
IBM Informix
User-Defined Routines
and Data Types
Developer’s Guide
Version 9.4
March 2003
Part No. CT1T0NA

ii IBM Informix User-De
This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2003. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Note:
Before using this information and the product it supports, read the information in the
appendix entitled “Notices.”
fined Routines and Data Types Developer’s Guide

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Manual 3

Types of Users 3
Software Dependencies 4
Assumptions About Your Locale. 4
Demonstration Databases 4

New Features . 5
Extensibility Enhancements 5

Documentation Conventions 6
Typographical Conventions 6
Icon Conventions 7
Sample-Code Conventions 9

Additional Documentation 10
Related Reading 13
Compliance with Industry Standards 13
IBM Welcomes Your Comments 13

Chapter 1 Extending the Database Server
In This Chapter 1-3
Creating User-Defined Routines 1-3
Extending Built-In Data Types 1-4
Extending Operators 1-4
Building Opaque Data Types 1-5
Extending Operator Classes 1-6
Routine Management 1-7

iv IBM In
Chapter 2 Using a User-Defined Routine
In This Chapter 2-3
User-Defined Routines 2-3

SPL Routines 2-4
External-Language Routines 2-4
Information About User-Defined Routines 2-5

Tasks That You Can Perform with User-Defined Routines 2-6
Extending Data Type Support 2-6
Supporting User-Defined Data Types 2-7
Creating an End-User Routine 2-17
Invoking a User-Defined Routine 2-21

Chapter 3 Running a User-Defined Routine
In This Chapter 3-3
Invoking a UDR in an SQL Statement 3-3

Invoking a UDR with an EXECUTE Statement 3-4
Invoking a User-Defined Function in an Expression 3-5
Invoking a Function That Is Bound to an Operator 3-5

Invoking a UDR in an SPL Routine 3-6
Executing a User-Defined Routine 3-6

Parsing the SQL Statement 3-7
Optimizing the SQL Statement 3-7
Executing the Routine 3-7

Understanding Routine Resolution 3-11
The Routine Signature 3-12
Overloading Routines 3-13
The Routine-Resolution Process. 3-16
Routine Resolution with User-Defined Data Types 3-22
Null Arguments in Overloaded Routines 3-26

Chapter 4 Developing a User-Defined Routine
In This Chapter 4-3
Planning the Routine 4-3

Naming the Routine. 4-4
Defining Routine Parameters 4-5
Returning Values 4-6
Naming Return Parameters 4-10
Using an Iterator Function 4-11
Adhering to Coding Standards 4-21

Writing the Routine 4-22
formix User-Defined Routines and Data Types Developer’s Guide

Registering a User-Defined Routine 4-23
Setting Privileges for a Routine 4-24
Creating an SPL Routine. 4-26
Creating an External-Language Routine 4-28
Reviewing Information about User-Defined Routines . . . 4-33

Using a UDR With HDR 4-34

Chapter 5 Extending Data Types
In This Chapter 5-3
Understanding the Data Type System 5-3
Understanding Data Types 5-5

Built-In Data Types 5-6
Extended Data Types 5-8

Extending the Data Type System 5-13
Operations 5-14
Casts . 5-14
Operator Classes 5-15
Optimizer Information 5-16

Chapter 6 Extending Operators and Built-In Functions
In This Chapter 6-3
Operators and Operator Functions 6-4

Arithmetic Operators 6-4
Text Operators 6-5
Relational Operators 6-5
Overloading an Operator Function 6-7

Built-In Functions 6-7
Built-In Functions That You Can Overload 6-7
Built-In Functions That You Cannot Overload 6-8
Overloading a Built-In Function 6-9
Table of Contents v

vi IBM In
Chapter 7 Creating User-Defined Casts
In This Chapter 7-3
Understanding Casts 7-3

Built-In Casts 7-3
User-Defined Casts 7-4
Casts That You Cannot Create 7-5

Creating a User-Defined Cast 7-5
Choosing the Kind of User-Defined Cast 7-6
Choosing the Cast Mechanism 7-7
Defining the Direction of the Cast 7-10

Dropping a Cast 7-12

Chapter 8 Creating User-Defined Aggregates
In This Chapter 8-3
Extending Existing Aggregates 8-4

Overloading Operators for Built-In Aggregates 8-4
Extending an Aggregate 8-5
Example of Extending a Built-In Aggregate. 8-6

Creating User-Defined Aggregates 8-6
Support Functions 8-7
Resolving the Support Functions 8-11
Support-Function States 8-11
Using C or Java Support Functions 8-12
Example of a User-Defined Aggregate 8-14

Managing Aggregates 8-18
Parallel Execution of Aggregates 8-18
Privileges for User-Defined Aggregates 8-18
Aggregate Information in the System Catalog 8-19
Aggregate Information from the Command Line 8-19

Dropping an Aggregate 8-19
formix User-Defined Routines and Data Types Developer’s Guide

Chapter 9 Creating an Opaque Data Type
In This Chapter 9-3
Opaque Data Types 9-3

The Internal Structure 9-4
Support Functions 9-5
Advantages of Opaque Data Types 9-8

Creating an Opaque Data Type 9-8
Creating the Internal Structure in C 9-9
Creating UDT-to-Java Mappings 9-12
Writing and Registering the Support Functions 9-13
Registering the Opaque Data Type with the Database . . . 9-13
Granting Privileges for an Opaque Data Type 9-17
Creating SQL-Invoked Functions. 9-18

Customizing Access Methods 9-23
Using the Generic B-Tree 9-24
Using Other Access Methods 9-24

Other Operations on Opaque Data Types 9-25
Accessing an Opaque Data Type 9-25
Dropping an Opaque Data Type 9-26

Chapter 10 Writing Support Functions
In This Chapter 10-3
Writing Support Functions 10-3

Identifying Support Functions. 10-3
Choosing Function Parameters 10-6
Setting Privileges for Support Functions 10-7

Data Types for Support Functions 10-7
The LVARCHAR Data Type 10-7
The SENDRECV Data Type. 10-8

Handling the External Representation 10-8
Input Support Function 10-9
Output Support Function 10-11

Handling the Internal Representation 10-13
The Send and Receive Support Functions 10-14

Performing Bulk Copies 10-17
Import and Export Support Functions 10-17
Importbinary and Exportbinary Support Functions 10-20
The Stream Support Functions 10-22
Table of Contents vii

viii IBM
Inserting and Deleting Data 10-22
The assign() Function 10-23
The destroy() Function 10-24
The update() Function 10-24
The deepcopy() Function 10-25

Handling Smart Large Objects 10-26
Comparing Data 10-28
Handling Locale-Sensitive Data 10-29

Locale-Sensitive Input and Output Support Functions 10-30
Locale-Sensitive Receive and Send Support Functions 10-31

Chapter 11 Extending an Operator Class
In This Chapter 11-3
Using Operator Classes 11-3

Secondary-Access Methods 11-4
Operator Classes 11-5

Extending an Existing Operator Class 11-9
Extensions of the btree_ops Operator Class 11-9
Reasons for Extending btree_ops 11-11

Creating an Operator Class 11-14
Creating a New B-Tree Operator Class 11-15
Creating an Absolute-Value Operator Class 11-17
Defining an Operator Class for Other

Secondary-Access Methods 11-19
Dropping an Operator Class 11-20

Chapter 12 Managing a User-Defined Routine
In This Chapter 12-3
Assigning the Execute Privilege to a Routine 12-3

Granting and Revoking the Execute Privilege 12-4
Privileges on Objects Associated with a UDR 12-5
Executing a UDR as DBA 12-6
Using DBA Privileges with Objects and Nested UDRs 12-7

Modifying a User-Defined Routine 12-9
Modifying a C UDR 12-9
Modifying a Java UDR 12-11

Altering a User-Defined Routine 12-11
Dropping a User-Defined Routine 12-11
 Informix User-Defined Routines and Data Types Developer’s Guide

Chapter 13 Improving UDR Performance
In This Chapter 13-3
Optimizing a User-Defined Routine 13-3

Optimizing an SPL Routine 13-4
Updating Statistics for an SPL Routine 13-6

Optimizing Functions in SQL Statements 13-8
Calculating the Query Plan 13-8
Specifying Cost and Selectivity 13-9
Calculating Cost 13-11
Selectivity and Cost Examples. 13-11

Extending UPDATE STATISTICS 13-13
Using UPDATE STATISTICS 13-13
Support Functions for UPDATE STATISTICS 13-14

Using Negator Functions 13-16
Using a Virtual-Processor Class 13-17

Choosing a Virtual-Processor Class 13-18
Using Virtual Processors with UDRs Written in C 13-20
Managing Virtual Processors 13-22

Parallel UDRs 13-22
Executing UDRs in Parallel 13-23
Enabling Parallel UDRs 13-30
Setting the Number of Virtual Processors 13-33
Monitoring Parallel UDRs 13-34

Memory Considerations 13-35
Memory Durations for C UDRs 13-35
Stack-Size Considerations 13-36
Virtual-Memory Cache for Routines. 13-37

I/O Considerations 13-39
Isolating System Catalog Tables 13-39
Balancing the I/O Activities 13-40

Appendix A Notices

Index
Table of Contents ix

Introduction
Introduction
In This Introduction 3

About This Manual 3
Types of Users 3
Software Dependencies 4
Assumptions About Your Locale 4
Demonstration Databases 4

New Features . 5
Extensibility Enhancements 5

Documentation Conventions 6
Typographical Conventions 6
Icon Conventions 7

Comment Icons 7
Feature, Product, and Platform Icons 8
Compliance Icons 9

Sample-Code Conventions 9

Additional Documentation 10

Related Reading . 13

Compliance with Industry Standards 13

IBM Welcomes Your Comments 13

2 IBM In
formix User-Defined Routines and Data Types Developer’s Guide

In This Introduction
This introduction provides an overview of the information in this manual
and describes the conventions it uses.

About This Manual
This manual describes how to define new data types and enable user-defined
routines (UDRs) to extend IBM Informix Dynamic Server. It describes the
tasks you must perform to extend operations on data types, to create new
casts, to extend operator classes for secondary-access methods, to write
opaque data types, and to create and register routines.

Types of Users
This manual is written for the following users:

� Database-application programmers

� DataBlade module developers

This manual assumes that you have the following background:

� A working knowledge of your computer, your operating system,
and the utilities that your operating system provides

� Experience working with relational databases or exposure to
database concepts

� Experience with computer programming

If you have limited experience with relational databases, SQL, or your
operating system, refer to the Getting Started Guide for a list of supplementary
titles.
Introduction 3

Software Dependencies
Software Dependencies
This manual assumes that you are using IBM Informix Dynamic Server,
Version 9.4, as your database server.

Assumptions About Your Locale
IBM Informix products can support many languages, cultures, and code sets.
All culture-specific information is brought together in a single environment,
called a Global Language Support (GLS) locale.

This manual assumes that you use the U.S. 8859-1 English locale as the
default locale. The default is en_us.8859-1 (ISO 8859-1) on UNIX platforms or
en_us.1252 (Microsoft 1252) for Windows environments. This locale supports
U.S. English format conventions for dates, times, and currency, and also
supports the ISO 8859-1 or Microsoft 1252 code set, which includes the ASCII
code set plus many 8-bit characters such as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and
other considerations related to GLS locales, see the IBM Informix GLS User’s
Guide.

Demonstration Databases
The DB-Access utility, which is provided with your IBM Informix database
server products, includes one or more of the following demonstration
databases:

� The stores_demo database illustrates a relational schema with infor-
mation about a fictitious wholesale sporting-goods distributor.
Many examples in IBM Informix manuals are based on the
stores_demo database.

� The superstores_demo database illustrates an object-relational
schema. The superstores_demo database includes examples of
extended data types, type and table inheritance, and user-defined
routines.
4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

New Features
For information about how to create and populate the demonstration
databases, see the IBM Informix DB-Access User’s Guide. For descriptions of the
databases and their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory on UNIX platforms and in the
%INFORMIXDIR%\bin directory in Windows environments.

New Features
The following table provides information about the new features for
IBM Informix Dynamic Server, Version 9.4, that this manual covers. To go to
the desired page, click a blue hyperlink. For a description of all new features,
see the Getting Started Guide.

Extensibility Enhancements
Version 9.4 includes the following improvements in the area of extensibility.

New Features Reference

Using an iterator function in the FROM
clause of a SELECT statement

“Using an Iterator Function” on
page 4-11

Naming the return parameters of a UDR “Naming Return Parameters” on
page 4-10

Using multiple OUT parameters and
statement local variables

“Using OUT Parameters and
Statement-Local Variables (SLVs)” on
page 4-8

Setting the collation sequence at runtime
(multinationalization)

“Handling Locale-Sensitive Data” on
page 10-29

 HDR support for extended types “Writing the Routine” on page 4-22

“Using a UDR With HDR” on
page 4-34
Introduction 5

Documentation Conventions
Documentation Conventions
This section describes the conventions that this manual uses. These
conventions make it easier to gather information from this and other volumes
in the documentation set.

The following conventions are discussed:

� Typographical conventions

� Icon conventions

� Sample-code conventions

Typographical Conventions
This manual uses the following conventions to introduce new terms,
illustrate screen displays, describe command syntax, and so forth.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you are
to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.

(1 of 2)
6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Icon Conventions
Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of one or more product- or
platform-specific paragraphs.

� This symbol indicates a menu item. For example, “Choose
Tools�Options” means choose the Options item from the
Tools menu.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information

Important: Identifies paragraphs that contain significant
information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described

Convention Meaning

(2 of 2)
Introduction 7

Icon Conventions
Feature, Product, and Platform Icons

Feature, product, and platform icons identify paragraphs that contain
feature-specific, product-specific, or platform-specific information.

These icons can apply to an entire section or to one or more paragraphs
within a section. If an icon appears next to a section heading, the information
that applies to the indicated feature, product, or platform ends at the next
heading at the same or higher level. A ♦ symbol indicates the end of feature-,
product-, or platform-specific information that appears within one or more
paragraphs within a section.

Icon Description

Identifies information that relates to C routines

Identifies information that relates to routines, that is, UDRs
written either in C or Java language

Identifies information that relates to the IBM Informix
Global Language Support (GLS) feature

Identifies information that relates to Java routines

Identifies information that relates to the Stored Procedure
Language

Identifies information that is specific to UNIX platforms

Identifies information that is specific to the Windows
environment

C

Ext

GLS

Java

SPL

UNIX

WIN
8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Sample-Code Conventions
Compliance Icons

Compliance icons indicate paragraphs that provide guidelines for complying
with a standard.

This icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the compliance information.

Sample-Code Conventions
Examples of SQL code occur throughout this manual. Except where noted,
the code is not specific to any single IBM Informix application development
tool. If only SQL statements are listed in the example, they are not delimited
by semicolons. For instance, you might see the code in the following
example:

CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules
for that product. For example, if you are using DB-Access, you must delimit
multiple statements with semicolons. If you are using an SQL API, you must
use EXEC SQL at the start of each statement and a semicolon (or other appro-
priate delimiter) at the end of the statement.

Tip: Ellipsis points in a code example indicate that more code would be added in a
full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the manual for your product.

Icon Description

Identifies information that is specific to an ANSI-compliant
database

ANSI
Introduction 9

Additional Documentation
Additional Documentation
IBM Informix Dynamic Server documentation is provided in a variety of
formats:

� Online manuals. You can obtain online manuals at the IBM Informix
Online Documentation site at
http://www.ibm.com/software/data/informix/pubs/library/.
This site enables you to print chapters or entire books.

� Online help. This facility provides context-sensitive help, an error
message reference, language syntax, and more.

� Documentation notes and release notes. Documentation notes,
which contain additions and corrections to the manuals, and release
notes are located in the directory where the product is installed.

Please examine these files because they contain vital information
about application and performance issues. The following table
describes these files.
10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Additional Documentation
On UNIX platforms, the following online files appear in the
$INFORMIXDIR/release/en_us/0333 directory.

♦

Online File Purpose

ids_creating_udts__docnotes_9.40.html The documentation notes file
for your version of this manual
describes topics that are not
covered in the manual or that
were modified since
publication.

ids_release_notes_9.40.html The release notes file describes
feature differences from earlier
versions of IBM Informix
products and how these differ-
ences might affect current
products. This file also
contains information about
any known problems and their
workarounds.

ids_machine_notes_9.40.txt The machine notes file
describes any special actions
that you must take to
configure and use
IBM Informix products on
your computer. Machine notes
are named for the product
described.

UNIX
Introduction 11

Additional Documentation
The following items appear in the Informix folder. To display this
folder, choose Start�Programs�Informix � Documentation Notes
or Release Notes from the task bar.

Machine notes do not apply to Windows platforms. ♦
� IBM Informix software products provide ASCII files that contain all of

the error messages and their corrective actions. For a detailed
description of these error messages, refer to IBM Informix Error
Messages in the IBM Informix Online Documentation site at
http://www.ibm.com/software/data/informix/pubs/library/.

To read the error messages on UNIX, you can use the finderr com-
mand to display the error messages online. ♦
To read error messages and corrective actions on Windows, use the
Informix Error Message utility. To display this utility, choose
Start�Programs�Informix from the task bar. ♦

Program Group Item Description

Documentation Notes This item includes additions or corrections to
manuals with information about features that
might not be covered in the manuals or that have
been modified since publication.

Release Notes This item describes feature differences from
earlier versions of IBM Informix products and
how these differences might affect current
products. This file also contains information
about any known problems and their
workarounds.

Windows

UNIX

WIN
12 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Related Reading
Related Reading
For a list of publications that provide an introduction to database servers and
operating-system platforms, refer to your Getting Started Guide manual.

Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. IBM Informix SQL-based products are fully
compliant with SQL-92 Entry Level (published as ANSI X3.135-1992), which is
identical to ISO 9075:1992. In addition, many features of Informix database
servers comply with the SQL-92 Intermediate and Full Level and X/Open
SQL CAE (common applications environment) standards.

IBM Welcomes Your Comments
To help us with future versions of our manuals, let us know about any correc-
tions or clarifications that you would find useful. Include the following
information:

� The name and version of your manual

� Any comments that you have about the manual

� Your name, address, and phone number

Send electronic mail to us at the following address:

docinf@us.ibm.com

This address is reserved for reporting errors and omissions in our documen-
tation. For immediate help with a technical problem, contact Technical
Support at tsmail@us.ibm.com.
Introduction 13

1
Chapter
Extending the Database Server
In This Chapter . 1-3

Creating User-Defined Routines 1-3

Extending Built-In Data Types 1-4

Extending Operators 1-4

Building Opaque Data Types 1-5

Extending Operator Classes 1-6

Routine Management 1-7

1-2 IBM
 Informix User-Defined Routines and Data Types Developer’s Guide

In This Chapter
This manual discusses extending IBM Informix Dynamic Server by using
user-defined routines (UDRs) and user-defined data types (UDTs). You can use
UDRs and never use a UDT. Conversely, you can use UDTs and never use
UDRs. However, many of the ways that you extend data types require that
you write routines to support those extensions.

This chapter summarizes the organization of the chapters in this book and
describes which portion of the book you will need to use, depending on your
goals.

Creating User-Defined Routines
Extending the database server frequently requires that you create UDRs to
support the extensions. A routine is a collection of program statements that
perform a particular task. A UDR is a routine that you create that can be
invoked in an SQL statement, by the database server, or from another UDR.

The next three chapters in this manual discuss the basic aspects of the
creation and use of UDRs:

� Chapter 2, “Using a User-Defined Routine”

� Chapter 3, “Running a User-Defined Routine”

� Chapter 4, “Developing a User-Defined Routine”

The Informix database server supports UDRs in the following languages:

� Stored Procedure Language (SPL)

� The C programming language

� The Java programming language
Extending the Database Server 1-3

Extending Built-In Data Types
Extending Built-In Data Types
Built-in data types are provided by the database server. The database server
already has functions for retrieving, storing, manipulating, and sorting built-
in data types.

You can extend built-in data types in the following ways:

� Creating complex data types based on built-in data types

� Creating UDTs (distinct and opaque data types)

� Extending the operations that are allowed for both built-in data
types and extended data types

Chapter 5, “Extending Data Types,” describes the data type system that the
database uses and documents how to extend the database server by building
UDTs that are based on built-in data types. The IBM Informix Database Design
and Implementation Guide also discusses UDTs that are based on built-in data
types.

Extending Operators
When you build a UDT, either by extending a built-in data type or by creating
an opaque data type, you must provide for the operations that the data type
uses. An operation is a task that the database server performs on one or more
values.

You can write special-purpose routines that extend the built-in operations of
the database. The manual discusses the following specific types of operators
in detail:

� Arithmetic and relational operators

The database server provides operator symbols (+, -, =, > and so on)
and built-in functions such as cos() and abs(). You can extend these
operators for extended data types.

Chapter 6, “Extending Operators and Built-In Functions,” discusses
general aspects of extending an operation and describes how to
extend operator symbols and built-in functions.
1-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Building Opaque Data Types
� Casts

The database server provides casts for the built-in data types. When
you use UDTs, you usually need to provide casts.

Chapter 7, “Creating User-Defined Casts,” describes how to create
casts. The IBM Informix Database Design and Implementation Guide dis-
cusses how to use casts.

� Aggregates

An aggregate produces one value that summarizes some aspect of a
selected column; for example, the average or the count. You can
extend aggregates in two ways:

❑ Create a new aggregate, such as an aggregate that provides the
sum of the square of each value in the column.

❑ Extend an existing aggregate, such as AVG or COUNT, to include
data types that you have defined.

Creating a user-defined aggregate and extending an existing aggre-
gate for extended data types require different techniques. For
information about both techniques, refer to Chapter 8, “Creating
User-Defined Aggregates.”

Building Opaque Data Types
An opaque data type is an atomic, or fundamental, data type that you define
for the database. The database server has no information about the opaque
data type until you provide routines that describe it. As you build an opaque
data type, you need to consider the following topics:

� How the information in the opaque data type is organized

� How to store and retrieve the data type

� What the standard operations mean with respect to the opaque data
type:

❑ What does it mean to add two pieces of data? Is it even possible
to add the data?

❑ When is one data item larger than another?

❑ Can you relate this data to built-in data types?
Extending the Database Server 1-5

Extending Operator Classes
� What unique operations this data has:

❑ Does this data type allow you to find a picture?

❑ Can you say that one data item is inside another?

Chapter 9, “Creating an Opaque Data Type,” describes the basic steps for
creating an opaque data type. Chapter 10, “Writing Support Functions,”
describes the support functions that an opaque data type uses.

Creating an opaque type and all of the routines that are required to support
it is a major task. Theoretically, you could sit down and write all of the
required routines. However, it is recommended that you use the
IBM Informix DataBlade Developer’s Kit (DBDK) because DBDK enforces
standards that facilitate migration between different versions of the database
server.

A DataBlade module is a group of database objects and supporting code that
manages user-defined data or adds new features. A DataBlade module can
include extended data types, routines, casts, aggregates, access methods, SQL
code, client code, and installation programs. DataBlade modules that support
various special-purpose opaque data types are provided. To find out what
DataBlade modules are available, contact your sales representative.

Extending Operator Classes
An operator class is a set of functions that is associated with building an
index.

Chapter 11, “Extending an Operator Class,” describes how to create a user-
defined operator class and how to extend an existing operator class.
1-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Routine Management
Routine Management
Chapter 12, “Managing a User-Defined Routine,” covers the following
topics:

� Assigning Execute privilege to a UDR

� Reloading a UDR

� Altering a UDR

� Dropping a UDR

Chapter 13, “Improving UDR Performance,” discusses ways that you can
optimize the performance of your UDR.
Extending the Database Server 1-7

2
Chapter
Using a User-Defined Routine
In This Chapter . 2-3

User-Defined Routines 2-3
SPL Routines 2-4
External-Language Routines 2-4
Information About User-Defined Routines 2-5

Tasks That You Can Perform with User-Defined Routines 2-6
Extending Data Type Support 2-6
Supporting User-Defined Data Types 2-7

Cast Functions. 2-8
End-User Routines 2-10
Aggregate Functions 2-11
Operator Functions 2-12
Operator-Class Functions 2-13
Optimization Functions 2-16
Opaque Data Type Support Functions 2-16
Access-Method Purpose Functions. 2-17

Creating an End-User Routine 2-17
Encapsulating Multiple SQL Statements 2-18
Creating Triggered Actions 2-19
Restricting Access to a Table 2-20
Creating Iterators. 2-21

Invoking a User-Defined Routine 2-21
Explicit Invocation 2-21
Implicit Invocation 2-22

2-2 IBM
 Informix User-Defined Routines and Data Types Developer’s Guide

In This Chapter
This chapter introduces user-defined routines (UDRs) and covers the
following topics:

� User-Defined Routines

� Tasks That You Can Perform with User-Defined Routines

User-Defined Routines
A UDR can either return values or not, as follows:

� A user-defined function returns one or more values and therefore can
be used in SQL expressions.

Use the CREATE FUNCTION statement to register the UDR in the sys-
tem catalog tables.

� A user-defined procedure is a routine that does not return any values.
You cannot use a procedure in SQL expressions because it does not
return a value.

Use the CREATE PROCEDURE statement to register the UDR in the
system catalog tables.
Using a User-Defined Routine 2-3

SPL Routines
SPL Routines
Stored Procedure Language (SPL) is part of the database server. Many of the
examples in this book are shown in SPL because it is simple to use and
requires no support outside the database server.

SPL provides flow-control extensions to SQL. An SPL routine is a UDR that is
written in SPL and SQL. The body of an SPL routine contains SQL statements
and flow-control statements for looping and branching. For information on
the syntax of SPL statements, see the IBM Informix Guide to SQL: Syntax. For an
explanation of how to use SPL statements, refer to the IBM Informix Guide to
SQL: Tutorial.

The database server parses and optimizes an SPL routine and stores it in the
system catalog tables in executable format. If possible, use SPL routines for
SQL-intensive tasks.

For more information, see “Creating an SPL Routine” on page 4-26.

External-Language Routines
An external-language routine is a UDR that is written in an external language.
The body of an external-language routine contains statements for operations
such as flow control and looping, as well as special Informix library calls to
access the database server. Therefore, you must use the appropriate compi-
lation tool to parse and compile an external-language routine into an
executable format.

The database server supports UDRs written in C and in Java.

� Routines in C

To write routines in C, you need a C compiler. For information about
how to write UDRs in C, refer to the IBM Informix DataBlade API Pro-
grammer’s Guide and the IBM Informix DataBlade API Function Reference.

� Routines in Java

To write Java routines, you must have IBM Informix Dynamic Server
with J/Foundation. You also need the Java Development Kit (JDK) to
compile your Java routines.

For information about how to write Java UDRs, refer to the J/Founda-
tion Developer’s Guide.
2-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Information About User-Defined Routines
Important: It is recommended that you use the DBDK to develop UDRs in external
languages because the DBDK enforces standards that facilitate migration between
different versions of the database server.

Information About User-Defined Routines
The database server stores information about UDRs in the following system
catalog tables:

� The sysprocedures system catalog table contains information about
the UDR, such as its name, owner, and whether it is a user-defined
function or user-defined procedure.

� The sysprocbody system catalog table contains the actual code of
SPL routines.

� The sysprocauth system catalog table contains information on which
users of the database server can execute a particular UDR.

The CREATE FUNCTION and CREATE PROCEDURE statements do not provide
the actual code that makes up the external routine. Instead, they store infor-
mation about the external routine (including the name of its executable file)
in the sysprocedures system catalog table. Therefore, unlike SPL routines, the
code for the body of an external routine does not reside in the system catalog
of the database.

The database server stores information on external languages that it supports
for UDRs in the following system catalog tables:

� The sysroutinelangs system catalog table contains information
about the external languages.

� The syslangauth system catalog table contains information on which
users of the database server can use a particular external language.

For more information, see “Creating an External-Language Routine” on
page 4-28.
Using a User-Defined Routine 2-5

Tasks That You Can Perform with User-Defined Routines
Tasks That You Can Perform with User-Defined
Routines
You can write UDRs to accomplish the following kinds of tasks:

� Extend support for built-in or UDTs

� Provide the end user with new functionality, called an end-user
routine

The following sections summarize the tasks that a UDR can perform. For
information on how to create a UDR, see Chapter 4, “Developing a User-
Defined Routine.”

Extending Data Type Support
Dynamic Server provides support for the following kinds of UDRs.

UDR Task
SPL
Routines

C
Routines

Java
Routines

For More
Information

Cast function Yes Yes Yes Chapter 7

Cost function No Yes No Chapter 13

End-user routine Yes Yes Yes page 2-17

Iterator function No Yes Yes Chapter 4

Negator function Yes Yes Yes Chapter 13

Opaque data type support
function

No Yes Yes Chapter 9

Operator function Yes Yes Yes Chapter 6

(1 of 2)
2-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Supporting User-Defined Data Types
Tip: When you want to perform an iteration in SPL, use the WITH RESUME
keywords.

To extend the support for one of these kinds of functions, you can write your
own version of the appropriate function and register it with the database.

Supporting User-Defined Data Types
When you create UDTs, you also provide the following routines:

� Support functions that the database server invokes implicitly to
operate on the data types

� Cast functions that the database server can invoke implicitly or that
users can specify explicitly in SQL statements to convert data from
one data type to another

� Optional operator-class functions that extend an index method, such
as B-tree or R-tree, to manage the new type

� Optional additional routines that other support functions or the end
user can call

Operator-class function No Yes No Chapter 11

Parallelizable UDR No Yes Yes Chapter 13

Statistics function No Yes Yes Chapter 13

Selectivity function No Yes No Chapter 13

User-defined aggregate Yes Yes Yes
(with some
limitations)

Chapter 8

UDR Task
SPL
Routines

C
Routines

Java
Routines

For More
Information

(2 of 2)
Using a User-Defined Routine 2-7

Supporting User-Defined Data Types
Cast Functions

A cast performs a conversion between two data types. The database server
allows you to write your own cast functions to perform casts. The following
sections summarize how you can extend a cast function for built-in and UDTs.
For more information on how to extend casts, refer to Chapter 7, “Creating
User-Defined Casts.”

Tip: If a DataBlade module defines a data type, it might also provide cast functions
between this data type and other data types in the database. For more information on
functions that a specific DataBlade module provides, refer to the user guide for that
DataBlade module.

Casting Between Built-In Data Types

The database server provides built-in casts that perform automatic conver-
sions between certain built-in data types. For more information on these
built-in casts, refer to the IBM Informix Guide to SQL: Reference.

You cannot create user-defined casts to allow conversions between two built-
in data types for which a built-in cast does not currently exist. For more infor-
mation on when you might want to write new cast functions, refer to
“Creating a User-Defined Cast” on page 7-5.
2-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Supporting User-Defined Data Types
Casting Between Other Data Types

You can create user-defined casts to perform conversions between most data
types, including opaque types, distinct types, row types, and built-in types.
You can write cast functions in SPL or in external languages. For example,
you can define casts for any of the following UDTs:

� Opaque data types

You can create casts to convert a UDT to other data types in the data-
base. Developers of opaque data types must also provide functions
that serve as cast functions between the internal and external repre-
sentations of the opaque type. For more information, see Chapter 9,
“Creating an Opaque Data Type.”

� Distinct data types

The database server cannot directly compare a distinct type to its
source type. However, the database server automatically registers
explicit casts from the distinct type to the source type and conversely.
Although a distinct type inherits the casts and functions of its source
type, the casts and functions that you define on a distinct type are not
available to its source type.

� Named row types

You can create casts to convert a named row data type to another
type. For information about how to cast between named row types
and unnamed row types, see the IBM Informix Guide to SQL: Tutorial.

For more information on how to create and register casts on extended data
types, refer to Chapter 7, “Creating User-Defined Casts.”
Using a User-Defined Routine 2-9

Supporting User-Defined Data Types
End-User Routines

An end-user routine is an SQL-invoked function that the SQL user can include
in an SQL statement. Such routines provide special functionality that appli-
cation users often need. An end-user routine might be as simple as “increase
the price of every item from XYZ Corporation by 5 percent” or something far
more complicated.

This section summarizes how you can extend an end-user routine that
operates on the following data types:

� Built-in data types

The database server provides many functions that end users can use
in SQL statements on built-in data types. These functions are called
built-in functions to distinguish them from SQL-invoked functions
that you define.

You cannot extend an existing built-in function on a built-in data
type that it supports. However, you can perform the following
extensions:

❑ Define your own end-user routines to provide new or similar
functionality.

❑ Define a UDR that has the same name as a built-in function but
operates on a different built-in data type.

For more information about built-in functions, see Chapter 6,
“Extending Operators and Built-In Functions.”

� Extended data types

You can write an end-user routine on any data type that is registered
in the database.

For more information about end-user routines, see “Creating an End-User
Routine” on page 2-17.
2-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Supporting User-Defined Data Types
Aggregate Functions

An aggregate function is an SQL-invoked function that takes values that
depend on all the rows that the query selects and returns information about
these rows. The database server supports aggregate functions that you write,
called user-defined aggregates. You can write user-defined aggregates in SPL or
in external languages.

You can extend an aggregate function for built-in and UDTs, as follows:

� The database server provides built-in aggregate functions, such as
COUNT, SUM, or AVG, that operate on built-in data types.

You cannot create a user-defined aggregate that has the same name
as a built-in aggregate and that handles a built-in data type. How-
ever, you can define a new aggregate that operates on a built-in data
type.

� When you create a UDT, you can write user-defined aggregates to
provide aggregates that handle this data type. The database server
provides two ways to extend aggregates:

❑ Extend a built-in aggregate to handle the data type.

You overload the support functions for the built-in aggregate.

❑ Define a new aggregate.

You write a user-defined aggregate with a name that is different
from any existing aggregate function. You then register a new
aggregate in the database.

Tip: If a DataBlade module defines a data type, it might also provide user-defined
aggregate functions on this data type. For more information on functions that a
specific DataBlade module provides, refer to the user guide for that DataBlade
module.

For more information about aggregate functions, see Chapter 8, “Creating
User-Defined Aggregates.” Aggregate functions use the support functions to
compute the aggregate result. For information on support functions, see
Chapter 10, “Writing Support Functions.”
Using a User-Defined Routine 2-11

Supporting User-Defined Data Types
Operator Functions

An operator function is an SQL-invoked function that has a corresponding
operator symbol (such as '=' or '+'). These operator symbols are used within
expressions in an SQL statement.

Operator binding is the implicit invocation of an operator function when an
operator symbol is used in an SQL statement. The database server implicitly
maps a built-in operator function name to a built-in operator. For example,
you can compare two values for equality in either of the following ways.

The following sections summarize how you can extend an operator on built-
in and UDTs. For more information on how to extend operators, refer to
Chapter 6, “Extending Operators and Built-In Functions.”

Operators on Built-In Data Types

The database server provides operator functions that operate on most built-
in data types. For a complete list of operator functions, see Chapter 6,
“Extending Operators and Built-In Functions.” You cannot extend an
operator function that operates on a built-in data type.

Operators on User-Defined Data Types

You can extend an existing operator to operate on a UDT. When you define
the appropriate operator function, operator binding enables SQL statements
to use both the function name and its operator symbol on the UDT. You can
write operator functions in SPL or an external language.

For example, suppose you create a data type, called Scottish, that represents
Scottish names, and you want to order the data type in a different way than
the U.S. English collating sequence. You might want the names McDonald and
MacDonald to appear together on a phone list. The default relational
operators (for example, =) for character strings do not achieve this ordering.

Method of Comparison Operator Used

Operator function equal(value1, value2)

Operator symbol value1 = value2
2-12 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Supporting User-Defined Data Types
To treat Mc and Mac as the same, you can create a compare() function that
compares two Scottish-name values, treating Mc and Mac as identical. Routine
overloading is the ability to use the same name for multiple functions to
handle different data types. The database server uses the compare (Scottish,
Scottish) function when it compares two Scottish-name values. For more
information, refer to “Overloading Routines” on page 3-13.

Tip: The relational operators (such as =) are the operator-class functions of the built-
in secondary-access method, the generic B-tree. Therefore, if you redefine the
relational operators to handle a UDT, you also enable that type to be used in a B-tree
index. For more information, see “Operator-Class Functions” in the following
section.

Operator-Class Functions

An operator class is the set of operators that the database server associates
with a secondary-access method for query optimization and building the index.
A secondary-access method (sometimes referred to as an index-access method)
is a set of database server functions that build, access, and manipulate an
index structure such as a B-tree, an R-tree, or an index structure that a
DataBlade module provides.

The query optimizer uses an operator class to determine if an index can be
considered in the cost analysis of query plans. The query optimizer can
consider use of the index for the given query when the following conditions
are true:

� An index exists on the particular column or columns in the query.

� For the index that exists, the operation on the column or columns in
the query matches one of the operators in the operator class that is
associated with the index.

For more information on how to optimize queries with UDRs, refer to
“Optimizing a User-Defined Routine” on page 13-3. For more information on
how to extend operator classes, refer to “Extending an Existing Operator
Class” on page 11-9.

Tip: If a DataBlade module provides a secondary-access method, it might also
provide operator classes with the strategy and support functions. For more infor-
mation on functions that a specific DataBlade module provides, refer to the user guide
for that DataBlade module.
Using a User-Defined Routine 2-13

Supporting User-Defined Data Types
Operator-Class Functions on Built-In Data Types

The database server provides the default operator class for the built-in
secondary-access method, the generic B-tree. These operator-class functions
handle the built-in data types. You can write new operator-class functions
that operate on built-in data types if you want to do the following:

� Extend the default operator class for the generic B-tree to redefine the
ordering scheme that these operators support.

The compare() function implements the ordering scheme for a B-tree
index. The strategy functions (greaterthan(), lessthan(), and so on)
let the query optimizer use the index for optimizing SQL statements.

Because of routine overloading, these functions can have the same
name as the functions in the default operator class. For more infor-
mation, refer to “Overloading Routines” on page 3-13.

� Define a new operator class to provide an entirely new set of
operators that operate on the built-in data type.

You write operator-class functions with names that are different from
any existing operating-class functions associated with the
secondary-access method. You then register a new operator class that
contains these new operators. The query optimizer can choose an
index on this data type when the index uses this new operator class
and the SQL statement contains one of the operators in this operator
class.
2-14 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Supporting User-Defined Data Types
Operator Classes on User-Defined Data Types

When you create a opaque data type, you can write operator-class functions
to do the following:

� Extend the default operator class for an existing secondary-access
method to handle the indexing scheme that these operators support.

You write operator-class functions with the same names as those in
the existing operator class. These functions extend the existing oper-
ator class by implementing its indexing scheme on the opaque data
type. The query optimizer can choose an index on this data type
when the index uses this operator class and the SQL statement con-
tains one of the operators in this operator class.

Because of routine overloading, these functions can have the same
name as the functions in the default operator class. For more infor-
mation on routine overloading, refer to “Overloading Routines” on
page 3-13.

� Define a new operator class to provide an entirely new set of
operators that operate on the opaque type.

You supply the support and strategy functions that the access
method requires. These functions define the new operators that the
query optimizer can recognize as associated with the secondary-
access method. The requirements for the support and strategy func-
tions vary from one access method to another. You must consult the
documentation for the access method before defining a new operator
class.
Using a User-Defined Routine 2-15

Supporting User-Defined Data Types
Optimization Functions

Optimization functions help the query optimizer determine the most efficient
query plan for a particular SQL statement. These optimization functions are
as follows.

The database server provides optimization functions for the built-in data
types. You can write an optimization function on any UDT that is registered
in the database. You cannot extend existing optimization for built-in types
through optimization functions.

For more information about optimization functions, see Chapter 13,
“Improving UDR Performance.”

Opaque Data Type Support Functions

When you define a new opaque data type, you provide support functions
that enable the database server to operate on the data type. The database
server requires some support functions, and others are optional. The
following list shows the standard functions that you define to support
opaque data types:

� Text input and output routines

� Binary send and receive routines

� Text import and export routines

� Binary import and export routines

Optimization Function Description

Negator function Specifies the function to use for a NOT condition that
involves a Boolean UDR

Cost function Specifies the cost factor for execution of a particular UDR

Selectivity function Specifies the percentage of rows for which a Boolean UDR
is expected to return true

Parallel UDR A UDR that can be run in parallel and therefore can be run
in parallel queries

Statistics function Creates distribution statistics for a UDT
2-16 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Creating an End-User Routine
For more information on support functions for opaque data types, refer to
Chapter 10, “Writing Support Functions.”

Access-Method Purpose Functions

An access method is a set of functions that the database server uses to access
and manipulate a table or an index. The two types of access methods are as
follows:

� Primary-access methods, which create and manipulate tables

A primary-access method is a set of routines that perform all the oper-
ations needed to make a table available to a database server, such as
create, drop, insert, delete, update, and scan. The database server
provides a built-in primary-access method.

� Secondary-access methods, which create and manipulate indexes

A secondary-access method is a set of routines that perform all the oper-
ations needed to make an index available to a database server, such
as create, drop, insert, delete, update, and scan. The database server
provides the B-tree and R-tree secondary-access methods. For infor-
mation about R-tree indexes, refer to the IBM Informix R-Tree Index
User’s Guide.

DataBlade modules can provide other primary- and secondary-access
methods. For more information, refer to the IBM Informix Virtual-Table
Interface Programmer’s Guide and the IBM Informix Virtual-Index Interface
Programmer’s Guide.

Creating an End-User Routine
You can write end-user routines to accomplish the following tasks:

� Encapsulate multiple SQL statements

� Create triggered actions for multiple applications

� Restrict who can read data, change data, or create objects

� Create iterators
Using a User-Defined Routine 2-17

Creating an End-User Routine
Routines also can accomplish tasks that address new technologies, including
the following ones:

� Manipulate large objects

� Manage new data domains, such as images, web publishing, and
spatial

Encapsulating Multiple SQL Statements

You create a routine to simplify writing programs or to improve performance
of SQL-intensive tasks.

Simplifying Programs

A UDR can consolidate frequently performed tasks that require several SQL
statements. Both SPL and external languages offer program control state-
ments that extend what SQL can accomplish alone. You can test database
values in a UDR and perform the appropriate actions for the values that the
routine finds.

By encapsulating several statements in a single routine that the database
server can call by name, you reduce program complexity. Different programs
that use the same code can execute the same routine, so that you need not
include the same code in each program. The code is stored in only one place,
eliminating duplicate code.

Simplifying Changes

UDRs are especially helpful in a client/server environment. If a change is
made to application code, it must be distributed to every client computer. A
UDR resides in the database server, so only database servers need to be
changed.

Instead of centralizing database code in client applications, you create UDRs
routines to move this code to the database server. This separation allows
applications to concentrate on user-interface interaction, which is especially
important if multiple types of user interfaces are required.
2-18 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Creating an End-User Routine
Improving Performance Using SPL

Because an SPL routine contains native database language that the database
server parses and optimizes as far as possible when you create the routine,
rather than at runtime, SPL routines can improve performance for some tasks.
SPL routines can also reduce the amount of data transferred between a client
application and the database server.

For more information on performance considerations for SPL routines, refer
to Chapter 13, “Improving UDR Performance.”

Creating Triggered Actions

An SQL trigger is a database mechanism that executes an action automatically
when a certain event occurs. The event that can trigger an action can be an
INSERT, DELETE, or UPDATE statement on a specific table. The table on which
the triggered event operates is called the triggering table.

An SQL trigger is available to any user who has permission to use it. When
the trigger event occurs, the database server executes the trigger action. The
actions can be any combination of one or more INSERT, DELETE, UPDATE,
EXECUTE PROCEDURE, or EXECUTE FUNCTION statements.

Because a trigger resides in the database and anyone who has the required
privilege can use it, a trigger lets you write a set of SQL statements that
multiple applications can use. It lets you avoid redundant code when
multiple programs need to perform the same database operation. By
invoking triggers from the database, a DBA can ensure that data is treated
consistently across application tools and programs.

SPL
Using a User-Defined Routine 2-19

Creating an End-User Routine
You can use triggers to perform the following actions as well as others that
are not found in this list:

� Create an audit trail of activity in the database

For example, you can track updates to the orders table by updating
corroborating information in an audit table.

� Implement a business rule

For example, you can determine when an order exceeds a customer’s
credit limit and display a message to that effect.

� Derive additional data that is not available within a table or within
the database

For example, when an update occurs to the quantity column of the
items table, you can calculate the corresponding adjustment to the
total_price column.

For more information on triggers, refer to the IBM Informix Guide to SQL:
Tutorial.

Restricting Access to a Table

SPL routines offer the ability to restrict access to a table. For example, if a
database administrator grants insert permissions to a user, that user can use
ESQL/C, DB-Access, or an application program to insert a row. This situation
could create a problem if an administrator wants to enforce any business
rules.

Using the extra level of security that SPL routines provide, you can enforce
business rules. For example, you might have a business rule that a row must
be archived before it is deleted. You can write an SPL routine that accom-
plishes both tasks and prohibits users from directly accessing the table.

Rather than granting insert privileges, an administrator can force users to
execute a routine to perform the insert.

SPL
2-20 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Invoking a User-Defined Routine
Creating Iterators

An iterator function returns an active set of items. Each iteration of the
function returns one item of the active set. To execute an iterator function,
you must associate the function with a database cursor.

The database server does not provide any built-in iterator functions.
However, you can write iterator functions and register them with the
ITERATOR routine modifier. For more information, see “Using an Iterator
Function” on page 4-11.

Invoking a User-Defined Routine
A UDR can be invoked either explicitly or implicitly. For more information,
see Chapter 3, “Running a User-Defined Routine.”

Explicit Invocation

You can use the EXECUTE PROCEDURE and EXECUTE FUNCTION statements
to execute a UDR from:

� A UDR

� DB-Access

� A client application (such as an ESQL/C application)

In addition, you can use a user-defined function in an SQL expression in the
SELECT clause or WHERE clause. You cannot use a procedure in an SQL
expression because a procedure does not return a value.
Using a User-Defined Routine 2-21

Invoking a User-Defined Routine
Implicit Invocation

The database server can invoke a UDR implicitly for following reasons.

Implicit Call of UDR UDR Called

Built-in operator binding Operator function

Implicit casting Implicit cast function

Opaque-type processing Opaque-type support functions and statistics functions

Query processing Optimization functions and operator-class functions
2-22 IBM Informix User-Defined Routines and Data Types Developer’s Guide

3
Chapter
Running a User-Defined Routine
In This Chapter . 3-3

Invoking a UDR in an SQL Statement 3-3
Invoking a UDR with an EXECUTE Statement 3-4

Invoking a Function 3-4
Using a SELECT Statement in a Function Argument. 3-4
Invoking a Procedure 3-5

Invoking a User-Defined Function in an Expression 3-5
Invoking a Function That Is Bound to an Operator 3-5

Invoking a UDR in an SPL Routine 3-6

Executing a User-Defined Routine 3-6
Parsing the SQL Statement 3-7
Optimizing the SQL Statement 3-7
Executing the Routine 3-7

Executing an SPL Routine 3-8
Executing an External Language Routine 3-8

Understanding Routine Resolution 3-11
The Routine Signature 3-12

Using ANSI and Non-ANSI Routine Signatures 3-12
Using the Routine Signature to Perform DBA Tasks 3-13

Overloading Routines 3-13
Creating Overloaded Routines 3-13
Assigning a Specific Routine Name 3-14
Specifying Overloaded Routines During Invocation 3-15
Overloading Built-In SQL Functions 3-16

3-2 IBM
The Routine-Resolution Process 3-16
The Routine Signature 3-17
Candidate List of Routines 3-17
Precedence List of Data Types 3-18
Precedence List for Built-In Data Types 3-19

Routine Resolution with User-Defined Data Types. 3-22
Routine Resolution in a Type Hierarchy 3-22
Routine Resolution with Distinct Data Types 3-24
Routine Resolution with Built-In Data Types as Source 3-26
Routine Resolution with Collection Data Types 3-26

Null Arguments in Overloaded Routines 3-26
 Informix User-Defined Routines and Data Types Developer’s Guide

In This Chapter
This chapter discusses the following topics:

� Invoking a UDR in an SQL Statement

� Invoking a UDR in an SPL Routine

� Executing a User-Defined Routine

� Understanding Routine Resolution

Invoking a UDR in an SQL Statement
You can invoke a UDR from within an SQL statement in the following ways:

� You can directly invoke a UDR with the EXECUTE FUNCTION or the
EXECUTE PROCEDURE statement.

� You can invoke a user-defined function within an expression.
Running a User-Defined Routine 3-3

Invoking a UDR with an EXECUTE Statement
Invoking a UDR with an EXECUTE Statement
For details about the syntax of the EXECUTE FUNCTION and EXECUTE
PROCEDURE statements, see the IBM Informix Guide to SQL: Syntax. For more
information about creating UDRs, refer to Chapter 4, “Developing a User-
Defined Routine.”

Invoking a Function

Suppose result is a variable of type INTEGER. The following example shows
how to register and invoke a C user-defined function called nFact() that
returns N-factorial (n!):

CREATE FUNCTION nFact(arg1 n)
RETURNING INTEGER;
SPECIFIC nFactorial
WITH (HANDLESNULLS, NOT VARIANT)
EXTERNAL NAME '/usr/lib/udtype2.so(nFactorial)'
LANGUAGE C;

EXECUTE FUNCTION nFact (arg1);

Using a SELECT Statement in a Function Argument

As another example, suppose you create the following type hierarchy and
functions:

CREATE ROW TYPE emp_t
(name VARCHAR(30), emp_num INT, salary DECIMAL(10,2));

CREATE ROW TYPE trainee_t (mentor VARCHAR(30)) UNDER emp_t;
CREATE TABLE trainee OF TYPE trainee_t;
INSERT INTO trainee VALUES ('sam', 1234, 44.90, 'joe');

CREATE FUNCTION func1 (arg1 trainee_t) RETURNING row;
DEFINE newrow trainee_t;
LET newrow = ROW('sam', 1234, 44.90, 'juliette');
RETURN newrow;
END FUNCTION;

The following EXECUTE FUNCTION statement invokes the func1() function,
which has an argument that is a query that returns a row type:

EXECUTE FUNCTION
func1 ((SELECT * from trainee where emp_num = 1234)) ...

Important: When you use a query for the argument of a user-defined function
invoked with the EXECUTE FUNCTION statement, you must enclose the query in an
additional set of parentheses.
3-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Invoking a User-Defined Function in an Expression
Invoking a Procedure

The following EXECUTE PROCEDURE statement invokes the log_compare()
function:

EXECUTE PROCEDURE log_compare (arg1, arg2)

Invoking a User-Defined Function in an Expression
You can invoke a user-defined function in an expression in the select list of a
SELECT statement, or in the WHERE clause of an INSERT, SELECT, UPDATE, or
DELETE statement.

For example, with the factorial function described in “Invoking a Function”
on page 3-4, you might write the following SELECT statement:

SELECT * FROM tab_1 WHERE nFact(col1) > col3

Invoking a Function That Is Bound to an Operator
Functions that are bound to specific operators get invoked automatically
without explicit invocation. Suppose an equal() function exists that takes two
arguments of type1 and returns a Boolean. If the equal operator (=) is used
for comparisons between two columns, col_1 and col_2, that are of type1, the
equal() function is invoked automatically. For example, the following query
implicitly invokes the appropriate equal() function to evaluate the WHERE
clause:

SELECT * FROM tab_1
WHERE col_1 = col_2

The preceding query evaluates as though it had been specified as follows:

SELECT * FROM tab_1
WHERE equal (col_1, col_2)
Running a User-Defined Routine 3-5

Invoking a UDR in an SPL Routine
Invoking a UDR in an SPL Routine
You use the CALL statement only to invoke a UDR from within an SPL
program. You can use CALL to invoke both user-defined functions and user-
defined procedures, as follows:

� When you invoke a user-defined function with the CALL statement,
you must include a RETURNING clause and the name of the value or
values that the function returns.

The following statement invokes the equal() function:
CALL equal (arg1, arg2) RETURNING result

You cannot use the CALL statement to invoke a user-defined function
that contains an OUT parameter.

� A RETURNING clause is never present when you invoke a user-
defined procedure with the CALL statement because a procedure
does not return a value.

The following CALL statement invokes the log_compare()
procedure:

CALL log_compare (arg1, arg2)

Executing a User-Defined Routine
When you invoke a UDR, the database server must execute it. To execute a
UDR in one of these SQL statements, the database server takes the following
steps:

1. Calls the query parser

2. Calls the query optimizer

3. Executes the UDR
3-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Parsing the SQL Statement
Parsing the SQL Statement
The query parser breaks the SQL statement into its syntactic parts. If the
statement contains a UDR, the query parser performs the following steps on
the SQL statement:

� Parses the routine call to obtain the routine signature

� Performs any necessary routine resolution on the UDR calls to
determine which UDR to execute

For a description of routine resolution, refer to “Understanding Routine
Resolution” on page 3-11.

Optimizing the SQL Statement
Once the query parser has separated the SQL statement into its syntactic
parts, the query optimizer can create a query plan that efficiently organizes the
execution of the SQL statement. The query optimizer formulates a query plan
to fetch the data rows that are required to process a query.

For more information, see “Optimizing a User-Defined Routine” on
page 13-3.

Executing the Routine
For SPL routines, the routine manager executes the SPL p-code that the
database server has compiled and stored in the sysprocbody system catalog
table.

For routines written in external languages, the routine manager executes the
UDR in the appropriate language. The routine manager is the specific part of
the database server that manages the execution of UDRs.
Running a User-Defined Routine 3-7

Executing the Routine
Executing an SPL Routine

Unlike a routine in C or Java, whose executable code resides in an external
file, the executable code for an SPL routine is stored directly in the
sysprocbody system catalog table of the database. When you create an SPL
routine, the database server parses the SPL routine, compiles it, and stores the
executable code in the sysprocbody system catalog table. When a statement
invokes an SPL routine, the database server executes the SPL routine from the
internally-stored compiled code.

When you execute an SPL routine with the EXECUTE FUNCTION, EXECUTE
PROCEDURE, or CALL statement, the database server performs the following
tasks:

� Retrieves the p-code, execution plan, and dependency list from the
system catalog and converts them to binary format

� Parses and evaluates the arguments passed by the EXECUTE
FUNCTION, EXECUTE PROCEDURE, or CALL statement

� Checks the dependency list for each SQL statement that will be
executed

If an item in the dependency list indicates that reoptimization is
needed, optimization occurs at this point. If an item needed in the
execution of the SQL statement is missing (for example, a column or
table has been dropped), an error occurs at this time.

� Executes the p-code instructions

An SPL routine with the WITH RESUME clause of the RETURN statement
causes multiple executions of the same SPL routine in the same routine
sequence. However, an SPL routine does not have access to the user state of
its routine sequence.

Executing an External Language Routine

The routine manager performs the following steps to handle execution of
external-language routines:

� Loads the external-language executable code

� Creates a routine sequence

� Manages the actual execution of the UDR

SPL
3-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Executing the Routine
Loading an Executable Code into Memory

To execute a UDR written in an external language, the executable code must
reside in database server memory. On the first invocation of a UDR, the
routine manager loads into memory the file that contains the UDR. The
database server locates that file from the externalname column in the syspro-
cedures system catalog table.

Use the onstat command-line utility with the -g dll option to view the
dynamically loaded libraries in which your UDRs reside. For information
about the onstat command, refer to the Administrator’s Reference. ♦

You must install shared libraries and .jar files on all database servers that
need to run the UDRs, including database servers involved in Enterprise
Replication (ER) and High-Availability Data Replication (HDR). The shared
object files and .jar files need to be installed under the same absolute path
name.

After the routine manager has loaded an external-language routine into
memory, this file remains in memory until it is explicitly unloaded or the
database server is shut down. For more information, see “Dropping a User-
Defined Routine” on page 12-11.

Creating the Routine Sequence

The routine sequence contains dynamic information that is necessary to
execute an instance of the routine in the context of an SQL or SPL statement.
The routine manager receives information about the UDR from the query
parser. With this information, the routine manager creates a routine sequence
for the associated UDR. Each instance of a UDR, implicit or explicit, in an SQL
or SPL statement creates at least one independent routine sequence.
Sometimes, a routine sequence consists of the single call to the UDR, as
follows:

EXECUTE PROCEDURE update_log(log_name)

However, often a UDR can be invoked on more than a row. For example, in
the following SELECT statement, the running_avg() function is called for each
matching row of the query:

SELECT name, running_avg(price)
FROM stock_history
WHERE running_avg(price) > 5.00

C

Running a User-Defined Routine 3-9

Executing the Routine
In the preceding query, the WHERE clause causes the database server to
invoke two functions: the running_avg() UDR and, implicitly, the built-in
greaterthan() function. The database server calls the running_avg() function
for each row that it processes and executes the function in its own separate
routine sequence, independent from the routine sequence for running_avg()
in the SELECT clause.

For a fragmented stock_history table, the routine instance in the WHERE
clause might have more than one routine sequence if running_avg() was
created with the PARALLELIZABLE option. For example, if the stock_history
table has four fragments, the database server uses five routine sequences to
execute running_avg() in the WHERE clause:

� One routine sequence for the primary thread

� Four routine sequences, one for each fragment in the table, for the
secondary PDQ threads

Each individual call to a UDR within a routine sequence is called a routine
invocation.

The routine manager creates a routine-state space to hold UDR information that
the routine sequence needs. The database server obtains this information
from the query parser and passes it to the routine manager. The routine-state
space holds the following information about a UDR:

� Argument information:

❑ The number of arguments passed to the UDR

❑ The data types of each argument

� Return-value information (user-defined functions only):

❑ The number of return values passed from the UDR

❑ The data type of each return value

Important: This argument information in the routine-state space does not include
the actual argument values. It contains information only about the argument data
types.

The routine-state space also includes private user-state information for use by
later invocations of the routine in the same routine sequence. The UDR can
use this information to optimize the subsequent invocations. The user-state
information is stored in the routine-state space.
3-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Understanding Routine Resolution
For a C UDR, the routine manager creates an MI_FPARAM structure to hold
information about routine arguments and return values. The MI_FPARAM
structure that the routine manager creates to hold information about routine
arguments and return values can also contain a pointer to user-state infor-
mation. For more information, see the chapter on how to execute UDRs in the
IBM Informix DataBlade API Programmer’s Guide. ♦

For a Java UDR, the UDREnv interface provides most of the information that
MI_FPARAM provides for a C UDR. This interface has public methods for
returning the SQL data types of the return values, for iterator use, and for the
user-state pointer. The interface also provides facilities for logging and
tracing. For more information, refer to the J/Foundation Developer’s Guide. ♦

Managing Routine Execution

After the routine sequence exists, the routine manager can execute the UDR,
as follows:

1. It pushes arguments onto the stack for use by the routine.

2. It invokes the routine.

3. It handles the return of any UDR result.

All invocations of the same UDR within the same routine sequence have
access to the same routine-state space.

Understanding Routine Resolution
You can assign the same name to different UDRs, as long as the routine
signature is unique. It is the routine signature that uniquely identifies a UDR,
not the routine name alone. A routine that has many versions is called an
overloaded routine. When you invoke an overloaded routine, the database
server must uniquely identify which routine to execute. This process of
identifying the UDR to execute is called routine resolution.

This section provides the following information about routine resolution:

� What is the routine signature?

� What is an overloaded routine?

C

Java
Running a User-Defined Routine 3-11

The Routine Signature
� How to you create overloaded routines?

� What is the routine-resolution process?

You need to understand the routine-resolution process to:

� Obtain the data results that you expect from a UDR.

� Avoid unintentional side effects if the wrong UDR executes.

� Understand when you need to write an overloaded routine.

The Routine Signature
The routine signature uniquely identifies the routine. The query parser uses
the routine signature when you invoke a UDR. The routine signature includes
the following information:

� The type of routine: procedure or function

� The routine name

� The number of parameters

� The data types of the parameters

� The order of the parameters

� The owner name ♦

Important: The signature of a routine does not include return types. Consequently,
you cannot create two user-defined functions that have the same signature but
different return types.

Using ANSI and Non-ANSI Routine Signatures

In a database that is not ANSI compliant, the routine signature must be unique
within the entire database, irrespective of the owner. If you explicitly qualify
the routine name with an owner name, the signature includes the owner
name as part of the routine name.

In an ANSI-compliant database, the routine signature must be unique within
the name space of the user. The routine name always begins with the owner,
in the following format:

owner.routine_name

♦

ANSI

ANSI
3-12 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Overloading Routines
When you register the routine signature in a database with the CREATE
FUNCTION or CREATE PROCEDURE statement, the database server stores the
routine signature in the sysprocedures system catalog table. For more infor-
mation, see “Registering a User-Defined Routine” on page 4-23.

Using the Routine Signature to Perform DBA Tasks

The database server uses the routine signature when you use SQL statements
to perform DBA tasks (DROP, GRANT, REVOKE, and UPDATE STATISTICS) on
routines. The signature identifies the routine on which to perform the DBA
task. For example, the DROP statement that Figure 3-1 shows uses a routine
signature.

Overloading Routines
Routine overloading refers to the ability to assign one name to multiple
routines and specify parameters of different data types on which the routines
can operate. Because the database server supports routine overloading, you
can register more than one UDR with the same name.

Creating Overloaded Routines

The database server can support routine overloading because it supports
polymorphism: the ability to have many entities with the same name and to
choose the entity most relevant to a particular usage.

You can have more than one routine with the same name but different
parameter lists, as in the following situations:

� You create a routine with the same name as a built-in function, such
as equal(), to process a new UDT.

� You create type hierarchies, in which subtypes inherit data represen-
tation and functions from supertypes.

Figure 3-1
Example of

Routine Signature

DROP PROCEDURE append (SET, INT)

Type of routine Routine name Parameter order and data type
Running a User-Defined Routine 3-13

Overloading Routines
� You create distinct types, which are data types that have the same
internal storage representation as an existing data type, but have
different names. Distinct types cannot be compared to the source
type without casting. Distinct types inherit UDRs from their source
types.

For example, you might create each of the following user-defined functions
to calculate the area of different data types (each data type represents a
different geometric shape):

CREATE FUNCTION area(arg1 circle) RETURNING DECIMAL...
CREATE FUNCTION area(arg1 rectangle) RETURNING DECIMAL....
CREATE FUNCTION area(arg1 polygon) RETURNING DECIMAL....

These three CREATE FUNCTION statements create an overloaded routine
called area(). Each CREATE FUNCTION statement registers an area() function
for a particular argument type. You can overload a routine so that you have
a customized area() routine for every data type that you want to evaluate.

The advantage of routine overloading is that you do not need to invent a
different name for a routine that performs the same task for different
arguments. When a routine has been overloaded, the database server can
choose which routine to execute based on the arguments of the routine when
it is invoked.

Assigning a Specific Routine Name

Due to routine overloading, the database server might not be able to uniquely
identify a routine by its name alone. When you register an overloaded UDR,
you can assign a specific name to a particular signature of a routine. The
specific name serves as a shorthand identifier that refers to a particular
overloaded version of a routine.

A specific name can be up to 128 characters long and is unique in the
database. Two routines in the same database cannot have the same specific
name, even if they have different owners. To assign a unique name to an
overloaded routine with a particular data type, use the SPECIFIC keyword
when you create the routine. You specify the specific name, in addition to the
routine name, in the CREATE PROCEDURE or CREATE FUNCTION statement.
3-14 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Overloading Routines
You can use the specific name instead of the full routine signature in the
following SQL statements:

� ALTER FUNCTION, ALTER PROCEDURE, ALTER ROUTINE

� DROP FUNCTION, DROP PROCEDURE, DROP ROUTINE

� GRANT

� REVOKE

� UPDATE STATISTICS

For example, suppose you assign the specific name eq_udtype1 to the UDR
that the following statement creates:

CREATE FUNCTION equal (arg1 udtype1, arg2 udtype1)
RETURNING BOOLEAN
SPECIFIC eq_udtype1
EXTERNAL NAME

'/usr/lib/udtype1/lib/libbtype1.so(udtype1_equal)'
LANGUAGE C

You can then refer to the UDR with either the routine signature or the specific
name. The following two GRANT statements are equivalent:

GRANT EXECUTE ON equal(udtype1, udtype1) to mary
GRANT EXECUTE ON SPECIFIC eq_udtype1 to mary

Specifying Overloaded Routines During Invocation

When you invoke an overloaded routine, you must specify an argument list
for the routine. If you invoke an overloaded routine by the routine name only,
the routine-resolution process fails because the database server cannot
uniquely identify the routine without the arguments.

For example, the following SQL statement shows how you can invoke the
overloaded equal() function on a new data type, udtype1:

CREATE TABLE atest (col1 udtype1, col2 udtype1, ...)
...
SELECT * FROM employee WHERE equal(col1, col2)
Running a User-Defined Routine 3-15

The Routine-Resolution Process
Because the equal() function is an operator function bound to the equal (=)
symbol, you can also invoke the equal() function with an argument on either
side of the operator symbol, as follows:

SELECT * FROM employee WHERE col1 = col2

In SPL, the following statements show ways that you can invoke the equal()
function:

EXECUTE FUNCTION equal(col1, col2) INTO result

CALL equal(col1, col2) RETURNING result
LET result = equal(col1, col2)

♦

For more information about overloaded operator functions, refer to
Chapter 6, “Extending Operators and Built-In Functions.”

Overloading Built-In SQL Functions

The database server provides built-in SQL functions that provide some basic
mathematical operations. You can overload most of these built-in SQL
functions. For example, you might want to create a sin() function on a UDT
that represents complex numbers. For a complete list of built-in SQL
functions that you can overload, see “Built-In Functions” on page 6-7.

The Routine-Resolution Process
Routine resolution refers to the process that the database server uses when you
invoke a routine. The database server also invokes routine resolution when
another routine invokes a UDR. If the routine is overloaded, the query parser
resolves the UDR from the system catalog tables, based on its routine
signature. The parser performs any routine resolution necessary to determine
which UDR to execute.

SPL
3-16 IBM Informix User-Defined Routines and Data Types Developer’s Guide

The Routine-Resolution Process
The Routine Signature

When a user or another routine invokes a routine, the database server
searches for a routine signature that matches the routine name and
arguments. If no exact match exists, the database server searches for a
substitute routine, as follows:

1. When several arguments are passed to a routine, the database server
searches the sysprocedures system catalog table for a routine whose
signature is an exact match for the invoked routine:

a. The database server checks for a candidate routine that has the
same data type as the leftmost argument.

For more information, see “Candidate List of Routines” on
page 3-17.

b. If no exact match exists for the first argument, the database
server searches the candidate list of routines using a precedence
order of data types.

For more information, see “Precedence List of Data Types” on
page 3-18.

2. The database server continues matching the arguments from left to
right. If the database contains a routine with a matching signature,
the database server executes this routine.

Important: If one of the arguments for the routine is null, more than one routine
might match the routine signature. If that situation occurs, the database server
generates an error. For more information, see “Null Arguments in Overloaded
Routines” on page 3-26.

Candidate List of Routines

The database server finds a list of candidate routines from the sysprocedures
system catalog table that have the following characteristics:

� The same routine name

� The same routine type (function or procedure)

� The same number of arguments

� The Execute privilege on the routine in the current session

� Belong to the current user or user informix ♦ANSI
Running a User-Defined Routine 3-17

The Routine-Resolution Process
If the candidate list does not contain a UDR with the same data type as an
argument specified in the routine invocation, the database server checks for
the existence of cast routines that can implicitly convert the argument to a
data type of the parameter of the candidate routines.

For example, suppose you create the following two casts and two routines:

CREATE IMPLICIT CAST (type1 AS type2)
CREATE IMPLICIT CAST (type2 AS type1)
CREATE FUNCTION g(type1, type1) ...
CREATE FUNCTION g(type2, type2) ...

Suppose you invoke function g with the following statement:

EXECUTE FUNCTION g(a_type1, a_type2)

The database server considers both functions as candidates. The routine-
resolution process selects the function g(type1, type1) because the leftmost
argument is evaluated first. The database server executes the second cast,
cast(type2 AS type1), to convert the second argument before the function
g(type1, type1) executes.

For more information about casting, refer to Chapter 7, “Creating User-
Defined Casts.”

Tip: Consider the order in which the database casts data and resolves routines as part
of your decision to overload a routine.

Precedence List of Data Types

To determine which routine in the candidate list might be appropriate to an
argument type, the database server builds a precedence list of data types for
the argument. The routine-resolution process builds a precedence list, which
is a partially ordered list of data types to match. It creates the precedence list
as follows (from highest to lowest):

1. The database server checks for a routine whose data type matches
the argument passed to a routine.

2. If the argument passed to the routine is a named row type that is a
subtype in a type hierarchy, the database server checks up the type-
hierarchy tree for a routine to execute.

For more information, refer to “Routine Resolution with User-
Defined Data Types” on page 3-22.
3-18 IBM Informix User-Defined Routines and Data Types Developer’s Guide

The Routine-Resolution Process
3. If the argument passed to the routine is a distinct type, the database
server checks the source data type for a routine to execute.

If the source type is itself a distinct type, the database server checks
the source type of that distinct type. For more information, refer to
“Routine Resolution with Distinct Data Types” on page 3-24.

4. If the argument passed to the routine is a built-in data type, the
database server checks the candidate list for a data type in the built-
in data type precedence list for the passed argument.

For more information, refer to “Precedence List for Built-In Data
Types” on page 3-19.

If a match exists in this built-in data type precedence list, the data-
base server searches for an implicit cast function.

5. The database server adds implicit casts of the data types in steps 1
through 4 to the precedence list, in the order that the data types were
added.

6. If the argument passed to the routine is a collection type, the database
server adds the generic type of the collection to the precedence list
for the passed argument.

7. The database server adds data types for which there are implicit casts
between any data type currently on the precedence list (except the
built-in data types) and some other data type.

If no qualifying routine exists, the database server returns the following error
message:

-674: Routine routine-name not found.

If the routine-resolution process locates more than one qualifying routine, the
database server returns this error message:

-9700: Routine routine-name cannot be resolved.

Precedence List for Built-In Data Types

If a routine invocation contains a data type that is not included in the
candidate list of routines, the database server tries to find a candidate routine
that has a parameter contained in the precedence list for the data type.
Figure 3-2 lists the precedence for the built-in data types when an argument
in the routine invocation does not match the parameter in the candidate list.
Running a User-Defined Routine 3-19

The Routine-Resolution Process
Figure 3-2
Precedence of Built-In Data Types

Data Type Precedence List

CHAR VARCHAR, LVARCHAR

VARCHAR None

NCHAR NVARCHAR

NVARCHAR None

SMALLINT INT, INT8, DECIMAL, SMALLFLOAT, FLOAT

INT INT8, DECIMAL, SMALLFLOAT, FLOAT, SMALLINT

INT8 DECIMAL, SMALLFLOAT, FLOAT, INT, SMALLINT

SERIAL INT, INT8, DECIMAL, SMALLFLOAT, FLOAT, SMALLINT

SERIAL8 INT8, DECIMAL, SMALLFLOAT, FLOAT, INT, SMALLINT

DECIMAL SMALLFLOAT, FLOAT, INT8, INT, SMALLINT

SMALLFLOAT FLOAT, DECIMAL, INT8, INT, SMALLINT

FLOAT SMALLFLOAT, DECIMAL, INT8, INT, SMALLINT

MONEY DECIMAL, SMALLFLOAT, FLOAT, INT8, INT, SMALLINT

DATE None

DATETIME None

INTERVAL None

BYTE None

TEXT None
3-20 IBM Informix User-Defined Routines and Data Types Developer’s Guide

The Routine-Resolution Process
The following example shows overloaded test functions and a query that
invokes the test function. This query invokes the function with a DECIMAL
argument, test(2.0). Because a test function for a DECIMAL argument does
not exist, the routine-resolution process checks for the existence of a test
function for each data type that the precedence list in Figure 3-2 shows.

CREATE FUNCTION test(arg1 INT) RETURNING INT...
CREATE FUNCTION test(arg1 MONEY) RETURNING MONEY....

CREATE TABLE mytab (a real, ...
SELECT * FROM mytab WHERE a=test(2.0);

Figure 3-3 shows the order in which the database server performs a search for
the overloaded function, test(). The database server searches for a qualifying
test() function that takes a single argument of type INTEGER.

Figure 3-3
Example of Data
Type Precedence

During Routine
Resolution

 test(x INTEGER)

 test(x INT8)

test(x SMALLFLOAT)

Start routine search.

End routine search.

test(x FLOAT)
Running a User-Defined Routine 3-21

Routine Resolution with User-Defined Data Types
Routine Resolution with User-Defined Data Types
The following sections discuss routine resolution when one or more of the
arguments in the routine signature are UDTs.

Routine Resolution in a Type Hierarchy

A type hierarchy is a relationship that you define among named row types in
which subtypes inherit representation (data fields) and behavior (routines,
operators, rules) from a named row above it (supertype) and can add
additional fields and routines. The subtype is said to inherit the attributes and
behavior from the supertype.

For information about creating type hierarchies, refer to the discussion of
type and table hierarchies in the IBM Informix Database Design and
Implementation Guide.

When a UDR has named row types in its parameter list, the database server
must resolve which type in the type hierarchy to pass to the UDR. When a
data type in the argument list does not match the data type of the parameter
in the same position of the routine signature, the database server searches for
a routine with a parameter in the same position that is the closest supertype
of that argument.

Suppose you create the following type hierarchy and register the overloaded
function bonus() on the root supertype, emp, and the trainee subtype:

CREATE ROW TYPE emp
(name VARCHAR(30),
 age INT,
 salary DECIMAL(10,2));

CREATE ROW TYPE trainee UNDER emp ...
CREATE ROW TYPE student_emp (gpa FLOAT) UNDER trainee;

CREATE FUNCTION bonus (emp,INT) RETURNS DECIMAL(10,2) ...
CREATE FUNCTION bonus(trainee,FLOAT) RETURNS DECIMAL(10,2).

Then you invoke the bonus() function with the following statement:

EXECUTE FUNCTION bonus(student_emp, INT);
3-22 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Routine Resolution with User-Defined Data Types
To resolve the data type of the UDR parameter when it is a named row type,
the database server takes the following steps:

1. The database server processes the leftmost argument first:

a. It looks for a candidate routine named bonus with a row type
parameter of student_emp.

No candidate routines exist with this parameter, so the database
server continues with the next data type precedence, as
described in “Precedence List of Data Types” on page 3-18.

b. Because student_emp is a subtype of trainee, the database
server looks for a candidate routine with a parameter of type
trainee in the first position.

The first parameter of the second function, bonus(trainee,float),
matches the first argument in the routine invocation. Therefore,
this version of bonus() goes on the precedence list.

2. The database server processes the second argument next:

a. It looks for a candidate routine with a second parameter of data
type INTEGER.

The matching candidate routine from step 1b has a second
parameter of data type FLOAT. Therefore, the database server
continues with the next data type precedence as “Precedence
List of Data Types” on page 3-18 describes.

b. Because the second parameter is the INTEGER built-in data type,
the database server goes to the precedence list that Figure 3-2 on
page 3-20 shows.

The database server searches the candidate list of routines for a
second parameter that matches one of the data types in the pre-
cedence list for the INTEGER data type.

c. Because a built-in cast exists from the INTEGER data type to the
FLOAT data type, the database server casts the INTEGER
argument to FLOAT before the execution of the bonus() function.

3. Because of the left-to-right rule for processing the arguments, the
database server executes the second function, bonus(trainee,float).
Running a User-Defined Routine 3-23

Routine Resolution with User-Defined Data Types
Routine Resolution with Distinct Data Types

A distinct data type has the same internal storage representation as an
existing data type, but it has a different name and cannot be compared to the
source type without casting. Distinct types inherit functions from their source
types. For more information, refer to “Distinct Data Type” on page 5-11.

When a UDR has distinct types in its parameter list, the database server
resolves the routine signature, as follows:

� When a routine signature contains a parameter that matches the
distinct data type in the same position of the routine invocation, the
routine-resolution process selects that routine to execute.

� When a distinct data type in the argument list does not match the
data type of the parameter in the same position of the routine
signature, the database server searches for a UDR that accepts one of
the following data types in the position of that argument:

❑ A data type to which the user has defined an implicit cast from
the type of the argument specified in the routine invocation

For more information on casts, refer to “Cast Functions” on
page 2-8.

❑ The source data type of the distinct type

The following sections describe source data type restrictions and provide
procedures for routine resolution with these source types.

Routine Resolution with Two Different Distinct Data Types

The candidate list can contain a routine with a parameter that is the source
data type of the invoked routine argument. If the source type is itself a
distinct type, the database server checks the source type of that distinct type.
However, if the source type is not in the precedence list for that data type, the
routine-resolution process eliminates that candidate.

For example, suppose you create the following distinct data types and table:

CREATE DISTINCT TYPE pounds AS INT;
CREATE DISTINCT TYPE stones AS INT;
CREATE TABLE test(p pounds, s stones);
3-24 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Routine Resolution with User-Defined Data Types
Figure 3-4 shows a sample query that an SQL user might execute.

Although the source data types of the two arguments are the same, this query
fails because p and s are different distinct data types. The equal() function
cannot compare these two different data types.

Alternate SELECT Statements for Different Distinct Data Types

The database server chooses the built-in equals function when you explicitly
cast the arguments. If you modify the SELECT statement as follows, the data-
base server can invoke the equals(int,int) function, and the comparison suc-
ceeds:

SELECT * FROM test WHERE p::INT = s::INT;

You can also write and register the following additional functions to allow
the SQL user to use the SELECT statement that Figure 3-4 shows:

� An overloaded function equals(pounds,stones) to handle the two
distinct data types:

CREATE FUNCTION equals(pounds, stones) ...

The advantage of creating an overloaded equals() function is that the
SQL user does not need to know that these are new data types that
require explicitly casting.

� Implicit cast functions from the data type pounds to stones and from
stones to INT:

CREATE IMPLICIT CAST (pounds AS stones);
CREATE IMPLICIT CAST (stones AS INT);

SELECT * FROM test WHERE p=s;
Figure 3-4

Sample Distinct
Type Invocation
Running a User-Defined Routine 3-25

Null Arguments in Overloaded Routines
Routine Resolution with Built-In Data Types as Source

If the source type is a built-in data type, the distinct type does not inherit any
built-in casts provided for the built-in type, but it does inherit any user-
defined casts that are defined on the source type. For example, suppose you
create the following distinct data type and table:

CREATE DISTINCT TYPE inches AS FLOAT;
CREATE TABLE test(col1 inches);
INSERT INTO test VALUES (2.5::FLOAT::inches);

An SQL user might execute the following sample query:

SELECT 4.8 + col1 FROM test;

Although the source data type of the col1 argument has a built-in cast
function to convert from FLOAT to DECIMAL (the 4.8 is DECIMAL), this query
fails because the distinct type inches does not inherit the built-in cast.

You must use explicit casts in the SQL query. The following queries succeed:

SELECT 4.8 + col1::INT from test;
SELECT 4.8::FLOAT::inches + col1 FROM test;

Routine Resolution with Collection Data Types

A collection data type is a complex data type whose instances are groups of
elements of the same data type that are stored in a SET, MULTISET, or LIST. An
element within a collection can be an opaque data type, distinct data type,
built-in data type, collection data type, or row type.

Null Arguments in Overloaded Routines
The database server might return an error message when you call a UDR and
both of the following conditions are true:

� The argument list of the UDR contains a null value.

� The UDR invoked is an overloaded routine.

Suppose you create the following user-defined functions:

CREATE FUNCTION func1(arg1 INT, arg2 INT) RETURNS BOOLEAN...
CREATE FUNCTION func1(arg1 MONEY, arg2 INT)

RETURNS BOOLEAN...
CREATE FUNCTION func1(arg1 REAL, arg2 INT) RETURNS BOOLEAN...
3-26 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Null Arguments in Overloaded Routines
The following statement creates a table, new_tab:

CREATE TABLE new_tab (col_int INT);

The following query is successful because the database server locates only
one func1() function that matches the function argument in the expression:

SELECT *
FROM new_tab
WHERE func1(col_int, NULL) = "t";

The null value acts as a wildcard for the second argument and matches the
second parameter type for each function func1() defined. The only func1()
function with a leftmost parameter of type INT qualifies as the function to
invoke.

If more than one qualifying routine exists, the database server returns an
error. The following query returns an error because the database server
cannot determine which func1() function to invoke. The null value in the first
argument matches the first parameter of each function; all three func1()
functions expect a second argument of type INTEGER.

SELECT *
FROM new_tab
WHERE func1(NULL, col_int) = "t";

To avoid ambiguity, use null values as arguments carefully.
Running a User-Defined Routine 3-27

4
Chapter
Developing a User-Defined
Routine
In This Chapter . 4-3

Planning the Routine 4-3
Naming the Routine 4-4
Defining Routine Parameters 4-5

Number of Arguments 4-5
Declaring Routine Parameters 4-5

Returning Values 4-6
Returning a Variant or Nonvariant Value 4-7
Using OUT Parameters and Statement-Local Variables (SLVs) . 4-8

Naming Return Parameters 4-10
Using an Iterator Function 4-11

Creating an Iterator Function. 4-12
Registering an Iterator Function. 4-12
Invoking an Iterator Function 4-12
Using an Iterator Function in the FROM Clause of a

SELECT Statement 4-13
Adhering to Coding Standards 4-21

Writing the Routine. 4-22

Registering a User-Defined Routine 4-23
Setting Privileges for a Routine 4-24

Database-Level Privilege 4-24
Language-Level Privilege 4-25
Routine-Level Privilege 4-25

Creating an SPL Routine 4-26

4-2 IBM
Creating an External-Language Routine 4-28
Registering a Routine Written in C 4-29
Registering a Routine Written in Java 4-29
Registering an External Routine with Modifiers 4-30
Registering Parameters and a Return Value 4-32

Reviewing Information about User-Defined Routines. 4-33

Using a UDR With HDR 4-34
 Informix User-Defined Routines and Data Types Developer’s Guide

In This Chapter
This chapter describes the design and creation of UDRs. It covers the
following topics:

� Planning the Routine

� Writing the Routine

� Registering a User-Defined Routine

Planning the Routine
When you write a UDR, consider the following:

� Naming your routine

� Defining routine parameters

� Defining a return value (user-defined functions only)

� Adhering to coding standards

The routine name and routine parameters make up the routine signature for
the routine. The routine signature uniquely identifies the UDR in the
database. For more information, see “The Routine Signature” on page 3-12.

Consider the following questions about routine naming and design:

� Are any of my routines modal? That is, does the behavior of the
routine depend on one of its arguments?

� Can I describe what each type and routine does in two sentences?

� Do any of my routines take more than three arguments?

� Have I used polymorphism effectively?
Developing a User-Defined Routine 4-3

Naming the Routine
The maximum size of a UDR depends on the language in which it is written
in and the platform where it is used. For UDRs written in C, you can create
very large shared objects. The limit depends on the compiler and the machine
architecture. The size limit for UDRs written in Java is similarly high,
depending on the size of the .jar files that you can create. For SPL you are
limited to the maximum size of an SQL statement at 64 kilobytes.

Naming the Routine
Choose sensible names for your routines. Make the routine name easy to
remember and have it succinctly describe what the routine does. The
database server supports polymorphism, which allows multiple routines to
have the same name. This ability to assign one name to multiple routines is
called routine overloading. For more information on routine overloading,
refer to “Overloading Routines” on page 3-13.

Routine overloading is contrary to programming practice in some high-level
languages. For example, a C programmer might be tempted to create
functions with the following names that return the larger of their arguments:

bigger_int(integer, integer)
bigger_real(real, real)

In SQL, these routines are better defined in the following way:

bigger(integer, integer)
bigger(real, real)

The naming scheme in the second example allows users to ignore the types
of the arguments when they call the routine. They simply remember what the
routine does and let the database server choose which routine to call based
on the argument types. This feature makes the UDR simpler to use.
4-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Defining Routine Parameters
Defining Routine Parameters
When you invoke a UDR, you can pass it optional argument values. Each
argument value corresponds to a parameter of the routine.

Number of Arguments

Limit the number of arguments in your UDRs and make sure that these
arguments do not make the routine modal. A modal routine uses a special
argument as a sort of flag to determine which of several behaviors it should
take. For example, the following statement shows a routine call to compute
containment of spatial values:

Containment(polygon, polygon, integer);

This routine determines whether the first polygon contains the second
polygon or whether the second contains the first. The caller supplies an
integer argument (for example, 1 or 0) to identify which value to compute.
This is modal behavior; the mode of the routine changes depending on the
value of the third argument.

In the following example, the routine names clearly explain what compu-
tation is performed:

Contains(polygon, polygon)
ContainedBy(polygon, polygon)

Always construct your routines to be nonmodal, as in the second example.

Declaring Routine Parameters

You define routine parameters in a parameter list when you declare the
routine. In the parameter list, each parameter provides the name and data
type of a value that the routine expects to handle. Routine parameters are
optional; you can write a UDR that has no input parameters.

When you invoke the routine, the argument value must have a data type that
is compatible with the parameter data type. If the data types are not the same,
the database server tries to resolve the differences. For more information, see
“The Routine-Resolution Process” on page 3-16.
Developing a User-Defined Routine 4-5

Returning Values
The way that you declare a UDR depends on the language in which you write
that routine.

The parameters in an SPL routine must be declared with SQL data types,
either built-in or user defined. For more information, see “Executing an SPL
Routine” on page 3-8. ♦

For routines written in C or Java, you use the syntax of that language to
declare the routine. The routine parameters indicate the argument data types
that the routine expects to handle.

You declare the routine parameters with data types that the external
language supports. However, when you register the routine with CREATE
FUNCTION or CREATE PROCEDURE, you use SQL data types for the param-
eters. (For more information, see “Registering Parameters and a Return
Value” on page 4-32.) Therefore, you must ensure that these external data
types are compatible with the SQL data types that the routine registration
specifies. ♦

For C UDRs, the DataBlade API provides special data types for use with SQL
data types. For most of these special data types, you must use the pass by
reference mechanism. However, for a few data types, you can use the pass-
by-value mechanism. For more information, see the chapter on DataBlade
API data types in the IBM Informix DataBlade API Programmer’s Guide and the
IBM Informix DataBlade API Function Reference. ♦

Every Java UDR maps to an external Java static method whose class resides
in a JAR file that has been installed in a database. The SQL-to-Java data type
mapping is done according to the JDBC specification. For more information,
refer to the J/Foundation Developer’s Guide and your Java documentation. ♦

Returning Values
A common use of a UDR is to return values to the calling SQL statement. A
UDR that returns a value is called a user-defined function.

For information on how to specify the data type of the return value of a user-
defined function, see “Registering a User-Defined Routine” on page 4-23.

SPL

Ext

C

Java
4-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Returning Values
Returning a Variant or Nonvariant Value

By default, a user-defined function is a variant function. A variant function has
any of the following characteristics:

� It returns different results when it is invoked with the same
arguments.

For example, a function whose return value is computed based on
the current date or time is a variant function.

� It has variant side effects, such as:

❑ Modifying some database table, variable state, or external file

❑ Failing to locate an external file, or a table or row in a database,
and returning an error

You can explicitly specify a variant function with the VARIANT keyword.
However, because a function is variant by default, this keyword is not
required.

A nonvariant function always returns the same value when it receives the
same argument, and it has none of the preceding variant side effects.
Therefore, nonvariant functions cannot access external files or contain SQL
statements, even if the SQL statements only SELECT static data and always
return the same results. You specify a nonvariant function with the NOT
VARIANT keywords.

You can create a functional index only on a nonvariant function. The return
result for a functional index cannot contain a smart large object. Functional
indexes are indexed on the value returned by the specified function rather
than on the value of a column. The value returned by a functional index
cannot contain a smart large object.

The database server can execute a nonvariant function during query compile
time if all the arguments passed to it are constants. In that case, the result
replaces the UDR expression in the query tree. This action by the database
server is constant elimination. The database server cannot execute an SQL
statement during constant elimination, thus a nonvariant function cannot
execute even nonvariant SQL.

For information about creating a functional index, refer to the CREATE INDEX
statement in the IBM Informix Guide to SQL: Syntax.
Developing a User-Defined Routine 4-7

Returning Values
Using OUT Parameters and Statement-Local Variables (SLVs)

You use OUT parameters to pass values from the called function to the caller.
The SPL, C, or Java called function sets the value of this parameter and returns
a new value through the parameter. Any or all arguments of a UDR can be an
OUT parameter. You cannot use OUT parameters to pass values to the called
function; OUT parameters are passed as NULL to the UDR.

The syntax for creating a UDR with OUT parameters is:

CREATE FUNCTION udr ([IN/OUT] arg0 datatype0, ...,
[IN/OUT] argN datatypeN)
RETURNING returntype;

...
END FUNCTION;

By default, a parameter is considered an IN parameter unless you define it as
an OUT parameter by specifying the OUT keyword.

For example, the following CREATE FUNCTION statement specifies one IN
parameter, x, and two OUT parameters, y and z.

CREATE FUNCTION my_func(x INT, OUT y INT, OUT z INT)
RETURNING INT
EXTERNAL NAME '/usr/lib/local_site.so'
LANGUAGE C

A statement-local variable (SLV) is an OUT parameter used in the WHERE
clause of a SELECT statement. See “Using SLVs” on page 4-9 for more
information.

Important: You cannot execute UDRs with OUT parameters in Data Manipulation
Language (DML) SQL statements, except by using an SLV. The statements SELECT,
UPDATE, INSERT and DELETE are DML statements.

Important: You cannot use the EXECUTE FUNCTION statement to invoke a user-
defined function that contains an OUT parameter, unless you are using JDBC.

Important: You cannot execute remote UDRs that contain OUT parameters.
4-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Returning Values
Using SLVs

An SLV transmits OUT parameters from a user-defined function to other parts
of an SQL statement. An SLV is local to the SQL statement; that is, it is valid
only for the life of the SQL statement. It provides a temporary name by which
to access an OUT parameter value. Any or all user-defined function
arguments can be an SLV.

In the SQL statement that calls the user-defined function, you declare the SLV
with the syntax: SLV_name # SLV_type, where SLV_name is the name of the SLV
variable and SLV_type is its data type, as in:

SELECT SLV_name1, SLV_nameN FROM table WHERE
udr (param1, SLV_name1 # SLV_type1, ...

SLV_nameN # SLV_typeN, paramN);

For example, the following SELECT statement declares SLVs x and z that are
typed as INTEGER in its WHERE clause and then accesses both SLVs in the
projection list:

SELECT x, z WHERE my_func(x # INT, y, z # INT) < 100
AND (x = 3) AND (z = 5)

For more information on the syntax and use of an SLV, see the description of
function expressions within the Expression section in the IBM Informix Guide
to SQL: Syntax.

SPL Procedures With No Return Values

SPL procedures with no return values are only accessible through the JDBC
CallableStatement interface. SPL procedures with no return values can use
OUT parameters. The syntax for creating such a procedure is:

CREATE PROCEDURE spl_udr ([IN/OUT] arg0 datatype0, ...,
[IN/OUT] argN datatypeN);

...

END PROCEDURE;

For example, the following SQL statement creates an SPL procedure with two
OUT parameters and one IN parameter:

CREATE PROCEDURE myspl (OUT arg1 int, arg2 int, OUT arg3 int);
LET arg1 = arg2;
LET arg3 = arg2 * 2;
END PROCEDURE;
Developing a User-Defined Routine 4-9

Naming Return Parameters
SPL procedures that do not return values cannot be used in the WHERE clause
of a SELECT statement and therefore cannot generate SLVs.

Naming Return Parameters
You can define names for each return parameter of an SPL UDR. Specify the
names in the RETURNS/RETURNING clause of the CREATE
PROCEDURE/FUNCTION statement.

The syntax for the CREATE PROCEDURE/FUNCTION statement is:

RETURNS/RETURNING data_type AS return_param_name [{, data_type AS
return_param_name}]

The return_param_name parameter defines the name of the return parameter
and follows the same rules as for table column names. Either all return
parameters should have names or none should have names. The names of the
return parameters for a function or procedure should be unique. Return
parameter names cannot be referenced within the body of the procedure.
There is no relation between the names of the return parameters and any
variables within the function or procedure itself, as shown in the following
example:

CREATE PROCEDURE NamedRetProc()
RETURNING int AS p_customer_num, char(20) AS p_fname, char(20) AS p_lname;

DEFINE v_id int;
DEFINE v_fname char(15);
DEFINE v_lname char(15);

FOREACH curA FOR SELECT customer_num, fname, lmname
INTO v_id, v_fname, v_lname FROM customer

RETURN v_id,v_fname, v_lname WITH RESUME;
END FOREACH;

ENDPROCEDURE;

The NamedRetProc() procedure returns data with the return parameter
names shown above the returned values, as below, instead of the name
expression that appears if you do not name return parameters:

p_customer_num p_fname p_lname
101 Ludwig Pauli
102 Carole Sadler
4-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Using an Iterator Function
Avoid naming return parameters if you intend to export the database to a
pre-9.4 version of IBM Informix Dynamic Server that does not support this
syntax. When you export a database containing stored procedures that have
names for return parameters, the schema creation scripts also have these
names. If you try to import the database using a pre-9.4 version of
IBM Informix Dynamic Server, errors will be returned. If you decide to go
ahead and import the stored procedures without the names for return param-
eters, you can manually edit the schema creation scripts to be able to import.

Tip: When you call a stored procedure in the projection list of a SELECT statement,
return parameter names are not displayed. Instead, the output string “expression”
appears. If you want to display the return parameter name, use the AS keyword, as
in: SELECT some_func(a,b) AS name1,... .

Using an Iterator Function
By default, a user-defined function returns one value; that is, it calculates its
return value and returns only once to its calling SQL statement. User-defined
functions that return their result in a single return to the calling SQL
statement are called noncursor functions because they do not require a
database cursor to be executed. For information on how to invoke noncursor
functions, see “Invoking a UDR in an SQL Statement” on page 3-3.

However, you can write a user-defined function that returns to its calling SQL
statement several times, each time returning a value. Such a user-defined
function is called an iterator function. An iterator function is a cursor function
because it must be associated with a cursor when it is executed. The cursor
holds the values that the cursor function repeatedly returns to the SQL
statement. The calling program can then access the cursor to obtain each
returned value, one at a time. The contents of the cursor are called an active
set. Each time the iterator function returns a value to the calling SQL
statement, it adds one item to the active set.

Important: You cannot use OUT parameters in iterator functions.
Developing a User-Defined Routine 4-11

Using an Iterator Function
Creating an Iterator Function

You can write iterator functions in SPL, C, or Java. Each language uses
different statements, functions, and methods to manage iterator tasks:

� An SPL iterator function uses the FOREACH keyword in conjunction
with the RETURN WITH RESUME statement.

� A C-language iterator function uses DataBlade API functions, such as
mi_fp_setisdone() and mi_fp_request(), to handle each return item
of the active set. MI_FPARAM maintains the iterator state that
mi_fp_setisdone() and mi_fp_request() access.

� A Java iterator function uses the UDREnv interface, which provides
all necessary methods and constants.

Registering an Iterator Function

By default, a function written in an external language is not an iterator. To
define an iterator function written in C or Java, you must register the function
with the ITERATOR routine modifier. The following sample CREATE
FUNCTION statement shows how to register the function TopK() as an
iterator function in C:

CREATE FUNCTION TopK(INTEGER, INTEGER)
RETURNS INTEGER
WITH (ITERATOR, NOT VARIANT)
EXTERNAL NAME

'/usr/lib/extend/misc/topkterms.so(topk_integers)'
LANGUAGE C

Tip: An SPL iterator function does not need to be registered using the ITERATOR
modifier.

Invoking an Iterator Function

You can invoke an iterator function using one of the following methods:

� Directly with the EXECUTE FUNCTION statement:

❑ From DB-Access

❑ In a prepared cursor in an external routine

❑ In an external routine

❑ In an SPL FOREACH loop
4-12 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Using an Iterator Function
� With an EXECUTE FUNCTION statement as part of an INSERT
statement:

❑ From DB-Access

❑ In a prepared cursor in ESQL/C or an external routine

❑ In a DataBlade API database server routine

❑ In an SPL FOREACH loop

� In the FROM clause of a SELECT statement

Instead of a table, the result set of the iterator function is the source
from which the query selects data. The return values from the itera-
tor function are mapped to a virtual table. Using an iterator function
in a FROM clause is described in detail, next.

Existing iterator UDRs from pre-9.4 releases can be used in the FROM
clause of a SELECT statement.

Using an Iterator Function in the FROM Clause of a SELECT Statement

In addition to tables, an iterator function can be specified as a source for a
SELECT statement. This means you can query the return result set of an
iterator UDR using a table interface. Therefore, you can manipulate the
iterator result set in a number of ways, such as by using the WHERE clause to
filter the result set; by joining the UDR result set with other table scans; by
running GROUP BY, aggregation, and ORDER BY operations, and so on.

Syntax and Usage

The syntax for using an iterator function in the FROM clause is:

FROM TABLE (FUNCTION iterator_func_name ([argument_list]))
[[AS] virtual_table_name] [(virtual_column_list)]

The virtual_table_name parameter is unqualified (do not include the owner or
database name) and specifies the name of the virtual table that holds the
result set from the iterator function.

Important: The virtual table can only be referenced within the context of this SELECT
query. After the SELECT statement completes, the virtual table no longer exists.
Developing a User-Defined Routine 4-13

Using an Iterator Function
The virtual_column_list parameter is a comma-separated list of unqualified
column names for the virtual table. The number of columns must match the
number of values returned by the iterator (SPL functions can return more
than one value).

If you want to reference virtual table columns in other parts of the SELECT
statement, for example, in the projection list, WHERE clause, or HAVING
clause, you must specify the virtual table name and virtual column names in
the FROM clause. You do not have to specify the virtual table name or column
names in the FROM clause if you use wildcard characters in the projection list
of the SELECT clause:

SELECT * FROM ...

As an example, the following statement retrieves the result set from the
function called fibseries(). This result set is held in the virtual table called
vtab.

SELECT col FROM TABLE (FUNCTION fibseries(10)) vtab(col);

If a SELECT statement specifying an iterator in the FROM clause returns
unexpected results, execute the iterator function separately to verify the
function is behaving correctly. For example, run your function in DB-Access
with a command like this:

execute function iterator_udr(args)

The SQL Explain output section for a virtual table derived from an iterator
UDR is marked ITERATOR UDR SCAN.

Ensure that you call mi_fp_setisdone() in a C UDR or UDREnv.setSetItera-
tionIsDone(true) in a JAVA UDR when the iterator UDR is finished. The server
checks this flag internally to determine when to stop calling the iterator UDR.

Allocating Memory

For iterator functions written in C, the default memory duration for return
values set by the server should be sufficient.
4-14 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Using an Iterator Function
The MI_FPARAM data structure should be allocated a duration that lasts for
all iterations, usually a PER_COMMAND duration.

Running Parallel Queries

If you are running queries in parallel using the IBM Informix Dynamic Server
parallel database query (PDQ) feature and the iterator UDR in the FROM
clause is not parallelizable, query parallelism is turned off for the SELECT
query. However, if the iterator UDR in the FROM clause is parallelizable and
no other factors disable the query parallelism, the query can run in parallel.
When PDQ is on, functional tables are treated as single non-fragmented
tables.

In the following example, the GROUP BY and aggregation operations can be
run by multiple PDQ threads and the fibseries() function can be run by a
secondary thread.

SELECT col1,col2, COUNT(*) FROM TABLE (FUNCTION fibseries(10))
tab1(col1),tab2
GROUP BY col1,col2;

Refer to your IBM Informix Dynamic Server Performance Guide for information
about running queries in parallel.

Restrictions

The following restrictions apply to using iterator functions in the FROM
clause:

� Iterator functions cannot refer to other columns in the FROM clause.
For example, the following query is invalid because the fibseries
iterator function specifies the column t.x as an argument:
SELECT t.x, vtab.col
FROM t, TABLE (FUNCTION fibseries(t.x)) vtab(col);

However, iterator functions can refer to other columns when used in
an outer query, as in:
SELECT t.x FROM t
WHERE t.y IN
(SELECT col FROM TABLE (FUNCTION fibseries(t.y)) vtab(col));

� Iterator functions cannot generate OUT parameters and statement-
local variables.
Developing a User-Defined Routine 4-15

Using an Iterator Function
� You cannot use iterator functions as the target in INSERT, UPDATE, or
DELETE statements.

� UDRs used in the FROM clause must be iterator functions.

Example SPL Iterator Function

To create an SPL iterator function to be used in the FROM clause, your
function must use the RETURN WITH RESUME construct, as shown in the
following example.

Because an SPL UDR can return more than one value, you can specify
multiple column names in the virtual column list in the FROM clause. You can
reference any of these virtual column names in the target list of the SELECT
query.

create function find_top_earners()
returning integer,decimal,lvarchar

define ret_empid integer;
define ret_salary decimal;
define ret_empname lvarchar;

foreach select emp_id,salary into
ret_empid,ret_salary from salary
if (ret_salary > 100000.00)

select emp_name into ret_empname from employee
where emp_id = ret_empid;

return ret_empid,ret_salary,ret_empname with
resume;

end if;
end foreach;

end function;

The following query uses the above iterator UDR, find_top_earners(), to
retrieve the top earners sorted by employee name.

select vemp_name,vemp_id,vemp_sal from
table (function find_top_accounts())
vtab1(vemp_name,vemp_id,vemp_sal)
order by vemp_name;

Example C Iterator Function

To write an iterator C function, you use DataBlade API functions, such as
mi_fp_request(), mi_fp_setfuncstate(), mi_fp_setisdone(), and so on, with
the MI_FPARAM data structure.
4-16 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Using an Iterator Function
A C UDR can return only one value; therefore, there can be only one column
in the virtual column list in the FROM clause. However, a C UDR can return
a row type, which can capture multiple return values as a unit.

The following example demonstrates how to write a C iterator function and
use it in the FROM clause; relevant DataBlade API and iterator states are
highlighted.

The function fibseries() is an iterator function that returns the Fibonacci
series up to the value passed to it as an argument.

create function fibseries(int x)
returns int with (handlesnulls,iterator, parallelizable)
external name "$USERFUNCDIR/fib.so"
language c;

/* A Function to return a set of integer. This function takes
stop val as a parameter and returns a fibonaucci series up to
stop val.

* Three states of fparam :
*
* SET_INIT: Allocate the the function state structure defined.
This State Structure is allocated in PER_COMMAND duration to
hold the memory till the end of the command.
Make the fparam structure point to the State Structure.
Set the first two numbers of the series i.e 0 and 1; And
set the stop val field of State Structure to the stop val passed
to the function.

* SET_RETONE: Computes the next number in the series. Compares
it with the stop val to check if the exit criteria is met.
num1 = num2;num2 = next number in the series.

* SET_END: Frees the user Allocated Func State structure.
*/

#include <milib.h>
typedef struct fibState1 {
 mi_integer fib_prec1;
 mi_integer fib_prec2;
 mi_integer fib_ncomputed;
 mi_integer fib_endval;
}fibState;
mi_integer
fibseries(endval,fparam)
mi_integer endval;
MI_FPARAM *fparam;
{
 fibState *fibstate;
 mi_integer next;
 switch(mi_fp_request(fparam)) {
 case SET_INIT :
 fibstate = (fibState *) mi_dalloc
(sizeof(fibState),PER_COMMAND);
Developing a User-Defined Routine 4-17

Using an Iterator Function
mi_fp_setfuncstate(fparam,(void *)fibstate);
 if (mi_fp_argisnull(fparam,0) || endval < 0) {
 mi_fp_setreturnisnull(fparam,0,1);
 break;
 }
 if (endval < 1) {
 fibstate->fib_prec1 = 0;
 fibstate->fib_prec2 = 1;
 fibstate->fib_ncomputed = 1;
 fibstate->fib_endval = endval;
 }
 else {
 fibstate->fib_prec1 = 0;
 fibstate->fib_prec2 = 1;
 fibstate->fib_ncomputed = 0;
 fibstate->fib_endval = endval;
 }
 break;
 case SET_RETONE :
 fibstate = mi_fp_funcstate(fparam);
 if (fibstate->fib_ncomputed < 2) {
 return((fibstate->fib_ncomputed++ == 0) ? 0 : 1);
 }
 next = fibstate->fib_prec1 + fibstate->fib_prec2;
 if (next > fibstate->fib_endval) {

mi_fp_setisdone(fparam,1);
 return 0;
 }
 if (next == 0) {
 fibstate->fib_prec1 = 0;
 fibstate->fib_prec1 = 1;
 }
 else {
 fibstate->fib_prec1 = fibstate->fib_prec2;
 fibstate->fib_prec2 = next;

 }
 return (next);
 case SET_END :
 fibstate = mi_fp_funcstate(fparam);
 mi_free(fibstate);
 break;
 }
}

This function can be used in the FROM clause of a SELECT query:

select vcol1 from table (function fibseries(100)) vtab1(vcol1);

Example Java Iterator Function

The UDREnv interface provides all necessary methods and constants. A Java
UDR can return only one value; therefore, there can be only one column in the
virtual column list in the FROM clause.
4-18 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Using an Iterator Function
The following example demonstrates how to write a Java iterator function
and use it in FROM clause; relevant DataBlade API and iterator states are
highlighted.

The iterator UDR jenv_iter() takes an integer parameter and returns a row of
CHAR(40) columns. The parameter passed in determines the number of rows
it returns.

public interface UDREnv
{
...

// for maintaining state across UDR invocations
void setUDRState(Object state);
Object getUDRState();
// for set/iterator processing
public static final int UDR_SET_INIT = 1;
public static final int UDR_SET_RETONE = 2;
public static final int UDR_SET_END = 3;
int getSetIterationState();
void setSetIterationIsDone(boolean value);

...
}
import java.lang.*;
import java.sql.*;
import com.informix.udr.*;
import informix.jvp.*;
public class Env
{
 public int count;
 //
 // test UDR meta
 //

 public static String envTest1(int i, String xchar, String
xvchar, String xlvarchar)
 throws SQLException
 {
UDREnv env = UDRManager.getUDREnv();
String res = env.getName() + "#" +
env.getReturnTypeName() + "#";
String param[] = env.getParamTypeName();
for (int j = 0; j < param.length; ++ j)
 res += param[j] + "#";

res += i + xchar + xvchar + xlvarchar;
return res;
 }
 public static String envTest2(int i, String s[])
 throws SQLException
 {
UDREnv env = UDRManager.getUDREnv();
UDRLog log = env.getLog();
String res = env.getName() + "#" +
env.getReturnTypeName() + "#";
String param[] = env.getParamTypeName();
Developing a User-Defined Routine 4-19

Using an Iterator Function
for (int j = 0; j < param.length; ++ j)
 res += param[j] + "#";
res += i;
log.log(res);
s[0] = res;
return res;
 }
 //
 //test env state, iterator, log, traceable, and
properties
 //
 public static String envIter(int num)
throws SQLException
 {
UDREnv env = UDRManager.getUDREnv();
UDRLog log = env.getLog();
UDRTraceable tr = env.getTraceable();
JVPProperties pr = env.getProperties();
int iter = env.getSetIterationState();
Env state = (Env)env.getUDRState();
 if (iter == UDREnv.UDR_SET_INIT)
 {
 state = new Env();
 state.count = num;

env.setUDRState(state);
 log.log("SET INIT" + state.count + " " +
state.toString());

 tr.tracePrint("UDR.ENVITER", 0, "SET INIT");
env.setSetIterationIsDone(false);

 pr.setProperty("ENVITERPROP", "AFTER INIT");
 return "INIT";
 }

else if (iter == UDREnv.UDR_SET_END)
 {
 log.log("SET DONE");
 tr.tracePrint("UDR.ENVITER", 0, "SET DONE");

env.setSetIterationIsDone(true);
 return "DONE";
 }

else if (iter == UDREnv.UDR_SET_RETONE)
 {
 log.log("SET RETONE" + state.count + " " +
state.toString());
 tr.tracePrint("UDR.ENVITER", 0, "SET RETONE");
 String prv = pr.getProperty("ENVITERPROP");

 if (state.count <= 0)
env.setSetIterationIsDone(true);
 else
env.setSetIterationIsDone(false);
 -- state.count;
 pr.setProperty("ENVITERPROP", "AFTER RETONE" +
(state.count + 1));
 return new String("ELEMENT " + (state.count + 1));
//+ prv);
 }
 else
 throw new SQLException("Bad iter code");
 }
}

4-20 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Adhering to Coding Standards
The following statement creates the Java iterator UDR, jenv_iter().

create function jenv_iter(int)
returning char(40)
with (class = "jvp", iterator)
external name `Env.envIter(int)'
language java;

Adhering to Coding Standards
The SQL/PSM standard is available for UDR development. In addition, a
collection of standards is available for DataBlade module development from
the IBM Informix Developer Zone at
www.ibm.com/software/data/developer/informix. The most important
rules govern the naming of data types and routines. DataBlade modules
share these name spaces, so you must follow the naming guidelines to
guarantee that no problems occur when you register multiple DataBlade
modules in a single database.

Tip: It is recommended that you use the DBDK, Version 4.0 or later, to manage
DataBlade development. It is especially important to use the SQL registration scripts
that the DBDK generates so that BladeManager can correctly process DataBlade
upgrades.

In addition, the standards for 64-bit clean implementation, safe function-
calling practices, thread-safe development, and platform portability are
important. Adherence to these standards ensures that UDR modules are
portable across platforms.

Ask yourself the following questions when you code your UDR:

� Do I obey all naming standards?

� Is my design 64-bit clean and portable across platforms?

� Is my design thread-safe?
Developing a User-Defined Routine 4-21

Writing the Routine
Writing the Routine
The source for an external routine resides in a separate text file. For infor-
mation about C UDRs, refer to the IBM Informix DataBlade API Programmer’s
Guide and the IBM Informix DataBlade API Function Reference. For information
about Java UDRs, refer to the J/Foundation Developer’s Guide.

Tip: It is recommended that you use the DBDK to help write UDRs. DBDK enforces
standards that facilitate migration between different versions of the database server.

Because external-language routines are external to the database, you must
compile the UDR source code and store it where the database server can
access it when the routine is invoked. To prepare UDR source code:

� Compile the C-language UDR and store the executable version in a
shared-object file.

For information about how to create shared-object files, refer to the
IBM Informix DataBlade API Programmer’s Guide.

� Compile the Java-language UDR and store the executable version in
a .jar file.

For information about how to prepare .jar files, refer to your Java
documentation.

You must install shared object files and .jar files on all database servers that
need to run the UDRs, including database servers involved in Enterprise
Replication (ER) and High-Availability Data Replication (HDR). The shared
object files and .jar files need to be installed under the same absolute path
name.
4-22 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Registering a User-Defined Routine
Registering a User-Defined Routine
The database server recognizes the following SQL statements for the regis-
tration of UDRs in the database:

� The CREATE FUNCTION statement registers UDRs that return a value.

� The CREATE PROCEDURE statement registers UDRs that do not
return a value.

You must register UDRs in all databases in which they will be used, unless
the database is on the secondary database server of an HDR pair.

To register a user-defined routine

1. Ensure that you have the correct privileges to register a UDR.

2. Use a CREATE FUNCTION or CREATE PROCEDURE statement to
register the UDR:

� For SPL routines, the statement lists the routine code and then
compiles and registers the routine.

� For external-language routines, the statement specifies the
location of the routine code (with an EXTERNAL NAME clause)
and registers the routine.

The following example shows the syntax of a CREATE FUNCTION statement:

CREATE FUNCTION func_name(parameter_list) RETURNS ret_type
WITH (NOT VARIANT)
EXTERNAL NAME 'pathname'
LANGUAGE C

This SQL statement provides the following information to the database:

� The name, func_name, and owner of the support function

� An optional specific name for the support function (not shown)

� The data types of the parameters, parameter_list, and return value,
ret_type, of the support function

� The location, pathname, of the source code for the support function

� The language of the support function: LANGUAGE C.

� The routine modifier NOT VARIANT that indicates that the function
does not return different results with different arguments.
Developing a User-Defined Routine 4-23

Setting Privileges for a Routine
You cannot use the CREATE FUNCTION directly in an ESQL/C program. To
register an opaque-type support function from within an ESQL/C appli-
cation, you must put the CREATE FUNCTION statement in an operating-
system file. Then use the CREATE FUNCTION FROM statement to identify the
location of this file. The CREATE FUNCTION FROM statement sends the
contents of the operating-system file to the database server for execution. ♦

Setting Privileges for a Routine
A user must have the following privileges to issue a CREATE FUNCTION or
CREATE PROCEDURE statement that registers a UDR in the database:

� Database-level privilege

� Language-level privilege

After you register the UDR, you can assign routine-level privileges. For infor-
mation about how to assign privileges, refer to the GRANT statement in the
IBM Informix Guide to SQL: Syntax.

Database-Level Privilege

Database-level privileges control the ability to extend the database by regis-
tering or dropping a UDR. The following users qualify to register a new
routine in the database:

� Any user with the DBA privilege can register a routine with or
without the DBA keyword in the CREATE FUNCTION or CREATE
PROCEDURE statement.

� A non-DBA user needs the Resource privilege to register a routine.

The creator has owner privileges on the routine. A user who does not
have the DBA privilege cannot use the DBA keyword in the CREATE
FUNCTION or CREATE PROCEDURE statement to register the routine.

Tip: For an explanation of the DBA keyword, see “Executing a UDR as DBA” on
page 12-6.

A DBA must grant the Resource privilege required for any non-DBA user to
create a routine. The DBA can revoke the Resource privilege, which prevents
that user from creating additional routines.

E/C
4-24 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Setting Privileges for a Routine
A DBA or the routine owner can cancel the registration with the DROP
ROUTINE, DROP FUNCTION, or DROP PROCEDURE statement. A DBA or
routine owner can register a modification to the routine with the ALTER
ROUTINE, ALTER FUNCTION, or ALTER PROCEDURE statement.

Language-Level Privilege

The language-level Usage privilege controls the ability to write a UDR in a
particular UDR language. This privilege needs to be granted by user informix
or by another user who has been granted the DBA privilege with WITH
GRANT OPTION.

UDR languages have the following GRANT and REVOKE requirements for the
Usage privilege:

� The DBA can grant or revoke the Usage privilege to any language that
the database server supports.

� Another user can grant the Usage privilege if the DBA applied the
WITH GRANT keywords in the GRANT EXECUTE ON statement.

The following GRANT statement grants Usage privilege on Java UDRs to the
user named dorian:

GRANT USAGE ON LANGUAGE JAVA TO dorian

By default, the database server:

� Does not grant Usage privilege on external languages to PUBLIC

� Does grants Usage privilege on SPL to PUBLIC

For more information, see the description of privileges in the IBM Informix
Database Design and Implementation Guide and the description of the GRANT
statement in the IBM Informix Guide to SQL: Syntax

Routine-Level Privilege

When you register a UDR, you automatically receive the Execute privilege on
that routine. The Execute privilege allows you to invoke the UDR. For infor-
mation about allowing other users to execute your routine, see “Assigning
the Execute Privilege to a Routine” on page 12-3.
Developing a User-Defined Routine 4-25

Creating an SPL Routine
Creating an SPL Routine
For an SPL routine, the CREATE FUNCTION or CREATE PROCEDURE statement
performs the following tasks:

� Parses and optimizes all SQL statements, if possible

The database server puts the SQL statements in an execution plan. An
execution plan is a structure that enables the database server to store
and execute the SQL statements efficiently.

The database server optimizes each SQL statement within the SPL
routine and includes the selected query plan in the execution plan.
For more information on SPL routine optimization, refer to “Optimiz-
ing an SPL Routine” on page 13-4.

� Builds a dependency list

A dependency list contains items that the database server checks to
decide if an SPL routine needs to be reoptimized at execution time.
For example, the database server checks for the existence of all tables,
indexes, and columns involved in the query.

� Parses SPL statements and convert them to p-code

The term p-code refers to pseudocode that an interpreter can execute
quickly.

� Converts the p-code, execution plan, and dependency list to ASCII
format

The database server stores these ASCII formats as character columns
in the system catalog tables, sysprocbody and sysprocplan.

� Stores information about the procedure, such as routine name
parameters and modifiers, in the sysprocedures system catalog table

� Stores permissions for the procedure in the sysprocauth system
catalog table

For information on how to optimize an SPL routine, see Chapter 13,
“Improving UDR Performance.”

For a summary of the UDR information in the system catalog tables, refer to
“Reviewing Information about User-Defined Routines” on page 4-33.

SPL
4-26 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Creating an SPL Routine
Figure 4-1 shows the parts of a CREATE FUNCTION statement that registers a
user-defined function called abs_eq().

When you create an SPL function, you can specify optional routine modifiers
that affect how the database server executes the function. Procedures in SPL
do not allow routine modifiers. Use the WITH clause of the CREATE
FUNCTION statement to list function modifiers. SPL functions allow the
following routine modifiers:

� INTERNAL

� NEGATOR

� NOT VARIANT

� VARIANT

In Figure 4-1, the NOT VARIANT modifier indicates that the abs_eq() SPL
function is written so that it always returns the same value when passed the
same arguments.

Figure 4-1
Registering

an SPL Function

CREATE FUNCTION abs_eq(arg1 INTEGER, arg2 INTEGER)
RETURNS BOOLEAN
WITH (NOT VARIANT)
DEFINE ret BOOLEAN;
IF (arg1 < 0) THEN

LET arg1 = -arg1;
END IF
IF (arg2 < 0) THEN

LET arg2 = -arg2;
END IF
IF (arg1 = arg2) THEN

LET ret = "t";
ELSE

LET ret = "f";
END IF;
RETURN ret;

END FUNCTION;

Routine name

Routine body

Routine parameter list

Return value
(functions only)Routine modifiers

(optional)
Developing a User-Defined Routine 4-27

Creating an External-Language Routine
For more information about the CREATE FUNCTION and CREATE
PROCEDURE statements and about the syntax of SPL, refer to the IBM Informix
Guide to SQL: Syntax. For information about creating using SPL routines, refer
to the IBM Informix Guide to SQL: Tutorial.

Creating an External-Language Routine
You can write a routine in an external language that the database server
supports. After you create a routine, you register the routine with a CREATE
FUNCTION or CREATE PROCEDURE statement.

The CREATE FUNCTION and CREATE PROCEDURE statements specify the
location of the external routine, as follows:

� For C UDRs, the location is the full pathname of the shared-object
module, qualified with the name of the C function that implements
the function or procedure.

� For Java UDRs, location is the name of the .jar file, followed by the
name of the Java class and the name of the method within that class,
including its arguments.

For example, Figure 4-2 shows a CREATE FUNCTION statement that registers
a user-defined function called abs_eq() that is written in C. The corre-
sponding C function is in a shared-object file called abs.bld.

Ext

Figure 4-2
Registering
an External-

Language
Function

CREATE FUNCTION abs_eq(arg1 INTEGER, arg2 INTEGER)
RETURNS BOOLEAN
WITH (NOT VARIANT)
EXTERNAL NAME
'$INFORMIXDIR/extend/abs.1.0/abs.bld(abs_eq)'
LANGUAGE C Language name

Routine name

Location of the routine

Routine parameter list

Return value (functions only)
Routine modifiers (optional)
4-28 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Creating an External-Language Routine
Registering a Routine Written in C

To register a C routine, write the body of the routine, compile it, and create a
shared-object file, and then use the CREATE FUNCTION or CREATE
PROCEDURE statement to register the function. The RETURNING clause of
CREATE FUNCTION specifies the return data type of the function.

For example, the following CREATE FUNCTION statement registers a C
function called equal() that takes two arguments, arg1 and arg2, of data type
udtype1 and returns a single value of the data type BOOLEAN:

CREATE FUNCTION equal (arg1 udtype1, arg2 udtype1)
RETURNING BOOLEAN
EXTERNAL NAME '/usr/lib/udtype1/lib/libbtype1.so(udtype1_equal)'
LANGUAGE C
END FUNCTION;

Tip: In the preceding example, the END FUNCTION keywords are optional. C user-
defined-routines can use either RETURNS or RETURNING.

For more information, see the CREATE FUNCTION and CREATE PROCEDURE
statements in the IBM Informix Guide to SQL: Syntax. For information about
how to create a shared-object file, refer to the IBM Informix DataBlade API
Programmer’s Guide.

Registering a Routine Written in Java

To register a Java routine, write the body of the routine, compile it, create a
.jar file, and register the .jar file with install_jar(). Then use the CREATE
FUNCTION or CREATE PROCEDURE statement to register the function. For
example:

CREATE PROCEDURE showusers()
WITH (class='jvp')
EXTERNAL NAME 'thisjar:admin.showusers()'
LANGUAGE java;

A UDR written in Java runs on a JVP by default. Therefore, the CLASS routine
modifier in the preceding example is optional. However, it is recommended
that, to improve readability of your SQL statements, you include the CLASS
routine modifier when you register a UDR.

For more information, see the CREATE FUNCTION and CREATE PROCEDURE
statements in the IBM Informix Guide to SQL: Syntax. For information about
how to create a Java routine, refer to the J/Foundation Developer’s Guide.
Developing a User-Defined Routine 4-29

Creating an External-Language Routine
Registering an External Routine with Modifiers

When you create a routine in an external language, you can specify optional
modifiers that tell the database server about attributes of the UDR. Use the
WITH clause of the CREATE FUNCTION and CREATE PROCEDURE statements
to list routine modifiers. Following the WITH keyword, the modifiers that
you want to specify are enclosed within parentheses and separated by
commas.

For more information about using routine modifiers, refer to the IBM Informix
DataBlade API Programmer’s Guide.

Modifiers in a C UDR

The following table shows the routine modifiers that are valid for C routines.

Valid for

Routine Modifier Description
External
Function

 External
Procedure

CLASS Specifies a virtual-processor class in
which to run the UDR

Yes Yes

COSTFUNC Specifies the name of the cost function
for this UDR

Yes Yes

HANDLESNULLS Specifies that the UDR can handle null
arguments

Yes Yes

INTERNAL Specifies that the UDR is an internal
routine; that is, that the routine is not
available for use in an SQL or SPL
statement

Yes Yes

ITERATOR Specifies that the UDR is an iterator
function

Yes No

NEGATOR Specifies that the UDR is a negator
function

Yes No

NOT VARIANT Specifies that all invocations of the
UDR with the same arguments return
the same value

Yes No

(1 of 2)

C

4-30 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Creating an External-Language Routine
The following example shows how to use the WITH clause to specify a set of
modifiers when you create an external-language function:

CREATE FUNCTION lessthan (arg1 basetype2, arg2 basetype2)
RETURNING BOOLEAN
WITH (HANDLESNULLS, NOT VARIANT)
EXTERNAL NAME
'/usr/lib/basetype2/lib/libbtype2.so(basetype2_lessthan)'
LANGUAGE C

In this example, the HANDLESNULLS modifier indicates that the
basetype2_lessthan() function (in the shared library
/usr/lib/basetype2/lib/libbtype2.so) is coded to recognize SQL null. If
HANDLESNULL is not set, the routine manager does not execute the UDR if
any arguments of the routine are null; it simply returns null.

PARALLELIZABLE Routine can be executed in parallel Yes Yes

PERCALL_COST Specifies the cost of execution for the
UDR

Yes Yes

SELCONST Specifies the selectivity of the UDR Yes No

SELFUNC Specifies the name of the selectivity
function for this UDR

Yes No

STACK Specifies the stack size for the UDR Yes Yes

VARIANT Specifies that all invocations of the
UDR with the same arguments do not
necessarily return the same value

Yes No

Valid for

Routine Modifier Description
External
Function

 External
Procedure

(2 of 2)
Developing a User-Defined Routine 4-31

Creating an External-Language Routine
Modifiers in a Java UDR

The following table shows the routine modifiers that are valid for Java
routines.

Registering Parameters and a Return Value

The CREATE FUNCTION and CREATE PROCEDURE statements specify any
parameters and return value for a C UDR. These statements use SQL data
types for parameters and the return value. For example, suppose a C UDR has
the following C declaration:

mi_double_precision *func1(parm1, parm2)
mi_integer parm1;
mi_double_precision *parm2;

The following CREATE FUNCTION statement registers the func1() user-
defined function:

CREATE FUNCTION func1(INTEGER, FLOAT)
RETURNS FLOAT

Use the opaque SQL data type, POINTER, to specify a data type for an
external-language routine whose parameter or return type has no equivalent
SQL data type. The CREATE FUNCTION or CREATE PROCEDURE statement
uses the POINTER data type when the data structure that the routine receives
or returns is a private data type, not one that is available to users.

Routine Modifier Type of UDR

CLASS Access to JVP

HANDLESNULLS UDR that handles SQL null values as arguments

ITERATOR Iterator function

NEGATOR Negator function

NOT VARIANT All invocations of the UDR with the same arguments
return the same value

PARALLELIZABLE Parallelizable UDR

VARIANT All invocations of the UDR with the same arguments do not
necessarily return the same value

Java
4-32 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Reviewing Information about User-Defined Routines
Reviewing Information about User-Defined Routines
The following table shows where the database server stores information from
CREATE FUNCTION and CREATE PROCEDURE statements in the sysproce-
dures system catalog table.

UDR Information CREATE Statement Syntax Column of sysprocedures

Routine type:
function or procedure

FUNCTION or PROCEDURE
keyword

isproc

Owner name
(optional)

Precedes the routine name:
owner.routine_name

Defaults to the creator of the
routine

owner

Routine name After FUNCTION or
PROCEDURE keyword

procname

Specific name
(optional)

SPECIFIC keyword specificname

Routine parameters Parameter list numargs, paramstyle,
paramtypes

Routine modifiers WITH clause variant, handlesnulls,
iterator, percallcost,
negator, selfunc,
internal, class, stack,
parallelizable, costfunc,
selconst, modifiers

Location of the
routine (if it is
external)

EXTERNAL NAME externalname

Routine language LANGUAGE langid
Developing a User-Defined Routine 4-33

Using a UDR With HDR
The database server assigns a unique identifying number to each UDR and
stores this number in the procid column of sysprocedures table.

For SPL routines, the database server also stores routine information in the
sysprocbody and sysprocplan system catalog tables. The sysprocbody table
stores both the text and the compiled version (which is not legible) of the SPL
routine. The sysprocplan table stores a compiled version of the execution
plan, which is not legible.

Using a UDR With HDR
If you are using High-Availability Data Replication (HDR), there are some
rules you must follow when running UDRs:

� Install the UDR object file on both servers of an HDR pair under the
same absolute path name.

� Name the UDR object file identically on both servers of an HDR pair.

� Register the UDR only on the primary server.

� Do not use the UDR to create any persistent external files or persistent
memory objects.
4-34 IBM Informix User-Defined Routines and Data Types Developer’s Guide

5
Chapter
Extending Data Types
In This Chapter . 5-3

Understanding the Data Type System 5-3

Understanding Data Types 5-5
Built-In Data Types 5-6
Extended Data Types 5-8

Complex Data Types 5-9
User-Defined Data Types 5-11
IBM Informix DataBlade Modules 5-13

Extending the Data Type System 5-13
Operations . 5-14
Casts . 5-14
Operator Classes 5-15

Providing Additional Operator Classes 5-15
Extending Operator Classes 5-16

Optimizer Information 5-16

5-2 IBM
 Informix User-Defined Routines and Data Types Developer’s Guide

In This Chapter
You can extend Dynamic Server by extending existing data types or by
creating user-defined data types (UDTs). This chapter reviews basic information
about the data types. It covers the following topics:

� Understanding the Data Type System

� Understanding Data Types

� Extending the Data Type System

When you create a new data type or extend an existing data type, you use the
UDRs that were introduced in Chapter 2, “Using a User-Defined Routine.”

Understanding the Data Type System
The data type system that the database server uses is an extensible data type
system. That is, the data type system is flexible enough to let you:

� Use the data types that the data type system defines and supports.

� Define your own data types.

� Extend the data type system to support additional behavior for data
types.
Extending Data Types 5-3

Understanding the Data Type System
The data type system handles the interaction with the data types. A data type
is a descriptor that is assigned to a variable or column to indicate the type of
data that the variable or column can hold. The database server uses a data
type to determine the following information:

� The data types that the database server can use

The data type determines the layout or internal structure that the
database server can use to store the data type values on disk.

� The operations (such as multiplication, string concatenation, casting,
or aggregation) that the database server can apply to values of a
particular data type

An operation must be defined on a particular data type. Otherwise,
the database server does not allow the operation to be performed.

� The access methods that the database server can use for values in
columns of this data type:

❑ The primary-access method handles storage and retrieval of a
particular data type in a table. If the primary-access method does
not handle a particular data type, the database server cannot
access values of that type.

❑ The secondary-access method handles storage and retrieval of a
particular data type in an index. If the secondary-access method
does not handle a particular data type, you cannot build an
index on that data type.

� The casts that the database server can use to perform data conversion
between values of two different data types

The database server uses casts to perform data conversion between
values of two different data types.

The data type system knows how to provide this behavior for its built-in data
types. When you create a UDT, you must provide this information for your
data type.
5-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Understanding Data Types
Understanding Data Types
This section gives a brief summary of the data types that the database server
supports. Figure 5-1 summarizes the data types.

For a more detailed description of data types, see the IBM Informix Database
Design and Implementation Guide.

Figure 5-1
Data Types That the Database Server Supports

Data types

Built-in data types Extended data types

Complex data types User-defined data types

Distinct Opaque

Unnamed Row Named Row

Collection types

LIST SET MULTISET

Row types
Extending Data Types 5-5

Built-In Data Types
Built-In Data Types
A built-in data type is a fundamental data type that the database server
defines. A fundamental data type is atomic; that is, it cannot be broken into
smaller pieces. Built-in data types serve as building blocks for other data
types. Figure 5-2 summarizes the built-in data types that the database server
provides.

Figure 5-2
Built-In Data Types

Data Type Explanation

BLOB Stores binary data in smart large objects in a format
that supports random access

BOOLEAN Stores the Boolean values for true and false

BYTE Stores binary data in chunks that are not random
access

CHAR(n) Stores single-byte or multibyte sequences of
characters, including letters, numbers, and
symbols of fixed length

Collation is code-set dependent.

CHARACTER(n) Is a synonym for CHAR

CHARACTER VARYING(m,r) Is an ANSI-compliant version of the VARCHAR
data type

CLOB Stores text in smart large objects in a format that
supports random access

DATE Stores a calendar date

DATETIME Stores a calendar date combined with the time of
day

DEC Is a synonym for DECIMAL

DECIMAL Stores numbers with definable scale and precision

DOUBLE PRECISION Behaves the same way as FLOAT

(1 of 3)
5-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Built-In Data Types
FLOAT(n) Stores double-precision floating-point numbers
that correspond to the double data type in C (on
most platforms)

INT Is a synonym for INTEGER

INT8 Stores an 8-byte integer value

These whole numbers can be in the range -(263-1)
to 263-1.

INTEGER Stores whole numbers from -(231-1) to 231-1

INTERVAL Stores a span of time

LVARCHAR Stores single-byte or multibyte strings of letters,
numbers, and symbols of varying length to a
maximum of 32 kilobytes

It is also the external storage format for opaque
data types. Collation is code-set dependent.

MONEY(p,s) Stores a currency amount

NCHAR(n) Stores single-byte and multibyte sequences of
characters, including letters, numbers, and
symbols

Collation is locale dependent. For more infor-
mation, see the IBM Informix GLS User’s Guide.

NUMERIC(p,s) Is a synonym for DECIMAL

NVARCHAR(m,r) Stores single-byte and multibyte sequences of
characters, including letters, numbers, and
symbols of varying length to a maximum of 255
bytes

Collation is locale dependent. For more infor-
mation, see the IBM Informix GLS User’s Guide.

REAL Is a synonym for SMALLFLOAT

SERIAL Stores sequential integers; has the same range of
values as INTEGER

Data Type Explanation

(2 of 3)
Extending Data Types 5-7

Extended Data Types
Extended Data Types
The extensible data type system allows you to:

� Define new data types, called extended data types, to extend the data
type system

� Define the behavior of extended data types:

❑ The operations that are supported on the extended data types

❑ New operator class that supports the extended data type and
provides new functionality for a secondary-access method

❑ Additional casts to provide data conversions between the
extended data types and other data types

❑ Functions that collect statistics for the optimizer

SERIAL8 Stores large sequential integers; has the same range
of values as INT8

SMALLFLOAT Stores single-precision floating-point numbers that
correspond to the float data type in C (on most
platforms)

SMALLINT Stores whole numbers from -(215-1) to 215-1

TEXT Stores text data in chunks that are not random
access

VARCHAR(m,r) Stores single-byte or multibyte strings of letters,
numbers, and symbols of varying length to a
maximum of 255 bytes

Collation is code-set dependent.

Data Type Explanation

(3 of 3)
5-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Extended Data Types
You can define the following extended data types:

� Complex data types

❑ Collection types

❑ Row types

� UDTs

❑ Opaque data types

❑ Distinct data types

The database server stores information about extended data types in the
sysxtdtypes and sysxtdtypeauth system catalog tables. For information
about these tables, refer to the IBM Informix Guide to SQL: Reference.

Complex Data Types

A complex data type is built from a combination of other data types. An SQL
statement can access individual components within the complex type. The
two kinds of complex types are as follows:

� Collection types have instances that are groups of elements of the same
data type, which can be any built-in or complex data type.

The requirements for elements with ordered position and unique-
ness among the elements determine whether the collection is a SET,
LIST, or MULTISET.

� Row types have instances that are groups of related data fields, of any
data type, that form a template for a record.

The assignment of a name to the row type determines whether the
row type is a named row type or an unnamed row type.
Extending Data Types 5-9

Extended Data Types
Figure 5-3 summarizes the complex data types that the database server
supports.

Figure 5-3
Complex Data Types of the Database Server

Data Type Explanation

LIST(e) Stores a collection of values that have an implicit position
(first, second, and so on) and allows duplicate values

All elements have the same element type, e.

MULTISET(e) Stores a collection of values that have no implicit position
and allows duplicate values

All elements have the same element type, e.

Named row type A row type created with the CREATE ROW TYPE
statement

This row type has a defined name and inheritance
properties and can be used to construct a typed table. A
named row type is not equivalent to another named row
type, even if its field definitions are the same.

ROW

(Unnamed row type)

A row type created with the SQL keyword ROW

This row type has no defined name and no inheritance
properties. Two unnamed row types are equivalent if
they have the same number of fields and if corresponding
fields have the same data type, even if the fields have
different names.

SET(e) Stores a collection of values that have no implicit position
and does not allow duplicate values

All elements have the same element type, e.
5-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Extended Data Types
User-Defined Data Types

Figure 5-4 summarizes the UDTs that the database server supports.

Figure 5-4
User-Defined Data Types

In an ANSI-compliant database, columns defined using user-defined types
should be in the owner.object format.

Distinct Data Type

A distinct type has the same internal structure as an existing data type.
However, it has a distinct name and therefore distinct functions that make it
different from its source type. When you define a distinct type, you provide
the following information:

� The source data type, which defines the internal structure of the
distinct data type

The functions of the source data type determine how the database
server interacts with this internal structure.

� The operations that are valid on the distinct data type

You define operator functions, built-in functions, or end-user rou-
tines that handle the distinct type. For information about building
operator functions, see Chapter 6, “Extending Operators and Built-
In Functions.”

� Extensions of the operator class of a secondary-access method so that
its strategy and support functions handle the distinct data type

For information about support functions, see Chapter 10, “Writing
Support Functions.”

Data Type Explanation

Distinct Has the same internal representation as the source data type on which
it is based but has different casts and functions defined over it than
those on the source type

Opaque Fundamental data type that the user defines

A fundamental data type is atomic; that is, it cannot be broken into
smaller pieces, and it can serve as the building block for other data
types.

ANSI
Extending Data Types 5-11

Extended Data Types
� Cast functions to provide the data conversions to and from the
distinct type

The database server automatically creates explicit casts between the
distinct type and its source type. Because these two data types have
the same internal format, this cast does not require a cast function.
You can write cast functions to support data conversion between the
distinct type and other data types in the database or to support
implicit casts between the distinct type and its source data type. For
information about writing casts, see Chapter 7, “Creating User-
Defined Casts.”

You create a distinct data type with the CREATE DISTINCT TYPE statement.
After you create the distinct type, you can use it anywhere that other data
types are valid. For more information, refer to the description of this
statement in the IBM Informix Guide to SQL: Syntax.

Opaque Data Type

Unlike other data types (built in, complex, and distinct), the internal structure
of the opaque data type is not known to the database server. Therefore, when
you define an opaque type, you must provide the following information:

� The internal structure of the opaque data type, which provides the
format of the data

You define the support functions of the opaque type to tell the data-
base server how to interact with this internal structure.

� The operations that are valid on the opaque data type

You define operator functions, built-in functions, or end-user rou-
tines that handle the opaque type.

� Extensions of the operator class of a secondary-access method so that
its strategy and support functions handle the opaque data type

� Cast functions to provide the data conversions to and from the
opaque type

The support functions of the opaque type also serve as cast functions.
5-12 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Extending the Data Type System
You register an opaque data type with the CREATE OPAQUE TYPE statement.
For information about this statement, refer to the IBM Informix Guide to SQL:
Syntax. For more information, see Chapter 9, “Creating an Opaque Data
Type,” and Chapter 10, “Writing Support Functions.”

IBM Informix DataBlade Modules

In addition to the extended data types that you explicitly define, you can use
the pre-packaged extended data types that are provided. For example, an
IBM Informix DataBlade module might contain the routines required to
support a spherical coordinate system. For more information on
IBM Informix DataBlade modules, consult your sales representative or refer
to the user guides for the DataBlade modules.

Extending the Data Type System
You can extend the data type system by writing routines that provide the
following additional behavior for existing built-in or extended data types:

� Define operators to provide additional operations on data types.

� Define operator classes to provide new functionality for a secondary-
access method (an index) on a data type.

� Define casts to provide conversions between data types.

� Define functions that provide information for the optimizer.

You must register each new function in the database with the CREATE
FUNCTION statement.
Extending Data Types 5-13

Operations
Operations
A data type tells the database server which operations it can perform on the
data type values. The database server provides the following types of opera-
tions on data types:

� An operator function implements a particular operator symbol.

The plus() and times() functions are examples of operator functions
for the + and * operators, respectively.

� A built-in function is a predefined function that the database server
provides for use in SQL statements.

The cos() and hex() functions are examples of built-in functions.

� An aggregate function returns a single value for a set of retrieved rows.

The SUM and AVG functions are examples of aggregate functions.

� An end-user routine is a UDR that end users can use in SQL statements
to perform some useful action.

The database server provides operator functions, built-in functions, and
aggregate functions that handle the data types that it provides. For a
description of these operations and how to extend them, see Chapter 6,
“Extending Operators and Built-In Functions.”

Casts
The database server looks for a cast in the syscasts system catalog table to
determine which function to use to convert the data type value to a different
type. A cast performs the necessary operations for conversion from the data
type to another data type. When two data types have different internal
formats, the database server calls a cast function to convert one data type to
another. For example, when you add an integer value to a decimal value, the
database server performs a cast to change the integer into a decimal so that it
can perform the addition.
5-14 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Operator Classes
The database server provides casts between the built-in data types. You
might want to create additional casts to provide data conversion between an
existing data type and an extended data type that you create. If the two data
types have different internal formats, you must define a cast function to
perform the data conversion. You must register the cast function with the
CREATE FUNCTION statement and create the cast with the CREATE CAST
statement before it can be used. For more information on casts, see Chapter 7,
“Creating User-Defined Casts.”

Operator Classes
An operator class tells the database server which data type (or types) it can
index using a secondary-access method. The operator class must follow the
requirements of the access method. The secondary-access method builds and
accesses an index. An operator class associates a group of operators with a
secondary-access method. When you extend an operator class, you provide
additional functions that can be used as filters in queries and for which the
database server can use an index.

The database server provides a default operator class for the built-in
secondary-access method, a generic B-tree. This default operator class uses
the relational operators (<, >, =, and so on) to order values in the generic
B-tree. These relational operators are defined for the built-in data types.

Providing Additional Operator Classes

To provide additional sequences in which the B-tree can order values in the
index, you might want to create an additional operator class for the generic
B-tree.
Extending Data Types 5-15

Optimizer Information
Extending Operator Classes

The default operator class provides only for built-in data types. You might
want to extend an operator class to support an extended data type for the
following reasons:

� To enable the default operator class to handle values of the extended
data type in a generic B-tree

� To provide a new sequence for the values of the extended data type
to be stored in a generic B-tree

� To extend an operator class of some other secondary-access method
so that it handles the extended data type

To extend or implement an operator class, you must define strategy and
support functions that handle each extended data type you want to index. For
more information, see Chapter 11, “Extending an Operator Class.”

You must register each new operator class in the database with the CREATE
OPCLASS statement. For information about this statement, refer to the
IBM Informix Guide to SQL: Syntax.

Optimizer Information
The UPDATE STATISTICS statement collects information for built-in data
types. The optimizer uses the information to determine the cost associated
with a query.

To collect statistics on opaque and distinct UDTs, you must provide the
functions that collect the information. For more information on these
functions, see Chapter 13, “Improving UDR Performance.”
5-16 IBM Informix User-Defined Routines and Data Types Developer’s Guide

6
Chapter
Extending Operators and Built-
In Functions
In This Chapter . 6-3

Operators and Operator Functions 6-4
Arithmetic Operators. 6-4
Text Operators 6-5
Relational Operators 6-5
Overloading an Operator Function 6-7

Built-In Functions 6-7
Built-In Functions That You Can Overload 6-7
Built-In Functions That You Cannot Overload 6-8

Built-In Aggregates 6-8
Status Functions 6-8
Optical Subsystem Functions. 6-8

Overloading a Built-In Function 6-9

6-2 IBM
 Informix User-Defined Routines and Data Types Developer’s Guide

In This Chapter
This chapter discusses the operators and built-in functions that you can
extend for use with UDTs. An operation is a task that the database server
performs on one or more values.

The database server provides SQL-invoked functions that provide operations
within SQL statements:

� Operator symbols (such as +, -, /, and *) and their associated
operator functions

� Built-in functions such as cos() and abs()

� Aggregate functions such as SUM and AVG

These functions handle the built-in data types. For a UDT to use any of these
functions, you can write a new function that has the same name but accepts
the UDT in its parameter list.

The property called routine overloading allows you to create a user-defined
function whose name is already defined in the database but whose parameter
list is different. All functions with the same name have the same functionality,
but they operate on different data types.

For more information on routine overloading and routine resolution, refer to
“Understanding Routine Resolution” on page 3-11. For information about
aggregate functions, refer to Chapter 8, “Creating User-Defined Aggregates.”
Extending Operators and Built-In Functions 6-3

Operators and Operator Functions
Operators and Operator Functions
An operator function implements a particular operator symbol. The database
server provides special SQL-invoked functions, called operator functions, that
implement operators. An operator function processes one to three arguments
and returns a value. When an SQL statement contains an operator, the
database server automatically invokes the associated operator function.

The association between an operator and an operator function is called
operator binding. You can overload an operator function to provide the
operator for a UDT. The SQL user can then use the operator with the UDT as
well as with the built-in data types. When an SQL statement contains an
operator, the database server automatically invokes the associated operator
function.

Arithmetic Operators
Arithmetic operators usually operate on numeric values. The following table
lists the operator functions for the arithmetic operators that the database
server provides.

Arithmetic Operator Operator Function

+ (binary) plus()

- (binary) minus()

* times()

+ (unary) positive()

- (unary) negate()

/ divide()
6-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Text Operators
You can overload these operators so that you can use them with user-defined
types. For an example of overloading the plus() and divide() functions, refer
to “Example of a User-Defined Aggregate” on page 8-14.

Text Operators
Text operators operate on character strings. The following table lists the text
operators that the database server provides.

For information on syntax and use of the LIKE and MATCHES operators, see
the Condition segment in the IBM Informix Guide to SQL: Syntax.

Relational Operators
Relational operators operate on expressions of numeric and string values.
The following table lists the operator functions that the database server
provides.

Text Operator Operator Function

LIKE like()

MATCHES matches()

|| concat()

Relational Operator Operator Function

= equal()

<> and != notequal()

> greaterthan()

< lessthan()

>= greaterthanorequal()

<= lessthanorequal()
Extending Operators and Built-In Functions 6-5

Relational Operators
All relational operator functions must return a Boolean value. For more infor-
mation on relational operators, see the Relational Operator segment in the
IBM Informix Guide to SQL: Syntax.

For end users to be able to use values of a new data type with relational
operators, you must write new relational-operator functions that can handle
the new data type. In these functions, you can:

� Determine what the relational operators mean for that data type.

For example, you might create the circle opaque data type to imple-
ment a circle. A circle is a spatial object that does not have a single
value to compare. However, you can define relational operators on
this data type that can use the value of its area: one circle is less than
a second circle if its area is less than the area of the second.

� Change from lexicographical sequence to some other ordering for a
data type.

For example, suppose you create a data type, ScottishName, that
holds Scottish names, and you want to order the data type in a dif-
ferent way than the U.S. English collating sequence. You might want
the names McDonald and MacDonald to appear together on a phone
list. You can define relational operators for this data type that equate
the strings Mc and Mac. For more information, see “Changing the Sort
Order” on page 11-12.

After you define the relational operators, you can use SQL statements
such as the following one:

SELECT * FROM employee
WHERE emp_name = 'McDonald'::ScottishName

The relational-operator functions are strategy functions for the built-in
secondary-access method, a generic B-tree. For information on strategy
functions, see “Operator Classes” on page 11-5.
6-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Overloading an Operator Function
Overloading an Operator Function
When you write a new version of an operator function, follow these rules:

� The name of the operator function must match the name of an arith-
metic, text, or relational-operator function. The name is case
insensitive; the plus() function is the same as the Plus() function.

� The operator function must handle the correct number of
parameters.

� The operator function must return the correct data type.

Tip: Although the compare() function is not strictly an operator function, when you
overload the relational operators, you should prepare a corresponding compare()
function, because the database server uses compare() to process queries that SELECT
DISTINCT or have an ORDER BY clause.

Built-In Functions
The database server provides special SQL-invoked functions, called built-in
functions, that provide some basic mathematical operations. For detailed
information about built-in functions, see the Expression segment in the
IBM Informix Guide to SQL: Syntax.

Built-In Functions That You Can Overload
You can overload built-in functions that provide basic operations and certain
text and time functions, including the following ones.

abs() trunc() atan() extend()
hex() exp() atan2() decode()
mod() log10() length() nvl()
pow() logn() char_length() initcap()
root() cos(), sin() character_length() lower()
round() tan() octet_length() lpad(), rpad()
sqrt() acos(), asin() atan2() upper()
Extending Operators and Built-In Functions 6-7

Built-In Functions That You Cannot Overload
Built-In Functions That You Cannot Overload
The following sections list built-in functions that you cannot overload.

Built-In Aggregates

Each aggregate function uses built-in functions to generate the aggregate
result. You cannot overload a built-in aggregate function. Instead, you
overload the necessary support functions. For a list of the aggregate functions
and their related operator functions, refer to “Overloading Operators for
Built-In Aggregates” on page 8-4.

Status Functions

You cannot overload the following functions that describe time, date, the
database server, and the user.

Tip: Technically, CURRENT, DBSERVERNAME, SITENAME, TODAY, and USER,
are not built-in functions, but built-in macros. You can register overloaded routines
by those names, but you cannot use them in SQL statements.

Optical Subsystem Functions

The following table lists the built-in functions for the Optical Subsystem that
you cannot overload.

cardinality() day() month() user
current dbinfo() sitename weekday()
date() dbservername today year()
datetime() mdy() trim()

descr() volume() family()
6-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Overloading a Built-In Function
Overloading a Built-In Function
The database server provides functions that handle the built-in data types.
You can write a new version of a built-in function that allows the function to
operate on your new data type. If you write a new version of a built-in
function, follow these rules:

� The function must be one that you can overload, as listed in “Built-
In Functions That You Can Overload” on page 6-7. The name is case
insensitive; the abs() function is the same as the Abs() function.

� The function must handle the correct number of parameters, and
these parameters must be the correct data type.

� The function must return the correct data type, where appropriate.
Extending Operators and Built-In Functions 6-9

7
Chapter
Creating User-Defined Casts
In This Chapter . 7-3

Understanding Casts 7-3
Built-In Casts 7-3
User-Defined Casts 7-4

Opaque Data Types 7-4
Distinct Data Types 7-4
Named Row Types 7-4

Casts That You Cannot Create. 7-5

Creating a User-Defined Cast 7-5
Choosing the Kind of User-Defined Cast 7-6

Implicit Cast 7-6
Explicit Cast 7-7

Choosing the Cast Mechanism 7-7
Straight Cast 7-8
Cast Function 7-8
Example of a Cast Function 7-9

Defining the Direction of the Cast 7-10

Dropping a Cast . 7-12

7-2 IBM
 Informix User-Defined Routines and Data Types Developer’s Guide

In This Chapter
A cast is a mechanism that converts a value from one data type to another.
The database server supports two kinds of cast:

� Understanding Casts

� Creating a User-Defined Cast

� Dropping a Cast

This chapter describes how to create casts for UDTs.

Understanding Casts
Casts allow you to make comparisons between values of different data types
or substitute a value of one data type for a value of another data type. For
example, when you add a floating-point number to an integer, the computer
must change (cast) the integer to a floating-point value before it can perform
the addition.

Built-In Casts
A built-in cast performs an automatic conversion between two built-in data
types. The database server provides casts between most of the built-in data
types.

For more information on built-in casts, refer to the chapter on data types in
the IBM Informix Database Design and Implementation Guide.
Creating User-Defined Casts 7-3

User-Defined Casts
User-Defined Casts
A user-defined cast is a cast that you define to perform conversion from one
UDT to another data type, either built-in or user-defined. You can create user-
defined casts to perform conversions between most data types, including
opaque types, distinct types, row types, and built-in types.

Opaque Data Types

When you create an opaque data type, you define casts to handle conversions
between the internal and external representations of the opaque data type.
You might also create casts to handle conversions between the opaque data
type and other data types in the database.

For information about how to create and register casts for opaque data types,
see “Creating Casts for Opaque Data Types” on page 9-14.

Distinct Data Types

When you create a distinct data type, the database server automatically
registers explicit casts from the distinct data type to the source data type and
from the source data type to the distinct data type. You must create casts on
distinct types to handle conversions between the new distinct data type and
other data types in the database or use explicit casts in your SQL statements.

For more information and examples that show how you can create and use
casts for distinct types, refer to the chapter on casting in the IBM Informix
Database Design and Implementation Guide.

Named Row Types

In most cases, you can explicitly cast a named row type to another row type
value without creating the cast. However, in some cases, you might want to
create a cast that allows for comparisons between a named row type and
some other data type.

For information about how to cast between named row types and unnamed
row types, refer to the chapter on casting in the IBM Informix Database Design
and Implementation Guide.
7-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Casts That You Cannot Create
Casts That You Cannot Create
You cannot create a user-defined cast that includes any of the following data
types as either the source data type or target data type for the cast:

� Collection data types: LIST, MULTISET, or SET

� Unnamed row types

� Smart-large-object data types: CLOB or BLOB

� Simple-large-object data types: TEXT or BYTE

Creating a User-Defined Cast
You create a user-defined cast with the CREATE CAST statement, which
registers the cast in the syscasts system catalog table. The person who
registers a cast with CREATE CAST owns the cast.

For information about the syntax of the CREATE CAST statement, refer to the
IBM Informix Guide to SQL: Syntax. For a general discussion of using casts, refer
to the IBM Informix Database Design and Implementation Guide.

The CREATE CAST statement provides the following information about the
cast to the database server:

� The kind of user-defined cast to create

� The cast mechanism that the database server is to use to perform the
data conversion

� The direction of the cast

The CREATE CAST statement specifies the source and target data
types to determine the direction of the cast. For full data conversion
between two data types, you must define one cast in each direction
of the conversion.
Creating User-Defined Casts 7-5

Choosing the Kind of User-Defined Cast
Choosing the Kind of User-Defined Cast
You specify how a database server treats a cast when you use the CREATE
CAST statement. The database server supports two kinds of user-defined
casts:

� Implicit cast

� Explicit cast

The database server invokes an explicit cast to perform conversions
between two data types only when you specify the CAST AS key-
words or the double colon (::) cast operator.

Implicit Cast

An implicit cast governs what automatic data conversion occurs for an
operation that involves two different data types. All casts between built-in
data types are implicit.

The database server automatically invokes an implicit cast when it performs
the following tasks:

� It passes arguments of one data type to a UDR whose parameters are
of another data type.

� It evaluates expressions and needs to operate on two similar data
types.

Conversion of one data type to another can involve loss of data. Be careful of
creating implicit casts for such conversions. The end user cannot control
when the database server invokes an implicit cast and therefore cannot avoid
the loss of data that is inherent to such a conversion.

The database server invokes an implicit cast automatically, without a cast
operator. However, you also can explicitly invoke an implicit cast with the
CAST AS keywords or the :: cast operator.

To create an implicit cast, specify the IMPLICIT keyword of the CREATE CAST
statement. The following CREATE CAST statement creates an implicit cast
from the percent data type to the DECIMAL data type:

CREATE IMPLICIT CAST (percent AS DECIMAL)
7-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Choosing the Cast Mechanism
Explicit Cast

An explicit cast governs what data conversion an end user can specify for
UDTs (such as opaque data types, distinct data types, and row types). The
database server invokes an explicit cast only when it encounters one of the
following syntax structures:

� The CAST AS keywords

For example, the following expression uses the CAST AS keywords to
invoke an explicit cast between the percent and INTEGER data types:

WHERE col1 > (CAST percent AS INTEGER)

� The :: cast operator

For example, the following expression uses the cast operator to
invoke an explicit cast between the percent and INTEGER data types:

WHERE col1 > (percent::INTEGER)

The conversion of one data type to another can involve loss of data. If you
define such conversions as explicit casts, the end user can control when the
loss of data that is inherent to such a conversion is acceptable.

To create an explicit cast, specify the EXPLICIT keyword of the CREATE CAST
statement. If you omit the keyword, the default is an explicit cast. Both of the
following CREATE CAST statements create explicit casts from the percent data
type to the INTEGER data type:

CREATE EXPLICIT CAST (percent AS INTEGER)
CREATE CAST (percent AS INTEGER)

Choosing the Cast Mechanism
The CREATE CAST statement can optionally specify the name of a cast
function that implements the cast. The database server does not automati-
cally perform data conversion on extended data types. You must specify a
cast function if the two data types have different internal structures.

The database server can implement a cast with one of following mechanisms:

� Perform a straight cast if two data types have internal structures that
are the same

� Call a cast function to perform the data conversion
Creating User-Defined Casts 7-7

Choosing the Cast Mechanism
Straight Cast

A straight cast tells the database server that two data types have the same
internal structure. With such a cast, the database server does not need to
manipulate data to convert from the source data type to the target data type.
Therefore, you do not need to specify a WITH clause in the CREATE CAST
statement.

For example, suppose you need to compare the values of an INTEGER data
type and a UDT my_int that has the same internal structure as the INTEGER
data type. This conversion does not require a cast function because the
database server does not need to perform any manipulation on the values of
these two data types to compare them. The following CREATE CAST state-
ments create the explicit casts that allow you to convert between values of
data type INT and my_int:

CREATE CAST (INT AS my_int)
CREATE CAST (my_int AS INT)

The first cast defines a valid conversion from INT to my_int, and the second
cast defines a valid conversion from my_int to INT.

Built-in casts have no cast function associated with them. Because a distinct
data type and its source data type have the same internal structure, distinct
types do not require cast functions to be cast to their source data type. The
database server automatically creates explicit casts between a distinct data
type and its source data type.

Cast Function

You can create special SQL-invoked functions, called cast functions, that
implement data conversion between two dissimilar data types. When two
data types have different storage structures, you must create a cast function
that defines how to convert the data in the source data type to data of the
target data type.
7-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Choosing the Cast Mechanism
To create a cast that has a cast function

1. Write the cast function.

The cast function takes the source data type as its argument and
returns the target data type.

2. Register the cast function with the CREATE FUNCTION statement.

3. Register the cast with the CREATE CAST statement.

Use the WITH clause of the CREATE CAST statement to specify the
cast function. To invoke a cast function, the function must reside in
the current database. However, the cast function does not need to
exist when you register the cast.

Example of a Cast Function

For example, suppose you want to compare values of two opaque data types,
int_type and float_type. Both types have an external LVARCHAR format that
you can use as an intermediate type for converting from one to the other. The
CREATE FUNCTION statement in Figure 7-1 creates and registers an SPL
function, int_to_float(), as an argument. It casts the int_type input value to
an LVARCHAR, and then casts the LVARCHAR result to float_type and returns
the float_type result.

The int_to_float() function uses a nested cast and the support functions of the
int_type and float_type opaque types to obtain the return value, as follows:

1. The int_to_float() function converts the int_type argument to
LVARCHAR with the inner cast:

CAST(int_arg AS LVARCHAR)

The output support function of the int_type opaque data type serves
as the cast function for this inner cast. This output support function
must be defined as part of the definition of the int_type opaque data
type; it converts the internal format of int_type to its external
(LVARCHAR) format.

CREATE FUNCTION int_to_float(int_arg int_type)
RETURNS float_type
RETURN CAST(CAST(int_arg AS LVARCHAR) AS float_type);

END FUNCTION;

Figure 7-1
An SPL Function as a

Cast Function from
int_type to float_type
Creating User-Defined Casts 7-9

Defining the Direction of the Cast
2. The int_to_float() function converts the LVARCHAR value to
float_type with the outer cast:

CAST((LVARCHAR value from step 1) AS float_type)

The input support function of the float_type opaque data type serves
as the cast function for this outer cast. This input support function
must be defined as part of the definition of the float_type opaque
data type; it converts the external (LVARCHAR) format of float_type
to its internal format.

For information about input and output support functions, refer to “Locale-
Sensitive Input and Output Support Functions” on page 10-30.

After you create this cast function, use the CREATE CAST statement to register
the function as a cast. You cannot use the function as a cast until you register
it with the CREATE CAST statement. The CREATE CAST statement in
Figure 7-2 creates an explicit cast that uses the int_to_float() function as its
cast function.

After you register the function as an explicit cast, the end user can invoke the
function with the CAST AS keywords or with the :: cast operator to convert an
int_type value to a float_type value. For the syntax of the CREATE FUNCTION
and CREATE CAST statements, refer to the IBM Informix Guide to SQL: Syntax.

Defining the Direction of the Cast
A cast tells the database server how to convert from a source data type to a
target data type. The CREATE CAST statement provides the name of the
source and target data types for the cast. The source data type is the data type
that needs to be converted, and the target data type is the data type to which
the source data type should be converted. For example, the following
CREATE CAST statement creates a cast whose source data type is DECIMAL
and whose target data type is a UDT called percent:

CREATE CAST (DECIMAL AS percent)

When you register a user-defined cast, the combination of source data type
and target data type must be unique within the database.

CREATE EXPLICIT CAST (int_type AS float_type
WITH int_to_float);

Figure 7-2
An Explicit Cast from

int_type to a float_type
7-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Defining the Direction of the Cast
To provide data conversion between two data types, you must define a cast
for each direction of the conversion. For example, the explicit cast in
Figure 7-2 enables the database server to convert from the int_type opaque
data type to the float_type opaque data type. Therefore, the end user can
perform the following cast in an INSERT statement to convert an int_type
value, it_val, to a float_type column, ft_col:

INSERT INTO table1 (ft_col) VALUES (it_value::float_type)

However, this cast does not provide the inverse conversion: from float_type
to int_type. If you try to insert a float_type value in an int_type column, the
database server generates an error. To enable the database server to perform
this conversion, you need to define another cast function, one that takes a
float_type argument and returns an int_type value. Figure 7-3 shows the
CREATE FUNCTION statement that defines the float_to_int() SPL function.

The float_to_int() function also uses a nested cast and the support functions
of the int_type and float_type opaque types to obtain the return value:

1. The float_to_int() function converts the float_type value to
LVARCHAR with the inner cast.

CAST(float_arg AS LVARCHAR)

The output support function of the float_type opaque data type
serves as the cast function for this inner cast. This output support
function must be defined as part of the definition of the float_type
opaque data type; it converts the internal format of float_type to its
external (LVARCHAR) format.

2. The float_to_int() function converts the LVARCHAR value to int_type
with the outer cast.

CAST(LVARCHAR value AS int_type)

The input support function of the int_type opaque data type serves
as the cast function for this outer cast. This input support function
must be defined as part of the definition of the int_type opaque data
type; it converts the external (LVARCHAR) format of int_type to its
internal format.

CREATE FUNCTION float_to_int(float_arg float_type)
RETURNS int_type
RETURN CAST(CAST(float_arg AS LVARCHAR) AS int_type);

END FUNCTION;

Figure 7-3
An SPL Function as a

Cast Function from
float_type to int_type
Creating User-Defined Casts 7-11

Dropping a Cast
The CREATE CAST statement in Figure 7-4 creates an explicit cast that uses the
int_to_float() function as its cast function.

The end user can now perform the following cast in an INSERT statement to
convert a float_type value, ft_val, for an int_type column, it_col:

INSERT INTO table1 (it_col) VALUES (ft_value::int_type)

Together, the explicit casts in Figure 7-2 on page 7-10 and in Figure 7-4 enable
the database server to convert between the float_type and int_type opaque
data types. Each explicit cast provides a cast function that performs one
direction of the conversion.

Dropping a Cast
The DROP CAST statement removes the definition for a cast from the
database. The database server removes the class definition from the syscasts
system catalog table. You must be the owner (the person who created the
cast) or the DBA to drop its definition from the database.

Warning: Do not drop the built-in casts, which user informix owns. The database
server uses built-in casts for automatic conversions between built-in data types. Do
not drop support functions for opaque data types that serve as casts if you still want
to use the opaque data type in the database.

CREATE EXPLICIT CAST (float_type AS int_type
WITH float_to_int);

Figure 7-4
An Explicit Cast from
float_type to int_type
7-12 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Dropping a Cast
The following statements create and then remove casts between the mytype
and DECIMAL data types:

CREATE CAST (decimal AS mytype WITH dec_to_mytype);
CREATE CAST (mytype AS decimal WITH mytype_to_decimal);
...
...
DROP CAST (decimal AS mytype);
DROP CAST (mytype AS decimal);

Dropping a cast has no effect on the function associated with the cast. The
previous statements do not affect the dec_to_mytype or mytype_to_decimal
functions. Use the DROP FUNCTION statement to remove a function from the
database. For information about the syntax of DROP CAST and DROP
FUNCTION, refer to the IBM Informix Guide to SQL: Syntax.
Creating User-Defined Casts 7-13

8
Chapter
Creating User-Defined
Aggregates
In This Chapter . 8-3

Extending Existing Aggregates. 8-4
Overloading Operators for Built-In Aggregates. 8-4
Extending an Aggregate. 8-5
Example of Extending a Built-In Aggregate 8-6

Creating User-Defined Aggregates 8-6
Support Functions 8-7

INIT Function 8-8
ITER Function 8-9
FINAL Function 8-10
COMBINE Function 8-10

Resolving the Support Functions. 8-11
Support-Function States 8-11
Using C or Java Support Functions 8-12
Example of a User-Defined Aggregate 8-14

Using User-Defined Data Types with User-Defined Aggregates . 8-15
Omitting Support Functions 8-16

Managing Aggregates 8-18
Parallel Execution of Aggregates 8-18
Privileges for User-Defined Aggregates 8-18
Aggregate Information in the System Catalog 8-19
Aggregate Information from the Command Line 8-19

Dropping an Aggregate 8-19

8-2 IBM
 Informix User-Defined Routines and Data Types Developer’s Guide

In This Chapter
This chapter describes how to extend the functionality of aggregates in the
database server. An aggregate is a function that returns one value for a set of
queried rows. The database server provides two ways to extend aggregates:

� Extensions of built-in aggregates

A built-in aggregate is an aggregate that the database server provides,
such as COUNT, SUM, or AVG. You can extend the built-in aggregates
for use with UDTs.

� User-defined aggregates

A user-defined aggregate is an aggregate that you define to provide an
aggregate function that the database server does not provide.

The term user-defined aggregates is often used loosely to include both exten-
sions of built-in aggregates and new, user-defined aggregates. The database
server manages all aggregates, whether built in or user defined. After you
create an extension to the aggregate system, you use all aggregates in the
same way, regardless of how the aggregate was created.

The techniques for providing the two types of extensions are different. This
chapter provides separate discussions of the two methods for extending
aggregates.

For information about how to use aggregates in SELECT statements, refer to
the IBM Informix Guide to SQL: Tutorial. For information about the syntax of
aggregates, refer to the IBM Informix Guide to SQL: Syntax.
Creating User-Defined Aggregates 8-3

Extending Existing Aggregates
Extending Existing Aggregates
The database server provides built-in aggregate functions, such as SUM and
COUNT, that operate on the built-in data types. You can extend a built-in
aggregate so that it can operate on UDTs. To extend a built-in aggregate, you
must create UDRs that overload several binary operators.

Overloading Operators for Built-In Aggregates
The following table shows the operators that you must overload for each of
the built-in aggregates. For example, if you need only the SUM aggregate for
a UDT, you need to overload only the plus() operator.

Aggregate Required Operators Return Type

AVG plus(udt, udt), divide(udt, integer) Return type of divide()

COUNT -- (no new operators required) Integer

COUNT DISTINCT equal(udt,udt) Boolean

DISTINCT
(or UNIQUE)

compare(udt, udt) Boolean

MAX greaterthanorequal(udt, udt) Boolean

MIN lesthanorequal(udt, udt) Boolean

RANGE lessthanorequal(udt, udt),
greaterthanorequal(udt, udt),
minus(udt, udt)

Return type of minus()

(1 of 2)
8-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Extending an Aggregate
The database server uses the compare() function for indexing as well as for
DISTINCT and UNIQUE aggregations. However, the database server calls the
equal() function to process COUNT DISTINCT. You must write the compare()
function in C or in Java.

Extending an Aggregate
When you extend a built-in aggregate to include a UDT, you do not use the
CREATE AGGREGATE statement because the aggregate itself already exists.

To extend a built-in aggregate

1. Develop support functions to overload the required operators.

2. Register each function with a CREATE FUNCTION statement.

For more information, refer to “Registering a User-Defined Routine”
on page 4-23.

After you register the support functions that overload the binary operators,
you can use the built-in aggregates in an SQL statement.

For the syntax of the CREATE FUNCTION statement, see the IBM Informix
Guide to SQL: Syntax. For more information about how to write overloaded
functions, refer to “Overloading Routines” on page 3-13. For information
about how to write functions in external languages, refer to the IBM Informix
DataBlade API Programmer’s Guide or the J/Foundation Developer’s Guide.

SUM plus(udt, udt) Return type of plus()

STDEV times(udt, udt),
divide(udt, integer),
plus(udt, udt),
minus(udt, udt),
sqrt(udt)

Return type of divide()

VARIANCE times(udt, udt),
divide(udt, integer),
plus(udt, udt),
minus(udt, udt)

Return type of divide()

Aggregate Required Operators Return Type

(2 of 2)
Creating User-Defined Aggregates 8-5

Example of Extending a Built-In Aggregate
Example of Extending a Built-In Aggregate
The following example uses SPL functions to overload the plus() and divide()
operators for a row type, complex, that represents a complex number. After
you overload the operators, you can use the SUM, AVG, and COUNT operators
with complex.

CREATE ROW TYPE complex(real FLOAT, imag FLOAT);

CREATE FUNCTION plus (c1 complex, c2 complex)
RETURNING complex;
RETURN row(c1.real +c2.real, c1.imag +c2.imag)::complex;

END FUNCTION;

CREATE FUNCTION divide (c1 complex, count INT)
RETURNING complex;
RETURN row(c1.real/count, c1.imag/count)::complex;

END FUNCTION;

You can now use the extended aggregates as follows:

CREATE TABLE c_test (a complex, b integer);
INSERT INTO c_test VALUES (ROW(4,8)::complex,14);
INSERT INTO c_test VALUES (ROW(7,9)::complex,3);
...
SELECT SUM(a) FROM c_test;
SELECT AVG(a) FROM c_test;
SELECT COUNT(a) FROM c_test;

Creating User-Defined Aggregates
A user-defined aggregate extends the database server by providing infor-
mation that allows the database server to apply that aggregate to data in the
database. To create a user-defined aggregate, write and register support
functions that perform the aggregation and then implement the aggregate
with the CREATE AGGREGATE statement.

The CREATE AGGREGATE statement provides the following information
about the aggregate to the database server:

� The name of the aggregate

� The owner of the aggregate

� The names of the functions that support the aggregate

� Modifiers to the aggregate
8-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Support Functions
For the syntax of the CREATE AGGREGATE statement, see the IBM Informix
Guide to SQL: Syntax.

You cannot create a user-defined aggregate for any of the following data
types:

� Collection data types: LIST, MULTISET, or SET

� Unnamed row types

� Smart-large-object data types: CLOB or BLOB

� Simple-large-object data types: TEXT or BYTE

Support Functions
The CREATE AGGREGATE statement expects information about four support
functions. The following table summarizes these support functions. You
must provide support functions for each data type that will use the
aggregate.

You can write the support functions in SPL, C, or Java. For information about
SPL, refer to the IBM Informix Guide to SQL: Syntax. For information about
writing functions in external languages, refer to the IBM Informix DataBlade
API Programmer’s Guide or the J/Foundation Developer’s Guide.

Function
Type Purpose

INIT Initializes the data structures required for computing the aggregate

ITER Merges a single (row) value with the previous partial result

COMBINE Merges one partial result with another partial result, thus allowing
parallel execution of the aggregate

FINAL Converts the partial result into the final value

It can perform clean-up operations and release resources.
Creating User-Defined Aggregates 8-7

Support Functions
The following CREATE AGGREGATE statement registers the SUMSQ aggregate
with support functions named init_func, iter_func, combine_func, and
final_func. You can register an aggregate even though you have not yet
written the support functions.

CREATE AGGREGATE sumsq
(INIT = init_func,
ITER = iter_func,
COMBINE = combine_func,
FINAL = final_func);

When you create a user-defined aggregate, you must overload each support
function to provide for each data type on which the aggregate will operate.
That is, if you create a new aggregate, SUMSQ, whose iterator function is
iter_func, you must overload the iter_func function for each applicable data
type. Aggregate names are not case sensitive. When you create and use an
aggregate, you can use either uppercase or lowercase.

INIT Function

The INIT function initializes the data structures required by the rest of the
computation of the aggregate. For example, if you write a C function, the
INIT function can set up large objects or temporary files for storing interme-
diate results. The INIT function returns the initial result of the aggregate,
which is of the state type.

The INIT function can take one or two arguments. The first argument must
be the same type as the column that is aggregated. The database server uses
the type of the first argument to resolve overloaded INIT functions.

The first argument of the INIT function is a dummy argument and always has
a null value. Therefore, all functions that serve as INIT functions must be
defined with the HANDLESNULLS modifier. ♦

Omitting the INIT Function

You can omit the INIT function for simple binary operators whose state type
is the same as the type of the first argument of the aggregate. In that case, the
database server uses null as the initial result value.

Ext
8-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Support Functions
Using the Optional Second Argument

You can use the optional second argument of the INIT function as a setup
argument to customize the aggregate computation. For example, you could
prepare an aggregate that would exclude the N largest and N smallest values
from its calculation of an average. In that case, the value of N would be the
second argument of the aggregate expression.

The setup expression must come from the group-by columns because the
value of the setup should remain the same throughout the computation of the
aggregate.

The setup expression cannot be a lone host variable reference. ♦

ITER Function

The iteration function, ITER, merges a single value with a partial result and
returns a partial result. The ITER function does the main job of processing the
information from each row that your query selects. For example, for the AVG
aggregate, the ITER function adds the current value to the current sum and
increments the row count by one.

The ITER function is required for all user-defined aggregates. If no INIT
function is defined for a user-defined aggregate, the ITER function must
explicitly handle nulls.

The ITER function obtains the state of the aggregate computation from its
state argument.

SPL routines handle null arguments by default. In C and Java functions, you
must explicitly handle null values in the ITER function and register the
function with the HANDLESNULLS modifier.

The ITER function should not maintain additional states in its FPARAM
structure because the FPARAM structure is not shared among support
functions. However, you can use the FPARAM structure to cache information
that does not affect the aggregate result. ♦

C

C

Creating User-Defined Aggregates 8-9

Support Functions
FINAL Function

The FINAL function converts the internal result to the result type that it
returns to the user. For example, for the AVG aggregate, the FINAL function
returns the current sum divided by the current row count.

The FINAL function is not required for aggregates that are derived from
simple binary operators whose result type is the same as the state type and
the column type. If you do not define a FINAL function, the database server
simply returns the final state.

The FINAL function can perform cleanup work to release resources that the
INIT function allocated. However, it must not free the state itself. ♦

COMBINE Function

The COMBINE function merges one partial result with another partial result
and returns the updated partial result. For example, for the AVG aggregate,
the COMBINE function adds the two partial results and adds the two partial
counts.

If the aggregate is derived from a simple binary operator whose result type
is the same as the state type and the column type, the COMBINE function can
be the same as the ITER function. For example, for the AVG aggregate, the
COMBINE function adds the current sum and the row count of one partial
result to the same values for another partial result and returns the new
values.

The database server uses the COMBINE function for parallel execution. When
a query includes an aggregate, the database server uses parallel execution
when the query includes only aggregates. However, the COMBINE function
might also be used even when a query is not parallelized. For example, when
a query contains both distinct and nondistinct aggregates, the database
server can decompose the computation of the nondistinct aggregate into
subaggregates based on the distinct column values. Therefore, you must
provide a COMBINE function for each user-defined aggregate.

Parallel aggregation must give the same results as an aggregate that is not
computed in parallel. You must write the COMBINE function so that the
result of aggregating over a set of rows is the same as aggregating over two
partitions of the set separately and then combining the results.

Ext
8-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Resolving the Support Functions
The COMBINE function can perform clean-up work to release resources that
the INIT function allocated. However, it must not free the state arguments. ♦

Resolving the Support Functions
When an SQL statement uses a user-defined aggregate, the database server
resolves the support functions to the proper UDRs.

The database server resolves the support functions without a database owner
name. Therefore, the user-defined function resolution logic attempts the
following schemas, respectively: the current user, the schema of the
argument types, and the Informix schema, respectively. For more infor-
mation about routine resolution, refer to “Understanding Routine
Resolution” on page 3-11.

Support-Function States
The database server uses the following steps to find the support functions:

1. If the CREATE AGGREGATE statement includes an INIT function,
resolve the following UDR:

init_func (dt_agg, dt_setup)

The return type of the INIT function establishes a state type that the
database server uses to resolve the other support functions. If the
INIT function is omitted, the state type is the data type of the argu-
ment of the aggregate.

2. For the ITER function, resolve the following UDR:
iter_func (state_type, dt_agg)

The return type of the ITER function should be the state type.

3. For the COMBINE function, resolve the following UDR:
comb_func (state_type, state_type)

The return type of the COMBINE function should be the state type.

4. If the FINAL function is specified, resolve the following UDR:
final_func (state_type)

The return type of the user-defined aggregate is the return type of the
FINAL function. If the FINAL function is not specified, the return type
is the state type.

Ext
Creating User-Defined Aggregates 8-11

Using C or Java Support Functions
The preceding steps use the following variables.

Aggregate states should never be null. That is, the support functions should
not return a null value. The database server cannot distinguish a null value
from the result of aggregating over an empty table. Therefore, although null
values do not cause runtime errors, the COMBINE function and the FINAL
function ignore them.

Using C or Java Support Functions
When you use C or Java to write routines for the support functions, you must
consider the treatment of null values. Unless the HANDLESNULLS modifier is
present, rows with null values in the column that is aggregated do not
contribute to the aggregate computation. If the iteration function, ITER, uses
HANDLESNULLS, all of the support functions must be declared to handle null
values. The initialization function, INIT, must always be able to handle null
values.

Variable Description

comb_func Name of the COMBINE function

dt_aggr Data type of the first argument of the aggregate

dt_setup Data type of the second, or setup, argument of the aggregate

final_func Name of the FINAL function

init_func Name of the INIT function

iter_func Name of the ITER function

state_type The state type that the return value of the INIT function establishes

Ext
8-12 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Using C or Java Support Functions
User-defined aggregates are strongly typed. That is, the database server uses
the state type information from the support functions to ensure that values
are well typed and that their memory is properly managed. With caution,
you might be able to use the generic user-defined type pointer to avoid
creating a new state type.

To create a user-defined aggregate

1. Write the functions that support the aggregate.

2. Register the support function with the CREATE FUNCTION
statement.

3. Register the aggregate with the CREATE AGGREGATE statement.

After you register the aggregate, you can use the aggregate in an SQL
statement.

For more information about registering a function, refer to “Registering a
User-Defined Routine” on page 4-23. For the syntax of the CREATE
FUNCTION and CREATE AGGREGATE statements, see the IBM Informix Guide
to SQL: Syntax.
Creating User-Defined Aggregates 8-13

Example of a User-Defined Aggregate
Example of a User-Defined Aggregate
The following example uses SPL functions to provide the support functions
for a new aggregate, SUMSQ, that calculates the sum of squares. After you
register the support functions and create the aggregate, you can use the
SUMSQ aggregate with any column that has a data type that casts to a float
data type.

CREATE FUNCTION ssq_init (dummy float)
RETURNING float;
RETURN 0;

END FUNCTION;

CREATE FUNCTION ssq_iter (result float, value float)
RETURNING float;
RETURN result + value * value;

END FUNCTION;

CREATE FUNCTION ssq_combine(partial1 float, partial2 float)
RETURNING float;
RETURN partial1 + partial2;

END FUNCTION;

CREATE FUNCTION ssq_final(final float)
RETURNING float;
RETURN final;

END FUNCTION;

CREATE AGGREGATE sumsq WITH
(INIT = ssq_init,
 ITER = ssq_iter,
 COMBINE = ssq_combine,
 FINAL = ssq_final);

Now, for example, you can use SUMSQ with the INTEGER column of the
c_test table illustrated in “Example of Extending a Built-In Aggregate” on
page 8-6.

SELECT SUMSQ(b) FROM c_test;
8-14 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Example of a User-Defined Aggregate
Using User-Defined Data Types with User-Defined Aggregates

You cannot use SUMSQ with the complex column of the c_test table illus-
trated in “Example of Extending a Built-In Aggregate” on page 8-6 because
the complex data type does not cast to the FLOAT data type. To use SUMSQ
with the complex data type, you must overload the support functions of the
SUMSQ aggregate.

CREATE FUNCTION ssq_init (dummy complex)
RETURNING complex;
RETURN ROW(0,0)::complex;

END FUNCTION;

CREATE FUNCTION ssq_iter (partial complex, c complex)
RETURNING complex;
RETURN ROW (

(partial.real + c.real*c.real - c.imag*c.imag),
(partial.imag + 2*c.real*c.imag)
)::complex;

END FUNCTION;

CREATE FUNCTION ssq_combine(p1 complex, p2 complex)
RETURNING complex;
RETURN ROW(p1.real + p2.real,

p1.imag + p2.imag)::complex;
END FUNCTION;

CREATE FUNCTION ssq_final(final complex)
RETURNING complex;
RETURN final::complex;

END FUNCTION;

When you overload support functions for a user-defined aggregate, you
must prepare exactly the same functions as those declared in the CREATE
AGGREGATE statement. In this example, that requirement means
overloading each of the support functions.
Creating User-Defined Aggregates 8-15

Example of a User-Defined Aggregate
Omitting Support Functions

For completeness, the preceding examples show all four support functions:
INIT, ITER, COMBINE, and FINAL. Because SUMSQ is a simple aggregate, the
examples could have omitted the INIT and FINAL functions. You could use
the following commands to create the SSQ2 aggregate:

CREATE FUNCTION ssq2_iter (result float, opr float)
RETURNING float;
IF result IS NULL THEN
 LET result = (opr*opr);
ELSE
 LET result = result + opr*opr;
END IF
RETURN result;

END FUNCTION;

CREATE FUNCTION ssq2_combine(partial1 float, partial2 float)
RETURNING float;
RETURN partial1 + partial2;

END FUNCTION;

CREATE AGGREGATE ssq2 WITH
(ITER = ssq2_iter,
 COMBINE = ssq2_combine);

Difference Between SUMSQ and SSQ2 Aggregates

The INIT function for SUMSQ explicitly initializes the state; that is, the result.
Because the SSQ2 aggregate does not include an INIT function, the ITER
function must explicitly handle the case where the result is null.

The behavior of the SSQ2 aggregate is not exactly the same as that of the
SUMSQ aggregate. You can use SSQ2 only with a column of the FLOAT data
type unless you explicitly cast the column to FLOAT. In the following
example, the first SELECT statement fails, but the other SELECT statements
succeed:

CREATE TABLE trial (t INT);
INSERT INTO trial VALUES (2);
INSERT INTO trial VALUES (3);

SELECT ssq2(t) FROM trial; -- fails
SELECT ssq2(t::float) FROM trial; -- succeeds
SELECT sumsq(t) from trial; -- succeeds
8-16 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Example of a User-Defined Aggregate
Because the INIT function was omitted from the declaration of SSQ2, the
aggregate uses the data type of the aggregate argument as its state type. The
ITER function expects a FLOAT data type. Thus, when the INIT function is
omitted, the aggregate argument must be a FLOAT data type. For more about
the state type, refer to “Resolving the Support Functions” on page 8-11.

Overloading the Support Functions for SSQ2

Because any overloaded functions must be the same as those in the decla-
ration of the aggregate, you must overload ssq2_iter and ssq2_combine to
extend the SSQ2 aggregate to the complex data type.

CREATE FUNCTION ssq2_iter (partial complex, c complex)
RETURNING complex;
RETURN ROW (

(partial.real + c.real*c.real - c.imag*c.imag),
(partial.imag + 2*c.real*c.imag)
)::complex;

END FUNCTION;

CREATE FUNCTION ssq2_combine(p1 complex, p2 complex)
RETURNING complex;
RETURN ROW(p1.real + p2.real,

p1.imag + p2.imag)::complex;
END FUNCTION;
Creating User-Defined Aggregates 8-17

Managing Aggregates
Managing Aggregates
The database server provides tools for managing user-defined or user-
extended aggregates and their associated functions.

Parallel Execution of Aggregates
In aggregate-only queries, the database server can break the computation of
the aggregate into several pieces and compute each piece in parallel. The
database server then uses the COMBINE function to combine the partial
results from all pieces in a single result value. The database server uses the
optimizer to decide when and how to parallelize an aggregate. This action is
transparent to the user.

In queries that are not exclusively aggregate, the database server can still
compute multiple aggregate results in parallel. In such cases, the database
server computes each aggregate result sequentially (without using the
COMBINE function).

For more information about parallelization and optimization, refer to the
Performance Guide.

Privileges for User-Defined Aggregates
No privileges are directly associated with user-defined or user-extended
aggregates. Instead, you must set the correct privileges for the functions that
support the aggregates.

To create a function, you must have RESOURCE or DBA database-level privi-
leges. When you create a function in a database that is not ANSI compliant,
any user can use the function. When you create a function in an ANSI-
compliant database, you must explicitly grant the Execute privilege on that
function, so that users can use the function and thus the related aggregate.

For more information about privileges, refer to the GRANT statement in the
IBM Informix Guide to SQL: Syntax.
8-18 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Aggregate Information in the System Catalog
Aggregate Information in the System Catalog
The CREATE AGGREGATE statement registers an aggregate in the
sysaggregates system catalog table. The person who registers the aggregate
with CREATE AGGREGATE is the owner of the aggregate. The sysaggregates
table does not include information about built-in aggregates.

Both user-extended built-in aggregates and user-defined aggregates require
user-defined functions. The system catalog tables sysprocauth, sysprocbody,
and sysprocedures record information about the functions that you create,
including those that support user-defined aggregates and extensions of built-
in aggregates.

For descriptions of the system catalog tables, see the IBM Informix Guide to
SQL: Reference.

Aggregate Information from the Command Line
The -g cac agg option of the onstat utility provides information about user-
defined aggregates. For information about onstat, refer to the Administrator’s
Reference.

Dropping an Aggregate
The DROP AGGREGATE statement removes the definition of an aggregate
from the database. You must be the owner of the aggregate or the database
administrator (DBA) to drop its definition from the database.

If you are the owner or the DBA, the following statement removes the
aggregate SUMSQ from the database:

DROP AGGREGATE SUMSQ;

Dropping an aggregate has no effect on functions that are associated with the
aggregate. Use the DROP FUNCTION statement to remove a function from the
database.
Creating User-Defined Aggregates 8-19

9
Chapter
Creating an Opaque Data Type
In This Chapter . 9-3

Opaque Data Types. 9-3
The Internal Structure 9-4

A Fixed-Length Opaque Data Type 9-4
A Varying-Length Opaque Data Type. 9-4

Support Functions 9-5
Operator Functions 9-6
Built-In Functions 9-6
Aggregate Functions 9-6
Statistics-Collecting Routines 9-7
End-User Routines 9-7

Advantages of Opaque Data Types 9-8

Creating an Opaque Data Type. 9-8
Creating the Internal Structure in C 9-9

Data Type Size. 9-9
Memory Alignment 9-11
Parameter Passing 9-12

Creating UDT-to-Java Mappings 9-12
Writing and Registering the Support Functions 9-13
Registering the Opaque Data Type with the Database 9-13

Registering the Opaque Data Type 9-13
Creating Casts for Opaque Data Types 9-14
Using Non In-Row Storage 9-16

Granting Privileges for an Opaque Data Type 9-17
Creating SQL-Invoked Functions 9-18

Arithmetic and Text Operator Functions for Opaque Data Types 9-19
Built-in Functions for Opaque Data Types 9-19
Aggregate Functions for Opaque Data Types 9-20
Conditional Operators for Opaque Data Types 9-20

9-2 IBM
Relational Operators for Opaque Data Types 9-20
Comparison Function for Opaque Data Types 9-22

Customizing Access Methods 9-23
Using the Generic B-Tree 9-24
Using Other Access Methods 9-24

Indexing Spatial Data 9-25
Indexing Other Types of Data 9-25

Other Operations on Opaque Data Types 9-25
Accessing an Opaque Data Type 9-25
Dropping an Opaque Data Type 9-26
 Informix User-Defined Routines and Data Types Developer’s Guide

In This Chapter
This chapter provides the following information:

� Opaque Data Types

� Creating an Opaque Data Type

� Customizing Access Methods

� Other Operations on Opaque Data Types

Opaque Data Types
An opaque data type is an atomic data type that you define for the database. An
opaque data type gets its name from the fact that the database server
maintains no information about the internal representation of the data type.
Unlike built-in types, for which the database server maintains information
about the internal format, the opaque types are encapsulated; that is, the
database server has no knowledge of the format of the data within an opaque
data type.

When you define an opaque data type, you extend the data type system of
the database server. You can use the new opaque data type in the same way
as any built-in data type that the database server provides. To define the
opaque data type to the database server, you must provide the following
information in an external language (C or Java):

� A data structure that defines the internal storage of the opaque data
type

� Support functions that allow the database server to interact with this
internal structure
Creating an Opaque Data Type 9-3

The Internal Structure
� Optional modifiers that specify how the data type should be treated

� Optional additional routines that can be called by other support
functions or by end users to operate on the opaque data type

The following sections introduce each of these parts of an opaque data type.
For information on how to create these parts, see “Creating an Opaque Data
Type” on page 9-8.

The Internal Structure
To create an opaque data type, you must first provide a data structure that
stores the data in its internal representation. This data structure is called the
internal structure of the opaque data type because it is how the data is stored
on disk. The support functions that you write operate on this internal
structure; the database server never sees the internal structure. You create the
internal structure as a data structure in the external language.

You can define an internal structure that supports either a fixed-length
opaque data type or a varying-length opaque data type.

A Fixed-Length Opaque Data Type

A fixed-length opaque data type has an internal structure whose size is the same
for all possible values of the opaque data type. Fixed-length opaque types are
useful for data that you can represent in fixed-length fields, such as numeric
values.

You provide the size when you register the opaque data type in the database.
For more information, see “Data Type Size” on page 9-9.

A Varying-Length Opaque Data Type

A varying-length opaque data type has an internal structure whose size might
be different for different values of the opaque data type. Varying-length
opaque types are useful for storage of multirepresentational data, such as
images. For example, image sizes vary from one picture to another. You
might store data up to a certain size within the opaque data type and use a
smart large object in the opaque data type if the image size exceeds that size.
9-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Support Functions
When you register the opaque data type in the database, you indicate that the
size is varying, and you can indicate a maximum size for the internal
structure. For more information, see “Data Type Size” on page 9-9.

A multirepresentational data type is a varying-length data type that stores data
directly in the internal structure of the opaque type if the length of the data is
smaller than a specified threshold. If the length of the data is greater than the
threshold, the data type stores the value in a smart large object and then
stores the smart large object handle in the opaque type.

When you insert a value into a multirepresentational data type, the assign()
support function determines where the data should be stored. When you
delete data, the destroy() support function determines whether the data
should be removed from the internal structure or from a smart large object.
The update() and deepcopy() functions provide more efficient management
for UDTs that contain smart large objects. For more information about these
functions, see “Handling Smart Large Objects” on page 10-26. For infor-
mation about how to use multirepresentational data types, refer to the
IBM Informix DataBlade API Programmer’s Guide.

Support Functions
Support functions provide the basic functionality that the database server
needs to interact with your opaque data type. However, you might want to
write additional UDRs to provide the following kinds of functions for your
opaque data type:

� Operator functions

� Built-in functions

� Aggregate functions

� Statistics-collecting routines

� Selectivity functions

� End-user routines
Creating an Opaque Data Type 9-5

Support Functions
Operator Functions

An operator function is a user-defined function, such as plus() or equal(), that
has a corresponding operator symbol. For an operator function to operate on
the opaque data type, you must overload the routine for the opaque data
type.

For general information about the operator functions that the database server
provides, see “Operators and Operator Functions” on page 6-4. For general
information on overloading routines, refer to “Overloading Routines” on
page 3-13. For information on how to overload an operator function on an
opaque data type, see “Arithmetic and Text Operator Functions for Opaque
Data Types” on page 9-19.

Built-In Functions

A built-in function is a predefined function, such as cos() or length(), that the
database server provides for use in an SQL expression. The database server
supports built-in functions on the built-in data types. For an opaque data
type, you must overload the function for the opaque type.

For general information about these built-in functions, see “Built-In
Functions” on page 6-7. For information on how to overload a built-in
function on an opaque data type, see “Built-in Functions for Opaque Data
Types” on page 9-19.

Aggregate Functions

An aggregate function returns one value, such as SUM or AVG, for a set of
queried rows. You can extend the built-in aggregates to provide for your
opaque data types. You can also create new, special-purpose aggregate
functions.

For information about how to extend the built-in aggregates, refer to
“Extending Existing Aggregates” on page 8-4. For information about how to
create new aggregate functions, refer to “Creating User-Defined Aggregates”
on page 8-6. For information about how to use aggregate functions, see the
Expression segment in the IBM Informix Guide to SQL: Syntax.
9-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Support Functions
Statistics-Collecting Routines

The UPDATE STATISTICS statement calls the statcollect() function to collect
statistics for the optimizer to use. The statcollect() function formats infor-
mation so that the database server can display it.

For more information, refer to “The statcollect() Function” on page 13-14.

End-User Routines

The database server allows you to define SQL-invoked functions or proce-
dures that the end user can use in expressions or SQL statements. These end-
user routines provide additional functionality that an end user might need to
work with the opaque data type. Examples of end-user routines include:

� Functions that return a particular value in the opaque data type

Because the opaque data type is encapsulated, an end-user function
is the only way that users can access fields of the internal structure.

� Cast functions

Several of the support functions serve as cast functions between
basic data types that the database server uses. You might also write
additional cast functions between the opaque data type and other
data types (built-in, opaque, or complex) of the database.

� Functions or procedures that perform common operations on the
opaque data type

If an operation or task is performed often on the opaque data type,
you might want to write an end-user routine to perform this task.

For more information about end-user routines, see Chapter 4, “Developing a
User-Defined Routine.”
Creating an Opaque Data Type 9-7

Advantages of Opaque Data Types
Advantages of Opaque Data Types
Both an opaque data type and a row data type allow you to define members
of the data type. The advantages of creating an opaque data type rather than
a row data type are as follows.

� The opaque data type is more compact to store.

The opaque data type does not have the overhead in the system cat-
alog that a row data type requires.

� The opaque data type is more efficient.

The support functions of an opaque data type manipulate the inter-
nal structure of the opaque data type directly. You do not need to take
special steps (DataBlade API calls or SQL dot notation) to extract data
from the members as you must do for the fields of a row data type.

Creating an Opaque Data Type
To create an opaque data type, follow these steps:

1. Create the internal structure for the opaque data type.

2. Write and register the support functions.

3. Register the opaque data type in the database with the CREATE
OPAQUE TYPE statement.

4. Provide access to the opaque data type and its support functions
with the GRANT statement.

5. Write any SQL-invoked functions that are needed to support the
opaque data type.

6. Provide any customized secondary-access methods that the opaque
data type might need.

The following sections describe each of these steps.
9-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Creating the Internal Structure in C
Creating the Internal Structure in C
The internal structure of an opaque data type is a C data structure. For the
internal structure, use the C typedefs that the DataBlade API supplies for
those fields whose size might vary by platform. Use of these typedefs, such
as mi_integer and mi_float, improves the portability of the opaque data type.
For more information on these data types, see the IBM Informix DataBlade API
Programmer’s Guide.

When you create the internal structure, consider the following impacts of the
size of this structure:

� The final structure size of the new opaque data type

� The alignment in memory of the opaque data type

� The method for passing the opaque data type to UDRs

You provide this information when you create the opaque data type with the
CREATE OPAQUE TYPE statement.

Data Type Size

To save space in the database, lay out internal structures as compactly as
possible. The database server stores values in their internal representation, so
any internal structure with padding between entries consumes unnecessary
space.

The INTERNALLENGTH keyword of the CREATE OPAQUE TYPE statement
supplies the final size of the internal structure. This keyword provides the
following two ways to specify the size:

� Specify the actual size, in bytes, of the internal structure to define a
fixed-length opaque data type.

� Specify the VARIABLE keyword to define a varying-length opaque
data type.

C

Creating an Opaque Data Type 9-9

Creating the Internal Structure in C
A Fixed-Length Opaque Data Type

When you specify the actual size for INTERNALLENGTH, you create a fixed-
length opaque data type. The size of a fixed-length opaque data type must
match the value that the C-language sizeof() directive returns for the internal
structure. The maximum internal length for a fixed-length opaque type is
32760 bytes.

On most compilers, the sizeof() directive rounds up to the nearest 4-byte size
to ensure that pointer match on arrays of structures works correctly.
However, you do not need to round up for the size of a fixed-length opaque
data type. Instead you can specify alignment for the opaque data type with
the ALIGNMENT modifier. For more information, see “Memory Alignment”
on page 9-11.

A Varying-Length Opaque Data Type

When you specify the VARIABLE keyword for the INTERNALLENGTH
modifier, you create a varying-length opaque data type. The default
maximum size for a varying-length opaque data type is 2 kilobytes.

To specify a different maximum size for a varying-length opaque data type,
use the MAXLEN modifier. The maximum internal length for a varying-
length opaque type is 32740 bytes. When you specify a MAXLEN value, the
database server can optimize resource allocation for the opaque data type. If
the size of the data for an opaque data type exceeds the MAXLEN value, the
database server returns an error. A varying-length opaque data type is also
limited to 195 columns within the 32740 byte maximum length.

For example, the following CREATE OPAQUE TYPE statement defines a
varying-length opaque data type called var_type whose maximum size is 4
kilobytes:

CREATE OPAQUE TYPE var_type (INTERNALLENGTH=VARIABLE,
MAXLEN=4096);

Only the last member of the internal structure can be of varying size.

The C data structure for a varying-length opaque type must be stored in an
mi_lvarchar data structure. For information about mi_lvarchar, refer to the
IBM Informix DataBlade API Function Reference.
9-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Creating the Internal Structure in C
Memory Alignment

When the database server passes the data type to a UDR, it aligns opaque-
type data on a specified byte boundary. Alignment requirements depend on
the C definition of the opaque data type and on the system (hardware and
compiler) on which the opaque data type is compiled.

You can specify the memory-alignment requirement for your opaque data
type with the ALIGNMENT modifier of the CREATE OPAQUE TYPE statement.
The following table summarizes valid alignment values.

Structures that begin with single-byte characters, char, can be aligned
anywhere. Arrays of a data type should follow the same alignment restric-
tions as the data type itself.

For example, the following CREATE OPAQUE TYPE statement specifies a
fixed-length opaque data type, called LongLong, of 18 bytes that must be
aligned on a 1-byte boundary:

CREATE OPAQUE TYPE LongLong (INTERNALLENGTH=18, ALIGNMENT=1);

If you do not include the ALIGNMENT modifier in the CREATE OPAQUE TYPE
statement, the default alignment is a 4-byte boundary.

ALIGNMENT
Value Meaning Purpose

1 Align structure on
single-byte boundary.

Structures that begin with 1-byte quantities

2 Align structure on
2-byte boundary.

Structures that begin with 2-byte quantities
such as mi_unsigned_smallint

4 Align structure on
4-byte boundary.

Structures that begin with 4-byte quantities
such as float or mi_unsigned_integer

8 Align structure on
8-byte boundary.

Structures that contain members of the
C double data type
Creating an Opaque Data Type 9-11

Creating UDT-to-Java Mappings
Parameter Passing

The database server can pass opaque-type values to a UDR in either of the
following ways:

� Pass by value passes the actual value of the opaque data type to a
UDR.

� Pass by reference passes a pointer to the value of the opaque data type
to a UDR.

By default, the database server passes all opaque types by reference. For the
database server to pass an opaque data type by value, specify the
PASSEDBYVALUE modifier in the CREATE OPAQUE TYPE statement. Only an
opaque data type whose size is 4 bytes or smaller can be passed by value.
However, the DataBlade API data type mi_real, although only 4 bytes in
length, is always passed by reference.

The following CREATE OPAQUE TYPE statement specifies that the two_bytes
opaque data type be passed by value:

CREATE OPAQUE TYPE two_bytes (INTERNALLENGTH=2, ALIGNMENT=2,
PASSEDBYVALUE);

Creating UDT-to-Java Mappings
The routine manager needs a mapping between SQL data values and Java
objects to be able to pass parameters to and retrieve return results from a
UDR. The SQL to Java data-type mapping is performed according to the JDBC
specification. For built-in SQL data types, the routine manager can use
mappings to existing JDBC data types.

To create the mapping between a user-defined SQL data type and a Java object

1. Create a user-defined class that implements the SQLData interface.
(For more information, refer to the JDBC 2.0 specification).

2. Bind this user-defined class to the user-defined SQL data type using
the setUDTExtName built-in procedure.
9-12 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Writing and Registering the Support Functions
Writing and Registering the Support Functions
An opaque data type needs support functions that provide casts for input
and output, operator functions, cost functions, selectivity functions,
operator-class functions and statistics functions. For more information about
these functions, refer to Chapter 10, “Writing Support Functions,” and
Chapter 11, “Extending an Operator Class.”

Registering the Opaque Data Type with the Database
After you create the internal structure and support functions for the opaque
data type, use the following SQL statements to register them with the
database:

� The CREATE OPAQUE TYPE statement registers an opaque data type
as a data type.

� The CREATE FUNCTION statement registers a support function.

� The CREATE CAST statement registers a support function as cast
functions.

Registering the Opaque Data Type

To create an opaque data type within a database, you must have the Resource
privilege on the database. The CREATE OPAQUE TYPE statement registers an
opaque data type with the database. It provides the following information to
the database:

� The name and owner of the opaque data type

The opaque-type name is the name of the data type that SQL state-
ments use. It does not have to be the name of the internal structure
for the opaque data type. You might find it useful to create a special
prefix to identify the data type as an opaque data type. The opaque-
type name must be unique within the name space.

� The size of the opaque data type

You specify this size information with the INTERNALLENGTH modi-
fier. It indicates whether the data type is a fixed-length or varying-
length opaque data type. For more information, see “Creating the
Internal Structure in C” on page 9-9.
Creating an Opaque Data Type 9-13

Registering the Opaque Data Type with the Database
� The values of the different opaque-type modifiers

The CREATE OPAQUE TYPE statement can specify the following mod-
ifiers for an opaque data type: MAXLEN, PASSEDBYVALUE,
CANNOTHASH, and ALIGNMENT. You determine this information
when you create the internal structure for the opaque data type. For
more information, see “Creating the Internal Structure in C” on
page 9-9.

The CREATE OPAQUE TYPE statement stores this information in the
sysxtdtypes system catalog table. When it stores a new opaque data type in
sysxtdtypes, the CREATE OPAQUE TYPE statement causes a unique value,
called an extended identifier, to be assigned to the opaque data type.
Throughout the system catalog, an opaque data type is identified by its
extended identifier, not by its name. (For more information on the columns
of the sysxtdtypes system catalog, see the chapter on system catalog tables in
the IBM Informix Guide to SQL: Reference.)

To register a new opaque data type in a database, you must have the Resource
privilege on that database. By default, a new opaque data type has Usage
permission assigned to the owner. For information on how to change the
permission of an opaque data type, see “Granting Privileges for an Opaque
Data Type” on page 9-17.

For more information on the syntax of the CREATE OPAQUE TYPE, CREATE
FUNCTION, and CREATE FUNCTION FROM statements, see their descriptions
in the IBM Informix Guide to SQL: Syntax.

Creating Casts for Opaque Data Types

For each of the support functions in the following table, the database server
uses a cast to convert the opaque data type to a particular internal data type.

Support
Function

Cast

From To Type of Cast

input LVARCHAR opaque data type implicit

output opaque data type LVARCHAR explicit

receive SENDRECV opaque data type implicit

(1 of 2)
9-14 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Registering the Opaque Data Type with the Database
For the database server to perform these casts, you must create the casts with
the CREATE CAST statement. The database server can then call the appro-
priate support function when it needs to cast opaque-type data to or from the
LVARCHAR, SENDRECV, IMPEXP, IMPEXPBIN, or STREAM data types.

The CREATE CAST statement stores information about cast functions in the
syscasts system catalog table. For more information on the CREATE CAST
statement, see the description in the IBM Informix Guide to SQL: Syntax. For a
description of casting, see the IBM Informix Guide to SQL: Tutorial.

send opaque data type SENDRECV explicit

import IMPEXP opaque data type implicit

export opaque data type IMPEXP explicit

importbinary IMPEXPBIN opaque data type implicit

exportbinary opaque data type IMPEXPBIN explicit

streamread STREAM opaque data type implicit

streamwrite opaque data type STREAM explicit

Support
Function

Cast

From To Type of Cast

(2 of 2)
Creating an Opaque Data Type 9-15

Registering the Opaque Data Type with the Database
Using Non In-Row Storage

An opaque data type can use the following types of non in-row storage:

� Smart large object (BLOB and CLOB)

� Files

� A non in-row storage type that is dependent on the local computer

For example, this storage type might be a reference to a tape storage
system.

� A non in-row storage type that is not dependent on the database
server

For example, this storage type might be a file reference that includes
the location of the computer where the user of the reference goes
directly to the designated computer, bypassing the database server
where the reference is stored.

The routines that support the opaque data type should do the following:

� Include room in the storage handle for location information

The location information should include the database server name,
and, if the data type is dependent on a particular database, the data-
base name.

� Provide routines to set and get the location information from the
storage handle to include in the server-send support functions

� Provide support for remote data in the access routines

For example, the open routine must recognize a reference to a remote
database server and access it appropriately.
9-16 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Granting Privileges for an Opaque Data Type
Granting Privileges for an Opaque Data Type
After you create the opaque data type and register it with the database, use
the GRANT statement to define the following privileges on this data type:

� Privileges on the use of the opaque data type

� Privileges on the support functions of the opaque data type

The CREATE OPAQUE TYPE statement creates a new opaque data type with
the Usage privilege granted to the owner of the opaque data type and the
DBA. To use the opaque data type in an SQL statement, you must have the
Usage privilege. The owner can grant the Usage privilege to other users with
the USAGE ON TYPE clause of the GRANT statement.

The database server checks for the Usage privilege whenever the opaque-
type name appears in an SQL statement (such as a column data type in
CREATE TABLE or a cast data type in CREATE CAST). The database server does
not check for the Usage privilege when an SQL statement:

� Accesses columns of the opaque data type

The Select, Insert, Update, and Delete table-level privileges deter-
mine access to a column.

� Invokes a UDR with the opaque data type as an argument

The Execute routine privilege determines access to a UDR.

For example, the following GRANT statement assigns the Usage privilege on
the circle opaque data type to user dexter:

GRANT USAGE ON TYPE circle TO dexter

The sysxtdtypeauth system catalog table stores data type-level privileges.
This table contains privileges for each opaque and distinct data type that is
defined in the database. The table contains one row for each set of privileges
granted.

For information about setting the privileges for support functions, refer to
“Setting Privileges for Support Functions” on page 10-7.
Creating an Opaque Data Type 9-17

Creating SQL-Invoked Functions
Creating SQL-Invoked Functions
An SQL-invoked function is a user-defined function that an end user can
explicitly call in an SQL statement. You might write SQL-invoked functions to
extend the functionality of an opaque data type in the following ways:

� Overloading arithmetic or built-in functions to provide arithmetic
operations and built-in functions on the opaque data type

� Overloading relational-operator functions to provide comparison
operations on the opaque data type

� Writing new end-user routines to provide additional functionality
for the opaque data type

� Writing new cast functions to provide additional data conversions to
and from the opaque data type

The SQL functions that the database server defines handle the built-in data
types. For a UDT to use any of these functions, you can overload the function
that handles the UDT. For more information on the details of writing user-
defined functions, see Chapter 4, “Developing a User-Defined Routine.” For
information about overloading functions, refer to “Overloading Routines”
on page 3-13.

The database server supports the following types of SQL-invoked functions
that allow you to operate on data in expressions of SQL statements:

� Arithmetic and text operator functions

� Built-in functions

� Aggregate functions

The database server also supports the following types of functions that allow
you to compare data in expressions of SQL statements:

� SQL operators in a conditional clause

� Relational operator functions
9-18 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Creating SQL-Invoked Functions
Arithmetic and Text Operator Functions for Opaque Data Types

The database server provides operator functions for arithmetic operators (see
“Arithmetic Operators” on page 6-4) and text operators (see “Text
Operators” on page 6-5). The operator functions that the database server
provides handle the built-in data types. You can overload an operator
function to provide the associated operation on your new opaque data type.

If you overload an operator function, make sure you follow these rules:

1. The name of the operator function must match the name of one of the
functions that the database server provides. The name is not case
sensitive; the plus() function is the same as the Plus() function.

2. The operator function must handle the correct number of
parameters.

3. The operator function must return the correct data type, where
appropriate.

Built-in Functions for Opaque Data Types

The database server provides special SQL-invoked functions, called built-in
functions, that provide some basic mathematical operations. The built-in
functions that the database server provides handle the built-in data types.
You can overload a built-in function to provide the associated operation on
your new opaque data type. If you overload a built-in function, follow these
rules:

1. The name of the built-in function must match the name listed in
“Built-In Functions That You Can Overload” on page 6-7. However,
the name is not case sensitive; the abs() function is the same as the
Abs() function.

2. The built-in function must be one that can be overridden.

3. The built-in function must handle the correct number of parameters,
and these parameters must be of the correct data type.

4. The built-in function must return the correct data type, where
appropriate.

For more information on built-in functions, see the IBM Informix Guide to SQL:
Syntax.
Creating an Opaque Data Type 9-19

Creating SQL-Invoked Functions
Aggregate Functions for Opaque Data Types

You can extend the built-in aggregate functions, such as SUM and AVG, to
operate on your opaque data type. You can also create new aggregates.
Chapter 8, “Creating User-Defined Aggregates,” describes how to extend or
create aggregates.

Conditional Operators for Opaque Data Types

The database server supports the following relational operators on an
opaque data type in the conditional clause of SQL statements:

� The IS and IS NOT operators

� The IN operator if the equal() function has been defined

� The BETWEEN operator if the compare() function has been defined

Tip: The database server also uses the compare() function as the support function
for the default B-tree operator class. For more information, see “Extensions of the
btree_ops Operator Class” on page 11-9.

For more information on the conditional clause, see the Condition segment
in the IBM Informix Guide to SQL: Syntax. For more information on the
compare() function, see “Comparison Function for Opaque Data Types” on
page 9-22.

Relational Operators for Opaque Data Types

The database server provides operator functions for the relational operators
listed in “Relational Operators” on page 6-5. The relational-operator
functions that the database server provides handle the built-in data types.
You can overload a relational-operator function to provide the associated
operation on your new opaque data type.
9-20 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Creating SQL-Invoked Functions
If you overload a relational-operator function, make sure you follow these
rules:

1. The name of the relational-operator function must match a name
listed in “Relational Operators” on page 6-5. However, the name is
not case sensitive; the equal() function is the same as the Equal()
function.

2. The relational-operator function must take two parameters, both of
the opaque data type.

3. The relational-operator function must be a Boolean function; that is,
it must return a BOOLEAN value.

You must define an equal() function to handle your opaque data type if you
want to allow columns of this data type to be:

� Constrained as UNIQUE or PRIMARY KEY

For more information on constraints, see the CREATE TABLE state-
ment in the IBM Informix Guide to SQL: Syntax.

� Compared with the equal (=) operator in an expression

� Used with the IN operator in a condition

Hashable Data Types

The database server uses a built-in bit-hashing function to produce the hash
value for a data type, which means that the built-in hash function can be used
only for bit-hashable data types. If your opaque data type is not bit hashable,
the database server cannot use its built-in hash function for the equality
comparison. Therefore, if your data type is not bit-hashable, you cannot use
it in the following cases:

� In the GROUP BY clause of a SELECT statement

� In hash joins

� With the IN operator in a WHERE clause

� COUNT DISTINCT aggregates
Creating an Opaque Data Type 9-21

Creating SQL-Invoked Functions
Nonhashable Data Types

For opaque types that are not bit hashable using the built-in hashing function
of the database server, specify the CANNOTHASH modifier in the CREATE
OPAQUE TYPE statement.

Hashable data types have the following property: if A = B, then hash(A) =
hash(B), which means that A and B have identical bit representations.

Multirepresentational data types are not bit hashable because they store large
quantities of data in a smart large object and then store the large object handle
in the user-defined type. It is the smart-large-object handle that makes the
multirepresentational data type nonhashable. That is, the CREATE OPAQUE
TYPE statement for a multirepresentational data type must include the
CANNOTHASH modifier.

Comparison Function for Opaque Data Types

The compare() function is an SQL-invoked function that sorts the target data
type. The database server uses the compare() function to execute the
following clauses and keywords of the SELECT statement:

� The ORDER BY clause

� The UNIQUE and DISTINCT keywords

� The UNION keyword

The database server also uses the compare() function to evaluate the
BETWEEN operator in the condition of an SQL statement. For more infor-
mation on conditional clauses, see the Condition segment in the IBM Informix
Guide to SQL: Syntax.

The database server provides compare() functions that handle the built-in
data types. For the database server to be able to sort an opaque data type, you
must define a compare() function to handle this opaque data type.

If you overload the compare() function, make sure you follow these rules:

1. The name of the function must be compare(). The name is not case
sensitive; the compare() function is the same as the Compare()
function.

2. The function must accept two arguments, each of the data types to be
compared.
9-22 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Customizing Access Methods
3. The function must return an integer value to indicate the result of the
comparison, as follows:

� <0 to indicate that the first argument precedes the second
argument

� 0 to indicate that the two arguments are the same

� >0 to indicate that the first argument comes after the second
argument

The compare() function is also the support function for the default operator
class of the B-tree secondary-access method. For more information, see
“Generic B-Tree Index” on page 11-4.

Customizing Access Methods
The database server provides the full implementation of the generic B-tree
secondary-access method, and it provides definitions for the R-tree
secondary-access method. By default, the CREATE INDEX statement builds a
generic B-tree index for the column or user-defined function.

When you create an opaque data type, you must ensure that secondary-
access methods exist that support the new data type. Consider the following
factors about the secondary-access methods and their support for the opaque
data type:

� Does the generic B-tree support the opaque data type?

� If the opaque-type data is spatial, can you use the R-tree index?

� Do other secondary-access methods exist that might better index
your opaque-type data?

To create an index of a particular secondary-access method on a column of an
opaque data type, the database server must find an operator class that is
associated with the secondary-access method. This operator class must
specify operations (strategy functions) on the opaque data type as well as the
functions that the secondary-access method uses (support functions).

For more information about an operator class and operator-class functions,
see “Operator Classes” on page 11-5.
Creating an Opaque Data Type 9-23

Using the Generic B-Tree
Using the Generic B-Tree
The generic B-tree secondary-access method has a default operator class,
btree_ops, whose operator-class functions handle indexing for the built-in
data types. These operator-class functions have the following functionality
for built-in data types:

� They order the data in lexicographical sequence.

If this sequence is not logical for your opaque data type, you can
define operator-class functions for the opaque data type that provide
the sequence you need.

� They expect to compare two single, one-dimensional values for a
given data type.

If the opaque data type holds more than one value, but you can
define a single value for it, you can define operator-class functions
for the opaque data type that compare two of these one-dimensional
values. If you cannot define a one-dimensional value for the opaque
data type, you cannot use a B-tree index as its secondary-access
method.

To provide support for columns and user-defined functions of the opaque
data type, you can extend the btree_ops operator-class functions so that they
handle the new opaque data type. The generic B-tree secondary-access
method uses the new operator-class functions to store values of the opaque
data type in a B-tree index.

For more information about how to extend the default B-tree operator class,
see “Extensions of the btree_ops Operator Class” on page 11-9.

Using Other Access Methods
The way that the generic B-tree secondary-access method orders data is
useful for one-dimensional data. When your data type is not one-
dimensional, you might need to use some other access method.

For information about the R-tree access method, refer to the IBM Informix
R-Tree Index User’s Guide. For more information on the secondary-access
methods that Data Blade modules provide, check the user guide for your
DataBlade module.
9-24 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Other Operations on Opaque Data Types
Indexing Spatial Data

The R-tree secondary-access method is useful for spatial or multidimensional
data such as maps and diagrams. To use an R-tree index, you must install a
spatial DataBlade module such as the Spatial DataBlade module, Geodetic
DataBlade module, or any third-party DataBlade module that implements an
R-tree index. For more information, refer to the user documentation for your
custom access method.

Indexing Other Types of Data

Your opaque data type might have data that is not optimally indexed by
either a generic B-tree or an R-tree. Often, DataBlade modules that define
new opaque data types provide their own secondary-access methods for
these data types. For information about creating an access method, refer to
the IBM Informix Virtual-Index Interface Programmer’s Guide.

Other Operations on Opaque Data Types
This section describes the following operations that you can perform on
opaque data types:

� How to access an opaque data type from a client application

� How to drop an opaque data type from a database

Accessing an Opaque Data Type
After you create the opaque data type, the following client programs can use
it once they connect to the database in which it is registered:

� An ESQL/C application that uses SQL statements and an lvarchar,
fixed binary, or var binary host variable

For more information, see the chapter on opaque types in the
IBM Informix ESQL/C Programmer’s Manual.

� A C routine that uses the DataBlade API

For more information, see the IBM Informix DataBlade API Program-
mer’s Guide.
Creating an Opaque Data Type 9-25

Dropping an Opaque Data Type
� An SPL UDR

For more information, see the chapter on SPL in the IBM Informix
Guide to SQL: Tutorial.

� A client application written in the Java

You can use an opaque data type in any way that you use other data types of
the database.

Dropping an Opaque Data Type
You cannot drop an opaque data type if any dependencies on it still exist in
the database. Therefore, to drop an opaque data type from a database, you
reverse the process of registering the data type, as follows:

1. Remove or change the data type of any columns in the database that
have the opaque data type as their data type.

Use the ALTER TABLE statement to change the data type of database
columns. Use the DROP TABLE statement to remove the entire table.

2. The REVOKE statement with the USAGE ON TYPE clause removes one
set of privileges assigned to the opaque data type.

This statement removes the row of the sysxtdtypeauth system cata-
log table that defines the privileges of the opaque data type. Use the
statement to drop each set of privileges that have been assigned to
the opaque data type.

3. The REVOKE statement with the EXECUTE ON FUNCTION or
EXECUTE ON ROUTINE clause removes the privileges assigned to a
support function of the opaque data type.

This statement removes the row of the sysprocauth system catalog
table that defines the privileges of the opaque data type. Use the
statement to drop each set of privileges that have been assigned to a
support function. You must drop the privileges for each support
function. If you assigned a specific name to the support function, use
the SPECIFIC keyword to identify the specific name.
9-26 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Dropping an Opaque Data Type
4. The DROP CAST statement drops a cast function for a support
function of an opaque data type.

This statement removes the row of the syscasts system catalog table
that defines the cast function for a support function. Use the state-
ment to drop each of the casts that you defined. For more
information, see “Creating Casts for Opaque Data Types” on
page 9-14.

5. The DROP FUNCTION or DROP ROUTINE statement removes a
support function of the opaque data type from the current database.

This statement removes the row of the sysprocedures system catalog
table that registers a support function. Use the statement to drop
each of the support functions that you registered.

6. The DROP TYPE statement removes the opaque data type from the
current database.

This statement removes the row of the sysxtdtypes system catalog
table that describes the opaque data type. Once you drop an opaque
data type from a database, no users of that database can access the
data type. You must be the owner of the opaque data type or have
DBA privileges to remove the data type.

To use these SQL statements, you must be either the owner of the object that
you drop or have DBA privileges. For more information on the syntax of the
REVOKE, DROP FUNCTION, DROP ROUTINE, DROP CAST, and DROP TYPE
statements, see their descriptions in the IBM Informix Guide to SQL: Syntax.
Creating an Opaque Data Type 9-27

10
Chapter
Writing Support Functions
In This Chapter . 10-3

Writing Support Functions 10-3
Identifying Support Functions 10-3
Choosing Function Parameters 10-6
Setting Privileges for Support Functions 10-7

Data Types for Support Functions. 10-7
The LVARCHAR Data Type 10-7
The SENDRECV Data Type 10-8

Handling the External Representation 10-8
Input Support Function 10-9
Output Support Function 10-11

Handling the Internal Representation 10-13
The Send and Receive Support Functions 10-14

The SENDRECV Data Type 10-14
Receive Support Function 10-14
Send Support Function 10-16

Performing Bulk Copies 10-17
Import and Export Support Functions 10-17

The IMPEXP Data Type 10-18
Import Support Function 10-19
Export Support Function 10-19

Importbinary and Exportbinary Support Functions 10-20
IMPEXPBIN Data Type. 10-20
Importbinary Support Function 10-21
Exportbinary Support Function 10-21

The Stream Support Functions 10-22

10-2 IBM
Inserting and Deleting Data 10-22
The assign() Function 10-23
The destroy() Function 10-24
The update() Function 10-24
The deepcopy() Function 10-25

Handling Smart Large Objects 10-26

Comparing Data . 10-28

Handling Locale-Sensitive Data 10-29
Locale-Sensitive Input and Output Support Functions 10-30
Locale-Sensitive Receive and Send Support Functions 10-31
 Informix User-Defined Routines and Data Types Developer’s Guide

In This Chapter
This chapter describes the support functions for opaque data types and
operator classes.

Writing Support Functions
The support functions for an opaque data type are a set of well-defined, data
type specific functions that the database server automatically invokes.
Typically, these functions are not explicitly invoked in an SQL statement.

Identifying Support Functions
The following table summarizes the support functions for opaque data types.

Function Purpose Reference

input Converts opaque data from its external text represen-
tation to its internal representation. Supports insertion
of data in text format into a column of the opaque type.
Requires an implicit cast from the LVARCHAR data
type to opaque data type.

page 10-9

output Converts opaque data from its internal representation
to its external text representation. Supports selection of
data from a column of the opaque type in its external
text format. Requires an explicit cast from the opaque
data type to LVARCHAR opaque data type.

page 10-11

(1 of 3)
Writing Support Functions 10-3

Identifying Support Functions
receive Converts opaque data from its external binary repre-
sentation on the client computer to its internal
representation on the database server computer.
Supports insertion of binary data into a column of the
opaque type. Requires an implicit cast from the
SENDRECV data type to the opaque data type.

page 10-14

send Converts opaque data from its internal representation
on the database server computer to its external binary
representation on the client computer. Supports
selection of binary data from a column of the opaque
type. Requires an explicit cast from the opaque data
type to the SENDRECV data type.

page 10-16

import Performs processing of opaque data for bulk load of
text data in a column of the opaque type. Requires an
implicit cast from the IMPEXP to the opaque data type.

page 10-19

export Performs processing of opaque data for bulk unload of
text data from a column of the opaque type. Requires
an explicit cast from the opaque to the IMPEXP data
type.

page 10-19

importbinary Performs processing of opaque data for bulk load of
binary data in a column of the opaque type. Requires
an implicit cast from the IMPEXPBIN to the opaque
data type.

page 10-21

exportbinary Performs processing of opaque data for bulk unload of
binary data from a column of the opaque type.
Requires an explicit cast from the opaque to the
IMPEXPBIN data type.

page 10-21

streamread Converts opaque data from its stream representation
to its database server internal representation.

streamwrite Converts opaque data from its internal representation
on the database server to its stream representation.

assign Performs any processing required before the database
server stores opaque data to disk. Supports storage of
opaque data for INSERT, UPDATE, and LOAD
statements.

page 10-23

Function Purpose Reference

(2 of 3)
10-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Identifying Support Functions
Most support functions can have arbitrary names. The database server
identifies a support function by the task that it needs to perform. For
example, if the client binds a binary value to INSERT, the database server
looks for a cast function in the syscasts system catalog table that converts the
UDT value from its external binary format (SENDRECV) to the opaque data
type.

The following functions must be named explicitly: compare(), assign(),
destroy(), update() and deepcopy(). However, the names are not case
sensitive. That is, you can name the function compare() or Compare().

It is recommended that you give your support functions names that help
document the purpose of the function. For example, if your opaque data type
is named sphere, you might name the receive and send functions
sphere_receive() and sphere_send().

Whenever possible, you should create the support functions as NOT
VARIANT for better performance. For information about variant and non-
variant functions, refer to “Returning a Variant or Nonvariant Value” on
page 4-7.

destroy Performs any processing necessary before the database
server removes a row that contains an opaque data
type.

page 10-24

lohandles Returns a list of the embedded large-object handles in
the opaque data type.

page 10-26

compare Supports opaque data types during ORDER BY,
UNIQUE, DISTINCT, and UNION clauses, and
BETWEEN comparisons. Also supports CREATE
INDEX for B-tree indexes.

page 10-28

deepcopy Supports multirepresentational data types as function
return values

page 10-25

update Supports in-place update on smart large objects page 10-24

Function Purpose Reference

(3 of 3)
Writing Support Functions 10-5

Choosing Function Parameters
Choosing Function Parameters
The following table summarizes the SQL data types for the parameter list and
return type of CREATE FUNCTION statements that register support functions.

In the preceding table, opaque data type is the name of the data type that you
specify in the CREATE OPAQUE TYPE statement. For more information, see
“Registering the Opaque Data Type” on page 9-13.

When the CREATE FUNCTION statement stores a new support function in
sysprocedures, it causes the database server to assign a unique value, called
a routine identifier, to the support function. Throughout the system catalog a
support function is identified by its routine identifier, not by its name.

Support
Function

Parameter
Type Return Type Refer to

input lvarchar opaque data type page 10-9

output opaque data type lvarchar page 10-11

receive sendrecv opaque data type page 10-14

send opaque data type sendrecv page 10-14

import impexp opaque data type page 10-17

export opaque data type impexp page 10-17

importbinary impexPbin opaque data type page 10-20

exportbinary opaque data type impexpbin page 10-20

assign opaque data type opaque data type page 10-23

destroy opaque data type - no return value - page 10-24

update opaque data type,
opaque data type

opaque data type page 10-24

deepcopy opaque data type page 10-25

lohandles opaque data type - list of pointers - page 10-26

compare user-defined type,
user-defined type

- integer values to show less
than, greater than and equal -

page 10-28
10-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Setting Privileges for Support Functions
Setting Privileges for Support Functions
The CREATE FUNCTION statement registers a function with the Execute
privilege granted to the owner of the support function and the DBA. Such a
function is called an owner-privileged function.

To execute a support function in an SQL statement, the user must have the
Execute privilege. Usually, the default privilege is adequate for support
functions that are implicit casts because implicit casts should not generally be
called within SQL statements. Support functions that are explicit casts might
have the Execute privilege granted so that users can call them explicitly. The
owner grants the Execute privilege to other users with the EXECUTE ON
clause of the GRANT statement.

The sysprocauth system catalog table stores routine-level privileges. This
table contains privileges for each UDR and therefore for all support functions
that are defined in the database. The table contains one row for each set of
privileges granted.

Data Types for Support Functions
The database server provides data types for use with UDTs and UDRs.
Although these data types are predefined by the database server, the database
server treats them as extended data types.

The sysxtdtypes system catalog table records extended data types, both
predefined and user-defined. This section discusses predefined data types
that are specifically used by UDTs and UDRs.

The LVARCHAR Data Type
The database server uses the LVARCHAR data type to transfer the external
text representation of an opaque data type between the database server and
an application. Although the actual internal, binary representation for the
opaque data type might contain nontext types, such as integers or double
precision floating-point values, the data in its external text format is an
LVARCHAR. The input and output support functions serve as cast functions
between the LVARCHAR and opaque data types.
Writing Support Functions 10-7

The SENDRECV Data Type
Tip: When you use LVARCHAR as a column type, the column size is limited to 2
kilobytes. However, when you use LVARCHAR to transport opaque data, the length of
the data is limited only by your operating system.

The DataBlade API provides the mi_lvarchar data type to hold the external
representation of opaque-type data. For more information, see the
IBM Informix DataBlade API Programmer’s Guide.

ESQL/C applications use lvarchar to transfer the external text representation
of an opaque type. The database server implicitly invokes the input and
output support functions when it receives an SQL statement that contains an
lvarchar host variable.

ESQL/C applications use varbinary to transfer the external binary represen-
tation of an opaque type. ♦

The SENDRECV Data Type
When you create an opaque data type, you must supply support functions
that convert the opaque data between its internal representation on the client
computer and its internal representation on the database server computer.
These functions use the SENDRECV data type as input or output parameters.

Handling the External Representation
Every opaque type has an internal and external representation. The internal
representation is the internal structure that you define for the opaque type.
(For more information, see “The Internal Structure” on page 9-4.) The
external text representation is a character string that is a printable version of
the opaque value. The opaque type might also have an external binary
representation.

When you define an opaque type, you must supply support functions that
convert between the internal and external representations of the opaque type:

� The input function converts from external text representation to
internal representation.

� The output function converts from internal to the external text
representation.

E/C
10-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Input Support Function
These support functions do not have to be named input and output, but they
do have to perform the specified conversions. They should be reciprocal
functions; that is, the input function should produce a value that the output
function accepts as an argument and vice versa. For the database server to
execute these support functions automatically, you must provide an implicit
cast from LVARCHAR to the user-defined type that invokes the input
function. Similarly, you must also provide an explicit cast from the UDT to
LVARCHAR that invokes the output function.

The database server raises an error if it cannot find the proper support
function to carry out a task. For example, if an application tries to INSERT a
value in an external text format, the database server looks for a cast from
LVARCHAR to the user-defined type. If that cast does not exist, the database
server raises an error.

For your opaque data type to accept an external representation on nondefault
locales, you must use the IBM Informix GLS API in the input and output
functions to access Informix locales from within these functions. For more
information, see “Handling Locale-Sensitive Data” on page 10-29. ♦

Input Support Function
The database server calls the input function when it receives the external
representation of an opaque type from a client application. For example,
when a client application issues an INSERT or UPDATE statement, it can send
the text representation of an opaque type to the database server to be stored
in an opaque-type column. The database server calls the input function to
convert this external representation to an internal representation that it stores
on disk.

GLS
Writing Support Functions 10-9

Input Support Function
Figure 10-1 shows when the database server executes the input support
function.

If the opaque data type is pass by reference, the input support function
should perform the following tasks:

� Allocate enough space to hold the internal representation.

The function can use the mi_alloc() DataBlade API function to allo-
cate the space for the internal structure. ♦

� Parse the input string.

It must obtain the individual members from the input string and
store them in the appropriate fields of the internal structure

� Return a pointer to the internal structure.

If the opaque data type is pass by value, the input support function should
perform these same basic tasks but return the actual value in the internal
structure instead of a pointer to this structure. You can use pass by value only
for opaque types that are less than 4 bytes in length.

Figure 10-1
Execution of the Input Support Function

Database server computer

Table1

Database A

custno custname
1234 XYZ LTD
1235 XSPORTS

Client computer

Client type

Client name
 Server A

Database
server

INSERT or UPDATE Input

INSERT INTO table1
VALUES ('string');

Support function

C

10-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Output Support Function
The input function takes an mi_lvarchar value as an argument and returns
the internal structure for the opaque type. The following function signature
is an input support function for a fixed-length opaque data type whose
internal structure is ll_longlong_t:

ll_longlong_t * ll_longlong_input(mi_lvarchar *extrnl_format);

The ll_longlong_input() function is a cast function from the LVARCHAR data
type to the ll_longlong_t internal structure. It must be registered as an
implicit cast function with the CREATE IMPLICIT CAST statement. For more
information on cast functions, see “Creating Casts for Opaque Data Types”
on page 9-14. ♦

Output Support Function
The database server calls the output function when it sends the external
representation of an opaque type to a client application. For example, when
a client application issues a SELECT or FETCH statement, the application can
save the data of an opaque type that it receives from the database server in a
character host variable. The database server calls the output function to
convert the internal representation that is stored on disk to the external repre-
sentation that the character host variable requires.

Figure 10-2 shows when the database server executes the output support
function.

C

Figure 10-2
Execution of the Output Support Function

Database server computer

Table1

Database A

custno custname
1234 XYZ LTD
1235 XSPORTS

Client computer

Client type

Client name
 Server A

Database
server

SELECT or FETCH Output

SELECT * INTO char_var
FROM table1
Writing Support Functions 10-11

Output Support Function
If the opaque data type is pass by reference, the output support function
should perform the following tasks:

� Accept a pointer to the internal representation as an argument.

� Allocate enough space to hold the external representation.

The support function can use the mi_alloc() function to allocate the
space for the character string. For more information on memory
management and the mi_alloc() function, refer to the IBM Informix
DataBlade API Programmer’s Guide and the IBM Informix DataBlade API
Function Reference. ♦

� Create the output string from the individual members of the internal
structure.

The function must build the external representation with the values
from the appropriate fields of the internal structure.

� Return a pointer to the character string.

If the opaque data type is pass by value, the output support function should
perform the same basic tasks but accept the actual value in the internal
structure. You can use pass by value only for opaque types that are 4 bytes or
less.

The output function takes the internal structure for the opaque type as an
argument and returns an mi_lvarchar value. The following function
signature is for an output support function of an opaque data type whose
internal structure is ll_longlong_t:

mi_lvarchar * ll_longlong_output(ll_longlong_t *intrnl_format);

The ll_longlong_output() function is a cast function from the ll_longlong_t
internal structure to the LVARCHAR data type. It must be registered as an
explicit cast function with the CREATE EXPLICIT CAST statement. For more
information on cast functions, see “Creating Casts for Opaque Data Types”
on page 9-14. ♦

C

C

10-12 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Handling the Internal Representation
Handling the Internal Representation
If a client application that uses an opaque data type executes on a different
computer than the database server, the computers involved might have
different ways of representing the internal structure of the opaque type. For
example, the client computer might use a different byte ordering than the
database server computer.

You must supply send and receive support functions, sometimes called
transport functions, that convert data between the client application and the
database server, commonly called receive and send functions.

You can choose arbitrary names for these support functions. The cast
functions that use the functions identify the support functions to the database
server.

The receive and send functions support the transfer of opaque types:

� The receive function converts incoming data to the internal
representation of the local database server.

� The send function converts outgoing data from the internal
representation of the local database server to an appropriate
representation for the client application or the external database.

The send and receive functions should be reciprocal functions; that is, the
receive function should produce a value that the send function accepts as an
argument and the send function should produce a value that the receive
function accepts as an argument.

The functions must handle conversions for all platform variations that the
client application or external database server might encounter. When the
local database server accepts a client connection or connects to a remote
database server, it receives a description of the internal representations that
the client or the remote database server uses. The database server uses this
description to determine which data representation to use in its receive and
send support functions.

The IBM Informix DataBlade API provides functions that support conversion
between different internal representations of opaque types. The send and
receive functions can call DataBlade API routines for each member of the
internal structure to convert them to the appropriate representation for the
destination platform.
Writing Support Functions 10-13

The Send and Receive Support Functions
For an opaque data type to accept an internal representation on nondefault
locales, you must use the IBM Informix GLS API in the receive and send
functions to access Informix locales from within these functions. For more
information, see “Handling Locale-Sensitive Data” on page 10-29. ♦

The Send and Receive Support Functions
The database server uses the send and receive support functions when it
passes data to and from a client application.

The SENDRECV Data Type

The SENDRECV data type holds the external binary representation of an
opaque data type when it is transferred between the client computer and the
database server computer. The SENDRECV data type allows for any possible
change in the size of the data when it is converted between the two represen-
tations. The receive and send support functions serve as cast functions
between the SENDRECV and opaque data type.

ESQL/C applications do not use the SENDRECV data type. Instead, these
applications use fixed binary and var binary host variables in SQL statements
to transfer the internal representation of an opaque type on the client
computer. The database server implicitly invokes the receive and send
support functions when it receives an SQL statement that contains a fixed
binary or var binary host variable. ♦

Receive Support Function

The receive support function converts opaque data from its external binary
representation on the client computer to its internal representation on the
database server computer and provides an implicit cast from the SENDRECV
to the opaque data type.

The database server calls the receive function when it receives the external
binary representation of an opaque type from a client application. For
example, when a client application issues an INSERT or UPDATE statement, it
can send the external binary representation of an opaque type to the database
server to be stored in a column.

GLS

E/CE/C
10-14 IBM Informix User-Defined Routines and Data Types Developer’s Guide

The Send and Receive Support Functions
Figure 10-3 shows when the database server executes the receive support
function.

The database server calls the receive function to convert the external binary
representation of the client computer to the internal representation of the
database server computer, where the opaque type is stored on disk.

The receive function takes as an argument an mi_sendrecv structure (that
holds the internal structure on the client computer) and returns the internal
structure for the opaque type (the internal representation on the database
server computer). The following function signature is for a receive support
function of an opaque data type whose internal structure is ll_longlong_t:

ll_longlong_t * ll_longlong_receive(mi_sendrecv
*client_intrnl_format);

The ll_longlong_receive() function is a cast function from the SENDRECV
data type to the ll_longlong_t internal structure. It must be registered as an
implicit cast function with the CREATE IMPLICIT CAST statement. For more
information on cast functions, see “Creating Casts for Opaque Data Types”
on page 9-14. ♦

Figure 10-3
Execution of the Receive Support Function

Database server computer

Table1

Database A

custno custname
1234 XYZ LTD
1235 XSPORTS

Client computer

Client type

Client name
 Server A

Database
server

INSERT or UPDATE Receive

INSERT INTO table1
VALUES (fixedbin_var)

C

Writing Support Functions 10-15

The Send and Receive Support Functions
Send Support Function

The database server calls the send function when it sends the external binary
representation of an opaque type to a client application. For example, when
a client application issues a SELECT or FETCH statement, it can save the data
of an opaque type that it receives from the database server in a host variable
that conforms to the external binary representation of the opaque type.

Figure 10-4 shows when the database server executes the send support
function.

The database server calls the send function to convert the internal represen-
tation that is stored on disk to the external binary representation that the
client computer uses.

The send function takes as an argument the internal structure for the opaque
type on the database server computer and returns an mi_sendrecv structure
that holds the internal structure on the client computer. The following
function signature is for a send support function of an opaque data type
whose internal structure is ll_longlong_t:

mi_sendrecv * ll_longlong_send(ll_longlong_t *srvr_intrnl_format);

Figure 10-4
Execution of the Send Support Function

Database server computer

Table1

Database A

custno custname
1234 XYZ LTD
1235 XSPORTS

Client computer

Client type

Client name
 Server A

Database
server

SELECT or FETCH Send

SELECT * INTO fixedbin_var
FROM table1

C

10-16 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Performing Bulk Copies
The ll_longlong_send() function is a cast function from the ll_longlong_t
internal structure to the SENDRECV data type. It must be registered as an
explicit cast function with the CREATE EXPLICIT CAST statement. For more
information on cast functions, see “Creating Casts for Opaque Data Types”
on page 9-14. ♦

Performing Bulk Copies
The database server can copy data in and out of a database with a bulk copy
operation. In a bulk copy, the database server sends large numbers of column
values in a copy file, rather than copying each column value individually. For
large amounts of data, bulk copying is far more efficient than moving values
individually.

The following Informix utilities can perform bulk copies:

� DB-Access performs bulk copies with the LOAD and UNLOAD
statements.

� The dbimport and dbexport utilities perform bulk copies.

� The High Performance Loader (HPL) performs bulk copies.

� The pload utility loads and unloads a database from external files.

The database server can perform bulk copies on binary (internal) or character
(external) representations of opaque-type data.

Import and Export Support Functions
The import and export support functions perform any tasks needed to
process external text representation of an opaque type for a bulk load and
unload. When the database server copies data to or from a database in
external text format, it calls the following support functions for every value
copied to or from the copy file:

� The import function imports text data by converting from external
text representation to the internal format.

� The export function exports text data by converting from the internal
format to the external text representation.
Writing Support Functions 10-17

Import and Export Support Functions
These support functions do not have to be named import and export, but they
do have to perform the specified conversions. They should be reciprocal
functions; that is, the import function should produce a value that the export
function accepts as an argument and vice versa.

The import and export functions can take special actions on the values before
they are copied. Typically, only opaque data types that contain smart large
objects have import and export functions defined for them. For example, the
export function for such a data type might create a file on the client computer,
write the smart-large-object data from the database to this file, and send the
name of the client file as the data to store in the copy file. Similarly, the import
function for such a data type might take the client filename from the copy file,
open the client file, and load the large-object data from the copy file into the
database. The advantage of this design is that the smart-large-object data
does not appear in the copy file; therefore, the copy file grows more slowly
and is easier for users to read.

For small opaque data types, you do not usually need to define the import
and export support functions. If you do not define import and export support
functions, the database server uses the input and output functions, respec-
tively, when it performs bulk copies.

For large opaque data types, the data that the input and output functions
generate might be too large to fit in the file or might not represent all of the
data in the object. To resolve this problem, you can use the import functions
filetoclob() and filetoblob() and the export function lotofile().

The IMPEXP Data Type

SQL statements support an internal data type called IMPEXP to hold the
external representation of an opaque data type for a bulk copy. The IMPEXP
data type allows for any possible change in the size of the data when it is
converted between the two representations. The import and export support
functions serve as cast functions between the IMPEXP and opaque data type.
10-18 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Import and Export Support Functions
Import Support Function

The import support function takes as an argument the structure that holds
the bulk-copy format of the external representation of the user-defined type
and returns the internal structure for the user-defined type.

Any files that the import function reads must reside on the database server
computer. If you do not provide an import support function, the database
server uses the input support function to import text data.

The following function signature is for an import support function of an
opaque data type whose internal structure is ll_longlong_t:

ll_longlong_t * ll_longlong_import(mi_impexp
*extrnl_bcopy_format);

The ll_longlong_import() function is a cast function from the IMPEXP data
type to the ll_longlong_t data structure. It must be registered as an implicit
cast function with the CREATE IMPLICIT CAST statement. For more infor-
mation on cast functions, see “Creating Casts for Opaque Data Types” on
page 9-14. ♦

Export Support Function

The export function takes as an argument the internal structure for the
opaque type and a structure that holds the bulk-copy format of the external
representation of the opaque type.

If you do not provide an export support function, the database server uses
the output support function to export text data.

The following function signature is for an export support function of an
opaque data type whose internal structure is ll_longlong_t:

mi_impexp * ll_longlong_export(ll_long_t *intrnl_bcopy_format);

The ll_longlong_export() function is a cast function from the ll_longlong_t
internal structure to the IMPEXP data type. It must be registered as an explicit
cast function with the CREATE EXPLICIT CAST statement. For more infor-
mation on cast functions, see “Creating Casts for Opaque Data Types” on
page 9-14. ♦

C

C

Writing Support Functions 10-19

Importbinary and Exportbinary Support Functions
Importbinary and Exportbinary Support Functions
The importbinary and exportbinary support functions perform any tasks
needed to process the external binary representation of an opaque type for a
bulk copy, as follows:

� The importbinary function imports binary data by converting from
some binary representation to the internal representation.

� The exportbinary function exports binary data by converting from
internal representation to some binary representation.

These support functions do not have to be named importbinary and
exportbinary, but they do have to perform the specified conversions. They
should be reciprocal functions; that is, the importbinary function should
produce a value that the exportbinary function accepts as an argument and
conversely. The IBM Informix DataBlade API provides functions that support
conversion between different internal representations of opaque types.

For opaque data types that have identical external and internal representa-
tions, the import and importbinary support functions can be the same
function. Similarly, the export and exportbinary support functions can be the
same function.

IMPEXPBIN Data Type

SQL statements support an internal data type called IMPEXPBIN to hold the
external binary representation of an opaque data type for a bulk copy. The
IMPEXPBIN data type allows for any possible change in the size of the data
when it is converted between the two representations. The importbinary and
exportbinary support functions serve as cast functions between the
IMPEXPBIN and opaque data type.
10-20 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Importbinary and Exportbinary Support Functions
Importbinary Support Function

The importbinary support function takes as an argument a structure that
holds the bulk-copy format of the external binary format of the opaque type
and returns the internal structure for the opaque type.

Any files that the import function reads must reside on the database server
computer. If you do not provide an importbinary support function, the
database server imports the binary data in the database server internal repre-
sentation of the opaque data type.

The following function signature is for an importbinary support function of
an opaque data type whose internal structure is ll_longlong_t:

ll_longlong_t * ll_longlong_importbin(mi_impexpbin
*client_intrnl_bcopy_format);

The ll_longlong_importbin() function is a cast function from the IMPEXPBIN
data type to the ll_longlong_t internal structure. It must be registered as an
implicit cast function with the CREATE IMPLICIT CAST statement. For more
information, see “Creating Casts for Opaque Data Types” on page 9-14. ♦

Exportbinary Support Function

The exportbinary support function takes as an argument the internal
structure for the opaque type and returns a structure that holds the bulk-copy
format of the external binary representation of the opaque type.

If you do not provide an exportbinary support function, the database server
exports the binary data in the external binary representation of the opaque
data type.

The following function signature is for an exportbinary support function of
an opaque data type whose internal structure is ll_longlong_t:

mi_impexpbin * ll_longlong_exportbin(ll_longlong_t
*srvr_intrnl_bopy_format);

The ll_longlong_exportbin() function is a cast function from the
ll_longlong_t internal structure to the IMPEXPBIN data type. It must be regis-
tered as an explicit cast function with the CREATE EXPLICIT CAST statement.
For more information, see “Creating Casts for Opaque Data Types” on
page 9-14. ♦

C

C

Writing Support Functions 10-21

The Stream Support Functions
The Stream Support Functions
The streamread() and streamwrite() support functions allow the database
server to treat opaque data in a stream representation. That is, in a sequential,
flattened format. The DataBlade API provides generic functions that handle
the transfer of stream data between the database server and other sites or
storage media. The IBM Informix DataBlade API Programmer’s Guide provides
detailed information about using generic stream functions.

Important: These support functions must be named streamread and streamwrite.
The names are case insensitive.

Inserting and Deleting Data
Some opaque data types might require special processing before they are
saved to or removed from disk. The following support functions perform this
special processing:

� assign()

� destroy()

� update()

� deepcopy()

Important: These support functions must be named assign, destroy, update, and
deepcopy. The names are case insensitive.

The assign() and destroy() functions are required for opaque types that
include smart large objects or multirepresentational data. If the data is stored
in a smart large object, the internal structure of the opaque data type contains
the LO handle to identify the location of the data; it does not contain the data
itself. The assign(), update(), and deepcopy() support functions decide how
and where to store the data, and the destroy() support function decides how
to remove the data, regardless of where it is stored.

These functions use the mi_* memory allocation functions that are
documented in the IBM Informix DataBlade API Function Reference. For detailed
discussions about multirepresentational data types, refer to the DataBlade
Developers Corner of the IBM Informix Developer Zone at
www.ibm.com/software/data/developer/informix.
10-22 IBM Informix User-Defined Routines and Data Types Developer’s Guide

The assign() Function
The assign() Function
The assign() function contains special processing to perform before an
opaque data type is inserted into a table. The database server calls the
assign() function just before it stores the internal representation of an opaque
type on disk. For example, when a client application issues an INSERT,
UPDATE, or LOAD statement, the database server calls the assign() function
before it saves the internal representation of an opaque type in a column.

Figure 10-5 shows when the database server executes the assign() function.

When you INSERT a value of an opaque data type, the assign() function takes
the opaque data type as an argument, performs whatever additional
processing might be required, and returns the final opaque type value for the
database server to store in the table.

Figure 10-5
Execution of the assign() Support Function

Database server computer

Table1

Database A

custno custname
1234 XYZ LTD
1235 XSPORTS

Client computer

Client type

Client name
 Server A

Database
server

INSERT or UPDATE receive()

INSERT INTO table1
VALUES (fixedbin_var)

Internal format
of opaque type

assign()
Writing Support Functions 10-23

The destroy() Function
The destroy() Function
The destroy() function performs any processing necessary before the
database server removes a row that contains opaque data. The database
server calls the destroy() function just before it removes the internal represen-
tation of an opaque type from disk. For example, when a client application
issues a DELETE or DROP TABLE statement, the database server calls the
destroy() function before it deletes an opaque-type value from a column.

Figure 10-6 shows when the database server executes the destroy() function.

The destroy() function takes as an opaque data type. It does not return a
value.

The update() Function
The update() function allows the database server to handle in-place updates
of opaque data type values, improving the performance for an opaque type
that has an expensive constructor. For example, an opaque type that contains
a smart large object might benefit from an update() function. If no update()
function is present, the database server calls the assign() function, which
creates an entirely new smart large object, and then calls the destroy()
function to delete the old smart large object. If the update only changes a few
bytes in a large object, this is clearly not efficient.

Figure 10-6
Execution of the destroy() Support Function

Database server computer

Table1

Database A

custno custname
1234 XYZ LTD
1235 XSPORTS

Client computer

Client type

Client name
 Server A

Database
server

DELETE or DROP TABLE destroy()

DELETE FROM table1
WHERE...
10-24 IBM Informix User-Defined Routines and Data Types Developer’s Guide

The deepcopy() Function
The update() function provides for in-place update of an opaque data type.
Like the assign() and destroy() functions, the update() function is an SQL
function defined on a given UDT. It takes two arguments, both of the same
UDT type, and returns the same UDT type. The first argument is the original
value of the user-defined type, and the second argument is the new UDT
value. The function must handle NULL.

The following statement registers an update() function for the multirepresen-
tational data type MyUDT:

CREATE FUNCTION Update (MyUDT, MyUDT)
RETURNS MyUDT
WITH (HANDLESNULLS, NOT VARIANT)
EXTERNAL NAME'/usr/lib/extend/blades/MyUDT.so(MyUDT_update)'
LANGUAGE C;

The update function must check for updates that cross the threshold for
multirepresentational data. For example, if a large quantity of data is
updated to a small quantity, the update() routine needs to decrement the
smart blob reference count and return the updated value as an in-row object.

The deepcopy() Function
Multirepresentational opaque types typically defer creating a smart large
object until the database server calls the assign() function. Until assign() is
called, the opaque type stores a large value in separately allocated memory
and stores the pointer to that memory in the data structure of the opaque
type.

However, the database server does not know about this additional memory
when it copies a return value, so it copies only part of the value. In other
words, the database server performs a shallow copy. This means that only
allocations with a very high memory duration persist long enough for some
query contexts.

The deepcopy() support function provides the method for the database
server to copy the entire opaque type value and lets the opaque type support
routines that use the default memory duration.
Writing Support Functions 10-25

Handling Smart Large Objects
Alternatively, you might use some higher memory duration such as
PER_STMT_EXEC. However, this strategy increases memory usage signifi-
cantly because there are cases where using the default memory duration is
sufficient. For information about PER_STMT_EXEC, refer to the IBM Informix
DataBlade API Programmer’s Guide and the IBM Informix DataBlade API Function
Reference.

The deepcopy() function should make a copy of the input opaque type using
memory allocated from default memory duration and return the copy. The
functions that deepcopy() can use to allocate memory from default memory
duration include mi_alloc, mi_zalloc, mi_new_var, and mi_var_copy. It is
important to use memory allocated from those functions for the return UDT
because the database server prepares the appropriate default memory
duration depending on the query context before it invokes deepcopy().

If the input UDT contains pointers to an out-of-row buffer, deepcopy() can
copy the out-of-row data using memory from mi_alloc and store the pointer
with that of memory in the copied UDT.

If the input UDT contains a reference to a smart large object, deepcopy()
should copy the large object handle to the return value, but deepcopy() does
not need to copy the large object.

Handling Smart Large Objects
If an opaque data type contains an embedded smart large object, you can
define an lohandles() function for the opaque type. The lohandles() support
function takes an instance of the opaque type and returns a list of the pointer
structures for the smart large objects that are embedded in the data type. You
might, for example, use a lohandles() function to provide information about
which smart large object a given data type value is referencing.

The database server uses the lohandles() support function when it must
search opaque-type values for references to smart large objects. The database
server does not automatically call lohandles(). To execute this function, you
must call it explicitly. You might use lohandles() for the following tasks:

� Performing an archive of the database

� Obtaining a reference count for the smart large objects

� Running the oncheck utility
10-26 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Handling Smart Large Objects
A lohandles() support function does not perform automatic incrementing
and decrementing of the reference count for a smart large object. You must
handle the reference count explicitly in the assign() and destroy() functions,
as follows:

� In the assign() function, increment the reference count with the
DataBlade API function mi_lo_increfcount().

� In the destroy() function, increment the reference count with the
DataBlade API function mi_lo_decrefcount().

If you define an opaque type that references one or more smart large objects,
you must consider defining the following support functions:

� assign()

� destroy()

� update()

� deepcopy()

� An import function

� An export function

� An importbinary function

� An exportbinary function

For more information on assign() and destroy() support functions, see
“Inserting and Deleting Data” on page 10-22. For information on the import,
export, importbinary, and exportbinary support functions, see “Performing
Bulk Copies” on page 10-17.
Writing Support Functions 10-27

Comparing Data
Comparing Data
The compare() function is an SQL-invoked function that sorts the target data
type. The database server uses the compare() function in the CREATE INDEX
statement and to execute the following components of the SELECT statement:

� The ORDER BY clause

� The UNIQUE and DISTINCT keywords

� The UNION keyword

� The BETWEEN operator

For more information on the SELECT statement, see the IBM Informix Guide to
SQL: Syntax.

For the database server to be able to sort an opaque type, you must define a
compare() function that handles the opaque type. The compare() function
must follow these rules:

1. The name of the function must be compare(). However, the name is
not case sensitive; the compare() function is the same as the
Compare() function.

2. The function must accept two arguments, each of the data types to be
compared.

3. The function must return an integer value to indicate the result of the
comparison, as follows:

� <0 to indicate that the first argument is less than (<) the second
argument

� 0 to indicate that the two arguments are equal (=)

� >0 to indicate that the first argument is greater than (>) the
second argument

The compare() function is the support function for the built-in secondary-
access method, B-tree. For more information on the built-in secondary-access
method, see “Generic B-Tree Index” on page 11-4. For more information on
how to customize a secondary-access method for an opaque data type, see
“Using Operator Classes” on page 11-3.
10-28 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Handling Locale-Sensitive Data
Handling Locale-Sensitive Data
An Informix database has a fixed locale per database. This locale, the database
locale, is attached to the database at the time that the database is created. In
any given database, all character data types (such as CHAR, NCHAR,
VARCHAR, NVARCHAR, and TEXT) contain data in the code set that the
database locale supports.

However, using the SQL statement SET COLLATION you can specify the
collation order to use at runtime, which is independent of the locale used to
store data in the database, and lasts for the duration of the session. You can
use the mi_get_db_locale() function to determine which locale a user has set
for the collation order in a session. If the user has not changed the collation,
mi_get_db_locale() returns the default database locale. See the IBM Informix
Guide to SQL: Syntax for information about the SET COLLATION statement. See
the IBM Informix DataBlade API Function Reference for information about the
mi_get_db_locale() function.

An opaque data type can hold character data. The following support
functions provide the ability to transfer opaque-type data between a client
application and the database server:

� The input and output support functions provide the ability to
transfer the external representation of the opaque type.

� The receive and send support functions provide the ability to
transfer the internal representation of the opaque type.

However, the ability to transfer the data between client application and
database server is not sufficient to support locale-sensitive data. It does not
ensure that the data is correctly manipulated at each end. You must ensure
that both sides of the connection handle the locale-sensitive data, as follows:

� At the client side of the connection, the client application must
handle the locale-sensitive data for opaque-type columns correctly.

It must also have the CLIENT_LOCALE environment variable set
correctly.

� At the database server side of the connection, you must ensure that
the appropriate support functions handle the locale-sensitive data.

In addition, the DB_LOCALE and SERVER_LOCALE environment
variables must be set correctly.

GLS
Writing Support Functions 10-29

Locale-Sensitive Input and Output Support Functions
For more information on the CLIENT_LOCALE, DB_LOCALE, and
SERVER_LOCALE environment variables, see the IBM Informix GLS User’s
Guide.

To help you write support functions that handle locale-sensitive data, the
IBM Informix GLS API is provided. The GLS API is a thread-safe library. This
library contains C functions that allow your support functions to obtain
locale-specific information from GLS locales, including:

� Functions to manipulate locale-sensitive data in a portable fashion

� Functions to handle single-byte and multibyte character access

� Functions to manipulate other locale-sensitive data, such as the end-
user formats of date, time, or monetary data

For an overview of the GLS API, see the IBM Informix GLS User’s Guide. For a
description of the GLS API functions, see the IBM Informix GLS Programmer’s
Manual.

Locale-Sensitive Input and Output Support Functions
The LVARCHAR (and mi_lvarchar) data type can hold data in the code set of
the client or database locale. This data includes single-byte (ASCII and non-
ASCII) and multibyte character data. The LVARCHAR data type holds opaque-
type data as it is transferred to and from the database server in its external
representation. Therefore, the external representation of an opaque data type
can hold single-byte or multibyte data.

However, you must write the input and output support functions to interpret
the LVARCHAR data in the correct locale. These support functions might need
to perform code-set conversion if the client locale and database locale
support different code sets. For more information on code-set conversion, see
the IBM Informix GLS User’s Guide.
10-30 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Locale-Sensitive Receive and Send Support Functions
Locale-Sensitive Receive and Send Support Functions
The SENDRECV (and mi_sendrecv) data type holds the internal structure of
an opaque type. This internal structure can contain the following types of
locale-sensitive data:

� Character fields that can hold data in the code set of the client or
database locale

This data includes single-byte (ASCII and non-ASCII) and multibyte
character data.

� Monetary, date, or time fields that hold a locale-specific represen-
tation of the data

The client application has no way of interpreting the fields of the internal
structure because an opaque type is encapsulated.

The SENDRECV data type holds opaque-type data as it is transferred to and
from the database server in this internal representation. You must write the
receive and send support functions to interpret the locale-specific data within
the SENDRECV structure.
Writing Support Functions 10-31

11
Chapter
Extending an Operator Class
In This Chapter . 11-3

Using Operator Classes 11-3
Secondary-Access Methods 11-4

Generic B-Tree Index 11-4
R-Tree Index 11-5
Other User-Defined Secondary-Access Methods 11-5

Operator Classes 11-5
Generic B-Tree Operator Class 11-6
R-Tree Index Operator Class 11-8

Extending an Existing Operator Class 11-9
Extensions of the btree_ops Operator Class 11-9
Reasons for Extending btree_ops. 11-11

Generating a Single Value for a New Data Type 11-12
Changing the Sort Order 11-12

Creating an Operator Class 11-14
Creating a New B-Tree Operator Class 11-15
Creating an Absolute-Value Operator Class 11-17
Defining an Operator Class for Other Secondary-Access Methods . 11-19

Dropping an Operator Class 11-20

11-2 IBM
 Informix User-Defined Routines and Data Types Developer’s Guide

In This Chapter
This chapter describes how to extend the functionality of operator classes. An
operator class is the set of functions that is associated with a secondary-access
method. The database server provides two ways to extend operator classes:

� Extensions of operator classes that the database server provides

When you want to order the data in a different sequence or provide
index support for a UDT, you must extend an operator class.

� User-defined operator classes

When one of the existing secondary-access methods cannot easily
index a UDT, you might need to create a new operator class.

Using Operator Classes
For most situations, when you build an index, you can use the default
operators that are defined for a secondary-access method. This section
provides a brief introduction to secondary-access methods and operator
classes.

For a more detailed discussion of this topic, see the Performance Guide.
Extending an Operator Class 11-3

Secondary-Access Methods
Secondary-Access Methods
A secondary-access method, often called an index, is a set of user-defined
functions that build, access, and manipulate an index structure. These
functions encapsulate index operations, such as how to scan, insert, delete, or
update nodes in an index. A secondary-access method describes how to
access the data in an index that is built on a column (column index) or on a
user-defined function (functional index). Typically, a secondary-access
method speeds up the retrieval of a type of data.

The database server provides definitions for the following secondary-access
methods in the system catalog tables of each database:

� A generic B-tree

� An R-tree

DataBlade modules can provide additional secondary-access methods for
use with UDTs. For more information about secondary-access methods of
DataBlade modules, refer to the user guide for each DataBlade module. For
more information about R-trees, refer to the IBM Informix R-Tree Index User’s
Guide.

Generic B-Tree Index

In traditional relational database systems, the B-tree access method handles
only built-in data types and therefore can compare only two keys of built-in
data types. The B-tree index is useful for a query that retrieves a range of data
values. To support UDTs, the database server provides an extended version
of a B-tree, the generic B-tree index.

The database server uses the generic B-tree index as the built-in secondary-
access method. This secondary-access method is registered in the sysams
system catalog table with the name btree. When you use the CREATE INDEX
statement (without the USING clause) to create an index, the database server
creates a generic B-tree index. The following statement creates a B-tree index
on the zipcode column of the customer table:

CREATE INDEX zip_ix ON customer (zipcode)

For more information, see the CREATE INDEX statement in the IBM Informix
Guide to SQL: Syntax.
11-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Operator Classes
R-Tree Index

The database server can support the R-tree index for columns that contain
spatial data such as maps and diagrams. An R-tree index is most beneficial
when queries look for objects that are within other objects or for an object that
contains one or more objects.

To use an R-tree index, install a spatial DataBlade module such as the Spatial
DataBlade module, Geodetic DataBlade module, or any other third-party
DataBlade module that implements an R-tree index.

Other User-Defined Secondary-Access Methods

A DataBlade module can provide a UDT to handle a particular type of data.
The module might also provide a new secondary-access method (index) for
the new data type that it defines. For example, the Excalibur Text DataBlade
module provides an index to search text data. For more information, refer to
the Excalibur Text Search DataBlade Module User’s Guide. For more information
on the types of data and functions that each DataBlade module provides,
refer to the user guide for the DataBlade module. The sysams system catalog
table describes the secondary-access methods that exist in your database. For
information about sysams, see the IBM Informix Guide to SQL: Reference.

Operator Classes
An operator class is a group of functions that allow the secondary-access
method to store and search for values of a particular data type. The query
optimizer uses an operator class to determine if an index can process the
query with the least cost. For more information on the query optimizer, see
the Performance Guide.

The operator-class functions fall into the following categories:

� Strategy functions

The database server uses the strategy functions of a secondary-access
method to help the query optimizer determine whether a specific
index is applicable to a specific operation on a data type. The strategy
functions are the operators that can appear in the filter of an SQL
statement.
Extending an Operator Class 11-5

Operator Classes
� Support functions

The database server uses the support functions of a secondary-access
method to build and access the index. End users do not call these
functions directly. When an operator in the filter of a query matches
one of the strategy functions, the secondary-access method uses the
support functions to traverse the index and obtain the results.

Each secondary-access method has a default operator class associated with it.
By default, the CREATE INDEX statement associates the default operator class
with an index.

The database server stores information about operator classes in the
sysopclasses system catalog table.

Generic B-Tree Operator Class

The built-in secondary-access method, the generic B-tree, has a single
operator class defined in the sysopclasses system catalog table. This operator
class, called btree_ops, is the default operator class for the btree secondary-
access method.

The database server uses the btree_ops operator class to specify:

� The strategy functions to tell the optimizer which filters in a query
can use a B-tree index

� The support function to build and search the B-tree index

The CREATE INDEX statement in “Generic B-Tree Index” on page 11-4 shows
how to create a B-tree index whose column uses the btree_ops operator class.
This CREATE INDEX statement does not need to specify the btree_ops
operator class because btree_ops is the default operator class for the btree
access method.

For more information on the btree secondary-access method, see “Generic
B-Tree Index” on page 11-4.
11-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Operator Classes
B-Tree Strategy Functions

The btree_ops operator class defines the following strategy functions for the
btree access method:

� lessthan (<)

� lessthanorequal (<=)

� equal (=)

� greaterthanorequal (>=)

� greaterthan (>)

These strategy functions are all operator functions. That is, each function is
associated with an operator symbol; in this case, with a relational-operator
symbol. For more information, see “Relational Operators” on page 6-5.

B-Tree Support Function

The btree_ops operator class has one support function, a comparison
function called compare(). The compare() function is a user-defined function
that returns an integer value to indicate whether its first argument is equal to,
less than, or greater than its second argument, as follows:

� A value of 0 when the first argument is equal to the second argument

� A value less than 0 when the first argument is less than the second
argument

� A value greater than 0 when the first argument is greater than the
second argument

The B-tree secondary-access method uses the compare() function to traverse
the nodes of the generic B-tree index. To search for data values in a generic
B-tree index, the secondary-access method uses the compare() function to
compare the key value in the query to the key value in an index node. The
result of the comparison determines if the secondary-access method needs to
search the next lower level of the index or if the key resides in the current
node.
Extending an Operator Class 11-7

Operator Classes
The generic B-tree access method also uses the compare() function to perform
the following tasks for generic B-tree indexes:

� Sort the keys before building the index

� Determine the linear ordering of keys in a generic B-tree index

� Evaluate the relational operators

The database server uses the compare() function to evaluate comparisons in
the SELECT statement. To provide support for these comparisons for opaque
data types, you must write the compare() function. For more information, see
“Conditional Operators for Opaque Data Types” on page 9-20.

R-Tree Index Operator Class

The R-tree secondary-access method has an operator class defined in the
sysopclasses system catalog table. This operator class, called rtree_ops, is the
default operator class for the rtree secondary-access method. The database
server defines the default R-tree operator class in the system catalog tables
but does not provide the operator-class functions to implement this operator
class.

To use an R-tree index, install a spatial DataBlade module such as the Spatial
DataBlade module, Geodetic DataBlade module, or any other third-party
DataBlade module that implements an R-tree index. For more information on
R-tree indexes, refer to IBM Informix R-Tree Index User’s Guide. For more infor-
mation on the spatial DataBlade modules, consult the appropriate DataBlade
module user guide.
11-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Extending an Existing Operator Class
Extending an Existing Operator Class
You can define operator-class functions of an operator class only for existing
data types. When you create a UDT, you must determine whether you need
to create operator-class functions for this data type. The creation of new
operator-class functions that have the same names as the existing operator
class functions is the most common way to extend an existing operator class.

To extend the functionality of an operator-class function, write a function that
has the same name and return value. You provide parameters for the new
data type and write the function to handle the new parameters. Routine
overloading allows you to create many functions, all with the same name but
each with a different parameter list. The database server then uses routine
resolution to determine which of the overloaded functions to use based on the
data type of the value. For more information on routine overloading and
routine resolution, see Chapter 3, “Running a User-Defined Routine.”

To define operator-class functions for a user-defined data type

1. Decide which of the secondary-access methods can support the UDT.

2. Extend the operator classes of the chosen secondary-access method
or methods.

To allow end users to use the user-defined type with the operators
that are associated with the secondary-access method, write new
strategy and support functions to handle this new data type.

Extensions of the btree_ops Operator Class
Before the database server can support generic B-tree indexes on a UDT, the
operator classes associated with the B-tree secondary-access method must be
able to handle that data type. The default operator class for the generic B-tree
secondary-access method is called btree_ops. Initially, the operator-class
functions (strategy and support functions) of the btree_ops operator class
handle the built-in data types. When you define a new data type, you must
extend these operator-class functions to handle the data type.

Important: You cannot extend the btree_ops operator class for the built-in data
types.
Extending an Operator Class 11-9

Extensions of the btree_ops Operator Class
After you determine how you want to implement the relational operators for
a UDT, you can extend the btree_ops operator class so that the query
optimizer can consider use of a B-tree index for a query that contains a
relational operator.

To extend the default operator class for a generic B-tree index

1. Write functions for the B-tree strategy functions that accept the UDT
in their parameter list.

The relational-operator functions serve as the strategy functions for
the btree_ops operator class. If you have already defined these rela-
tional-operator functions for the UDT, the generic B-tree index uses
them as its strategy functions. For example, you might have defined
the relational-operator functions when you extended an aggregate
for the user-defined type. (See “Example of Extending a Built-In
Aggregate” on page 8-6.)

2. Register the strategy functions in the database with the CREATE
FUNCTION statement.

If you already registered the relational-operator functions, you do
not need to reregister them as strategy functions.

3. Write a function in C or Java for the B-tree support function,
compare(), that accepts the UDT in its parameter list. (The compare()
function cannot be in SPL.)

The compare() function also provides support for a UDT in compar-
ison operations in a SELECT statement (such as the ORDER BY clause
or the BETWEEN operator). If you have already defined this compar-
ison function for the UDT, the generic B-tree index uses it as its
support function.

4. Register the support functions in the database with the CREATE
FUNCTION statement.

For opaque data types, you might have already defined this function
to provide support for the comparison operations in a SELECT state-
ment (such as the ORDER BY clause or the BETWEEN operator) on
your opaque data type.

For more information on strategy functions, see “B-Tree Strategy Functions”
on page 11-7. For information on relational operators for an opaque data
type, see “Conditional Operators for Opaque Data Types” on page 9-20.
11-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Reasons for Extending btree_ops
After you register the support function, use the CREATE INDEX statement to
create a B-tree index on the column of the table that contains the UDT. The
CREATE INDEX statement does not need the USING clause because you have
extended the default operating class for the default index type, a generic
B-tree index, to support your UDT.

The query optimizer can now consider use of this generic B-tree index to
execute queries efficiently. For more information on the performance aspects
of column indexes, see the Performance Guide.

The previous steps extend the default operator class of the generic B-tree
index. You could also define a new operator class to provide another order
sequence. For more information, see “Creating a New B-Tree Operator Class”
on page 11-15.

Reasons for Extending btree_ops
The strategy functions of btree_ops are the relational operations that end
users can use in expressions. (For a list of the relational operators, see “B-Tree
Strategy Functions” on page 11-7.) The generic B-tree index handles only the
built-in data types. When you write relational-operator functions that handle
a new UDT, you extend the generic B-tree so that it can handle the UDT in a
column or a user-defined function. To create B-tree indexes on columns or
functions of the new data type, you must write new relational-operator
functions that can handle the new data type.

In the relational-operator functions, you determine the following behavior of
a B-tree index:

� What single value does the B-tree secondary-access method use to
order the index?

For a particular UDT, the relational-operator functions must compare
two values of this data type for the data type to be stored in the B-tree
index.

� In what order does the B-tree index sort the values?

For a particular UDT, the relational-operator functions must deter-
mine what constitutes an ordered sequence of the values.
Extending an Operator Class 11-11

Reasons for Extending btree_ops
Generating a Single Value for a New Data Type

A B-tree index indexes one-dimensional objects. It uses the relational-
operator functions to compare two one-dimensional values. It then uses the
relationship between these values to determine how to traverse the B-tree
and in which node to store a value.

The relational-operator functions handle built-in data types. (For more infor-
mation on built-in data types, see the chapter on data types in the
IBM Informix Guide to SQL: Reference.) The built-in data types contain one-
dimensional values. For example, the INTEGER data type holds a single
integer value. The CHAR data type holds a single character string. The DATE
data type holds a single date value. The values of all these data types can be
ordered linearly (in one dimension). The relational-operator functions can
compare these values to determine their linear ordering.

When you create a new UDT, you must ensure that the relational-operator
functions can compare two values of the UDT. Otherwise, the comparison
cannot occur, and the UDT cannot be used in a B-tree index.

For example, suppose you create the circle opaque type to implement a circle.
A circle is a spatial object that might be indexed best with a user-defined
secondary-access method such as an R-tree, which handles multidimensional
objects. However, you can use the circle data type in a B-tree index if you
define the relational operators on the value of its area: one circle is less than
a second circle if its area is less than the area of the second.

Changing the Sort Order

A generic B-tree uses the relational operators to determine which value is less
than another. These operators use lexicographical sequence (numeric order
for numbers, alphabetic order for characters, chronological order for dates
and times) for the values that they order.

The relational-operator functions use the code-set order for character data
types (CHAR, VARCHAR, and LVARCHAR) and a localized order for the
NCHAR and NVARCHAR data types. When you use the default locale, U.S.
English, code-set order and localized order are those of the ISO 8895-1 code
set. When you use a nondefault locale, these two orders might be different.
For more information on locales, see the IBM Informix GLS User’s Guide. ♦

GLS
11-12 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Reasons for Extending btree_ops
For some UDTs, the relational operators in the default B-tree operator class
might not achieve the order that you want. You can define the relational-
operator functions for a particular user-defined type so that the sort order
changes from a lexicographical sequence to some other sequence.

Tip: When you extend an operator class, you can change the sort order for a UDT. To
provide an alternative sort order for all data types that the B-tree handles, you must
define a new operator class. For more information, see “Creating a New B-Tree
Operator Class” on page 11-15.

For example, suppose you create an opaque data type, ScottishName, that
holds Scottish names, and you want to order the data type in a different way
than the U.S. English collating sequence. You might want the names
McDonald and MacDonald to appear together on a phone list. This data type
can use a B-tree index because it defines the relational operators that equate
the strings Mc and Mac.

To order the data type in this way, write the relational-operator functions so
that they implement this new order. For the strings Mc and Mac to be equal,
you must define the relational-operator functions that:

� Accept the opaque data type, ScottishName, in the parameter list

� Contain code that equates Mc and Mac

The following steps use the steps described in “Extensions of the btree_ops
Operator Class” on page 11-9 to extend the btree_ops operator class.

To support the ScottishName data type

1. Prepare and register the strategy functions that handle the
ScottishName data type: lessthan(), lessthanorequal(), equal(),
greaterthan(), and greaterthanorequal().

For more information, refer to Chapter 4, “Developing a User-
Defined Routine.”

2. Prepare and register the external function for the compare() support
function that handles the ScottishName data type.
Extending an Operator Class 11-13

Creating an Operator Class
You can now create a B-tree index on a ScottishName column:

CREATE TABLE scot_cust
(

cust_id integer,
cust_name ScottishName
...

);
CREATE INDEX cname_ix

ON scot_cust (cust_name);

The optimizer can now choose whether to use the cname_ix index to evaluate
the following query:

SELECT * FROM scot_cust
WHERE cust_name = 'McDonald'::ScottishName

Creating an Operator Class
For most indexing, the operators in the default operator class of a secondary-
access method provide adequate support. However, when you want to order
the data in a different sequence than the default operator class provides, you
can define a new operator class for the secondary-access method.

The CREATE OPCLASS statement creates an operator class. It provides the
following information about the operator class to the database server:

� The name of the operator class

� The name of the secondary-access method with which to associate
the functions of the operator class

� The names and, optionally, the parameters of the strategy functions

� The names of the support functions

The database server stores this information in the sysopclasses system
catalog table. You must have the Resource privilege for the database or be the
DBA to create an operator class.
11-14 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Creating a New B-Tree Operator Class
The database server provides the default operator class, btree_ops, for the
generic B-tree access method. The following CREATE OPCLASS statement
creates a new operator class for the generic B-tree access method. You must
list the strategy functions in the order shown:

CREATE OPCLASS new_btree_ops FOR btree
STRATEGIES (lessthan, lessthanorequal, equal,

greaterthanorequal, greaterthan)
SUPPORT(compare);

For more information, see “Generic B-Tree Index” on page 11-4.

You might want to create a new operator class for:

� The generic B-tree secondary-access method

A new operator class can provide an additional sort order for all data
types that the B-tree index can handle.

� Any user-defined secondary-access methods

A new operator class can provide additional functionality to the
strategy functions of the operator class.

Creating a New B-Tree Operator Class
To traverse the index structure, the generic B-tree index uses the sequence
that the relational operators define. By default, a B-tree uses the lexico-
graphical sequence of data because the default operator class, btree_ops,
contains the relational-operator functions. (For more information on this
sequence, see “Changing the Sort Order” on page 11-12.) For a generic B-tree
to use a different sequence for its index values, you can create a new operator
class for the btree secondary-access method. You can then specify the new
operator class when you define an index on that data type.

When you create a new operator class for the generic B-tree index, you
provide an additional sequence for organizing data in a B-tree. When you
create the B-tree index, you can specify the sequence that you want a column
(or user-defined function) in the index to have.
Extending an Operator Class 11-15

Creating a New B-Tree Operator Class
To create a new operator class for a generic B-tree index

1. Write functions for the B-tree strategy functions that accept the
appropriate data type in their parameter list.

The B-tree secondary-access method expects five strategy functions;
therefore, any new operator class must define exactly five. The
parameter data types can be built in or user defined. However, each
function must return a Boolean value. For more information on strat-
egy functions, see “B-Tree Strategy Functions” on page 11-7.

2. Register the new strategy functions in the database with the CREATE
FUNCTION statement.

You must register the set of strategy functions for each data type on
which you are supporting the operator class.

3. Write the external function for the new B-tree support function that
accepts the appropriate data type in its parameter list.

The B-tree secondary-access method expects one support function;
therefore, any new operator class must define only one. The param-
eter data types can be built-in or UDTs. However, the return type
must be integer. For more information on support functions, see “B-
Tree Support Function” on page 11-7.

4. Register the new support function in the database with the CREATE
FUNCTION statement.

You must register a support function for each data type on which you
are supporting the operator class.
11-16 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Creating an Absolute-Value Operator Class
5. Create the new operator class for the B-tree secondary-access
method, btree.

When you create an operator class, specify the following in the
CREATE OPCLASS statement:

� After the OPCLASS keyword, the name of the new operator class

� In the FOR clause, btree as the name of the secondary-access
method with which to associate the operator class

� In the STRATEGIES clause, a parenthetical list of the names of the
strategy functions for the operator class

You registered these functions in step 2. You must list the func-
tions in the order that the B-tree secondary-access method
expects: the first function is the replacement for lessthan(), the
second for lessthanorequal(), and so on.

� In the SUPPORT clause, the name of the support function to use
to search the index

You registered this function in step 4. It is the replacement for the
compare() function.

For more information on how to use the CREATE OPCLASS statement,
refer to the IBM Informix Guide to SQL: Syntax.

These steps create the new operator class of the generic B-tree index. You can
also extend the default operator class to provide support for new data types.
For more information, see “Extensions of the btree_ops Operator Class” on
page 11-9.

To use the new operator class, specify the name of the operator class after the
column or function name in the CREATE INDEX statement.

Creating an Absolute-Value Operator Class
As an example, suppose you want to define a new ordering for integers. The
lexicographical sequence of the default B-tree operator class orders integers
numerically: -4 < -3 < -2 < -1 < 0 < 1 < 2 < 3. Instead, you might want the
numbers -4, 2, -1, -3 to appear in order of absolute value.

-1, 2, -3, -4
Extending an Operator Class 11-17

Creating an Absolute-Value Operator Class
To obtain the absolute-value order, you must define external functions that
treat negative integers as positive integers. The following steps create a new
operator class called abs_btree_ops with strategy and support functions that
provide the absolute-value order:

1. Write and register external functions for the new strategy functions:
abs_lessthan(), abs_lessthanorequal(), abs_equal(),
abs_greaterthan(), and abs_greaterthanorequal().

For more information, refer to Chapter 4, “Developing a User-
Defined Routine.”

2. Register the five new strategy functions with the CREATE FUNCTION
statement.

3. Write the C function for the new support function: abs_compare().

Compile this function and store it in the absbtree.so shared-object
file.

4. Register the new support function with the CREATE FUNCTION
statement.

5. Create the new abs_btree_ops operator class for the B-tree
secondary-access method.

You can now create a B-tree index on an INTEGER column and associate the
new operator class with this column:

CREATE TABLE cust_tab
(

cust_name varchar(20),
cust_num integer
...

);
CREATE INDEX c_num1_ix

ON cust_tab (cust_num abs_btree_ops);

The c_num1_ix index uses the new operator class, abs_btree_ops, for the
cust_num column. An end user can now use the absolute value functions in
SQL statements, as in the following example:

SELECT * FROM cust_tab WHERE abs_lt(cust_num, 7)

In addition, because the abs_lt() function is part of an operator class, the
query optimizer can use the c_num1_ix index when it looks for all cust_tab
rows with cust_num values between -7 and 7. A cust_num value of -8 does
not satisfy this query.
11-18 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Defining an Operator Class for Other Secondary-Access Methods
The default operator class is still available for indexes. The following CREATE
INDEX statement defines a second index on the cust_num column:

CREATE INDEX c_num2_ix ON cust_tab (cust_num);

The c_num2_ix index uses the default operator class, btree_ops, for the
cust_num column. The following query uses the operator function for the
default less than (<) operator:

SELECT * FROM cust_tab WHERE lessthan(cust_num, 7)

The query optimizer can use the c_num2_ix index when it looks for all
cust_tab rows with cust_num values less than 7. A cust_num value of -8
does satisfy this query.

Defining an Operator Class for Other Secondary-Access
Methods
You can also define operator classes for user-defined secondary-access
methods. A user-defined secondary-access method is one that a database
developer has defined to implement a particular type of index. These access
methods might have been defined in the database by a DataBlade module.

Tip: You can examine the sysams system catalog table to determine which
secondary-access methods your database defines. For information on the columns of
the sysams system catalog table, see the “IBM Informix Guide to SQL: Reference.”

When you define an operator class on a user-defined secondary-access
method, you provide support and strategy functions just as you do when you
create an operator class on the generic B-tree index. You must be careful to
conform to any operator class requirements of the user-defined secondary-
access class. Before you implement an operator class for a user-defined
secondary-access method, consult the documentation for the method.

You perform the same steps to define an operator class on a user-defined
secondary-access method as you use to define an operator class on the
generic B-tree index. (See “Creating a New B-Tree Operator Class” on
page 11-15.) The only difference is that to create the index, you must specify
the name of the user-defined secondary-access method in the USING clause
of the CREATE INDEX statement.
Extending an Operator Class 11-19

Dropping an Operator Class
Dropping an Operator Class
The DROP OPCLASS statement removes the definition for an operator class
from the database. The database server removes the operator-class definition
from the sysopclasses system catalog table. You must be the owner of the
operator class or the DBA to drop its definition from the database.

You must remove all dependent objects before you can drop the operator
class. For example, suppose you have created a new operator class called
abs_btree_ops for the generic B-tree index. (For more information, see
“Creating a New B-Tree Operator Class” on page 11-15.) To drop the
abs_btree_ops operator class from the database, you must first ensure that:

� You are the owner (the person who created the operator class) or the
DBA.

� No indexes are currently defined that use the abs_btree_ops
operator class.

If such indexes exist, you must first remove them from the database.

After you meet the preceding conditions, the following statement removes
the definition of abs_btree_ops from the database:

DROP OPCLASS abs_btree_ops RESTRICT

The RESTRICT keyword is required in the DROP OPCLASS syntax.
11-20 IBM Informix User-Defined Routines and Data Types Developer’s Guide

12
Chapter
Managing a User-Defined
Routine
In This Chapter . 12-3

Assigning the Execute Privilege to a Routine 12-3
Granting and Revoking the Execute Privilege 12-4
Privileges on Objects Associated with a UDR 12-5
Executing a UDR as DBA 12-6
Using DBA Privileges with Objects and Nested UDRs 12-7

Modifying a User-Defined Routine 12-9
Modifying a C UDR 12-9

Removing Routines from the Shared Library 12-9
Modifying a Java UDR 12-11

Altering a User-Defined Routine 12-11

Dropping a User-Defined Routine. 12-11

12-2 IBM
 Informix User-Defined Routines and Data Types Developer’s Guide

In This Chapter
This chapter describes how to manage UDRs. It includes the following topics:

� Assigning the Execute Privilege to a Routine

� Modifying a User-Defined Routine

� Altering a User-Defined Routine

� Dropping a User-Defined Routine

Assigning the Execute Privilege to a Routine
The Execute privilege enables users to invoke a UDR. You might invoke the
UDR from the EXECUTE or CALL statements or from a function in an
expression. By default, the following users have Execute privilege, which
enables them to invoke a UDR:

� Any user with the DBA privilege can execute any routine in the
database.

� If the routine is registered with the qualified CREATE DBA FUNCTION
or CREATE DBA PROCEDURE statements, only users with the DBA
privilege have the Execute privilege for that routine by default.

� If the database is not ANSI compliant, user public (any user with
Connect database privilege) automatically has the Execute privilege
to a routine that is not registered with the DBA keyword.

� In an ANSI-compliant database, the procedure owner and any user
with the DBA privilege can execute the routine without receiving
additional privileges. ♦

ANSI
Managing a User-Defined Routine 12-3

Granting and Revoking the Execute Privilege
Granting and Revoking the Execute Privilege
To control the Execute privilege on a UDR, use the EXECUTE ON clause of the
GRANT and REVOKE statements. The database server stores privileges for
UDRs in the sysprocauth system catalog table.

UDRs have the following GRANT and REVOKE requirements for the Execute
privilege:

� The DBA can grant the Execute privilege to or revoke it from any
routine in the database.

� The creator of a routine can grant or revoke the Execute privilege on
that particular routine. The creator forfeits the ability to grant or
revoke by including the AS grantor clause with the GRANT EXECUTE
ON statement.

� Another user can grant the Execute privilege if the owner applied the
WITH GRANT keywords in the GRANT EXECUTE ON statement.

A DBA or the routine owner must explicitly grant the Execute privilege to
non-DBA users for the following conditions:

� A routine in an ANSI-compliant database

� A database with the NODEFDAC environment variable set to yes

� A routine that was registered with the DBA keyword

An owner can restrict the Execute privilege on a routine even though the
database server grants that privilege to public by default. To do so, issue the
REVOKE EXECUTE ON...PUBLIC statement. The DBA and owner can still
execute the routine and can grant the Execute privilege to specific users, if
applicable.

A user might receive the Execute privilege accompanied by the WITH GRANT
option authority to grant the Execute privilege to other users. If a user loses
the Execute privilege on a routine, the Execute privilege is also revoked from
all users to whom that user granted the Execute privilege.
12-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Privileges on Objects Associated with a UDR
The following example shows an equal() function defined for a UDT and the
GRANT statement to enable user mary to execute this variation of the equal()
function:

CREATE FUNCTION equal (arg1 udtype1, arg2 udtype1)
RETURNING BOOLEAN
EXTERNAL NAME "/usr/lib/udtype1/lib/libbtype1.so(udtype1_equal)"
LANGUAGE C
END FUNCTION;

GRANT EXECUTE ON equal(udtype1, udtype1) to mary

User mary does not have permission to execute any other UDR named
equal().

For more information, see the GRANT and REVOKE statements in the
IBM Informix Guide to SQL: Syntax.

Privileges on Objects Associated with a UDR
The database server checks the existence of any referenced objects and
verifies that the user who invokes the UDR has the necessary privileges to
access the referenced objects. For example, if a user executes a UDR that
updates data in a table, the user must have the Update privilege for the table
or columns referenced in the UDR.

A routine can reference the following objects:

� Tables and columns

� UDTs

� Other routines executed by the routine

In the course of routine execution, the owner of the routine, not the user who
runs the routine, owns any unqualified objects that the routine creates. The
database server verifies that the objects exist and that the UDR owner has the
necessary privileges to access them. The user who executes the UDR runs
with the privileges of the owner of the UDR.
Managing a User-Defined Routine 12-5

Executing a UDR as DBA
The following example shows an SPL procedure called promo() that creates
two tables, hotcatalog and libby.mailers:

CREATE PROCEDURE promo()

CREATE TABLE hotcatalog
(

catlog_num INTEGER
cat_advert VARCHAR(255, 65)
cat_picture BLOB

) PUT cat_picturein sb1;

CREATE TABLE libby.maillist
(

cust_num INTEGER
interested_in SET(catlog_num INTEGER)

);
END PROCEDURE;

Suppose user tony executes the CREATE PROCEDURE statement to register
the SPL promo() procedure. User marty executes the promo() procedure with
an EXECUTE PROCEDURE statement, which creates the table hotcatalog.
Because no owner name qualifies table name hotcatalog, the routine owner
(tony) owns hotcatalog. By contrast, the qualified name libby.maillist
identifies libby as the owner of maillist.

Executing a UDR as DBA
If a DBA creates a routine using the DBA keyword, the database server
automatically grants the Execute privilege only to other users with the DBA
privilege. However, a DBA can explicitly grant the Execute privilege on a DBA
routine to a non-DBA user.

When a user executes a routine that was registered with the DBA keyword,
that user assumes the privileges of a DBA for the duration of the routine. If a
user who does not have the DBA privilege runs a DBA routine, the database
server implicitly grants a temporary DBA privilege to the invoker. Before the
database server exits from a DBA routine, it implicitly revokes the temporary
DBA privilege.
12-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Using DBA Privileges with Objects and Nested UDRs
Using DBA Privileges with Objects and Nested UDRs
Objects created in the course of running a DBA routine are owned by the user
who executes the routine unless a statement in the routine explicitly names
someone else as the owner. For example, suppose that user tony registers the
promo() routine on page 12-6, but includes the DBA keyword:

CREATE DBA PROCEDURE promo()
...
END PROCEDURE;

Although user tony owns the routine, if user marty runs it, user marty owns
table hotcatalog. User libby owns libby.maillist because her name qualifies
the table name, making her the table owner.

A called routine does not inherit the DBA privilege. If a DBA routine executes
a routine that was created without the DBA keyword, the DBA privileges do
not affect the called routine.

If a routine that is registered without the DBA keyword calls a DBA routine,
the caller must have Execute privileges on the called DBA routine. Statements
within the DBA routine execute as they would within any DBA routine.

The following example demonstrates what occurs when a DBA and non-DBA
routine interact. Procedure dbspace_cleanup() executes procedure
cluster_catalog(). Procedure cluster_catalog() creates an index. The
C-language source for cluster_catalog() includes the following statements:

strcopy(statement, "CREATE INDEX stmt");
ret = mi_exec(conn,
"create cluster index c_clust_ix on catalog(catalog_num)",
MI_QUERY_NORMAL);

DBA procedure dbspace_cleanup() invokes the other routine with the
following statement:

EXECUTE PROCEDURE cluster_catalog(hotcatalog)
Managing a User-Defined Routine 12-7

Using DBA Privileges with Objects and Nested UDRs
Assume tony registered dbspace_cleanup() as a DBA procedure, and
cluster_catalog() is registered without the DBA keyword, as follows:

CREATE DBA PROCEDURE dbspace_cleanup(loc CHAR)
EXTERNAL NAME ...
LANGUAGE C

END PROCEDURE
CREATE PROCEDURE cluster_catalog(catalog CHAR)

EXTERNAL NAME ...
LANGUAGE C
END PROCEDURE
GRANT EXECUTION ON dbspace_cleanup(CHAR) to marty;

User marty runs dbpace_cleanup(). Index c_clust_ix is created by a non-DBA
routine. Therefore tony, who owns both routines, also owns c_clust_ix. By
contrast, marty owns index c_clust_ix if cluster_catalog() is a DBA
procedure, as in the following registering and grant statements:

CREATE PROCEDURE dbspace_cleanup(loc CHAR)
EXTERNAL NAME ...
LANGUAGE C

END PROCEDURE
CREATE DBA PROCEDURE cluster_catalog(catalog CHAR)

EXTERNAL NAME ...
LANGUAGE C
END PROCEDURE
GRANT EXECUTION ON cluster_catalog(CHAR) to marty;

The dbspace_cleanup() procedure need not be a DBA procedure to call a DBA
procedure.
12-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Modifying a User-Defined Routine
Modifying a User-Defined Routine
To modify a UDR, you might need to drop and then reregister the routine and
its support functions and reload the files that hold the executable version of
the routine with new executable files. However you can make some changes
in place. ALTER FUNCTION and ALTER PROCEDURE let you modify some
attributes of a routine without dropping the routine.

Modifying a C UDR
When the database server shuts down, it releases all memory that it has
reserved, including memory for shared-object modules.

To unload a shared-object module from memory without restarting the
database server, you must drop all routines that the shared library contains.
Use the SQL DROP ROUTINE, DROP FUNCTION, or DROP PROCEDURE
statement to unregister a UDR. These statements remove the registration
information about the UDR from the system catalog tables.

Removing Routines from the Shared Library

The following conditions cause the database server to remove the shared-
object file from the memory map:

� You drop all routines in the module.

� All instances of the routines finish executing.

� You explicitly call ifx_unload_module.

Once these conditions are true, the database server automatically unloads the
shared-object file from memory. It also puts a message in the log file to
indicate that the shared object is unloaded. Once the shared object is
unloaded, you can replace the shared-object file on disk and reregister its
UDRs in the database.

You can use the onstat utility to verify that a module actually was unloaded:

onstat -g dll

C

Managing a User-Defined Routine 12-9

Modifying a C UDR
Do not overwrite a shared-object file on disk while it is loaded in memory
because you might cause the database server to generate an error when the
overwritten module is accessed or unloaded. Use the ifx_replace_module()
function to replace a loaded shared object file with a new version. For infor-
mation on the ifx_replace_module() function, see the description of Function
Expressions within the Expression segment in the IBM Informix Guide to SQL:
Syntax.

For example, to replace the circle.so shared DataBlade API library that resides
in the /usr/apps/opaque_types directory with one that resides in the
/usr/apps/shared_libs directory, you can use the EXECUTE FUNCTION
statement to execute the ifx_replace_module(), as follows:

EXECUTE FUNCTION
ifx_replace_module("/usr/apps/opaque_types/circle.so",

"/usr/apps/shared_libs/circle.so", "c")

The ifx_replace_module() function updates the sysprocedures system
catalog with the new name or location. This functions return one of the
following integer values:

� Zero indicates success.

� A negative value indicates an error message number.

You can also execute the ifx_replace_module() function in a SELECT
statement, as follows:

SELECT
ifx_replace_module("/usr/apps/opaque_types/circle.so",

"/usr/apps/shared_libs/circle.so", "c")
FROM customer
WHERE customer_id = 100

If you do not want the shared library replaced multiple times with this
SELECT statement, ensure that the SELECT statement returns only one row of
values.

When you execute these functions from within an ESQL/C application, you
must associate the EXECUTE FUNCTION statement with a function cursor. For
more information on writing ESQL/C applications, refer to the IBM Informix
ESQL/C Programmer’s Manual. ♦

E/C
12-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Modifying a Java UDR
Modifying a Java UDR
To modify a Java UDR, you can use the SQL/J replace_jar method. For
example, the following command replaces the .jar file in the database with a
new copy:

execute procedure replace_jar(
"file:/d:/informix/extend/Zip.1.0/Zip.jar", "ZipJar");

Altering a User-Defined Routine
You can use the ALTER FUNCTION, ALTER PROCEDURE, and ALTER ROUTINE
statements to change the routine modifiers or pathname of a previously
defined UDR. These statements let you modify characteristics that control
how the function executes. You can also add or replace related UDRs that
provide alternatives for the optimizer, which can improve performance.

Dropping a User-Defined Routine
You can use the DROP FUNCTION, DROP PROCEDURE, and DROP ROUTINE
statements to drop a previously defined UDR. These statements remove the
text and executable versions of the routine from the database.

You cannot drop a UDR that is in use by some database function, such as the
definition of an opaque data type, a cast, a user-defined aggregate, an
operator class, or an access method.

For information on these SQL statements, refer to their description in the
IBM Informix Guide to SQL: Syntax.
Managing a User-Defined Routine 12-11

13
Chapter
Improving UDR Performance
In This Chapter . 13-3

Optimizing a User-Defined Routine 13-3
Optimizing an SPL Routine 13-4

Optimization Levels 13-4
Automatic Optimization 13-5

Updating Statistics for an SPL Routine 13-6

Optimizing Functions in SQL Statements 13-8
Calculating the Query Plan. 13-8
Specifying Cost and Selectivity 13-9

Constant Cost and Selectivity Values 13-9
Dynamic Cost and Selectivity Values 13-10

Calculating Cost 13-11
Selectivity and Cost Examples 13-11

Extending UPDATE STATISTICS 13-13
Using UPDATE STATISTICS 13-13
Support Functions for UPDATE STATISTICS 13-14

The stat Data Type 13-14
The statcollect() Function 13-14
The statprint() Function 13-15
Example of User-Defined Statistics Functions 13-16

Using Negator Functions 13-16

Using a Virtual-Processor Class 13-17
Choosing a Virtual-Processor Class 13-18

CPU Virtual-Processor Class 13-19
User-Defined Virtual-Processor Class 13-20
JVM Virtual-Processor Class 13-20

Using Virtual Processors with UDRs Written in C 13-20

13-2 IBM
Managing Virtual Processors 13-22
Adding and Dropping Virtual Processors 13-22
Monitoring Virtual-Processor Classes 13-22

Parallel UDRs . 13-22
Executing UDRs in Parallel 13-23

Execution of a UDR in a Query Expression 13-24
FastPath Execution of a UDR in a DataBlade API 13-28
Implicit UDR Execution of a User-Defined Aggregate 13-28
Implicit UDR Execution of a Comparison Operator 13-29
Implicit Execution of an Assign UDR 13-29
Execution of a Comparison UDR for Sort. 13-30
Execution of a UDR by an Index on a UDT column 13-30

Enabling Parallel UDRs 13-30
Specifying the PARALLELIZABLE Modifier 13-31
Writing PDQ Thread-Safe UDRs. 13-31
Turning On PDQ and Reviewing Other Configuration Parameters13-32
Step-By-Step Procedure to Enable Parallel UDRs 13-32

Setting the Number of Virtual Processors 13-33
Monitoring Parallel UDRs 13-34

Memory Considerations 13-35
Memory Durations for C UDRs 13-35
Stack-Size Considerations 13-36
Virtual-Memory Cache for Routines 13-37

The sysprocedures System Catalog Table. 13-37
UDR Cache 13-38

I/O Considerations 13-39
Isolating System Catalog Tables 13-39
Balancing the I/O Activities 13-40
 Informix User-Defined Routines and Data Types Developer’s Guide

In This Chapter
This chapter describes performance considerations for UDRs and includes
the following topics:

� Optimizing a User-Defined Routine

� Optimizing Functions in SQL Statements

� Extending UPDATE STATISTICS

� Using Negator Functions

� Using a Virtual-Processor Class

� Parallel UDRs

� Memory Considerations

� I/O Considerations

Optimizing a User-Defined Routine
The query optimizer decides how to perform a query. A query plan is a specific
way a query might be performed. A query plan includes how to access the
table or tables included in the query, the order of joining tables, and the use
of temporary tables. The query optimizer finds all feasible query plans. The
optimizer estimates the cost to run each plan and then selects the plan with
the lowest cost estimate.

Tip: For more information on query optimization, refer to the “Performance Guide.”
Improving UDR Performance 13-3

Optimizing an SPL Routine
Optimizing an SPL Routine
During SPL optimization, the query optimizer evaluates the possible query
plans and selects the query plan with the lowest cost. The database server
puts the selected query plan for each SQL statement in an execution plan for
the SPL routine. The database server optimizes each SQL statement within the
SPL routine and includes the selected query plan in the execution plan.

Optimization Levels

The current optimization level set in an SPL routine affects how the SPL routine
is optimized. The SQL statement, SET OPTIMIZATION, sets the optimization
level, which in turn determines the algorithm that the query optimizer uses,
as follows.

For SPL routines that remain unchanged or change only slightly, you might
want to set the SET OPTIMIZATION statement to HIGH when you create the
routine. This optimization level stores the best query plans for the routine.
Then set optimization to LOW before you execute the routine. The routine then
uses the optimal query plans and runs at the more cost-effective rate if reopti-
mization occurs.

SET OPTIMIZATION Statement Algorithm Used

SET OPTIMIZATION HIGH Invokes a sophisticated, cost-based strategy that
examines all reasonable query plans and selects the
best overall alternative

For large joins, this algorithm can incur more
overhead than desired. In extreme cases, you can
run out of memory.

SET OPTIMIZATION LOW Invokes a strategy that eliminates unlikely join
strategies during the early stages, which reduces
the time and resources spent during optimization

However, when you specify a low level of
optimization, the optimal strategy might not be
selected because it was eliminated from
consideration during early stages of the algorithm.
13-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Optimizing an SPL Routine
Automatic Optimization

When you create an SPL routine, the database server attempts to optimize the
SQL statements within the routine at that time. If the tables cannot be
examined at compile time (they might not exist or might not be available), the
creation does not fail. In this case, the database server optimizes the SQL
statements the first time that the SPL routine executes. The database server
stores the optimized execution plan in the sysprocplan system catalog table
for use by other processes.

The database server uses the dependency list to keep track of changes that
would cause reoptimization the next time that an SPL routine executes. The
database server reoptimizes an SQL statement the next time that an SPL
routine executes after one of the following situations:

� Execution of any data definition language (DDL) statement (such as
ALTER TABLE, DROP INDEX, or CREATE INDEX) that might alter the
query plan

� Alteration of a table that is linked to another table with a referential
constraint (in either direction)

� Execution of UPDATE STATISTICS FOR TABLE for any table involved
in the query

The UPDATE STATISTICS FOR TABLE statement changes the version
number of the specified table in systables.

The database server updates the sysprocplan system catalog table with the
reoptimized execution plan.
Improving UDR Performance 13-5

Updating Statistics for an SPL Routine
Updating Statistics for an SPL Routine
The database server stores statistics about the amount and nature of the data
in a table in the systables, syscolumns, and sysindices system catalog tables.
The statistics that the database server stores include the following
information:

� Number of rows

� Maximum and minimum values of columns

� Number of unique values

� Indexes that exist on a table, including the columns and functional
values that are part of the index key

The query optimizer uses these statistics to determine the cost of each
possible query plan. Run UPDATE STATISTICS to update these values
whenever you have made a large number of changes to the table.

The UPDATE STATISTICS statement can have no modifying clauses or several
modifying clauses, as in the following statements:

UPDATE STATISTICS FOR TABLE tablename
UPDATE STATISTICS FOR ROUTINE routinename

Execution of UPDATE STATISTICS affects optimization and changes the
system catalog in the following ways:

� No UPDATE STATISTICS statement

If you do not execute UPDATE STATISTICS after the size or content of
a table changes, no SQL statements within the SPL routine are reopti-
mized. The next time a routine executes, the database server
reoptimizes its execution plan if any objects that are referenced in the
routine have changed.

� UPDATE STATISTICS

When you specify no additional clauses, the database server reopti-
mizes SQL statements in all SPL routines and changes the statistics for
all tables.

� UPDATE STATISTICS FOR TABLE

When you specify the FOR TABLE clause without a table name, the
database server changes the statistics for all tables and does not reop-
timize any SQL statements in SPL routines.
13-6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Updating Statistics for an SPL Routine
� UPDATE STATISTICS FOR TABLE table name

When you specify a table name in the FOR TABLE clause, the database
server changes the statistics for the specified table. The database
server does not reoptimize any SQL statements in SPL routines.

� UPDATE STATISTICS...

When you specify one of the following clauses, the database server
reoptimizes SQL statements in all SPL routines. The database server
does not update the statistics in the system catalog tables.

❑ FOR FUNCTION

❑ FOR PROCEDURE

❑ FOR ROUTINE

� UPDATE STATISTICS... routine name

When you include a routine name in one of the following clauses, the
database server reoptimizes SQL statements in the named routine.
The database server does not update the statistics in the system cat-
alog tables.

❑ FOR FUNCTION routine name

❑ FOR PROCEDURE routine name

❑ FOR ROUTINE routine name

After the database server reoptimizes SQL statements, it updates the
sysprocplan system catalog table with the reoptimized execution plan. For
more information about sysprocplan, refer to the IBM Informix Guide to SQL:
Reference. For more information about the UPDATE STATISTICS statement,
refer to the IBM Informix Guide to SQL: Syntax.
Improving UDR Performance 13-7

Optimizing Functions in SQL Statements
Optimizing Functions in SQL Statements
The optimizer by itself cannot evaluate the cost of executing a function in an
SQL statement because of the possibility of complex logic, user-defined types,
and so on. Because some functions can be expensive to execute, the creator of
the function should provide information about the cost and selectivity of the
function to help in optimizing the SQL statement.

For example, the following SQL statement includes two functions:

SELECT * FROM T WHERE expensive(t1) and cheap(t2);

If the cheap() function is less expensive to execute than the expensive()
function, the optimizer should place the cheap() function first in the
execution plan.

The UDRs discussed in the following sections appear in the WHERE or
HAVING clause of an SQL statement. These UDRs return a value of TRUE or
FALSE.

Calculating the Query Plan
The optimizer computes the cost for all possible plans and then chooses the
lowest-cost plan. Cost includes the number of disk accesses, the number of
network accesses, and the amount of work in memory to access rows and sort
data.

Selectivity is also a factor in the total cost. Selectivity is the percentage of rows
that pass the filter. The optimizer expresses the selectivity as a number from
0 to 1, which represents the percentage of rows in the table that pass the filter.

The larger the selectivity value, the less likely that a row will disqualify the
filter. Therefore, the database server generally evaluates a UDR with a smaller
selectivity value before it evaluates a UDR with a larger selectivity value.
Similarly, the database server generally evaluates a lower cost UDR before a
higher cost one. The ultimate order of UDR filter evaluation depends on a
combination of the cost and selectivity of the UDR.

For more information on how the optimizer calculates the query plan, refer
to the Performance Guide.
13-8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Specifying Cost and Selectivity
Specifying Cost and Selectivity
You can provide the cost and selectivity of the function to the optimizer. The
database server uses cost and selectivity together to determine the best path.

To provide the cost and selectivity for a function, include modifiers in the
CREATE FUNCTION statement. You can include the cost and selectivity values
in the CREATE FUNCTION statement or calculate the values with functions
called during the optimization phase.

If you do not specify your own cost and selectivity values for a function, the
database server uses a default selectivity of 0.1 and a default cost of 0.
Because the default cost and selectivity are low, the database server considers
a UDR with default cost and selectivity inexpensive to execute and will most
likely execute that UDR before other UDRs in the WHERE clause.

The database server assigns a cost of 0 to all built-in functions, such as SIN
and DATE.

Constant Cost and Selectivity Values

The following modifiers specify a cost or selectivity value when you execute
the CREATE FUNCTION statement. The cost or selectivity value does not
change for each invocation of the function:

� percall_cost=integer

The percall_cost modifier specifies the cost of executing the function
once. The integer value is a number.

� selconst=float

The selconst modifier specifies the selectivity of a function. The float
value is a floating-point number between 0 and 1 that represents the
fraction of the rows for which you expect the routine to return TRUE.
Improving UDR Performance 13-9

Specifying Cost and Selectivity
Dynamic Cost and Selectivity Values

In some cases, the cost and selectivity of a function can vary significantly,
depending upon the input to the function. If the input can change the optimi-
zation, use the following modifiers, which specify a function that computes
the cost and selectivity at runtime:

� costfunc=CostFunction

This modifier specifies the name of a function, CostFunction, that the
optimizer executes to find the cost of executing your function one
time.

� selfunc=SelectivityFunction

This modifier specifies the name of a function, SelectivityFunction,
that the optimizer executes to find the selectivity of your function.

You write these cost and selectivity functions to provide the optimizer with
enough information about your function to create the best query plan.

The selectivity functions for a UDT might need statistics about the nature of
the data in the UDT column. The database server does not generate distribu-
tions or maximum and minimum value statistics for a UDT. You need to write
and register user-defined statistics functions to generate and store statistics
for a UDT in the system catalog tables, in the same locations as statistics
stored for built-in data types. For more information about user-defined
statistics, refer to “Extending UPDATE STATISTICS” on page 13-13. For
information about writing these functions, refer to the IBM Informix DataBlade
API Programmer’s Guide.
13-10 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Calculating Cost
Calculating Cost
The cost you specify for a function must be compatible with the cost that the
optimizer calculates for other parts of the SQL statement. The following
formula is one method to approximate the costing algorithm that the
optimizer uses:

1. Execute the following SQL statements from DB-Access, where
BIGTABLE is any large table:

SET EXPLAIN ON;
SELECT count(*) from bigtable;

Time the query.

2. Let secost be the cost the optimizer assigned for the scan. Read the
sqexplain.out file to get secost.

For information about sqexplain.out, refer to the Performance Guide.

3. Let satime be the time required to complete the SQL statement.

4. Execute and time your function. Let facost be the actual time required
to execute the function once.

The cost of executing the function once can be approximated as
follows:

((secost/satime)*facost)

Truncate the calculated cost to an integer value.

Selectivity and Cost Examples
The following example creates a function that determines if a point is within
a circle. When an SQL statement contains this function, the optimizer
executes the function contains_sel() to determine the selectivity of the
contains() function.

CREATE FUNCTION contains(c circle, p point)
RETURNING boolean WITH(selfunc=contains_sel)
EXTERNAL NAME "$USERFUNCDIR/circle.so" LANGUAGE C;
Improving UDR Performance 13-11

Selectivity and Cost Examples
The following example creates two functions, each with cost and selectivity
values:

CREATE FUNCTION expensive(cust int)
RETURNING boolean WITH(percall_cost=50,selconst=.1)
EXTERNAL NAME "/ix/9.4/exp_func.so" LANGUAGE c;

CREATE FUNCTION cheap(cust int)
RETURNING boolean WITH(percall_cost=1,selconst=.1)
EXTERNAL NAME "/ix/9.4/exp_func.so" LANGUAGE C;

When both of these functions are in one SQL statement, the optimizer
executes the cheap() function first because of the lower cost. The following
SET EXPLAIN output, which lists cheap() first in the Filters: line, shows that
indeed the optimizer did execute cheap() first:

QUERY:

select * from customer
where expensive(customer_num)
and cheap(customer_num)
Estimated Cost: 8
Estimated # of Rows Returned: 1
 1) informix.customer: SEQUENTIAL SCAN
 Filters: (lsuto.cheap(informix.customer.customer_num)AND
lsuto.expensive(informix.customer.customer_num))

For an example of a C function that calculates a cost dynamically, refer to the
\%INFORMIXDIR\dbdk\examples\Types\dapi\Statistics\Box\src\c
directory after you install the DBDK.
13-12 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Extending UPDATE STATISTICS
Extending UPDATE STATISTICS
The UPDATE STATISTICS statement collects statistics about the data in your
database. The optimizer uses these statistics to determine the best path for an
SQL statement.

For SQL statements that use UDTs, the optimizer can call custom selectivity
and cost functions. (For more information on creating selectivity and cost
functions, refer to “Optimizing Functions in SQL Statements” on page 13-8.)
Selectivity and cost functions might need to use statistics about the nature of
the data in a column. When you create the statcollect() function that collects
statistics for a UDT, the database server executes this function automatically
when a user runs the UPDATE STATISTICS statement with the MEDIUM or
HIGH keyword.

Using UPDATE STATISTICS
The syntax of UPDATE STATISTICS is the same for UDTs as for built-in data
types. Because the data distributions provide the optimizer with equivalent
statistics, the database server does not calculate colmin and colmax for UDTs.

The statcollect() function executes once for every row that the database
server scans during UPDATE STATISTICS. The number of rows that the
database server scans depends on the mode and the confidence level.
Executing UPDATE STATISTICS in HIGH mode causes the database server to
scan all rows in the table. In MEDIUM mode the database server chooses the
number of rows to scan based on the confidence level. The higher the confi-
dence level, the higher the number of rows that the database server scans. For
general information about UPDATE STATISTICS, refer to the IBM Informix
Guide to SQL: Syntax.

The statistics that the database server collects might require a smart large
object for storage. The configuration parameter SBSSPACENAME specifies an
sbspace for storing this information. If SBSSPACENAME is not set, the
database server might not be able to collect the specified statistics.
Improving UDR Performance 13-13

Support Functions for UPDATE STATISTICS
Support Functions for UPDATE STATISTICS
The statcollect() and statprint() functions support the collection of statistics.
If you want UPDATE STATISTICS to generate statistics for a UDT, you must
create these functions.

The stat Data Type

The statcollect() and statprint() functions use an SQL data type called stat.

The corresponding C language structure is called mi_statretval. For an exact
description of mi_statretval, see the libmi header file.

Most of the information in mi_statretval is manipulated internally. However,
two fields must be filled in by statcollect():

� The statdata field should contain the histogram for the distribution.
UDTs are stored in a multirepresentational format.

� The szind field should be set to either MI_MULTIREP_SMALL or
MI_MULTIREP_LARGE. ♦

The statcollect() Function

When you run UPDATE STATISTICS, the database server calls the appropriate
statcollect() function for each column that the database server scans.

The statcollect() function takes four arguments:

� The first argument is of the same data type as the UDT for which the
statcollect() function is called.

The database server uses this argument to resolve the function and
to pass in values.

The first time the database server invokes this function, it sets this
parameter to null. On subsequent invocations, this argument con-
tains the column value.

� The second argument is a double-precision value that indicates the
number of rows that the database server must scan to gather the
statistics.

C

13-14 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Support Functions for UPDATE STATISTICS
� The third argument is a double-precision value that is the resolution
specified by the UPDATE STATISTICS statement. The resolution value
specifies the bucket size for the distribution. However, you might
choose to ignore this parameter if it does not make sense for your
UDT.

� The fourth argument is an MI_FPARAM structure that the database
server uses to pass information to the UDR as well as a place to store
state information.

On the first call to statcollect(), MI_FPARAM contains a SET_INIT value. Check
for this value in statcollect() and perform any initialization operations, such
as allocating memory and initializing values.

On subsequent calls to statcollect(), MI_FPARAM contains a SET_RETONE
value. At this point, statcollect() should read the column value from the first
argument and place it in your distribution structure.

After all rows have been processed, the last call to statcollect() puts a value
of SET_END in MI_FPARAM. For this final call, statcollect() should put the
statistics in the stat data type and perform any memory deallocation.

You must declare the statcollect() function with HANDLESNULLS, but the
function itself can ignore nulls if desired.

Allocate any memory used across multiple invocations of statcollect() from
the PER_COMMAND pool and free it as soon as possible. Any memory not
used across multiple invocations of statcollect() should be allocated from the
PER_ROUTINE pool.

The statprint() Function

The statprint() function converts the statistics data that the statcollect()
function collects to an LVARCHAR value that the database server can use to
display information. The dbschema utility executes the statprint() function.

The statprint() function has two arguments. The first argument is a dummy
argument of the required data type. The database server uses this argument
to resolve the function. The first time the database server executes this
function, it sets the first parameter to null.
Improving UDR Performance 13-15

Using Negator Functions
The second argument is a value of the stat data type. The stat data type is a
multirepresentational data type that the database server uses to store data
that the statcollect() function collects.

The statprint() function must take the histogram, which is stored in multi-
representational form, and convert it to a printable form.

After you register the functions, make sure those with DBA privilege or the
table owner can execute the statcollect() and statprint() UDRs.

Example of User-Defined Statistics Functions

For examples of statprint() and statcollect() functions written in C, refer to
the \%INFORMIXDIR\dbdk\examples\Types\dapi\Statistics\Box\src\c
directory, after you install the DataBlade Developer’s Kit.

Using Negator Functions
A negator function takes the same arguments as its companion function, in the
same order, but returns the Boolean complement. That is, if a function returns
TRUE for a given set of arguments, its negator function returns FALSE when
passed the same arguments, in the same order. In certain cases, the database
server can process a query more efficiently if the sense of the query is
reversed; that is, if the query is, “Is x greater than y?” instead of, “Is y less
than or equal to x?”

The NEGATOR modifier of the CREATE FUNCTION statement names a
companion function, a negator function, to the current function. When you
provide a negator function, the optimizer can use a negator function instead
of the function you specify when it is more efficient to do so. If a function has
a negator function, any user who executes the function must have the
Execute privilege on both the function and its negator. In addition, a function
must have the same owner as its negator function.
13-16 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Using a Virtual-Processor Class
You can write negator functions in SPL, C, or Java. The following example
shows CREATE FUNCTION statements that specify negator functions:

CREATE ROW TYPE complex(real FLOAT, imag FLOAT);

CREATE FUNCTION equal (c1 complex, c2 complex)
RETURNING BOOLEAN WITH (NEGATOR = notequal)
DEFINE a BOOLEAN;
IF (c1.real = c2.real) AND (c1.imag = c2.imag) THEN

LET a = 't';
ELSE

LET a = 'f';
END IF;
RETURN a;

END FUNCTION;

CREATE FUNCTION notequal (c1 complex, c2 complex)
RETURNING BOOLEAN WITH (NEGATOR = equal)
DEFINE a BOOLEAN;
IF (c1.real != c2.real) OR (c1.imag != c2.imag) THEN

LET a = 't';
ELSE

LET a = 'f';
END IF;
RETURN a;

END FUNCTION;

Using a Virtual-Processor Class
A virtual process is a process that the database server uses to execute queries
and perform other tasks, such as disk I/O and network management. A small
number of virtual processors (VPs) can carry out tasks on behalf of many
client applications because the database server breaks the client-application
requests into pieces called threads. The VP can schedule the individual
threads internally for processing. Therefore, VPs are multithreaded processes
because they can run multiple concurrent threads.

The database server implements its own threads to schedule client-appli-
cation requests. These threads are not the same as operating-system threads,
which multithreaded operating systems provide.
Improving UDR Performance 13-17

Choosing a Virtual-Processor Class
Virtual processors are grouped into virtual-processor classes, or VP classes.
All VPs in a particular VP class handle the same type of processing. The
database server supports the following VP classes.

For general information about virtual processors, see the Administrator’s
Guide.

Choosing a Virtual-Processor Class
The database server supports the following classes of virtual processors for
the execution of a UDR.

The database server defines the CPU VP and the JVP classes.

Virtual-Processor Class Description

CPU Central processing (the primary VP class, which controls
client-application requests)

AIO Asynchronous disk I/O

SHM Shared-memory network communication

JVP Special VP class for execution of Java UDRs

User-defined Special VP classes for additional types of processing

Virtual-Processor Class Description

CPU VP Required VP for execution of SPL routines

Default VP for execution of C UDRs. A UDR must be well
behaved to run in the CPU VP.

User-defined VP VP for execution of C UDR that has some ill-behaved
characteristics

JVP VP for execution of Java UDR

This VP class contains the Java Virtual Machine (Java VM).
13-18 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Choosing a Virtual-Processor Class
CPU Virtual-Processor Class

The CPU virtual-processor class is the primary VP class of the database server.
It runs the following kinds of threads:

� All session threads

Session threads process requests from the SQL client applications.

� Some internal threads

Internal threads perform services internal to the database server.

The CPU VP class is the default VP class for a UDR. You do not need to specify
the CLASS routine modifier in the CREATE FUNCTION or CREATE
PROCEDURE statement to have the UDR execute in the CPU VP class.

SPL routines must always run in the CPU VP. Therefore, you do not need to
specify the CLASS routine modifier for an SPL routine. The following CREATE
FUNCTION statement registers the getTotal() SPL routine, which runs in the
CPU VP:

CREATE FUNCTION getTotal(order_num, state_code)
RETURNS MONEY

...
END FUNCTION

You cannot run an SPL routine in a user-defined VP. ♦

By default, a C UDR runs in the CPU VP class. Generally, UDRs perform best
in the CPU VP class because threads do not have to migrate among operating-
system processes during query execution. However, to run in the CPU VP, the
C UDR must be well behaved; that is, it must adhere to the following
programming requirements:

� Preserves concurrency of the CPU VP:

❑ Yields the CPU VP for intense calculations

❑ Does not perform blocking operating-system calls

� Is thread safe:

❑ Does not modify static or global data

❑ Does not allocate local resources

❑ Does not modify the global VP state

� Does not make unsafe operating-system calls

SPL

C

Improving UDR Performance 13-19

Using Virtual Processors with UDRs Written in C
Important: Use the CPU VP with caution. If a UDR contains errors or does not
adhere to these guidelines, this routine might affect the normal processing of other
user queries.

You can relax some of these programming requirements if you run your C
UDR in a user-defined VP class. For more information, see “User-Defined
Virtual-Processor Class” on page 13-20. ♦

User-Defined Virtual-Processor Class

For routines written in C, you can designate a user-defined class of virtual
processors, called user-defined VPs, to run the routine.

Use of user-defined VPs can result in lower performance because queries
normally execute in the CPU VP, and the query thread must migrate to the
user-defined VP to evaluate external routines.

JVM Virtual-Processor Class

Java routines always run in a Java VP. When you register a Java, you can
specify the following CLASS routine modifier for legibility, but it is not
required:

CLASS = jvp

Using Virtual Processors with UDRs Written in C
To run in the CPU VP class, a C UDR must be well behaved; that is, it must
adhere to special programming requirements. Running in a user-defined VP
relaxes some, but not all, of the programming requirements of a well-
behaved routine. For example, these routines can issue direct file-system calls
that block further processing by the virtual processor until the I/O is
complete. Because virtual processors are not CPU virtual processors,
however, the normal processing of user queries is not affected. However, they
still cannot perform local resource allocations because they might migrate
among the VPs.

Tip: The DataBlade Developers corner of the IBM Informix Developer Zone
(www.ibm.com/software/data/developer/informix) has a detailed article about data
safety when using operating-system functions with user-defined VPs.

C

Java

C

13-20 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Using Virtual Processors with UDRs Written in C
To assign a C UDR to a user-defined VP class

1. When you register an external function or procedure, assign it to a
class of virtual processors with the CLASS routine modifier of the
CREATE FUNCTION or CREATE PROCEDURE statement.

The CLASS routine modifier specifies the virtual-processor class with
the following syntax:

CLASS = vpclass_name

In this syntax, vpclass_name is the name of the user-defined VP class
that you have configured in the database server. The class name is
not case sensitive.

2. Configure new user-defined virtual-processor classes in the
ONCONFIG file with the VPCLASS configuration parameter.

The following sample ONCONFIG entry creates the user-defined VP
class newvp:

VPCLASS newvp,num=3 # New VP class for testing

The num option specifies the number of virtual processors that the
database server starts. For the newvp virtual-processor class, the
database server initially starts three virtual processors.

The VP class need not exist when the routine is registered. However, when
you execute the routine, the class must exist and have virtual processors
assigned to it. If the class does not have any virtual processors, you receive
an SQL error.

For more information on how to choose a virtual-processor class for a C UDR,
see the IBM Informix DataBlade API Programmer’s Guide. For information on the
VPCLASS configuration parameter, see the Administrator’s Reference.
Improving UDR Performance 13-21

Managing Virtual Processors
Managing Virtual Processors
You can use the onmode and onstat utilities to manage virtual processors.
For additional information about onmode and onstat, refer to the Adminis-
trator’s Reference.

Adding and Dropping Virtual Processors

You can add or drop virtual processors in a user-defined VP class or in the
CPU VP class while the database server is online. Use onmode -p to add
virtual processors to the class. For example, the following command adds
two virtual processors to the newvp class:

onmode -p +2 newvp

Monitoring Virtual-Processor Classes

You can monitor VPs with the onstat utility. The -g glo option prints infor-
mation about global multithreading such as CPU use of virtual processors
and total number of sessions. A user-defined VP class appears in the
onstat -g glo output as a new process.

Parallel UDRs
The parallel database query (PDQ) feature executes a single query with
multiple threads in parallel. Another feature, table fragmentation, allows you
to store the parts of a table on different disks. PDQ delivers maximum perfor-
mance benefits when the data that is being queried is in fragmented tables.

PDQ features allow the database server to distribute the work for one aspect
of an SQL statement among several processors. For example, if an SQL
statement requires a scan of several parts of a table that reside on different
disks, multiple scans can occur simultaneously.
13-22 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Executing UDRs in Parallel
A PDQ is a query that the database server processes with PDQ techniques
when the optimizer chooses parallel execution. When the database server
processes a query with PDQ, it first divides the query into subplans. The
database server then allocates the subplans to a number of threads that
process the subplans in parallel. Because each subplan represents a smaller
amount of processing time when compared to the original query and because
each subplan is processed simultaneously with all other subplans, the
database server can drastically reduce the time that is required to process the
query.

For more information on the PDQ feature, refer to the Administrator’s Guide.
For more information on the performance implications of PDQ, refer to the
Performance Guide.

Executing UDRs in Parallel
The database server can execute the following UDRs in parallel if they are
part of a PDQ and PDQPRIORITY is turned on:

� C UDRs that call only DataBlade API functions that are PDQ thread-
safe can execute in parallel.

� Java UDRs that call only DataBlade API functions that are PDQ
thread-safe can execute in parallel.

For more information, refer to “Writing PDQ Thread-Safe UDRs” on
page 13-31.

� Built-in function UDR

Examples of built-in function UDRs include overloaded operators for
UDTs, such as the following operators that are used for a generic B-
tree index:

❑ lessthan (<)

❑ lessthanorequal (<=)

❑ equal (=)

❑ greaterthanorequal (>=)

❑ greaterthan (>)

UDRs can execute in parallel in the following situations if they are part of a
PDQ and PDQPRIORITY is turned on:
Improving UDR Performance 13-23

Executing UDRs in Parallel
� A UDR used as an expression in a query

� DataBlade API FastPath executing a UDR

� Implicit UDR execution when evaluating a user-defined aggregate on
a column of a user-defined type

� Implicit UDR execution for overloading of comparison operator

� Assign UDR executed implicitly

� Comparison UDR execution for sort

� A UDR that a generic B-tree index executes

A UDR cannot execute the following SQL statements in parallel:

� Singleton execution with the EXECUTE FUNCTION statement in
either DB-Access or ESQL/C

� INSERT INTO tablename EXECUTE udr()

� FOREACH EXECUTE udr() END FOREACH

� OPEN CURSOR EXECUTE udr()

� Remote UDR execution

Execution of a UDR in a Query Expression

One way to execute UDRs is as an expression in a query. You can take
advantage of parallel execution if the UDR is in an expression in one of the
following parts of a query:

� WHERE clause

� SELECT list

� GROUP BY list

� Overloaded comparison operator

� User-defined aggregate

� HAVING clause

� Select list for parallel insertion statement
13-24 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Executing UDRs in Parallel
� Generic B-tree index scan on multiple index fragments provided that
the compare function used in the B-tree index scan is parallelizable

� Virtual Table Interface (VTI) or Virtual Index Interface (VII)
fragments, provided that all am_purpose functions for the VTI or VII
are all parallelizable

Parallel UDR in WHERE Clause

The following example is a typical PDQ that contains two UDRs:

SELECT c_udr1(tabid) FROM tab
WHERE tabname = c_udr2(3) AND

tabid > 100;

If the table tab has multiple fragments and the optimizer decides to run the
select statement in parallel, the following operations can execute in parallel:

� The scan of table tab is performed by multiple scan threads in
parallel. Each scan thread fetches a row from a fragment of tab.

� Each scan thread also evaluates the WHERE condition in parallel.
Each scan thread executes the UDR c_udr2() in parallel.

� Each scan thread also executes the UDR c_udr1() in the select list in
parallel.

Parallel UDR in a Join

The following sample query contains a join between table t1 and t2:

SELECT t1.x, t2.y
FROM t1, t2
WHERE t1.x = t2.y AND

c_udr(t1.z, t2.z, 3) > 5 AND
c_udr1(t1.u) > 4 AND
c_udr2(t2.u) < 5;
Improving UDR Performance 13-25

Executing UDRs in Parallel
If the tables t1 and t2 have multiple fragments and the optimizer decides to
run the select statement in parallel, the following operations can execute in
parallel:

� The scan of table t1 is performed by multiple scan threads in parallel.
Each scan thread fetches a row from a fragment of t1 and executes the
UDR c_udr1() in parallel.

� The scan of table t2 is performed by multiple scan threads in parallel.
Each scan thread fetches a row from a fragment of t2 and executes the
UDR c_udr2() in parallel.

� The join of tables t1 and t2 is performed by multiple join threads in
parallel. Each join thread fetches a row from a fragment of t2 and
executes the UDR c_udr() in parallel.

Parallel UDR in the Select List

If you use a UDR in the select list and do not specify a WHERE clause, the UDR
can execute in parallel if any of the following conditions are true:

� The GROUP BY clause is specified in the query.

� The ORDER BY clause is specified in the query.

� An aggregate such as MIN, MAX, AVG is specified in the query.

� The query is a parallel INSERT...SELECT statement.

� The query is a SELECT...INTO statement.

The next section shows a sample query with a UDR in the select list and no
WHERE clause.

Parallel UDR with GROUP BY

The following sample query contains a GROUP BY clause. This sample query
has a UDR in the select list and no WHERE clause.

SELECT c_udr1(tabid), COUNT(*)
FROM t1 GROUP BY 1;
13-26 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Executing UDRs in Parallel
If the optimizer decides to run the SELECT statement in parallel, the following
operations can execute in parallel:

� The scan of table t1 is performed by multiple scan threads in parallel.
The table t1 has multiple fragments. Each scan thread fetches a row
from a fragment of t1.

� Multiple threads execute the UDR c_udr2() in parallel to process the
GROUP BY clause. If table t1 is unfragmented, the GROUP BY
operation can still execute in parallel even though the scan operation
does not execute in parallel.

Parallel UDR in Select List for Parallel Insert

The following sample query is a parallel INSERT statement. Suppose you
create an opaque data type circle, create a table cir_t that defines a column of
type circle, create a UDR area, and then execute the following sample query:

INSERT INTO cirt_t_target
SELECT circle, area(circle)

FROM cir_t
WHERE circle > "(6,2,4)";

In this query, the following operations can execute in parallel:

� The expression circle > “(6,2,4)” in the WHERE clause

If the table cir_t is fragmented, multiple scans of the table can execute
in parallel, one scan on each fragment. Then multiple > comparison
operators can execute in parallel, one operator per fragment.

� The UDR area(circle) in the select list

If the table cir_t has multiple fragments, multiple area UDRs can exe-
cute in parallel, one UDR on each fragment.

� The INSERT into cir_t_target

If the table cir_t_target has multiple fragments, multiple INSERT
statements can execute in parallel, one on each fragment.
Improving UDR Performance 13-27

Executing UDRs in Parallel
FastPath Execution of a UDR in a DataBlade API

A C UDR can use the following DataBlade API calls to invoke a UDR directly:

� mi_routine_get()

� mi_routine_exec()

DataBlade API FastPath execution of a UDR executes in parallel as long as the
UDR is parallelizable and calls only DataBlade API functions that are PDQ
thread safe.

Implicit UDR Execution of a User-Defined Aggregate

A user-defined aggregate (UDA) can execute in parallel as long as the UDR is
parallelizable and calls only DataBlade API functions that are PDQ thread
safe.

For example, suppose you create a UDA named uda and use it in the
following SQL query:

SELECT grp, uda(udt_col) FROM tab GROUP BY grp;

If the data type of column udt_col is a UDT whose aggregation requires a UDR
call, the following operations can execute in parallel:

� Each group thread executes the aggregation UDR uda in parallel.

� If the GROUP BY column grp is a UDT column, the equal() UDR
function on the UDT column executes in parallel by the scan thread
for the hash repartitioning on the GROUP BY keys.

� If the table tab is fragmented, multiple scan threads can read the
table in parallel.

C

13-28 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Executing UDRs in Parallel
Implicit UDR Execution of a Comparison Operator

When you create opaque data types, you can create overloaded routines for
comparison operators such as equal (=) or greaterthanorequal (>=).

The following sample query selects rows using a filter on the UDT column:

SELECT * FROM tab WHERE udt_col = "xyz";

The database server converts the comparison operator = to call the equal
UDR on the udt_col column. If the table tab is fragmented, the following
operations can execute in parallel:

� Multiple scans of the table can execute in parallel, one scan on each
fragment.

� Multiple = comparison operators can execute in parallel, one
operator per fragment of table tab.

Implicit Execution of an Assign UDR

When you create opaque data types, you create the support function assign()
to insert, update, or load the UDT data in the table.

The following sample SQL statement inserts data in a UDT column:

INSERT INTO tab (udtcol) SELECT udtcol FROM t1;

If the table tab has multiple fragments and the udtcol data type has an
assign() function, each insert thread that inserts a fragment of table tab
executes the assign() UDR in parallel.

The support function destroy() for a UDT does not execute in parallel because
the destroy() UDR is called during a DELETE statement that is not executed in
parallel.
Improving UDR Performance 13-29

Enabling Parallel UDRs
Execution of a Comparison UDR for Sort

When you create opaque data types, you create the support function
compare() to sort the UDT data during ORDER BY, UNIQUE, DISTINCT, and
UNION clauses and CREATE INDEX operations.

SELECT udtcol FROM t ORDER BY 1;

If the udtcol column has a comparison UDR that is parallelizable and the
client enables parallel sort, each sort thread participating in the parallel sort
for the ORDER BY clause executes the comparison UDR in parallel.

Execution of a UDR by an Index on a UDT column

The database server supports indexing on a UDT column. Therefore, index
build, search, and recovery require execution of UDRs that operate on UDT
columns.

Currently, the database server does not support fragmentation by expression
on UDT columns. As a result, the index built on a UDT column by the
database server is not fragmented because index fragmentation makes sense
only if the fragmentation is based on expression.

Enabling Parallel UDRs
By default, a UDR does not execute in parallel. To enable parallel execution of
UDRs, you must take the following actions:

� Specify the PARALLELIZABLE modifier in the CREATE FUNCTION or
ALTER FUNCTION statement.

� Ensure that the UDR does not call non-PDQ thread-safe functions.

� Turn on PDQ.

� Use the UDR in a PDQ.
13-30 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Enabling Parallel UDRs
Specifying the PARALLELIZABLE Modifier

When you register a UDR, you must specify the PARALLELIZABLE modifier
in the CREATE FUNCTION or ALTER FUNCTION statement. However, an SPL
routine is not parallelizable even if it is declared as parallelizable.

Writing PDQ Thread-Safe UDRs

External-language UDRs can execute in parallel as long as they are PDQ
thread-safe DataBlade API functions.

The following DataBlade API function categories are PDQ thread safe:

� Data handling

Exception in this category: collection manipulation functions
(mi_collection_*) are not PDQ thread safe.

� Session, thread, and transaction management

� Function execution

� Memory management

� Exception handling

� Callbacks

� Miscellaneous

If an external-language UDR calls a non-PDQ thread-safe function that was
created with the PARALLELIZABLE modifier, the database server aborts the
query and issues the following error message:

-7422 Can not issue DAPI function %s in a secondary
PDQ thread.

The database server substitutes the name of the DataBlade API function for
the %s string in this error message.
Improving UDR Performance 13-31

Enabling Parallel UDRs
Turning On PDQ and Reviewing Other Configuration Parameters

Parallel execution of queries is turned off by default. To turn on parallel
execution, use one of the following methods:

� Set the environment variable PDQPRIORITY greater than 0.

� Execute the SQL statement SET PDQPRIORITY.

The PDQ configuration parameters have the same effect on parallel UDRs as
on regular PDQ queries. For example, the DS_MAX_SCANS parameter
specifies the maximum number of scan threads that the database server can
execute concurrently.

For information on how to tune the PDQ configuration parameters, refer to
the Performance Guide.

Step-By-Step Procedure to Enable Parallel UDRs

The following procedure includes examples for the tasks described in the
previous sections.

To enable parallel UDRs

1. Create a fragmented table and load data into it.

For example, the following SQL statement creates a fragmented table:
CREATE TABLE natural_number (x integer)

FRAGMENT BY round robin
IN dbspace1, dbspace2;

2. Write a function that is PDQ thread safe.

For example, the following C prototype shows a function that takes
an integer and determines if it is a prime number:

mi_boolean is_prime_number (x mi_integer);

♦
For more information on how to write PDQ thread-safe functions,
refer to “Writing PDQ Thread-Safe UDRs” on page 13-31.

C

13-32 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Setting the Number of Virtual Processors
3. Register the function as an external UDR and specify the
PARALLELIZABLE keyword.

For example, the following SQL statement registers the
is_prime_number UDR:

CREATE FUNCTION is_prime_number (x integer)
RETURNS boolean
WITH (parallelizable)
EXTERNAL NAME "$USERFUNCDIR/math.udr"
LANGUAGE C;

4. Turn on PDQ and execute the UDR in a query.

The following sample SQL statements turn on PDQ and execute the
UDR in a query:

SET PDQPRIORITY 100;
SELECT x FROM natural_number

WHERE is_prime_number(x)
ORDER BY x;

The database server scans each fragment of the table
natural_number with multiple scan threads executing in parallel.
Each scan thread executes the UDR is_prime_number() in parallel.

Setting the Number of Virtual Processors
The dynamic, multithreaded nature of a virtual processor allows it to
perform parallel processing. Virtual processors of the CPU class can run
multiple session threads, working in parallel, for an SQL statement contained
within a UDR.

You can increase the number of CPU virtual processors with the VPCLASS
configuration parameter in the ONCONFIG file. For example, the following
parameter specifies that the database server should start four virtual
processors for the cpu class:

VPCLASS cpu,num=4

Tip: Debugging is more difficult when you have more than one CPU because threads
can migrate between processes. The database server communication mechanism uses
the SIGUSR1 signal. When you are debugging, you must avoid SIGUSR1 to prevent
database server processes from hanging.
Improving UDR Performance 13-33

Monitoring Parallel UDRs
On Windows, all virtual processors share the same process space. Therefore,
you do not need to start multiple instances of Java VPs to execute Java UDRs
in parallel. On UNIX, the database server must have multiple instances of
JVPs to parallelize Java UDR calls. Because the Java Virtual Machines that are
embedded in different VPs do not share states, you cannot store global states
with Java class variables. All global states must be stored in the database to
be consistent. ♦

Monitoring Parallel UDRs
When PDQ is turned on, the SET EXPLAIN output shows whether the
optimizer chose to execute a query in parallel. If the optimizer chose parallel
scans, the output shows PARALLEL. If PDQ is turned off, the output shows
SERIAL.

You can monitor the parallel execution of PDQs and parallel UDRs with the
following options of the onstat utility:

� onstat -g ath

This option shows the threads currently executing for each session.
Each session has a primary (sqlexec) thread. If the query is executing
in parallel, onstat -g ath shows secondary threads, such as scan and
sort.

� onstat -g mem

This option shows pool sizes allocated to sessions. This output can
provide hints about how much memory the UDR uses.

� onstat -g ses

This option shows the number of threads allocated and the amount
of memory used for each session. This output can also provide hints
about how much memory the UDR uses.

For more information on interpreting the output of these onstat options, refer
to the Performance Guide.

Java
13-34 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Memory Considerations
Memory Considerations
As you create a UDR, consider ways to minimize its memory usage. This
section describes the following memory considerations for UDRs:

� Memory durations for external routines

� Stack-size considerations for external routines

� The virtual-memory cache for SPL and external routines

Memory Durations for C UDRs
Because a C UDR executes in the memory space of the database server, its
dynamic memory allocations can increase the memory usage of the database
server. For this reason, it is very important that a UDR release its dynamically
allocated memory as soon as it no longer needs to access this memory.

To help ensure that unneeded memory is freed, the database server associates
a memory duration with memory allocation made from its shared memory.
The database server automatically reclaims shared memory based on its
memory duration.

To provide a duration that is safe for return values, use a memory duration
that lasts the life of an SQL statement. It is recommended that you use the
following memory duration instead of the PER_STATEMENT duration:

� PER_STMT_EXEC

The PER_STMT_EXEC memory duration helps improve overall data-
base server performance because it does not hold memory as long as
the PER_STATEMENT duration.

� PER_STMT_PREP

Use the PER_STMT_PREP memory duration when you want memory
to be held for the life of a prepared statement.

For more information on these memory durations and using onstat utility
options to monitor memory usage of C UDRs, refer to the IBM Informix
DataBlade API Programmer’s Guide.

C

Improving UDR Performance 13-35

Stack-Size Considerations
Stack-Size Considerations
The database server allocates local storage in external routines from shared
memory. This local storage is called the thread stack. The stack has a fixed
length. Therefore, an external routine must not consume excessive stack
space, either through large local-variable declarations or through excessively
long call chains or recursion.

Warning: An external routine that overruns the shared-memory region allocated for
its stack overwrites adjacent shared memory, with unpredictable and probably
undesirable results.

In addition, any nonstack storage that a thread allocates must be in shared
memory. Otherwise, the memory is not visible when the thread moves from
one VP to another.

The routine manager of the database server guarantees that a large stack
region is available to a thread before it calls a user-defined function, so stack
exhaustion is generally not a problem.

For C UDRs, you can dynamically allocate stack space. In addition, the
DataBlade API provides memory-management routines that allocate space
from shared memory rather than from process-private memory. If you use
the DataBlade API, memory visibility is not a problem. ♦

By default, the routine manager allocates a stack size for a UDR with the size
that the STACKSIZE configuration parameter specifies. If STACKSIZE is not set,
the routine manager uses a default stack size of 32 kilobytes. To determine
how much stack space a UDR requires, monitor the UDR from the system
prompt with the following onstat utility:

onstat -g sts

Use the onstat -g sts option to obtain information on stack-size use for each
thread. The output includes the following fields:

� The thread ID

� The maximum stack size configured for each thread

� The maximum stack size that the thread uses

EXT

C

13-36 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Virtual-Memory Cache for Routines
You can use the output of the threads that belong to user sessions to
determine if you need to alter the maximum stack size configured for a user
session. To alter the maximum stack size for all user sessions, change the
value of the STACKSIZE configuration parameter. To alter the maximum stack
size for a single user session, change the value of the INFORMIXSTACKSIZE
environment variable. For more information, see the configuration
parameter STAGEBLOB in the Administrator’s Reference and the environment
variable INFORMIXSTACKSIZE in the IBM Informix Guide to SQL: Reference.

For more information on the onstat utility and the -g sts option, see the
Administrator’s Reference.

If the stack size is not sufficient for your UDR, you can specify its stack size
with the STACK routine modifier in the WITH clause of the CREATE
FUNCTION or CREATE PROCEDURE statement. When you specify a stack size
for a UDR, the database server allocates the specified amount of memory for
every routine invocation of the routine. If a routine does not need a larger
stack, do not specify a stack size.

Virtual-Memory Cache for Routines
The database server caches the following items in the virtual portion of the
database server shared memory:

� For SPL routines and other UDRs, information in the sysprocedures
system catalog table

� For SPL routines only, the executable form of the routine in the UDR
cache

The sysprocedures System Catalog Table

When any session requires the use of an SPL routine for the first time, the
database server reads the sysprocedures system catalog tables and stores the
information in the buffer pool in shared memory. The database server uses
this information in shared memory if it is present for subsequent sessions that
invoke the UDR.

The database server keeps the sysprocedures system catalog information in
the buffer pool on a most recently used basis.
Improving UDR Performance 13-37

Virtual-Memory Cache for Routines
The sysprocedures table includes the following information:

� Name of routine

� Compiled size (in bytes) of return values

� Compiled size (in bytes) of p-code for the routine

� Number of arguments

� Data types of parameters

� Type of routine (function or procedure)

� Location of external routine

� Virtual-processor class in which the routine executes

UDR Cache

When any session requires the use of an SPL routine for the first time, the
database server reads the system catalog tables to retrieve the code for the
SPL routine. The database server converts the p-code to an executable form.
The database server caches this executable form of the SPL routine in the
virtual portion of shared memory.

The database server keeps the executable format of an SPL routine in the UDR
cache on a most recently used basis.

You can monitor the UDR cache with the -g prc option of the onstat utility. For
more information on onstat -g prc and adjusting the size of the UDR cache
with the PC_POOLSIZE configuration parameter, refer to the Performance
Guide.
13-38 IBM Informix User-Defined Routines and Data Types Developer’s Guide

I/O Considerations
I/O Considerations
The database server stores UDRs and triggers in the following system catalog
tables:

� sysprocbody

� sysprocedures

� sysprocplan

� sysprocauth

� systrigbody

� systriggers

These system catalog tables can grow large with heavy use of UDRs in a
database. You can tune the key system catalog tables as you would any
heavily utilized data tables. To improve performance, use the following
methods:

� Isolate system catalog tables.

� Balance the I/O activities.

Isolating System Catalog Tables
If your database server has multiple physical disks available, you can isolate
your system catalog tables on a single device and place the tables for your
application in a separate dbspace that resides on a different device. This
separation reduces contention for the same device.
Improving UDR Performance 13-39

Balancing the I/O Activities
Balancing the I/O Activities
If you have a large number of UDRs that span multiple extents, you can
spread the system catalog tables across separate physical devices (chunks)
within the same dbspace to balance the I/O activities.

To spread user-defined routine catalogs across devices

1. Create the dbspace for the UDR system catalog tables with several
chunks. Create each chunk for the dbspace on a separate disk.

2. Use the CREATE DATABASE statement with the IN dbspace clause to
isolate the system catalog tables in their own dbspace.

3. Load approximately half of your UDRs with the CREATE
PROCEDURE or CREATE FUNCTION statement.

4. Create a temporary table in the dbspace with an extent size large
enough to use the remainder of the disk space in the first chunk.

5. Load the remainder of the UDRs. The last half of the routines should
spill into the second chunk.

6. Drop the temporary table.
13-40 IBM Informix User-Defined Routines and Data Types Developer’s Guide

A
Appendix
Notices
IBM may not offer the products, services, or features discussed
in this document in all countries. Consult your local IBM repre-
sentative for information on the products and services currently
available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does
not infringe on any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and
verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equiv-
alent agreement between us.
A-2 IBM Informix User-Defined Routines and Data Types Developer’s Guide

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for
the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs. © Copyright IBM Corp. (enter the
year or years). All rights reserved.

If you are viewing this information softcopy, the photographs and color illus-
trations may not appear.
Notices A-3

Trademarks
Trademarks
AIX; DB2; DB2 Universal Database; Distributed Relational Database
Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix;
C-ISAM; Foundation.2000TM; IBM Informix 4GL; IBM Informix

DataBlade Module; Client SDKTM; CloudscapeTM; CloudsyncTM;
IBM Informix Connect; IBM Informix Driver for JDBC; Dynamic
ConnectTM; IBM Informix Dynamic Scalable ArchitectureTM (DSA);
IBM Informix Dynamic ServerTM; IBM Informix Enterprise Gateway
Manager (Enterprise Gateway Manager); IBM Informix Extended Parallel
ServerTM; i.Financial ServicesTM; J/FoundationTM; MaxConnectTM; Object
TranslatorTM; Red Brick Decision ServerTM; IBM Informix SE;
IBM Informix SQL; InformiXMLTM; RedBack; SystemBuilderTM; U2TM;
UniData; UniVerse; wintegrate are trademarks or registered trademarks
of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Windows, Windows NT, and Excel are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.
A-4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
A
Active set 4-11
Aggregate function

built-in 2-11, 8-3
definition 5-14
dropping 8-19
extending built-in functions 8-4
for an opaque type 9-6
implicit execution 13-24
overloading 6-8
overloading operators 8-4
setup argument 8-9

Allocating memory, iterator
function 4-14

ALTER FUNCTION
statement 3-15, 4-25, 12-11

ALTER PROCEDURE
statement 3-15, 4-25, 12-11

ALTER ROUTINE statement 3-15,
4-25, 12-11

ALTER TABLE statement 9-26
ANSI compliance

icon Intro-9
level Intro-13
routine signature 3-12
user-defined types 5-11

Argument. See Routine argument.
Arithmetic operator

description 6-4
for an opaque type 9-19

assign() support function 10-22,
10-27

description of 10-23

B
BETWEEN operator, with

compare() 10-28
B-tree. See Generic B-tree.
Built-in aggregate 2-11, 8-3
Built-in cast 7-3, 7-8, 7-12
Built-in data type 5-12

description 5-6
routine resolution with 3-19

Built-in function
definition 5-14, 6-7
for an opaque type 9-6, 9-19
overloadable 3-16
that you can overload 6-7
that you cannot overload 6-8

Bulk copies 10-17

C
C iterator function example 4-16
CALL statement 3-6, 3-8
CallableStatement interface 4-9
Cast

built-in 7-3, 7-8, 7-12
by a support function 9-14, 9-27
CAST AS keywords 7-6, 7-7
definition 7-3
dropping 7-12
explicit 7-7
function, end-user routines 9-7
function, user-defined 7-8
implicit 7-6
not allowed 7-5
operator 7-6, 7-7
routine resolution with 3-18

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
straight 7-8
types 7-3
See also User-defined cast.

CAST AS keywords 7-6, 7-7
Cast (::) operator 7-6, 7-7
CLASS routine modifier 4-29, 4-30,

4-32, 13-19, 13-21
See also Virtual processor classes.
See also VPCLASS configuration

parameter.
CLIENT_LOCALE environment

variable 10-29
Code set, ISO 8859-1 Intro-4
Code, sample, conventions

for Intro-9
Coding standards 4-21
Collation order 10-29
Collection data type

aggregates 8-7
casts 7-5
definition 5-9
in type hierarchy 5-5
routine resolution 3-19, 3-26

Columns, virtual 4-14
Comment icons Intro-7
compare() function 6-7
compare() support function

description of 11-7
sorting data 10-28
uses 9-22
with BETWEEN operator 9-20

Complex data type 5-9
Compliance

icons Intro-9
with industry standards Intro-13

concat() function 6-5
Configuration parameter

STACKSIZE 13-36
VPCLASS 13-21, 13-33

Constraint, on opaque data
type 9-21

Contact information Intro-13
Conventions,

documentation Intro-6
Copying data 10-17
Cost function 2-16
COSTFUNC routine modifier 4-30
CPU virtual processor (CPU VP)

adding 13-22

definition 13-19
dropping 13-22

CREATE CAST statement
EXPLICIT keyword 7-7
IMPLICIT keyword 7-6
privileges 9-17
using 9-15
WITH clause 7-9

CREATE DISTINCT TYPE
statement 5-12

CREATE FUNCTION statement
assigning specific name 3-14
choosing a user-defined VP 13-21
creating routine signature 3-13
DBA keyword 4-24, 12-7
privileges 10-7
privileges required 4-24
registering a function 3-13, 4-23,

4-26, 4-28
registering an external

function 4-29
registering an iterator

function 4-12
registering an SPL function 4-26
registering arguments 4-32
registering return value 4-32
RETURNING clause 4-29
SPECIFIC keyword 3-14
specifying stack size 13-37
using 5-13
WITH clause 4-27, 4-30

CREATE INDEX statement
built-in secondary-access

method 11-4
compare() function 10-28
default operator class 11-6
USING clause 11-6

CREATE OPAQUE TYPE statement
ALIGNMENT modifier 9-11
CANNOTHASH modifier 9-22
INTERNALLENGTH

keyword 9-9
MAXLEN modifier 9-10, 9-12
registering the opaque type 9-13

CREATE OPCLASS
statement 11-14

CREATE PROCEDURE statement
assigning specific name 3-14
choosing a user-defined VP 13-21

creating routine signature 3-13
DBA keyword 4-24, 12-7
privileges required 4-24
registering a procedure 4-28
registering a user-defined

procedure 3-13, 4-23
registering arguments 4-32
registering return value 4-32
SPECIFIC keyword 3-14
specifying stack size 13-37
WITH clause 4-27, 4-30

CREATE TABLE statement 9-17
Cursor function 4-11

D
Data type

built-in 5-6
collection. See Collection data

type.
complex 5-9
DataBlade module 5-13
definition 5-4
named row type. See Named row

type.
opaque. See Opaque data type.

Database-level privilege 4-24
DataBlade API data type

mi_float 9-9
mi_integer 9-9
mi_lvarchar 10-8
mi_real 9-12
mi_unsigned_integer 9-11
mi_unsigned_smallint 9-11

DataBlade API memory
management 13-36

DataBlade module data types 5-13
DBA privilege 4-24, 12-6
DB_LOCALE environment

variable 10-29
deepcopy() support function 10-22,

10-27
Default locale Intro-4
Demonstration databases Intro-4
Dependencies, software Intro-4
destroy() support function 10-22,

10-24, 10-27
smart large objects 9-5
2 IBM Informix User-Defined Routines and Data Types Developer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Distinct data type
casts for 7-4, 7-8
description of 3-24, 5-11
routine resolution with 3-14

divide() function 6-4
Documentation notes Intro-11
Documentation notes, program

item Intro-12
Documentation, types of Intro-10

documentation notes Intro-11
machine notes Intro-11
release notes Intro-11

DROP AGGREGATE
statement 8-19

DROP CAST statement 7-12, 9-27
DROP FUNCTION statement 3-15,

4-25, 9-27, 12-9, 12-11
DROP OPCLASS statement 11-20
DROP PROCEDURE

statement 3-15, 4-25, 12-11
DROP ROUTINE statement 3-15,

4-25, 9-27, 12-9, 12-11
DROP TYPE statement 9-27

E
End-user routine

definition of 5-14
for an opaque data type 9-7

Environment variable,
NODEFDAC 12-4

en_us.8859-1 locale Intro-4
equal() function 6-5, 9-20, 9-21,

11-7, 13-23, 13-29
EVP. See User-defined virtual

processor.
Example, using CLASS 4-29
EXECUTE FUNCTION statement

invoking a function 3-4
OUT parameters with 4-8
SPL statements 3-8

Execute privilege 12-3
DBA keyword 12-6
granting 12-4
on a routine 4-25

EXECUTE PROCEDURE statement
invoking a user-defined

procedure 3-4

SPL statements 3-8
Execution plan 3-8, 4-26, 13-4
EXP VP. See User-defined virtual

processor.
Explicit cast 7-7
Export support function

as cast function 9-15
description of 10-17, 10-19
example 10-19
for smart large objects 10-27
lotofile() 10-18
parameter type 10-6
return type 10-6
summary of 10-4

Exportbinary support function
as cast function 9-15
description of 10-20, 10-21
example 10-21
for smart large objects 10-27
parameter type 10-6
return type 10-6
summary of 10-4

expression return name 4-10
Extended data type 9-14
Extended identifier 9-14
Extensibility enhancements Intro-5
Extension virtual processor. See

User-defined virtual processor.
External files 4-34
External routine

definition of 2-4
description of 2-4
designing 4-3
executing 3-7
registering 4-28
return values 4-6
routine modifiers 4-30
stack usage 13-36

F
Feature icons Intro-8
Features of this product,

new Intro-5
filetoblob() function 10-18
filetoclob() function 10-18
finderr utility Intro-12

FROM clause, iterator
function 4-13

Functional index 11-4
not on smart large object 4-7

G
Generic B-tree

default operator class 11-6, 11-9
extending 11-9, 11-15
new operator class 11-15
strategy functions 11-7

Global Language Support (GLS)
API 10-30
description of Intro-4

GRANT statement
example using signature 3-15,

12-5
example using specific name 3-15
Execute privilege 10-7, 12-4
Resource privilege 9-14, 11-14
Usage privilege 4-25

greaterthan() function 6-5, 11-7,
13-23

greaterthanorequal() function 6-5,
11-7, 13-23, 13-29

H
HANDLESNULLS modifier

C routine
description 4-30

Java routine 4-32
statcollect() function 13-15

Help Intro-10
High-Availability Data Replication

(HDR) 3-9, 4-22, 4-23, 4-34

I
IBM Informix Developers

Zone 10-22
IBM Informix GLS API 10-30
Icons

compliance Intro-9
feature Intro-8
Important Intro-7
Index 3

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
platform Intro-8
product Intro-8
Tip Intro-7
Warning Intro-7

IMPEXP data type
casting from 9-15
casting to 9-15
description of 10-18
return value 10-6

IMPEXPBIN data type
casting 9-15
description of 10-20
return value 10-6

Implicit cast 7-6
Import function

filetoclob(), filetoblob() 10-18
Import support function

as cast function 9-15
description of 10-17, 10-19
for smart large objects 10-27
parameter type 10-6
return type 10-6
summary of 10-4

Important paragraphs, icon
for Intro-7

Importbinary support function
as cast function 9-15
description of 10-20, 10-21
for smart large objects 10-27
parameter type 10-6
return type 10-6
summary of 10-4

IN operator 9-21
IN parameters 4-8
Index

description of 11-4
See also Generic B-tree.
See also R-tree index.
See also Secondary-access method.

Industry standards, compliance
with Intro-13

informix user 4-25
informix user account 3-17
INFORMIXDIR/bin

directory Intro-5
Input support function

as cast function 7-10, 7-11, 9-14
description of 10-9
example 10-11

locale-sensitive data 10-30
parameter type 10-6
return type 10-6
summary of 10-3
tasks 10-10

INTERNAL routine modifier 4-30
ISO 8859-1 code set Intro-4
Iterator function 4-13

active set 4-11
creating 4-11, 4-12
definition of 4-11
invoking 4-12
registering 4-12
writing 2-21

Iterator functions
restrictions 4-15

ITERATOR routine modifier 2-21,
4-12, 4-30, 4-32

J
Java iterator function example 4-18
JDBC CallableStatement

interface 4-9

L
Language

external 2-4, 4-33
SPL 2-4

lessthan() function 6-5, 11-7, 13-23
lessthanorequal() function 6-5,

11-7, 13-23
like() function 6-5
Locale

default Intro-4
en_us.8859-1 Intro-4

lohandles() function 10-26
summary of 10-5

lotofile() function 10-18
LVARCHAR data type

casting 9-14
locale-sensitive data 10-30
parameter to input function 10-6

M
Machine notes Intro-11
Mapping

between SQL and Java 9-12
creating 9-12

matches() function 6-5
Memory

iterator function 4-14
Memory allocation functions 10-22
Memory objects 4-34
Message file for error

messages Intro-12
minus() function 6-4
mi_fp_request() routine 4-12
mi_fp_setisdone() routine 4-12,

4-14
mi_lvarchar data type

definition of 10-8
locale-sensitive data 10-30

mi_real data type 9-12
mi_sendrecv data type

locale-sensitive data 10-31
mi_unsigned_integer data

type 9-11
mi_unsigned_smallint data

type 9-11
Modal routines 4-5
Modifiers. See Routine modifier.
Monitoring stack size 13-36
Multirepresentational data 9-4

definition 9-5
Multirepresentational data type

not hashable 9-22

N
Name space, DataBlade-module

objects 4-21
Named row type

description 5-10
routine-resolution

precedence 3-18
type hierarchy 3-13, 3-22
user-defined cast 7-4

Naming return parameters 4-10
negate() function 6-4
Negator function 2-16, 13-16
4 IBM Informix User-Defined Routines and Data Types Developer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
NEGATOR routine modifier 4-30,
4-32

New features Intro-5
NODEFDAC environment

variable 12-4
Noncursor function 4-11
Nonvariant function 4-7
NOT VARIANT routine

modifier 4-30
notequal() function 6-5
Null value

aggregate initialization 8-8
as wildcard argument 3-27
in statcollect() function 13-14
in support functions 8-12
See also HANDLESNULL

modifier.

O
Online help Intro-10
Online manuals Intro-10
onmode utility 13-22
onstat utility 3-9, 13-22, 13-36
Opaque data type

as parameter 9-12
casts for 7-4
comparing 10-28
constraints on 9-21
definition 1-5
definition of 5-12, 9-3
dropping 9-26
extended identifier 9-14
external representation 10-8
fixed-length 9-4, 9-10
in sysxtdtypeauth table 9-17, 10-7
indexes on 9-23
internal structure 9-4
locale-specific data 10-29
memory alignment of 9-11
pass by value 10-12
privileges 9-26
registering 9-13
structure size 9-9
system catalog table 9-17, 10-7
varying-length 9-10

Operating system (OS)
functions 13-20

Operation
built-in function 6-7
cast function. See Cast.
operator function 6-4

Operator
arithmetic 6-4
definition of 5-14, 6-4
relational 6-5
text 6-5

Operator binding 2-12, 6-4
Operator class

creating 11-14
definition 1-6
definition of 2-13, 11-3, 11-5
dropping 11-20
privileges on 11-14
use for 2-13

Operator function
definition of 5-14, 6-4
opaque data type 9-6, 9-19
relational 6-5, 9-20
text 6-5

Optimization functions 2-16
Optimization level 13-4
OUT parameter 4-8
OUT parameters 4-8
Output support function

as cast function 7-9, 7-11, 9-14
description of 10-11
example 10-12
locale-sensitive data 10-30
parameter type 10-6
return type 10-6
summary of 10-3
tasks 10-12

Overloading routines. See Routine
overloading.

Owner. See Routine owner.

P
Parallel database queries 13-27
Parallel database query (PDQ)

feature 4-15
Parallel UDRs

description 2-16
enabling 13-32
execution of 13-23

GROUP BY 13-27
INSERT 13-27
iterator functions 4-15
joins 13-26
scans 13-25, 13-26
SELECT list 13-26, 13-27
sorts 13-30
when use 13-24

PARALLELIZABLE routine
modifier 4-32

Parameters
OUT 4-8
return 4-10

Parameter. See Routine parameter.
P-code 13-38

definition 4-26
size of 13-38
SPL routine 3-8
See also SPL p-code.

PERCALL_COST routine
modifier 4-31

Persistent external files 4-34
Persistent memory objects 4-34
Platform icons Intro-8
Platform portability 4-21
plus() function 6-4
POINTER data type 4-32
Polymorphism 3-13, 4-4
positive() function 6-4
Pound (#) sign, SLV indicator 4-9
Primary key, using opaque

UDT 9-21
Privilege

database-level 4-24
DBA 4-24, 12-6
Execute 4-25, 12-3
on a support function 10-7
opaque type 9-14, 9-26
operator class 11-14
Resource 4-24
routine-level 4-25, 10-7, 12-3
support function 9-26
type-level 9-17
user-defined routine 4-24

Product icons Intro-8
Program group

Documentation notes Intro-12
Release notes Intro-12
Index 5

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Q
Query optimizer 2-13, 3-7, 13-6
Query parser 3-7, 3-16
Query plan 3-7, 13-3

R
Receive support function

as cast function 9-14
description of 10-14
example 10-15
locale-sensitive data 10-31
parameter type 10-6
return type 10-6

Registering a user-defined routine
privileges 4-24
steps 4-23

Relational operator
description of 6-5
for an opaque type 9-20

Release notes Intro-11
Release notes, program

item Intro-12
Resource privilege 4-24
Restrictions, iterator functions 4-15
Result set, iterator function 4-13
Return parameters

naming 4-10
Return value. See Routine return

value.
RETURN WITH RESUME

statement 4-16
REVOKE statement

Execute privilege 9-26, 12-4
Usage privilege 4-25, 9-26
using specific name 3-15

Routine 1-3
Routine argument

definition 4-5
distinct data type as 3-24
in routine resolution 3-17
in routine-state space 3-10
modal 4-5
named row type as 3-22
not matching parameter data

type 3-23
registering 4-33

wildcard 3-27
Routine identifier, description 10-6
Routine manager

creating a routine sequence 3-9
loading a shared-object file 3-9
managing routine execution 3-11
role of 3-8
stack space and 13-36

Routine modifier
CLASS 4-29, 4-30, 4-32, 13-19,

13-21
COSTFUNC 4-30
external routine 4-30
HANDLESNULLS 4-30, 4-32
INTERNAL 4-30
ITERATOR 2-21, 4-12, 4-30, 4-32
NEGATOR 4-30, 4-32
NOT VARIANT 4-30
PARALLELIZABLE 4-32
PERCALL_COST 4-31
SELCONST 4-31
SELFUNC 4-31
specifying 4-33
STACK 4-31, 13-37
VARIANT 4-7, 4-31

Routine name
ANSI-compliance 3-12
candidate routines 3-17
choosing 4-4
component of routine

signature 3-12
overloaded 3-11, 3-13
registering 4-33
specific. See Specific routine name.

Routine overloading
aggregate functions 6-8
assigning specific routine

name 3-14
built-in functions 6-7
built-in SQL functions 3-16
definition 3-11
description of 3-13, 4-4
in operator binding 2-13
invoking overloaded routine 3-15
optical functions 6-8
status functions 6-8
using 6-3, 11-9

Routine owner
ANSI-compliant database 3-12

component of routine
signature 3-12

database not ANSI
compliant 3-12

in specific routine name 3-14
registering 4-33

Routine parameter
component of signature 3-12
overloaded 3-13
registering 4-33

Routine resolution
candidate list 3-17
definition 3-11, 3-16
effect of inheritance 3-22
effect of null value argument 3-26
order of arguments 3-23
precedence 3-17, 3-18
purpose 11-9
type hierarchy 3-22
understanding 3-11

Routine return value
in routine-state space 3-10
nonvariant 4-7
using 4-6

Routine sequence, definition 3-9
Routine signature

ANSI-compliance 3-12
description 3-12
in routine resolution 3-11, 3-17
registering 3-13
uniqueness of 3-12

Routine type 3-12, 4-33
Routine-level privilege 4-25, 12-3
Routine-state space 3-10
Row type, named. See Named row

type.
R-tree index

default operator class 11-8
uses of 11-5

Runtime, setting collation
order 10-29

S
Sample-code conventions Intro-9
Scans, parallel 13-34
Secondary-access method

defined by database server 11-4
6 IBM Informix User-Defined Routines and Data Types Developer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
defining new operator
classes 11-19

definition of 11-4
user-defined 11-5

SELCONST routine modifier 4-31
SELECT statement

BETWEEN operator 10-28
DISTINCT keyword 9-22, 10-28
GROUP BY clause 9-21
ORDER BY clause 9-22, 10-28
UNION keyword 9-22, 10-28
UNIQUE keyword 9-22, 10-28

SELECT statement, iterator
function 4-13

Selectivity function 2-16
SELFUNC routine modifier 4-31
Send support function

as cast function 9-15
description of 10-16
example 10-16
locale-sensitive data 10-31
parameter type 10-6
return type 10-6
summary of 10-4

SENDRECV data type
casting from 9-14
casting to 9-15
locale-sensitive data 10-31
return value in send function 10-6

SERVER_LOCALE environment
variable 10-29

SET COLLATION statement 10-29
SET EXPLAIN

parallel scans 13-34
serial scans 13-34

SET OPTIMIZATION
statement 13-4

setUDTExtName 9-12
Setup argument, aggregates 8-9
Shared library. See Shared-object

file.
Shared-object file

loading 3-9
reloading 12-9
unloading 12-9

Signature. See Routine signature.
SIGUSR1 signal 13-33
SLV. See Statement-local variable

(SLV).

Smart large object 9-4, 10-18
aggregates 8-7
not in functional index 4-7

Software dependencies Intro-4
SPECIFIC keyword 3-14
Specific routine name

assigning 3-14
definition 3-14
registering 4-33

SPL iterator function example 4-16
SPL procedures 4-9
SPL routine

caching sysprocedures 13-37
default virtual-processor

class 13-19
definition of 2-4
dependency list 3-8, 4-26
description of 2-4
designing 4-3
executing 3-8
execution plan 13-4
FOREACH loop 4-12
invoking a UDR 3-6
optimization level 13-4
optimizing 13-4
p-code 3-8, 4-26
registering 4-26
SPL cache 13-38
updating statistics 13-6

SPL UDR, return parameters 4-10
SQL code Intro-9
SQL data type

built-in 3-19
IMPEXP 10-18
IMPEXPBIN 10-20
in registration 4-32
POINTER 4-32

SQL Explain output, iterator
function 4-14

SQL statement
execution plan 4-26
invoking a UDR 3-3
optimizing 3-7, 4-26, 13-3, 13-4
parsing 3-7, 4-26
query optimizer 3-7
query parser 3-7
query plan 3-7
specific name 3-15
statement-local variable 4-9

where invalid 4-7
SQL-invoked function

built-in functions 6-7
cast functions 7-8
definition of 6-3
opaque data types 9-18
operator functions 6-4

STACK routine modifier 4-31,
13-37

Stack space 13-36
STACKSIZE configuration

parameter 13-36
Stack, monitoring stack size 13-36
Statement-local variable (SLV) 4-8

declaring 4-9
definition of 4-9
OUT parameters and 4-9
referencing in function 4-9
scope of 4-9

Statement-local variables
iterator functions 4-15

Statistics function 2-16
stores_demo database Intro-4
Strategy function

description of 11-5
for generic B-tree 11-7

Streamread support function
as cast function 9-15

Streamwrite support function
as cast function 9-15

Structured Query Language (SQL).
See SQL statement.

Subtype. See Named row type.
superstores_demo database Intro-4
Supertype. See Named row type.
Support function

as casts 9-14
bulk copy 10-17
description of 11-6
dropping 9-27
export 10-4
exportbinary 10-4
for generic B-tree 11-7
IBM Informix GLS API 10-30
import 10-4
importbinary 10-4
input 10-3
lohandles() 10-5
naming 10-5
Index 7

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
output 10-3
privileges 9-26
registering 10-6
routine identifier 10-6
send 10-4
summary 10-3

sysams system catalog table 11-19
syscasts system catalog table 7-5,

7-12, 9-15, 9-27
syscolumns system catalog

table 13-6
sysindices system catalog

table 13-6
syslangauth system catalog

table 2-5
sysopclasses system catalog

table 11-20
sysprocauth system catalog

table 2-5, 4-26, 9-26, 10-7, 12-4,
13-39

sysprocbody system catalog
table 2-5, 3-8, 4-26, 4-34, 13-39

sysprocedures system catalog
table 10-6

cached in memory 13-37
candidate routines 3-17
columns of 4-33
contents of 13-38
description 2-5, 9-27
I/O considerations 13-39
path column 3-9, 12-10
UDR information 4-26

sysprocplan system catalog
table 4-26, 4-34, 13-5, 13-7, 13-39

sysroutinelangs system catalog
table 2-5

systables system catalog table 13-6
System catalog table

isolating 13-39
sysams 11-19
syscasts 7-5, 9-15
syscolumns 13-6
sysindices 13-6
syslangauth 2-5
sysprocauth 2-5, 4-26, 10-7, 12-4,

13-39
sysprocbody 3-8, 4-26, 4-34, 13-39
sysprocedures 2-5, 4-26, 13-38

sysprocplan 4-26, 4-34, 13-5, 13-7,
13-39

sysroutinelangs 2-5
systables 13-6
systrigbody 13-39
systriggers 13-39
sysxtdtypeauth 5-9, 9-17
sysxtdtypes 5-9, 9-14

System requirements
database Intro-4
software Intro-4

systrigbody system catalog
table 13-39

systriggers system catalog
table 13-39

sysxtdtypeauth system catalog
table 5-9, 9-17, 9-26

sysxtdtypes system catalog
table 5-9, 9-14, 9-27, 10-7

T
Text operator

description of 6-5
for an opaque type 9-19

Thread
definition 13-17
insert 13-27, 13-29
join 13-26
primary 13-34
scan 13-25, 13-27, 13-34
secondary 13-34
sort 13-30
sqlexec 13-34

Thread-safe UDRs 13-31
times() function 6-4
Tip icons Intro-7
Transport functions 10-13
Triggered action statements 2-19
Type hierarchy 3-13, 3-18, 3-22
Type inheritance 3-22

U
UDREnv interface 4-12
UDREnv.setSetIterationIsDone()

method 4-14
UDR. See User-defined routine.

UNIX operating system, default
locale for Intro-4

Unnamed row type, aggregates 8-7
UPDATE STATISTICS

statement 3-15, 13-6
update() support function 10-22,

10-24, 10-27
User state, SPL routine 3-8
User-defined aggregate

definition of 2-11, 8-3
dropping 8-19
parallel execution 13-24, 13-28

User-defined cast
cast function 7-8
creating 7-5
definition of 7-4
dropping 7-12
implicit 7-6
kinds of 7-6
straight 7-8
See also Cast.

User-defined function
cursor 4-11
definition of 2-3
invoking in an expression 3-5
invoking with CALL 3-6
iterator 4-11
negator 13-16
noncursor 4-11
nonvariant 4-7
variant 4-7
See also User-defined routine.

User-defined procedure 2-3
invoking with CALL 3-6
registering 4-23
See also User-defined routine.

User-defined routine (UDR)
altering 12-11
argument. See Routine argument.
assigning privileges to 4-24
choosing a VP class 13-18
coding standards for 4-21
database-level privileges 4-24
DBA tasks on 3-13
default VP class 13-19
description 1-3
designing 4-3
dropping 4-25, 12-11
enabling parallel execution 13-32
8 IBM Informix User-Defined Routines and Data Types Developer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
executing 3-6, 3-11, 13-22
HDR 4-34
invoking 3-3
loading 3-9
location of 4-33
managing 12-3
memory considerations 13-35
modal 4-5
naming 4-4
nonmodal 4-5
optimizing 13-3
overloaded. See Routine

overloading.
parallelizable 2-16, 13-22
performance considerations 13-3
privileges 12-3
registering 4-23
registration privileges 4-24
reloading 12-9
return value. See Routine return

value.
returning a value 4-6
routine resolution 3-16
routine sequence for 3-9
routine-level privileges 4-25
routine-state space 3-10
signature. See Routine signature.
size maximum 4-4
tasks of 2-6
unloading 12-9
updating statistics 13-6
user state 3-10
well-behaved 13-19, 13-20
wildcard argument 3-27
See also User-defined function;

User-defined procedure.
User-defined virtual processor

adding 13-22
dropping 13-22

Users, types of Intro-3

V
Variant function 4-7
VARIANT routine modifier 4-7,

4-31
Virtual processor (VP)

choosing for UDR 13-18

classes 13-17, 13-18
CPU 13-19
definition of 13-17
monitoring 13-22
setting number of 13-33
user-defined 13-20
using 13-17
VP classes 13-18

Virtual table
iterator function 4-13

VPCLASS configuration
parameter 13-21, 13-33

VP. See Virtual processor (VP).

W
Warning icons Intro-7
Wildcard, argument for a

routine 3-27
Windows, default locale for Intro-4

X
X/Open compliance level Intro-13
Index 9

	IBM Informix Online Documentation
	Table of Contents
	Introduction
	In This Introduction
	About This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Databases

	New Features
	Extensibility Enhancements

	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Feature, Product, and Platform Icons
	Compliance Icons

	Sample-Code Conventions

	Additional Documentation
	Related Reading
	Compliance with Industry Standards
	IBM Welcomes Your Comments

	Extending the Database Server
	In This Chapter
	Creating User-Defined Routines
	Extending Built-In Data Types
	Extending Operators
	Building Opaque Data Types
	Extending Operator Classes
	Routine Management

	Using a User-Defined Routine
	In This Chapter
	User-Defined Routines
	SPL Routines
	External-Language Routines
	Information About User-Defined Routines

	Tasks That You Can Perform with User-Defined Routines
	Extending Data Type Support
	Supporting User-Defined Data Types
	Cast Functions
	End-User Routines
	Aggregate Functions
	Operator Functions
	Operator-Class Functions
	Optimization Functions
	Opaque Data Type Support Functions
	Access-Method Purpose Functions

	Creating an End-User Routine
	Encapsulating Multiple SQL Statements
	Creating Triggered Actions
	Restricting Access to a Table
	Creating Iterators

	Invoking a User-Defined Routine
	Explicit Invocation
	Implicit Invocation

	Running a User-Defined Routine
	In This Chapter
	Invoking a UDR in an SQL Statement
	Invoking a UDR with an EXECUTE Statement
	Invoking a Function
	Using a SELECT Statement in a Function Argument
	Invoking a Procedure

	Invoking a User-Defined Function in an Expression
	Invoking a Function That Is Bound to an Operator

	Invoking a UDR in an SPL Routine
	Executing a User-Defined Routine
	Parsing the SQL Statement
	Optimizing the SQL Statement
	Executing the Routine
	Executing an SPL Routine
	Executing an External Language Routine

	Understanding Routine Resolution
	The Routine Signature
	Using ANSI and Non-ANSI Routine Signatures
	Using the Routine Signature to Perform DBA Tasks

	Overloading Routines
	Creating Overloaded Routines
	Assigning a Specific Routine Name
	Specifying Overloaded Routines During Invocation
	Overloading Built-In SQL Functions

	The Routine-Resolution Process
	The Routine Signature
	Candidate List of Routines
	Precedence List of Data Types
	Precedence List for Built-In Data Types

	Routine Resolution with User-Defined Data Types
	Routine Resolution in a Type Hierarchy
	Routine Resolution with Distinct Data Types
	Routine Resolution with Built-In Data Types as Source
	Routine Resolution with Collection Data Types

	Null Arguments in Overloaded Routines

	Developing a User-Defined Routine
	In This Chapter
	Planning the Routine
	Naming the Routine
	Defining Routine Parameters
	Number of Arguments
	Declaring Routine Parameters

	Returning Values
	Returning a Variant or Nonvariant Value
	Using OUT Parameters and Statement-Local Variables (SLVs)

	Naming Return Parameters
	Using an Iterator Function
	Creating an Iterator Function
	Registering an Iterator Function
	Invoking an Iterator Function
	Using an Iterator Function in the FROM Clause of a SELECT Statement

	Adhering to Coding Standards

	Writing the Routine
	Registering a User-Defined Routine
	Setting Privileges for a Routine
	Database-Level Privilege
	Language-Level Privilege
	Routine-Level Privilege

	Creating an SPL Routine
	Creating an External-Language Routine
	Registering a Routine Written in C
	Registering a Routine Written in Java
	Registering an External Routine with Modifiers
	Registering Parameters and a Return Value

	Reviewing Information about User-Defined Routines

	Using a UDR With HDR

	Extending Data Types
	In This Chapter
	Understanding the Data Type System
	Understanding Data Types
	Built-In Data Types
	Extended Data Types
	Complex Data Types
	User-Defined Data Types
	IBM Informix DataBlade Modules

	Extending the Data Type System
	Operations
	Casts
	Operator Classes
	Providing Additional Operator Classes
	Extending Operator Classes

	Optimizer Information

	Extending Operators and Built- In Functions
	In This Chapter
	Operators and Operator Functions
	Arithmetic Operators
	Text Operators
	Relational Operators
	Overloading an Operator Function

	Built-In Functions
	Built-In Functions That You Can Overload
	Built-In Functions That You Cannot Overload
	Built-In Aggregates
	Status Functions
	Optical Subsystem Functions

	Overloading a Built-In Function

	Creating User-Defined Casts
	In This Chapter
	Understanding Casts
	Built-In Casts
	User-Defined Casts
	Opaque Data Types
	Distinct Data Types
	Named Row Types

	Casts That You Cannot Create

	Creating a User-Defined Cast
	Choosing the Kind of User-Defined Cast
	Implicit Cast
	Explicit Cast

	Choosing the Cast Mechanism
	Straight Cast
	Cast Function
	Example of a Cast Function

	Defining the Direction of the Cast

	Dropping a Cast

	Creating User-Defined Aggregates
	In This Chapter
	Extending Existing Aggregates
	Overloading Operators for Built-In Aggregates
	Extending an Aggregate
	Example of Extending a Built-In Aggregate

	Creating User-Defined Aggregates
	Support Functions
	INIT Function
	ITER Function
	FINAL Function
	COMBINE Function

	Resolving the Support Functions
	Support-Function States
	Using C or Java Support Functions
	Example of a User-Defined Aggregate
	Using User-Defined Data Types with User-Defined Aggregates
	Omitting Support Functions

	Managing Aggregates
	Parallel Execution of Aggregates
	Privileges for User-Defined Aggregates
	Aggregate Information in the System Catalog
	Aggregate Information from the Command Line

	Dropping an Aggregate

	Creating an Opaque Data Type
	In This Chapter
	Opaque Data Types
	The Internal Structure
	A Fixed-Length Opaque Data Type
	A Varying-Length Opaque Data Type

	Support Functions
	Operator Functions
	Built-In Functions
	Aggregate Functions
	Statistics-Collecting Routines
	End-User Routines

	Advantages of Opaque Data Types

	Creating an Opaque Data Type
	Creating the Internal Structure in C
	Data Type Size
	Memory Alignment
	Parameter Passing

	Creating UDT-to-Java Mappings
	Writing and Registering the Support Functions
	Registering the Opaque Data Type with the Database
	Registering the Opaque Data Type
	Creating Casts for Opaque Data Types
	Using Non In-Row Storage

	Granting Privileges for an Opaque Data Type
	Creating SQL-Invoked Functions
	Arithmetic and Text Operator Functions for Opaque Data Types
	Built-in Functions for Opaque Data Types
	Aggregate Functions for Opaque Data Types
	Conditional Operators for Opaque Data Types
	Relational Operators for Opaque Data Types
	Comparison Function for Opaque Data Types

	Customizing Access Methods
	Using the Generic B-Tree
	Using Other Access Methods
	Indexing Spatial Data
	Indexing Other Types of Data

	Other Operations on Opaque Data Types
	Accessing an Opaque Data Type
	Dropping an Opaque Data Type

	Writing Support Functions
	In This Chapter
	Writing Support Functions
	Identifying Support Functions
	Choosing Function Parameters
	Setting Privileges for Support Functions

	Data Types for Support Functions
	The LVARCHAR Data Type
	The SENDRECV Data Type

	Handling the External Representation
	Input Support Function
	Output Support Function

	Handling the Internal Representation
	The Send and Receive Support Functions
	The SENDRECV Data Type
	Receive Support Function
	Send Support Function

	Performing Bulk Copies
	Import and Export Support Functions
	The IMPEXP Data Type
	Import Support Function
	Export Support Function

	Importbinary and Exportbinary Support Functions
	IMPEXPBIN Data Type
	Importbinary Support Function
	Exportbinary Support Function

	The Stream Support Functions

	Inserting and Deleting Data
	The assign() Function
	The destroy() Function
	The update() Function
	The deepcopy() Function

	Handling Smart Large Objects
	Comparing Data
	Handling Locale-Sensitive Data
	Locale-Sensitive Input and Output Support Functions
	Locale-Sensitive Receive and Send Support Functions

	Extending an Operator Class
	In This Chapter
	Using Operator Classes
	Secondary-Access Methods
	Generic B�Tree Index
	R-Tree Index
	Other User-Defined Secondary-Access Methods

	Operator Classes
	Generic B-Tree Operator Class
	R-Tree Index Operator Class

	Extending an Existing Operator Class
	Extensions of the btree_ops Operator Class
	Reasons for Extending btree_ops
	Generating a Single Value for a New Data Type
	Changing the Sort Order

	Creating an Operator Class
	Creating a New B-Tree Operator Class
	Creating an Absolute-Value Operator Class
	Defining an Operator Class for Other Secondary-Access Methods

	Dropping an Operator Class

	Managing a User-Defined Routine
	In This Chapter
	Assigning the Execute Privilege to a Routine
	Granting and Revoking the Execute Privilege
	Privileges on Objects Associated with a UDR
	Executing a UDR as DBA
	Using DBA Privileges with Objects and Nested UDRs

	Modifying a User-Defined Routine
	Modifying a C UDR
	Removing Routines from the Shared Library

	Modifying a Java UDR

	Altering a User-Defined Routine
	Dropping a User-Defined Routine

	Improving UDR Performance
	In This Chapter
	Optimizing a User-Defined Routine
	Optimizing an SPL Routine
	Optimization Levels
	Automatic Optimization

	Updating Statistics for an SPL Routine

	Optimizing Functions in SQL Statements
	Calculating the Query Plan
	Specifying Cost and Selectivity
	Constant Cost and Selectivity Values
	Dynamic Cost and Selectivity Values

	Calculating Cost
	Selectivity and Cost Examples

	Extending UPDATE STATISTICS
	Using UPDATE STATISTICS
	Support Functions for UPDATE STATISTICS
	The stat Data Type
	The statcollect() Function
	The statprint() Function
	Example of User-Defined Statistics Functions

	Using Negator Functions
	Using a Virtual-Processor Class
	Choosing a Virtual-Processor Class
	CPU Virtual-Processor Class
	User-Defined Virtual-Processor Class
	JVM Virtual-Processor Class

	Using Virtual Processors with UDRs Written in C
	Managing Virtual Processors
	Adding and Dropping Virtual Processors
	Monitoring Virtual-Processor Classes

	Parallel UDRs
	Executing UDRs in Parallel
	Execution of a UDR in a Query Expression
	FastPath Execution of a UDR in a DataBlade API
	Implicit UDR Execution of a User-Defined Aggregate
	Implicit UDR Execution of a Comparison Operator
	Implicit Execution of an Assign UDR
	Execution of a Comparison UDR for Sort
	Execution of a UDR by an Index on a UDT column

	Enabling Parallel UDRs
	Specifying the PARALLELIZABLE Modifier
	Writing PDQ Thread-Safe UDRs
	Turning On PDQ and Reviewing Other Configuration Parameters
	Step-By-Step Procedure to Enable Parallel UDRs

	Setting the Number of Virtual Processors
	Monitoring Parallel UDRs

	Memory Considerations
	Memory Durations for C UDRs
	Stack-Size Considerations
	Virtual-Memory Cache for Routines
	The sysprocedures System Catalog Table
	UDR Cache

	I/O Considerations
	Isolating System Catalog Tables
	Balancing the I/O Activities

	Notices
	Index

