
J/Foundation
Developer’s Guide
Version 9.4
March 2003
Part No. CT1SZNA

ii J/Foundation Develop
This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2003. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Note:
Before using this information and the product it supports, read the information in the
appendix entitled “Notices.”
er’s Guide

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Manual 3

Types of Users 3
Software Dependencies 4
Assumptions About Your Locale. 5
Demonstration Database 5

New Features in J/Foundation, Version 9.4 6
New Features in J/Foundation, Version 9.3 6
Documentation Conventions 7

Typographical Conventions 7
Icon Conventions 8
Syntax Conventions 9

Additional Documentation 10
Related Reading 12

Compliance with Industry Standards 13
IBM Welcomes Your Comments 13

Chapter 1 Concepts
In This Chapter 1-3
Features of Java User-Defined Routines 1-3
Java Virtual Processors 1-4

Thread Scheduling 1-4
Query Parallelization. 1-4

System Catalog Tables 1-5

iv J/Fou
Chapter 2 Preparing for Java Support
In This Chapter 2-3
Installing the JDBC Driver 2-3
Configuring Java Support 2-4

Creating an sbspace 2-4
Creating the JVP Properties File. 2-5
Setting Configuration Parameters 2-5
Setting Environment Variables 2-6
GLS Support 2-7

Chapter 3 Configuration Parameters
In This Chapter 3-3
JVPARGS . 3-3
JDKVERSION 3-4
JVPCLASSPATH 3-4
JVPHOME . 3-5
JVPJAVAHOME 3-6
JVPJAVALIB . 3-6
JVPJAVAVM . 3-7
JVPLOGFILE 3-8
JVPPROPFILE 3-9
SBSPACENAME 3-9
VPCLASS JVP 3-10

Chapter 4 Creating Java User-Defined Routines
In This Chapter 4-3
Java User-Defined Routines 4-3
Creating a Java User-Defined Routine 4-6
Writing a Java User-Defined Routine 4-7

The com.informix.udr Package 4-8
The com.informix.udr.UDRManager 4-8
The com.informix.udr.UDREnv 4-9
The com.informix.udr.UDRLog 4-11
The com.informix.udr.UDRTraceable 4-11

Creating UDT-to-Java Mappings 4-12
Registering Java User-Defined Routines 4-14

Specifying the JVP 4-14
Using Routine Modifiers 4-15
Specifying the External Name 4-16
ndation Developer’s Guide

Using a Deployment Descriptor 4-19
Using a Manifest File 4-20
Compiling the Java Code 4-20
Installing a JAR File 4-21
Updating JAR Filenames 4-22
Executing the User-Defined Routine 4-22
Debugging and Tracing 4-23

Generating Log Messages 4-23
Using the Administrative Tool. 4-24
Debugging a Java User-Defined Routine 4-26
Traceable Events 4-26

Finding Information about User-Defined Routines 4-26
Complying with SQLJ 4-27

Unsupported Modifiers 4-29
Unsupported Optional Modifiers. 4-29

Chapter 5 The IBM Informix JDBC Driver
In This Chapter 5-3
Public JDBC Interfaces 5-4

The com.informix.jdbc.IfxConnection 5-4
The com.informix.jdbc.IfxProtocol 5-4

The informix-direct Subprotocol 5-5
JDBC 1.0 API 5-6
JDBC 2.0 . 5-7

Support for Opaque Data Types 5-8
Interfaces Updated for Java 2.0 5-9

An Example That Shows Query Results 5-10

Chapter 6 Using Opaque User-Defined Types
In This Chapter 6-3
Using the SQLData Interface 6-3

Default Input/Output Routines 6-4
SQL Definitions for Default I/O User-Defined Routines . . . 6-5
Informix Extensions to SQLInput and SQLOutput 6-6
The Circle Class Example 6-8

Overriding the Default I/O Methods 6-10
I/O Function Sets and Related Types 6-10
An Example That Overrides the Default I/O Methods . . . 6-14

Limitations to Streams 6-21
Table of Contents v

vi J/Fou
Appendix A Notices

Index
ndation Developer’s Guide

Introduction
Introduction
In This Introduction 3

About This Manual 3
Types of Users 3
Software Dependencies 4
Assumptions About Your Locale 5
Demonstration Database 5

New Features in J/Foundation, Version 9.4 6

New Features in J/Foundation, Version 9.3 6

Documentation Conventions 7
Typographical Conventions 7
Icon Conventions 8

Comment Icons 8
Feature, Product, and Platform Icons 8

Syntax Conventions 9

Additional Documentation 10
Related Reading 12

Compliance with Industry Standards 13

IBM Welcomes Your Comments 13

2 J/Foun
dation Developer’s Guide

In This Introduction
This introduction provides an overview of the information in this manual
and describes the conventions it uses.

About This Manual
This manual describes how to write user-defined routines (UDRs) in the Java
programming language for IBM Informix Dynamic Server with J/Foundation.
It also describes the infrastructure that enables you to run Java applications
in the database server. It describes the Java classes, methods, and interfaces
that allow you to access databases from within IBM Informix Dynamic Server
with J/Foundation, rather than from a client application.

This section discusses the organization of the manual, the intended audience,
and the associated software products that you must have to develop and use
Java UDRs.

Types of Users
This manual is written for the following users:

� Database-application programmers

� DataBlade module developers

� Java UDR developers

� Java server application developers
Introduction 3

Software Dependencies
This manual assumes that you have basic knowledge in the following areas:

� Your computer, your operating system, and the utilities that your
operating system provides

� Object-relational databases or exposure to database concepts

� The Java language and the Java Developer’s Kit

� Java Database Connectivity (JDBC) 2.0, which is a Java application
programming interface to SQL databases

� SQLJ: SQL Routines specification, which specifies the Java binding of
SQL UDRs

If you have limited experience with object-relational databases, SQL, or your
operating system, refer to IBM Informix Dynamic Server Getting Started Guide
for a list of supplementary titles.

Software Dependencies
This manual assumes that you are using the following software:

� IBM Informix Dynamic Server with J/Foundation

� The Java Development Kit (JDK), Version 1.2 or Version 1.3

You need the JDK to compile your Java programs. However, J/Foun-
dation includes Version 1.3 of the Java Runtime Environment (JRE)
and uses it to execute your server-based Java routines. This specific
version of the JRE ensures that the Java environment is known and
reliable for this database server release.

In addition, the DataBlade Developer’s Kit (DBDK) for Java facilitates
DataBlade module development.
4 J/Foundation Developer’s Guide

Assumptions About Your Locale
Assumptions About Your Locale
IBM Informix products can support many languages, cultures, and code sets.
All the information related to character set, collation, and representation of
numeric data, currency, date, and time is brought together in a single
environment, called a Global Language Support (GLS) locale.

The examples in this manual are written with the assumption that you are
using the default locale, en_us.8859-1. This locale supports U.S. English
format conventions for date, time, and currency. In addition, this locale
supports the ISO 8859-1 code set, which includes the ASCII code set plus
many 8-bit characters such as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and
other considerations related to GLS locales, see the IBM Informix GLS User’s
Guide.

Demonstration Database
The DB-Access utility, which is provided with the Informix database server
products, includes one or more of the following demonstration databases:

� The stores_demo database illustrates a relational schema with infor-
mation about a fictitious wholesale sporting-goods distributor.
Many examples in IBM Informix manuals are based on the
stores_demo database.

� The sales_demo database illustrates a dimensional schema for data
warehousing applications. For conceptual information about dimen-
sional data modeling, see the IBM Informix Database Design and
Implementation Guide.

For information about how to create and populate the demonstration
databases, see the IBM Informix DB-Access User’s Guide. For descriptions of the
databases and their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory on UNIX platforms and in the
%INFORMIXDIR%\bin directory in Windows environments.
Introduction 5

New Features in J/Foundation, Version 9.4
New Features in J/Foundation, Version 9.4
There are no new features in J/Foundation, Version 9.4.

New Features in J/Foundation, Version 9.3
The following table provides information about the new feature for
IBM Informix Dynamic Server with J/Foundation, Version 9.3, which this
manual covers. If you are accessing the manual online, click a blue hyperlink
to go to the desired page. For a description of all new features, see the Getting
Started Guide.

Version 9.3 includes the following improvement for support of Java UDRs.

New Features Reference

Java Virtual Machine (JVM) 1.3 support For more information, see
“JDKVERSION” on page 3-4.
6 J/Foundation Developer’s Guide

Documentation Conventions
Documentation Conventions
This section describes the conventions that this manual uses. These
conventions make it easier to gather information from this and other volumes
in the documentation set.

Typographical Conventions
This manual uses the following conventions to introduce new terms,
illustrate screen displays, describe command syntax, and so forth.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you are
to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of product- or platform-specific
information.

� This symbol indicates a menu item. For example, “Choose
Tools�Options” means choose the Options item from the
Tools menu.
Introduction 7

Icon Conventions
Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

Feature, Product, and Platform Icons

Feature, product, and platform icons identify paragraphs that contain
feature-specific, product-specific, or platform-specific information.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information

Important: Identifies paragraphs that contain significant
information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described

Icon Description

Identifies information that relates to the IBM Informix
Global Language Support (GLS) feature

Identifies information that is specific to the UNIX
operating system

Identifies information that applies to all Windows
environments

GLS

UNIX

Windows
8 J/Foundation Developer’s Guide

Syntax Conventions
These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the feature-specific, product-
specific, or platform-specific information.

Syntax Conventions
This section describes conventions for syntax diagrams. Each diagram
displays the sequences of required and optional keywords, terms, and
symbols that are valid in a given statement, command line, or other specifi-
cation, as in Figure 1.

Keep in mind the following rules when you read syntax diagrams in this
book:

� To make keywords (like GOTO in Figure 1) easy to identify, they are
shown in UPPERCASE letters, even though you can type them in
either uppercase or lowercase letters.

� Terms for which you must supply specific values are in italics.
In Figure 1, you must replace label with an identifier. Below each
diagram that contains an italicized term, a table explains what you
can substitute for the term.

� All the punctuation and other non-alphabetic characters are literal
symbols. In Figure 1, the colon is a literal symbol.

� Each syntax diagram begins at the upper-left corner and ends at the
upper-right corner with a vertical terminator. Between these points,
any path that does not stop or reverse direction describes a possible
form of the statement.

Syntax elements in a path represent terms, keywords, symbols, and segments
that can appear in your statement. The path always approaches elements
from the left and continues to the right, except in the case of separators in
loops. For separators in loops, the path approaches counterclockwise from
the right. Unless otherwise noted, at least one blank character separates.

Figure 1
Example of a Simple Syntax Diagram

GOTO label

:

Introduction 9

Additional Documentation
Additional Documentation
IBM Informix Dynamic Server documentation is provided in a variety of
formats:

� Online manuals. You can obtain online manuals at the IBM Informix
Online Documentation site at
http://www.ibm.com/software/data/informix/pubs/library/.

� Online help. This facility provides context-sensitive help, an error
message reference, language syntax, and more.
10 J/Foundation Developer’s Guide

Additional Documentation
� Documentation notes and release notes. Documentation notes,
which contain additions and corrections to the manuals, and release
notes are located in the directory where the product is installed.

Please examine these files because they contain vital information
about application and performance issues.

On UNIX platforms, the following online files appear in the
$INFORMIXDIR/release/en_us/0333 directory.

♦

Online File Purpose

ids_java_docnotes_9.40.html The documentation notes file for
your version of this manual
describes topics that are not covered
in the manual or that were modified
since publication.

ids_unix_release_notes_9.40.html The release notes file describes
feature differences from earlier
versions of IBM Informix products
and how these differences might
affect current products. This file also
contains information about any
known problems and their
workarounds.

ids_machine_notes_9.40.txt The machine notes file describes any
special actions that you must take to
configure and use IBM Informix
products on your computer.
Machine notes are named for the
product described.

UNIX
Introduction 11

Related Reading
The following items appear in the Informix folder. To display this
folder, choose Start�Programs�Informix� Documentation Notes
or Release Notes from the task bar.

Machine notes do not apply to Windows platforms. ♦
� IBM Informix software products provide ASCII files that contain all of

the error messages and their corrective actions. For a detailed
description of these error messages, refer to IBM Informix Error
Messages in the IBM Informix Online Documentation site at
http://www.ibm.com/software/data/informix/pubs/library/.

To read the error messages on UNIX, you can use the finderr com-
mand to display the error messages online. ♦

To read error messages and corrective actions on Windows, use the
Informix Error Messages utility. To display this utility, choose
Start�Programs�Informix from the taskbar. ♦

Related Reading
For a list of publications that provide an introduction to database servers and
operating-system platforms, refer to your Getting Started Guide.

Program Group Item Description

Documentation Notes This item includes additions or corrections to
manuals with information about features that
might not be covered in the manuals or that
have been modified since publication.

Release Notes This item describes feature differences from
earlier versions of IBM Informix products and
how these differences might affect current
products. This file also contains information
about any known problems and their
workarounds.

Windows

UNIX

Windows
12 J/Foundation Developer’s Guide

Compliance with Industry Standards
Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. IBM Informix SQL-based products are fully
compliant with SQL-92 Entry Level (published as ANSI X3.135-1992), which is
identical to ISO 9075:1992. In addition, many features of Informix database
servers comply with the SQL-92 Intermediate and Full Level and X/Open SQL
CAE (common applications environment) standards.

IBM Welcomes Your Comments
We want to know about any corrections or clarifications that you would find
useful in our manuals that would help us with future versions. Include the
following information:

� The name and version of the manual that you are using

� Any comments that you have about the manual

� Your name, address, and phone number

Send electronic mail to us at the following address:

docinf@us.ibm.com

This address is reserved for reporting errors and omissions in our documen-
tation. For immediate help with a technical problem, contact Customer
Services.

We appreciate your suggestions.
Introduction 13

1
Chapter
Concepts
In This Chapter . 1-3

Features of Java User-Defined Routines 1-3

Java Virtual Processors 1-4
Thread Scheduling 1-4
Query Parallelization 1-4

System Catalog Tables 1-5

1-2 J/Fo
undation Developer’s Guide

In This Chapter
This chapter introduces the infrastructure for creating and executing user-
defined routines (UDRs) and applications that you write in Java to run in the
Informix database server.

This chapter provides the following information:

� Basic characteristics of Java UDRs

� Basic architecture for executing Java UDRs in the database server

� Impact of Java UDRs on the database server system catalog tables

For general information on the purpose and the process of developing UDRs
for the database server, refer to the IBM Informix User-Defined Routines and
Data Types Developer’s Guide. For information on how to access databases
from Java UDRs, refer to the IBM Informix JDBC Driver Programmer’s Guide.

Features of Java User-Defined Routines
The Informix database server provides the infrastructure to support Java
UDRs. The database server binds SQL UDR signatures to Java executables and
provides mapping between SQL data values and Java objects so that the
database server can pass parameters and retrieve returned results.

The Informix database server also provides support for data type extensi-
bility and sophisticated error handling.
Concepts 1-3

Java Virtual Processors
Java Virtual Processors
Java UDRs execute on specialized virtual processors called Java virtual
processors (JVPs). A Java Virtual Machine (JVM) is embedded in the code of
each JVP.

The JVPs are responsible for executing all server-based Java UDRs and appli-
cations. Although the JVPs are mainly used for Java-related computation,
they have the same capabilities as a CPU VP, and they can process all types of
SQL queries. This eliminates the need to ship Java-related queries back and
forth between CPU VPs and JVPs.

Thread Scheduling
When the JVP starts the JVM, the entire database server component is thought
of as running on one particular Java thread, called the main thread. The JVM
controls the scheduling of Java threads and the database server scheduler
multiplexes Informix threads on top of the Java main thread. In other words,
the Informix thread package is stacked on top of the Java thread package.

Query Parallelization
While Java applications use threads for parallelism, the Informix database
server uses threads for overlapping latency. That is, Informix threads run
concurrently but not in parallel. To parallelize a query, the database server
must spread the work among multiple virtual processors.

Consequently, the database server must have multiple instances of JVPs to
make parallel calls to UDRs written in Java code. Because the JVMs embedded
in different VPs do not share states, you cannot store global states using Java
class variables. All global states must be stored in the database to be
consistent. The only guarantee from the database server is that any given
UDR instance executes from start to finish on the same VP. The database
server enforces a round-robin scheduling policy where the UDR instances are
spread over the JVPs before they start executing. ♦

UNIX
1-4 J/Foundation Developer’s Guide

System Catalog Tables
The consistency of multiple JVMs is not an issue on the Windows platform
because all VPs are mapped to kernel threads instead of processes. Because
all VPs share the same process space, you do not need to start multiple
instances of the JVM. ♦

System Catalog Tables
The sysroutinelangs, syslangauth, and sysprocedures system catalog tables
contain information about the UDRs written in Java code.

The sysroutinelangs table lists the programming languages that you can use
to write UDRs. The table gives the names of the language initialization
functions and the path for the language library.

The syslangauth table specifies who is allowed to use the language. For Java
code, the default is the database administrator. For information about how to
modify the use privileges, refer to the GRANT statement in the IBM Informix
Guide to SQL: Syntax.

The sysprocedures table gives information about both built-in routines and
routines that you define.

For more information about these system catalog tables, refer to “Finding
Information about User-Defined Routines” on page 4-26 and to the
IBM Informix Guide to SQL: Reference.

Windows
Concepts 1-5

2
Chapter
Preparing for Java Support
In This Chapter . 2-3

Installing the JDBC Driver 2-3

Configuring Java Support 2-4
Creating an sbspace 2-4
Creating the JVP Properties File 2-5
Setting Configuration Parameters 2-5
Setting Environment Variables 2-6
GLS Support. 2-7

NEWLOCALE and NEWCODESET Connection Properties . . 2-8
DBCENTURY Environment Variable 2-9

2-2 J/Fo
undation Developer’s Guide

In This Chapter
This chapter describes how to install and configure the database server to
provide UDRs written in Java code. To create and use UDRs written in Java
code, you must install the following software:

� IBM Informix Dynamic Server with J/Foundation

� The Java Development Kit (JDK), Versions 1.2 or 1.3

If you do not plan to develop Java UDRs, you do not need to install the JDK.
J/Foundation includes a tested version of the Java Runtime Environment (JRE)
to execute Java UDRs. You need to install the JDK only if you need to compile
new Java source code.

You might also want to install the DataBlade Developers Kit (DBDK), Version
4.0 or greater, to facilitate development of UDRs in Java code.

For more detailed information on the required software, refer to the release
notes described in “Additional Documentation” on page 10.

Installing the JDBC Driver
J/Foundation includes the IBM Informix JDBC Driver. The IBM Informix JDBC
Driver contains Java classes and shared-object files that allow you to write
UDRs in Java code. The installation procedure installs these binaries in
$INFORMIXDIR/extend/krakatoa.

For more information, refer to the machine notes file described in
“Additional Documentation” on page 10.
Preparing for Java Support 2-3

Configuring Java Support
Configuring Java Support
The basic configuration procedure for an Informix database server is covered
in the IBM Informix Dynamic Server Administrator’s Guide. Configuring the
database server to support Java code requires several additional steps. You
might find it convenient to configure the database server without Java code
and then modify it to add Java support.

Preparing to use Java code with the database server requires these additions
to the basic configuration procedure:

� Create an sbspace to hold the Java JAR files.

� Create the JVP properties file.

� Add (or modify) the Java configuration parameters in the
ONCONFIG configuration file.

� Set environment variables.

$INFORMIXDIR/extend/krakatoa is your jvphome. You need to include this
path in several places as you prepare J/Foundation.

Creating an sbspace
The database server stores Java JAR files as smart large objects in the system
default sbspace. If you do not already have a default sbspace, you must create
one. For example, the following command creates an sbspace called
mysbspace:

onspaces -c -S mysbspace -g 5 -p /dev/raw_dev1 -o 500 -s 20000 -m
/dev/raw_dev2 500

For information about the onspaces command, refer to the IBM Informix
Administrator’s Reference.

After you create the sbspace, set the SBSPACENAME configuration parameter
in the ONCONFIG file to the name that you gave to the sbspace (mysbspace
in the preceding example).

JAR files coexist in the system default sbspace with other smart large objects
that you store in that space. When you choose the size for your default
sbspace, you need to consider how much space those objects require, as well
as the number and size of the JAR files that you plan to install.
2-4 J/Foundation Developer’s Guide

Creating the JVP Properties File
Creating the JVP Properties File
A JVP properties file contains property settings that control various runtime
behaviors of the Java virtual processor. The JVPPROPFILE configuration
parameter specifies the path to the properties file. When you initialize the
database server, the JVP initializes the environment based on the settings in
the JVP property file. The .jvpprops.template file in the $INFORMIXDIR/
extend/krakatoa directory documents the properties that you can set.

To prepare the JVP properties file

1. Copy the JVP properties template file, jvphome/.jvpprops.template
into jvphome/.jvpprops where jvphome is the directory
$INFORMIXDIR/ extend/krakatoa.

2. Edit .jvpprops to change the trace level or other properties if
necessary.

3. Set the JVPPROPFILE configuration parameter to jvphome/.jvpprops.

A sample properties file might contain the following items:

JVP.trace.settings:JVP=2
JVP.trace.verbose:1
JVP.trace.timestampformat:HH:MM
JVP.splitLog:1000
JVP.monitor.port: 10000

The database server provides a fixed set of system trace events such as UDR
sequence initialization, activation, and shutdown. You can also generate
application-specific traces. For more information, see the description of the
UDRTraceable class in “The com.informix.udr.UDRTraceable” on page 4-11.

Setting Configuration Parameters
The ONCONFIG configuration file ($INFORMIXDIR/etc/$ONCONFIG)
includes the following configuration parameters that affect Java code:

� JDKVERSION

� JVPPROPFILE

� JVMTHREAD

� JVPCLASSPATH

� JVPHOME
Preparing for Java Support 2-5

Setting Environment Variables
� JVPJAVALIB

� JVPJAVAVM

� JVPLOGFILE

� VPCLASS

The following example shows sample settings for the Java-related configu-
ration parameters on a UNIX Solaris system. In this example, jvphome is
$INFORMIXDIR/extend/krakatoa.

JVPHOME jvphome
JVPLOGFILE jvphome/jvp.log
JVPPROPFILE jvphome/.jvpprops
JVPJAVAVM java_g:net_g:zip_g:mmedia_g:jpeg_g:

sysresource_g:agent_g
VPCLASS jvp,num=1
JDKVERSION 1.3
JVMTHREAD native
JVPJAVALIB /lib/sparc/native_threads
JVPCLASSPATH jvphome/krakatoa_g.jar:jvphome/jdbc_g.jar

In this example, JVPJAVAM and JVPCLASSPATH are set appropriately for
debug mode. To run in nondebug mode, remove all the _g suffixes.

For more information, refer to Chapter 3, “Configuration Parameters.” For
information about specific configuration parameter settings on your
platform, refer to the machine notes documented in “Additional Documen-
tation” on page 10 of the Introduction and to $INFORMIXDIR/etc/
onconfig.std. ♦

Setting Environment Variables
You do not need any extra environment variables to execute UDRs written in
Java code. However, if you are developing Java UDRs, you must include
jvphome/krakatoa.jar in your CLASSPATH environment variable so that JDK
can compile the Java source files that use Informix Java packages.

The following sections describe the runtime environment variables that you
can set.

UNIX
2-6 J/Foundation Developer’s Guide

GLS Support
AFDEBUG

Set AFDEBUG to 1 to create files to hold verbose garbage collection messages
from the JVM. You can also set the configuration parameter AFCRASH to
0x00000010 to achieve the same result.

JVM_MAX_HEAP_SIZE

Set the environment variable JVM_MAX_HEAP_SIZE to configure the heap
size for the JVM. The default heap size is 16 megabytes. You can set this
variable to the maximum heap size needed for the JVM, depending on the
estimated requirements of the application.

JAR_TEMP_PATH

Set the JAR_TEMP_PATH environment variable to specify a local file-system
location where jar management procedures such as install_jar and
replace_jar can store JAR files temporarily. This directory must have read and
write permissions for the user who brings up the database server. If the
JAR_TEMP_PATH environment variable is not set, temporary copies of JAR
files are stored in the /tmp directory of the local file system for the database
server.

JAVA_COMPILER

To turn off just-in-time (JIT) compilation, set the JAVA_COMPILER
environment variable to NONE or none. For more information on JIT compi-
lation, see the Java documentation from Sun Microsystems.

GLS Support
When the database server starts a UDR, the routine runs in the locale that
DB_LOCALE specifies. Consequently, the database server automatically
converts parameters, return values, and output values between the
DB_LOCALE code set and the Unicode code set so that Java code can use the
values.

GLS
Preparing for Java Support 2-7

GLS Support
However, when a Java UDR creates a JDBC connection to the database server
for access through SQL, you can set DB_LOCALE into the connection URL to
control conversions and formatting between the Unicode code set and the
code set of the database server locale. This setting of DB_LOCALE overrides
any environment settings. In fact, DB_LOCALE does not need to be set in the
environment. Similarly, you can also set DBDATE, GL_DATE, and
DBCENTURY into the URL connection to control date conversion and
formatting.

For example, when a UDR sends string or date data to the database server in
an insert, the database server converts the data from Unicode to the locale
that DB_LOCALE specifies, or it interprets dates and intervals using your
DBDATE or GL_DATE setting.

When the database server returns data to the Java UDR, the database server
does the opposite conversion, so Java code sees only Unicode.

NEWLOCALE and NEWCODESET Connection Properties

IBM Informix JDBC Driver uses the JDK internationalization API to manip-
ulate international data. The classes and methods in this API take a JDK locale
or encoding as a parameter. Because the Informix DB_LOCALE and
CLIENT_LOCALE properties specify the locale and code set based on Informix
names, these Informix names are mapped to the JDK names. For example, the
Informix and JDK names for the ASCII code set are 8859-1 and 8859_1 respec-
tively. IBM Informix JDBC Driver internally maps 8859-1 to 8859_1 and uses
the appropriate JDK name in the JDK classes and methods.

Two new connection properties, NEWLOCALE and NEWCODESET, enable
you to specify a locale or code set that is not yet mapped in the internal tables
of the JDBC driver.

The NEWLOCALE and NEWCODESET properties have the following formats:

NEWLOCALE=<JDK locale>,<Ifx locale>:<JDK locale>,<Ifx locale>...
NEWCODESET=<JDK encoding>,<Ifx codeset name>,<Ifx codeset
number>:<JDK encoding>,<Ifx codeset name>,<Ifx codeset number>...

The following example shows a URL that uses these properties. (You must
specify a valid URL on a single line.)

jdbc:informix-sqli://myhost:1533:informixserver=myserver;user=myname;
password=mypasswd;NEWLOCALE=en_us,en_us;NEWCODESET=8859_1,8859-1,819;
2-8 J/Foundation Developer’s Guide

GLS Support
There is no limit to the number of locale or code-set mappings that you can
specify. If you specify an incorrect number of parameters or values, you get a
message that says, “Locale Not Supported” or “Encoding or Code Set Not
Supported.” If you set these properties in the URL or in an IfmxDataSource
object, the new values in NEWLOCALE and NEWCODESET override the
values in the JDBC internal tables. For example, if JDBC already maps 8859-1
to 8859_1, but you specify NEWCODESET=8888,8859-1,819, the new value,
8888, is used for the code-set conversion.

DBCENTURY Environment Variable

If a String represents a DATE or a DATETIME value that has less than a three-
digit year value, the IBM Informix JDBC Driver uses the DBCENTURY
environment variable to determine the correct four-digit year and performs
a String-to-DATE or -DATETIME conversion. For the DBCENTURY settings,
the algorithms used, and examples, see the section on environment variables
in the IBM Informix Guide to SQL: Reference.

The following table summarizes the affected methods and the conditions
under which they are affected.

Method Condition

IfxPreparedStatement.setString(String) The target column is SQLDATE or
SQLDTIME.

IfxPreparedStatement.setObject(String) The target column is SQLDATE or
SQLDTIME.

IfxPreparedStatement.IfxSetObject(String) The target column is SQLDATE or
SQLDTIME.

IfxResultSet.getDate() The source column is a String type.

IfxResultSet.getTimestamp The source column is a String type.

IfxResultSet.updateString(String) The target column is SQLDATE or
SQLDTIME.

IfxResultSet.updateObject(String) The target column is SQLDATE or
SQLDTIME.
Preparing for Java Support 2-9

GLS Support
The following example shows a URL that uses the DBCENTURY environment
variable:

jdbc:informix-sqli://myhost:1533:informixserver=myserver;user=
myname;password=mypasswd;DBCENTURY=F;

You must specify a valid URL on a single line.
2-10 J/Foundation Developer’s Guide

3
Chapter
Configuration Parameters
In This Chapter . 3-3

JVPARGS . 3-3

JDKVERSION . 3-4

JVPCLASSPATH. 3-4

JVPHOME . 3-5

JVPJAVAHOME . 3-6

JVPJAVALIB . 3-6

JVPJAVAVM . 3-7

JVPLOGFILE . 3-8

JVPPROPFILE . 3-9

SBSPACENAME 3-9

VPCLASS JVP . 3-10

3-2 J/Fo
undation Developer’s Guide

In This Chapter
This chapter documents the configuration parameters that you need to set to
use UDRs written in Java code. Set these parameters in the database server
configuration file (the ONCONFIG file).

For a sample environment that configuration parameters establish, see the
release notes described in “Additional Documentation” on page 10.

JVPARGS

The JVPARGS configuration parameter provides an easy way for you to set
Java VM options.

Use a semicolon to separate options. For example, if you want to change Xms
and Xmx to 32m, you can set those options with the JVPARGS parameter, as the
following example shows:

JVPARGS -Xms32m;-Xmx32m

If you want to see gc information to determine whether you need to increase
ms or mx, you can set JVPARGS, as the following example shows:

JVPARGS -verbose:gc

For more information on Java VM options, refer to your Java documentation.

onconfig.std
value

None

takes effect When shared memory is initialized
Configuration Parameters 3-3

JDKVERSION
JDKVERSION

JDKVERSION is the major version of the JDK or JRE release. That is, the version
number does not include x when the version is JDK 1.3.x.

This parameter is required if the number of JVPs (set in VPCLASS JVP) is
greater than 0.

JVPCLASSPATH

The JVPCLASSPATH configuration parameter is the initial Java classpath
setting. You must modify the default setting in the configuration file by
replacing /usr/informix/extend/krakatoa with JVPHOME_path, the
pathname in your JVPHOME configuration parameter.

JVPHOME_path/krakatoa_g.jar:JVPHOME_path/jdbc_g:jar

If you do not require the debug versions of the jar files, use the following
JVPCLASSPATH setting:

JVPHOME_path/krakatoa.jar:JVPHOME_path/jdbc.jar

The total number of characters available for specifying configuration values
in the ONCONFIG file is 256. The database server imposes this limit.

onconfig.std
value

1.3

range of values For this release, the only valid value is 1.3.

takes effect When shared memory is initialized

onconfig.std
value

/usr/informix/extend/krakatoa/krakatoa_g.jar:
/usr/informix/extend/krakatoa/jdbc_g.jar

takes effect When shared memory is initialized
3-4 J/Foundation Developer’s Guide

JVPHOME
To specify more than 256 characters for the value of the JVPCLASSPATH
parameter, you can store the value in a file and specify the keyword file:

on the parameter, followed by the filename. For example, if you set the path
in a file called classpath_fl in the directory /u/informix/iif2000/extend/java,
you can specify the JVPCLASSPATH parameter, as the following example
shows:

JVPCLASSPATH file:/u/informix/iif2000/extend/java/classpath_fl

You must specify the complete value for JVPCLASSPATH on one line in the
file, just as you would normally on the configuration parameter. Do not
include the parameter name JVPCLASSPATH again. The database server
considers the first carriage return in the line to be the terminating carriage
return for the pathname.

The JVPCLASSPATH parameter is required if the number of JVPs (set in
VPCLASS JVP parameter) is greater than 0.

Tip: The JVP ignores the CLASSPATH environment variable. However, you must set
the CLASSPATH environment variable so that you can compile your UDRs.

JVPHOME

The JVPHOME configuration parameter specifies the directory where the
classes of the IBM Informix JDBC Driver are installed. To modify the default
setting in the configuration file, replace /usr/informix with the pathname of
your $INFORMIXDIR.

The JVPHOME value, JVPHOME_path, is used in several configuration param-
eters. If the JVPHOME location changes, you must change the configuration
settings of all parameters that use the JVPHOME value.

This parameter is required if the number of JVPs (set in VPCLASS JVP) is
greater than 0.

onconfig.std
value

/usr/informix/extend/krakatoa

takes effect When shared memory is initialized
Configuration Parameters 3-5

JVPJAVAHOME
JVPJAVAHOME

The JVPJAVAHOME configuration parameter specifies the directory where the
JRE for the database server is installed. The database server includes a tested
version of the JRE. The default location for the JRE is in
/usr/informix/extend/krakatoa/jre/. To modify the default setting in the
configuration file, replace /usr/informix/extend/krakatoa/jre with the
pathname setting of $INFORMIXDIR, followed by /extend/krakatoa/jre.

This parameter is required if the number of JVPs (set in VPCLASS JVP) is
greater than 0.

If you want to use a stand-alone JVM, without a JVP, install the JDK on your
platform and use the JVM that is included.

JVPJAVALIB

The JVPJAVALIB configuration parameter specifies the path from
$JVPJAVAHOME to the location of the JVM libraries.

The value of this parameter is platform dependent. To find the proper value
for jvpjavalib, refer to the machine and release notes described in “Additional
Documentation” on page 10 of the Introduction.

This parameter is required if the number of JVPs (set in VPCLASS JVP) is
greater than 0.

onconfig.std
value

/usr/informix/extend/krakatoa/jre/

takes effect When shared memory is initialized

onconfig.std
value

platform-specific value

takes effect When shared memory is initialized
3-6 J/Foundation Developer’s Guide

JVPJAVAVM
JVPJAVAVM

The JVPJAVAVM configuration parameter lists the JVM libraries that the
database server should load. The names in this list exclude the lib prefix and
.so or .dll suffix. Entries in the list are separated by colons.

This parameter is required if the number of JVPs (set in VPCLASS JVP) is
greater than 0.

For example, for UNIX Solaris, use the following value for JVPJAVAVM if you
are using a debug version of the JDBC driver:

hpi_g:server_g:verify_g:java_g:net_g:jpeg_g

If you use a nondebug JDBC driver, you can use the nondebug JDK libraries
for better performance. Set JVPJAVAVM to the following:

hpi:server:verify:javag:net:jpeg

♦

For Windows, use a semicolon to separate values. Use the following value for
VPJAVAVM if you are using a debug version of the JDBC driver:

hpi_g;server_g;verify_g;java_g;net_g;jpeg_g

If you use a nondebug JDBC driver, you can use the nondebug JDK libraries
for better performance. Set JVPJAVAVM to the following:

hpi;server;verify;javag;net;jpeg

♦

The value of JVPJAVAVM is platform dependent. To find the proper value for
JVPJAVAVM, refer to the machine and release notes described in “Additional
Documentation” on page 10 of the Introduction.

onconfig.std
value

platform-specific value

separators colon (UNIX) and semicolon (Windows)

takes effect When shared memory is initialized

UNIX

Windows
Configuration Parameters 3-7

JVPLOGFILE
JVPLOGFILE

The database server can generate Java trace outputs and stack dumps. The
database server writes this output to the Java VP log file.

The JVPLOGFILE configuration parameter specifies the path to the Java VP log
file. This parameter is optional.

To change the location of the log file, change the value of the JVPLOGFILE
configuration parameter. For example, the following parameter value sets the
log file to /u/sam/jvp.log:

JVPLOGFILE /u/sam/jvp.log

If you do not specify a value for this parameter, the default value is derived
from the onconfig.std file. If the JVPLOGFILE parameter is not present in the
ONCONFIG file, the default file location is:

./jvp.log

where ‘.’ is the current directory of the user who runs oninit.

onconfig.std
value

/usr/informix/jvp.log

range of values Any valid complete filename

takes effect When shared memory is initialized
3-8 J/Foundation Developer’s Guide

JVPPROPFILE
JVPPROPFILE

The JVPPROPFILE configuration parameter specifies the path to the Java VP
properties file, if any. Set this parameter as follows, where JVPHOME_path is
the value in your JVPHOME configuration parameter:

JVPHOME_path/.jvpprops

This parameter is optional.

SBSPACENAME

The SBSPACENAME configuration parameter specifies the name of the system
default sbspace. You must provide an sbspace where the database server can
store the Java jar files.

This parameter is not exclusively for Java code. If your database tables
include smart-large-object columns that do not explicitly specify a storage
space, that data is stored in the sbspace that SBSPACENAME specifies.

For information about how to specify a storage space for smart large objects,
refer to the CREATE TABLE statement in the IBM Informix Guide to SQL: Syntax.
For more information about SBSPACENAME, refer to the IBM Informix Admin-
istrator’s Reference.

Tip: When you use UDRs written in Java code, create separate sbspaces for storing
your smart large objects.

onconfig.std
value

/usr/informix/extend/krakatoa/.jvpprops

takes effect When shared memory is initialized

onconfig.std
value

blank

takes effect When shared memory is initialized

refer to “Creating an sbspace” on page 2-4
Configuration Parameters 3-9

VPCLASS JVP
VPCLASS JVP

The VPCLASS configuration parameter specifies the number of virtual
processors to initialize for a given virtual-processor class. The JVP option of
VPCLASS specifies the number of Java virtual processors that the database
server should start.

This parameter is required to execute Java UDRs.

Set this option as follows, where number is the number of Java virtual
processors:

VPCLASS JVP,num=number

The default value of range is 1. If you set the number of JVPs to zero (0), or if
there is no VPCLASS parameter for the JVP class, execution of Java UDRs is
disabled.

If you have not correctly installed and configured the software for Java in the
server, the JVP fails to start when you start the database server. However, the
database server itself continues to initialize normally. The main database log
file contains a message that indicates the cause of the JVP failure.

For more information about the VPCLASS configuration parameter, refer to
the IBM Informix Administrator’s Reference.

onconfig.std
value

not set

range of values 0 and positive integers

takes effect When shared memory is initialized
3-10 J/Foundation Developer’s Guide

4
Chapter
Creating Java User-Defined
Routines
In This Chapter . 4-3

Java User-Defined Routines 4-3

Creating a Java User-Defined Routine 4-6

Writing a Java User-Defined Routine. 4-7
The com.informix.udr Package 4-8
The com.informix.udr.UDRManager 4-8
The com.informix.udr.UDREnv 4-9
The com.informix.udr.UDRLog 4-11
The com.informix.udr.UDRTraceable 4-11

Creating UDT-to-Java Mappings 4-12

Registering Java User-Defined Routines 4-14
Specifying the JVP. 4-14
Using Routine Modifiers 4-15
Specifying the External Name 4-16

Using a Deployment Descriptor 4-19

Using a Manifest File 4-20

Compiling the Java Code 4-20

Installing a JAR File 4-21

Updating JAR Filenames 4-22

Executing the User-Defined Routine 4-22

4-2 J/Fo
Debugging and Tracing 4-23
Generating Log Messages 4-23
Using the Administrative Tool. 4-24

The threads vpid Option 4-25
The memory vpid Option 4-25

Debugging a Java User-Defined Routine 4-26
Traceable Events 4-26

Finding Information about User-Defined Routines 4-26

Complying with SQLJ 4-27
Unsupported Modifiers 4-29
Unsupported Optional Modifiers. 4-29
undation Developer’s Guide

In This Chapter
A user-defined routine (UDR) is a routine that an SQL statement or another UDR
can invoke. UDRs written in Java code use the server-side implementation of
the IBM Informix JDBC Driver to communicate with the database server.

This chapter provides the following information about UDRs written in Java
code:

� What tasks a UDR can perform

� How to create a UDR

Java User-Defined Routines
The behaviors of installing and invoking UDRs written in Java code follow
the SQLJ: SQL Routines specification. Every UDR written in Java code maps to
an external Java static method whose class resides in a Java Archive (JAR) file
that was installed in a database. The SQL-to-Java data type mapping is done
according to the JDBC specification.
Creating Java User-Defined Routines 4-3

Java User-Defined Routines
UDRs can be user-defined functions or user-defined procedures, which can
return values or not, as follows:

� A user-defined function returns one or more values and therefore can
be used in SQL expressions.

For example, the following query returns the results of a UDR called
area() as part of the query results:

SELECT diameter, area(diameter) FROM shapes
WHERE diameter > 6

� A user-defined procedure is a routine that optionally accepts a set of
arguments and does not return any values.

A procedure cannot be used in SQL expressions because it does not
return a value. However, you can call it directly, as the following
example shows:

EXECUTE PROCEDURE myproc(1, 5)

You can also call user-defined procedures within triggers.

For general information about UDRs, refer to the IBM Informix User-Defined
Routines and Data Types Developer’s Guide.

UDRs written in Java code can perform the following tasks.

Type of UDR Purpose

End-user routine A UDR that performs some common task for an end user

User-defined aggregate A UDR that calculates an aggregate value on a
PROCEDURE particular column or value

Parallelizable UDR A UDR that can run in parallel when executed within an
SQL statement

(UDRs that open JDBC connections cannot run in
parallel.)

Cast function A UDR that converts or casts one data type to another

Operator function A UDR that implements some operator symbol (such as
+, -, or /)

(1 of 2)
4-4 J/Foundation Developer’s Guide

Java User-Defined Routines
You cannot use UDRs written in Java code for any of the following features:

� Commutator functions

� Cost functions

� Operator-class functions

� Selectivity functions

� User-defined statistics functions

Iterator function A user-defined function that returns more than one row
of data

Iterator functions written in Java code are supported
using some Informix extensions.

Functional index A UDR on which an index can be built

Opaque data type
support function

A user-defined function that tells the database server
how to handle the data of an opaque data type

Negator function A function that calculates the not operation for a
particular operator or function

Type of UDR Purpose

(2 of 2)
Creating Java User-Defined Routines 4-5

Creating a Java User-Defined Routine
Creating a Java User-Defined Routine
When you create a Java UDR, you need to write and compile the source code
and then install the finished code in the database server.

To create a Java UDR

1. Write the UDR, which can use the JDBC methods to interact with the
database server.

2. If the UDR uses any user-defined data types (UDTs), for each UDT
write a Java class that translates between the database server and
Java representation of the type.

This class should implement the SQLData interface. For information
about SQLData, refer to the JDBC 2.0 specification.

3. Write the CREATE FUNCTION or CREATE PROCEDURE statement for
registering the UDR.

4. Write the deployment descriptor, which contains the SQL statements
for registering the UDR.

5. Prepare the manifest file.

6. Compile the Java source files and collect the compiled code into a JAR
file.

7. Create a JAR file that contains the classes, deployment descriptor,
and manifest file.

8. Install the JAR file that contains the UDR in the current database.

9. Execute the UDR.

10. Use tracing and the debugging features to work out any problems in
the UDR.

11. Optimize performance of the UDR.

For general information on how to develop a UDR, refer to the IBM Informix
User-Defined Routines and Data Types Developer’s Guide. The following sections
briefly describe each of these steps in the development of a UDR.

Tip: It is recommended that you use the DataBlade Developers Kit (DBDK),
Version 4.0 or later, to help write UDRs in Java code. DBDK enforces standards that
facilitate migration between different versions of the database server.
4-6 J/Foundation Developer’s Guide

Writing a Java User-Defined Routine
Writing a Java User-Defined Routine
Java UDRs can use the following packages, interfaces, classes, and methods:

� Java packages

UDRs can use all the basic nongraphic Java packages that are in the
JDK. That is, UDRs can use java.util.*, java.io.*, java.net.*, java.rmi.*,
and so on. UDRs cannot use java.awt.*, java.applet.* and other user-
interface packages. For more information on these packages, see the
JDK documentation.

� Java Database Connectivity (JDBC) 1.0 API

UDRs can use the JDBC 1.0 API to access the database. For more infor-
mation, see “JDBC 1.0 API” on page 5-6.

The $INFORMIXDIR/extend/krakatoa/examples.tar file of online
examples includes a sample of JDBC in a UDR in JDBC.java.

� Informix JDBC extensions

UDRs can also use Informix extensions to JDBC 1.0 to access some
JDBC 2.0 functionality. For more information, see Chapter 5, “The
IBM Informix JDBC Driver.”

� Informix extensions for UDRs written in Java code

Certain Informix extensions are available to applications that need to
exploit the capabilities of the database server. The Informix exten-
sions reside in the com.informix.udr package.

The Informix com.informix.udr package provides extensions to SQLJ that
allow applications to exploit the capabilities of Dynamic Server. Such exten-
sions include logging, tracing, iterator support, and invocation-state
management.
Creating Java User-Defined Routines 4-7

The com.informix.udr Package
The com.informix.udr Package
The com.informix.udr package contains the following public interfaces:

� The com.informix.udr.UDRManager

� The com.informix.udr.UDREnv

� The com.informix.udr.UDRLog

� The com.informix.udr.UDRTraceable

The following sections describe each of these Informix-specific extensions.

The com.informix.udr.UDRManager
The UDRManager class provides a method for a UDR instance to obtain its
UDREnv object. This class is defined as follows:

public class UDRManager
{

static UDREnv getUDREnv();
}

The SQLJ: SQL Routines specification, which describes how to use static Java
methods as database UDRs, does not provide a mechanism to save the user
state across invocations. The UDREnv interface is a provided interface that
maintains state information. You can use this state information, for example,
to write iterator UDRs. The UDREnv object is maintained by the thread that
manages the execution of the static method that represents the UDR.
Therefore, if the UDR forks its own threads, the UDRManager.getUDREnv
method cannot be directly used by those secondary threads of the UDR. The
UDR must explicitly pass the UDREnv object to the secondary threads that it
creates.
4-8 J/Foundation Developer’s Guide

The com.informix.udr.UDREnv
The com.informix.udr.UDREnv
The UDREnv interface consists of methods for accessing and manipulating
the routine state of the UDR. It exposes a subset of the routine-state infor-
mation in the MI_FPARAM structure (which holds routine-state information
for C UDRs). It also contains some utilities related to the JVP, such as logging
and tracing.

The online examples in $INFORMIXDIR/extend/krakatoa/examples.tar
include an example of the UDREnv class in Env.java.

The UDREnv interface is defined as follows:

public interface UDREnv
{

// Information about the UDR signature

String getName();
String[] getParamTypeName();
String getReturnTypeName();

// For maintaining state across UDR invocations

void setUDRState (Object state);
Object getUDRState();

// For set/iterator processing

public static final int UDR_SET_INIT = 1;
public static final int UDR_SET_RETONE = 2;
public static final int UDR_SET_END = 3;
int getSetIterationState();
void setSetIterationIsDone(boolean value);

// Logging and Tracing

UDRTraceable getTraceable();
UDRLog getLog();

}

The getName() method returns the name of the UDR as it is registered in the
database.

The getParamTypeName() and getReturnTypeName() methods return the
SQL data type names for the UDR arguments and the return value,
respectively.
Creating Java User-Defined Routines 4-9

The com.informix.udr.UDREnv
If you are using JDBC2.0, use the getUDRs() method of the
java.sql.DatabaseMetaData class to obtain more information about a data
type.

The setUDRState() method sets the user-state pointer for the UDR. It stores a
given object in the context of the UDR instance. The object might contain
states that are shared across UDR invocations (such as a JDBC connection
handle or a UDRLog object). The getUDRState() method returns the object set
by the latest call to setUDRState().

The getSetIterationState() method retrieves the iterator status for an iterator
function. (This method is analogous to the C-language accessor
mi_fp_request for set iterators.) This method returns one of the following
values.

The setSetIterationIsDone() method sets the iterator-completion flag for an
iterator function. Use the setSetIterationIsDone() method to tell the
database server whether the current iterator function has reached its end
condition. An end condition indicates that the generation of the active set is
complete. The database server calls the iterator function with the
UDR_SET_RETONE iterator-status value as long as the end condition has not
been set.

The getLog() method returns a UDRLog interface for logging uses. For more
information on the UDRLog interface, see “The com.informix.udr.UDRLog”
on page 4-11.

The getTraceable() method returns a UDRTraceable interface for the UDRs to
use. For more information on the UDRTraceable interface, see “The
com.informix.udr.UDRTraceable” on page 4-11.

Iterator-Status Constant Meaning Use

UDR_SET_INIT This is the first time that the
iterator function is called.

Initialize the user state for
the iterator function.

UDR_SET_RETONE This is an actual iteration of
the iterator function.

Return items of the active
set, one per iteration.

UDR_SET_END This is the last time that the
iterator function is called.

Free any resources
associated with the user
state.
4-10 J/Foundation Developer’s Guide

The com.informix.udr.UDRLog
The com.informix.udr.UDRLog
The UDRLog interface provides a simple logging facility for a UDR. The
UDRLog interface is defined as follows:

public interface UDRLog
{

void log(String msg);
}

The interface defines a single method, log(), which takes a String argument
and appends it to the JVP log file, which the JVPLOGFILE configuration
parameter specifies. For more information, see “Generating Log Messages”
on page 4-23.

The com.informix.udr.UDRTraceable
The UDRTraceable interface supports zone-based tracing. A trace zone is a
conceptual code component. For example, you can put all UDRs in the same
zone and all general-purpose Java applications in another. Each zone can
have its own trace level that dictates the granularity of tracing. The zones form
a hierarchy where subzones inherit the trace levels of their parents. You can
define the zones, their hierarchical relationships, and trace levels with the
following features:

� The settings in the JVP property file (which the JVPPROPFILE config-
uration parameter specifies)

� Calls to the UDRTraceable methods at program execution time

The UDRTraceable interface is defined as follows:

public interface UDRTraceable extends Traceable
{

public static final int TRACE_OFF = 0;
public static final int TRACE_MINIMAL = 1;
public static final int TRACE_COARSE = 2;
public static final int TRACE_MEDIUM = 3;
public static final int TRACE_FINE = 4;
public static final int TRACE_SUPERFINE = 5;

int traceLevel(String zone);
void traceSet(String zone, int level);
void tracePrint(String zone, int level, String message);

}

Creating Java User-Defined Routines 4-11

Creating UDT-to-Java Mappings
The traceLevel() method returns the current trace-level setting for the given
trace zone. The predefined trace levels are as follows.

The traceSet() method sets the specified trace zone to the specified trace level.

The tracePrint() method sends the specified message to the JVP log file if the
trace zone has a trace level that is greater than or equal to the level parameter.
The JVPLOGFILE configuration parameter specifies the JVP log-file name. For
more information, see “Generating Log Messages” on page 4-23.

Creating UDT-to-Java Mappings
The routine manager needs a mapping between SQL data values and Java
objects to be able to pass parameters to and retrieve return results from a
UDR. The SQL-to-Java data type mapping is performed according to the JDBC
specification. For built-in SQL data types, the routine manager can use
mappings to existing JDBC data types.

Trace-Level Constant Description

TRACE_OFF No trace output is generated

TRACE_MINIMAL Basic tracing

TRACE_COARSE Coarse-grained tracing

TRACE_MEDIUM Medium-grained tracing

TRACE_FINE Fine-grained tracing

TRACE_SUPERFINE For the trace sessions that require all possible details
4-12 J/Foundation Developer’s Guide

Creating UDT-to-Java Mappings
For any UDTs that your UDR uses, you must create mappings. You can use the
following UDTs in UDRs written in Java code.

Warning: You cannot use row or collection data types in UDRs written in Java code.

To create the mapping between a user-defined SQL data type and a Java object

1. Create a user-defined class that implements the SQLData interface.
(For more information, refer to the JDBC 2.0 specification.)

2. Bind this user-defined class to the user-defined SQL data type using
the setUDTExtName built-in procedure.

Because the SQL statements that create UDTs do not currently pro-
vide a clause for specifying the external name of a UDT, you must
define this mapping. Use the following built-in procedures with the
EXECUTE PROCEDURE statement to define the mapping:

� sqlj.setUDTExtName()

This procedure defines the mapping between a UDT and a Java
data type.

� sqlj.unsetUDTExtName()

This procedure removes the SQL-to-Java mapping and removes
any cached copy of the Java class from database server shared
memory.

For example:
-- Creating or removing UDT-to-Java Mappings
EXECUTE PROCEDURE sqlj.setUDTExtName('udt_name',

'class_name.udtname’);
EXECUTE PROCEDURE sqlj.unsetUDTExtName('udt_name');

The online examples in $INFORMIXDIR/extend/krakatoa/examples.tar
include a sample implementation of a UDT written in Java code, Circle.java.

User-Defined Data Type SQL Statement

Distinct data type CREATE DISTINCT TYPE

Opaque data type CREATE OPAQUE TYPE
Creating Java User-Defined Routines 4-13

Registering Java User-Defined Routines
Registering Java User-Defined Routines
For a UDR to be invoked in an SQL statement, it must be registered in the
current database. Use the CREATE FUNCTION and CREATE PROCEDURE
statements to register UDRs. For details about SQLJ compliance, refer to
“Complying with SQLJ” on page 4-27.

Tip: Place your SQL statements for registering UDRs written in Java code in a
deployment descriptor file.

The following sections describe the Java-specific syntax of the CREATE
FUNCTION and CREATE PROCEDURE statements that affects UDR regis-
tration. For information on the complete syntax of these SQL statements, see
the IBM Informix Guide to SQL: Syntax.

Specifying the JVP
To execute, a UDR written in Java code must run in a JVP. The JVP is a
predefined virtual-processor class that contains a JVM to interpret Java byte
codes. Use the following syntax to specify that a UDR should execute in the
JVP class:

WITH (class='jvp')

By default, most UDRs run in the CPU VP, which does not contain a JVM.
However, a UDR written in Java code runs on a JVP by default. Therefore, the
CLASS routine modifier is optional when you register a UDR written in Java
code. To improve readability of your SQL statements, include the CLASS
routine modifier when you register a UDR.

For example:

-- Specifying the JVP
CREATE PROCEDURE showusers()

WITH (class='jvp')
EXTERNAL NAME 'thisjar:admin.showusers()'
LANGUAGE java;
4-14 J/Foundation Developer’s Guide

Using Routine Modifiers
Using Routine Modifiers
The routine modifiers that you specify in the WITH clause of the CREATE
FUNCTION or CREATE PROCEDURE statement tell the database server about
attributes of the UDR. The database server supports the following routine
modifiers for UDRs.

The following routine modifiers are C-language specific and do not apply to
UDRs in Java code:

� COSTFUNC

� INTERNAL

� SELFUNC

� STACK

� PERCALL_COST

� SELCOST

Routine Modifier Type of UDR

CLASS Accesses to the JVP

HANDLESNULLS Handles SQL null values as arguments

ITERATORS Iterator function

NEGATOR Negator function

NOT VARIANT Might return cached results

PARALLELIZABLE Parallelizable UDR

VARIANT Returns different results when invoked with the same
arguments
Creating Java User-Defined Routines 4-15

Specifying the External Name
Specifying the External Name
The following diagram details the external-name portion of the CREATE
ROUTINE (or FUNCTION or PROCEDURE) statement for a UDR written in Java
code.

Element Purpose Restrictions
class_name Class to which the UDR belongs Must be an existing class.
database Database where the jar exists

If omitted, defaults to the current database.

Must be an existing
database.

jar_name Jar identifier as specified in the install_jar() statement Must be an existing JAR
name.

java_datatype Name of a Java data type

The second column of the following table shows data
types and class names that you can use for this variable.

Must be a Java data type.

(1 of 2)

THISJAR

package_name.

jar_name

Java External
NameEXTERNAL NAME

Java External
Name

owner.

database.

java_datatype

'

class_name.method ()

,

'

:

4-16 J/Foundation Developer’s Guide

Specifying the External Name
When used within a deployment descriptor, the THISJAR keyword automat-
ically expands to the SQLJ-defined three-part JAR path.

The following table shows mapping between SQL data values and Java types.
Use the values in the second column for the java_datatype variable.

method Name of the static method of the UDR Must be an existing method.
owner Owner of the jar

If omitted, defaults to the current user.

Must be an existing user
name.

package_name Name of a package Required if the UDR classes
are in a package.

Element Purpose Restrictions

(2 of 2)

SQL Data Type Java Type

CHAR(1) char

CHAR(1) java.lang.Character

CHAR() Java.lang.String

CHARACTER() java.lang.String

CHARACTER VARYING() java.lang.String

VARCHAR java.lang.String

LVARCHAR java.lang.String

SMALLINT short

SMALLINT java.lang.Short

INTEGER int

INTEGER java.lang.Integer

INT8 long

INT8 java.lang.Long

SMALLFLOAT float

SMALLFLOAT java.lang.Float

(1 of 2)
Creating Java User-Defined Routines 4-17

Specifying the External Name
REAL float

REAL java.lang.Float

FLOAT double

FLOAT java.lang.Double

DOUBLE PRECISION double

DOUBLE PRECISION java.lang.Double

DECIMAL java.math.BigDecimal

MONEY java.math.BigDecimal

NUMERIC java.math.BigDecimal

BOOLEAN boolean

BOOLEAN java.lang.Boolean

DATE java.sql.Date

DATETIME HOUR TO SECOND java.sql.Time

DATETIME YEAR TO FRACTION java.sql.Timestamp

INTERVAL java.lang.String

BLOB java.sql.Blob

CLOB java.sql.Clob

SQL Data Type Java Type

(2 of 2)
4-18 J/Foundation Developer’s Guide

Using a Deployment Descriptor
Using a Deployment Descriptor
A deployment descriptor allows you to include in a JAR file the SQL statements
for creating and dropping the UDRs. Both sqlj.install_jar() and
sqlj.remove_jar() take parameters that, when set appropriately, cause the
procedure to search for deployment descriptor files in the JAR file.

You can include the following SQL statements in a deployment descriptor:

� CREATE FUNCTION

� CREATE PROCEDURE

� GRANT

� DROP FUNCTION

� DROP procedure

When you execute sqlj.install_jar() or sqlj.remove_jar(), the database server
automatically performs the actions described by any deployment-descriptor
files that exist in the JAR file.

Warning: The transaction handling of the current database controls the SQL
statements that the deployment descriptor executes. Use a BEGIN WORK statement
to begin a transaction before you execute the sqlj.install_jar() or sqlj.remove_jar()
procedure. In this way, a successful deployment can be committed, while a failed
deployment can be rolled back.

For example, you might prepare a file, deploy.txt, that includes the following
statements:

SQLActions[] = {
"BEGIN INSTALL

CREATE PROCEDURE showusers()
WITH (class='jvp')
EXTERNAL NAME 'thisjar:admin.showusers()'
LANGUAGE JAVA;

GRANT EXECUTE ON PROCEDURE showusers() to informix;
END INSTALL",

"BEGIN REMOVE
DROP PROCEDURE showusers();

END REMOVE"
}

For details on deployment-descriptor files, refer to the SQLJ: SQL Routines
specification.
Creating Java User-Defined Routines 4-19

Using a Manifest File
Using a Manifest File
The manifest file specifies the names of the deployment descriptor files that a
JAR file contains. The m option of the jar command incorporates the manifest
file into the default manifest of the JAR.

The following example shows the manifest file, manifest.txt, for a JAR with
two deployment descriptors:

Name: deploy1.txt
SQLJDeploymentDescriptor: TRUE

Name: deploy2.txt
SQLJDeploymentDescriptor: TRUE

The following example shows the jar command that incorporates
manifest.txt into a JAR file:

jar cvmf manifest.txt admin.jar deploy*.txt *.class

Compiling the Java Code
A UDR written in Java code is implemented by a static method in a Java class.

To make the Java source code into an executable format

1. Compile the java files with the javac command to create class files.

2. Use the jar command to collect a set of class files into a JAR file.

For example:
makefile for admin class
JAR_NAME = admin.jar
all:
 javac *.java
 jar cvmf manifest.txt $(JAR_NAME)

deploy.txt *.class
 mv $(JAR_NAME) $(INFORMIXDIR)/jars
cleanup:
 rm -f *.class $(INFORMIXDIR)/jars/$(JAR_NAME)
4-20 J/Foundation Developer’s Guide

Installing a JAR File
JAR files contain Java classes that in turn contain static methods corre-
sponding to SQL UDRs. JAR files can also contain auxiliary classes and
methods that are used by the UDRs (for example, to perform SQL-to-Java type
mapping).

Installing a JAR File
JAR files contain the code for the UDRs. For an SQL statement to be able to
include a UDR written in Java code, you must install the jar file in the current
database. Once a JAR file is installed, the routine manager of the database
server can load the appropriate Java class when the UDR is invoked.

To manage jar files, use the EXECUTE PROCEDURE statement with the
following SQLJ built-in procedures:

� sqlj.install_jar(jar_url varchar(255), jar_id varchar(255),
deploy_flag int)

Before a Java static method can be mapped to a UDR, the class file
that defines the method must be installed in the database. The
install_jar() procedure installs a Java JAR file in the current database
and assigns it a jar identifier (or jar id) for use in subsequent CREATE
FUNCTION or CREATE PROCEDURE statements.

For example:
-- Installing a jar file
EXECUTE PROCEDURE sqlj.install_jar
('file:$INFORMIXDIR/jars/admin.jar',
'admin_jar', 1);

� sqlj.replace_jar(jar_url varchar(255), jar_id varchar(255))

The replace_jar() procedure replaces a previously installed jar file
with a new version.

� sqlj.remove_jar(jar_id varchar(2550, undeploy_flag int)

The remove_jar() procedure removes a previously installed jar file
from the current database.

� sqlj.alter_java_path(jar_id varchar(255), path lvarchar)

The alter_java_path() procedure specifies the java-file search path to
use when the routine manager resolves related Java classes for the
JAR file of a UDR.
Creating Java User-Defined Routines 4-21

Updating JAR Filenames
For details about jar-naming conventions, refer to the SQLJ: SQL Routines
specification.

All SQLJ built-in procedures reside in the sqlj schema.

Both sqlj.install_jar() and sqlj.remove_jar() take a parameter that, when set
appropriately, causes the procedure to execute the deployment descriptor
files in the JAR file.

For more information about how to install jar files, refer to the SQLJ: SQL
Routines section of the documentation on the following Web site:

http://www.sqlj.org/

The SQLJ: SQL Routines specification has detailed tutorials on writing, regis-
tering, installing, and calling routines written in Java code.

Updating JAR Filenames
The script update_jars.sql is provided to update the three-part names of
installed JAR files when you rename the database to which the JAR file
belongs. You must execute the update_jars.sql script in the database after
you rename it. You need to execute the update_jars.sql script only if you
rename a database that has one or more installed JAR files.

Executing the User-Defined Routine
After you register a UDR as an external routine in the database, the UDR can
be invoked in SQL statements such as:

� In the select list of a SELECT statement

� In the WHERE clause of a SELECT, UPDATE, or DELETE statement

� With the EXECUTE PROCEDURE or EXECUTE FUNCTION statement

The routine manager of the database server handles the execution of the UDR.
For more information about the routine manager, see the IBM Informix User-
Defined Routines and Data Types Developer’s Guide.
4-22 J/Foundation Developer’s Guide

Debugging and Tracing
Debugging and Tracing
As with a UDR written in C, a UDR written in Java code might generate the
SQL messages for UDR and DataBlade API errors when it executes. UDRs
written in Java code adopt the JDBC error-reporting mechanism as well. The
UDR throws an SQLException in case of an execution error such as a failed
JDBC call. The routine manager detects such exceptions and translates it into
a normal UDR error message.

In addition, the UDR can generate Java trace outputs and stack dumps at
runtime. These additional Java messages are written to the JVP log file. The JVP
log file is separate from the main database server log file, online.log. No JVP-
specific messages appear in the database log. The JVP log file is intended to
be the main destination for logging and tracing messages that are specific to
the JVP and the UDR. This log is essential to support and debugging efforts.
You should preserve it when possible.

Generating Log Messages
Log messages in the JVP log file can originate from any of the following
sources:

� The JVP

JVP messages report such conditions as:

❑ JVP status (such as boot progress)

❑ Warnings about missing or limited resources

❑ Execution errors (such as being unable to locate a UDR)

❑ Internal errors (such as unexpected exceptions)

JVP log messages that report serious errors usually print a Java-
method stack trace.
Creating Java User-Defined Routines 4-23

Using the Administrative Tool
� The UDR

Log messages from the UDR are messages that make sense only in the
JVP and Java domain or that can complement the messages from SQL
or the database server with annotations and references that are spe-
cific to Java code or the JVP.

Use the following methods to write messages to the JVP log file from
within a UDR:

❑ UDRLog.log()

❑ UDRTraceable.tracePrint()

By default, the JVP uses the following log file:

./jvp.log

where ‘.’ is the current directory of the user who runs oninit.

You can change this default log file with the JVPLOGFILE parameter in the
ONCONFIG configuration file. Set this configuration parameter to the name
of the log file that you want the JVP to use. For example, the following line
sets the log file to /usr/jvp.log:

JVPLOGFILE /usr/jvp.log

Important: Do not use the JVP log for error messages that need to be reported to the
client application or to the main online.log file. Instead, the method should throw an
SQLException.

Using the Administrative Tool
The IBM Informix JDBC Driver includes a built-in iterative UDR that is a
limited administrative tool, informix.jvpcontrol(). The database server
enables the informix.jvpcontrol() UDR when the JVPPROPFILE configuration
parameter specifies a starting port number by using the JVP.monitor.port
entry.

You invoke informix.jvpcontrol() with the following syntax:

EXECUTE FUNCTION informix.jvpcontrol (command lvarchar);
4-24 J/Foundation Developer’s Guide

Using the Administrative Tool
The command can be one of the following forms, where vpid is the virtual
processor ID:

� threads vpid

� memory vpid

You can use the onstat -g glo command to list the vpid numbers.

The threads vpid Option

The threads vpid form lists the threads running on the Java VP whose ID is
vpid. For example, if command is threads 4, the UDR might return the
following output:

(expression) Thread[informix.jvp.dbapplet.impl.JVPControl#0,
9,informix.jvp.dbapplet.impl.JVPControl#0],UDR=JVPControlUDR(java.
lang.String), state = EXECUTE
(expression) Thread[JVP control monitor thread,10,main]
(expression) Thread[main,10,main]
(expression) Thread[SIGQUIT handler,0,system]
(expression) Thread[Finalizer thread,1,system]
5 row(s) retrieved.

The memory vpid Option

The memory vpid form lists memory use on the Java VP whose ID is vpid. For
example, if command is memory 4, the UDR might return the following output:

(expression) Memory 16521840 bytes free, 16777208 bytes total
1 row(s) retrieved.
Creating Java User-Defined Routines 4-25

Debugging a Java User-Defined Routine
Debugging a Java User-Defined Routine
To debug a UDR written in Java code, you can connect the Java debugger, jdb,
to the embedded JVM for debugging. The agent password that jdb requires
is printed in the message log.

Traceable Events
The database server provides a fixed set of system trace events such as UDR
sequence initialization, activation, and shutdown. You can also generate
application-specific traces. For more information, refer to “The
com.informix.udr.UDRTraceable” on page 4-11.

Finding Information about User-Defined Routines
The system catalog tables contain information about UDRs. The LANGUAGE
clause of the CREATE FUNCTION or CREATE PROCEDURE statement tells the
database server in which language the UDR is written. For UDRs in Java code,
the LANGUAGE clause must be as follows:

LANGUAGE JAVA

The database server stores valid UDR languages in the sysroutinelangs table.
The information includes an integer, the language identifier, in the langid
column. The following lines show the entry in the sysroutinelangs system
catalog table for the Java language:

langid 3
langname java
langinitfunc udrlm_java_init
langpath $INFORMIXDIR/extend/krakatoa/lmjava.so
langclass jvp

The Java language has the same default privilege as the C language. The
following entry in the syslangauth system catalog table specifies the privi-
leges for the Java language:

grantor informix
grantee DBA
langid 3
langauth u
4-26 J/Foundation Developer’s Guide

Complying with SQLJ
By default, both user informix and the owner of the database are allowed to
create UDRs in Java code. If you attempt to execute the CREATE FUNCTION or
CREATE PROCEDURE statement as some other user, the database server
generates an error.

To allow other users to register UDRs in the database, user informix can grant
the usage privilege on the Java language with the GRANT statement. The
following GRANT statement allows any user who has Resource privileges on
the database to register UDRs written in Java code:

GRANT USAGE ON LANGUAGE JAVA TO public

For more information on the syntax of the GRANT statement, see the
IBM Informix Guide to SQL: Syntax.

Complying with SQLJ
The syntax of Java UDRs that the Informix database server supports usually
follows the SQLJ specification. Where syntactic differences and missing
features occur, the differences are mostly due to differences between Informix
SQL and the SQL-3 standards. The following table summarizes the level of
SQLJ compliance.

Feature
(SQLJ Section #) Function Syntax

Definition
and Rules Comments

jar names (3.1) Yes Yes Yes

Java path (3.2) Yes Yes Yes

Install, replace,
or remove jars
(4.1-4.3)

Yes Yes Yes (required)

No (optional)

No support of the
optional
replacement jar
validation rules.

Alter java path (4.4) Yes Yes Yes

(1 of 2)
Creating Java User-Defined Routines 4-27

Complying with SQLJ
Create procedure,
Create function (5.1)

Yes Yes Yes (required)

No (optional)

No support of the
optional create time
jar validation and
the Java main
method.

For information about modifiers for Create Procedure and Create Function, refer to
“Unsupported Modifiers” on page 4-29 and “Unsupported Optional Modifiers” on
page 4-29.

Drop procedure,
Drop function (5.2)

Yes Yes Yes

Grant or revoke jar
(5.3-5.4, optional)

No No No

SQLJ function call
(5.5)

Yes Yes Yes

SQLJ procedure call
(5.6)

Yes Yes Yes

System properties
and default
connections

No No No

Deployment-
descriptor files
(optional)

Yes No No

Status codes,
exception handling
(7.1-7.2)

Yes Yes Yes

Feature
(SQLJ Section #) Function Syntax

Definition
and Rules Comments

(2 of 2)
4-28 J/Foundation Developer’s Guide

Unsupported Modifiers
Unsupported Modifiers
Some modifiers for CREATE PROCEDURE and CREATE FUNCTION are not
supported in this version of the database server. Informix UDRs do not
support the following routine modifiers of the SQLJ specification.

Unsupported Optional Modifiers
Informix UDRs do not support the following optional routine modifiers of the
SQLJ specification:

� Dynamic result sets

� Inout parameter

� Output parameters in callable statements

Modifier How to handle the modifier

Read SQL data No Informix equivalent

Contains SQL No Informix equivalent

Modifies SQL data No Informix equivalent

No SQL No Informix equivalent

Return null on null input Informix default for external routines

Call on null input Use the Informix modifier HANDLESNULLS

Deterministic Use the Informix modifier NOT VARIANT

Nondeterministic Use the Informix modifier VARIANT

Returns Java data type in Java
method signature

No Informix equivalent

In parameter Informix default; no need to specify the modifier
Creating Java User-Defined Routines 4-29

5
Chapter
The IBM Informix JDBC Driver
In This Chapter . 5-3

Public JDBC Interfaces 5-4
The com.informix.jdbc.IfxConnection 5-4
The com.informix.jdbc.IfxProtocol 5-4

The informix-direct Subprotocol 5-5

JDBC 1.0 API . 5-6

JDBC 2.0 . 5-7
Support for Opaque Data Types 5-8

java.sql.SQLUDTInput 5-9
java.sql.SQLUDTOutput 5-9

Interfaces Updated for Java 2.0 5-9

An Example That Shows Query Results. 5-10

5-2 J/Fo
undation Developer’s Guide

In This Chapter
All UDRs written in Java code can access the database server data through the
JDBC application programming interface (API). This chapter briefly describes
the Informix implementation of the JDBC API and the server-side
IBM Informix JDBC Driver.

Generally, the IBM Informix server-side JDBC driver derives from the client-
side driver so that the two drivers are essentially the same. Java UDRs require
some differences, however, to use the IBM Informix JDBC Driver from the
server side. This chapter describes the public JDBC interfaces and JDBC
subprotocols that the IBM Informix JDBC Driver provides specifically for
server-side JDBC applications, as well as restrictions that apply to server-side
JDBC applications. For principal documentation of the IBM Informix JDBC
Driver, refer to the IBM Informix JDBC Driver Programmer’s Guide.
The IBM Informix JDBC Driver 5-3

Public JDBC Interfaces
Public JDBC Interfaces
IBM Informix JDBC Driver defines the following public interfaces:

� com.informix.jdbc.IfxConnection

� com.informix.jdbc.IfxProtocol

The client and server JDBC drivers each have their own implementation of
the preceding interfaces. The client driver provides access to databases from
Java applications. The server driver provides database access from within the
server through UDRs written in Java code.

The com.informix.jdbc.IfxConnection
The IfxConnection interface is a subinterface of java.sql.Connection with
Informix-specific methods added. The com.informix.jdbc.IfxDirectCon-
nection class implements the com.informix.jdbc.IfxConnection interface.
This interface provides a connection to the current database server from
within a UDR. The connection corresponds to a server-query context and is
passed to the UDR by the SQLJ language manager. The transaction context of
this connection is that of the query issuing the UDR call, and the call to create
a UDR connection does not specify any database or user information.

The com.informix.jdbc.IfxProtocol
The IfxProtocol interface represents the protocol and data exchange between
the client application and an Informix database server. It sends and processes
the messages and data flow between the client and database server. The
com.informix.jdbc.IfxDirectProtocol class implements the IfxProtocol
interface. It uses the DataBlade API (DAPI) to access database resources.
5-4 J/Foundation Developer’s Guide

The informix-direct Subprotocol
The informix-direct Subprotocol
The JDBC DriverManager class provides services to connect to JDBC drivers.
It assists in loading and initializing a requested JDBC driver. A UDR written
in Java code uses the registerDriver() method of DriverManager to register
itself and to redirect user messages to the DriverManager logging facility.

A UDR written in Java code or a Java client application that wants to connect
to the database calls the DriverManager.getConnection() method to obtain a
connection handle. This method takes a URL string as an argument. The JDBC
management layer attempts to locate a driver that can connect to the
database that the URL represents. To perform this task, the JDBC management
layer asks each driver in turn if it can connect to the specified URL. Each
driver examines the URL and determines if it supports the specified JDBC
subprotocol. The Informix implementation of UDRs written in Java code
supports the informix-direct subprotocol in the database server.

For the informix-direct subprotocol, the JDBC driver loads and uses the
following classes:

� The connection class, which you can specify with the ConnectionClass
property. The connection class must implement IfxConnection.

� The protocol class, which you can specify with the ProtocolClass
property. This protocol class must implement IfxProtocol.

These specifiers are optional in the URL string. If you do not specify Connec-
tionClass or ProtocolClass, the IBM Informix JDBC Driver can determine them
from the subprotocol.

The following call opens a UDR connection with the class
IfxDirectConnection. It uses the IfxDirectProtocol as the protocol for
processing queries on the current database.

DriverManager.getconnection("jdbc:informix-direct:"+
"//ConnectionClass="com.informix.jdbc.IfxDirectConnection;"+
"//ProtocolClass=com.informix.jdbc.IfxDirectProtocol");

The UDR connection can only be opened by the thread that executes the UDR
static method. In this way, the database server can ensure that the proper
transaction context is used for the UDR.
The IBM Informix JDBC Driver 5-5

JDBC 1.0 API
JDBC 1.0 API
The JDBC 1.0 API consists of the following Java classes and interfaces that you
can use to open connections to particular databases, execute SQL statements,
and process the results.

The following JDBC 1.0 classes and interfaces are the most important for the
development of UDRs in Java code:

� java.sql.DriverManager handles loading of drivers and provides
support for creating new database connections.

� java.sql.Connection represents a connection to a particular
database.

� java.sql.Statement acts as a container for executing an SQL
statement on a given connection.

� java.sql.ResultSet controls access to the row results of a given
statement.

Classes Interfaces

java.sql.DataTruncation java.sql.CallableStatement

java.sql.Date java.sql.Connection

java.sql.DriverManager java.sql.DatabaseMetaData

java.sql.DriverPropertyInfo java.sql.Driver

java.sql.SQLException java.sql.PreparedStatement

java.sql.SQLWarning java.sql.ResultSet

java.sql.Time java.sql.ResultSetMetaData

java.sql.Timestamp java.sql.Statement

java.sql.Types None
5-6 J/Foundation Developer’s Guide

JDBC 2.0
� java.sql.PreparedStatement handles execution of a pre-compiled
SQL statement.

� java.sql.CallableStatement handles execution of a call to a database
SPL routine.

For more documentation, refer to the JavaSoft Web site at:

http://java.sun.com

JDBC 2.0
JDBC 2.0 is a major leap from JDBC 1.0 in that it supports extensible data types
and large objects. The following extensions to JDBC 1.0 are provided to
support user-defined data types (UDTs) with JDK 1.1.x:

� java.sql.Blob

� java.sql.Clob

� java.sql.SQLData

� java.sql.SQLInput

The following read/write methods are not supported for opaque
types:

❑ readString()

Use the Informix extension readString(len).

❑ readInterval()

❑ readBytes()

Use the Informix extension readBytes(len).

❑ readCharacterStream()

❑ readAsciiStream()

❑ readBinaryStream()

❑ readObject()

❑ readRef()

❑ readArray()
The IBM Informix JDBC Driver 5-7

Support for Opaque Data Types
� java.sql.SQLOutput

The following read/write methods are not supported for opaque
types:

❑ writeString()

Use the Informix extension writeString(len).

❑ writeInterval()

❑ writeBytes()

Use the Informix extension writeBytes(len).

❑ writeCharacterStream()

❑ writeAsciiStream()

❑ writeBinaryStream()

❑ writeObject()

❑ writeRef()

❑ writeArray()

Support for Opaque Data Types
Certain JDBC 2.0 interfaces need to be extended to support opaque data types.
Some of the methods need an additional length argument to read or write an
opaque data type because the JDBC driver cannot look inside an opaque data
type to determine the field lengths.

The Informix implementation of UDRs written in Java code provides the
following extensions of the JDBC user-defined-type (UDT) support:

� java.sql.SQLUDTInput

� java.sql.SQLUDTOutput

For more information on using an opaque data type in a Java UDR, refer to
Chapter 6, “Using Opaque User-Defined Types.”
5-8 J/Foundation Developer’s Guide

Interfaces Updated for Java 2.0
java.sql.SQLUDTInput

This class extends java.sql.SQLInput with the following methods:

public String readString(int maxlen) throws SQLException;
public byte[] readBytes(int maxlen) throws SQLException;

java.sql.SQLUDTOutput

This class extends java.sql.SQLOutput with the following methods:

public void writeString(String str, int maxlen) throws
SQLException;
public void writeBytes(byte[] b, int maxlen) throws SQLException;

Interfaces Updated for Java 2.0
The Informix implementation of UDRs written in Java code also defines the
following public interfaces:

� com.informix.PreparedStatement2

This class includes the JDBC 2.0 methods setBlob() and setClob().

� com.informix.ResultSet2

This class includes the JDBC 2.0 methods getBlob() and getClob().

� com.informix.Types2

This class includes the type codes for the smart-large-object data
types, BLOB and CLOB.
The IBM Informix JDBC Driver 5-9

An Example That Shows Query Results
An Example That Shows Query Results
The following example implements a procedure called showusers(), which
runs a query, retrieves all rows from the returned result, and prints the rows
in the JVP log file:

import com.informix.udr.*;
import java.sql.*;

public class admin
{

public static void showusers() throws SQLException
{

UDREnv env = UDRManager.getUDREnv();
UDRLog log = env.getLog();
String name = env.getName();

Connection conn = DriverManager.getConnection
("jdbc:informix-direct:");

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery

("SELECT * FROM Users");
log.log("User information:");

while (rs.next())
{

String UID = rs.getString(1);
String Password = rs.getString(2);
String Last = rs.getString(3);
String First = rs.getString(4);

// Write out the UDR name followed by the
// columns values
String line = name + " : " +

UID + " " + Password + " " + Last + " " + First;
log.log(line);

}
stmt.close();
conn.close();

}
}

5-10 J/Foundation Developer’s Guide

An Example That Shows Query Results
After you create and install the JAR file that contains this Java method, the
next task is to register the showusers() method as a UDR by giving it an SQL
procedure signature. For the CREATE PROCEDURE statement that registers
showusers(), see “Specifying the JVP” on page 4-14.

The syntax for invoking a UDR written in Java code is no different from a
standard UDR call, as follows:

EXECUTE PROCEDURE showusers()
The IBM Informix JDBC Driver 5-11

6
Chapter
Using Opaque User-Defined
Types
In This Chapter . 6-3

Using the SQLData Interface 6-3
Default Input/Output Routines 6-4
SQL Definitions for Default I/O User-Defined Routines. 6-5
Informix Extensions to SQLInput and SQLOutput. 6-6

IfmxUDTSQLInput 6-6
IfmxUDTSQLOutput 6-7

The Circle Class Example 6-8

Overriding the Default I/O Methods 6-10
I/O Function Sets and Related Types 6-10

IfxDataPointer 6-11
Stream Implementations 6-12

An Example That Overrides the Default I/O Methods 6-14
Usage Example 6-15

Limitations to Streams. 6-21

6-2 J/Fo
undation Developer’s Guide

In This Chapter
This chapter describes how to use opaque user-defined data types (UDTs). It
describes the default SQLData interface, as well as how to override the
default. It provides the following information:

� The SQLData Interface

� SQL statements to create default I/O routines

� Informix extensions to SQLInput and SQLOutput interfaces

� How to override the default I/O methods

� Required I/O function sets and related data types

� Limitations to Streams

Using the SQLData Interface
To implement a complete UDT in Java code, you must supply a set of data-
formatting methods that convert to and from the various representations of
the data type. These methods perform input and output operations for the
data type such as converting text input to the internal structure that the
database server uses.

All the database server I/O functions manipulate data formats that can be
represented as Java streams. The streams encapsulate the data and
implement methods needed to parse the source format or write the desti-
nation format.
Using Opaque User-Defined Types 6-3

Default Input/Output Routines
To implement an opaque UDT and use the default data-translation I/O methods

1. Supply the JDBC SQLData interface: readSQL(), writeSQL(), and
getSQLTypeName() methods.

2. Create the SQL routine and cast definitions for the I/O functions by
calling sqlj.registerJUDTfuncs(varchar(255)), where the varchar
argument is the SQL name of the type you are registering.

For example, after creating the UDT Record3 with the following
statements:

create opaque type Record3 (internallength = variable,
alignment = 8, maxlen = 2048, cannothash);

grant usage on type Record3 to public;
execute procedure setUDTExtName("Record3",

"informix.testclasses.jlm.udt.Record3");

you could create the default casts and I/O functions with the follow-
ing statement:

execute procedure registerJUDTfuncs(“Record3”);

The readSQL() method converts a database type to a Java object and the
writeSQL() method converts a Java object to the database type. The system
supplies the appropriate stream type at runtime.

To back out default I/O methods for an opaque UDT

You can back out default I/O functions and casts by calling
sqlj.unregisterJUDTfuncs(varchar(255)), where the varchar argument is the
SQL name of the type, as the following example shows:

execute procedure unregisterJUDTfuncs(“Record3”);

Default Input/Output Routines
Because this interface uses Java, all the SQL I/O support functions are
predefined when you register the UDT. You only need to supply the required
SQLData implementation.

Informix supplies extensions to the Stream arguments of SQLData methods
to suit various uses. With these extensions, you can build I/O functions for a
new Java UDT. All that you must do to implement any of the required
function sets is select the Stream type.
6-4 J/Foundation Developer’s Guide

SQL Definitions for Default I/O User-Defined Routines
Informix also supplies default Input and Output processing methods in Java
code that are used to implement all UDT I/O operations. The database server
contains these default I/O methods and executes them just like any other Java
UDR. These methods use information in the SQL UDR definition to select the
correct Streams and instantiate the right user-defined type objects at
execution time.

“The Circle Class Example” on page 6-8 illustrates the use of the SQLData
interface.

SQL Definitions for Default I/O User-Defined Routines
After you register the Java UDT with the database server using the SQL
procedure setUDTExtName(), you can create SQL functions and casts for it,
using either the default I/O wrapper methods or explicit methods in your
Java UDT class. For the default I/O wrapper methods, the registerJUDTfuncs
function creates the SQL functions shown in the following example, where
SQLType is the SQL UDT name, JavaType is the JUDT name, and SQLBuffer is
the SQL transport type being converted, that is, SENDRECV:

-- Receive function

CREATE IMPLICIT CAST (SENDRECV as SQLUDT with
IfxJavaSENDRECVInJavaUDT);

CREATE FUNCTION IfxJavaSENDRECVInJavaUDT (in SENDRECV)
RETURNS SQLUDT

EXTERNAL NAME
’com.informix.jdbc.IfxDataPointer.IfxDataInput(java.lang.Object)’
LANGUAGE java;
GRANT EXECUTE ON FUNCTION IfxJavaSENDRECVInJavaUDT TO PUBLIC;

-- Send function

CREATE EXPLICIT CAST (SQLUDT as SENDRECV with
IfxJavaSENDRECVOutJavaUDT);

CREATE FUNCTION IfxJavaSENDRECVOutJavaUDT(out SQLUDT) RETURNS
SENDRECV

EXTERNAL NAME
’com.informix.jdbc.IfxDataPointer.IfxDataOutput(java.sql.SQLData)’
LANGUAGE java NOT VARIANT;
GRANT EXECUTE ON IfxJavaSENDRECVOutJavaUDT TO PUBLIC;

The default Input method cannot be declared not variant because it might
need to perform SQL queries to instantiate the correct Java UDT class.
Using Opaque User-Defined Types 6-5

Informix Extensions to SQLInput and SQLOutput
Informix Extensions to SQLInput and SQLOutput
Some of the standard SQLInput and SQLOutput Stream methods need an
additional length argument to read or write an opaque data type because the
JDBC driver cannot determine the field lengths for an opaque type. Informix
database server provides the IfmxUDTSQLInput and IfmxUDTSQLOutput
extensions, which inherit from the standard JDBC 2.0 SQLInput and
SQLOutput interfaces.

IfmxUDTSQLInput

The IfmxUDTSQLInput interface extends SQLInput, which contains the
following public methods:

String readString()
boolean readBoolean()
byte readByte()
short readShort()
int readInt()
long readLong()
float readFloat()
double readDouble()
java.math.BigDecimal readBigDecimal()
byte[] readBytes()
java.sql.Date readDate()
java.sql.Time readTime()
java.sql.Timestamp readTimestamp()
java.io.Reader readCharacterStream()
java.io.InputStream readAsciiStream()
java.io.InputStream readBinaryStream()
Object readObject()
Ref readRef()
Blob readBlob()
Clob readClob()
Array readArray()
boolean wasNull()

The IfmxUDTSQLInput interface adds the following Informix methods:

String readString(int maxlen)
byte[] readBytes(int maxlen)
Interval readInterval()
int available();
int length();
IfxUDTInfo getUDTInfo(int xid)
IfxUDTInfo getUDTInfo(String name, String owner)
6-6 J/Foundation Developer’s Guide

Informix Extensions to SQLInput and SQLOutput
All the readXXX() methods throw an SQLException when they detect parsing
errors. Use the readXXX() methods to convert the buffer of the given Input
stream into a Java object. When the Input stream is empty, each read method
throws an SQLException with e.getErrorcode equal to -79772 or
IfxErrMsg.S_BADSQLDATA. However, you can use the length() and
available() methods to determine when the Input stream is exhausted while
converting variable length UDTs to Java objects.

IfmxUDTSQLOutput

The IfmxUDTSQLOutput interface extends SQLOutput, which contains the
following public methods:

void writeString(String x)
void writeBoolean(boolean x)
void writeByte(byte x)
void writeShort(short x)
void writeInt(int x)
void writeLong(long x)
void writeFloat(float x)
void writeDouble(double x)
void writeBigDecimal(java.math.BigDecimal x)
void writeBytes(byte[] x)
void writeDate(java.sql.Date x)
void writeTime(java.sql.Time x)
void writeTimestamp(java.sql.Timestamp x)
void writeCharacterStream(java.io.Reader x)
void writeAsciiStream(java.io.InputStream x)
void writeBinaryStream(java.io.InputStream x)
void writeObject(SQLData x)
void writeRef(Ref x)
void writeBlob(Blob x)
void writeClob(Clob x)
void writeStruct(Struct x)
void writeArray(Array x)

The IfmxUDTSQLOutput interface adds the following Informix methods:

void writeString(String x, int length)
void writeBytes(byte[] b, int length)
void writeInterval(Interval intrvl)
int available()
int length()
IfxUDTInfo getUDTInfo(int xid)
IfxUDTInfo getUDTInfo(String name, String owner)
Using Opaque User-Defined Types 6-7

The Circle Class Example
All the writeXXX() methods throw an exception when they encounter
conversion errors. Use the Stream write() methods to convert a Java object
into the given Output buffer. The length() method returns the number of
bytes that remain in the buffer. The JDBC 2.0 class files describe the
SQLOutput definition.

The Circle Class Example
The circle class example implements a fixed-length opaque data type. The
circle data type includes X and Y coordinates (xCoord and yCoord), which
represent the center of the circle and a radius value (radius). The readSQL
method reads the input stream SQLInput to obtain the xCoord, yCoord, and
radius values and saves the data type name from String typename. The
writeSQL method writes the xCoord, yCoord, and radius values to the
stream SQLOutput.

package informix.testclasses.jlm;

import java.sql.*;

public class circle implements SQLData
{
public int xCoord;
public int yCoord;
public int radius;
6-8 J/Foundation Developer’s Guide

The Circle Class Example
private String type;

public String getSQLTypeName()
{

return type;
}

public void readSQL (SQLInput stream, String typeName)
throws SQLException

{
xCoord = stream.readInt();
yCoord = stream.readInt();
radius = stream.readInt();

type = typeName;
}

public void writeSQL (SQLOutput stream)
throws SQLException

{
stream.writeInt(xCoord);
stream.writeInt(yCoord);
stream.writeInt(radius);

}
}

The SQLData methods use I/O streams to translate between C and Java repre-
sentations. The following C-language structure shows the C definition for the
circle:

typedef struct
{

int x;
int y;
int radius;

} circle;
Using Opaque User-Defined Types 6-9

Overriding the Default I/O Methods
Overriding the Default I/O Methods
If the default methods are not sufficient because, for example, you want to
include parentheses and other delimiting characters in the text represen-
tation, you can explicitly override the defaults with definitions of your own,
after you register the Java UDT.

I/O Function Sets and Related Types
Figure 6-1 specifies the I/O functions that you must implement for the
nondefault case, and their related data types.

Figure 6-1
Nondefault I/O Functions and Types Table

Function
Set

 Data
Format

Buffer Type
Java Stream
ImplementationSQL Java

Server UDR UDT Internal
Representation

IfxDataPointer IfmxSQLInStream

IfmxSQLOutStream

Input

Output

Text LVARCHAR String
(String Buffer)

IfmxTextInStream

IfmxTextOutStream

Send

Receive

Client

Binary

SENDRECV IfxDataPointer IfmxSRInStream

IfmxSROutStream

Import

Export

Text IMPEXP IfxDataPointer IfmxIEInsStream

IfmxIEOutStream

Binary

Import

Export

Client

Binary

IMPEXBIN IfxDataPointer IfmxIEBinStream

IfmxIEBOutStream
6-10 J/Foundation Developer’s Guide

I/O Function Sets and Related Types
The columns in the preceding table represent the following:

� Function set

Names the type of function in conformance with UDT specifications

� Data format

A conceptual description of the format of the data in the SQL buffer
that is being converted

� Buffer type

Names the actual data types being read or written

❑ SQLBuffer is the SQL (or database-server) type for this data.

❑ JavaBuffer is the Java type to which the SQLBuffer is transformed
prior to being passed to (or returned from) the I/O method.

It is an intermediate type that is contained in and manipulated
by a Java Stream. It is also the argument type for input methods
and the return type for output methods.

� Java Stream implementation

Names the actual stream type that is passed to the SQLData interface
when the default I/O functions are used. Each of the streams imple-
ments IfmxUDTSQLInput or IfmxUDTSQLOutput.

IfxDataPointer

The IfxDataPointer class encapsulates the Informix C-language represen-
tation of a type and its corresponding data buffer. This is usually a database
server buffer structure, with a few attributes extracted for easy access in Java
code. This class is used to transport the nontextual SQL data types to and from
the I/O methods and is generally managed by an IfmxUDTSQLInput or
IfmxUDTSQLOutput stream.

Methods in both streams might throw an SQLException with the
e.getErrorcode equal to -79700 or IfxErrMsg.S_MTHNSUPP, if they are not
implemented. These methods are generally not needed on the database
server side but are useful in the client JDBC code.

For more documentation of these streams, refer to the IBM Informix JDBC
Driver Programmer’s Guide. For an example of using these streams, see “Usage
Example” on page 6-15.
Using Opaque User-Defined Types 6-11

I/O Function Sets and Related Types
Stream Implementations

The following sections briefly describe the Java classes that implement the
IfmxUDTSQLInput and IfmxUDTSQLOutput interfaces.

IfmxSQLInStream and IfmxSQLOutStream

These streams convert to and from the internal data representation that the
database server uses.

IfmxTextInStream and IfmxTextOutStream

These streams convert to and from a textual data representation for Input and
Output functions. IBM Informix Dynamic Server with J/Foundation does not
support cross-locale Input and Output routines; all strings are assumed to be
in U.S. English.

These streams delimit each component of the composite type with a white
space between record elements. The SQL type is an LVARCHAR that contains
client text. The JavaBuffer type for Input is String, which contains the client
text. The JavaBuffer type for Output is a StringBuffer. The read() and write()
methods must convert between the client text representation and the relevant
Java object.

IfmxSRInStream and IfmxSROutStream

These streams convert to and from the binary data representation of the client
for send and receive functions. The SQL type is SENDRECV, which is an
internal representation that contains binary data in the client format. The
JavaBuffer type is IfxDataPointer. The read() and write() methods convert
between the client representation and the relevant Java object.

IfmxIEInStream and IfmxIEOutStream

This stream converts to and from a canonical text representation for import
and export functions. The SQLBuffer is an IMPEXP type that is an internal
representation that contains canonical textual data. The JavaBuffer type is
IfxDataPointer. The read() and write() methods convert between the text
representation and the relevant Java objects. These streams inherit from the
IfmxTextInStream and IfmxTextOutStream classes.
6-12 J/Foundation Developer’s Guide

I/O Function Sets and Related Types
IfmxIEBInStream

This stream converts to and from a canonical binary representation for binary
import and export functions. The SQLBuffer is an IMPEXPBIN type that is an
internal representation that contains canonical binary data. The JavaBuffer
type is IfxDataPointer. The read() and write() methods must convert
between the binary representation and the relevant Java objects. These
streams inherit from the IfmxSRInStream and IfmxSRIOutStream classes.

Class Layout (for Input)

Figure 6-2 describes the class layout for input. The class layout for output is
similar; simply replace In with Out in the names.

Figure 6-2
Input Class Layout

java.sql.SQLInput
(interface)

is extended by

com.informix.jdbc.IfmxUDTSQLInput
(interface)

is implemented by is implemented by

com.informix.jdbc.IfmxTextInstream
(server Text class)

com.informix.jdbc.IfmxSQLInstream
(reads server native implementation)

com.informix.jdbc.IfmxSRInstream
(client native implementation)

is extended by

com.informix.jdbc.IfmxIEInstream
(canonical Text implementation)

is extended by

com.informix.jdbc.IfmxIEBInstream
(canonical binary implementation)

com.informix.jdbc.IfxDataPointer
(transport class)

java.lang.String
(transport class)

contains contains

is extended by
Using Opaque User-Defined Types 6-13

An Example That Overrides the Default I/O Methods
An Example That Overrides the Default I/O Methods
The following example illustrates a Java UDT class with nondefault defini-
tions. JavaType is the new Java UDT, and JavaBuffer is the buffer type for the
SQL data being converted, as “I/O Function Sets and Related Types” on
page 6-10 shows. For a complete set of required and optional code, see
“Usage Example” on page 6-15.

public class JavaType implements SQLData
{
// Java data Object declarations for this Class....
// non-default Data Input function

public static JavaType JavaTypeInput(JavaBuffer in)
{

JavaType x = new JavaType(); // make a new object
// convert JavaBuffer fields to Java data objects in
// this Class
return(x);// return the new object

}
// non-default Data Output function
public static JavaBuffer JavaTypeOutput(JavaType out)
{

JavaBuffer x = new JavaBuffer();
// Do whatever it takes to translate object to output
// buffer format

return x; // return the initialized buffer
}
// required SQLData implementation
private String type;
public String getSQLTypeName()
{

return type;
}
public void readSQL (SQLInput instream, String typeName)

throws SQLException
{

type = typeName;
// cast up to Informix specific stream type
IfmxUDTSQLInput in = (IfmxUDTSQLInput) instream;
// read stream fields into Java data objects in this Class
return;

}

public void writeSQL(SQLOutput outstream) throws SQLException
{
// cast up to Informix specific stream type

IfmxUDTSQLOutput out = (IfmxUDTSQLOutput) outstream;
// write object to output stream

return;
}

}

6-14 J/Foundation Developer’s Guide

An Example That Overrides the Default I/O Methods
For an example of the SQL definitions required to use the explicit methods in
the preceding code, see “SQL Definitions for a Variable-Length UDT
Example” on page 6-20.

Usage Example

All Java UDT classes must implement the readSQL() and writeSQL() methods
for the SQLData interface. The readSQL() method initializes a Java object
using data from the database server in a C-language format. The writeSQL()
method converts a Java object back to the representation of the database
server. The readSQL() and writeSQL() methods receive a Stream argument
that encapsulates the conversion methods for each built-in type that the
database server uses, for example, int, float, decimal.

In the case of a fixed-length UDT, the readSQL() and writeSQL() methods
know the order and number of fields they are to process. In the case of a
variable-length UDT, the programmer must rely on the stream.available()
method and/or the SQLException to find the end of the data as this example
shows.

Variable-Length UDT Including Nondefault Input and Output Methods

/* Variable Length UDT example type: Record3
** Example of required and explicit method implementations.
**
** The C language structure equivalent of this JUDT is:
**
** typedef struct
** {
** mi_double_precision d;
** mi_chara[4];
** mi_integerb;
** mi_realc;
** mi_datee;
** mi_smallintf;
** mi_booleang[MAXBOOLS];
** } NewFixUDT;
**
** Where the last boolean array can contain up to MAX values
** but only valid values will be written to disk.
*/
Using Opaque User-Defined Types 6-15

An Example That Overrides the Default I/O Methods
// Put this in our test package,
// could be anywhere but needs to match SQL definitons for UDRs.
package informix.testclasses.jlm.udt;
// get the usual suspect classes
import java.sql.*;
// get informix specific interfaces, etal.
import com.informix.jdbc.*;
// These are only needed for the non-default Input/Output
// functions, remove if you use defaults.
import informix.jvp.dbapplet.impl.IfmxTextInStream;
import informix.jvp.dbapplet.impl.IfmxTextOutStream;
/**************** Now here’s our UDT *************/
public class Record3 implements SQLData
{

// to turn debug print lines on and off
private static boolean classDebug = true;

// define storage for Java members of UDT
private double d_double;
private String a_char;
private int b_int;
private float c_float;
private java.sql.Date e_date;
private short f_smint;
// could use a Vector for booleans, but would then need Boolean
// objects ...so I’ve left it as an exercise for the reader...
private static final int MAXBOOLS = 20;
private boolean g_boolvals[] = new boolean[MAXBOOLS];
private int numbools = 0;
// dummy constructor just so we can log instantiation
public Record3()
{

super();
if(classDebug)

System.out.println("Record3() " + super.toString() + "
created");

}
// dummy finalizer just so we can log our own destruction
protected void finalize()
{

super.finalize();
if(classDebug)

System.out.println("Record3() " + super.toString() + "
deleted");

}
/*********** REQUIRED SQLData implementation: ***********/

// needed for SQLData interface
private String type;
public String getSQLTypeName()
{

 return type;
}
// Called to convert an SQL buffer TYPE to JAVA class.
// note: we need to use SQLInput as the argument type or this
6-16 J/Foundation Developer’s Guide

An Example That Overrides the Default I/O Methods
// method signature won’t resolve correctly.
public void readSQL (SQLInput in, String typeName) throws
SQLException
{

if(classDebug)
System.out.println("Record3.readSQL() entered");
// save the type name

type = typeName;
// cast the _real_ type of Stream for IFMX extensions.
IfmxUDTSQLInput stream = (IfmxUDTSQLInput) in;
// trap exceptions; don’t really know how many bytes
// are in the input.
try
{

d_double = stream.readDouble();
a_char = stream.readString(4);
b_int = stream.readInt();
c_float = stream.readFloat();
e_date = stream.readDate();
f_smint = stream.readShort();

// Read booleans until we get an exception:
// converting a non-existant boolean will throw cookies.
// but we can use available() to make sure there is more
// to read...

for(int count = 0; (stream.available() > 0) && (count
< MAXBOOLS); ++count)

{
g_boolvals[count] = stream.readBoolean();
++numbools;

}
}
catch (SQLException e)
{
// if we got something besides end of input rethrow,
// otherwise just assume we’re done.

if(e.getErrorCode() != IfxErrMsg.S_BADSQLDATA)
{

if(classDebug)
System.out.println("Record3.readSQL() exception = "

+ e.toString());
throw e;

}
}

}

// Called to convert JAVA class to SQL buffer TYPE.
// note: we need to use SQLOutput as the argument type or this
Using Opaque User-Defined Types 6-17

An Example That Overrides the Default I/O Methods
// method signature won’t resolve correctly.

public void writeSQL(SQLOutput out) throws SQLException
{

if(classDebug)
System.out.println("Record3.writeSQL() entered");

// cast up to _real_ type of Stream to use IFMX extensions.
IfmxUDTSQLOutput stream = (IfmxUDTSQLOutput) out;
stream.writeDouble(d_double);
stream.writeString(a_char, 4);
stream.writeInt(b_int);
stream.writeFloat(c_float);
stream.writeDate(e_date);
stream.writeShort(f_smint);
for(int i = 0; i < numbools; i++)

stream.writeBoolean(g_boolvals[i]);
}

/*********** END SQLData implementation ***********/
/**** NON-DEFAULT implementation of Input and Output functions
****/
/* Remove all this if you only use the Defaults */

The following example illustrates the implementation of user-defined input
and output functions that override the default I/O methods. If you use the
default methods, you do not need to implement overriding methods like
those that follow:

// Called as Input function to convert SQL lvarchar to JAVA class
public static Record3 fromString(String str)
{

if(classDebug)
System.out.println("Record3.fromString(String) entered");

// Make a stream of the right kind.
IfmxTextInStream stream = new IfmxTextInStream(str);
// Make a new Java object of the right type.
Record3 record = new Record3();
// Just call readSQL ourselves.
// For a real implementation you would probably copy all the
// readXXX()’s and intersperse delimiting chars as needed...
try
{

readSQL(stream, "Record3");
}
catch (Exception e)
{

System.err.println(e.getMessage());
}
return record;

}

6-18 J/Foundation Developer’s Guide

An Example That Overrides the Default I/O Methods
// Called as Output function; convert JAVA class to SQL lvarchar.
// note: could use toString() directly,
// except that the UDR method must be "static", and
// it needs to take a Record3 as an argument....

public static String makeString(Record3 x)
{

if(classDebug)
System.out.println("Record3.makeString() entered");

return x.toString();
}

// Might as well implement the standard toString() as long as
// we’re doing non-defaults. If a different method name is
// used here, Object.toString() will be called when the class
// gets printed out in debug lines....

public String toString()
{
// Need to use a StringBuffer because we can’t pass a
// reference to a String to be initialized.
// We could optimize by guessing at size of buffer, too.
// StringBuffer str = new StringBuffer();
// IfmxTextOutStream stream = new IfmxTextOutStream(str);
// Just call writeSQL.
// For a real implementation you would probably copy all the
// writeXXX()’s and intersperse delimiting chars as needed...

try
{

writeSQL(stream);
}
catch (Exception e)
{

System.err.println(e.getMessage());
// not sure if we need to clear out result string?

str.setLength(0);
}
return str.toString();

}

Using Opaque User-Defined Types 6-19

An Example That Overrides the Default I/O Methods
SQL Definitions for a Variable-Length UDT Example

The SQL definitions for this example are:

-- VarLen UDT and support functions ----------------------------
create opaque type Record3 (internallength = variable,

alignment = 8, maxlen = 2048, cannothash);
grant usage on type Record3 to public;
-- register JUDT implementation....
-- note package name needs to match class file package
execute procedure setUDTExtName("Record3",

"informix.testclasses.jlm.udt.Record3");
-- Definitions for NON_DEFAULT Input/Output functions.
-- this overrides the defaults setup above
-- LVARCHAR INPUT
drop cast (Record3 as lvarchar);
create implicit cast (Record3 as lvarchar with record3_output);
create function record3_input (l lvarchar) returns Record3

external name
‘informix.testclasses.jlm.udt.Record3.fromString(java.lang.String)
’

language java not varient;
grant execute on function record3_input to public;
-- CHAR INPUT
drop cast (Record3 as char(100));
create implicit cast (Record3 as char(100) with record3_rout);
create function record3_rin (c char(100)) returns Record3

external name
‘informix.testclasses.jlm.udt.Record3.fromString(java.lang.String)
’

language java not varient;
grant execute on function record3_rin to public;

-- LVARCHAR OUTPUT
drop cast (lvarchar as Record3);
create explicit cast (lvarchar as Record3 with record3_input);
create function record3_output (c Record3) returns lvarchar

external name
‘informix.testclasses.jlm.udt.Record3.makeString(informix.testclas
ses.jlm.udt.Record3)’

language java not varient;
grant execute on function record3_output to public;
-- CHAR OUTPUT
drop cast (char(100) as Record3);
create explicit cast (char(100) as Record3 with record3_rin);
create function record3_rout (c Record3) returns varchar(100)
external name
‘informix.testclasses.jlm.udt.Record3.makeString(informix.testclas
ses.jlm.udt.Record3)’
language java not varient;
grant execute on function record3_rout to public;
6-20 J/Foundation Developer’s Guide

Limitations to Streams
-- END definitions for NON_DEFAULT Input/Output functions.
-- end VarLen UDT and support functions --------------------------
-- Example Usage ---
create table rec3tab (record_col Record3);
insert into rec3tab values (‘665.999 JAVA 398 197.236 1952-04-10
47 f t t’);
insert into rec3tab values (‘667.000 Jive 983 791.632 2002-04-11
42 f f f f f’);
select * from rec3tab;

Limitations to Streams
The following limitations apply to the I/O streams in IBM Informix Dynamic
Server with J/Foundation:

� BLOBs and CLOBS are not supported.

� Text Input and Output across locales is not supported.

� Text Input and Output for intervals is not supported.

� Time stamps are only supported in their full format. Qualifiers are
not supported.

� Byte arrays, byte[], and Object/Stream I/O are not supported for
either text or binary operations.
Using Opaque User-Defined Types 6-21

A
Appendix
Notices
IBM may not offer the products, services, or features discussed
in this document in all countries. Consult your local IBM repre-
sentative for information on the products and services currently
available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does
not infringe on any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and
verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equiv-
alent agreement between us.
A-2 J/Foundation Developer’s Guide

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environ-
ments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measure-
ments will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to
change or withdrawal without notice, and represent goals and objectives
only.

All IBM prices shown are IBM’s suggested retail prices, are current and are
subject to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for
the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.
Notices A-3

Trademarks
Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs. © Copyright IBM Corp. (enter the
year or years). All rights reserved.

If you are viewing this information softcopy, the photographs and color illus-
trations may not appear.

Trademarks
AIX; DB2; DB2 Universal Database; Distributed Relational Database
Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix;
C-ISAM; Foundation.2000TM; IBM Informix 4GL; IBM Informix

DataBlade Module; Client SDKTM; CloudscapeTM; CloudsyncTM;
IBM Informix Connect; IBM Informix Driver for JDBC; Dynamic
ConnectTM; IBM Informix Dynamic Scalable ArchitectureTM (DSA);
IBM Informix Dynamic ServerTM; IBM Informix Enterprise Gateway
Manager (Enterprise Gateway Manager); IBM Informix Extended Parallel
ServerTM; i.Financial ServicesTM; J/FoundationTM; MaxConnectTM; Object
TranslatorTM; Red Brick Decision ServerTM; IBM Informix SE;
IBM Informix SQL; InformiXMLTM; RedBack; SystemBuilderTM; U2TM;
UniData; UniVerse; wintegrate are trademarks or registered trademarks
of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Windows, Windows NT, and Excel are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.
A-4 J/Foundation Developer’s Guide

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
A
Administrative tool 4-24
alter_java_path() 4-21
ANSI compliance

level Intro-13

B
Boldface type Intro-7

C
Cast function, definition 4-4
Circle class, example 6-8
Class layout for input 6-13
CLASS routine modifier 4-14
CLASSPATH environment

variable 2-6
Comment icons Intro-8
Compliance

with industry standards Intro-13
with SQLJ 4-27

com.informix.udr 4-7
com.informix.UDRLog 4-11
com.informix.udr.UDREnv 4-9
com.informix.udr.UDRManager

4-8
com.informix.udr.UDRTraceable

4-11
Configuration parameters

example 2-6
JDKVERSION 3-4
JVPCLASSPATH 3-4
JVPHOME 3-5
JVPJAVAHOME 3-6

JVPJAVALIB 3-6
JVPJAVAVM 3-7
JVPLOGFILE 3-8
JVPPROPFILE 3-9
SBSPACENAME 3-9
setting 2-5
VPCLASS JVP 3-10

Configuring, to support Java 2-3
Contact information Intro-13
COSTFUNC routine modifier 4-15

D
Default I/O methods

and registering a UDT 6-4
backing out for opaque user-

defined data type 6-4
for opaque user-defined data

type 6-4
overriding 6-10

Default locale Intro-5
Dependencies, software Intro-4
Deployment descriptor

example 4-19
in manifest file 4-20
SQL statements 4-19

Documentation notes Intro-11
Documentation notes, program

item Intro-12
Documentation, types of Intro-10

documentation notes Intro-11
machine notes Intro-11
release notes Intro-11

DriverManager class 5-5

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
E
End-user routine 4-4
Environment variables Intro-7

CLASSPATH 2-6
en_us.8859-1 locale Intro-5
Example

circle class 6-8
circle UDT 4-13
configuration parameters 2-6
creating an sbspace 2-4
deployment descriptor 4-19
makefile for JAR 4-20
properties file 2-5
that overrides the default I/O

methods 6-14
UDREnv class 4-9
usage of variable-length

UDT 6-15
using CLASS 4-14
variable-length UDT 6-20

EXECUTE FUNCTION
statement 4-22

EXECUTE PROCEDURE
statement 4-22

F
Feature icons Intro-8
finderr utility Intro-12
Functional index 4-5

G
Global Language Support

(GLS) Intro-5
GRANT statement 4-27

H
HANDLESNULLS routine

modifier 4-15, 4-29
Help Intro-10

I
Icons

feature Intro-8
Important Intro-8
platform Intro-8
product Intro-8
Tip Intro-8
Warning Intro-8

IfmxIEBInStream 6-13
IfmxIEInStream 6-12
IfmxIEOutStream 6-12
IfmxSQLInStream 6-11
IfmxSQLOutStream 6-11
IfmxSRInStream 6-12
IfmxSROutStream 6-12
IfmxUDTSQLInput

methods in interface 6-6
IfmxUDTSQLInput stream

and IfxDataPointer class 6-11
IfmxUDTSQLOutput 6-6

stream, and IfxDataPointer
class 6-11

IfmxUDTSQLOutput interface
methods contained in 6-7

IfxConnection 5-4
IfxDataPointer class 6-11
IfxDirectConnection 5-5
IfxDirectProtocol 5-5
IfxProtocol 5-4
Important paragraphs, icon

for Intro-8
Industry standards, compliance

with Intro-13
informix-direct subprotocol 5-5
INFORMIXDIR/bin

directory Intro-5
informix.jvpcontrol 4-24
Installing JDBC 2-3
install_jar() 4-21
Interface

IfxConnection 5-4
IfxProtocol 5-4

INTERNAL routine modifier 4-15
ISO 8859-1 code set Intro-5
Iterator function 4-5
ITERATOR routine modifier 4-15
Iterator status 4-10

I/O functions sets, for overriding
default methods 6-10

J
JAR file

installing 4-21
makefile 4-20

Java debugger 4-26
Java Development Kit 2-3
Java Runtime Environment Intro-4,

2-3
Java Virtual Machine 1-4
Java virtual processor

description 1-4
log file 4-24
messages 4-23
specifying 4-14

java.sql.SQLInput
extensions 5-9
unsupported methods 5-7

java.sql.SQLOutput
extensions 5-9
unsupported methods 5-8

JDBC 1.0, extensions 5-7
JDBC 2.0

Informix extensions 5-8
public interfaces 5-9

JDKVERSION parameter 3-4
JVP properties file 2-5
JVPCLASSPATH parameter 3-4
JVPHOME parameter 3-5
JVPJAVAHOME parameter 3-6
JVPJAVALIB parameter 3-6
JVPJAVAVM parameter 3-7
JVPLOGFILE parameter 3-8
JVPPROPFILE parameter 3-9
JVP.monitor.port 4-24

L
Limitations, streams 6-21
Locale Intro-5
Log file 4-24
Logging 4-10
2 J/Foundation Developer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
M
Machine notes Intro-11
Manifest file 4-20
Mapping

between SQL and Java 4-12
creating 4-13

Memory use 4-25
Message file for error

messages Intro-12

N
Negator function 4-5
NEGATOR routine modifier 4-15
NOT VARIANT routine

modifier 4-15

O
Online help Intro-10
Online manuals Intro-10
onstat command 4-25
Opaque data type support

function 4-5
Operator function 4-4
Overriding Default I/O

Methods 6-10

P
Parallel queries 1-4
PARALLELIZABLE routine

modifier 4-15
Parallelizable UDR 4-4
PERCALL_COST routine

modifier 4-15
Platform icons Intro-8
Port number 4-24
Product icons Intro-8
Program group

Documentation notes Intro-12
Release notes Intro-12

Properties file 2-5

Q
Query parallelization 1-4

R
readsql() 6-4
registerDriver() 5-5
Registering a UDR 4-14
Registering a UDT

default I/O methods 6-4
registerJUDTfuncs 6-5
with setUDTExName() SQL

procedure 6-5
Release notes Intro-11
Release notes, program

item Intro-12
remove_jar() 4-21
replace_jar() 4-21
Routine modifier

CLASS 4-14
COSTFUNC 4-15
HANDLESNULLS 4-15
INTERNAL 4-15
ITERATOR 4-15
NEGATOR 4-15
NOT VARIANT 4-15
PARALLELIZABLE 4-15
PERCALL_COST 4-15
SELCOST 4-15
SELFUNC 4-15
STACK 4-15
unsupported 4-15, 4-29
VARIANT 4-15

S
SBSPACENAME parameter 3-9
sbspace, creating 2-4
SELCOST routine modifier 4-15
SELECT statement 4-22
SELFUNC routine modifier 4-15
setUDTExtName 4-13
setUDTExtName(), registering a

UDT 6-5
Software dependencies Intro-4
SQL definitions

for default I/O UDRs 6-5

for variable-length UDT
example 6-20

SQL statement
EXECUTE FUNCTION 4-22
EXECUTE PROCEDURE 4-22
GRANT 4-27
SELECT 4-22

SQLBuffer
transport type 6-5

SQLData interface
readsql() 6-4
using 6-3
writesql() 6-4

SQLException 4-23
SQLInput interface

extensions 6-6
methods contained in 6-6

SQLOutput interface
extensions 6-6
methods contained in 6-7

SQLUDTInput 5-8
SQLUDTOutput 5-8
Stack dumps 4-23
STACK routine modifier 4-15
stores_demo database Intro-5
Streams

and database server I/O 6-3
IfmxIEInStream 6-12
IfmxIEOutStream 6-12
IfmxSQLInStream 6-11
IfmxSQLOutStream 6-11
IfmxSRInStream 6-12
IfmxSROutStream 6-12
IfmxTextInStream 6-12
IfmxTextOutStream 6-12
limitations 6-21
stream.available method 6-15

Syntax conventions, description
of Intro-9

System catalog tables 1-5, 4-26
syslangauth 4-26
sysroutinelnags 4-26

System requirements
database Intro-4
software Intro-4

System trace events 4-26
Index 3

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
T
Threads

listing 4-25
scheduling 1-4

Tip icons Intro-8
Trace outputs 4-23
Traceable events 4-26
Trace-level settings 4-12

U
UDREnv 4-8
UDRLog 4-11
UDRManager 4-8
UDRTraceable 4-11
User-defined aggregate 4-4
User-defined data type

converting to and from 6-3
implementing with default I/O

methods 6-4
User-defined function 4-4
User-defined procedure 4-4
User-defined routine

compiling 4-20
data type 4-9
definition of 4-3
executing 4-22
granting usage privilege 4-27
iterator status 4-10
log messages 4-24
logging 4-11
name 4-9
packages allowed 4-7
privileges 4-19, 4-26
registering 4-14
steps for creating 4-6
tracing and debugging 4-23
unsupported modifiers 4-29
user-state pointer 4-10
uses not allowed 4-5
uses of 4-4

Users, types of Intro-3

V
Variable-length UDT

example 6-15

VARIANT routine modifier 4-15,
4-29

VPCLASS JVP parameter 3-10
vpid number 4-25

W
Warning icons Intro-8
writesql() 6-4

X
X/Open compliance level Intro-13

Z
Zone-based tracing 4-11
4 J/Foundation Developer’s Guide

	IBM Informix Online Documentation
	Table of Contents
	Introduction
	In This Introduction
	About This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Database

	New Features in J/Foundation, Version 9.4
	New Features in J/Foundation, Version 9.3
	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Feature, Product, and Platform Icons

	Syntax Conventions

	Additional Documentation
	Related Reading

	Compliance with Industry Standards
	IBM Welcomes Your Comments

	Concepts
	In This Chapter
	Features of Java User-Defined Routines
	Java Virtual Processors
	Thread Scheduling
	Query Parallelization

	System Catalog Tables

	Preparing for Java Support
	In This Chapter
	Installing the JDBC Driver
	Configuring Java Support
	Creating an sbspace
	Creating the JVP Properties File
	Setting Configuration Parameters
	Setting Environment Variables
	GLS Support
	NEWLOCALE and NEWCODESET Connection Properties
	DBCENTURY Environment Variable

	Configuration Parameters
	In This Chapter
	JVPARGS
	JDKVERSION
	JVPCLASSPATH
	JVPHOME
	JVPJAVAHOME
	JVPJAVALIB
	JVPJAVAVM
	JVPLOGFILE
	JVPPROPFILE
	SBSPACENAME
	VPCLASS JVP

	Creating Java User-Defined Routines
	In This Chapter
	Java User-Defined Routines
	Creating a Java User-Defined Routine
	Writing a Java User-Defined Routine
	The com.informix.udr Package
	The com.informix.udr.UDRManager
	The com.informix.udr.UDREnv
	The com.informix.udr.UDRLog
	The com.informix.udr.UDRTraceable

	Creating UDT-to-Java Mappings
	Registering Java User-Defined Routines
	Specifying the JVP
	Using Routine Modifiers
	Specifying the External Name

	Using a Deployment Descriptor
	Using a Manifest File
	Compiling the Java Code
	Installing a JAR File
	Updating JAR Filenames
	Executing the User-Defined Routine
	Debugging and Tracing
	Generating Log Messages
	Using the Administrative Tool
	The threads vpid Option
	The memory vpid Option

	Debugging a Java User-Defined Routine
	Traceable Events

	Finding Information about User-Defined Routines
	Complying with SQLJ
	Unsupported Modifiers
	Unsupported Optional Modifiers

	The IBM Informix JDBC Driver
	In This Chapter
	Public JDBC Interfaces
	The com.informix.jdbc.IfxConnection
	The com.informix.jdbc.IfxProtocol

	The informix-direct Subprotocol
	JDBC 1.0 API
	JDBC 2.0
	Support for Opaque Data Types
	java.sql.SQLUDTInput
	java.sql.SQLUDTOutput

	Interfaces Updated for Java 2.0

	An Example That Shows Query Results

	Using Opaque User-Defined Types
	In This Chapter
	Using the SQLData Interface
	Default Input/Output Routines
	SQL Definitions for Default I/O User-Defined Routines
	Informix Extensions to SQLInput and SQLOutput
	IfmxUDTSQLInput
	IfmxUDTSQLOutput

	The Circle Class Example

	Overriding the Default I/O Methods
	I/O Function Sets and Related Types
	IfxDataPointer
	Stream Implementations

	An Example That Overrides the Default I/O Methods
	Usage Example

	Limitations to Streams

	Notices
	Index

