;

EXEC SQL free set_curs;

EXEC SQL free set_id;

EXEC SQL deallocate collection :a_set;
EXEC SQL deallocate descriptor 'descl';

Related Information

Related statements: ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR,
DECLARE, DESCRIBE, EXECUTE, FETCH, GET DESCRIPTOR, OPEN, PREPARE,
PUT, and SET DESCRIPTOR

2-364 [BM Informix Guide to SQL: Syntax

DESCRIBE INPUT

For a task-oriented discussion of the DESCRIBE statement, see the
IBM Informix Guide to SQL: Tutorial.

For more information about how to use a system-descriptor area and sqlda,
refer to the IBM Informix ESQL/C Programmer’s Manual.

SQL Statements 2-365

DISCONNECT

DISCONNECT

Use the DISCONNECT statement to terminate a connection between an appli-
cation and a database server.

Syntax

DISCONNECT CURRENT %
DEFAU LT/ 'connection'
/ connection_var

-

Element Purpose Restrictions Syntax
connection String that specifies a Connection name that the CONNECT Quoted String,
connection to terminate statement assigned p- 4-243

connection_var Host variable that holds =~ Must be a fixed-length character data Language specific
the name of a connection type

Usage

DISCONNECT terminates a connection to a database server. If a database is
open, it closes before the connection drops. Even if you made a connection to
a specific database only, the connection to the database server is terminated
by DISCONNECT. If DISCONNECT does not terminate the current connection,
the connection context of the current environment is not changed.

DISCONNECT is not valid as statement text in a PREPARE statement.

E/C If you disconnect with connection or connection_var, DISCONNECT generates
an error if the specified connection is not a current or dormant connection. ¢

DEFAULT Option

DISCONNECT DEFAULT disconnects the default connection.

2-366 [BM Informix Guide to SQL: Syntax

DISCONNECT

The default connection is one of the following connections:

m A connection established by the CONNECT TO DEFAULT statement

m Animplicit default connection established by the DATABASE or
CREATE DATABASE statement

You can use DISCONNECT to disconnect the default connection. If the
DATABASE statement does not specify a database server, as in the following
example, the default connection is made to the default database server:

EXEC SQL database 'stores_demo';
EXEC SQL disconnect default;

If the DATABASE statement specifies a database server, as the following
example shows, the default connection is made to that database server:

EXEC SQL database 'stores demo@mydbsrvr';
EXEC SQL disconnect default;

In either case, the DEFAULT option of DISCONNECT disconnects this default
connection. For more information, see “DEFAULT Option” on page 2-94.

Specifying the CURRENT Keyword

The DISCONNECT CURRENT statement terminates the current connection.
For example, the DISCONNECT statement in the following program fragment
terminates the current connection to the database server mydbsrvr:

CONNECT TO 'stores demo@mydbsrvr'

DISCONNECT CURRENT

When a Transaction is Active

DISCONNECT generates an error during a transaction. The transaction
remains active, and the application must explicitly commit it or roll it back. If
an application terminates without issuing DISCONNECT (because of a system
failure or program error, for example), active transactions are rolled back.

In an ANSI-compliant database, however, if no error is encountered while
you exit from DB-Access in non-interactive mode without issuing the CLOSE
DATABASE, COMMIT WORK, or DISCONNECT statement, the database server
automatically commits any open transaction. ¢

SQL Statements 2-367

DISCONNECT

E/C

E/C

Disconnecting in a Thread-Safe Environment

If you issue the DISCONNECT statement in a thread-safe ESQL/C application,
keep in mind that an active connection can only be disconnected from within
the thread in which it is active. Therefore, one thread cannot disconnect the
active connection of another thread. The DISCONNECT statement generates
an error if such an attempt is made.

Once a connection becomes dormant, however, any other thread can
disconnect it unless an ongoing transaction is associated with the dormant
connection that was established with the WITH CONCURRENT TRANS-
ACTION clause of CONNECT. If the dormant connection was not established
with the WITH CONCURRENT TRANSACTION clause, DISCONNECT
generates an error when it tries to disconnect it.

For an explanation of connections in a thread-safe ESQL/C application, see
“SET CONNECTION” on page 2-646.

Specifying the ALL Option

Use the keyword ALL to terminate all connections established by the appli-
cation up to that time. For example, the following DISCONNECT statement
disconnects the current connection as well as all dormant connections:

DISCONNECT ALL

In ESQL/C, the ALL keyword has the same effect on multithreaded applica-
tions that it has on single-threaded applications. Execution of the
DISCONNECT ALL statement causes all connections in all threads to be termi-
nated. However, the DISCONNECT ALL statement fails if any of the
connections is in use or has an ongoing transaction associated with it. If either
of these conditions is true, none of the connections is disconnected. ¢

Related Information

Related statements: CONNECT, DATABASE, and SET CONNECTION

For information on multithreaded applications, see the IBM Informix ESQL/C
Programmer’s Manual.

2-368 [BM Informix Guide to SQL: Syntax

DROP ACCESS_METHOD

DROP ACCESS_METHOD

“ Use the DROP ACCESS_METHOD statement to remove a previously defined

access method from the database.

Syntax

access_method

RESTRICT ——| I
Element Purpose Restrictions Syntax

access_method ~ Name of access Must be registered in the sysams system catalog table Database Object
method to drop by a prior CREATE ACCESS_METHOD statement. ~Name, p. 4-46

DROP ACCESS_METHOD

Usage

The RESTRICT keyword is required. You cannot drop an access method if
virtual tables or indexes exist that use the access method. You must be the
owner of the access method or have DBA privileges to drop an access method.

If a transaction is in progress, the database server waits to drop the access
method until the transaction is committed or rolled back. No other users can
execute the access method until the transaction has completed.

Related Information
Related statements: ALTER ACCESS_METHOD and CREATE ACCESS_METHOD

For a description of the RESTRICT keyword, see “Specifying RESTRICT
Mode” on page 2-389. For more information on primary-access methods, see
the IBM Informix Virtual-Table Interface Programmer’s Guide.

For more information on secondary-access methods, see the IBM Informix
Virtual-Index Interface Programmer’s Guide. For a discussion of privileges, see
the GRANT statement or the IBM Informix Database Design and Implementation
Guide.

SQL Statements 2-369

DROP AGGREGATE

DROP AGGREGATE

“ Use the DROP AGGREGATE statement to drop a user-defined aggregate that
you created with the CREATE AGGREGATE statement.

Syntax
DROP AGGREGATE aggregate ————————|
\ Owner Name | , /
p. 4-234
Element Purpose Restrictions Syntax
aggregate Name of the user-defined Must have been previously created with the CREATE Identifier,
aggregate to be dropped =~ AGGREGATE statement. p- 4-189
Usage

Dropping a user-defined aggregate does not drop the support functions that
you defined for the aggregate in the CREATE AGGREGATE statement. The
database server does not track dependency of SQL statements on user-
defined aggregates that you use in the statements. For example, you can drop
a user-defined aggregate that is used in an SPL routine. In the following
example, the user drops the aggregate named my_avg:

DROP AGGREGATE my_avg

Related Information
Related statements: CREATE AGGREGATE

For information about how to invoke a user-defined aggregate, see the
discussion of user-defined aggregates in the Expression segment. For a
description of the sysaggregates system catalog table that holds information
about user-defined aggregates, see the IBM Informix Guide to SQL: Reference.
For a discussion of user-defined aggregates, see IBM Informix User-Defined
Routines and Data Types Developer’s Guide.

2-370 [BM Informix Guide to SQL: Syntax

DROP CAST

DROP CAST
“ Use the DROP CAST statement to remove an existing cast from the database.

Syntax

DROP CAST —M (— source_type —— AS — target_type —) —’

-

Element Purpose Restrictions Syntax

source_type Data type on which the cast operates Must exist Identifier, p. 4-189

target_type Data type that results when the cast is invoked Must exist Identifier, p. 4-189
Usage

You must be owner of the cast or have the DBA privilege to use DROP CAST.
Dropping a cast removes its definition from the syscasts catalog table, so the
cast cannot be invoked explicitly or implicitly. Dropping a cast has no effect
on the user-defined function associated with the cast. Use the DROP

FUNCTION statement to remove the user-defined function from the database.

Warning: Do not drop the built-in casts, which user informix owns. The database
server uses built-in casts for automatic conversions between built-in data types.

A cast defined on a given data type can also be used on any DISTINCT types
created from that source type. If you drop the cast, you can no longer invoke
it for the DISTINCT types, but dropping a cast that is defined for a DISTINCT
type has no effect on casts for its source type. When you create a DISTINCT
type, the database server automatically defines an explicit cast from the
DISTINCT type to its source type and another explicit cast from the source

type to the DISTINCT type. When you drop the DISTINCT type, the database
server automatically drops these two casts.

Related Information

Related statements: CREATE CAST and DROP FUNCTION. For more infor-
mation about data types, refer to the IBM Informix Guide to SQL: Reference.

SQL Statements 2-371

DROP DATABASE

DROP DATABASE

Use the DROP DATABASE statement to delete an entire database, including all
system catalog tables, indexes, and data.

Syntax

DROP DATABASE Database Name |

p. 4-44 N

Usage

This statement is an extension to ANSI-standard syntax. The ANSI/ISO
standard for SQL does not provide syntax for the destruction of a database.

You must have the DBA privilege or be user informix to run the DROP
DATABASE statement successfully. Otherwise, the database server issues an
error message and does not drop the database.

You cannot drop the current database or a database that is being used by
another user. All the current users of the database must first execute the
CLOSE DATABASE statement before DROP DATABASE can be successful.

The DROP DATABASE statement cannot appear in a multistatement PREPARE
statement.

During a DROP DATABASE operation, the database server acquires a lock on
each table in the database and holds the locks until the entire operation is
complete. Configure your database server with enough locks to accom-
modate this fact.

For example, if the database to be dropped has 2500 tables, but fewer than
2500 locks were configured for your database server, the DROP DATABASE
statement will fail. For more information on how to configure the number of
locks available to the database server, see the discussion of the LOCKS config-
uration parameter in your Administrator’s Reference.

The following statement drops the stores_demo database:

DROP DATABASE stores_demo

2-372 BM Informix Guide to SQL: Syntax

E/C

DROP DATABASE

In DB-Access, use this statement with caution. DB-Access does not prompt
you to verify that you want to delete the entire database. ¢

You can use a simple database name in a program or host variable, or you can
use the full database server and database name. For more information, see
“Database Name” on page 4-44. ¢

Related Information

Related statements: CLOSE DATABASE, CREATE DATABASE, and CONNECT

SQL Statements 2-373

DROP DUPLICATE

DROP DUPLICATE
“ Use the DROP DUPLICATE statement to remove from the database all

duplicate copies of a specified existing table that the CREATE DUPLICATE
statement created in a specified dbslice or in specified dbspaces across
coservers. The original table is not affected by DROP DUPLICATE.

Syntax
DROP DUPLICATE OF TABLE table % I
Element Description Restrictions Syntax
table Name of the table for which you = Must exist and must be a dupli- Database Object
want to remove all duplicates cated table. Name

Usage

To drop all duplicate copies of a duplicated table and leave only the original
table, enter the DROP DUPLICATE statement. Because duplicate tables are
read-only, to update a duplicated table, you must first drop all duplicate
copies.

Attached indexes on the copies of the duplicate table are also dropped when
DROP DUPLICATE is successfully executed.

Related Statement

CREATE DUPLICATE

2-374 BM Informix Guide to SQL: Syntax

HI

DROP FUNCTION

DROP FUNCTION

Use the DROP FUNCTION statement to remove a user-defined function from
the database.

Syntax
DROP FUNCTION —— function |
s ,
- C o o)
Specific Name
—— SPECIFIC FUNCTION 0. 4-274

Element Purpose Restrictions Syntax
function Name of the user- Must exist (that is, be registered) in the database. Database

defined function to If the name does not uniquely identify a function, Object Name,

drop you must enter one or more appropriate values p. 4-46

for parameter_type.

parameter_type Data type of the The data type (or list of data types) must be the Identifier,

parameter same data types (and specified in the same order) p.4-189

as those specified in the CREATE FUNCTION
statement when the function was created.

Usage

Dropping a user-defined function removes the text and executable versions
of the function from the database.

If you do not know if a UDR is a user-defined function or a user-defined
procedure, you can drop the UDR by using the DROP ROUTINE statement.

To use the DROP FUNCTION statement, you must be the owner of the user-
defined function or have the DBA privilege.

SQL Statements 2-375

DROP FUNCTION

SPL

If the function name is not unique within the database, you must specify
enough parameter_type information to disambiguate the name. If the database
server cannot resolve an ambiguous function name whose signature differs
from that of another function only in an unnamed ROW type parameter, an
error is returned. (This error cannot be anticipated by the database server at
the time when the ambiguous function is defined.)

Examples

If you use parameter data types to identify a user-defined function, they
follow the function name, as in the following example:

DROP FUNCTION compare (int, int)

If you use the specific name for the user-defined function, you must use the
keyword SPECIFIC, as in the following example:

DROP SPECIFIC FUNCTION compare_ point

Dropping SPL Functions

The Informix implementation of the SQL language does not support ALTER
PROCEDURE, ALTER ROUTINE, or ALTER FUNCTION statements. To change
the text of an SPL function, you must drop it and then re-create it. Make sure
to keep a copy of the SPL function text somewhere outside the database, in
case you need to re-create a function after it is dropped.

You cannot drop an SPL function from within the same SPL function.

Related Information

Related statements: ALTER FUNCTION, CREATE FUNCTION, CREATE
FUNCTION FROM, DROP FUNCTION, DROP PROCEDURE, DROP ROUTINE,
and EXECUTE FUNCTION

2-376 IBM Informix Guide to SQL: Syntax

DROP INDEX

DROP INDEX

Use the DROP INDEX statement to remove an index.

Syntax

DROP INDEX index %

|
S —

Element

Purpose

Restrictions Syntax

index

Name of the index to be dropped Must exist Database Object Name, p. 4-46
I

Usage

You must be the owner of the index or have the DBA privilege to use the
DROP INDEX statement. The following example drops the index o_num_ix
that joed owns. The stores_demo database must be the current database.

DROP INDEX stores_demo:joed.o_num_ix

You cannot use DROP INDEX to drop a unique constraint; you must use
ALTER TABLE to drop indexes that implement constraints that CREATE TABLE
(or ALTER TABLE) created. The index is not actually dropped if it is shared by
constraints. Instead, it is renamed in the sysindexes system catalog table with
the following format:

[spacel <tabid>_<constraint_id>

Here tabid and constraint_id are from the systables and sysconstraints system
catalog tables, respectively. The sysconstraints.idxname column is then
updated to reflect this change. Thus, the updated name might be something
like: » 121_13” (where quotes have been used to show the blank space).

If this index is a unique index with only referential constraints sharing it, the
index is downgraded to a duplicate index after it is renamed.

Related Information

Related statements: ALTER TABLE, CREATE INDEX, and CREATE TABLE. For
the performance characteristics of indexes, see your Performance Guide.

SQL Statements 2-377

DROP OPCLASS

DROP OPCLASS
“ Use the DROP OPCLASS statement to remove an existing operator class from

the database.

Syntax
DROP OPCLASS opclass RESTRICT 4’

|
e ——————

Element Purpose Restrictions Syntax
opclass ~ Name of operator ~ Must have been created by a previous CREATE OPCLASS Identifier,
class to be dropped statement. p. 4-189
Usage

You must be the owner of the operator class or have the DBA privilege to use
the DROP OPCLASS statement.

The RESTRICT keyword causes DROP OPCLASS to fail if the database contains
indexes defined on the operator class you plan to drop. Therefore, before you
drop the operator class, you must use DROP INDEX to drop dependent
indexes.

The following DROP OPCLASS statement drops an operator class called
abs_btree_ops:

DROP OPCLASS abs_btree_ops RESTRICT

Related Information

Related statement: CREATE OPCLASS

For information on how to create or extend an operator class, see IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

2-378 IBM Informix Guide to SQL: Syntax

DROP PROCEDURE

DROP PROCEDURE

Use the DROP PROCEDURE statement to remove a user-defined procedure
from the database.

Syntax

DROP PROCEDURE procedure ~N %
;;i; | IDS | ,
N\— function ‘ f
NG (parameter_type)

Specific Name

—— SPECIFIC PROCEDURE

p. 4-274
Element Purpose Restrictions Syntax
function Name of SPL function Must exist (that is, be registered) in the Database Object
to drop database. Name, p.4-46

parameter_type The data type of the The data type (or list of data types) must be the Identifier,
parameter same types (and specified in the same order) as p. 4-189
those specified in the CREATE PROCEDURE
statement when the procedure was created.

procedure Name of user-defined Must exist (that is, be registered) in the Database Object

procedure to drop database. Name, p.4-46
I

Usage

Dropping a user-defined procedure removes the text and executable versions
of the procedure.

To use the DROP PROCEDURE statement, you must be the owner of the
procedure or have the DBA privilege.

XPS In Extended Parallel Server, use the DROP PROCEDURE statement to drop
any SPL routine. Extended Parallel Server does not support the DROP
FUNCTION statement. ¢

SQL Statements 2-379

DROP PROCEDURE

SPL

In Dynamic Server, for backward compatibility, you can use the DROP
PROCEDURE statement to drop an SPL function that was created with the
CREATE PROCEDURE statement.

If the function or procedure name is not unique within the database, you must
specify enough parameter_type information to disambiguate the name. If the
database server cannot resolve an ambiguous UDR name whose signature
differs from that of another UDR only in an unnamed ROW type parameter,
an error is returned. (This error cannot be anticipated by the database server
at the time when the ambiguous function or procedure is defined.)

If you do not know whether a UDR is a user-defined procedure or a user-
defined function, you can use the DROP ROUTINE statement. For more infor-
mation, see “DROP ROUTINE” on page 2-382. ¢

The Informix implementation of the SQL language does not support ALTER
PROCEDURE, ALTER ROUTINE, or ALTER FUNCTION statements. To change
the text of an SPL procedure, you must drop it and then re-create it. Make sure
to keep a copy of the SPL procedure text somewhere outside the database, in
case you need to re-create the procedure after it is dropped.

You cannot drop an SPL procedure within the same SPL procedure. ¢

For backward compatibility, you can use this statement to drop an SPL
function that was created with the CREATE PROCEDURE statement. ¢

Examples

If you use parameter data types to identify a user-defined procedure, they
follow the procedure name, as in the following example:

DROP PROCEDURE compare (int, int)

If you use the specific name for the user-defined procedure, you must use the
keyword SPECIFIC, as in the following example:

DROP SPECIFIC PROCEDURE compare point

Related Information

Related statements: CREATE PROCEDURE, CREATE PROCEDURE FROM, DROP
FUNCTION, DROP ROUTINE, and EXECUTE PROCEDURE

2-380 [BM Informix Guide to SQL: Syntax

DROP ROLE

DROP ROLE

Use the DROP ROLE statement to remove a previously created role.

Syntax

DROP ROLE L role J |
'role’

Element Purpose Restrictions Syntax

role Name of the role to drop Must have been created with the CREATE Identifier, p. 4-189
ROLE statement. When a role name is enclosed
in quotation marks, it is case sensitive.

Usage

Either the DBA or a user to whom the role was granted with the WITH GRANT
OPTION can issue the DROP ROLE statement.

After arole is dropped, the privileges associated with that role, such as table-
level privileges or routine-level privileges, are dropped, and a user cannot
grant or enable a role. If a user is using the privileges of a role when the role
is dropped, the user automatically loses those privileges.

The following statement drops the role engineer:

DROP ROLE engineer

Related Information
Related statements: CREATE ROLE, GRANT, REVOKE, and SET ROLE

For a discussion on how to use roles, see the IBM Informix Guide to SQL:
Tutorial.

SQL Statements 2-381

DROP ROUTINE

DROP ROUTINE

“ Use the DROP ROUTINE statement to remove a user-defined routine (UDR)
from the database.

Syntax

DROP ROUTINE —— routine |
L Conre
(parameter_type)

Specific Name
SPECIFIC ROUTINE — p. 4-274

Element Purpose Restrictions Syntax

parameter_type Data type of the parameter The data type (or list of data types) must Identifier,
be the same type (and specified in the p-4-189
same order) as in the UDR definition.

routine Name of the UDR to drop The UDR must exist (that is, be registered) Database Object

in the database. Name, p. 4-46
|

Usage

Dropping a UDR removes the text and executable versions of the UDR from
the database. If you do not know whether a UDR is a user-defined function or
a user-defined procedure, this statement instructs the database server to drop
the specified user-defined function or user-defined procedure.

To use the DROP ROUTINE statement, you must be the owner of the UDR or
have the DBA privilege.

Restrictions

When you use this statement, the type of UDR cannot be ambiguous. The
UDR that you specify must refer to either a user-defined function or a user-
defined procedure.

2-382 BM Informix Guide to SQL: Syntax

SPL

DROP ROUTINE

If either of the following conditions exist, the database server returns an
erTor:

m The name (and parameters) that you specify apply to both a user-
defined procedure and a user-defined function
m The specific name that you specify applies to both a user-defined

procedure and a user-defined function

If the routine name is not unique within the database, you must specify
enough parameter_type information to disambiguate the name. If the database
server cannot resolve an ambiguous routine name whose signature differs
from that of another routine only in an unnamed ROW type parameter, an
error is returned. (This error cannot be anticipated by the database server at
the time when the ambiguous routine is defined.)

Examples

If you use parameter data types to identify a UDR, they follow the UDR name,
as in the following example:

DROP ROUTINE compare (int, int)

If you use the specific name for the UDR, you must use the keyword SPECIFIC,
as in the following example:

DROP SPECIFIC ROUTINE compare point

Dropping SPL Routines

Because you cannot change the text of an SPL routine, you must drop it and
then re-create it. Make sure that you have a copy of the SPL function text
somewhere outside the database, in case you want to re-create it after it is
dropped.

You cannot drop an SPL routine from within the same SPL routine.

Related Information

Related statements: CREATE FUNCTION, CREATE PROCEDURE, DROP
FUNCTION, DROP PROCEDURE, EXECUTE FUNCTION, and EXECUTE
PROCEDURE

SQL Statements 2-383

DROP ROW TYPE

DROP ROW TYPE

“ Use the DROP ROW TYPE statement to remove an existing named-ROW type
from the database.

Syntax
DROP ROW TYPE row_type RESTRICT 4’
\ Owner Name | . /
p. 4-234
Element Purpose Restrictions Syntax
row_type Name of an existing named- Must exist. See also the Usage Identifier, p. 4-189
ROW type to be dropped section that follows.
Usage

You must be the owner of the named-ROW type or have the DBA privilege to
use the DROP ROW TYPE statement.

You cannot drop a named-ROW type if its name is in use. You cannot drop a
named-ROW type when any of the following conditions are true:

m Any existing tables or columns are using the named-ROW type.
m The named-ROW type is a supertype in an inheritance hierarchy.

m A view is defined on a column of the named ROW type.
To drop a named-ROW type column from a table, use ALTER TABLE.

The DROP ROW TYPE statement cannot drop unnamed-ROW types.

2-384 BM Informix Guide to SQL: Syntax

DROP ROW TYPE

The RESTRICT Keyword

The RESTRICT keyword is required with the DROP ROW TYPE statement.
RESTRICT causes DROP ROW TYPE to fail if dependencies on that named-
ROW type exist.

The DROP ROW TYPE statement fails and returns an error message if any of
the following conditions is true:

m The named-ROW type is used for an existing table or column

Check the systables and syscolumns system catalog tables to find
out whether any tables or types use the named-ROW type.

m The named-ROW type is the supertype in an inheritance hierarchy

Look in the sysinherits system catalog table to see which named-
ROW types have child types.

The following statement drops the ROW type named employee_t:

DROP ROW TYPE employee_t RESTRICT

Related Information

Related statement: CREATE ROW TYPE

For a description of the system catalog tables, see the IBM Informix Guide to
SQL: Reference.

For a discussion of named-ROW data types, see the IBM Informix Guide to SQL:
Tutorial.

SQL Statements 2-385

DROP SEQUENCE

DROP SEQUENCE

Use the DROP SEQUENCE statement to remove a sequence from the database.

Syntax

DROP SEQUENCE

sequence |
\ Owner Name | . f

p. 4-234

-_

2-386 IBM Informix G

Element Purpose Restrictions Syntax
sequence Name of a sequence Must exist in the current database Identifier, p. 4-189
Usage

To drop a sequence, you must be the owner of the sequence or have the DBA
privilege on the database.

You cannot use a synonym to specify the identifier of the sequence in the DROP
SEQUENCE statement.

If you drop a sequence, any synonyms for the name of the sequence are also
dropped automatically by the database server.

In an ANSI-compliant database, you must qualify the name the sequence
with the name of its owner (owner.sequence) if you are not the owner. ¢

Related Information

Related statements: ALTER SEQUENCE, CREATE SEQUENCE, RENAME
SEQUENCE, CREATE SYNONYM, DROP SYNONYM, GRANT, REVOKE, INSERT,
UPDATE, and SELECT

For information about generating values from a sequence, see “NEXTVAL
and CURRVAL Operators” on page 4-102.

uide to SQL: Syntax

DROP SYNONYM

DROP SYNONYM

Use the DROP SYNONYM statement to remove an existing synonym.

Syntax
DROP SYNONYM synonym |
Element Purpose Restrictions Syntax
synonym Name of asynonym The synonym and the table or view to which the = Database Object
to drop synonym points must exist. Name, p. 4-46

Usage

You must be the owner of the synonym or have the DBA privilege to use the
DROP SYNONYM statement.

The following statement drops the synonym nj_cust, which cathyg owns:
DROP SYNONYM cathyg.nj_cust

If a table, view, or sequence is dropped, any synonyms that are in the same
database and that refer to that table, view, or sequence are also dropped.

If a synonym refers to an external table or view that is dropped, the synonym
remains in place until you explicitly drop it using DROP SYNONYM. You can
create another table, view, or synonym in place of the dropped table or view
and give the new database object the name of the dropped table or view.
The old synonym then refers to the new database object. For a complete
discussion of synonym chaining, see the CREATE SYNONYM statement.

Related Information

Related statement: CREATE SYNONYM

For a discussion of synonyms, see the IBM Informix Guide to SQL: Tutorial.

SQL Statements 2-387

DROP TABLE

DROP TABLE

Use the DROP TABLE statement to remove a table with its associated indexes
and data.

Syntax

DROP TABLE k table J lCASCADE j—i
synonym RESTRICT

Element Purpose Restrictions Syntax
synonym Local synonym for a table The synonym and its table must exist, and Database Object
that is to be dropped USETABLENAME must notbe setto 1 Name, p. 4-46
table Name of a table to drop The table must exist Database Object
Name, p. 4-46

XPS

Usage

You must be the owner of the table or have the DBA privilege to use the DROP
TABLE statement.

You cannot drop an Extended Parallel Server table that includes a dependent
GK index unless that index is entirely dependent on the affected table. ¢

If you issue a DROP TABLE statement, DB-Access does not prompt you to
verify that you want to delete an entire table. ¢

Effects of the DROP TABLE Statement

Use the DROP TABLE statement with caution. When you remove a table, you
also delete the data stored in it, the indexes or constraints on the columns
(including all the referential constraints placed on its columns), any local
synonyms assigned to it, any triggers created on it, and any authorizations
granted on the table. You also drop all views based on the table and any viola-
tions and diagnostics tables associated with the table.

2-388 BM Informix Guide to SQL: Syntax

DROP TABLE

DROP TABLE does not remove any synonyms for the table that were created
in an external database. To remove external synonyms for the dropped table,
you must do so explicitly with the DROP SYNONYM statement.

You can prevent users from specifying a synonym in the DROP TABLE
statement by setting the USETABLENAME environment variable. When
USETABLENAME is set, the database server issues an error if any user
attempts to specify DROP TABLE synonym.

Specifying CASCADE Mode

The CASCADE keyword in DROP TABLE removes related database objects,
including referential constraints built on the table, views defined on the table,
and any violations and diagnostics tables associated with the table.

If the table is the supertable in an inheritance hierarchy, CASCADE drops all
of the subtables as well as the supertable. ¢

The CASCADE mode is the default mode of the DROP TABLE statement. You
can also specify this mode explicitly with the CASCADE keyword.

Specifying RESTRICT Mode

The RESTRICT keyword can control the drop operation for supertables, for
tables that have referential constraints and views defined on them, or for
tables that have violations and diagnostics tables associated them. Using the
RESTRICT option causes the drop operation to fail and an error message to be
returned if any of the following conditions are true:

Existing referential constraints reference fable.
Existing views are defined on table.

Any violations tables or diagnostics tables are associated with table.

The table is the supertable in an inheritance hierarchy. ¢

Dropping a Table with Rows That Contain Opaque Data Types

Some opaque data types require special processing when they are deleted.
For example, if an opaque type contains spatial or multi-representational
data, it might provide a choice of how to store the data: inside the internal
structure or, for large objects, in a smart large object.

SQL Statements 2-389

DROP TABLE

The database server removes opaque types by calling a user-defined support
function called destroy(). When you execute the DROP TABLE statement on
a table whose rows contain an opaque type, the database server automati-
cally invokes the destroy() function for the type. The destroy() function can
perform certain operations on columns of the opaque data type before the
table is dropped. For more information about the destroy() support function,
see IBM Informix User-Defined Routines and Data Types Developer’s Guide.

Tables That Cannot Be Dropped
Observe the following restrictions on the types of tables that you can drop:

m You cannot drop any system catalog tables.
® You cannot drop a table that is not in the current database.
m You cannot drop a violations table or diagnostics table.

Before you can drop such a table, you must first issue a STOP VIOLA-
TIONS TABLE statement on the base table with which the violations
and diagnostics tables are associated.

m If you are using Extended Parallel Server, you cannot drop a table
that appears in the FROM clause of a GK index. ¢

Examples of Dropping a Table

The following example deletes two tables. Both tables are within the current
database and are owned by the current user. Neither table has a violations or
diagnostics table associated with it. Neither table has a referential constraint
or view defined on it.

DROP TABLE customer;
DROP TABLE stores_demo@accntg:joed.state;

Related Information

Related statements: CREATE TABLE and DROP DATABASE

For a discussion on the data integrity of tables, see the IBM Informix Guide to
SQL: Tutorial.

For a discussion on how to create a table, see the IBM Informix Database Design
and Implementation Guide.

2-390 [BM Informix Guide to SQL: Syntax

DROP TRIGGER

DROP TRIGGER

Use the DROP TRIGGER statement to remove a trigger definition from a

database.
Syntax
DROP TRIGGER trigger |
\ Owner Name | , f
p. 4-234

Element Purpose Restrictions Syntax

trigger Name of the trigger to drop The trigger must exist. Identifier, p. 4-189
Usage

You must be the owner of the trigger or have the DBA privilege to drop the
trigger. Dropping a trigger removes the text of the trigger definition and the
executable trigger from the database. The row describing the specified trigger
is deleted from the systriggers system catalog table.

“ Dropping an INSTEAD OF trigger on a complex view (a view with columns
from more than one table) revokes any privileges on the view that the owner
of the trigger received automatically when creating the trigger, and also
revokes any privileges that the owner of the trigger granted to other users.
(Dropping a trigger on a simple view does not revoke any privileges.) ¢

The following statement drops the items_pct trigger:
DROP TRIGGER items_pct

If a DROP TRIGGER statement appears inside an SPL routine that is called by
a data manipulation (DML) statement, the database server returns an error.

Related Information

Related statements: CREATE TRIGGER

SQL Statements 2-391

DROP TYPE

DROP TYPE

Use the DROP TYPE statement to remove an existing distinct or opaque data
type from the database. (You cannot use this to drop a built-in data type.)

Syntax

DROP TYPE

data_type ——— RESTRICT 4’
\ Owner Name | ., f

p. 4-234

e

2-392

Element Purpose Restrictions Syntax
data_type Distinct or opaque data Must be an existing distinct or opaque type; Identifier, p. 4-189
type to be removed must not be a built-in data type
Usage

To drop a distinct or opaque data type with the DROP TYPE statement, you
must be the owner of the data type or have the DBA privilege. When you use
this statement, you remove the type definition from the database (in the
sysxtdtypes system catalog table). In general, this statement does not remove
any definitions for casts or support functions associated with that data type.

Important: When you drop a distinct type, the database server automatically drops
the two explicit casts between the distinct type and the type on which it is based.

You cannot drop a distinct or opaque type if the database contains any casts,
columns, or user-defined functions whose definitions reference the type.

The following statement drops the new_type data type:

DROP TYPE new_type RESTRICT

Related Information

Related statements: CREATE DISTINCT TYPE, CREATE OPAQUE TYPE, CREATE
ROW TYPE, DROP ROW TYPE, and CREATE TABLE

IBM Informix Guide to SQL: Syntax

DROP VIEW

DROP VIEW

Use the DROP VIEW statement to remove a view from the database.

Syntax
DROP VIEW 1 view J L CASCADE J ‘
synonym RESTRICT

Element Purpose Restrictions Syntax

synonym Name of a synonym to drop The synonym and the view to Database Object Name, p. 4-46
which it points must exist.

view Name of a view to drop The view must exist. Database Object Name, p. 4-46

Usage
To drop a view, you must be the owner or have the DBA privilege.

When you drop a view or its synonym, you also drop any other views and
INSTEAD OF triggers whose definitions depend on that view. (You can also
specify this default behavior explicitly with the CASCADE keyword.)

When you use the RESTRICT keyword in the DROP VIEW statement, the drop
operation fails if any other existing views are defined on view; otherwise,
these would be abandoned in the drop operation.

You can query the sysdepend system catalog table to determine which views,
if any, depend on another view.

The following statement drops the view that is named cust1:

DROP VIEW custl

Related Information
Related statements: CREATE VIEW and DROP TABLE

For a discussion of views, see the IBM Informix Guide to SQL: Tutorial.

SQL Statements 2-393

EXECUTE

E/C

EXECUTE

Use the EXECUTE statement to run a previously prepared statement or set of
statements. Use this statement with ESQL/C.

Syntax

EXECUTE ﬁ statement_id \ / \ f |
statement_id_var/ INTO Clause USING Clause

p. 2-395 p. 2-401

R

Element Purpose Restrictions Syntax

statement_id Identifier of a prepared =~ Must have been defined in a previous PREPARE PREPARE,
SQL statement statement. p- 2-527

statement_id_var Host variable that Must have been defined in a previous PREPARE PREPARE,
contains an SQL statement and must be a character data type. p- 2-527
statement

Usage

The EXECUTE statement passes a prepared SQL statement to the database
server for execution. The following example shows an EXECUTE statement
within an ESQL/C program:

EXEC SQL PREPARE del 1 FROM
'DELETE FROM customer
WHERE customer num = 119';
EXEC SQL EXECUTE del 1;

Once prepared, an SQL statement can be executed as often as needed.

After you release the database server resources (using a FREE statement), you
cannot use the statement identifier with a DECLARE cursor or with the
EXECUTE statement until you prepare the statement again.

If the statement contained question mark (?) placeholders, use the USING
clause to provide specific values for them before execution. For more infor-
mation, see the “USING Clause” on page 2-401.

2-394 BM Informix Guide to SQL: Syntax

EXECUTE

You can execute any prepared statement except those in the following list:

m A prepared SELECT statement that returns more than one row

When you use a prepared SELECT statement to return multiple rows
of data, you must use a cursor to retrieve the data rows. As an alter-
native, you can EXECUTE a prepared SELECT INTO TEMP statement
to achieve the same result.

For more information on cursors, see “DECLARE” on page 2-323.

E A prepared EXECUTE FUNCTION (OI‘ EXECUTE PROCEDURE)
statement for an SPL function that returns more than one row

When you prepare an EXECUTE FUNCTION (or EXECUTE PROCE-
DURE) statement for an SPL function that returns multiple rows, you
must use a cursor to retrieve the data rows.

For more information on how to execute a SELECT or an EXECUTE
FUNCTION (or EXECUTE PROCEDURE) statement, see “PREPARE” on
page 2-527.

If you create or drop a trigger after you prepare a triggering INSERT, DELETE,
or UPDATE statement, the prepared statement returns an error when you
execute it.

Scope of Statement Identifiers

A program can consist of one or more source-code files. By default, the scope
of reference of a statement identifier is global to the program. A statement
identifier created in one file can be referenced from another file.

In a multiple-file program, if you want to limit the scope of reference of a
statement identifier to the file in which it is executed, you can preprocess all
the files with the -local command-line option.

INTO Clause

Use the INTO clause to save the returned values of these SQL statements:

m A prepared singleton SELECT statement that returns only one row of
column values for the columns in the select list

m A prepared EXECUTE FUNCTION (or EXECUTE PROCEDURE)
statement for an SPL function that returns only one set of values

SQL Statements 2-395

EXECUTE

The INTO clause of the EXECUTE statement has the following syntax:

2-396

of values to replace a question-mark
(?) placeholder in a prepared object

IBM Informix Guide to SQL: Syntax

sqlda structure is required with
dynamic SQL.

USING Back to EXECUTE
Clause p. 2-394
)
—»— INTO output_var) >
E— . T indicator_var/
INDICATOR descriptor_var
SQL DESCRIPTORJ 'descriptor '
DESCRIPTOR sqlda_pointer

Element Purpose Restrictions Syntax

descriptor Quoted string that identifies a system- Must already be allocated. Use Quoted String,
descriptor area single (') quotation marks. p-4-243

descriptor_var Host variable that identifies a system- System-descriptor area must Language
descriptor area already be allocated. specific

indicator_var ~ Host variable that receives a return Cannot be DATETIME or Language
code if corresponding parameter_var is INTERVAL data type. specific
NULL value, or if truncation occurs

output_var Host variable whose contents replacea Must be a character data type. Language
question-mark (?) placeholder in a specific
prepared statement

sqlda_pointer ~ Pointer to an sqlda structure that Cannot begin with a dollar sign DESCRIBE,
defines data type and memory location ($) or a colon (:) symbol. An p.2-351

This closely resembles the syntax of the “USING Clause” on page 2-401.

The INTO clause provides a concise and efficient alternative to more compli-
cated and lengthy syntax. In addition, by placing values into variables that
can be displayed, the INTO clause simplifies and enhances your ability to
retrieve and display data values. For example, if you use the INTO clause, you
do not have to use a cursor to retrieve values from a table.

You can store the returned values in output variables, in output SQL
descriptors, or in output sqlda pointers.

EXECUTE

Restrictions with the INTO Clause

If you execute a prepared SELECT statement that returns more than one row
or a prepared EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement for
an SPL function that returns more than one group of return values, you
receive an error message. In addition, if you prepare and declare a statement
and then attempt to execute that statement, you receive an error message.

You cannot select a null value from a table column and place that value into
an output variable. If you know in advance that a table column contains a
null value, after you select the data, check the indicator variable that is
associated with the column to determine if the value is null.

To use the INTO clause with the EXECUTE statement

1. Declare the output variables that the EXECUTE statement uses.

2. Use PREPARE to prepare your SELECT statement or to prepare your
EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement.

3. Use the EXECUTE statement, with the INTO clause, to execute your
SELECT statement or to execute your EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement.

Storage Location for Returned Values

You can specify any of the following items to replace the question-mark
placeholders in a statement before you execute it:

m A host variable name (if the number and data type of the question
marks are known at compile time)
m A system descriptor that identifies a system

m A descriptor that is a pointer to an sqlda structure

Saving Values In Host or Program Variables

If you know the number of return values to be supplied at runtime and their
data types, you can define the values that the SELECT or EXECUTE FUNCTION
(or EXECUTE PROCEDURE) statement returns as host variables in your
program. Use these host variables with the INTO keyword, followed by the
names of the variables. These variables are matched with the return values in
a one-to-one correspondence, from left to right.

SQL Statements 2-397

EXECUTE

You must supply one variable name for each value that the SELECT or
EXECUTE FUNCTION (or EXECUTE PROCEDURE) returns. The data type of
each variable must be compatible with the corresponding returned value
from the prepared statement.

Saving Values in a System-Descriptor Area

If you do not know the number of return values to be supplied at runtime or
their data types, you can associate output values with a system-descriptor
area. A system-descriptor area describes the data type and memory location
of one or more values.

A system-descriptor area conforms to the X/Open standards. ¢

To specify a system-descriptor area as the location of output values, use the
INTO SQL DESCRIPTOR clause of the EXECUTE statement. Each time that the
EXECUTE statement is run, the values that the system-descriptor area
describes are stored in the system-descriptor area.

The following example shows how to use the system-descriptor area to
execute prepared statements in IBM Informix ESQL/C:

EXEC SQL allocate descriptor 'descl';

sprintf (sel_stmt, "%s %s %s",
"select fname, lname from customer",
"where customer_num =",
cust_num) ;
EXEC SQL prepare sell from :sel_stmt;
EXEC SQL execute sell into sqgl descriptor 'descl';

The COUNT field corresponds to the number of values that the prepared
statement returns. The value of COUNT must be less than or equal to the
value of the occurrences that were specified when the system-descriptor area
was allocated with the ALLOCATE DESCRIPTOR statement.

You can obtain the value of a field with the GET DESCRIPTOR statement and
set the value with the SET DESCRIPTOR statement.

For more information, refer to the discussion of the system-descriptor area in
the IBM Informix ESQL/C Programmer’s Manual.

2-398 BM Informix Guide to SQL: Syntax

E/C

EXECUTE

Saving Values in an sqlda Structure

If you do not know the number of output values to be returned at runtime or
their data types, you can associate output values from an sqlda structure. An
sqlda structure lists the data type and memory location of one or more return
values. To specify an sqlda structure as the location of return values, use the
INTO DESCRIPTOR clause of the EXECUTE statement. Each time the EXECUTE
statement is run, the database server places the returns values that the sqlda
structure describes into the sqlda structure.

The following example shows how to use an sqlda structure to execute a
prepared statement in IBM Informix ESQL/C:

struct sglda *pointer2;

sprintf (sel_stmt, "%s %s %s",
"select fname, lname from customer",
"where customer_ num =",
cust_num) ;
EXEC SQL prepare sell from :sel_stmt;
EXEC SQL describe sell into pointer2;
EXEC SQL execute sell into descriptor pointer2;

The sqld value specifies the number of output values that are described in
occurrences of sqlvar. This number must correspond to the number of values
that the SELECT or EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement
returns.

For more information, refer to the sqlda discussion in the IBM Informix
ESQL/C Programmer’s Manual.

This example uses the INTO clause with an EXECUTE statement in ESQL/C:
EXEC SQL prepare sell from 'select fname, lname from customer

where customer num =123';
EXEC SQL execute sell into :fname, :lname using :cust_num;

SQL Statements 2-399

EXECUTE

The next example uses the INTO clause to return multiple rows of data:

EXEC SQL BEGIN DECLARE SECTION;
int customer num =100;

char fname[25];

EXEC SQL END DECLARE SECTION;

EXEC SQL prepare sell from 'select fname from customer
where customer num=?';
for (;customer num < 200; customer num++)

{

EXEC SQL execute sell into :fname using customer num;
printf ("Customer number is %d\n", customer_num) ;
printf ("Customer first name is %s\n\n", fname);

}

The sgica Record and EXECUTE

Following an EXECUTE statement, the sqlca can reflect two results:

m The sqlca can reflect an error within the EXECUTE statement.

For example, when an UPDATE ... WHERE statement in a prepared
statement processes zero rows, the database server sets sqlca to 100.

m The sqlca can reflect the success or failure of the executed statement.

Error Conditions with EXECUTE

If a prepared statement fails to access any rows, the database server returns
zero (0).In a multistatement prepare, if any statement in the following list
fails to access rows, the database server returns SQLNOTFOUND (100):

m INSERT INTO table SELECT ... WHERE
m SELECT INTO TEMP.. WHERE
m DELETE ... WHERE
m UPDATE ... WHERE
m In an ANSI-compliant database, if you prepare and execute any of the state-
ments in the preceding list, and no rows are returned, the database server
returns SQLNOTFOUND (= 100). ¢

2-400 BM Informix Guide to SQL: Syntax

USING Clause

EXECUTE

Use the USING clause to specify the values that are to replace question-mark
(?) placeholders in the prepared statement. Providing values in the EXECUTE
statement that replace the question-mark placeholders in the prepared
statement is sometimes called parameterizing the prepared statement.

descriptor_var

indicator_var

parameter_var

sqlda_pointer

descriptor area

Host variable that identifies a system-
descriptor area

Host variable that receives a return
code if corresponding parameter_var is
NULL value, or if truncation occurs
Host variable whose contents replace a

question-mark (?) placeholder in a
prepared statement

Pointer to an sqlda structure that
defines data type and memory location
of values tot replace question-mark
(?) placeholder in a prepared object

already be allocated. Use
single (') quotation marks.

USING Back to EXECUTE
Clause p. 2-394
s
—»—USING parameter_var) -
\E“ : 7— indicator_var/
INDICATOR descriptor_var-
SQL DESCRIPTORJ 'descriptor '
DESCRIPTOR sqlda_pointer
Element Purpose Restrictions Syntax
descriptor Quoted string that identifies a system- System-descriptor area must Quoted String,

p. 4-243

System-descriptor area must Language specific

already be allocated.

Cannot be DATETIME or
INTERVAL data type.

Language specific

Must be a character data type. Language specific

Cannot begin with a dollar
sign($)oracolon(:). An
sqlda structure is required

with dynamic SQL.

DESCRIBE,
p- 2-351

This closely resembles the syntax of the “INTO Clause” on page 2-395.

SQL Statements 2-401

EXECUTE

If you know the number of parameters to be supplied at runtime and their
data types, you can define the parameters that are needed by the EXECUTE
statement as host variables in your program.

If you do not know the number of parameters to be supplied at runtime or
their data types, you can associate input values from a system-descriptor area
or an sqlda structure. Both of these descriptor structures describe the data
type and memory location of one or more values to replace question-mark (?)
placeholders.

Supplying Parameters Through Host or Program Variables

You pass parameters to the database server by opening the cursor with the
USING keyword, followed by the names of the variables. These variables are
matched with prepared statement question-mark (?) placeholders in a one-
to-one correspondence, from left to right. You must supply one storage-
parameter variable for each placeholder. The data type of each variable must
be compatible with the corresponding value that the prepared statement
requires.

The following example executes the prepared UPDATE statement in ESQL/C:

stcopy ("update orders set order date = ?
where po num = ?", stml);
EXEC SQL prepare statement 1 from :stml;
EXEC SQL execute statement_1 using :order date, :po_num;

Supplying Parameters Through a System Descriptor

You can create a system-descriptor area that describes the data type and
memory location of one or more values and then specify the descriptor in the
USING SQL DESCRIPTOR clause of the EXECUTE statement.

Each time that the EXECUTE statement is run, the values that the system-
descriptor area describes are used to replace question-mark (?) placeholders
in the PREPARE statement.

The COUNT field corresponds to the number of dynamic parameters in the
prepared statement. The value of COUNT must be less than or equal to the
number of item descriptors that were specified when the system-descriptor
area was allocated with the ALLOCATE DESCRIPTOR statement.

2-402 IBM Informix Guide to SQL: Syntax

E/C

EXECUTE

The following example shows how to use system descriptors to execute a
prepared statement in ESQL/C:

EXEC SQL execute prep_stmt using sqgl descriptor 'descl';

Supplying Parameters Through an sqlda Structure

You can specify the sqlda pointer in the USING DESCRIPTOR clause of the
EXECUTE statement.

Each time the EXECUTE statement is run, the values that the descriptor
structure describes are used to replace question-mark (?) placeholders in the
PREPARE statement.

The sqld value specifies the number of input values that are described in
occurrences of sqlvar. This number must correspond to the number of
dynamic parameters in the prepared statement.

The following example shows how to use an sqlda structure to execute a
prepared statement in ESQL/C:

EXEC SQL execute prep stmt using descriptor pointer2

Related Information

Related statements: ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR,
DECLARE, EXECUTE IMMEDIATE, FETCH, GET DESCRIPTOR, PREPARE, PUT,
and SET DESCRIPTOR

For a task-oriented discussion of the EXECUTE statement, see the IBM Informix
Guide to SQL: Tutorial.

For more information about concepts that relate to the EXECUTE statement,
see the IBM Informix ESQL/C Programmer’s Manual.

SQL Statements 2-403

EXECUTE FUNCTION

EXECUTE FUNCTION

Use the EXECUTE FUNCTION statement to execute a user-defined function.

Syntax

EXECUTE FUNCTION function (
\ E E/C p. 2-406
b
Argument
p. 4-5

) I [INTO Clause [

k SPL_var

2-404

_ | IDS | IFX_REPLACE_MODULE Function /
p. 4-132
| IDS | jvpcontrol Function
\\ p. 2-409
Element Purpose Restrictions Syntax
function Name of a user-defined ~ Must exist. Database Object
function to execute Name, p. 4-46
SPL_var Variable that contains the Must be a CHAR, VARCHAR, NCHAR, or Identifier, p. 4-189

name of an SPL routine to NVARCHAR data type that contains the non-
be executed NULL name of an existing SPL function.

Usage

The EXECUTE FUNCTION statement invokes a user-defined function, with
arguments, and specifies where the results are to be returned.

An external function returns exactly one value.
An SPL function can return one or more values.

You cannot use the EXECUTE FUNCTION statement to execute any type of
user-defined procedure that returns no value. Instead, use the EXECUTE
PROCEDURE or EXECUTE ROUTINE statement to execute procedures.

You must have the Execute privilege on the user-defined function.

IBM Informix Guide to SQL: Syntax

EXECUTE FUNCTION

If a user-defined function has a companion function, any user who executes
the function must have the Execute privilege on both the function and its
companion. For example, if a function has a negator function, any user who
executes the function must have the Execute privilege on both the function
and its negator.

For more information, see “"GRANT” on page 2-459.

How the EXECUTE FUNCTION Statement Works

For a user-defined function to be executed with the EXECUTE FUNCTION
statement, the following conditions must exist:

m The qualified function name or the function signature (the function
name with its parameter list) must be unique within the name space
or database.

m The function must exist.

m The function must not have any OUT parameters.
If EXECUTE FUNCTION specifies fewer arguments than the user-defined
function expects, the unspecified arguments are said to be missing. Missing
arguments are initialized to their corresponding parameter default values, if

these were defined. The syntax of specifying default values for parameters is
described in “Routine Parameter List” on page 4-266.

EXECUTE FUNCTION returns an error under the following conditions:

m It specifies more arguments than the user-defined function expects.
m One or more arguments are missing and do not have default values.

In this case, the arguments are initialized to the value of UNDEFINED.
m The fully qualified function name or the signature is not unique.

m No function with the specified name or signature that you specify is
found.

B You use it to try to execute a user-defined procedure.

If the function name is not unique within the database, you must specify
enough parameter_type information to disambiguate the name.

SQL Statements 2-405

EXECUTE FUNCTION

INTO Clause

If the database server cannot resolve an ambiguous function name whose
signature differs from that of another routine only in an unnamed-ROW type
parameter, an error is returned. (This error cannot be anticipated by the
database server at the time when the ambiguous function is defined.)

INTO Clause

Back to EXECUTE FUNCTION
p. 2-404

, 3

—p»— INTO Ttavar
data_structure

1

H f indicator_var
: INDICATOR

Element Purpose

Restrictions Syntax

Structure that was declared as a
host variable

data_structure

Variable to receive the value that
a user-defined function returns

data_var

Program variable to store a
return code if the corresponding
data_var receives a NULL value

indicator_var

Individual elements of structure
must be compatible with the data
types of the returned values.

See “Data Variables” on

page 2-407.

Use an indicator variable if the

value of the corresponding
data_var might be NULL.

Language specific

Language specific

Language specific

2-406 BM Informix Guide to SQL: Syntax

You must include an INTO clause with EXECUTE FUNCTION to specify the
variables that receive the values that a user-defined function returns. If the
function returns more than one value, the values are returned into the list of
variables in the order in which you specify them.

E/C

EXECUTE FUNCTION

If the EXECUTE FUNCTION statement stands alone (that is, it is not part of a
DECLARE statement and does not use the INTO clause), it must execute a
noncursor function. A noncursor function returns only one row of values.
The following example shows a SELECT statement in IBM Informix ESQL/C:

EXEC SQL execute function cust_num(fname, lname, company name)
into :c_num;

Data Variables

If you issue the EXECUTE FUNCTION statement within an ESQL/C program,
data_var must be a host variable. Within an SPL routine, data_var must be an
SPL variable.

If you issue the EXECUTE FUNCTION statement within a CREATE TRIGGER
statement, data_var must be column names within the triggering table or
another table.

INTO Clause with Indicator Variables

You should use an indicator variable if the possibility exists that data
returned from the user-defined function statement is null. For more infor-
mation about indicator variables, see the IBM Informix ESQL/C Programmer’s
Manual.

INTO Clause with Cursors

If the EXECUTE FUNCTION statement executes a user-defined function that
returns more than one row of values, it must execute a cursor function. A
cursor function can return one or more rows of values and must be associated
with a function cursor to execute.

If the SPL function returns more than one row or a collection data type, you
must access the rows or collection elements with a cursor.

To return more than one row of values, an external function must be defined
as an iterator function. For more information on how to write iterator
functions, see the IBM Informix DataBlade API Programmer’s Guide. ¢

To return more than one row of values, an SPL function must include the
WITH RESUME keywords in its RETURN statement. For more information on
how to write SPL functions, see the IBM Informix Guide to SQL: Tutorial. &

SQL Statements 2-407

EXECUTE FUNCTION

E/C

SPL

E/C

2-408

In an IBM Informix ESQL/C program, the DECLARE statement can declare a
function cursor and the FETCH statement can return rows individually from
the cursor. You can put the INTO clause in the FETCH or in the EXECUTE
FUNCTION statement, but you cannot put it in both. The following

IBM Informix ESQL/C code examples show different ways you can use the
INTO clause:

m Using the INTO clause in the EXECUTE FUNCTION statement:

EXEC SQL declare f_curs cursor for
execute function get_ orders (customer_num)
into :ord num, :ord date;

EXEC SQL open f_curs;

while (SQLCODE == 0)
EXEC SQL fetch f curs;

EXEC SQL close f_curs;

m Using the INTO clause in the FETCH statement:

EXEC SQL declare f curs cursor for
execute function get_orders (customer_num) ;
EXEC SQL open f curs;
while (SQLCODE == 0)
EXEC SQL fetch £ curs into :ord num, :ord date;
EXEC SQL close f_curs;

L

In an SPL routine, if a SELECT returns more than one row, you must use the
FOREACH statement to access the rows individually. The INTO clause of the
SELECT statement can store the fetched values. For more information, see
“FOREACH” on page 3-27. ¢

Alternatives to PREPARE ... EXECUTE FUNCTION ... INTO

You cannot prepare an EXECUTE FUNCTION statement that includes the INTO
clause. For similar functionality, however, you can follow these steps:

1. Prepare the EXECUTE FUNCTION statement with no INTO clause.

2. Declare a function cursor for the prepared statement.
3. Open the cursor.
4

Execute the FETCH statement with an INTO clause to fetch the
returned values into program variables.

IBM Informix Guide to SQL: Syntax

EXECUTE FUNCTION

Alternatively, you can do the following;:

1. Declare a cursor for the EXECUTE FUNCTION statement without first
preparing the statement, and include the INTO clause in the
EXECUTE FUNCTION when you declare the cursor.

2. Open the cursor.

Fetch the returned values from the cursor without using the INTO
clause of the FETCH statement. ¢

SPL Dynamic Routine-Name Specification of SPL Functions

Dynamic routine-name specification simplifies the writing of an SPL function
that calls another SPL routine whose name is not known until runtime. To
specify the name of an SPL routine in the EXECUTE FUNCTION statement,
instead of listing the explicit name of an SPL routine, you can use an SPL
variable to hold the routine name. For more information about how to
execute SPL functions dynamically, see the IBM Informix Guide to SQL: Tutorial.

The jupcontrol Function

The jvpcontrol() function is a built-in iterative function that you can use to
obtain information about a Java Virtual Processor (JVP) class.

The jvpcontrol Function Back to EXECUTE FUNCTION
p. 2-404

—p»——— informix.jvpcontrol —— (—" TMEMORY T jvp_id — ") >
THREADS

-

Element Purpose Restrictions Syntax
jop_id Name of the Java Virtual Processor (JVP) class for The specified Java Virtual Identifier,
which you want information Processor class must exist. p- 4-189

You must associate this function with the equivalent of a cursor in the Java
language.

SQL Statements 2-409

EXECUTE FUNCTION

2-410

Using the MEMORY Keyword

When you specify the MEMORY keyword, the jvpcontrol function returns the
memory usage on the JVP class that you specify. The following example
requests information about the memory usage of the JVP class named 4:

EXECUTE FUNCTION INFORMIX.JVPCONTROL ("MEMORY 4") ;

Using the THREADS Keyword

When you specify the THREADS keyword, the jvpcontrol function returns a
list of the threads running on the JVP class that you specify. The following
example requests information about the threads running on the JVP class
named 4:

EXECUTE FUNCTION INFORMIX.JVPCONTROL ("THREADS 4") ;

Related Information

Related statements: CALL, CREATE FUNCTION, CREATE FUNCTION FROM,
DROP FUNCTION, DROP ROUTINE, EXECUTE PROCEDURE, and FOREACH

IBM Informix Guide to SQL: Syntax

I

E/C

EXECUTE IMMEDIATE

EXECUTE IMMEDIATE

Use the EXECUTE IMMEDIATE statement to perform the functions of the
PREPARE, EXECUTE, and FREE statements.

Use this statement with ESQL/C.

Syntax

;
EXECUTE IMMEDIATE ' : statement j ' |

|
L statement _ varJ

-

Element Purpose Restrictions Syntax
statement A valid SQL statement ~ See the same sections of Usage that are listed below See this
for statement_var. chapter.
statement_var Host variable that Must be a previously declared character-type Language
contains a character variable. See “EXECUTE IMMEDIATE and specific
string of one or more Restricted Statements” on page 2-412 and “Restric-
SQL statements tions on Allowed Statements” on page 2-412.

Usage

The EXECUTE IMMEDIATE statement makes it easy to execute dynamically a
single simple SQL statement that is constructed during program execution.
For example, you can obtain the name of a database from program input,
construct the DATABASE statement as a program variable, and then use
EXECUTE IMMEDIATE to execute the statement, which opens the database.

The quoted string that includes one or more SQL statements, or the contents
of statement_var, is parsed and executed if correct; then all data structures and
memory resources are released immediately. In the usual method of dynamic
execution, these operations require separate PREPARE, EXECUTE, and FREE
statements.

The maximum length of an EXECUTE IMMEDIATE statement is 64 kilobytes.

SQL Statements 2-411

EXECUTE IMMEDIATE

2-412

EXECUTE IMMEDIATE and Restricted Statements

You cannot use the EXECUTE IMMEDIATE statement to execute the following
SQL statements. Although the EXECUTE PROCEDURE statement appears on
this list, the restriction applies only to EXECUTE PROCEDURE statements that
return values.

CLOSE OPEN

CONNECT OUTPUT

DECLARE PREPARE

DISCONNECT SELECT

EXECUTE SET AUTOFREE
EXECUTE FUNCTION SET CONNECTION
EXECUTE PROCEDURE SET DEFERRED_PREPARE
FETCH SET DESCRIPTOR

GET DESCRIPTOR WHENEVER

GET DIAGNOSTICS

In addition, you cannot use the EXECUTE IMMEDIATE statement to execute
the following statements in text that contains multiple statements that are
separated by semicolons:

CLOSE DATABASE DROP DATABASE
CREATE DATABASE SELECT
DATABASE (except SELECT INTO TEMP)

Use a PREPARE and either a cursor or the EXECUTE statement to execute a
dynamically constructed SELECT statement.

Restrictions on Allowed Statements

The following restrictions apply to the statement that is contained in the
quoted string or in the statement variable:
m The statement cannot contain a host-language comment.

m Names of host-language variables are not recognized as such in
prepared text.

The only identifiers that you can use are names defined in the
database, such as table names and columns.

IBM Informix Guide to SQL: Syntax

EXECUTE IMMEDIATE

m The statement cannot reference a host-variable list or a descriptor; it
must not contain any question-mark (?) placeholders, which are
allowed with a PREPARE statement.

m The text must not include any embedded SQL statement prefix, such
as the dollar sign ($) or the keywords EXEC SQL.

Although it is not required, the SQL statement terminator (;) can be
included in the statement text.

m A SELECT or INSERT statement cannot contain a Collection-Derived
Table clause.

EXECUTE IMMEDIATE cannot process input host variables, which are
required for a collection variable. Use the EXECUTE statement or a
cursor to process prepared accesses to collection variables. ¢

Examples of the EXECUTE IMMEDIATE Statement

The following examples show EXECUTE IMMEDIATE statements in ESQL/C.
Both examples use host variables that contain a CREATE DATABASE
statement. The first example uses the SQL statement terminator (;) inside the
quoted string.

sprintf (cdb_textl, "create database %s;", usr db id);
EXEC SQL execute immediate :cdb_text;

sprintf (cdb_text2, "create database %s", usr_db_id);
EXEC SQL execute immediate :cdb text;

Related Information
Related statements: EXECUTE, FREE, and PREPARE

For a discussion of quick execution, see the IBM Informix Guide to SQL: Tutorial.

SQL Statements 2-413

EXECUTE PROCEDURE

EXECUTE PROCEDURE

Use the EXECUTE PROCEDURE statement to invoke a user-defined procedure.

Syntax
EXECUTE PROCEDURE ﬁcedur e %
SPL _var (A t
rg u‘rln gn KINTO output_var
functlon SQLJ Built-In P d
uilt-In Procedures
p. 2-417
| IDS | IFX_UNLOAD_MODULE Procedure)
. 2-416
P
Element Purpose Restrictions Syntax
function SPL function to execute Must exist. Database Object

Name, p. 4-46

output_var Host variable or program In the context of a CREATE TRIGGER Language specific
variable that receives the statement, must contain column names in
returned value from UDR the triggering table or in another table.

procedure User-defined procedure to Must exist. Database Object
execute Name, p. 4-46
SPL_var Variable that contains the =~ Must be a character data type that Identifier, p. 4-189
name of the SPL routine to contains the non-NULL name of an SPL
execute routine.
Usage

The EXECUTE PROCEDURE statement invokes the named user-defined
procedure and specifies its arguments.

“ In Dynamic Server, for backward compatibility, you can use the EXECUTE
PROCEDURE statement to execute an SPL function that you created with the
CREATE PROCEDURE statement. ¢

2-414 |BM Informix Guide to SQL: Syntax

XPS

E/C

SPL

SPL

EXECUTE PROCEDURE

In Extended Parallel Server, use the EXECUTE PROCEDURE statement to
execute any SPL routine. Extended Parallel Server does not support the
EXECUTE FUNCTION statement. 4

In ESQL/C, if the EXECUTE PROCEDURE statement returns more than one
row, it must be enclosed within an SPL FOREACH loop or accessed through a
cursor. ¢

Causes of Errors
EXECUTE PROCEDURE returns an error under the following conditions:

m It has more arguments than the called procedure expects.

m One or more arguments are missing and do not have default values.
In this case the arguments are initialized to the value of UNDEFINED.

m The fully qualified procedure name or the signature is not unique.

m No procedure with the specified name or signature is found.

Using the INTO Clause

Use the INTO clause to specify where to store the values that the SPL function
returns.

If an SPL function returns more than one value, the values are returned into
the list of variables in the order in which you specify them. If an SPL function
returns more than one row or a collection data type, you must access the rows
or collection elements with a cursor.

You cannot prepare an EXECUTE PROCEDURE statement that has an INTO
clause. For more information, see “Alternatives to PREPARE ... EXECUTE
FUNCTION ... INTO” on page 2-408.

Dynamic Routine-Name Specification of SPL Procedures

Dynamic routine-name specification simplifies the writing of an SPL routine that
calls another SPL routine whose name is not known until runtime. To specify
the name of an SPL routine in the EXECUTE PROCEDURE statement, instead of
listing the explicit name of an SPL routine, you can use an SPL variable to hold
the routine name.

SQL Statements 2-415

EXECUTE PROCEDURE

If the SPL variable names an SPL routine that returns a value (an SPL
function), include the INTO clause of EXECUTE PROCEDURE to specify a
receiving variable (or variables) to hold the value (or values) that the SPL
function returns. For more information on how to execute SPL procedures
dynamically, see the IBM Informix Guide to SQL: Tutorial.

[s | IFX_UNLOAD_MODULE Procedure
The IFX_UNLOAD_MODULE procedure unloads a shared-object file from

memory.
IFX_UNLOAD_MODULE Back to EXECUTE PROCEDURE
Procedure p. 2-414
— g IFX_UNLOAD_MODULE —(— module_name — » " ¢ ") >
Element Purpose Restrictions Syntax
module_name Full pathnameoffile Shared-object file must exist and be unused. Quoted String,
to unload Pathname can be up to 255 characters long. p. 4-243

The IFX_UNLOAD_MODULE procedure can only unload an unused shared-
object file; that is, when no executing SQL statements (in any database) are
using any UDRs in the specified shared-object file. If any UDR in the shared-
object file is currently in use, then IFX_UNLOAD_MODULE raises an error.

For example, suppose you want to unload the circle.so shared library, which

contains C UDRSs. If this library resides in the /usr/apps/opaque_types
directory, you can use the following EXECUTE PROCEDURE statement to
execute the I’X_UNLOAD_MODULE procedure:

EXECUTE PROCEDURE ifx unload module (
“/usr/apps/opaque_types/circle.so”, “C");

2-416 IBM Informix Guide to SQL: Syntax

EXECUTE PROCEDURE

For example, suppose you want to unload the circle.dll dynamic link library,
which contains C UDRSs. If this library is in the C:\usr\apps\opaque_types
directory, you can use the following EXECUTE PROCEDURE statement to
execute the IFX_UNLOAD_MODULE procedure:

EXECUTE PROCEDURE ifx unload module (
“C:\usr\apps\opaque types\circle.dll”, “C");

¢

For more information on how to use IFX_UNLOAD_MODULE to unload a
shared-object file, see the chapter on how to design a UDR in IBM Informix
User-Defined Routines and Data Types Developer’s Guide. For information on
how to use the IFX_REPLACE_MODULE function, see
“IFX_REPLACE_MODULE Function” on page 4-132.

SQLJ Driver Built-In Procedures

Use the SQLJ Driver built-in procedures for one of the following tasks:

m To install, replace, or remove a set of Java classes

m To specify a path for Java class resolution for Java classes that are
included in a JAR file

m Tomap or remove the mapping between a user-defined type and the
Java type to which it corresponds

SQLJ Driver Back to EXECUTE PROCEDURE
Built-In Procedures p. 2-414

sqlj.install_JAR
p. 2-418 >

sqlj.replace_jar
p. 2-419

sqlj.remove_JAR
p. 2-420

sqlj.alter_java_path
p. 2-421

__ | sqlj.SetUDTExtName
p. 2-422

sqlj.unsetUDTExtName
p. 2-423

SQL Statements 2-417

EXECUTE PROCEDURE

The SQLJ built-in procedures are stored in the sysprocedures system catalog
table. They are grouped under the sqlj schema.

’ Tip: For any Java static method, the first built-in procedure that you execute must be

the sqlj.install_jar() procedure. You must install the jar file before you can create a
UDR or map a user-defined data type to a Java type. Similarly, you cannot use any of
the other SQLJ built-in procedures until you have used sqlj.install_jar().
sqlj.install_jar

Use the sqlj.install_jar() procedure to install a Java jar file in the current
database and assign it a jar identifier.

Back to SQLJ Built-In Procedures
p. 2-417
—p»———— sql.install_jar — (— jar_file — , —{ JarName | 0
sqlj.install_jar (Jar_fi ’ b 4-207 s l f)
deploy
Element Purpose Restrictions Syntax
deploy Integer that causes the procedure to search for None. Literal Number,
deployment descriptor files in the jar file p- 4-216
jar_file URL of the jar file that contains the UDR written in Maximum length of Quoted String,
Java the URL is 255 bytes. p. 4-243

For example, consider a Java class Chemistry that contains the following
static method explosiveReaction():

public static int explosiveReaction(int ingredient) ;
Here the Chemistry class resides in this jar file on the server computer:
/students/data/Courses.jar

You can install all classes in the Courses.jar jar file in the current database
with the following call to the sqlj.install_jar() procedure:

EXECUTE PROCEDURE
sqglj.install jar("file://students/data/Courses.jar",
"course jar")

2-418 IBM Informix Guide to SQL: Syntax

EXECUTE PROCEDURE

The sqlj.install_jar() procedure assigns the jar ID, course_jar, to the
Courses.jar file that it has installed in the current database.

After you define a jar ID in the database, you can use that jar ID when you
create and execute a UDR written in Java.

When you specify a nonzero number for the third argument, the database
server searches through any included deployment descriptor files. For
example, you might want to include descriptor files that include SQL state-
ments to register and grant privileges on UDRs in the jar file.

sqlj.replace_jar

Use the sqlj.replace_jar() procedure to replace a previously installed jar file
with a new version. When you use this syntax, you provide only the new jar
file and assign it to the jar ID for which you want to replace the file.

sqlj.replace_jar

Back to SQLJ Built-In Procedures
p. 2-417

—p»———— sqlj.replace_jar — (— jar_file — 5 —| JarName |) »

p. 4-207

-

Element Purpose

Restrictions Syntax

jar_file URL of the jar file that contains the ~The maximum length of the URL is Quoted String,
UDR written in Java 255 bytes. p. 4-243

If you attempt to replace a jar file that is referenced by one or more UDRs, the
database server generates an error. You must drop the referencing UDRs
before replacing the jar file.

For example, the following call replaces the Courses.jar file, which had previ-
ously been installed for the course_jar identifier, with the Subjects.jar file:

EXECUTE PROCEDURE
sqlj.replace jar("file://students/data/Subjects.jar",
"course_ jar")

Before you replace the Course.jar file, you must drop the user-defined
function sql_explosive_reaction() with the DROP FUNCTION (or DROP
ROUTINE) statement.

SQL Statements 2-419

EXECUTE PROCEDURE

sqlj.remove_jar

Use the sqlj.remove_jar() procedure to remove a previously installed jar file
from the current database.

sqlj.remove_jar Back to SQLJ Built-In Procedures
p. 2-417

(Jar Name)

p.4207 [’ \ 0 /
deploy

—p»——————— sqlj.remove_jar

Element Purpose Restrictions Syntax
deploy Integer that causes the procedure to search for None. Literal Number,
deployment descriptor files in the jar file p. 4-216

If you attempt to remove a jar file that is referenced by one or more UDRs, the
database server generates an error. You must drop the referencing UDRs
before you replace the jar file. For example, the following SQL statements
remove the jar file associated with the course_jar jar id:

DROP FUNCTION sgl explosive reaction;
EXECUTE PROCEDURE sglj.remove_ jar ("course jar")

When you specify a nonzero number for the second argument, the database
server searches through any included deployment descriptor files. For
example, you might want to include descriptor files that include SQL state-
ments that revoke privileges on the UDRs in the associated jar file and to drop
them from the database.

2-420 IBM Informix Guide to SQL: Syntax

EXECUTE PROCEDURE

sqlj.alter _java path

Use the sqlj.alter_java_path() procedure to specify the jar-file path to use
when the routine manager resolves related Java classes for the jar file of a
UDR written in Java.

sqlj.alter_java_path | Back to SQLJ Driver Built-In Procedures

—— sqlj.alter_java_path —(p. 4-207

p. 2-417

ackage_id « * _| Jar Name |) _
pacrage- 77| b 4207) =) —>
class_id

Jar Name (
H

-

Element Purpose Restrictions Syntax

class_id Java class that contains The Java class must exist in the jar file that jar_id Language
method to implement the UDR identifies. Identifier must not exceed 255 bytes. specific

package_id ~ Name of the package that The fully qualified identifier of Language
contains the Java class package_id.class_id must not exceed 255 bytes. specific

The jar IDs that you specify, namely the jar ID for which you are altering the
jar-file path and the resolution jar ID, both must have been installed with the
sqlj.install_jar procedure. When you invoke a UDR written in the Java
language, the routine manager attempts to load the Java class in which the
UDR resides. At this time, it must resolve the references that this Java class
makes to other Java classes.

The three types of such class references are these:
1. References to Java classes that the [VPCLASSPATH configuration
parameter specifies (such as Java system classes like java.util. Vector)
2. References to classes that are in the same jar file as the UDR
References to classes that are outside the jar file that contains the UDR
The routine manager implicitly resolves classes of type 1 and 2 in the

preceding list. To resolve type 3 references, it examines all the jar files in the
jar-file path that the latest call to sqlj.alter_java_path() specified.

The routine manager throws an exception if it cannot resolve a class
reference. The routine manager checks the jar-file path for class references
after it performs the implicit type 1 and type 2 resolutions.

SQL Statements 2-421

EXECUTE PROCEDURE

If you want a Java class to be loaded from the jar file that the jar-file path
specifies, make sure the Java class is not present in the JVPCLASSPATH config-
uration parameter. Otherwise, the system loader picks up that Java class first,
which might result in a different class being loaded than what you expect.

Suppose that the sqlj.install_jar() procedure and CREATE FUNCTION have
been executed as the preceding sections describe. The following SQL
statement invokes sql_explosive_reaction() function in the course_jar jar
file:

EXECUTE PROCEDURE alter java path("course jar",
" (professor/*, prof jar)");
EXECUTE FUNCTION sqgl_ explosive reaction(10000)

The routine manager attempts to load the class Chemistry. It uses the path
that the call to sqlj.alter_java_path() specifies to resolve any class references.
Therefore, it checks the classes that are in the professor package of the jar file
that prof_jar identifies.

sqlj.setUDTExtName

Use the sqlj.setUDTExtName() procedure to define the mapping between a
user-defined data type and a Java class.

sqlj.SetUDTextName | Back to SQLJ Driver
Built-In Procedures
p. 2-417
—p»— sqlj.SetUDTextName (— data_type— » package_id - class_id —) —m»
Element Purpose Restrictions Syntax
class_id Java class that contains the =~ Qualified name package_id.class_id ~ Language-specific rules
Java data type must not exceed 255 bytes. for Java identifiers

data_type User-defined type for which Name must not exceed 255 bytes. Identifier, p. 4-189
to create a mapping

package_id ~ Name of package that Same length restrictions as class_id. Language-specific rules
contains the class_id Java for Java identifiers
class

e ——

2-422 |BM Informix Guide to SQL: Syntax

EXECUTE PROCEDURE

You must have registered the user-defined data type in the CREATE DISTINCT
TYPE, CREATE OPAQUE TYPE, or CREATE ROW TYPE statement.

To look up the Java class for a user-defined data type, the database server
searches in the jar-file path, which the sqlj.alter_java_path() procedure has
specified. For more information on the jar-file path, see “sqlj.alter_java_path”
on page 2-421.

On the client side, the driver looks into the CLASSPATH path on the client
environment before it asks the database server for the name of the Java class.

The setUDTExtName procedure is an extension to the SQLJ:SQL Routines using
the Java Programming Language specification.
sqlj.unsetUDTExtName

Use the sqlj.unsetUDTExtName() procedure to remove the mapping from a
user-defined data type to a Java class.

sqlj.unsetUDTExtName Back to SQLJ Built-In Procedures

p. 2-417

—pp»—————— sqlj.unsetUDTExtName — (— data_type —) L

-

Element Purpose

Restrictions Syntax

data_type User-defined data type for which to remove the mapping Must exist. Identifier, p. 4-189
I

This procedure removes the SQL-to-Java mapping, and consequently
removes any cached copy of the Java class from database server shared
memory.

The unsetUDTExtName procedure is an extension to the SQLJ:SQL Routines
Using the Java Programming Language specification.

Related Information

Related statements: CREATE FUNCTION, CREATE PROCEDURE, EXECUTE
FUNCTION, GRANT, CALL, FOREACH, and LET

SQL Statements 2-423

FETCH

E/C FETCH

Use the FETCH statement to move a cursor to a new row in the active set and
to retrieve the row values from memory. Use this statement with ESQL/C.

Syntax

FETCH

—cursor_id_var
cursor_id ' descriptor 'JQ
USING~SQL DESCRIPTOR[descriptorfvarJ
1 DESCRIPTOR sqlda_pointerg

)
INTO output_var)

N RELATIVE + position_num_var
T - l position_num

— ABSOLUTE row_position_var
j row_position

INDICATOR 7— indicator_var—/

data_structure -

Element Purpose Restrictions Syntax
cursor_id Cursor to retrieve rows Must be declared and open Identifier, p. 4-189
cursor_id_var Host variable storing cursor_id Must be character data type Language specific
data_structure Structure as a host variable Must store fetched values Language specific
descriptor System-descriptor area Must have been allocated ~ Quoted String, p. 4-243
descriptor_var Host variable storing descriptor Must be allocated. Language specific
indicator_var Host variable for return code if See “Using Indicator Language specific
output_var can be NULL value Variables” on page 428.
output_var Host variable for fetched value Must store value from row Language specific
position_num Position relative to current row Value 0 fetches current row Literal Number, p. 4-216
position_num_var Host variable (= position_num) Value 0 fetches current row Language specific
row_position Ordinal position in active set ~ Must be an integer >1 Literal Number, p. 4-216
row_position_var ~ Host variable (= row_ position) Must be 1 or greater Language specific
sqlda_pointer Pointer to an sqlda structure ~ Cannot begin with $ nor: See ESQL/C manual.

2-424 |BM Informix Guide to SQL: Syntax

FETCH

Usage

How the database server creates, stores, and fetches members of the active set
rows depends on whether the cursor is a sequential cursor or a scroll cursor.

In X/Open mode, if a cursor-direction value (such as NEXT or RELATIVE) is
specified, a warning message is issued, indicating that the statement does not
conform to X/Open standards. ¢

FETCH with a Sequential Cursor

A sequential cursor can fetch only the next row in sequence from the active
set. The sole cursor-position option that is available to a sequential cursor is
the default value, NEXT. A sequential cursor can read through a table only
once each time it is opened. The following ESQL/C example illustrates the
FETCH statement with a sequential cursor:

EXEC SQL FETCH seq curs into :fname, :lname;
EXEC SQL FETCH NEXT seq_curs into ;fname, :lname;

When the program opens a sequential cursor, the database server processes
the query to the point of locating or constructing the first row of data. The
goal of the database server is to tie up as few resources as possible.

Because the sequential cursor can retrieve only the next row, the database
server can frequently create the active set one row at a time.

On each FETCH operation, the database server returns the contents of the
current row and locates the next row. This one-row-at-a-time strategy is not
possible if the database server must create the entire active set to determine
which row is the first row (as would be the case if the SELECT statement
included an ORDER BY clause).

FETCH with a Scroll Cursor

These ESQL/C examples illustrate the FETCH statement with a scroll cursor:

EXEC SQL fetch previous g curs into :orders;

EXEC SQL fetch last g curs into :orders;

EXEC SQL fetch relative -10 g_curs into :orders;
printf ("Which row? ");

scanf ("%d", row_num) ;

EXEC SQL fetch absolute :row num g curs into :orders;

SQL Statements 2-425

FETCH

2-426

options to spe

A scroll cursor can fetch any row in the active set, either by specifying an
absolute row position or a relative offset. Use the following cursor-position

cify a particular row that you want to retrieve.

Keyword Purpose

NEXT Retrieves next row in active set

PREVIOUS Retrieves previous row in active set

PRIOR Retrieves previous row in active set (Synonymous with PREVIOUS.)

FIRST Retrieves the first row in active set

LAST Retrieves the last row in active set

CURRENT Retrieves the current row in active set (the same row as returned by
the previous FETCH statement from the scroll cursor)

RELATIVE Retrieves nth row, relative to the current cursor position in the active
set, where position_num (or position_num_var) supplies n. A negative
value indicates the nth row prior to the current cursor position.

If position_num = 0, the current row is fetched.

ABSOLUTE Retrieves nth row in active set, where row_position_var (or

row_position) = n . Absolute row positions are numbered from 1.

immediately.

IBM Informix Guide to SQL: Syntax

Tip: Do not confuse row-position values with rowid values. A rowid value is based
on the position of a row in its table and remains valid until the table is rebuilt. A row-
position value (a value that the ABSOLUTE keyword introduced) is based on the
position of the row in the current active set of the cursor; the next time the cursor is
opened, different rows might be selected.

How the Database Server Stores Rows

The database server must retain all the rows in the active set for a scroll cursor
until the cursor closes, because it cannot anticipate which row the program

will ask for next. When a scroll cursor opens, the database server implements
the active set as a temporary table, although it might not populate this table

The first time a row is fetched, the database server copies it into the
temporary table as well as returning it to the program.

FETCH

When a row is fetched for the second time, it can be taken from the temporary
table. This scheme uses the fewest resources in case the program abandons
the query before it fetches all the rows. Rows that are never fetched are
usually not created or are saved in a temporary table.

Specifying Where Values Go in Memory

Each value from the select list of the query or the output of the executed user-
defined function must be returned into a memory location. You can specify
these destinations in one of the following ways:

m Use the INTO clause of a SELECT statement.

m Use the INTO clause of an EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement.

m Use the INTO clause of a FETCH statement.
m Use a system-descriptor area.

m Use an sqlda structure.

Using the INTO Clause

If you associate a SELECT or EXECUTE FUNCTION (or EXECUTE PROCEDURE)
statement with a function cursor, the statement can contain an INTO clause to
specify variables to receive the returned values. You can use this method only
when you write the SELECT, EXECUTE FUNCTION, or EXECUTE PROCEDURE
statement as part of the cursor declaration; see “DECLARE” on page 2-323.
In this case, the FETCH statement cannot contain an INTO clause.

The following example uses the INTO clause of the SELECT statement to
specify program variables in ESQL/C:

EXEC SQL declare ord_date cursor for
select order_num, order date, po_num
into :o0_num, :0_date, :0_po;
EXEC SQL open ord_date;
EXEC SQL fetch next ord_date;

If you prepare a SELECT statement, the SELECT cannot include the INTO clause
so you must use the INTO clause of the FETCH statement.

When you create a SELECT statement dynamically, you cannot use an INTO
clause because you cannot name host variables in a prepared statement.

SQL Statements 2-427

FETCH

If you are certain of the number and data type of values in the select list, you
can use an INTO clause in the FETCH statement. If user input generated the
query, however, you might not be certain of the number and data type of
values that are being selected. In this case, you must use a system descriptor
or sqlda pointer structure.

Using Indicator Variables
Use an indicator variable if the returned data might be NULL.

The indicator_var parameter is optional, but use an indicator variable if the
possibility exists that the value of output_var is NULL.

If you specify the indicator variable without the INDICATOR keyword, you
cannot put a blank space between output_var and indicator_var.

For information about rules for placing a prefix before the indicator_uvar, see
the IBM Informix ESQL/C Programmer’s Manual.

The host variable cannot be a DATETIME or INTERVAL data type.

Using the INTO Clause of FETCH

When SELECT or EXECUTE FUNCTION (or EXECUTE PROCEDURE) omits the
INTO clause, you must specify a data destination when a row is fetched.

For example, to dynamically execute a SELECT or EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement, the SELECT or EXECUTE FUNCTION (or
EXECUTE PROCEDURE) cannot include its INTO clause in the PREPARE
statement. Therefore, the FETCH statement must include an INTO clause to
retrieve data into a set of variables. This method lets you store different rows
in different memory locations.

You can fetch into a program-array element only by using an INTO clause in
the FETCH statement. If you use a program array, you must list both the array
name and a specific element of the array in data_structure. When you are

declaring a cursor, do not refer to an array element within the SQL statement.

Tip: If you are certain of the number and data type of values in the select list of the
Projection clause, you can use an INTO clause in the FETCH statement.

2-428 IBM Informix Guide to SQL: Syntax

FETCH

In the following ESQL/C example, a series of complete rows is fetched into a
program array. The INTO clause of each FETCH statement specifies an array
element as well as the array name.

EXEC SQL BEGIN DECLARE SECTION;
char wanted state([2];
short int row count = 0;
struct customer_t{
{ .
int C_noj;
char fname [15] ;
char lname [15] ;
} cust_rec[100];
EXEC SQL END DECLARE SECTION;

main ()

{

EXEC SQL connect to‘storesidemo‘;
printf ("Enter 2-letter state code: ");
scanf ("%s", wanted state);
EXEC SQL declare cust cursor for
select * from customer where state = :wanted state;
EXEC SQL open cust;
EXEC SQL fetch cust into :cust_rec[row count];
while (SQLCODE == 0)

{
printf ("\n%s %$s", cust_rec[row_count] .fname,
cust_rec[row_count] .lname) ;
row_count++;
EXEC SQL fetch cust into :cust_rec[row count];

printf ("\n");
EXEC SQL close cust;
EXEC SQL free cust;

Using a System-Descriptor Area

You can use a system-descriptor area to store output values when you do not
know the number of return values or their data types that a SELECT or
EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement returns at
runtime. A system-descriptor area describes the data type and memory
location of one or more return values.

The keywords USING SQL DESCRIPTOR introduce the name of the system-
descriptor area into which you fetch the contents of a row or the return values
of a user-defined function. You can then use the GET DESCRIPTOR statement
to transfer the values that the FETCH statement returns from the system-
descriptor area into host variables.

SQL Statements 2-429

FETCH

This example shows a valid FETCH...USING SQL DESCRIPTOR statement:
EXEC SQL allocate descriptor 'desc';

EXEC SQL declare selcurs cursor for
select * from customer where state = 'CA';
EXEC SQL describe selcurs using sgl descriptor 'desc';
EXEC SQL open selcurs;
while (1)

EXEC SQL fetch selcurs using sgl descriptor 'desc';

You can also use an sqlda structure to dynamically supply parameters.
A system-descriptor area conforms to the X/Open standards.

Using sqlda Structures

You can use a pointer to an sqlda structure to stores output values when you
do not know the number of return values or their data types that a SELECT or
EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement returns.

This structure contains data descriptors that specify the data type and
memory location for one selected value. The keywords USING DESCRIPTOR
introduce the name of the sqlda pointer structure.

Tip: If you are certain of the number and data type of values in the select list, you can
use an INTO clause in the FETCH statement. For more information, see “Using the
INTO Clause of FETCH” on page 2-428.

To specify an sqlda structure as the location of parameters

1. Declare an sqlda pointer variable.

2. Use the DESCRIBE statement to fill in the sqlda structure.
3. Allocate memory to hold the data values.
4

Use the USING DESCRIPTOR clause of FETCH to specify the sqlda
structure as the location into which you fetch the returned values.

2-430 IBM Informix Guide to SQL: Syntax

FETCH

The following example shows a FETCH USING DESCRIPTOR statement:

struct sqglda *sqglda_ptr;

EXEC SQL declare selcurs2 cursor for

select * from customer where state = 'CA';

EXEC SQL describe selcurs2 into sglda ptr;

EXEC SQL open selcurs2;
while (1)

{

EXEC SQL fetch selcurs2 using descriptor sglda_ptr;

The sqld value specifies the number of output values that are described in
occurrences of the sqlvar structures of the sqlda structure. This number must
correspond to the number of values returned from the prepared statement.

Fetching a Row for Update

The FETCH statement does not ordinarily lock a row that is fetched. Thus,
another process can modify (update or delete) the fetched row immediately
after your program receives it. A fetched row is locked in the following cases:

When you set the isolation level to Repeatable Read, each row you
fetch is locked with a read lock until the cursor closes or the current
transaction ends. Other programs can also read the locked rows.

When you set the isolation level to Cursor Stability, the current row
is locked.

In an ANSI-compliant database, an isolation level of Repeatable Read
is the default; you can set it to something else. ¢

When you are fetching through an update cursor (one that is
declared FOR UPDATE), each row you fetch is locked with a
promotable lock. Other programs can read the locked row, but no
other program can place a promotable or write lock; therefore, the
row is unchanged if another user tries to modify it using the WHERE
CURRENT OF clause of an UPDATE or DELETE statement.

SQL Statements 2-431

FETCH

When you modify a row, the lock is upgraded to a write lock and remains
until the cursor is closed or the transaction ends. If you do not modify the
row, the behavior of the database server depends on the isolation level you
have set. The database server releases the lock on an unchanged row as soon
as another row is fetched, unless you are using Repeatable Read isolation (see
“SET ISOLATION” on page 2-691).

Important: You can hold locks on additional rows even when Repeatable Read
isolation is not in use or is unavailable. Update the row with unchanged data to hold
it locked while your program is reading other rows. You must evaluate the effect of
this technique on performance in the context of your application, and you must be
aware of the increased potential for deadlock.

When you use explicit transactions, be sure that a row is both fetched and
modified within a single transaction; that is, both the FETCH statement and
the subsequent UPDATE or DELETE statement must fall between a BEGIN
WORK statement and the next COMMIT WORK statement.

Fetching from a Collection Cursor

A collection cursor allows you to access the individual elements of an
ESQL/C collection variable. To declare a collection cursor, use the DECLARE
statement and include the Collection-Derived-Table segment in the SELECT
statement that you associate with the cursor. After you open the collection
cursor with the OPEN statement, the cursor allows you to access the elements
of the collection variable.

To fetch elements, one at a time, from a collection cursor, use the FETCH
statement and the INTO clause. The FETCH statement identifies the collection
cursor that is associated with the collection variable. The INTO clause
identifies the host variable that holds the element value that is fetched from
the collection cursor. The data type of the host variable in the INTO clause
must match the element type of the collection.

Suppose you have a table called children with the following structure:

CREATE TABLE children
(

age SMALLINT,

name VARCHAR (30) ,

fav_colorsSET (VARCHAR (20) NOT NULL),
)

2-432 IBM Informix Guide to SQL: Syntax

FETCH

The following ESQL/C code fragment shows how to fetch elements from the
child_colors collection variable:

EXEC SQL BEGIN DECLARE SECTION;
client collection child colors;
varchar one_ favorite[21];
char child name[31] = "marybeth";
EXEC SQL END DECLARE SECTION;
EXEC SQL allocate collection :child colors;
/* Get structure of fav_colors column for untyped
* child_colors collection variable */
EXEC SQL select fav_colors into :child colors
from children
where name = :child name;
/* Declare select cursor for child colors collection
* variable */
EXEC SQL declare colors_curs cursor for
select * from table(:child colors) ;
EXEC SQL open colors_curs;
do

{

EXEC SQL fetch colors_curs into :one_favorite;

} while (SQLCODE == 0)

EXEC SQL close colors_curs;

EXEC SQL free colors_curs;

EXEC SQL deallocate collection :child colors;

After you fetch a collection element, you can modify the element with the
UPDATE or DELETE statements. For more information, see the UPDATE and
DELETE statements in this manual. You can also insert new elements into the
collection variable with an INSERT statement. For more information, see the
INSERT statement.

Checking the Result of FETCH

You can use the SQLSTATE variable to check the result of each FETCH
statement. The database server sets the SQLSTATE variable after each SQL
statement. If a row is returned successfully, the SQLSTATE variable contains
the value 00000. If no row is found, the database server sets the SQLSTATE
code to 02000, which indicates no data found, and the current row is
unchanged. The following conditions set the SQLSTATE code to 02000,
indicating no data found:

m The active set contains no rows.

m Youissue a FETCH NEXT statement when the cursor points to the last
row in the active set or points past it.

SQL Statements 2-433

FETCH

m Youissue a FETCH PRIOR or FETCH PREVIOUS statement when the
cursor points to the first row in the active set.

m Youissue a FETCH RELATIVE n statement when no nth row exists in
the active set.

m Youissue a FETCH ABSOLUTE # statement when no nth row exists in
the active set.

The database server copies the SQLSTATE code from the
RETURNED_SQLSTATE field of the system-diagnostics area. You can use the
GET DIAGNOSTICS statement to examine the RETURNED_SQLSTATE field
directly. The system-diagnostics area can also contain additional error
information.

You can also use SQLCODE of sqlca to determine the same results.

Related Information

Related statements: ALLOCATE DESCRIPTOR, CLOSE, DEALLOCATE
DESCRIPTOR, DECLARE, DESCRIBE, GET DESCRIPTOR, OPEN, PREPARE, SET
DEFERRED_PREPARE, and SET DESCRIPTOR

For a task-oriented discussion of the FETCH statement, see the IBM Informix
Guide to SQL: Tutorial.

For more information about concepts that relate to the FETCH statement, see
the IBM Informix ESQL/C Programmer’s Manual.

2-434 IBM Informix Guide to SQL: Syntax

I

E/C

FLUSH

FLUSH

Use the FLUSH statement to force rows that a PUT statement buffered to be
written to the database. Use this statement with ESQL/C.

Syntax

FLUSH L cursor_id- J |
cursor_id_var

Element Purpose Restrictions Syntax
cursor_id Name of a cursor Must have been declared. Identifier, p. 4-189
cursor_id_var ~ Host variable that holds the Host variable must be a Language specific
value of cursor_id character data type.
Usage

The PUT statement adds a row to a buffer, and the buffer is written to the
database when it is full. Use the FLUSH statement to force the insertion when
the buffer is not full.

If the program terminates without closing the cursor, the buffer is left
unflushed. Rows placed into the buffer since the last flush are lost. Do not
expect the end of the program to close the cursor and flush the buffer
automatically. The following example shows a FLUSH statement:

FLUSH icurs

Error Checking FLUSH Statements

The sqlca structure contains information on the success of each FLUSH
statement and the number of rows that are inserted successfully. The result of
each FLUSH statement is contained in the fields of the sqlca: sqlca.sqlcode,
SQLCODE, and sqlca.sqlerrd[2].

SQL Statements 2-435

FLUSH

When you use data buffering with an insert cursor, you do not discover errors
until the buffer is flushed. For example, an input value that is incompatible
with the data type of the column for which it is intended is discovered only
when the buffer is flushed. When an error is discovered, rows in the buffer
that are located after the error are not inserted; they are lost from memory.

The SQLCODE field is set either to an error code or to zero (0) if no error
occurs. The third element of the SQLERRD array is set to the number of rows
that are successfully inserted into the database:

m If a block of rows is successfully inserted into the database,
SQLCODE is set to zero (0) and SQLERRD to the count of rows.

m If an error occurs while the FLUSH statement is inserting a block of
rows, SQLCODE shows which error, and SQLERRD contains the
number of rows that were successfully inserted. (Uninserted rows
are discarded from the buffer.)

Tip: When you encounter an SQLCODE error, a corresponding SQLSTATE error
value also exists. For information about how to get the message text, check the GET
DIAGNOSTICS statement.

To count the number of rows actually inserted into the database as well as the
number not yet inserted
1. Prepare two integer variables, for example, total and pending,.
When the cursor opens, set both variables to o.

3. Each time a PUT statement executes, increment both total and
pending.

4. Whenever a FLUSH statement executes or the cursor is closed,
subtract the third field of the SQLERRD array from pending.

Related Information

Related statements: CLOSE, DECLARE, OPEN, and PREPARE

For a task-oriented discussion of FLUSH, see the IBM Informix Guide to SQL:
Tutorial.

For information about the sqlca structure, see the IBM Informix ESQL/C
Programmer’s Manual.

2-436 IBM Informix Guide to SQL: Syntax

I

E/C

FREE

FREE

Use the FREE statement to release resources that are allocated to a prepared
statement or to a cursor. Use this statement with ESQL/C.

Syntax

FREE

cursor_id %
cursor_id_var
statement _id

statement _id_var

-

Element

Purpose Restrictions Syntax

cursor_id
cursor_id_var

statement_id

Name of a cursor Must have been declared. Identifier, p. 4-189

Host variable that holds the Must be a character data type. Language specific
value of cursor_id

String that identifies an SQL Must be defined in a previous PREPARE, p. 2-527

statement PREPARE statement.
statement_id_var Host variable that identifiesan Same restrictions as statement_id. PREPARE, p. 2-527
SQL statement Must be a character data type.
Usage

FREE releases the resources that the database server and application-devel-
opment tool allocated for a prepared statement or for a declared cursor.

If you declared a cursor for a prepared statement, FREE statement_id (or
statement_id_var) releases only the resources in the application development
tool; the cursor can still be used. The resources in the database server are
released only when you free the cursor.

If you prepared a statement (but did not declare a cursor for it), FREE
statement_id (or FREE statement_id_var) releases the resources in both the
application development tool and the database server.

SQL Statements 2-437

FREE

2-438

After you free a statement, you cannot execute it or declare a cursor for it until
you prepare it again.

The following ESQL/C example shows the sequence of statements that is
used to free an implicitly prepared statement:

EXEC SQL prepare sel stmt from 'select * from orders';
EXEC SQL free sel_stmt;

The following ESQL/C example shows the sequence of statements that are
used to release the resources of an explicitly prepared statement. The first
FREE statement in this example frees the cursor. The second FREE statement
in this example frees the prepared statement.

sprintf (demoselect, "%s %s",

"select * from customer ",

"where customer num between 100 and 200") ;
EXEC SQL prepare sel_ stmt from :demoselect;
EXEC SQL declare sel curs cursor for sel stmt;
EXEC SQL open sel_curs;

EXEC SQL close sel_curs;
EXEC SQL free sel curs;
EXEC SQL free sel_stmt;

If you declared a cursor for a prepared statement, freeing the cursor releases
only the resources in the database server. To release the resources for the
statement in the application-development tool, use FREE statement_id (or
FREE statement_id_var).

If a cursor is not declared for a prepared statement, freeing it releases the
resources in both the application-development tool and the database server.

After a cursor is freed, it cannot be opened until it is declared again. The
cursor should be explicitly closed before it is freed.

For an example of a FREE statement that frees a cursor, see the previous
example.
Related Information

Related statements: CLOSE, DECLARE, EXECUTE, EXECUTE IMMEDIATE,
OPEN, PREPARE, and SET AUTOFREE

For a task-oriented discussion of the FREE statement, see the IBM Informix
Guide to SQL: Tutorial.

IBM Informix Guide to SQL: Syntax

GET DESCRIPTOR

GET DESCRIPTOR
E/C .
Use the GET DESCRIPTOR statement to read from a system descriptor area.
Use this statement with ESQL/C.
Syntax
GET DESCRIPTOR lescriptor_var total_items_var —— = ——— COUNT
"descriptor ' IL VALUE — item_num_var ’
1 it & g Described ltem
- ftem_num Information
Described Item
Information
—pp— field_var — = TYPE .
EXTYPEID
LENGTH EXTYPENAME
PRECISION EXTYPEOWNERNAME
SCALE EXTYPELENGTH
NULLABLE EXTYPEOWNERLENGTH
INDICATOR SOURCEID
SOURCETYPE
DS
Element Purpose Restrictions Syntax
descriptor Quoted string that identifies a System-descriptor area must Quoted String,
system-descriptor area (SDA) already have been allocated p- 4-243
descriptor_var ~ Variable that stores descriptor value Same restrictions as descriptor Language specific
field_var Host variable to receive the Must be of type that can receive Language specific
contents of a field from an SDA value of a specified SDA field.
item_num Unsigned ordinal number of an 0 < item_num < (number ofitem Literal Number,
item described in the SDA descriptors in the SDA) p- 4-216
item_num_var Host variable storing item_num Must be an integer data type Language specific
total_items_var Host variable storing the number ~Must be an integer data type Language specific
of items described in the SDA

L emdvemdnees

SQL Statements 2-439

GET DESCRIPTOR

XPS

2-440

Usage
Use GET DESCRIPTOR to accomplish any of the following tasks:

m Determine how many items are described in a system-descriptor
area

m Determine the characteristics of each column or expression that is
described in the system-descriptor area

m Copy a value from the system-descriptor area into a host variable
after a FETCH statement

Use the GET DESCRIPTOR statement after you describe EXECUTE FUNCTION,
INSERT, SELECT, or UPDATE statements with the DESCRIBE...USING SQL
DESCRIPTOR statement. ¢

Use the GET DESCRIPTOR statement after you describe EXECUTE
PROCEDURE, INSERT, or SELECT statements with the DESCRIBE...USING SQL
DESCRIPTOR statement. ¢

The host variables that are used in the GET DESCRIPTOR statement must be
declared in the BEGIN DECLARE SECTION of a program.

If an error occurs during the assignment to any identified host variable, the
contents of the host variable are undefined.

IBM Informix Guide to SQL: Syntax

GET DESCRIPTOR

Using the COUNT Keyword

Use the COUNT keyword to determine how many items are described in the
system-descriptor area.

The following ESQL/C example shows how to use a GET DESCRIPTOR
statement with a host variable to determine how many items are described in
the system-descriptor area called descl:

main ()

{

EXEC SQL BEGIN DECLARE SECTION;
int h _count;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate descriptor 'descl' with max 20;

/* This section of program would prepare a SELECT or INSERT
* statement into the s_id statement id.

*/

EXEC SQL describe s_id using sql descriptor 'descl';

EXEC SQL get descriptor 'descl' :h count = count;

Using the VALUE Clause

Use the VALUE clause to obtain information about a described column or
expression or to retrieve values that the database server returns in a system
descriptor area.

The item_num must be greater than zero (0) and less than the number of item
descriptors that were specified when the system-descriptor area was
allocated with the ALLOCATE DESCRIPTOR statement.

SQL Statements 2-441

GET DESCRIPTOR

X/0

2-442

Using the VALUE Clause After a DESCRIBE

After you describe a SELECT, EXECUTE FUNCTION (or EXECUTE
PROCEDURE), INSERT, or UPDATE statement, the characteristics of each
column or expression in the select list of the SELECT statement, the character-
istics of the values returned by the EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement, or the characteristics of each column in a INSERT or
UPDATE statement are returned to the system-descriptor area. Each value in
the system-descriptor area describes the characteristics of one returned
column or expression.

The following ESQL/C example shows how to use a GET DESCRIPTOR
statement to obtain data type information from the demodesc system-
descriptor area:

EXEC SQL get descriptor 'demodesc' value :index
:type = TYPE,
:len = LENGTH,
:name = NAME;
printf ("Column %d: type = %d, len = %d, name = %s\n",
index, type, len, name);

The value that the database server returns into the TYPE field is a defined
integer. To evaluate the data type that is returned, test for a specific integer
value. For additional information about integer data type values, see “Setting
the TYPE or ITYPE Field” on page 2-673.

In X/Open mode, the X/Open code is returned to the TYPE field. You cannot
mix the two modes because errors can result. For example, if a particular data
type is not defined under X/Open mode but is defined for IBM Informix
products, executing a GET DESCRIPTOR statement can result in an error.

In X/Open mode, a warning message appears if ILENGTH, IDATA, or ITYPE is
used. It indicates that these fields are not standard X/Open fields for a
system-descriptor area. ¢

If the TYPE of a fetched value is DECIMAL or MONEY, the database server
returns the precision and scale information for a column into the PRECISION
and SCALE fields after a DESCRIBE statement is executed. If the TYPE is not
DECIMAL or MONEY, the SCALE and PRECISION fields are undefined.

IBM Informix Guide to SQL: Syntax

GET DESCRIPTOR

Using the VALUE Clause After a FETCH

Each time your program fetches a row, it must copy the fetched value into
host variables so that the data can be used. To accomplish this task, use a GET
DESCRIPTOR statement after each fetch of each value in the select list. If three
values exist in the select list, you need to use three GET DESCRIPTOR state-
ments after each fetch (assuming you want to read all three values). The item
numbers for each of the three GET DESCRIPTOR statements are 1, 2, and 3.

The following ESQL/C example shows how you can copy data from the DATA
field into a host variable (result) after a fetch. For this example, it is predeter-
mined that all returned values are the same data type.

EXEC SQL get descriptor 'demodesc' :desc_count = count;

EXEC SQL fetch democursor using sgl descriptor 'demodesc';

for (i = 1; i <= desc_count; i++)
{
if (sglca.sglcode != 0) break;
EXEC SQL get descriptor 'demodesc' wvalue :i :result = DATA;
printf ("%s ", result);
1
printf ("\n") ;

Fetching a NULL Value

When you use GET DESCRIPTOR after a fetch, and the fetched value is NULL,
the INDICATOR field is set to -1 (NULL). The value of DATA is undefined if
INDICATOR indicates a NULL value. The host variable into which DATA is
copied has an unpredictable value.

Using LENGTH or ILENGTH

If your DATA or IDATA field contains a character string, you must specify a
value for LENGTH. If you specify LENGTH=0, LENGTH is automatically set to
the maximum length of the string. The DATA or IDATA field might contain a
literal character string or a character string that is derived from a character
variable of CHAR or VARCHAR data type. This provides a method to
determine the length of a string in the DATA or IDATA field dynamically.

If a DESCRIBE statement precedes a GET DESCRIPTOR statement, LENGTH is
automatically set to the maximum length of the character field that is
specified in your table.

SQL Statements 2-443

GET DESCRIPTOR

2-444

This information is identical for ILENGTH. Use ILENGTH when you create a
dynamic program that does not comply with the X/Open standard.
Describing an Opaque-Type Column

The DESCRIBE statement sets the following item-descriptor fields when the
column to fetch has an opaque type as its data type:

The EXTYPEID field stores the extended ID for the opaque type.
This integer corresponds to a value in the extended_id column of the
sysxtdtypes system catalog table.

The EXTYPENAME field stores the name of the opaque type.

This character value corresponds to a value in the name column of
the row with the matching extended_id value in the sysxtdtypes
system catalog table.

The EXTYPELENGTH field stores the length of the opaque-type name.
This integer is the length of the data type name (in bytes).

The EXTYPEOWNERNAME field stores the name of the opaque-type
owner. This character value corresponds to a value in the owner
column of the row with the matching extended_id value in the
sysxtdtypes system catalog table.

The EXTYPEOWNERLENGTH field stores the length of the value in
the EXTTYPEOWNERNAME field. This integer is the length, in bytes,
of the name of the owner of the opaque type.

Use these field names with the GET DESCRIPTOR statement to obtain infor-
mation about an opaque column.

IBM Informix Guide to SQL: Syntax

GET DESCRIPTOR

Describing a Distinct-Type Column

The DESCRIBE statement sets the following item-descriptor fields when the
column to fetch has a distinct type as its data type:

The SOURCEID field stores the extended identifier for the source data
type.

This integer value corresponds to a value in the source column for
the row of the sysxtdtypes system catalog table whose extended_id
value matches that of the distinct data type. This field is only set if
the source data type is an opaque data type.

The SOURCETYPE field stores the data type constant for the source
data type.

This value is the data type constant (from the sqlstypes.h file) for the
data type of the source type for the distinct type. The codes for the
SOURCETYPE field are listed in the description of the TYPE field in the
SET DESCRIPTOR statement. (For more information, see “Setting the
TYPE or ITYPE Field” on page 2-673). This integer value must corre-
spond to the value in the type column for the row of the sysxtdtypes
system catalog table whose extended_id value matches that of the
distinct data type.

Use these field names with the GET DESCRIPTOR statement to obtain infor-
mation about a distinct-type column.

Related Information

Related statements: ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR,
DECLARE, DESCRIBE, EXECUTE, FETCH, OPEN, PREPARE, PUT, and SET
DESCRIPTOR

For more information on concepts that relate to the GET DESCRIPTOR
statement, see the IBM Informix ESQL/C Programmer’s Manual.

For more information on the sysxtdtypes system catalog table, see the
IBM Informix Guide to SQL: Reference.

SQL Statements 2-445

GET DIAGNOSTICS

GET DIAGNOSTICS

E/C Use the GET DIAGNOSTICS statement to return diagnostic information about
executing an SQL statement. The GET DIAGNOSTICS statement uses one of the
following two clauses:

m The Statement clause returns count and overflow information about
errors and warnings that the most recent SQL statement generates.

m The EXCEPTION clause provides specific information about errors
and warnings that the most recent SQL statement generates.

Use this statement with ESQL/C.

Syntax

Statement Clause

GET DIAGNOSTICS L p. 2-451 J %

EXCEPTION Clause
p. 2-452

Usage

The GET DIAGNOSTICS statement retrieves specified status information from
the SQL diagnostics area (SQLDA) and retrieves either count and overflow
information or other specified information on an exception. Using GET
DIAGNOSTICS does not change the contents of the diagnostics area.

Using the SQLSTATE Error Status Code

When an SQL statement executes, an error status code is automatically
generated. This code represents success, failure, warning, or no data
found. This error status code is stored in a variable called SQLSTATE.

Class and Subclass Codes

The SQLSTATE status code is a five-character string that can contain only
digits and uppercase letters.

2-446 IBM Informix Guide to SQL: Syntax

GET DIAGNOSTICS

The first two characters of the SQLSTATE status code indicate a class. The last
three characters of the SQLSTATE code indicate a subclass. Figure 2-1 shows
the structure of the SQLSTATE code. This example uses the value 08001,
where 08 is the class code and 001 is the subclass code. The value 08001
represents the error unable to connect with database environment.

Figure 2-1
o|8|o|0]1 Structure of the
SQLSTATE Code

Class Subclass code
code

The following table is a quick reference for interpreting class code values.

SQLSTATE Class Code Value Outcome
00 Success
01 Success with warning
02 No data found
> 02 Error or warning

Support for the ANSI/ISO Standard for SQL

All status codes returned to the SQLSTATE variable are ANSI-compliant
except in the following cases:

m SQLSTATE codes with a class code of 01 and a subclass code that
begins with an 1 are Informix-specific warning messages.

m SQLSTATE codes with a class code of 1x and any subclass code are
Informix-specific error messages.

m SQLSTATE codes whose class code begins with a digit in the range 5
to 9 or with an uppercase letter in the range I to Z indicate conditions
that are currently undefined by the ANSI/ISO standard for SQL. The
only exception is that SQLSTATE codes whose class code is 1X are
Informix-specific error messages.

SQL Statements 2-447

GET DIAGNOSTICS

2-448

List of SQLSTATE Codes

This table describes the class codes, subclass codes, and the meaning of all
valid warning and error codes associated with the SQLSTATE variable.

Class Subclass Meaning

00
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
02
07
07
07
07
07
07
07
07

000
000
002
003
004
005
006
007
101

103

104
105

106
107
108
109
110
11

000
000
001
002
003
004
005
006
008

Success

Success with warning

Disconnect error. Transaction rolled back

NULL value eliminated in set function

String data, right truncation

Insufficient item descriptor areas

Privilege not revoked

Privilege not granted

Database has transactions

ANSI-compliant database selected

IBM Informix database server selected

Float to decimal conversion was used

Informix extension to ANSI-compliant standard syntax
UPDATE or DELETE statement does not have a WHERE clause
An ANSI keyword was used as a cursor name
Number of Select list items is not equal to the number in INTO list
Database server running in secondary mode

Dataskip is turned on

No data found

Dynamic SQL error

USING clause does not match dynamic parameters
USING clause does not match target specifications
Cursor specification cannot be executed

USING clause is required for dynamic parameters
Prepared statement is not a cursor specification
Restricted data type attribute violation

Invalid descriptor count

IBM Informix Guide to SQL: Syntax

(1 of 3)

GET DIAGNOSTICS

Class Subclass Meaning

07
08
08
08
08
08
08
08
08
0A
0A
21
21
21
22
22
22
22
22
22
22
22
22
22
23
24
25
2B
2D
26

009
000
001
002
003
004
006
007
S01
000
001
000
S01
S02
000
001
002
003
005
027
012
019
024
025
000
000
000
000
000
000

Invalid descriptor index

Connection exception

Database server rejected the connection
Connection name in use

Connection does not exist

Client unable to establish connection
Transaction rolled back

Transaction state unknown
Communication failure

Feature not supported

Multiple server transactions

Cardinality violation

Insert value list does not match column list
Degree of derived table does not match column list
Data exception

String data, right truncation

NULL value, no indicator parameter
Numeric value out of range

Error in assignment

Data exception trim error

Division by zero (0)

Invalid escape character

Unterminated string

Invalid escape sequence

Integrity constraint violation

Invalid cursor state

Invalid transaction state

Dependent privilege descriptors still exist
Invalid transaction termination

Invalid SQL statement identifier

(20f3)

SQL Statements 2-449

GET DIAGNOSTICS

2-450

Class Subclass Meaning

2E
28
33
34
35
37

3C
40
40
42
S0
S0
S0
S0
S0
S1
IX

000
000
000
000
000
000

000
000
003
000
000
001
002
011
021
001
000

Invalid connection name

Invalid user-authorization specification
Invalid SQL descriptor name

Invalid cursor name

Invalid exception number

Syntax error or access violation in PREPARE or EXECUTE
IMMEDIATE

Duplicate cursor name

Transaction rollback

Statement completion unknown
Syntax error or access violation
Invalid name

Base table or view table already exists
Base table not found

Index already exists

Column already exists

Memory allocation failure

Informix reserved error message

IBM Informix Guide to SQL: Syntax

Using SQLSTATE in Applications

(3 0of 3)

You can use a built-in variable, called SQLSTATE, that you do not have to
declare in your program. SQLSTATE contains the status code, essential for
error handling, that is generated every time your program executes an SQL
statement. SQLSTATE is created automatically. You can examine the SQLSTATE
variable to determine whether an SQL statement was successful. If the
SQLSTATE variable indicates that the statement failed, you can execute a GET
DIAGNOSTICS statement to obtain additional error information.

For an example of how to use an SQLSTATE variable in a program, see “Using
GET DIAGNOSTICS for Error Checking” on page 2-457.

G