
IBM Informix
DataBlade API
Programmer’s Guide
Version 9.4
March 2003
Part Nos. CT1T7NA (Volume 1) and CT1T8NA (Volume 2)

ii IBM Informix DataBla
This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2003. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Note:
Before using this information and the product it supports, read the information in the
appendix entitled “Notices.”
de API Programmer’s Guide

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Manual 3

Types of Users 4
Software Dependencies 4
Assumptions About Your Locale. 4
Demonstration Databases 5

New Features . 6
Documentation Conventions 8

Typographical Conventions 8
Icon Conventions 9
Function Syntax Conventions 11
DataBlade API Module Code Conventions 11

Additional Documentation 11
Related Reading 13
Compliance with Industry Standards 14
IBM Welcomes Your Comments 14

iv IBM In
Section I DataBlade API Overview

Chapter 1 Using the DataBlade API
In This Chapter 1-3
DataBlade API Module 1-3

User-Defined Routine 1-4
Client LIBMI Application 1-6
Compatibility of Client and Server DataBlade API Modules . . 1-7

DataBlade API Components 1-7
Header Files 1-7
Public Data Types 1-13
Regular Public Functions 1-24
Advanced Features 1-31

Internationalization of DataBlade API Modules 1-32

Chapter 2 Accessing SQL Data Types
In This Chapter 2-3
Type Identifiers 2-4
Type Descriptors 2-6

Type-Structure Conversion 2-8
Data Type Descriptors and Column Type Descriptors 2-9

Character Data Types 2-12
The mi_char1 and mi_unsigned_char1 Data Types 2-12
The mi_char and mi_string Data Types 2-13
The mi_lvarchar Data Type 2-14
Character Data in a Smart Large Object 2-16
Character Processing 2-16

Varying-Length Data Type Structures 2-21
Using a Varying-Length Structure 2-22
Managing Memory for a Varying-Length Structure 2-23
Accessing a Varying-Length Structure 2-27

Byte Data Types 2-43
The mi_bitvarying Data Type 2-43
Byte Data in a Smart Large Object 2-45
Byte Processing 2-45

Boolean Data Types 2-47
Boolean Text Representation 2-47
Boolean Binary Representation 2-47
Pointer Data Types 2-48
formix DataBlade API Programmer’s Guide

Simple Large Objects 2-49
The MI_DATUM Data Type 2-50

Contents of an MI_DATUM Structure 2-51
Address Calculations with MI_DATUM Values 2-54
Uses of MI_DATUM Structures 2-55

The NULL Constant 2-57
SQL NULL Value 2-57
NULL-Valued Pointer 2-58

Section II Data Manipulation

Chapter 3 Using Numeric Data Types
In This Chapter 3-3
Integer Data 3-4

Integer Text Representation. 3-4
Integer Binary Representations 3-5

Fixed-Point Data 3-14
Fixed-Point Text Representations. 3-14
Fixed-Point Binary Representations 3-16
Transferring Fixed-Point Data 3-22
Converting Decimal Data 3-23
Performing Operations on Decimal Data 3-25
Obtaining Fixed-Point Type Information 3-26

Floating-Point Data 3-26
Floating-Point Text Representation 3-27
Floating-Point Binary Representations 3-28
Transferring Floating-Point Data 3-31
Converting Floating-Point Decimal Data 3-32
Obtaining Floating-Point Type Information 3-32

Formatting Numeric Strings 3-33
Table of Contents v

vi IBM In
Chapter 4 Using Date and Time Data Types
In This Chapter 4-3
Date Data . 4-4

Date Text Representation 4-4
Date Binary Representation 4-5
Transfers of Date Data 4-6
Conversion of Date Representations 4-7
Operations on Date Data 4-9

Date-Time or Interval Data 4-10
Date-Time or Interval Text Representation 4-11
Date-Time or Interval Binary Representation 4-12
The datetime.h Header File 4-16
Retrieval and Insertion of DATETIME and INTERVAL Values . 4-18
Transfers of Date-Time or Interval Data 4-21
Conversion of Date-Time or Interval Representations 4-22
Operations on Date and Time Data 4-25
Functions to Obtain Information on Date and Time Data . . . 4-26

Chapter 5 Using Complex Data Types
In This Chapter 5-3
Collections . 5-4

Collection Text Representation 5-4
Collection Binary Representation 5-5
Creating a Collection 5-7
Opening a Collection 5-8
Accessing Elements of a Collection 5-11
Releasing Collection Resources 5-25
The listpos() UDR 5-26

Row Types . 5-43
Row-Type Text Representation 5-43
Row-Type Binary Representation 5-44
Creating a Row Type 5-50
Accessing a Row Type 5-54
Copying a Row Structure 5-55
Releasing Row Resources 5-57
formix DataBlade API Programmer’s Guide

Chapter 6 Using Smart Large Objects
In This Chapter 6-5
Understanding Smart Large Objects 6-6

Parts of a Smart Large Object 6-7
Information About a Smart Large Object 6-8

Storing a Smart Large Object in a Database 6-24
Valid Data Types 6-24
Access to a Smart Large Object 6-26

Using the Smart-Large-Object Interface 6-28
Smart-Large-Object Data Type Structures 6-29
Smart-Large-Object Functions 6-34

Creating a Smart Large Object 6-43
Obtaining the LO-Specification Structure 6-44
Choosing Storage Characteristics. 6-49
Initializing an LO Handle and an LO File Descriptor 6-69
Writing Data to a Smart Large Object 6-72
Storing an LO Handle 6-74
Freeing Resources 6-75
Sample Code to Create a New Smart Large Object 6-77

Accessing a Smart Large Object 6-80
Selecting the LO Handle 6-81
Opening a Smart Large Object. 6-83
Reading Data from a Smart Large Object 6-84
Freeing a Smart Large Object 6-85
Sample Code to Select an Existing Smart Large Object . . . 6-85

Modifying a Smart Large Object 6-87
Updating a Smart Large Object 6-87
Altering Storage Characteristics 6-88

Obtaining Status Information for a Smart Large Object 6-89
Obtaining a Valid LO File Descriptor 6-90
Initializing an LO-Status Structure 6-91
Obtaining Status Information 6-93
Freeing an LO-Status Structure 6-95

Deleting a Smart Large Object 6-95
Managing the Reference Count 6-96
Freeing LO File Descriptors 6-100

Converting a Smart Large Object to a File or Buffer 6-101
Using Operating-System Files 6-101
Using User-Defined Buffers 6-102
Table of Contents vii

viii IBM
Converting an LO Handle Between Binary and Text 6-103
Binary and Text Representations of an LO Handle 6-103
DataBlade API Functions for LO-Handle Conversion 6-104

Transferring an LO Handle Between Computers 6-104
Using Byte-Range Locking 6-105
Passing a NULL Connection 6-106

Section III Database Access

Chapter 7 Handling Connections
In This Chapter 7-3
Understanding Session Management 7-4

Client Connection 7-5
UDR Connection 7-6
Connection Descriptor 7-6

Initializing a Client Connection 7-8
Using Connection Parameters 7-8
Using Database Parameters 7-12
Using Session Parameters 7-16
Setting Connection Parameters for a Client Connection . . . 7-18

Establishing a Connection 7-20
Establishing a UDR Connection. 7-21
Establishing a Client Connection 7-25

Associating User Data with a Connection 7-28
Initializing the DataBlade API 7-29
Closing a Connection 7-31

Chapter 8 Executing SQL Statements
In This Chapter 8-3
Executing SQL Statements 8-4

Choosing a DataBlade API Function 8-5
Executing Basic SQL Statements 8-10
Executing Prepared SQL Statements 8-18
Executing Multiple SQL Statements 8-53

Processing Statement Results 8-54
Executing the mi_get_result() Loop 8-55
Example: The get_results() Function 8-62
 Informix DataBlade API Programmer’s Guide

Retrieving Query Data 8-64
Obtaining Row Information 8-65
Obtaining Column Information 8-66
Retrieving Rows 8-66
Obtaining Column Values 8-68

Completing Execution 8-90
Finishing Execution 8-90
Interrupting Execution 8-93

Inserting Data into the Database 8-93
Assembling an Insert String 8-93
Sending the Insert Statement 8-94
Processing Insert Results 8-94

Using Save Sets 8-95
Creating a Save Set 8-96
Inserting Rows into a Save Set. 8-96
Building a Save Set 8-97
Freeing a Save Set 8-101

Chapter 9 Executing User-Defined Routines
In This Chapter 9-3
Accessing MI_FPARAM Routine-State Information 9-3

Checking Routine Arguments 9-5
Accessing Return-Value Information 9-10
Saving a User State 9-14
Obtaining Other Routine Information 9-18

Calling UDRs Within a DataBlade API Module 9-20
Invoking a UDR Through an SQL Statement 9-20
Calling a UDR Directly 9-21

Calling UDRs with the Fastpath Interface 9-22
Obtaining a Function Descriptor 9-26
Obtaining Information from a Function Descriptor 9-35
Executing the Routine 9-40
Using a User-Allocated MI_FPARAM Structure. 9-53
Releasing Routine Resources 9-57
Table of Contents ix

x IBM In
Chapter 10 Handling Exceptions and Events
In This Chapter 10-3
DataBlade API Event Types 10-3
Event-Handling Mechanisms 10-5

Invoking a Callback 10-6
Using Default Behavior 10-18

Callback Functions 10-20
Declaring a Callback Function 10-20
Writing a Callback Function 10-26

Database Server Exceptions 10-32
Understanding Database Server Exceptions 10-32
Providing Exception Handling 10-40
Returning Error Information to the Caller 10-51
Handling Multiple Exceptions 10-59
Raising an Exception 10-61

State-Transition Events 10-75
Understanding State-Transition Events 10-75
Providing State-Transition Handling 10-78

Client LIBMI Errors 10-84

Section IV Creating User-Defined Routines

Chapter 11 Developing a User-Defined Routine
In This Chapter 11-3
Designing a UDR 11-4

Development Tools 11-4
Uses of a C UDR 11-6
Portability 11-7
Insert and Update Operations 11-8

Creating UDR Code 11-9
Variable Declaration. 11-9
Session Management 11-10
SQL Statement Execution 11-16
Routine-State Information. 11-17
Event Handling 11-18
Well-Behaved Routines. 11-18
formix DataBlade API Programmer’s Guide

Compiling a C UDR 11-19
Compiling Options 11-19
Creating a Shared-Object File 11-20

Registering a C UDR 11-23
The External Name 11-24
The UDR Language 11-25
Routine Modifiers 11-26
Parameters and Return Values. 11-27
Privileges for the UDR 11-28

Executing a UDR 11-29
Routine Resolution 11-30
The Routine Manager. 11-31

Debugging a UDR 11-40
Using a Debugger 11-40
Running a Debugging Session. 11-43
Using Tracing 11-46

Changing a UDR 11-57
Altering a Routine 11-57
Unloading a Shared-Object File 11-57

Chapter 12 Writing a User-Defined Routine
In This Chapter 12-3
Coding a C UDR 12-3

Defining Routine Parameters 12-4
Obtaining Argument Values 12-9
Defining a Return Value 12-17
Coding the Routine Body 12-25

Using Virtual Processors 12-26
Creating a Well-Behaved Routine 12-28
Managing Virtual Processors 12-58

Controlling the VP Environment 12-60
Obtaining VP-Environment Information 12-62
Changing the VP Environment 12-64
Locking a UDR 12-65

Performing Input and Output 12-67
Access to a Stream 12-67
Access to Operating-System Files 12-83
Sample File-Access UDR 12-89
Table of Contents xi

xii IBM I
Accessing the UDR Execution Environment 12-91
Accessing the Session Environment 12-91
Accessing the Server Environment 12-93

Chapter 13 Managing Memory
In This Chapter 13-3
Understanding Shared Memory 13-4

Accessing Shared Memory 13-4
Choosing the Memory Duration 13-7

Managing Shared Memory 13-31
Managing User Memory 13-32
Managing Named Memory 13-39
Monitoring Shared Memory 13-54

Managing Stack Space 13-57
Managing Stack Usage 13-58
Increasing Stack Space 13-59

Chapter 14 Creating Special-Purpose UDRs
In This Chapter 14-3
Writing an End-User Routine 14-3
Writing a Cast Function 14-4
Writing an Iterator Function 14-5

Initializing the Iterations 14-11
Returning One Active-Set Item 14-13
Releasing Iteration Resources 14-14
Calling an Iterator Function from an SQL Statement 14-15

Writing an Aggregate Function 14-18
Extending a Built-In Aggregate 14-19
Creating a User-Defined Aggregate 14-25

Providing UDR-Optimization Functions 14-80
Writing Selectivity and Cost Functions 14-81
Creating Negator Functions 14-91
Creating Commutator Functions 14-92
Creating Parallelizable UDRs 14-94
nformix DataBlade API Programmer’s Guide

Chapter 15 Extending Data Types
In This Chapter 15-3
Creating an Opaque Data Type 15-3

Designing an Opaque Data Type 15-4
Writing Opaque-Type Support Functions 15-14
Registering an Opaque Data Type 15-65

Providing Statistics Data for a Column 15-66
Collecting Statistics Data 15-67
Using User-Defined Statistics 15-78

Optimizing Queries 15-82
Query Plans 15-83
Selectivity Functions 15-84

Appendix A Writing a Client LIBMI Application

Appendix B Notices

Index
Table of Contents xiii

xiv IBM
Informix DataBlade API Programmer’s Guide

Introduction
Introduction
In This Introduction 3

About This Manual 3
Types of Users 4
Software Dependencies 4
Assumptions About Your Locale 4
Demonstration Databases 5

New Features . 6

Documentation Conventions 8
Typographical Conventions 8
Icon Conventions 9

Comment Icons 9
Feature, Product, and Platform Icons 9
Compliance Icon 10

Function Syntax Conventions 11
DataBlade API Module Code Conventions 11

Additional Documentation 11

Related Reading . 13

Compliance with Industry Standards 14

IBM Welcomes Your Comments 14

2 IBM In
formix DataBlade API Programmer’s Guide

In This Introduction
This introduction provides an overview of the information in this manual
and describes the conventions it uses.

About This Manual
This manual contains information on the DataBlade API, the C-language
application programming interface (API) provided with IBM Informix
Dynamic Server. You can use the DataBlade API to develop client LIBMI appli-
cations and C user-defined routines (UDRs) that access data in an
IBM Informix Dynamic Server database.

This manual explains how to use the DataBlade API functions. The
companion manual, the IBM Informix DataBlade API Function Reference,
describes the functions in alphabetical order.

This section discusses the intended audience, the software that you need to
use the DataBlade API, localization, and demonstration databases.
Introduction 3

Types of Users
Types of Users
This manual is for the following users:

� Database-application programmers

� DataBlade developers

� Developers of C UDRs

To understand this manual, you need to have the following background:

� A working knowledge of your computer, your operating system,
and the utilities that your operating system provides

� Some experience working with relational databases or exposure to
database concepts

� Some experience with computer programming in the C
programming language

� Some experience with database design and the optimization of
database queries

If you have limited experience with relational databases, SQL, or your
operating system, see the Getting Started Guide for your database server for a
list of supplementary titles.

Software Dependencies
This manual is based on the assumption that you are using Version 9.4 of
IBM Informix Dynamic Server.

Assumptions About Your Locale
IBM Informix products can support many languages, cultures, and code sets.
All the information related to character set, collation, and representation of
numeric data, currency, date, and time is brought together in a single
environment, called a Global Language Support (GLS) locale.

The examples in this manual are for the default locale, en_us.8859-1. This
locale supports U.S. English format conventions for date, time, and currency.
In addition, this locale supports the ISO 8859-1 code set, which includes the
ASCII code set plus many 8-bit characters such as é, è, and ñ.
4 IBM Informix DataBlade API Programmer’s Guide

Demonstration Databases
If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and
other considerations related to GLS locales, see the IBM Informix GLS User’s
Guide.

Demonstration Databases
The DB-Access utility, which is provided with your Informix database server
products, includes one or more of the following demonstration databases:

� The stores_demo database illustrates a relational schema with infor-
mation about a fictitious wholesale sporting-goods distributor.
Many examples in IBM Informix manuals are based on the
stores_demo database.

� The superstores_demo database illustrates an object-relational
schema. The superstores_demo database contains examples of
extended data types, type and table inheritance, and user-defined
routines.

For information about how to create and populate the demonstration
databases, see the IBM Informix DB-Access User’s Guide. For descriptions of the
databases and their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory on UNIX or Linux and in the
%INFORMIXDIR%\bin directory on Windows.
Introduction 5

New Features
New Features
Dynamic Server, Version 9.4, includes the following enhancements to the
DataBlade API:

� New mi_get_db_locale() function to return the value of the current
database server locale.

� New mi_get_transaction_id() function to return the ID of the
current transaction.

� New mi_realloc() function to change the size of an existing memory
block.

� New mi_stack_limit() function to determine whether the current
user stack has the specified amount of free space.

� New mi_system() function to execute operating system commands
in a separate thread and return status to the calling routine.

� Stream support functions can now accept files up to 4 TB in size.

For a complete list of new features in Dynamic Server, Version 9.4, see your
Getting Started Guide.

The following DataBlade API features were introduced in IBM Informix
Dynamic Server, Version 9.3:

� New PER_STMT_EXEC and PER_STMT_PREP memory durations

� The ability to use mi_lo* routines without a connection

� New mi_collection_card() function to return the cardinality for
collections (number of items in the collection)

� Access to files on a client computer one buffer at a time

� New mi_transaction_state() function to return the current trans-
action state (none, implicit, or explicit)

� Stream input-output (I/O) interface (mi_stream* functions)

Version 9.3 also includes the following improvements in the area of
extensibility:

� New deepcopy() function for multirepresentational data types

� Temporary sbspaces and smart large objects

� Improved partitioning of user data and metadata in sbspaces
6 IBM Informix DataBlade API Programmer’s Guide

New Features
The following DataBlade API features were introduced in IBM Informix
Dynamic Server, Version 9.21:

� New functions for controlling the VP environment

� New functions for getting additional information about a UDR
Introduction 7

Documentation Conventions
Documentation Conventions
This section describes the conventions that this manual uses for typography,
icons, function syntax, and DataBlade API module code. These conventions
make it easier to gather information from this and other volumes in the
documentation set.

Typographical Conventions
This manual uses the following typographical conventions to introduce new
terms, illustrate screen displays, describe command syntax, and so forth.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you are
to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of one or more product- or
platform-specific paragraphs.

� This symbol indicates a menu item. For example, “Choose
Tools�Options” means choose the Options item from the
Tools menu.
8 IBM Informix DataBlade API Programmer’s Guide

Icon Conventions
Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

Feature, Product, and Platform Icons

Feature, product, and platform icons identify paragraphs that contain
feature-specific, product-specific, or platform-specific information.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information

Important: Identifies paragraphs that contain significant
information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described

Icon Description

Identifies information that is specific to the creation of a
client LIBMI application with the DataBlade API

Identifies information that is specific to the DataBlade
Developer’s Kit

Identifies information that relates to the IBM Informix
Global Language Support (GLS) feature

(1 of 2)

Client

DBDK

GLS
Introduction 9

Icon Conventions
These icons can apply to an entire section or to one or more paragraphs
within a section. If an icon appears next to a section heading, the information
that applies ends at the next heading at the same or higher level. A ♦ symbol
indicates the end of information that appears in one or more paragraphs
within a section.

Compliance Icon

A compliance icon indicates paragraphs that provide guidelines for
complying with a standard.

This icon can apply to an entire section or to one or more paragraphs within
a section. If an icon appears next to a section heading, the compliance infor-
mation ends at the next heading at the same or higher level. A ♦ symbol
indicates the end of compliance information that appears in one or more
paragraphs within a section.

Identifies information that is specific to the creation of a
C user-defined routine with the DataBlade API

Identifies information that is specific to the UNIX or Linux
operating system

Identifies information that is specific to a Windows
environment

Identifies information that is specific to a 64-bit platform

Icon Description

Identifies information that is specific to an ANSI-compliant
database

Icon Description

(2 of 2)

Server

UNIX/Linux

Windows

64-Bit

ANSI
10 IBM Informix DataBlade API Programmer’s Guide

Function Syntax Conventions
Function Syntax Conventions
This guide uses the following conventions to specify DataBlade API function
syntax:

� Square brackets ([]) surround optional items.

� Curly brackets ({ }) surround items that can be repeated.

� A vertical line (|) separates alternatives.

� Function parameters are italicized; arguments that you must specify
as shown are not italicized.

DataBlade API Module Code Conventions
This manual includes sample code for DataBlade API modules. These
samples follow C-language coding conventions for indentation and use
C ANSI format for parameters in function declarations.

Tip: Ellipsis points in a code example indicate that more code would be added in a
full application, but it is not necessary to show it to describe the concept being
discussed.

Additional Documentation
IBM Informix Dynamic Server documentation is provided in a variety of
formats:

� Online manuals. The documentation CD in your media pack allows
you to print the product documentation. You can obtain the same
online manuals at the IBM Informix Online Documentation site at
http://www.ibm.com/software/data/informix/pubs/library/.

� Online help. This facility provides context-sensitive help, an error
message reference, language syntax, and more.
Introduction 11

Additional Documentation
� Documentation notes and release notes. Documentation notes,
which contain additions and corrections to the manuals, and release
notes are located in the directory where the product is installed.

Please examine these files because they contain vital information
about application and performance issues.

The following table describes these files.

On UNIX or Linux, the following online files are in the
$INFORMIXDIR/release/en_us/0333 directory.

Online File Purpose

ids_dbapi_docnotes_9.40.html The documentation notes file for
your version of this manual
describes topics that are not covered
in the manual or that were modified
since publication.

ids_unix_release_notes_9.40.html The release notes file describes
feature differences from earlier
versions of IBM Informix products
and how these differences might
affect current products. This file also
contains information about known
problems and their workarounds.

ids_machine_notes_9.40.txt The machine notes file describes
special actions that you must take to
configure and use IBM Informix
products on your computer.

♦

UNIX/Linux
12 IBM Informix DataBlade API Programmer’s Guide

Related Reading
The following items appear in the Informix folder. To display this
folder, choose Start�Programs�Informix� Documentation Notes
or Release Notes from the task bar.

Machine notes do not apply to Windows. ♦
� IBM Informix software products provide ASCII files that contain all of

the error messages and their corrective actions. For a detailed
description of these error messages, refer to IBM Informix Error
Messages in the IBM Informix Online Documentation site at
http://www.ibm.com/software/data/informix/pubs/library/.

To read the error messages on UNIX, you can use the finderr com-
mand to display the error messages online. ♦
To read error messages and corrective actions on Windows, use the
Informix Error Messages utility. To display this utility, choose
Start�Programs�Informix from the task bar. ♦

Related Reading
For a list of publications that provide an introduction to database servers and
operating-system platforms, see your Getting Started Guide.

Program Group Item Description

Documentation Notes The documentation notes file for your version of
this manual describes topics that are not covered
in the manual or that were modified since
publication.

Release Notes The release notes file describes feature differ-
ences from earlier versions of IBM Informix
products and how these differences might affect
current products. This file also contains infor-
mation about known problems and their
workarounds.

WindowsWindows

UNIX

Windows
Introduction 13

Compliance with Industry Standards
Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. IBM Informix SQL-based products are fully
compliant with SQL-92 Entry Level (published as ANSI X3.135-1992), which is
identical to ISO 9075:1992. In addition, many features of Informix database
servers comply with the SQL-92 Intermediate and Full Level and X/Open SQL
CAE (common applications environment) standards.

IBM Welcomes Your Comments
To help us with future versions of our manuals, let us know about any correc-
tions or clarifications that you would find useful. Include the following
information:

� The name and version of your manual

� Any comments that you have about the manual

� Your name, address, and phone number

Send electronic mail to us at the following address:

docinf@us.ibm.com

This address is reserved for reporting errors and omissions in our documen-
tation. For immediate help with a technical problem, contact Customer
Services.
14 IBM Informix DataBlade API Programmer’s Guide

on
 I
DataBlade API Overview
Se
ct

i

Chapter 1 Using the DataBlade API

Chapter 2 Accessing SQL Data Types

1
Chapter
Using the DataBlade API
In This Chapter . 1-3

DataBlade API Module 1-3
User-Defined Routine 1-4

Types of UDRs. 1-5
Benefits of UDRs 1-5
Using UDRs 1-6

Client LIBMI Application 1-6
Compatibility of Client and Server DataBlade API Modules . . . 1-7

DataBlade API Components. 1-7
Header Files . 1-7

DataBlade API Header Files 1-8
ESQL/C Header Files 1-11
IBM Informix GLS Header File 1-12
Private Header Files 1-12

Public Data Types 1-13
DataBlade API Data Types 1-13
DataBlade API Support Data Types 1-19
DataBlade API Data Type Structures 1-20

Regular Public Functions 1-24
DataBlade API Functions 1-24
IBM Informix ESQL/C Functions 1-29
IBM Informix GLS Functions 1-30

Advanced Features 1-31

Internationalization of DataBlade API Modules 1-32

1-2 IBM
 Informix DataBlade API Programmer’s Guide

In This Chapter
The IBM Informix DataBlade API is the application programming interface
(API) for IBM Informix Dynamic Server. You can use DataBlade API functions
in DataBlade modules to access data stored in a Dynamic Server database.

This chapter provides the following information:

� A description of the different kinds of DataBlade API modules you
can write with the DataBlade API

� A summary of the basic parts of the DataBlade API

For information about how to develop DataBlade modules, see the DataBlade
Developer’s Kit User’s Guide.

DataBlade API Module
A DataBlade API module is a C-language module that uses the functions of the
DataBlade API to communicate with Dynamic Server. You can use the
DataBlade API in either of the following kinds of DataBlade API modules:

� A C UDR: a user-defined routine that is written in C

� A client LIBMI application: a client application written in C

Tip: This manual uses the term “DataBlade API module” generically to refer to
either a client LIBMI application or a user-defined routine (UDR).
Using the DataBlade API 1-3

User-Defined Routine
To provide portability for applications, most of the DataBlade API functions
behave identically in a UDR and a client LIBMI application. In cases where
syntax or semantics differ, this manual uses icons to distinguish server-side
and client-side behavior of the DataBlade API.

If neither the server or client icon appears, you can assume that the function-
ality is the same in both the server-side and client-side implementations of
the DataBlade API. For more information, see “Feature, Product, and
Platform Icons” on page 9 of the introduction.

You can dynamically determine the kind of DataBlade API module with the
mi_client() function.

User-Defined Routine
A user-defined routine (UDR) is a routine that you can invoke within an SQL
statement or another UDR. UDRs are building blocks for the development of
DataBlade modules. Possible uses for a UDR follow:

� Support function for an opaque data type

� Cast function to cast data from one data type to another

� End-user routine for use in SQL statements

� Operator function to implement an operation on a particular data
type

For a more complete list, see “Uses of a C UDR” on page 11-6.

When you write a UDR in an external language (a language other than SPL),
the UDR is called an external routine. An external routine that is written in the
C language is called a C UDR. A C UDR uses the server-side implementation
of the DataBlade API to communicate with the database server.

This section provides the following information about C UDRs.For general
information about UDRs, see the IBM Informix User-Defined Routines and Data
Types Developer’s Guide.

Server
1-4 IBM Informix DataBlade API Programmer’s Guide

User-Defined Routine
Types of UDRs

You can write the following types of C UDRs.

Benefits of UDRs

C UDRs provide the following benefits over UDRs written in SPL:

� Performance

UDRs process data on the server computer and send just the results
to the client application. This division of processing often reduces the
amount of data that needs to be sent to the client application.

� Optimization

UDRs process just the data that needs to be processed depending on
what the optimizer determines is most efficient.

� Configuration management

C UDRs centralize shared code, which allows many users to access a
single copy of the routine.

Type of UDR Description C Implementation

User-defined
function

Returns one or more values and therefore can be
used in SQL expressions

For example, the following query returns the
results of a UDR named area() as part of the
query results:

SELECT diameter, area(diameter)
FROM shapes
WHERE diameter > 6;

A C function
that returns
some data type
other than void
(usually a
DataBlade API
data type)

User-defined
procedure

Does not return any values and cannot be used
in SQL expressions because it does not return a
value

You can call a user-defined procedure directly,
however, as the following example shows:

EXECUTE PROCEDURE myproc(1, 5);

A C function
that returns
void
Using the DataBlade API 1-5

Client LIBMI Application
Using UDRs

You can write a UDR in C by using the DataBlade API functions to commu-
nicate with the database server. You can also write subroutines in C that a
UDR calls as it executes. These subroutines must follow the same rules as the
UDR with respect to the use of DataBlade API functions.

Tip: Because of the subject matter of this manual, the manual uses the terms “C
UDR” and “UDR” interchangeably.

You compile UDRs into shared-object files. You then register the UDR in the
system catalog tables so that the database server can locate the code at
runtime. The database server dynamically loads the shared-object files into
memory when the UDR executes.

For more information on how to create C UDRs, see the following chapters of
this manual:

� Chapter 11, “Developing a User-Defined Routine,” provides an
overview to the development process, including information on
compilation, registration, execution, and debugging.

� Chapter 12, “Writing a User-Defined Routine,” describes specific
features and tasks of a C UDR.

� Chapter 13, “Managing Memory,” describes how to manage
memory allocation within a C UDR.

� Chapter 14, “Creating Special-Purpose UDRs,” describes how to
create special kinds of UDRs, such as iterator functions, user-defined
aggregates, and optimization functions.

Client LIBMI Application
A client LIBMI application is a stand-alone client application that uses the
client-side implementation of the DataBlade API to communicate with the
database server. The application might be written in C, C++, or Visual Basic.

Important: Support is provided for client LIBMI applications for backward compat-
ibility with existing applications. For the development of new C client applications,
use another IBM Informix C-language product such as IBM Informix ODBC.

Client
1-6 IBM Informix DataBlade API Programmer’s Guide

Compatibility of Client and Server DataBlade API Modules
Compatibility of Client and Server DataBlade API Modules
You can execute a UDR from an SQL statement as well as from a client appli-
cation with little or no modification to the code. Any function that does not
require interactive input from the client application can be written as a UDR.
However, not all application code should be in a C UDR. You must balance
the load between the client and the database server to achieve optimal
performance.

To avoid interfering with the operation of the database server, you can
develop functions on the client side even if they are intended to run from the
server process eventually. When you develop a C UDR on a client computer,
you can use the same DataBlade API functions on the client and the server
computers, in most cases, without changing the code. Almost all of the
DataBlade API functions behave identically in a client LIBMI application and
a C UDR to provide portability for DataBlade API modules. If you are writing
code that might execute in either a C UDR or a client LIBMI application, you
can use the mi_client() function to determine at runtime where the code is
running.

DataBlade API Components
The DataBlade API contains the following components for the development
of DataBlade API modules:

� Header files

� Public data type structures

� Public functions

Header Files
The following categories of header files are provided for use in a DataBlade
API module:

� DataBlade API header files define DataBlade API data types and
functions.

� IBM Informix ESQL/C header files define the IBM Informix ESQL/C
library functions and data types.
Using the DataBlade API 1-7

Header Files
� The IBM Informix GLS header file provides the ability to internation-
alize your DataBlade API module.

� Private header files, which you create, can support the DataBlade API
module.

DataBlade API Header Files

The DataBlade API header files begin with the mi prefix. The DataBlade API
provides the following public header files for use in DataBlade API modules.

Header File Description

mi.h Is the main DataBlade API header file

It includes other DataBlade API public header files: milib.h,
milo.h, and mitrace.h.

The mi.h header file does not automatically include
mistrmtype.h. To use the stream I/O functions of the DataBlade
API, you must explicitly include mistrmtype.h.

milib.h Defines function prototypes for the public entry points and public
declarations of required data type structures and related macros

The mi.h header file automatically includes milib.h.

mitypes.h Defines all DataBlade API simple data types, accessor macros for
these data types, and directly related value macros

The mitypes.h header file automatically includes the ESQL/C
header files: datetime.h, decimal.h, and int8.h.

The milib.h header file automatically includes mitypes.h.

milo.h Defines the data type structures, values, and function prototypes
for the smart-large-object interface (functions that have names
starting with mi_lo_)

The mi.h header file automatically includes milo.h.

mistream.h Contains definitions for stream data structures, error constants,
and generic stream I/O functions

The mistrmtype.h and mistrmutil.h header files automatically
include mistream.h.

(1 of 2)
1-8 IBM Informix DataBlade API Programmer’s Guide

Header Files
The mi.h header file provides access to most of the DataBlade API header files
in the preceding table. Include this header file in your DataBlade API module
to obtain declarations of most DataBlade API functions and data types.

mistrmtype.h Contains definitions for the type-specific stream-open functions
that the DataBlade API provides

The mistrmtype.h header file automatically includes mistream.h;
however, the mi.h header file does not include mistrmtype.h. You
must explicitly include mistrmtype.h to use the stream I/O
functions of the DataBlade API.

mistrmutil.h Contains definitions for the stream-conversion functions that the
DataBlade API provides for use in streamwrite() and
streamread() opaque-type support functions

The mistrmutil.h header file automatically includes mistream.h;
however, the mi.h header file does not include mistrmutil.h. You
must explicitly include mistrmutil.h to use the stream-conversion
functions of the DataBlade API.

mitrace.h Defines the data type structures, values, and function prototypes
for the DataBlade API trace facility

The mi.h header file automatically includes mitrace.h.

miconv.h Contains convention definitions, including on/off switches based
on architecture, compiler type, and so on

Other parts of the code use these switches to define data types
correctly.

The mitypes.h header file automatically includes miconv.h.

memdur.h Contains the definition of the MI_MEMORY_DURATION data
type, which enumerates valid public memory durations

The milib.h header file automatically includes memdur.h.

Header File Description

(2 of 2)
Using the DataBlade API 1-9

Header Files
The DataBlade API provides the following advanced header files for the use
of advanced features in C UDRs.

Neither mi.h nor milib.h provides access to the advanced header files. To use
the advanced features, include the minmmem.h header file in your
DataBlade API module to obtain declarations of DataBlade API functions and
data types.

Tip: For a complete list of header files, check the incl/public subdirectory of the
INFORMIXDIR directory.

Header File Description

minmmem.h Includes the minmdur.h and minmprot.h header files, which are
necessary for access to advanced memory durations and memory-
management functions

Neither the mi.h nor milib.h header file automatically includes
minmmem.h. You must explicitly include minmmem.h to use
advanced memory durations or memory-management functions.

minmdur.h Contains definitions for the advanced memory durations

The minmmem.h header file automatically includes minmdur.h.
You must explicitly include minmmem.h to use advanced memory
durations.

minmprot.h Contains definitions for the advanced DataBlade API functions

The minmmem.h header file automatically includes minmdur.h.
You must explicitly include minmmem.h to use advanced
functions.
1-10 IBM Informix DataBlade API Programmer’s Guide

Header Files
ESQL/C Header Files

The following header files are provided to support some of the functions and
data types of the IBM Informix ESQL/C library.

Header File Contents

datetime.h Structure and macro definitions for DATETIME and INTERVAL
data types

decimal.h Structure and macro definitions for DECIMAL and MONEY data
types

int8.h Declarations for structure and ESQL/C library functions for the
INT8 data type

sqlca.h Structure definition that ESQL/C uses to store error-status codes

This structure enables you to check for the success or failure of
SQL statements.

sqlda.h Structure definition for value pointers and descriptions of
dynamically defined variables

sqlhdr.h Function prototypes of all ESQL/C library functions

sqlstype.h Definitions of strings that correspond to SQL statements

ESQL/C uses these strings when your program contains a
DESCRIBE statement.

sqltypes.h Integer constants that correspond to ESQL/C language and SQL
data types

ESQL/C uses these constants when your program contains a
DESCRIBE statement.

sqlxtype.h Integer constants that correspond to C language and SQL data
types that ESQL/C uses in X/Open mode, when your program
contains a DESCRIBE statement

varchar.h Macros that you can use with the VARCHAR data type
Using the DataBlade API 1-11

Header Files
Important: The mitypes.h header file automatically includes the datetime.h,
decimal.h, and int8.h header files. In turn, the milib.h header file automatically
includes mitypes.h, and mi.h automatically includes milib.h. Therefore, you
automatically have access to the information in these ESQL/C header files when you
include mi.h in your DataBlade API module.

For additional information about the use of these ESQL/C header files, see the
following sections of this manual.

IBM Informix GLS Header File

A header file is provided to support the IBM Informix GLS library. If you use
the IBM Informix GLS library in your DataBlade API module, include its
header file, ifxgls.h, in your source code. For more information on the
IBM Informix GLS library and how to use it in a DataBlade API module, see
“Internationalization of DataBlade API Modules” on page 1-32.

Private Header Files

If you define any opaque data types, you must include their header file in
your DataBlade API source code. An opaque-type header file usually
contains the declaration of the internal format for the opaque data type. For
more information, see “Creating an Opaque Data Type” on page 15-3.

Header File More Information

datetime.h “The datetime.h Header File” on page 4-16

decimal.h “The decimal.h Header File” on page 3-18

int8.h “The int8.h Header File” on page 3-10

GLS
1-12 IBM Informix DataBlade API Programmer’s Guide

Public Data Types
Public Data Types
The DataBlade API provides support for the following public data types:

� DataBlade API data types, which provide support for standard C,
IBM Informix ESQL/C, and SQL data types

� DataBlade API support data types, which provide support for
functions of the DataBlade API

� DataBlade API data type structures, which provide access to infor-
mation that functions of the DataBlade API use

DataBlade API Data Types

To ensure portability across dissimilar computer architectures, the DataBlade
API provides a set of data types, which Figure 1-1 on page 1-14 shows. These
data types begin with the mi_ prefix. Most of these data types correspond to
common SQL or C-language data types.
Using the DataBlade API 1-13

Public Data Types
Figure 1-1
DataBlade API, C, and SQL Data Types

DataBlade API Data Type
Standard C or ESQL/C
Data Type SQL Data Type

Character Data Types:

mi_char C: char CHAR, VARCHAR,

GLS: NCHAR, NVARCHAR

mi_char1 C: char CHAR(1)

mi_unsigned_char1 C: unsigned char None

mi_wchar (deprecated) C: unsigned two-byte integer None

mi_string C: char * CHAR, VARCHAR,

GLS: NCHAR, NVARCHAR

mi_lvarchar ESQL/C: lvarchar
(though lvarchar is null-terminated
and mi_lvarchar is not)

 LVARCHAR

Within C UDRs: for CHAR,
NCHAR, TEXT, VARCHAR, and
NVARCHAR arguments and
return value

(1 of 4)
1-14 IBM Informix DataBlade API Programmer’s Guide

Public Data Types
Integer Numeric Data Types:

mi_sint1 C: signed one-byte integer None

mi_int1 C: unsigned one-byte integer, char None

mi_smallint C: signed two-byte integer
(short integer on many systems)

SMALLINT

mi_unsigned_smallint C: unsigned two-byte integer None

mi_integer C: signed four-byte integer

(long integer on many systems)

INTEGER, SERIAL

mi_unsigned_integer C: unsigned four-byte integer None

mi_int8 C: signed eight-byte integer;
ESQL/C: int8, ifx_int8_t

INT8, SERIAL8

mi_unsigned_int8 C: unsigned eight-byte integer;
ESQL/C: int8, ifx_int8_t

None

Fixed-Point Numeric Data Types:

mi_decimal, mi_numeric ESQL/C: decimal, dec_t DECIMAL(p,s)
(fixed-point)

mi_money ESQL/C: decimal, dec_t MONEY

Floating-Point Numeric Data Types:

mi_decimal ESQL/C: decimal, dec_t DECIMAL(p)
(floating-point)

mi_real C: float SMALLFLOAT, REAL

mi_double_precision C: double FLOAT, DOUBLE PRECISION

DataBlade API Data Type
Standard C or ESQL/C
Data Type SQL Data Type

(2 of 4)
Using the DataBlade API 1-15

Public Data Types
Date and Time Data Types:

mi_date C: four-byte integer

ESQL/C: date

DATE

mi_datetime ESQL/C: datetime, dtime_t DATETIME

mi_interval ESQL/C: interval, intrvl_t INTERVAL

Varying-Length Data Types:

mi_lvarchar C: void *

ESQL/C: lvarchar
(though lvarchar is null-terminated
and mi_lvarchar is not)

LVARCHAR,
Opaque types

Within C UDRs: for CHAR,
NCHAR, TEXT, VARCHAR, and
NVARCHAR arguments and
return value

mi_sendrecv C: void * SENDRECV,
opaque-type support functions:
send, receive

mi_impexp C: void * IMPEXP,
opaque-type support functions:
import, export

mi_impexpbin C: void * IMPEXPBIN,
opaque-type support functions:
importbin, exportbin

mi_bitvarying C: void * BITVARYING

Complex Data Types:

MI_COLLECTION C: void * SET, LIST, MULTISET

MI_ROW C: void * ROW (unnamed row type),
Named row type

DataBlade API Data Type
Standard C or ESQL/C
Data Type SQL Data Type

(3 of 4)
1-16 IBM Informix DataBlade API Programmer’s Guide

Public Data Types
Important: To make your DataBlade API module portable, it is recommended that
you use the DataBlade API platform-independent data types (such as mi_integer,
mi_smallint, mi_real, mi_boolean, and mi_double_precision) instead of their
C-language counterparts. These data types handle the different sizes of numeric
values across computer architectures.

Figure 1-1 on page 1-14 lists the DataBlade API data types and SQL data
types. However, when you pass some of these data types to and from C
UDRs, you must pass them as pointers rather than as actual values. For more
information, see “Passing Mechanism for MI_DATUM Values” on
page 11-36. ♦

Figure 1-2 shows where you can find information about how DataBlade API
data types correspond to SQL data types.

Figure 1-2
Correspondence of SQL Data Types to DataBlade API Data Types

Other Data Types:

mi_boolean C: char

ESQL/C: boolean

BOOLEAN

mi_pointer C: void * POINTER

MI_LO_HANDLE None CLOB, BLOB

Smart large objects

DataBlade API Data Type
Standard C or ESQL/C
Data Type SQL Data Type

(4 of 4)

SQL Data Type Information on Corresponding DataBlade API Data Types

BITVARYING “The mi_bitvarying Data Type” on page 2-43

BLOB Chapter 6, “Using Smart Large Objects”

BOOLEAN “Boolean Data Types” on page 2-47

BYTE “Simple Large Objects” on page 2-49

CHAR “Character Data Types” on page 2-12

(1 of 3)

Server
Using the DataBlade API 1-17

Public Data Types
CLOB Chapter 6, “Using Smart Large Objects”

DATE Chapter 4, “Using Date and Time Data Types”

DATETIME Chapter 4, “Using Date and Time Data Types”

DECIMAL Chapter 3, “Using Numeric Data Types”

Distinct Chapter 15, “Extending Data Types”

FLOAT Chapter 3, “Using Numeric Data Types”

INT8 Chapter 3, “Using Numeric Data Types”

INTEGER Chapter 3, “Using Numeric Data Types”

INTERVAL Chapter 4, “Using Date and Time Data Types”

LIST Chapter 5, “Using Complex Data Types”

LVARCHAR “Varying-Length Data Type Structures” on page 2-21

MONEY Chapter 3, “Using Numeric Data Types”

MULTISET Chapter 5, “Using Complex Data Types”

NCHAR “Character Data Types” on page 2-12

NVARCHAR “Character Data Types” on page 2-12

Opaque Chapter 15, “Extending Data Types”

POINTER “Pointer Data Types” on page 2-48

ROW Chapter 5, “Using Complex Data Types”

SERIAL Chapter 3, “Using Numeric Data Types”

SERIAL8 Chapter 3, “Using Numeric Data Types”

SET Chapter 5, “Using Complex Data Types”

SMALLFLOAT Chapter 3, “Using Numeric Data Types”

SQL Data Type Information on Corresponding DataBlade API Data Types

(2 of 3)
1-18 IBM Informix DataBlade API Programmer’s Guide

Public Data Types
DataBlade API Support Data Types

The DataBlade API provides additional data types that DataBlade API
functions use. These data types are usually enumerated data types that
restrict valid values for an argument or return value of a DataBlade API
function. Most of these data types, which Figure 1-3 lists, start with the
MI_ prefix.

Figure 1-3
DataBlade API Support Data Types

SMALLINT Chapter 3, “Using Numeric Data Types”

TEXT “Simple Large Objects” on page 2-49

VARCHAR “Character Data Types” on page 2-12

SQL Data Type Information on Corresponding DataBlade API Data Types

(3 of 3)

Support Data Type Purpose Location of Description

MI_CALLBACK_STATUS Enumerates valid return values of a
callback function

“Return Value of a Callback Function”
on page 10-21

MI_CURSOR_ACTION Enumerates movements through a
cursor

“Positioning the Cursor” on page 5-11

“Fetching Rows Into a Cursor” on
page 8-38

MI_EVENT_TYPE Classifies an event “DataBlade API Event Types” on
page 10-3

MI_FUNCARG Enumerates kinds of arguments
that a companion UDR might
receive

“MI_FUNCARG Data Type” on
page 14-85

mi_funcid Holds a routine identifier “Routine Resolution” on page 11-30

MI_ID Enumerates the kinds of identifiers
that the mi_get_id() function can
obtain

Description of mi_get_id() in the
IBM Informix DataBlade API Function
Reference

(1 of 2)
Using the DataBlade API 1-19

Public Data Types
DataBlade API Data Type Structures

Many DataBlade API functions provide information for DataBlade API
modules in special data type structures. The names of these data type struc-
tures begin with the MI_ prefix. Figure 1-4 lists these data type structures,
their purposes, and where you can find detailed descriptions of them.

Figure 1-4
DataBlade API Data Type Structures

MI_SETREQUEST Enumerates values of the iterator-
status constant, which the database
server can return to a UDR through
the mi_fp_request() function

“Writing an Iterator Function” on
page 14-5

MI_TRANSITION_TYPE Enumerates types of state transi-
tions in a transition descriptor

“Understanding State-Transition
Events” on page 10-75

MI_UDR_TYPE Enumerates the kind of UDR for
which the
mi_routine_get_by_typeid()
function obtains a function
descriptor

Description of
mi_routine_get_by_typeid() in the
IBM Informix DataBlade API Function
Reference

Support Data Type Purpose Location of Description

(2 of 2)

DataBlade API Data Type
Structure Purpose More Information

MI_COLL_DESC Collection descriptor, which describes
the structure of a collection

“Using a Collection Descriptor” on
page 5-6

MI_COLLECTION Collection structure, which contains
the elements of a collection

“Using a Collection Structure” on
page 5-6

MI_CONNECTION Connection descriptor, which contains
the execution context for a connection

“Establishing a Connection” on
page 7-20

MI_CONNECTION_INFO Connection-information descriptor,
which contains connection param-
eters for an open connection

“Using Connection Parameters” on
page 7-8

(1 of 4)
1-20 IBM Informix DataBlade API Programmer’s Guide

Public Data Types
MI_DATABASE_INFO Database-information descriptor, which
contains database parameters for an
open connection

“Using Database Parameters” on
page 7-12

MI_DATUM Datum, which provides a transport
mechanism to pass data of an SQL
data type by value or by reference

“The MI_DATUM Data Type” on
page 2-50

MI_ERROR_DESC Error descriptor, which describes an
exception

“Event Information” on page 10-27

MI_FPARAM Function-parameter structure, which
holds information about a UDR that
the routine can access during its
execution

“Accessing MI_FPARAM Routine-
State Information” on page 9-3

MI_FUNCARG Function-argument structure, which
holds information about the
argument of a companion UDR

“MI_FUNCARG Data Type” on
page 14-85

MI_FUNC_DESC Function descriptor, which describes a
UDR that is to be invoked with the
Fastpath interface

“Obtaining a Function Descriptor”
on page 9-26

MI_LO_FD LO file descriptor, which describes an
open smart large object

“Obtaining an LO File Descriptor”
on page 6-72

MI_LO_HANDLE LO handle, which identifies the
location of a smart large object in its
sbspace

“Obtaining an LO Handle” on
page 6-70

MI_LO_SPEC LO-specification structure, which
contains storage characteristics for a
smart large object

“Obtaining the LO-Specification
Structure” on page 6-44

MI_LO_STAT LO-status structure, which contains
status information for a smart large
object

“Obtaining Status Information for a
Smart Large Object” on page 6-89

DataBlade API Data Type
Structure Purpose More Information

(2 of 4)
Using the DataBlade API 1-21

Public Data Types
MI_PARAMETER_INFO Parameter-information descriptor,
which specifies whether callbacks are
enabled or disabled and whether
pointers are checked in client LIBMI
applications

“Using Session Parameters” on
page 7-16

MI_ROW Row (or row structure), which contains
either the column values of a table
row or field values of a row type

“Retrieving Rows” on page 8-66

“Using a Row Structure” on
page 5-49

MI_ROW_DESC Row descriptor, which describes the
structure of a row

“Obtaining Row Information” on
page 8-65

“Using a Row Descriptor” on
page 5-45

MI_SAVE_SET Save-set descriptor, which describes a
save set

“Creating a Save Set” on page 8-96

MI_STATEMENT Statement descriptor, which describes a
prepared SQL statement

“Executing Prepared SQL State-
ments” on page 8-18

mi_statret Statistics-return structure (C language
structure), which holds the collected
statistics for a user-defined data type

“SET_END in statcollect()” on
page 15-74

MI_STREAM Stream descriptor, which describes an
open stream

A stream is an object that can be
written to or read from. The
DataBlade API has functions for the
following predefined stream classes:

� File stream

� String stream

� Varying-length-data stream

DataBlade API Data Type
Structure Purpose More Information

(3 of 4)
1-22 IBM Informix DataBlade API Programmer’s Guide

Public Data Types
The DataBlade API provides constructor and destructor functions for most of
these public data type structures. These functions handle memory allocation
of these data type structures, as follows:

� The constructor function for a DataBlade API data type structure
creates a new instance of the data type structure.

A constructor function usually returns a pointer to the DataBlade API
data type structure and allocates memory for the structure.

The memory allocation is in the current memory duration, which is
PER_ROUTINE by default. For more information, see “Choosing the
Memory Duration” on page 13-7. ♦

� The destructor function for a DataBlade API data type structure frees
the instance of the data type structure.

You specify a pointer to the DataBlade API data type structure to the
destructor function. The destructor function deallocates memory for
the specified data type structure. Call destructor functions only for
DataBlade API data type structures that you explicitly allocated with
the corresponding constructor function.

MI_TRANSITION_DESC Transition descriptor, which describes a
state transition

“Understanding State-Transition
Events” on page 10-75

MI_TYPEID Type identifier, which uniquely
identifies a data type within a
database

“Type Identifiers” on page 2-4

MI_TYPE_DESC Type descriptor, which provides infor-
mation about a data type

“Type Descriptors” on page 2-6

DataBlade API Data Type
Structure Purpose More Information

(4 of 4)

Server
Using the DataBlade API 1-23

Regular Public Functions
Regular Public Functions
The DataBlade API provides support for the following kinds of functions in a
DataBlade API module.

DataBlade API Functions

The DataBlade API functions begin with the mi_ prefix. The milib.h header
file declares most of these DataBlade API functions. The mi.h header file
automatically includes milib.h. You must include mi.h in any DataBlade API
module that uses a DataBlade API function.

Kind of Functions Purpose

DataBlade API functions Provide access to the database server

IBM Informix ESQL/C
functions

Provide operations on certain data types

IBM Informix GLS functions Provide the ability to internationalize your
DataBlade API module
1-24 IBM Informix DataBlade API Programmer’s Guide

Regular Public Functions
The functions of the DataBlade API function library can be divided into the
following categories.

Category of DataBlade API Functions More Information

Data handling:

Obtaining type information “Type Identifiers” on page 2-4

“Type Descriptors” on page 2-6

Transferring data types between computers
(database server only)

“Conversion of Opaque-Type Data with Computer-
Specific Data Types” on page 15-34

Converting data to a different data type “DataBlade API Functions for Date Conversion” on
page 4-7

“DataBlade API Functions for Date-Time or Interval
Conversion” on page 4-22

“DataBlade API Functions for Decimal Conversion”
on page 3-23

“DataBlade API Functions for String Conversion”
on page 2-18

Handling collections: sets, multisets, and lists “Collections” on page 5-4

Converting between code sets (database server
only)

“Internationalization of DataBlade API Modules”
on page 1-32

Handling collections “Collections” on page 5-4

Managing varying-length structures “Varying-Length Data Type Structures” on
page 2-21

Obtaining SERIAL values “Processing Insert Results” on page 8-94

Handling NULL values “SQL NULL Value” on page 2-57

(1 of 4)
Using the DataBlade API 1-25

Regular Public Functions
Session, thread, and transaction management:

Obtaining connection information “Using Connection Parameters” on page 7-8

“Using Database Parameters” on page 7-12

“Using Session Parameters” on page 7-16

Establishing a connection “Establishing a Connection” on page 7-20

Initializing the DataBlade API “Initializing the DataBlade API” on page 7-29

Managing Informix threads (database server only) “Yielding the CPU VP” on page 12-31

“Managing Stack Usage” on page 13-58

Obtaining transaction and server-processing state
changes

“Using a Transition Descriptor” on page 10-30

SQL statement processing:

Sending SQL statements “Executing Basic SQL Statements” on page 8-10

“Executing Prepared SQL Statements” on page 8-18

Obtaining statement information “Returning a Statement Descriptor” on page 8-22

“Obtaining Input-Parameter Information” on
page 8-24

Obtaining result information “Processing Statement Results” on page 8-54

Retrieving rows and row data (also row types and
row-type data)

“Obtaining Row Information” on page 8-65

“Retrieving Rows” on page 8-66

Retrieving columns “Obtaining Column Information” on page 8-66

“Obtaining Column Values” on page 8-68

Using save sets “Using Save Sets” on page 8-95

Category of DataBlade API Functions More Information

(2 of 4)
1-26 IBM Informix DataBlade API Programmer’s Guide

Regular Public Functions
Executing user-defined-routines:

Accessing an MI_FPARAM structure “Accessing MI_FPARAM Routine-State Infor-
mation” on page 9-3

Allocating an MI_FPARAM structure “Using a User-Allocated MI_FPARAM Structure”
on page 9-53

Using the Fastpath interface “Calling UDRs with the Fastpath Interface” on
page 9-22

Accessing a function descriptor “Obtaining Information from a Function
Descriptor” on page 9-35

Executing selectivity and cost functions: “Writing Selectivity and Cost Functions” on
page 14-81

Memory management:

Managing user memory “Managing User Memory” on page 13-32

Managing named memory (database server only) “Managing Named Memory” on page 13-39

Exception handling:

Raising a database exception “Raising an Exception” on page 10-61

Accessing an error descriptor “Using an Error Descriptor” on page 10-28,

“Handling Multiple Exceptions” on page 10-59

Using callback functions “Invoking a Callback” on page 10-6

Category of DataBlade API Functions More Information

(3 of 4)
Using the DataBlade API 1-27

Regular Public Functions
For a complete list of DataBlade API functions in each of these categories, see
the IBM Informix DataBlade API Function Reference, which provides descriptions
of the regular public and advanced functions, in alphabetical order. For more
information on advanced functions of the DataBlade API, see “Advanced
Features” on page 1-31.

Smart-large-object interface:

Creating a smart large object “Functions That Create a Smart Large Object” on
page 6-35

Performing I/O on a smart large object “Functions That Perform Input and Output on a
Smart Large Object” on page 6-35

Moving smart large objects to and from operating-
system files

“Functions That Move Smart Large Objects to and
from Operating-System Files” on page 6-42

Manipulating LO handles “Functions That Manipulate an LO Handle” on
page 6-37

Handling LO-specification structures “Functions That Access an LO-Specification
Structure” on page 6-39

Handling smart-large-object status “Functions That Access an LO-Status Structure” on
page 6-41

Operating-system file interface: “Access to Operating-System Files” on page 12-83

Tracing (database server): “Using Tracing” on page 11-46

Category of DataBlade API Functions More Information

(4 of 4)
1-28 IBM Informix DataBlade API Programmer’s Guide

Regular Public Functions
If an error occurs while a DataBlade API function executes, the function
usually indicates the error with one of the following return values.

IBM Informix ESQL/C Functions

In a DataBlade API module, you can use some of the functions in the
IBM Informix ESQL/C library functions to perform conversions and opera-
tions on different data types. The ESQL/C functions do not begin with the mi_
prefix. Various header files declare these functions. For more information, see
“ESQL/C Header Files” on page 1-11.

The functions of the ESQL/C function library that are valid in a DataBlade API
module can be divided into the following categories.

Way to Indicate an Error More Information

Functions that return a pointer return the
NULL-valued pointer

“NULL-Valued Pointer” on
page 2-58

Functions that return an mi_integer value (or
other integer) return the MI_ERROR status
code

“Handling Errors from DataBlade
API Functions” on page 10-42

Functions that raise an exception “Handling Errors from DataBlade
API Functions” on page 10-42

Category of DataBlade API Function More Information

Byte handling “Manipulating Byte Data” on page 2-45

Character processing “ESQL/C Functions for String Conversion” on page 2-19

“Operations on Character Values” on page 2-20

DECIMAL-type and
MONEY-type processing

“ESQL/C Functions for Decimal Conversion” on page 3-24

“Performing Operations on Decimal Data” on page 3-25

DATE-type processing “ESQL/C Functions for Date Conversion” on page 4-8

“Operations on Date Data” on page 4-9

(1 of 2)
Using the DataBlade API 1-29

Regular Public Functions
For a complete list of ESQL/C functions in each of these categories, see the
IBM Informix DataBlade API Function Reference, which provides descriptions of
these public functions, in alphabetical order.

IBM Informix GLS Functions

The IBM Informix GLS library is an API that lets developers of DataBlade API
modules create internationalized applications. This library is a threadsafe
library. The macros and functions of IBM Informix GLS provide access to the
GLS locales, which contain culture-specific information.

The IBM Informix GLS library contains functions that provide the following
capabilities:

� Process single-byte and multibyte characters

These functions are useful for processing character data in the
NCHAR and NVARCHAR data types, which can contain locale-spe-
cific information.

� Format date, time, and numeric data to locale-specific formats

These functions provide the ability to handle end-user formats for
the DATE, DATETIME, DECIMAL, and MONEY data types.

The mi.h header file does not automatically include the IBM Informix GLS
library. For more information on the IBM Informix GLS library and how to use
it in a DataBlade API module, see “Internationalization of DataBlade API
Modules” on page 1-32.

DATETIME-type processing and
INTERVAL-type processing

“ESQL/C Functions for Date, Time, and Interval Conversion”
on page 4-23

“Operations on Date and Time Data” on page 4-25

INT8-byte processing “Converting INT8 Values” on page 3-12

“Performing Operations on Eight-Byte Values” on page 3-13

Processing for other C-language data
types

“Formatting Numeric Strings” on page 3-33

Category of DataBlade API Function More Information

(2 of 2)

GLS
1-30 IBM Informix DataBlade API Programmer’s Guide

Advanced Features
Advanced Features
The DataBlade API provides a set of advanced features to handle specialized
needs of a UDR or DataBlade module that the regular public features cannot
handle. Figure 1-5 lists the advanced DataBlade API features.

Figure 1-5
Advanced Features of the DataBlade API

Server

Advanced Feature Description More Information

Named memory Enables a UDR to obtain a memory
address through a name assigned to the
memory block

“Managing Named Memory” on
page 13-39

Memory durations Provides a UDR with memory durations
that exceed its lifetime

“Advanced Memory Durations” on
page 13-22

Session-duration
connection descriptor

Enables a UDR to cache connection infor-
mation for the length of a session

“Obtaining a Session-Duration
Connection Descriptor” on
page 7-23

Session-duration
function descriptor

Enables a UDR to cache function
descriptors in named memory so that
many UDRs can execute the same UDR
through Fastpath

“Reusing a Function Descriptor” on
page 9-45

Controlling the VP
environment

Enables a UDR to obtain dynamically
information about the VP and VP class in
which it executes and to make some
changes to this environment

“Controlling the VP Environment”
on page 12-60

Setting the row and
column identifier in the
MI_FPARAM structure
of a UDR

Enables a UDR to change the row
associated with a UDR

Descriptions of mi_fp_setcolid()
and mi_fp_setrow() in the
IBM Informix DataBlade API
Function Reference

Obtaining the current
MI_FPARAM address

Enables a UDR to obtain dynamically the
address of its own MI_FPARAM
structure

Description of
mi_fparam_get_current() in the
IBM Informix DataBlade API
Function Reference

Microseconds
component of last-
modification time for a
smart large object

Enables UDRs to maintain the micro-
seconds component of last-modification
time, which the database server does not
maintain

Description of mi_lo_utimes() in
the IBM Informix DataBlade API
Function Reference
Using the DataBlade API 1-31

Internationalization of DataBlade API Modules
Warning: These DataBlade API features can adversely affect your UDR if you use
them incorrectly. Use them only when the public DataBlade API features cannot
perform the tasks you need done.

Internationalization of DataBlade API Modules
For your DataBlade API module to work in any IBM Informix locale, you
must implement your DataBlade API module so that it is internationalized.
That is, the module must not make any assumptions about the locale in
which it will execute.

A C UDR inherits the server-processing locale as its current processing locale.
The database server dynamically creates a server-processing locale for a
particular session when a client application establishes a connection. The
database server uses the client locale, database locale, the server locale, and
information from the client application to determine the server-processing
locale. For more information on how the database server determines the
server-processing locale, see the IBM Informix GLS User’s Guide. ♦

A client LIBMI application performs its I/O tasks in the client locale. Any
database requests that the application makes execute on the database server
in the server-processing locale. ♦

This section provides the following information about how to internation-
alize a C UDR and the support that the DataBlade API provides for
internationalized UDRs.

GLS

Server

Client
1-32 IBM Informix DataBlade API Programmer’s Guide

Internationalization of DataBlade API Modules
An internationalized C UDR must handle the following GLS considerations.

For more information on how to handle these GLS considerations within a C
UDR, see the chapter on database servers in the IBM Informix GLS User’s Guide.

Tip: DataBlade API modules can also use the functions of the IBM Informix GLS
library to access GLS locales. For more information on the IBM Informix GLS library,
see the “IBM Informix GLS Programmer’s Manual.”

GLS Consideration for an Internationalized UDR DataBlade API Function

What considerations must the C UDR take
when copying character data?

None

How can the C UDR access GLS locales? IBM Informix GLS function
library

How does the UDR handle code-set conversion? mi_get_string()
mi_put_string()
IBM Informix GLS function
library

How does the UDR handle locale-specific
end-user formats?

mi_date_to_string(),
mi_decimal_to_string(),
mi_interval_to_string(),
mi_money_to_string(),
mi_string_to_date(),
mi_string_to_decimal(),
mi_string_to_interval(),
mi_string_to_money()

How can the C UDR access internationalized
exception messages?

mi_db_error_raise()

How can the C UDR access internationalized
tracing messages?

GL_DPRINTF, gl_tprintf()

How do opaque-type support functions handle
locale-sensitive data?

mi_get_string(),
mi_put_string()

How to you obtain names of the different locales
from within a C UDR?

mi_client_locale(),
mi_get_connection_info()
Using the DataBlade API 1-33

2
Chapter
Accessing SQL Data Types
In This Chapter . 2-3

Type Identifiers . 2-4

Type Descriptors 2-6
Type-Structure Conversion 2-8
Data Type Descriptors and Column Type Descriptors 2-9

Character Data Types 2-12
The mi_char1 and mi_unsigned_char1 Data Types 2-12
The mi_char and mi_string Data Types 2-13
The mi_lvarchar Data Type. 2-14

The SQL LVARCHAR Data Type 2-14
Character Data in Binary Mode of a Query 2-15
Character Data in C UDRs 2-15
External Representation of an Opaque Data Type. 2-16

Character Data in a Smart Large Object 2-16
Character Processing 2-16

Transferring Character Data 2-17
Converting Character Data 2-18
Operations on Character Values. 2-20
Character Type Information 2-20

Varying-Length Data Type Structures 2-21
Using a Varying-Length Structure 2-22
Managing Memory for a Varying-Length Structure 2-23

Creating a Varying-Length Structure 2-23
Deallocating a Varying-Length Structure. 2-26

Accessing a Varying-Length Structure 2-27
Varying-Length Data and Null Termination 2-28
Storage of Varying-Length Data. 2-29
Information About Varying-Length Data 2-37

2-2 IBM
Byte Data Types . 2-43
The mi_bitvarying Data Type 2-43
Byte Data in a Smart Large Object 2-45
Byte Processing 2-45

Manipulating Byte Data 2-45
Transferring Byte Data 2-46

Boolean Data Types 2-47
Boolean Text Representation 2-47
Boolean Binary Representation 2-47
Pointer Data Types. 2-48

Simple Large Objects 2-49

The MI_DATUM Data Type 2-50
Contents of an MI_DATUM Structure 2-51

MI_DATUM in a C UDR 2-51
MI_DATUM in a Client LIBMI Application 2-54

Address Calculations with MI_DATUM Values 2-54
Uses of MI_DATUM Structures 2-55

The NULL Constant 2-57
SQL NULL Value 2-57
NULL-Valued Pointer 2-58
 Informix DataBlade API Programmer’s Guide

In This Chapter
This chapter provides an overview of the data types that the DataBlade API
supports. It also describes DataBlade API support for the following types of
data:

� Text and strings

� Varying-length structures

� Byte data

� Miscellaneous SQL data types: POINTER, BOOLEAN, and simple large
objects

� The MI_DATUM structure

� The NULL constant

For references to discussions of different SQL data types in this manual, see
Figure 1-2 on page 1-17.

Figure 1-1 on page 1-14 lists the correspondences between SQL and
DataBlade API data types. To declare a variable for an SQL data type, use the
appropriate DataBlade API predefined data type or structure for the variable.
The mi.h header file includes the header files for the definitions of all
DataBlade API data types. Include mi.h in all DataBlade API modules that use
DataBlade API data types.

The DataBlade API represents the SQL data type of a column value with the
following data type structures:

� A short name, called the type identifier, which identifies only the data
type

� A long name, called the type descriptor, which provides the data type
and information about this type

Type descriptors and type identifiers do not have an associated memory
duration. The DataBlade API allocates them from a special data type cache. ♦

Server
Accessing SQL Data Types 2-3

Type Identifiers
Type Identifiers
A type identifier, MI_TYPEID, is a DataBlade API data type structure that
identifies a data type uniquely. For extended data types, the type identifier is
database-dependent; that is, the same type identifier might identify different
data types for different databases. You can determine the data type that a
type identifier represents with the following DataBlade API functions.

Important: To a DataBlade API module, the type identifier (MI_TYPEID) is an
opaque C data structure. Do not access its internal fields directly. The internal
structure of a type identifier may change in future releases. Therefore, to create
portable code, always use the accessor functions for this structure to determine data
type.

Type-Identifier Check DataBlade API Function

Are two type identifiers equal? mi_typeid_equals()

Does the type identifier represent a built-in data type? mi_typeid_is_builtin()

Does the type identifier represent a collection (SET,
MULTISET, LIST) data type?

mi_typeid_is_collection()

Does the type identifier represent a complex data type
(row type or collection)?

mi_typeid_is_complex()

Does the type identifier represent a distinct data type? mi_typeid_is_distinct()

Does the type identifier represent a LIST data type? mi_typeid_is_list()

Does the type identifier represent a MULTISET data
type?

mi_typeid_is_multiset()

Does the type identifier represent a row type (named
or unnamed)?

mi_typeid_is_row()

Does the type identifier represent a SET data type? mi_typeid_is_set()
2-4 IBM Informix DataBlade API Programmer’s Guide

Type Identifiers
The DataBlade API uses type identifiers in the following situations.

Type Identifier Usage DataBlade API Function More Information

To indicate a column
type in a row descriptor

mi_column_type_id() “Obtaining Column
Information” on
page 8-66

To indicate data type of
arguments in a user-
defined routine (UDR)

mi_fp_argtype(),
mi_fp_setargtype()

“Determining the Data
Type of UDR
Arguments” on
page 9-5

To indicate data type of
return type of a UDR

mi_fp_rettype(),
mi_fp_setrettype()

“Determining the Data
Type of UDR Return
Values” on page 9-11

To indicate data type of a
column with which an
input parameter in a
prepared statement is
associated

mi_parameter_type_id() “Obtaining Input-
ParameterInformation”
on page 8-24

To identify a UDR by the
data types of its
arguments to generate its
function descriptor

mi_routine_get_by_typeid() “Looking Up UDRs” on
page 9-27

To identify a cast
function by the source
and target data types to
generate its function
descriptor

mi_cast_get() “Looking Up Cast
Functions” on
page 9-30

To identify the element
type of a collection

mi_collection_create() “Creating a Collection”
on page 5-7
Accessing SQL Data Types 2-5

Type Descriptors
Type Descriptors
A type descriptor, MI_TYPE_DESC, is a DataBlade API data type structure
that contains information about an SQL data type. For built-in data types, this
information comes from the syscolumns table. For extended data types, it
contains the information in the sysxtdtypes table. Figure 2-1 lists the
DataBlade API accessor functions that obtain information from a type
descriptor.

Figure 2-1
Data Type Information in a Type Descriptor

Important: To a DataBlade API module, the type descriptor (MI_TYPE_DESC) is an
opaque C data structure. Do not access its internal fields directly. The internal
structure of MI_TYPE_DESC may change in future releases. Therefore, to create
portable code, always use the accessor functions in Figure 2-1 to obtain values from
this structure.

Data Type Information
DataBlade API
Accessor Function

The alignment, in number of bytes, of the data type mi_type_align()

Whether a value of the data type is passed by reference or passed by value mi_type_byvalue()

A type descriptor for the element type of a collection data type mi_type_element_typedesc()

The full name (owner.type_name) of the data type mi_type_full_name()

The length of the data type mi_type_length()

The maximum length of the data type mi_type_maxlength()

The owner of the data type mi_type_owner()

The precision (total number of digits) of the data type mi_type_precision()

The qualifier of a DATETIME or INTERVAL data type mi_type_qualifier()

The scale of a data type mi_type_scale()

The short name (no owner) of the data type mi_type_typedesc()

The type identifier for the data type mi_typedesc_typeid()
2-6 IBM Informix DataBlade API Programmer’s Guide

Type Descriptors
The DataBlade API uses type descriptors in the following situations.

Type Descriptor Usage More Information

To indicate a column type in a row
descriptor

Description of mi_column_typedesc()
in the IBM Informix DataBlade API
Function Reference

“Obtaining Column Information” on
page 8-66

To obtain the source type of a distinct
type

Description of
mi_get_type_source_type() in the
IBM Informix DataBlade API Function
Reference

To process returned row data, especially
when not all the rows returned by a
query have the same size and structure

Description of
mi_get_row_desc_from_type_desc() in
the IBM Informix DataBlade API Function
Reference

To identify a cast function by the source
and target data types to generate its
function descriptor

Description of mi_td_cast_get() in the
IBM Informix DataBlade API Function
Reference

“Looking Up Cast Functions” on
page 9-30
Accessing SQL Data Types 2-7

Type-Structure Conversion
Type-Structure Conversion
You can use the following DataBlade API functions to obtain a type descriptor
or type identifier.

Convert from Convert to DataBlade API Function

Type identifier Type descriptor Description of
mi_type_typedesc() in the
IBM Informix DataBlade API
Function Reference

Type descriptor Type identifier Description of
mi_typedesc_typeid() in the
IBM Informix DataBlade API
Function Reference

Type name (as mi_lvarchar) Type identifier Description of
mi_typename_to_id() in the
IBM Informix DataBlade API
Function Reference

Type name (as mi_lvarchar) Type descriptor Description of
mi_typename_to_typedesc() in
the IBM Informix DataBlade API
Function Reference

Type name (as string: char *) Type identifier Description of
mi_typestring_to_id() in the
IBM Informix DataBlade API
Function Reference

Type name (as string: char *) Type descriptor Description of
mi_typestring_to_typedesc() in
the IBM Informix DataBlade API
Function Reference
2-8 IBM Informix DataBlade API Programmer’s Guide

Data Type Descriptors and Column Type Descriptors
Data Type Descriptors and Column Type Descriptors
A type descriptor for a data type and a type descriptor for a column use the
same accessor functions and share the same underlying data type structures.
These descriptors differ, however, in the handling of parameterized data
types (such as DATETIME, INTERVAL, DECIMAL, and MONEY), as follows:

� A data type descriptor holds unparameterized information, which is
general information about the data type.

� A column type descriptor holds parameterized information, which is
the information for the data type of a particular column.

Figure 2-1 on page 2-6 lists the DataBlade API accessor functions that obtain
information from a type descriptor. When you use type-descriptor accessor
functions on parameterized data types, the results depend on which kind of
type descriptor you pass into the accessor function.

For example, Figure 2-2 shows a named row type with fields that have
parameterized data types.

Figure 2-3 shows a code fragment that obtains a data type descriptor and a
column type descriptor for the first field (time_fld) from the row descriptor
(row_desc) for the row_type row type.

CREATE ROW TYPE row_type
(time_fld DATETIME YEAR TO SECOND,
dec_fld DECIMAL(6,3));

Figure 2-2
Sample Named
Row Type with
Parameterized

Fields

type_id = mi_column_type_id(row_desc, 0);
type_desc = mi_type_typedesc(conn, type_id);
col_type_desc = mi_column_type_desc(row_desc, 0);

Figure 2-3
Type Descriptor and

Column Type
Descriptor for

DATETIME Field
Accessing SQL Data Types 2-9

Data Type Descriptors and Column Type Descriptors
For the DATETIME data type of the time_fld column, the type-descriptor
accessor functions obtain different qualifier information for each kind of type
descriptor, as follows:

� The data type descriptor, type_desc, stores the unparameterized type
information for the DATETIME data type.

The following code fragment calls the mi_type_typename() and
mi_type_qualifier() accessor functions on the type_desc type
descriptor (which Figure 2-3 defines):

type_string = mi_type_typename(type_desc);
type_scale = mi_type_qualifier(type_desc);

The call to mi_type_typename() returns the string “datetime” as
the unparameterized name of the data type. The call to
mi_type_qualifier() returns zero (0) as the type qualifier.

� The column type descriptor, col_type_desc, stores the parameterized
type information for the DATETIME field of row_type.

The following code fragment calls the mi_type_typename() and
mi_type_qualifier() accessor functions on the col_type_desc type
descriptor (which Figure 2-3 defines):

type_string = mi_type_typename(col_type_desc);
type_scale = mi_type_qualifier(col_type_desc);

The call to mi_type_typename() returns the string “datetime year

to second” as the parameterized name of the data type. The call to
mi_type_qualifier() returns the actual DATETIME qualifier of 3594,
which is the encoded qualifier value for:

TU_DTENCODE(TU_YEAR, TU_SECOND)

Similarly, for DECIMAL and MONEY data types, the type-descriptor accessor
functions can obtain scale and precision information from a column type
descriptor but not a data type descriptor. Figure 2-4 shows a code fragment
that obtains a data type descriptor and a column type descriptor for the
second field (dec_fld) from the row descriptor (row_desc) for the row_type
row type.

type_id2 = mi_column_type_id(row_desc, 1);
type_desc2 = mi_type_typedesc(conn, type_id2);
col_type_desc2 = mi_column_type_desc(row_desc, 1);

Figure 2-4
Type Descriptor and

Column Type Descriptor
for DECIMAL Field
2-10 IBM Informix DataBlade API Programmer’s Guide

Data Type Descriptors and Column Type Descriptors
For the DECIMAL data type of the dec_fld column, the results from the type-
descriptor accessor functions depend on which type descriptor you pass into
the accessor function, as follows:

� The data type descriptor, type_desc2, stores the unparameterized type
information for DECIMAL.

The following code fragment calls the mi_type_precision() and
mi_type_scale() accessor functions on the type_desc2 type descrip-
tor (which Figure 2-4 defines):

type_prec = mi_type_precision(type_desc2);
type_scale = mi_type_scale(type_desc2);

Both the mi_type_precision() and mi_type_scale() functions return
zero (0) for the precision and scale.

� The column type descriptor, col_type_desc, stores the parameterized
type information for the DECIMAL field of row_type.

The following code fragment calls the mi_type_precision() and
mi_type_scale() accessor functions on the col_type_desc2 type
descriptor (which Figure 2-4 defines):

type_prec = mi_type_precision(col_type_desc2);
type_scale = mi_type_scale(col_type_desc2);

The mi_type_precision() and mi_type_scale() functions return the
actual precision and scale of the DECIMAL column, 6 and 3,
respectively.
Accessing SQL Data Types 2-11

Character Data Types
Character Data Types
The DataBlade API supports the following data types that can hold character
data in a DataBlade API module.

Tip: The database server also supports the TEXT data type for character data. It
stores TEXT character data as a simple large object. However, the DataBlade API does
not directly support simple large objects. For more information, see “Simple Large
Objects” on page 2-49.

The mi_char1 and mi_unsigned_char1 Data Types
The mi_char1 and mi_unsigned_char1 data types hold a single-byte
character. These data types can also hold an integer quantity within C code
so you can also use mi_unsigned_char1 to hold unsigned one-byte integer
values.

Important: To make your DataBlade API module portable, It is recommended that
you use the DataBlade API data type mi_char1 for single-character values instead of
the native C-language counterpart, char. The mi_char1 data type ensures a
consistent size across computer architectures.

DataBlade API
Character Data Type Description

SQL Character
Data Type

mi_char1 One-byte character None

mi_unsigned_char1 Unsigned one-byte character None

mi_char, mi_string Character string or array CHAR, VARCHAR,
NCHAR,
NVARCHAR

mi_lvarchar Varying-length structure to hold
varying-length character data

 LVARCHAR

MI_LO_HANDLE LO handle to a smart large object
that holds character data

 CLOB
2-12 IBM Informix DataBlade API Programmer’s Guide

The mi_char and mi_string Data Types
The mi_char1 and mi_unsigned_char1 data types assume that one character
uses one byte of storage. Therefore, do not use these data types to hold
multibyte characters (which can require up to four bytes of storage). Instead,
use the mi_char, mi_string, or mi_lvarchar data type. For more information
on multibyte characters, see the IBM Informix GLS User’s Guide. ♦

The mi_char1 and mi_unsigned_char1 data types are guaranteed to be one
byte on all computer architectures. Therefore, they can fit into an MI_DATUM
structure and can be passed by value in C UDRs. ♦

All data types, including mi_char1 and mi_unsigned_char1, must be passed
by reference in client LIBMI applications. ♦

The mi_char and mi_string Data Types
The mi_char and mi_string data types are the DataBlade API equivalents of
the char C-language data type. These two data types are exactly the same in
both storage and functionality. Use them to declare character strings in your
DataBlade API module.

You can use the mi_char or mi_string data type to hold CHAR or VARCHAR
data, as long as this data is not an argument or return value of a C UDR. For
more information, see “Character Data in C UDRs” on page 2-15.

You can use the mi_char and mi_string data types to store multibyte
characters (NCHAR and NVARCHAR columns). However, your code must
track how many bytes each character contains. You can use the IBM Informix
GLS interface to assist with this process. For more information on multibyte
characters, see the IBM Informix GLS User’s Guide. For more information, see
the IBM Informix GLS Programmer’s Manual. ♦

The mi_char and mi_string data types cannot fit into an MI_DATUM
structure. They must be passed by reference within C UDRs. ♦

All data types, including mi_char and mi_string, must be passed by
reference within client LIBMI applications. ♦

GLS

Server

Client

GLS

Server

Client
Accessing SQL Data Types 2-13

The mi_lvarchar Data Type
The mi_lvarchar Data Type
The mi_lvarchar data type has the following uses:

� Holds data of an LVARCHAR column

� Holds character data that is passed to or received from an SQL
statement when the query is in binary mode

� Holds data for character arguments and return values of C UDRs

� Holds the external format of an opaque data type ♦

The following sections summarize each of these uses of an mi_lvarchar. For
information about the structure of the mi_lvarchar data type, see “Varying-
Length Data Type Structures” on page 2-21.

The SQL LVARCHAR Data Type

The LVARCHAR data type of SQL stores variable-length character strings
whose length can be up to 32,739 bytes. LVARCHAR is a built-in opaque data
type that is not valid in distributed queries of tables of databases outside the
local server. The DataBlade API supports the LVARCHAR data type with the
mi_lvarchar data type, which is implemented in the DataBlade API as a
varying-length structure.

Tip: The SQL data type LVARCHAR and the DataBlade API data type mi_lvarchar
are not the same. Although you use mi_lvarchar to hold LVARCHAR data,
mi_lvarchar is also used for other purposes.

If you declatre no maximum size for an LVARCHAR column, the default size
is two kilobytes. The maximum valid size is 32,739 bytes, but the maximum
row size in a database table is limited to 32 kilobytes. (In addition, no more
than 195 columns in the same database table can be of varying-length data
types, named or unnamed ROW data types, collection data types, or simple
large object data types, regardless of the declared size of individual columns.)

If you attempt to insert more than the declared maximum size into an
LVARCHAR column, the result depends on the data type of the data:

� If the value comes from a built-in type (such as CHAR or VARCHAR),
the database server truncates the data to the declared column size.

� The database server does not truncate data strings that come from an
mi_lvarchar structure, but the database server does return an error.

Server
2-14 IBM Informix DataBlade API Programmer’s Guide

The mi_lvarchar Data Type
Tip: If you need to store more than 32,739 bytes of text data in a database of the local
database server, use the CLOB data type. The CLOB data type allows you to store the
text data outside the database table, in an sbspace. For more information, see
Chapter 6, “Using Smart Large Objects.”

Character Data in Binary Mode of a Query

When the database server processes a query, it might handle character data
in the following cases:

� Character data that is passed as an input parameter to an SQL
statement

� Character data that an SQL statement returns (for example, as a
column value)

When a query has a control mode of binary, the database server stores
character data in an mi_lvarchar varying-length structure. For more infor-
mation on the control modes of a query, see “Control Modes for Query Data”
on page 8-14.

Character Data in C UDRs

You must use the mi_lvarchar data type if your UDR expects any of the SQL
character data types as an argument or a return value. Within an MI_DATUM
structure, the routine manager passes character data to and from a C UDR as
a pointer to an mi_lvarchar varying-length structure. Therefore, a C UDR
must handle text data as mi_lvarchar values when it receives arguments or
returns data of an SQL character data type, as the following table describes.

Handling Character Data More Information

If the C UDR receives an argument of an
SQL character data type, it must declare its
corresponding parameter as a pointer to an
mi_lvarchar data type.

“Handling Character Arguments” on
page 12-9

If a C UDR returns a value of an SQL
character data type, it must return a
pointer to an mi_lvarchar data type.

“Returning Character Values” on
page 12-20

Server
Accessing SQL Data Types 2-15

Character Data in a Smart Large Object
External Representation of an Opaque Data Type

The database server stores the external representation of an opaque data type
in an mi_lvarchar varying-length structure. The external representation is a
text representation of the opaque-type data. Therefore, the input and output
support functions of an opaque type handle the external representation as an
mi_lvarchar. For more information, see “Input and Output Support
Functions” on page 15-19.

Character Data in a Smart Large Object
You can use a smart large object to store very large amounts of character data.
The MI_LO_HANDLE data type has a structure, called an LO handle, that
identifies the location of smart-large-object data in a separate database
partition, called an sbspace. For smart-large-object data that is character data,
use the SQL CLOB data type. The CLOB data type allows you to store varying-
length character data that is potentially larger than 32 kilobytes. The CLOB
data type is a predefined opaque type (an opaque data type that Informix
defines). For more information, see Chapter 6, “Using Smart Large Objects.”

Character Processing
The DataBlade API library provides the following functions to process
character data:

� Transfer functions

� Conversion functions

� Operation functions

You can use these character-processing functions on NCHAR and NVARCHAR
data. You can also use the character processing that the IBM Informix GLS
interface provides to handle multibyte characters. For more information, see
the IBM Informix GLS Programmer’s Manual. ♦

Server

GLS
2-16 IBM Informix DataBlade API Programmer’s Guide

Character Processing
Transferring Character Data

To transfer character data between different computer architectures, the
DataBlade API provides the following functions that handle type alignment.

The mi_get_string() and mi_put_string() functions are useful in the send
and receive support function of an opaque data type that contains character
data (such as mi_string or mi_char). They ensure that character data remains
aligned when transferred to and from client applications. For more infor-
mation, see “Conversion of Opaque-Type Data with Computer-Specific Data
Types” on page 15-34.

DataBlade API
Function Description

mi_get_string() Copies a character string, converting any difference in
alignment on the client computer to that of the server
computer

mi_put_string() Copies a character string, converting any difference in
alignment on the server computer to that of the client
computer

Server
Accessing SQL Data Types 2-17

Character Processing
Converting Character Data

Both the DataBlade API library and the ESQL/C library provide functions that
convert between the binary and text representation of values.

DataBlade API Functions for String Conversion

Many DataBlade API functions expect to manipulate character data as an
mi_lvarchar value. In addition, all SQL character data types are passed into a
C UDR as an mi_lvarchar value. The DataBlade API provides the following
functions to allow for conversion between a text (null-terminated string)
representation of character data and its binary (internal) equivalent. The
binary representation of character data is a varying-length structure
(mi_lvarchar) equivalent.

The mi_lvarchar_to_string() and mi_string_to_lvarchar() functions are
useful for converting between null-terminated strings and varying-length
structures (whose data is not null-terminated).

The mi_lvarchar_to_string() and mi_string_to_lvarchar() functions are also
useful in the input and output support functions of an opaque data type that
contains mi_lvarchar values. They allow you to convert a string between its
external format (text) and its internal format (mi_lvarchar) when transferred
to and from client applications. For more information, see “Conversion of
Opaque-Type Data Between Text and Binary Representations” on
page 15-26. ♦

For more information on the structure of an mi_lvarchar value, see “Varying-
Length Data Type Structures” on page 2-21.

DataBlade API Function Description

mi_lvarchar_to_string() Creates a null-terminated string from the data in a
varying-length structure

mi_string_to_lvarchar() Creates a varying-length structure to hold a string

Server
2-18 IBM Informix DataBlade API Programmer’s Guide

Character Processing
In addition, the DataBlade API library provides the following functions to
convert text representation of values to their binary representations.

ESQL/C Functions for String Conversion

The ESQL/C function library provides the following functions that facilitate
conversion of values in character data types (such as mi_string or mi_char)
to and from some C-language data types.

In addition, the ESQL/C library provides the following functions to convert
text representation of values to their binary representation.

Type of String More Information

Decimal strings “DataBlade API Functions for Decimal Conversion” on
page 3-23

Date strings “DataBlade API Functions for Date Conversion” on
page 4-7

Date and time strings,
Interval strings

“DataBlade API Functions for Date-Time or Interval
Conversion” on page 4-22

Function
Name Description

rstod() Converts a string to a double type

rstoi() Converts a null-terminated string to a two-byte integer (int2)

rstol() Converts a string to a four-byte integer (int4)

Type of String More Information

INT8 strings “Converting INT8 Values” on page 3-12

Decimal strings “ESQL/C Functions for Decimal Conversion” on page 3-24

Date strings “ESQL/C Functions for Date Conversion” on page 4-8

Date and time
strings

“ESQL/C Functions for Date, Time, and Interval Conversion”
on page 4-23
Accessing SQL Data Types 2-19

Character Processing
Operations on Character Values

The ESQL/C function library provides the following functions to perform
operations on null-terminated strings.

Character Type Information

The DataBlade API provides functions to obtain the following information
about a character (CHAR and VARCHAR) data type:

� The data type: its type name (string), type descriptor, or type
identifier

� The precision: the maximum number of characters in the data type

Function
Name Description

ldchar() Copies a fixed-length string to a null-terminated string

rdownshift() Converts all letters to lowercase

rupshift() Converts all letters to uppercase

stcat() Concatenates one null-terminated string to another

stchar() Copies a null-terminated string to a fixed-length string

stcmpr() Compares two null-terminated strings

stcopy() Copies one null-terminated string to another string

stleng() Counts the number of bytes in a null-terminated string
2-20 IBM Informix DataBlade API Programmer’s Guide

Varying-Length Data Type Structures
The DataBlade API provides the following functions to obtain the type and
precision of a character data type.

Varying-Length Data Type Structures
A varying-length data type structure can hold data whose length varies from
one instance to the next. The database server uses varying-length structures
extensively to manage data transfer for DataBlade API modules.

This section provides the following information about varying-length data
type structures:

� How to use a varying-length structure

� How to manage memory for a varying-length structure

� How to access data in a varying-length structure

Source

DataBlade API Functions

Type Name, Type Identifier,
or Type Descriptor Precision

For a basic data type mi_type_typedesc(),
mi_type_typename()

mi_type_precision()

For a UDR argument mi_fp_argtype(),
mi_fp_setargtype()

mi_fp_argprec(),
mi_fp_setargprec()

For a UDR return
value

mi_fp_rettype(),
mi_fp_setrettype()

mi_fp_retprec(),
mi_fp_setretprec()

For a column mi_column_type_id(),
mi_column_typedesc()

mi_column_precision()

For an input
parameter in a
prepared statement

mi_parameter_type_id(),
mi_parameter_type_name()

mi_parameter_precision()
Accessing SQL Data Types 2-21

Using a Varying-Length Structure
Using a Varying-Length Structure
The DataBlade API provides the following data types to support varying-
length data.

All these DataBlade API data types have the same underlying structure. For
more information about the structure of a varying-length data type, see
“Creating a Varying-Length Structure” on page 2-23.

These varying-length data types (mi_lvarchar, mi_bitvarying, mi_sendrecv,
mi_impexp, mi_impexpbin, and varying-length opaque types) cannot fit into
an MI_DATUM structure. Therefore, they must be passed by reference to and
from C UDRs. ♦

All data types, including mi_lvarchar, must be passed by reference within
client LIBMI applications. ♦

DataBlade API
Data Type

SQL Varying-Length
Data Type More Information

mi_lvarchar LVARCHAR “The mi_lvarchar Data Type” on page 2-14

“Input and Output Support Functions” on
page 15-19

mi_bitvarying BITVARYING “The mi_bitvarying Data Type” on page 2-43

mi_sendrecv SENDRECV “Send and Receive Support Functions” on
page 15-27

mi_impexp IMPEXP “External Unload Representation” on
page 15-37

mi_impexpbin IMPEXPBIN “Internal Unload Representation” on
page 15-48

Server

Client
2-22 IBM Informix DataBlade API Programmer’s Guide

Managing Memory for a Varying-Length Structure
Managing Memory for a Varying-Length Structure
The following table summarizes the memory operations for a varying-length
structure.

This section describes the DataBlade API functions that allocate and
deallocate a varying-length structure.

Important: Do not use either the DataBlade API memory-management functions
(such as mi_alloc() and mi_free()) or the operating-system memory-management
functions (such as malloc() and free()) to handle allocation of varying-length
structures.

Creating a Varying-Length Structure

Figure 2-5 lists the DataBlade API functions that create a varying-length
structure. These functions are constructor functions for a varying-length
structure.

Memory Duration Memory Operation Function Name

Current
memory
duration

Constructor mi_new_var(),
mi_streamread_lvarchar(),
mi_string_to_lvarchar(),
mi_var_copy()

Destructor mi_var_free()
Accessing SQL Data Types 2-23

Managing Memory for a Varying-Length Structure
Figure 2-5
DataBlade API Allocation Functions for Varying-Length Structures

The varying-length structure is not contiguous. The allocation functions in
Figure 2-5 allocate this structure in two parts:

� The varying-length descriptor is a fixed-length structure that stores
the metadata for the varying-length data.

The allocation functions allocate the varying-length descriptor and
set the data length and the data pointer in this descriptor.

� The data portion contains the actual varying-length data.

The allocation functions allocate the data portion with the length that
is specified in the varying-length descriptor. They then set the data
pointer in the varying-length descriptor to point to this data portion.

Important: The varying-length data itself resides in a separate structure; it does not
actually reside in the varying-length descriptor.

Accessor Function Name Description

mi_new_var() Creates a new varying-length structure with a data
portion of the specified size

mi_streamread_lvarchar() Reads a varying-length structure (mi_lvarchar) value
from a stream and copies the value to a buffer

mi_string_to_lvarchar() Creates a new varying-length structure and puts the
specified null-terminated string into the data portion

The data does not contain a null terminator once it is
copied to the data portion.

mi_var_copy() Allocates and creates a copy of an existing varying-
length structure

The copy contains its own data portion with the same
varying-length data as the original varying-length
structure.
2-24 IBM Informix DataBlade API Programmer’s Guide

Managing Memory for a Varying-Length Structure
For example, suppose you call the mi_new_var() function that Figure 2-6
shows.

Figure 2-7 shows the varying-length structure that this mi_new_var() call
allocates. This structure consists of both a descriptor and a data portion of 200
bytes. The mi_new_var() function returns a pointer to this structure, which
the code in Figure 2-6 assigns to the new_lvarch variable.

The allocation functions in Figure 2-5 on page 2-24 allocate the varying-
length structure with the current memory duration. By default, the current
memory duration is PER_ROUTINE. For PER_ROUTINE memory, the database
server automatically deallocates a varying-length structure at the end of the
UDR in which it was allocated. If your varying-length structure requires a
longer memory duration, call the mi_switch_mem_duration() function
before the call to one of the allocation functions in Figure 2-5. ♦

The allocation functions in Figure 2-5 return the newly allocated varying-
length structure as a pointer to an mi_lvarchar data type. For example, the
call to mi_new_var() in Figure 2-6 allocates a new mi_lvarchar structure
with a data portion of 200 bytes.

mi_lvarchar *new_lvarch;
...
new_lvarch = mi_new_var(200);

Figure 2-6
A Sample

mi_new_var() Call

Figure 2-7
Memory Allocated

for a
Varying-Length

Structure

new_lvarch .
.
.

length

data pointer

.

.

.

200

200 bytes
of

memory

Data portion

Descriptor

Server
Accessing SQL Data Types 2-25

Managing Memory for a Varying-Length Structure
To allocate other varying-length data types, cast the mi_lvarchar pointer that
the allocation function returns to the appropriate varying-length data type.
For example, the following call to mi_new_var() allocates a new
mi_sendrecv varying-length structure with a data portion of 30 bytes:

mi_sendrecv *new_sndrcv;
...
new_sndrcv = (mi_sendrecv *)mi_new_var(30);

This cast is not strictly required, but many compilers recommend it and it
does improve clarity of purpose.

Deallocating a Varying-Length Structure

A varying-length structure has a default memory duration of the current
memory duration. To conserve resources, use the mi_var_free() function to
explicitly deallocate the varying-length structure once your DataBlade API
module no longer needs it. The mi_var_free() function is the destructor
function for a varying-length structure. It frees both parts of a varying-length
structure: the varying-length descriptor and the data portion.

Important: Do not use the DataBlade API memory-management function mi_free()
to deallocate a varying-length structure. The mi_free() function does not deallocate
both parts of a varying-length structure.

Use mi_var_free() to deallocate varying-length structures that you have
allocated with mi_new_var() or mi_var_copy(). Do not use it to deallocate
any varying-length structure that the DataBlade API has allocated.

The mi_var_free() function accepts as an argument a pointer to an
mi_lvarchar value. The following call to mi_var_free() deallocates the
mi_lvarchar varying-length structure that Figure 2-6 on page 2-25 allocates:

mi_var_free(new_lvarch);

To deallocate other varying-length data types, cast the mi_lvarchar argument
of mi_var_free() to the appropriate varying-length type, as the following
code fragment shows:

mi_sendrecv *new_sndrcv;
...
new_sndrcv = (mi_sendrecv *)mi_new_var(30);
...
mi_var_free((mi_lvarchar *)new_sndrcv);
2-26 IBM Informix DataBlade API Programmer’s Guide

Accessing a Varying-Length Structure
This cast is not strictly required, but many compilers recommend it and it
does improve clarity of purpose.

Accessing a Varying-Length Structure
A varying-length structure contains the following information:

� Private members, which are not revealed to the DataBlade API
programmer

� Public members, which you can access with DataBlade API functions

After you allocate a varying-length structure, you can access the public
members of this structure with the DataBlade API accessor functions in
Figure 2-8.

Figure 2-8
Varying-Length Accessor Functions

Accessor Function Name Description

mi_get_varlen() Obtains from the varying-length descriptor the
length of the varying-length data

mi_get_vardata() Obtains from the varying-length descriptor the data
pointer to the data contained in the data portion

mi_get_vardata_align() Obtains from the varying-length descriptor the data
pointer to the data contained in the data portion,
adjusting for any initial padding required to align
the data on a specified byte boundary

mi_set_varlen() Sets the length of the varying-length data in the
varying-length descriptor

mi_set_vardata() Sets the data in the data portion of the varying-length
structure

mi_set_vardata_align() Sets the data in the data portion of the varying-length
structure, adding any initial padding required to
align the data on a specified byte boundary

mi_set_varptr() Sets the data pointer in the varying-length descriptor
to the location of a data portion that you allocate
Accessing SQL Data Types 2-27

Accessing a Varying-Length Structure
Important: To a DataBlade API module, the varying-length structure is an opaque C
data structure. Do not access its internal fields directly. The internal structure of the
varying-length structure may change in future releases. Therefore, to create portable
code, always use the accessor functions for this structure to obtain and store values.

Varying-Length Data and Null Termination

When you work with varying-length data, keep the following restrictions in
mind:

� Do not assume that the data in a varying-length structure is null-
terminated.

� Do not assume that you can use any DataBlade API functions or
system calls that operate on a null-terminated string to operate on
varying-length data.

Instead, always use the data length (which you can obtain with the
mi_get_varlen() function) for all operations on varying-length data.

The varying-length accessor functions in Figure 2-8 on page 2-27 do not
automatically interpret a null-terminator character. Instead, they transfer the
number of bytes that the data length in the varying-length descriptor
specifies, as follows:

� The mi_set_vardata() and mi_set_vardata_align() functions copy
the number of bytes that the data length specifies from their string
argument to a varying-length structure.

For more information, see “Storing a Null-Terminated String” on
page 2-31.

� The mi_get_vardata() and mi_get_vardata_align() functions obtain
the data pointer from the varying-length descriptor. Use the data
length to move through the varying-length data.

For more information, see “Obtaining the Data Pointer” on
page 2-40.

To convert between null-terminated strings and an mi_lvarchar structure,
use the mi_string_to_lvarchar() and mi_lvarchar_to_string() functions. For
more information, see “DataBlade API Functions for String Conversion” on
page 2-18.
2-28 IBM Informix DataBlade API Programmer’s Guide

Accessing a Varying-Length Structure
Storage of Varying-Length Data

This section provides the following information about how to store varying-
length data:

� How to store data in a varying-length structure

� How to store a null-terminated string in a varying-length structure

� How to set the data pointer of a varying-length structure

Storing Data in a Varying-Length Structure

The mi_set_vardata() and mi_set_vardata_align() functions copy data into
an existing data portion of a varying-length structure. These functions
assume that the data portion is large enough to hold the data being copied.
The code fragment in Figure 2-9 uses mi_set_vardata() to store data in the
existing data portion of the varying-length structure that new_lvarch
references.

#define TEXT_LENGTH 200
...

mi_lvarchar *new_lvarch;
mi_char *local_var;
...
/* Allocate a new varying-length structure with a 200-byte
* data portion
*/

new_lvarch = mi_new_var(TEXT_LENGTH);

/* Allocate memory for null-terminated string */
local_var = (char *)mi_alloc(TEXT_LENGTH + 1);

/* Create the varying-length data to store */
sprintf(local_var, "%s %s %s", "A varying-length structure ",

"stores data in a data portion, which is separate from ",
"the varying-length structure.");

/* Update the data length to reflect the string length */
mi_set_varlen(new_lvarch, stleng(local_var));

/* Store the varying-length data in the varying-length
* structure that new_lvarch references
*/

mi_set_vardata(new_lvarch, local_var);

Figure 2-9
Storing Data in

Existing Data
Portion of a

Varying-Length
Structure
Accessing SQL Data Types 2-29

Accessing a Varying-Length Structure
In Figure 2-9, the call to mi_new_var() creates a new varying-length
structure and sets the length field to 200. This call also allocates the 200-byte
data portion (see Figure 2-7 on page 2-25).

Figure 2-10 shows the format of the varying-length structure that
new_lvarch references after the call to mi_set_vardata() successfully
completes.

The mi_set_vardata() function copies from the local_var buffer the number
of bytes that the data length specifies. Your code must ensure that the data-
length field contains the number of bytes you want to copy. In the code
fragment in Figure 2-9 on page 2-29, the data-length field was last set by the
call to mi_set_varlen() to 110 bytes. However, if the mi_set_varlen()
function executed after the mi_set_vardata() call, the data length would still
have been 200 bytes (set by mi_new_var()). In this case, mi_set_vardata()
would try to copy 200 bytes starting at the location of the local_var variable.
Because the actual local_var data only occupies 110 bytes of memory, 90
unused bytes remain in the data portion.

Figure 2-10
Format of a

Varying-Length
Structure

new_lvarch .
.
.

length

data pointer

.

.

.

110

A varying-length structure stores
data in a data portion, which is
separate from the varying-length
structure.

Data portion

Descriptor

90 bytes of
memory remain
2-30 IBM Informix DataBlade API Programmer’s Guide

Accessing a Varying-Length Structure
The mi_set_vardata() function aligns the data that it copies on four-byte
boundaries. If this alignment is not appropriate for your varying-length data,
use the mi_set_vardata_align() function to store data on a byte boundary
that you specify. For example, the following call to mi_set_vardata_align()
copies data into the var_struc varying-length structure and aligns this data
on eight-byte boundaries:

char *buff;
mi_lvarchar *var_struc;
...
mi_set_vardata_align(var_struc, buff, 8);

You can determine the alignment of a data type from its type descriptor with
the mi_type_align() function.

Tip: You can also store data in a varying-length structure through the data pointer
that you obtain with the mi_get_vardata() or mi_get_vardata_align() function.
For more information, see “Obtaining the Data Pointer” on page 2-40.

The mi_set_vardata_align() function copies the number of bytes that the
data-length field specifies.

Storing a Null-Terminated String

The mi_string_to_lvarchar() function copies a null-terminated string into a
varying-length structure that it creates. This function performs the following
steps:

1. Allocates a new varying-length structure

The mi_string_to_lvarchar() function allocates the varying-length
descriptor, setting the data length and data pointer appropriately.
Both the data length and the size of the data portion are the length of
the null-terminated string without its null terminator.

The mi_string_to_lvarchar() function allocates the varying-length
structure that it creates with the current memory duration. ♦

2. Copies the data of the null-terminated string into the newly allocated
data portion

The mi_string_to_lvarchar() function does not copy the null termi-
nator of the string.

3. Returns a pointer to the newly allocated varying-length structure

Server
Accessing SQL Data Types 2-31

Accessing a Varying-Length Structure
The following code fragment uses mi_string_to_lvarchar() to store a null-
terminated string in the data portion of a new varying-length structure:

char *local_var;
mi_lvarchar *lvarch;
...
/* Allocate memory for null-terminated string */
local_var = (char *)mi_alloc(200);

/* Create the varying-length data to store */
sprintf(local_var, "%s %s %s", "A varying-length structure ",

"stores data in a data portion, which is separate from ",
"the varying-length structure.");

/* Store the null-terminated string as varying-length data */
lvarch = mi_string_to_lvarchar(local_var);

Figure 2-11 shows the format of the varying-length structure that lvarch
references after the preceding call to mi_string_to_lvarchar() successfully
completes.

The lvarch varying-length structure in Figure 2-11 has a data length of 110.
The null terminator is not included in the data length because the
mi_string_to_lvarchar() function does not copy the null terminator into the
data portion.

Figure 2-11
Copying a

Null-Terminated
String into a

Varying-Length
Structure

lvarch .
.
.

length

data pointer

.

.

.

110

Data portion

Descriptor

A varying-length structure
stores data in a data
portion, which is separate
from the varying-length
structure.

(no null terminator)
2-32 IBM Informix DataBlade API Programmer’s Guide

Accessing a Varying-Length Structure
If your DataBlade API module needs to store a null terminator as part of the
varying-length data, you can take the following steps:

1. Increment the data length accordingly and save it in the varying-
length descriptor with the mi_set_varlen() function.

2. Copy the data, including the null terminator, into the varying-length
structure with the mi_set_vardata() or mi_set_vardata_align()
function.

These functions copy in the null terminator because the data length
includes the null-terminator byte in its count. These functions
assume that the data portion is large enough to hold the string and
any null terminator.

After you perform these steps, you can obtain the null terminator as part of
the varying-length data.

Important: If you choose to store null terminators as part of your varying-length
data, your code must keep track that this data is null-terminated. The DataBlade API
functions that handle varying-length structures do not track the presence of a null
terminator.

The following code fragment stores a string plus a null terminator in the
varying-length structure that lvarch references:

#define TEXT_LENGTH 200
...

mi_lvarchar *lvarch;
char *var_text;
mi_integer var_len;
...
/* Allocate memory for null-terminated string */
var_text = (char *)mi_alloc(TEXT_LENGTH);

/* Create the varying-length data to store */
sprintf(var_text, "%s %s %s", "A varying-length structure ",

"stores data in a data portion, which is separate from ",
"the varying-length structure.");

var_len = stleng(var_text) + 1;

/* Allocate a varying-length structure to hold the
* null-terminated string (with its null terminator)
*/

lvarch = mi_new_var(var_len);
Accessing SQL Data Types 2-33

Accessing a Varying-Length Structure
/* Copy the number of bytes that the data length specifies
* (which includes the null terminator) into the
* varying-length structure
*/

mi_set_vardata(lvarch, var_text);

Figure 2-12 shows the format of this varying-length structure after the
preceding call to mi_set_vardata() successfully completes.

Setting the Data Pointer

The mi_set_varptr() function enables you to set the data pointer in a
varying-length structure to memory that you allocate. The following code
fragment creates an empty varying-length structure, which is a varying-
length structure that has no data portion allocated:

#define VAR_MEM_SIZE 20
...
mi_lvarchar *new_lvarch;
char *var_text;
mi_integer var_len;
...
/* Allocate PER_COMMAND memory for varying-length data */
var_text = (char *)mi_dalloc(VAR_MEM_SIZE, PER_COMMAND);

/* Allocate an empty varying-length structure */
(void)mi_switch_mem_duration(PER_COMMAND);
new_lvarch = mi_new_var(0);

Figure 2-12
Copying a

Null-Terminated
String into a

Varying-Length
Structure

lvarch .
.
.

length

data pointer

.

.

.

111

A varying-length structure
stores data in a data
portion, which is separate
from the varying-length
structure.

(null terminated)

Data portion

Descriptor
2-34 IBM Informix DataBlade API Programmer’s Guide

Accessing a Varying-Length Structure
/* Store the varying-length data in the var_text buffer
* with the fill_buffer() function (which you have coded).
* This function returns the actual length of the nonnull-
* terminated string. It does NOT put a null terminator at
* the end of the data.
*/

var_len = fill_buffer(var_text);

Figure 2-13 shows the format of the varying-length structure that
new_lvarch references after the fill_buffer() function successfully
completes.

The varying-length structure in Figure 2-13 is empty because it has the
following characteristics:

� Data length of zero (0)

� NULL-valued pointer as its data pointer

Figure 2-13
Empty

Varying-Length
Structure

new_lvarch .
.
.

length

data pointer

.

.

.

0

20 bytes of
PER_COMMAND memory

(no null terminator at end of data)

Descriptor

NULL

var_text
Accessing SQL Data Types 2-35

Accessing a Varying-Length Structure
After you have an empty varying-length structure, you can use the
mi_set_varptr() function to set the data pointer to the PER_COMMAND
memory duration, as the following code fragment shows:

/* Set the length of the new varying-length data */
mi_set_varlen(new_lvarch, VAR_MEM_SIZE);

/* Set the pointer to the data portion of the
* varying-length structure to the PER_COMMAND memory
* that 'var_text' references.
*/

mi_set_varptr(new_lvarch, var_text);

The preceding call to mi_set_varlen() updates the length in the varying-
length structure to the length of 20 bytes. Figure 2-14 shows the format of the
varying-length structure that new_lvarch references after the preceding call
to mi_set_varptr() successfully completes.

Make sure that you allocate the data-portion buffer with a memory duration
appropriate to the use of the data portion. ♦

For more information in memory allocation, see Chapter 13, “Managing
Memory.”

Figure 2-14
Setting the Data-

Portion Pointer
in a

Varying-Length
Structure

new_lvarch .
.
.

length

data pointer

.

.

.

20

Data portion

Descriptor

20 bytes of
PER_COMMAND memory

(no null terminator at
end of data)var_text

Server
2-36 IBM Informix DataBlade API Programmer’s Guide

Accessing a Varying-Length Structure
Information About Varying-Length Data

Use the following DataBlade API accessor functions to obtain information
about varying-length data from a varying-length structure.

Obtaining the Data Length

The mi_get_varlen() function returns the data length from a varying-length
descriptor. Keep in mind the following restrictions about data length:

� Do not assume that the data in a varying-length structure is null-
terminated.

Always use the data length to determine the end of the varying-
length data when you perform operations on this data.

� When you increase the length of the data with mi_set_varlen(), this
function does not automatically increase the amount of memory
allocated to the data portion.

You must ensure that there is sufficient space in the data portion to
hold the varying-length data. If there is insufficient space, allocate a
new data portion with a DataBlade API memory-management func-
tion (such as mi_dalloc()) and assign a pointer to this new memory
to the data pointer of your varying-length structure.

For the varying-length structure in Figure 2-7 on page 2-25, a call to
mi_get_varlen() returns 200. For the varying-length structure that
Figure 2-10 on page 2-30 shows, a call to mi_get_varlen() returns 110.

Varying-Length Information DataBlade API Accessor Function

Length of varying-length data mi_get_varlen()

Data portion mi_lvarchar_to_string(), mi_var_to_buffer(),
mi_var_copy()

Data pointer mi_get_vardata(), mi_get_vardata_align()
Accessing SQL Data Types 2-37

Accessing a Varying-Length Structure
Obtaining Data as a Null-Terminated String

The mi_lvarchar_to_string() function obtains the data from a varying-length
structure and converts it to a null-terminated string. This function performs
the following steps:

1. Allocates a new buffer to hold the null-terminated string

The mi_lvarchar_to_string() function allocates the string that it cre-
ates with the current memory duration. ♦

2. Copies the data in the data portion of the varying-length structure to
the newly allocated buffer

The mi_lvarchar_to_string() function automatically copies the
number of bytes that the data length in the varying-length descriptor
specifies. It then appends a null terminator to the string.

3. Returns a pointer to the newly allocated null-terminated string

Suppose you have the varying-length structure that Figure 2-11 on page 2-32
shows. The following code fragment uses the mi_lvarchar_to_string()
function to obtain this varying-length data as a null-terminated string:

mi_lvarchar *lvarch;
char *var_str;
...
var_str = mi_lvarchar_to_string(lvarch);

The code fragment does not need to allocate memory for the var_str string
because the mi_lvarchar_to_string() function allocates memory for the new
string. After the call to mi_lvarchar_to_string() completes successfully, the
var_str variable contains the following null-terminated string:

A varying-length structure stores data in a data portion, which is
separate from the varying-length structure.

Copying Data into a User-Allocated Buffer

The mi_var_to_buffer() function copies the data of an existing varying-
length structure into a user-allocated buffer. The function copies data up to
the data length specified in the varying-length descriptor. You can obtain the
current data length with the mi_get_varlen() function.

Server
2-38 IBM Informix DataBlade API Programmer’s Guide

Accessing a Varying-Length Structure
The following code fragment copies the contents of the varying-length
structure in Figure 2-11 on page 2-32 into the my_buffer user-allocated
buffer:

mi_lvarchar *lvarch;
char *my_buffer;
...
my_buffer = (char *)mi_alloc(mi_get_varlen(lvarch));
mi_var_to_buffer(lvarch, my_buffer);

After the successful completion of mi_var_to_buffer(), the my_buffer
variable points to the following string, which is not null terminated:

A varying-length structure stores data in a data portion, which is
separate from the varying-length structure.

Important: Do not assume that the data in the user-allocated buffer is null termi-
nated. The mi_var_to_buffer() function does not append a null terminator to the
data in the character buffer.

Copying Data into a New Varying-Length Structure

The mi_var_copy() function copies data from an existing varying-length
structure into a new varying-length structure. This function performs the
following steps:

1. Allocates a new varying-length structure

For the new varying-length structure, the mi_var_copy() function
allocates a data portion whose size is that of the data in the existing
varying-length structure.

The mi_var_copy() function allocates the varying-length structure
that it creates with the current memory duration. ♦

2. Copies the data in the data portion of the existing varying-length
structure to the data portion of the newly allocated varying-length
structure

The mi_var_copy() function automatically copies the number of
bytes that the data length in the existing varying-length descriptor
specifies.

3. Returns a pointer to the newly allocated varying-length structure as
a pointer to an mi_lvarchar value

Server
Accessing SQL Data Types 2-39

Accessing a Varying-Length Structure
Suppose you have the varying-length structure that Figure 2-11 on page 2-32
shows. The following code fragment uses the mi_var_copy() function to
create a copy of this varying-length structure:

mi_lvarchar *lvarch, *lvarch_copy;
...
lvarch_copy = mi_var_copy(lvarch);

After the call to mi_var_copy() completes successfully, the lvarch_copy
variable points to a new varying-length structure, as Figure 2-15 shows. The
varying-length structure that lvarch_copy references is a completely separate
structure from the structure that lvarch references.

Obtaining the Data Pointer

The mi_get_vardata() and mi_get_vardata_align() functions obtain the
actual data pointer from the varying-length descriptor. Through this data
pointer, you can directly access the varying-length data.

Figure 2-15
Copying a

Varying-Length
Structure

lvarch_copy .
.
.

length

data pointer

.

.

.

110

Data portion

Descriptor

A varying-length structure
stores data in a data
portion, which is separate
from the varying-length
structure.

(no null terminator)
2-40 IBM Informix DataBlade API Programmer’s Guide

Accessing a Varying-Length Structure
The following code fragment uses the mi_get_vardata() function to obtain
the data pointer from the varying-length structure in Figure 2-10 on
page 2-30:

mi_lvarchar *new_lvarch;
char *var_ptr;
...
/* Get the data pointer of the varying-length structure */
var_ptr = mi_get_vardata(new_lvarch);

Figure 2-16 shows the format of the varying-length structure that
new_lvarch references after the preceding call to mi_get_vardata() success-
fully completes.

Figure 2-16
Getting the

Data Pointer
from a

Varying-Length
Structure

new_lvarch .
.
.

length

data pointer

.

.

.

110

Data portion

Descriptor

var_ptr

A varying-length structure stores
data in a data portion, which is
separate from the varying-length
structure.

90 bytes of
memory remain
Accessing SQL Data Types 2-41

Accessing a Varying-Length Structure
You can then access the data through the var_ptr data pointer, as the
following code fragment shows:

mi_lvarchar *new_lvarch;
mi_integer var_len, i;
mi_char one_char;
mi_char *var_ptr;

var_ptr = mi_get_vardata(new_lvarch);
var_len = mi_get_varlen(new_lvarch);
for (i=0; i<var_len; i++)

{
one_char = var_ptr[i];
/* process the character as needed */
...
}

The database server passes text data to a UDR as an mi_lvarchar structure.
Figure 12-3 on page 12-11 shows the implementation of a user-defined
function named initial_cap(), which ensures that the first letter of a character
string is uppercase and that subsequent letters are lowercase.

The initial_cap() function uses mi_get_vardata() to obtain each character
from the data portion of the varying-length structure. This data portion
contains the character value that the function receives as an argument. The
function checks each letter to ensure that it has the correct case. If the case is
incorrect, initial_cap() uses the data pointer to update the appropriate letter.
The function then returns a new mi_lvarchar structure that holds the result.
For more information, see “Handling Character Arguments” on page 12-9. ♦

The varying-length structure aligns data on four-byte boundaries. If this
alignment is not appropriate for your varying-length data, use the
mi_get_vardata_align() function to obtain the data aligned on a byte
boundary that you specify. You can determine the alignment of a data type
from its type descriptor with the mi_type_align() function.

Tip: When you obtain aligned data from a varying-length structure that is associated
with an extended data type, specify an alignment value to mi_get_vardata_align()
that is appropriate for the extended data type. For more information, see “Specifying
the Memory Alignment of an Opaque Type” on page 15-10.

The mi_get_vardata_align() function obtains the number of bytes that the
data-length field specifies.

Server
2-42 IBM Informix DataBlade API Programmer’s Guide

Byte Data Types
Byte Data Types
The DataBlade API supports the following data types that can hold byte data
in a DataBlade API module.

Tip: The database server also supports the BYTE data type for byte data. It stores
BYTE data as a simple large object. However, the DataBlade API does not directly
support simple large objects. For more information, see “Simple Large Objects” on
page 2-49.

The mi_bitvarying Data Type
The SQL BITVARYING data type stores variable-length byte data that is poten-
tially larger than 255 bytes. The BITVARYING data type is a predefined
opaque type (an opaque data type that Informix defines). The DataBlade API
supports the BITVARYING data type with the mi_bitvarying data type, which
the DataBlade API implements as a varying-length structure.

Tip: The SQL data type BITVARYING and the DataBlade API data type
mi_bitvarying are not exactly the same. Although you use the mi_bitvarying
varying-length structure to hold BITVARYING data, you can also use a varying-
length structure for other varying-length data.

DataBlade API
Character Data Type Description

SQL Character
Data Type

mi_bitvarying Varying-length structure to hold
varying-length byte data

None

MI_LO_HANDLE LO handle to identify a smart large
object that holds byte data

BLOB
Accessing SQL Data Types 2-43

The mi_bitvarying Data Type
For a BITVARYING column, the maximum size of the data is two kilobytes.
This limitation is not inherent to the BITVARYING data type; however, the
maximum row size in a database table is 32 kilobytes. If a BITVARYING
column were to use the full supported size of 32 kilobytes, the table could
contain only one column: a single BITVARYING column.

Tip: If you need to store more than two kilobytes of byte data, use the BLOB data type.
The BLOB data type enables you to store the byte data outside the database table in an
sbspace. For more information, see Chapter 6, “Using Smart Large Objects.”

You can use an mi_bitvarying varying-length structure to store large
amounts of byte data. For more information, see “Varying-Length Data Type
Structures” on page 2-21.

The routine manager uses an mi_bitvarying structure to hold data for an
argument or return value of a C UDR when this data is a varying-length
opaque type. For more information, see “Determining the Passing
Mechanism for an Opaque Type” on page 15-12.

You must use the mi_bitvarying data type if your UDR expects any varying-
length data type as an argument or a return value. Within an MI_DATUM
structure, the routine manager passes varying-length opaque-type data to
and from a C UDR as a pointer to an mi_bitvarying varying-length structure.
Therefore, a C UDR must handle this data as mi_bitvarying values when it
receives arguments or returns data of a varying-length opaque data type, as
the following table describes.

♦

Handling Character Data More Information

If the C UDR receives an argument of a
varying-length opaque data type, it must
declare its corresponding parameter as a
pointer to an mi_bitvarying data type.

“Handling Varying-Length Opaque-
Type Arguments” on page 12-14

If a C UDR returns a value of a varying-
length opaque data type, it must return a
pointer to an mi_bitvarying data type.

“Returning Opaque-Type Values” on
page 12-21

Server
2-44 IBM Informix DataBlade API Programmer’s Guide

Byte Data in a Smart Large Object
Byte Data in a Smart Large Object
You can use a smart large object to store very large amounts of byte data. The
MI_LO_HANDLE data type holds a structure, called an LO handle, that
identifies the location of smart-large-object data in a separate database
partition, called an sbspace. For smart-large-object data that is byte data, use
the SQL BLOB data type. The BLOB data type allows you to store varying-
length byte data of up to four terabytes. The BLOB data type is a predefined
opaque type (an opaque data type that Informix defines). For more infor-
mation, see Chapter 6, “Using Smart Large Objects.”

Byte Processing
The DataBlade API provides the following support for byte data:

� ESQL/C functions that operate on byte data

� DataBlade API functions that transfer byte data

Manipulating Byte Data

The DataBlade API supports the following byte functions from the ESQL/C
library to perform operations on byte data.

Function Name Description

bycmpr() Compares two groups of contiguous bytes

bycopy() Copies bytes from one area to another

byfill() Fills the specified area with a character

byleng() Counts the number of bytes in a string
Accessing SQL Data Types 2-45

Byte Processing
Transferring Byte Data

To transfer byte data between different computer architectures, the
DataBlade API provides the following functions that handle type alignment
and byte order.

The mi_get_bytes() and mi_put_bytes() functions are useful in the send
and receive support function of an opaque data type that contains uninter-
preted bytes. They ensure that byte data remain aligned when transferred to
and from client applications. For more information, see “Conversion of
Opaque-Type Data Between Text and Binary Representations” on page 15-26.

DataBlade API
Function Description

mi_get_bytes() Copies an aligned number of bytes, converting any difference
in alignment or byte order on the client computer to that of
the server computer

mi_put_bytes() Copies an aligned number of bytes, converting any difference
in alignment or byte order on the server computer to that of
the client computer

Server
2-46 IBM Informix DataBlade API Programmer’s Guide

Boolean Data Types
Boolean Data Types
Boolean data holds values to indicate two states: true and false. The DataBlade
API provides support for boolean values in both their text and binary
representations.

Boolean Text Representation
The DataBlade API supports a Boolean value in text representation as a
character enclosed in single quotation marks, with the format that
Figure 2-17 shows.

Figure 2-17
Text Representation of Boolean Data

A Boolean value in its text representation is often called a Boolean string.

Boolean Binary Representation
The SQL BOOLEAN data type holds the internal (binary) format of a Boolean
value. This value is a single-byte representation of Boolean data, as the
following table shows.

Boolean Value Text Representation

True 't' or 'T'

False 'f' or 'F'

Boolean Value Binary Representation

True \1

False \0
Accessing SQL Data Types 2-47

Pointer Data Types
The BOOLEAN data type is a predefined opaque type (an opaque data type
that Informix defines). Its external format is the Boolean text representation
that Figure 2-17 shows. Its internal format consists of the values that the
preceding table shows. For a complete description of the SQL BOOLEAN data
type, see the IBM Informix Guide to SQL: Reference.

Tip: The internal format of the BOOLEAN data type is often referred to as its binary
representation.

The DataBlade API supports the SQL BOOLEAN data type with the
mi_boolean data type. Therefore, the mi_boolean data type also holds the
binary representation of a Boolean value.

An mi_boolean value is one byte on all computer architectures; therefore, it
can fit into an MI_DATUM structure. You can pass mi_boolean data by value
in C UDRs. ♦

In client LIBMI applications, you must pass all data by reference, including
mi_boolean values. ♦

Because an mi_boolean value is smaller than the size of an MI_DATUM
structure, the DataBlade API cast promotes the value to the size of
MI_DATUM when you copy the value into an MI_DATUM structure. When
you obtain the mi_boolean value from an MI_DATUM structure, you need to
reverse the cast promotion to ensure that your value is correct.

MI_DATUM datum;
mi_boolean bool_val;
...
bool_val = (char) datum;

Alternatively, you can declare an mi_integer value to hold the Boolean
value. ♦

Pointer Data Types
The SQL POINTER data type is the SQL equivalent of a generic pointer. This
data type is used in the routine registration of a UDR to indicate that some
data type has no equivalent SQL data type. The DataBlade API represents the
POINTER data type with the mi_pointer data type.

Server

Client

Windows

Server
2-48 IBM Informix DataBlade API Programmer’s Guide

Simple Large Objects
Use the mi_pointer data type only for communications between UDRs. The
POINTER data type is a predefined opaque type (an opaque data type that
Informix defines). However, no opaque-type support functions for this data
type are included.

Important: Because the POINTER data type does not include opaque-type support
functions, you cannot pass this type between the database server and a client appli-
cation. Also, do not define columns to be of type POINTER.

The mi_pointer data type is guaranteed to be the size of the C type void * on
all computer architectures. The C type void * is usually equivalent to a long
type, which is usually four bytes in length.

On 64-bit platforms, void * is eight bytes in length, so mi_pointer is also eight
bytes. ♦

An mi_pointer value can fit into an MI_DATUM structure and can be passed
by value to and from C UDRs. Keep in mind that because mi_pointer actually
contains an address to a value, passing an mi_pointer by value is actually the
same as passing the value to which mi_pointer points by reference.

Important: When you use mi_pointer, make sure that the value that the
mi_pointer references is allocated with a memory duration appropriate to the use of
the value. For more information, see “Choosing the Memory Duration” on
page 13-7.

Simple Large Objects
The DataBlade API does not provide direct support for simple large objects.
Therefore, it cannot directly access TEXT and BYTE columns. However, the
database server provides the following cast functions between simple and
smart large objects.

Type Conversion SQL Cast Function

From the TEXT data type to the CLOB data type TextToClob()

From the BYTE data type to the BLOB data type ByteToBlob()

64-bit
Accessing SQL Data Types 2-49

The MI_DATUM Data Type
For more information on these SQL cast functions, see the description of the
Expression segment in the IBM Informix Guide to SQL: Syntax.

C UDRs can accept TEXT data as arguments because the database server
passes all character data in the mi_lvarchar data type. For more information,
see “Character Data in C UDRs” on page 2-15.

C UDRs can also accept BYTE data as long as they declare and handle this data
as a smart large object. The database server converts the BYTE data to BLOB
data when it passes this data to the UDR. ♦

The MI_DATUM Data Type
The DataBlade API handles a generic data value as an MI_DATUM value, also
called a datum. A datum is stored in a chunk of memory that can fit into a
computer register.

In the C language, the void * type is a typeless way to point to any object and
should hold any integer value. This type is usually equivalent to the long int
type and is usually four bytes in length, depending on the computer archi-
tecture. MI_DATUM is defined as a void * type. The MI_DATUM data type is
guaranteed to be the size of the C type void * on all computer architectures.

On 64-bit platforms, void * is eight bytes in length, so an MI_DATUM value is
stored in eight bytes. ♦

This section provides the following information about the MI_DATUM data
type:

� Contents of an MI_DATUM structure

� Address calculations with MI_DATUM values

� Uses of MI_DATUM structures

Server

64-bit
2-50 IBM Informix DataBlade API Programmer’s Guide

Contents of an MI_DATUM Structure
Contents of an MI_DATUM Structure
A datum in an MI_DATUM structure can describe a value of any SQL data
type. You can use an MI_DATUM structure to transport a value of an SQL data
type between the database server and the DataBlade API module.

MI_DATUM in a C UDR

In a C UDR, the contents of an MI_DATUM structure depend on the SQL data
type of the value, as follows:

� For most data types, the MI_DATUM structure contains a pointer to
the data type.

The actual value of most data types is too large to fit within an
MI_DATUM structure. For such data types, the DataBlade API passes
the value using the pass-by-reference mechanism. Use the contents of
the MI_DATUM structure as a pointer to access the actual value.

� For a few small data types, the MI_DATUM structure contains the
actual data value.

Figure 2-18 shows the few data types whose value can always fit in an
MI_DATUM structure. For these data types, the DataBlade API passes
the value using the pass-by-value mechanism. Use the contents of the
MI_DATUM structure as the actual data value.

Figure 2-18
Types of Values That Fit in an MI_DATUM Structure (Passed by Value)

Server

DataBlade API Data Types Length SQL Data Types

Data types that can hold four-byte integers,
including mi_integer and
mi_unsigned_integer

4 The SQL INTEGER data type

mi_date 4 The SQL DATE data type

Data types that can hold two-byte integers,
including mi_smallint and
mi_unsigned_smallint

2 The SQL SMALLINT data type

(1 of 2)
Accessing SQL Data Types 2-51

Contents of an MI_DATUM Structure
For all data types that Figure 2-18 lists, the DataBlade API passes the value in
an MI_DATUM structure by value unless the variable is declared as pass by
reference. For example, in the following sample function signature, the arg2
variable would be passed by reference to the my_func() UDR because it is
declared as a pointer:

mi_integer my_func(arg1, arg2)
mi_integer arg1; /* passed by value */
mi_integer *arg2; /* passed by reference */

Values of data types with sizes smaller than or equal to the size of void * can
be passed by value because they can fit into an MI_DATUM structure. A value
smaller than the size of MI_DATUM is cast promoted to the MI_DATUM size
with whatever byte position is appropriate for the computer architecture.
When you obtain a smaller passed-by-value value from an MI_DATUM
structure, you need to reverse the cast promotion to ensure that your value is
correct.

For example, an mi_boolean value is a one-byte value. To pass it by value,
the DataBlade API performs something like the following example when it
puts the mi_boolean value into an MI_DATUM structure:

datum = (void *((char) bool))

In the preceding cast promotion, datum is an MI_DATUM structure and bool is
an mi_boolean value.

Data types that can hold a one-byte character,
including mi_char1 and mi_unsigned_char1

1 The SQL CHAR(1) data type

(Multicharacter values must be passed
by reference.)

mi_boolean 1 The SQL BOOLEAN data type

mi_pointer size of (void *) The SQL POINTER data type

C data structure for the internal format of an
opaque data type when the structure size can
fit into an MI_DATUM structure

Depends on
the size of the
C data
structure

An opaque data type whose CREATE
OPAQUE TYPE statement specifies the
PASSEDBYVALUE modifier

DataBlade API Data Types Length SQL Data Types

(2 of 2)
2-52 IBM Informix DataBlade API Programmer’s Guide

Contents of an MI_DATUM Structure
When you obtain the mi_boolean value from the MI_DATUM structure,
reverse the cast-promotion process with something like the following
example:

mi_boolean bool_val;
MI_DATUM datum;
...
bool_val = (char) datum;

To avoid the cast promotion situation, it is recommended that you declare
small pass-by-value SQL types as mi_integer. ♦

For all data types not listed in Figure 2-18, the DataBlade API passes the value
in an MI_DATUM structure by reference; that is, the MI_DATUM structure
contains a pointer to the actual data type.

Warning: Do not assume that any data type of length 1, 2, or 4 is passed by value.
Not all one-, two-, or four-byte datums are passed by value. For example, the mi_real
data type is passed by reference. Always check the data type or use the
mi_type_byvalue() function to determine the passing mechanism.

UDRs store the data types of their arguments in an MI_FPARAM structure.
You can check the type identifier of an argument to determine if it is passed
by value or by reference, as the following code fragment shows:

my_type_id = mi_fp_argtype(my_fparam, 1);
my_type_desc = mi_type_typedesc(conn, my_type_id);
if (mi_type_byvalue(my_type_desc) == MI_TRUE)

{
/* Argument is passed by value: extract one-, two-, or
 * four-byte item from argument
 */
}

else
{
/* Argument is passed by reference: it contains a pointer
 * to the actual value
 */
}

However, a UDR that hardcodes a type identifier in a switch or if statement
to determine actions can handle only built-in data types. It cannot handle all
possible user-defined types because not all of them have unique, type-
specific identifiers.
Accessing SQL Data Types 2-53

Address Calculations with MI_DATUM Values
MI_DATUM in a Client LIBMI Application

The preceding rules for passing values in MI_DATUM structures by reference
and by value do not apply to client LIBMI applications. In client LIBMI appli-
cations, pass values of all data types in MI_DATUM structures by reference.

Address Calculations with MI_DATUM Values
In performing address calculations with datums, do not use char * as the
type. This practice can lead to problems. Instead, calculate addresses with the
size_t data type. To increment a datum by an arbitrary length, use the
following equation:

void *ptr = (void *)((size_t)datum + (size_t)length)

In performing address calculations with an MI_DATUM value, it is common
practice to use char * as an intermediate type because arithmetic operators
are not allowed on the void * type. The ANSI C standard explicitly says that
void * and char * have the same representation.

For example, the following code increments an MI_DATUM value by an
arbitrary length:

MI_DATUM ptr = (MI_DATUM) ((char *)(datum) + (ptrdiff_t)(length))

In the preceding formula, ptrdiff_t is defined in the ANSI C header file,
stddef.h, and is a signed integer data type.

Another addressing scheme follows:

void *ptr = ((char *)datum) + length

Client
2-54 IBM Informix DataBlade API Programmer’s Guide

Uses of MI_DATUM Structures
Uses of MI_DATUM Structures
An MI_DATUM structure holds a value that is transferred to or from the
database server. DataBlade API functions handle MI_DATUM structures
consistently. The following table lists uses of MI_DATUM structures.

Use of MI_DATUM
Structures Description More Information

Routine arguments for
a UDR

When a UDR is called, the routine manager passes
UDR arguments as datums. The data type of each
argument determines whether the routine
manager passes the argument by reference or by
value.

“MI_DATUM Arguments”
on page 12-4

Return value from a
user-defined function

When a user-defined function exits, the
routine manager passes the return value as
a datum. The return-value data type determines
whether the routine manager passes the return
value by reference or by value.

“Returning a Value” on
page 12-17

OUT parameter from
a user-defined
function

When a user-defined function sets an OUT
parameter, the routine manager passes the
parameter back as a datum. The routine manager
always passes an OUT parameter by reference.

“Using an OUT Parameter”
on page 12-22

Routine arguments for
a UDR that you execute
with the Fastpath
interface

When you execute a UDR with the Fastpath
interface, the mi_routine_exec() function passes
UDR arguments as datums. The data type of each
argument determines whether this function passes
the argument by reference or by value.

“Passing in Argument
Values” on page 9-41

Return value from a
UDR that you execute
with the Fastpath
interface

When a user-defined function that you execute
with the Fastpath interface returns, the
mi_routine_exec() function passes the return
value as a datum. The return-value data type
determines whether this function passes the
return value by reference or by value.

“Receiving the Return
Value” on page 9-41

(1 of 2)
Accessing SQL Data Types 2-55

Uses of MI_DATUM Structures
Column values
returned or inserted
in SQL statements

When the mi_value() or mi_value_by_name()
function returns a column value for a query in
binary representation, it returns this value as a
datum.

When the mi_row_create() function creates a
row structure, it accepts column values as datums.

“Obtaining Column
Values” on page 8-68

Element values
retrieved or inserted
in SQL collections

When the mi_collection_fetch() function
fetches an element from a collection, it
represents the element as a datum.

When the mi_collection_insert() function
inserts an element from a collection, it
represents the element as a datum.

“Accessing Elements of a
Collection” on page 5-11

Input-parameter
values in a prepared
SQL statement

When the mi_exec_prepared_statement()
or mi_open_prepared_statement() function
provides input-parameter values, it represents
them as datums.

“Assigning Values to Input
Parameters” on page 8-44

Use of MI_DATUM
Structures Description More Information

(2 of 2)
2-56 IBM Informix DataBlade API Programmer’s Guide

The NULL Constant
The NULL Constant
The DataBlade API supports two different uses of a NULL constant:

� The SQL NULL value

� The NULL-valued pointer

Important: The DataBlade API NULL-valued pointer is not the same as the SQL
NULL value.

SQL NULL Value
The SQL NULL value represents a null or empty value in a database column.
The NULL value is distinct from all valid values for a given data type. For
example, the INTEGER data type holds a four-byte integer. This four-byte
data type can hold 232 (or 4,294,967,296) values:

� zero (0)

� positive values: 1 to 2,147,483,647

� negative values: -1 to -2,147,483,647

� NULL value: −2,147,483,648 (the maximum negative number)
Accessing SQL Data Types 2-57

NULL-Valued Pointer
Because the representation of the NULL value is unique to each data type, the
DataBlade API provides the following functions to assist in determining
whether a value is the SQL NULL value.

NULL-Valued Pointer
The NULL-valued pointer, as defined in stddef.h, is a DataBlade API constant
that represents an initialized pointer. NULL is usually represented as zero (0)
for a C pointer. However zero does not always represent NULL. Use the
keyword NULL in your DataBlade API code to initialize pointers, as the
following line shows:

MI_ROW *row = NULL;

In addition, the DataBlade API uses the NULL-value pointer for the following:

� To signify a default value for arguments in many DataBlade API
functions

� To indicate an unsuccessful execution of a DataBlade API function
that, when successful, returns a pointer to some value

Handling the SQL NULL Value DataBlade API Function

Can a column hold NULL values?

(Was the NOT NULL constraint used to
defined the column?)

mi_column_nullable(),
mi_parameter_nullable()

Does the value represent a NULL value? mi_fp_argisnull(),
mi_fp_setargisnull(),
mi_fp_returnisnull(),
mi_fp_setreturnisnull()

Does the UDR handle NULL arguments?

(Has the UDR been registered to indicate that
it contains code to handle NULL values as
arguments?)

mi_func_handlesnulls()

Does an expensive-UDR argument hold a
NULL value?

mi_funcarg_isnull()
2-58 IBM Informix DataBlade API Programmer’s Guide

n
II
Data Manipulation
Se
ct

io
Chapter 3 Using Numeric Data Types

Chapter 4 Using Date and Time Data Types

Chapter 5 Using Complex Data Types

Chapter 6 Using Smart Large Objects

3
Chapter
Using Numeric Data Types
In This Chapter . 3-3

Integer Data . 3-4
Integer Text Representation 3-4
Integer Binary Representations 3-5

One-Byte Integers 3-5
Two-Byte Integers 3-6
Four-Byte Integers 3-7
Eight-Byte Integers 3-9

Fixed-Point Data. 3-14
Fixed-Point Text Representations. 3-14

Decimal Text Representation 3-14
Monetary Text Representation 3-15

Fixed-Point Binary Representations 3-16
DECIMAL Data Type: Fixed-Point Data 3-16
MONEY Data Type 3-17
The decimal.h Header File 3-18

Transferring Fixed-Point Data 3-22
Converting Decimal Data 3-23

DataBlade API Functions for Decimal Conversion 3-23
ESQL/C Functions for Decimal Conversion 3-24

Performing Operations on Decimal Data 3-25
Obtaining Fixed-Point Type Information 3-26

Floating-Point Data. 3-26
Floating-Point Text Representation 3-27
Floating-Point Binary Representations 3-28

DECIMAL Data Type: Floating-Point Data 3-28
SMALLFLOAT Data Type 3-29
The FLOAT Data Type 3-30

3-2 IBM
Transferring Floating-Point Data 3-31
Converting Floating-Point Decimal Data 3-32
Obtaining Floating-Point Type Information 3-32

Formatting Numeric Strings 3-33
 Informix DataBlade API Programmer’s Guide

In This Chapter
The DataBlade API provides support for the following numeric data types.

This chapter describes these numeric data types as well as the functions that
the DataBlade API supports to process numeric data.

Numeric Data Type DataBlade API Numeric Data Type

Integer data types mi_sint1, mi_int1, mi_smallint,
mi_unsigned_smallint, mi_integer,
mi_unsigned_integer, mi_int8, mi_unsigned_int8

Fixed-point data types mi_decimal, mi_numeric, mi_money

Floating-point data types mi_decimal, mi_double_precision, mi_real
Using Numeric Data Types 3-3

Integer Data
Integer Data
Integer data is a value with no digits to the right of the decimal point. The
DataBlade API provides support for integer values in both their text and
binary representations.

Integer Text Representation
The DataBlade API supports an integer value in text representation as a
quoted string that contains the following characters.

An integer value in its text representation is often called an integer string. For
example, the following integer string contains the value for 1,345:

"1,345"

In an integer string, the thousands separator is optional.

A locale defines the end-user format for numeric values. The end-user format
is the format in which data appears in a client application when the data is a
literal string or character variable. The preceding integer string is the end-
user format for the default locale, U.S. English. A nondefault locale can define
an end-user format that is particular to a country or culture outside the U.S.
For more information, see the IBM Informix GLS User’s Guide. ♦

Contents of Integer String Character

Digits 0–9

Thousands separator: symbol between every three digits , (comma)

GLS
3-4 IBM Informix DataBlade API Programmer’s Guide

Integer Binary Representations
Integer Binary Representations
The DataBlade API provides the following data types to support the binary
representations of integer values.

Tip: The internal format of integer data types is often referred to as their binary
representation.

One-Byte Integers

The DataBlade API supports the following data types for one-byte integer
values.

To hold unsigned one-byte integers, you can also use the mi_unsigned_char1
data type.

Tip: The one-byte integer data types have names that are not consistent with those of
other integer data types. The mi_int1 data type is for an unsigned one-byte integer
while the mi_smallint, mi_integer, and mi_int8 data types are for the signed
version of the two-, four-, and eight-byte integers, respectively. Use the mi_sint1
data type to hold a signed one-byte integer value.

Integer Data DataBlade API Data Type
SQL Integer
Data Type

One-byte integers mi_sint1, mi_int1 None

Two-byte integers mi_smallint, mi_unsigned_smallint SMALLINT

Four-byte integers mi_integer, mi_unsigned_integer INTEGER, SERIAL

Eight-byte integers mi_int8, mi_unsigned_int8 INT8, SERIAL8

DataBlade API One-Byte Integer Description

mi_sint1 Signed one-byte (eight bits) value

mi_int1 Unsigned one-byte (eight bits) value
Using Numeric Data Types 3-5

Integer Binary Representations
The DataBlade API ensures that these integer data types are one byte on all
computer architectures. There is no corresponding SQL data type for one-
byte integers.

Values of the mi_int1 and mi_sint1 data types can fit into an MI_DATUM
structure. They can be passed by value within C user-defined routines
(UDRs). ♦

All data types, including mi_int1 and mi_sint1, must be passed by reference
within client LIBMI applications. ♦

Two-Byte Integers

The DataBlade API supports the following data types for two-byte integer
values.

Use these integer data types to hold values for the SQL SMALLINT data type,
which stores two-byte integer numbers that range from -32,767 to 32,767. For
a description of the SQL SMALLINT data type, see the IBM Informix Guide to
SQL: Reference.

The mi_smallint and mi_unsigned_smallint data types hold the internal
(binary) format of a SMALLINT value. The DataBlade API ensures that the
mi_smallint and mi_unsigned_smallint data types are two bytes on all
computer architectures. Use these integer data types instead of the native C
types (such as short int). If you access two-byte values stored in a SMALLINT
in the database, but use the C short int type, conversion errors might arise if
the two types are not the same size.

Important: To make your DataBlade API module portable across different architec-
tures, it is recommended that you use the DataBlade API data type mi_smallint for
two-byte integer values instead of the native C-language counterpart. The
mi_smallint data type handles the different sizes of integer values across computer
architectures.

DataBlade API Two-Byte Integers Description

mi_smallint Signed two-byte integer value

mi_unsigned_smallint Unsigned two-byte integer value

Server

Client
3-6 IBM Informix DataBlade API Programmer’s Guide

Integer Binary Representations
Values of the mi_smallint and mi_unsigned_smallint data types can fit into
an MI_DATUM structure. They can be passed by value within C UDRs. ♦

All data types, including mi_smallint and mi_unsigned_smallint, must be
passed by reference within client LIBMI applications.

To transfer two-byte integers between different computer architectures, the
DataBlade API provides the following functions that handle type alignment
and byte order.

These DataBlade API functions are useful in the send and receive support
functions of an opaque data type that contains mi_smallint values. They
ensure that two-byte integer (SMALLINT) values remain consistent when
transferred to and from client applications. For more information, see
“Conversion of Opaque-Type Data with Computer-Specific Data Types” on
page 15-34. ♦

Four-Byte Integers

The DataBlade API supports the following data types for four-byte integer
values.

DataBlade API Function Description

mi_get_smallint() Copies an aligned two-byte integer, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_put_smallint() Copies an aligned two-byte integer, converting any
difference in alignment or byte order on the server
computer to that of the client computer

mi_fix_smallint() Converts the specified two-byte integer to or from the type
alignment and byte order of the client computer

DataBlade API Four-Byte Integers Description

mi_integer Signed four-byte integer value

mi_unsigned_integer Unsigned four-byte integer value

Server

Client
Using Numeric Data Types 3-7

Integer Binary Representations
Use these integer data types to hold values for the following SQL four-byte
integer data types:

� The SQL INTEGER data type can hold integer values in the range from
−2,147,483,647 to 2,147,483,647.

� The SQL SERIAL data type holds four-byte integer values that the
database server automatically assigns when a value is inserted in the
column.

For a description of the SQL INTEGER and SERIAL data types, see the
IBM Informix Guide to SQL: Reference.

The mi_integer and mi_unsigned_integer data types hold the internal
(binary) format of an INTEGER or SERIAL value. The DataBlade API ensures
that the mi_integer and mi_unsigned_integer data types are four bytes on
all computer architectures. Use these integer data types instead of the native
C types (such as int or long int). If you access four-byte values stored in a
INTEGER in the database, but use the C int type, conversion errors might
arise if the two types are not the same size.

Important: To make your DataBlade API module portable across different architec-
tures, it is recommended that you use of the DataBlade API data type mi_integer for
four-byte integer values instead of the native C-language counterpart. The
mi_integer data type handles the different sizes of integer values across computer
architectures.

Values of the mi_integer and mi_unsigned_integer data types can fit into an
MI_DATUM structure. They can be passed by value within a C UDR. ♦

Server
3-8 IBM Informix DataBlade API Programmer’s Guide

Integer Binary Representations
All data types, including mi_integer and mi_unsigned_integer, must be
passed by reference within client LIBMI applications.

To transfer four-byte integers between different computer architectures, the
DataBlade API provides the following functions that handle type alignment
and byte order.

The mi_get_integer() and mi_put_integer() functions are useful in the send
and receive support functions of an opaque data type that contains
mi_integer values. They ensure that four-byte integer (INTEGER) values
remain consistent when transferred to and from client applications. For more
information, see “Conversion of Opaque-Type Data with Computer-Specific
Data Types” on page 15-34. ♦

Eight-Byte Integers

The DataBlade API supports the following data types for eight-byte integer
values.

DataBlade API Function Description

mi_get_integer() Copies an aligned four-byte integer, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_put_integer() Copies an aligned four-byte integer, converting any
difference in alignment or byte order on the server
computer to that of the client computer

mi_fix_integer() Converts the specified four-byte integer to or from the
alignment and byte order of the client computer

DataBlade API Eight-Byte Integers Description

mi_int8 Signed eight-byte integer value

mi_unsigned_int8 Unsigned eight-byte integer value

Client
Using Numeric Data Types 3-9

Integer Binary Representations
The DataBlade API ensures that these integer data types are eight bytes on all
computer architectures. Use these integer data types to hold values for the
following SQL eight-byte integer data types:

� The SQL INT8 data type can hold integer values in the range from
-9,223,372,036,854,775,807 to 9,223,372,036,854,775,807
[or −(263-1) to 263-1].

� The SQL SERIAL8 data type holds eight-byte integer values that the
database server automatically assigns when a value is inserted in the
column.

For a description of the SQL INT8 and SERIAL8 data types, see the IBM Informix
Guide to SQL: Reference.

The mi_int8 and mi_unsigned_int8 data types hold the internal (binary)
format of an INT8 or SERIAL8 value.

Values of the mi_int8 and mi_unsigned_int8 data types cannot fit into an
MI_DATUM structure. They must be passed by reference within C UDRs. ♦

All data types, including mi_int8 and mi_unsigned_int8, must be passed by
reference within client LIBMI applications. ♦

The int8.h Header File

The int8.h header file contains the following declarations for use with the
INT8 data type:

� The ifx_int8_t structure

� The INT8-type functions of the ESQL/C library

The mitypes.h header file automatically includes int8.h. In turn, the milib.h
header file automatically includes mitypes.h, and mi.h automatically
includes milib.h. Therefore, you automatically have access to the ifx_int8_t
structure, the mi_int8 data type, or any of the ESQL/C INT8-type functions
when you include mi.h in your DataBlade API module.

Server

Client
3-10 IBM Informix DataBlade API Programmer’s Guide

Integer Binary Representations
Internal INT8 Format

The INT8 data type stores eight-byte integers in an Informix-proprietary
internal format: the ifx_int8_t structure. This structure allows the database to
store eight-byte integers in a computer-independent format.

Tip: The internal format of the INT8 data type is often referred to as its binary
representation.

The mi_int8 data type uses the ifx_int8_t structure to hold the binary repre-
sentation of an INT8 value.

Important: The ifx_int8_t structure is an opaque C data structure to DataBlade API
modules. Do not access its internal fields directly. The internal structure of
ifx_int8_t may change in future releases.

ESQL/C INT8-Type Functions

Because the binary representation of an INT8 (and mi_int8) value is an
Informix-proprietary format, you cannot use standard system functions to
perform integer calculations on mi_int8 values. Instead, the DataBlade API
provides support for the following categories of ESQL/C functions on the
INT8 data type.

Any other operations, modifications, or analyses can produce unpredictable
results.

Type of INT8 Function More Information

Conversion functions “Converting INT8 Values” on page 3-12

Arithmetic-operation functions “Performing Operations on Eight-Byte Values”
on page 3-13
Using Numeric Data Types 3-11

Integer Binary Representations
Transferring Eight-Byte Integers

To transfer eight-byte integers between different computer architectures, the
DataBlade API provides the following functions that handle type alignment
and byte order.

The mi_get_int8() and mi_put_int8() functions are useful in the send and
receive support function of an opaque data type that contains mi_int8 values.
They ensure that eight-byte integer (INT8) values remain aligned when trans-
ferred to and from client applications. For more information, see
“Conversion of Opaque-Type Data with Computer-Specific Data Types” on
page 15-34.

Converting INT8 Values

The ESQL/C library provides the following functions that facilitate
conversion of the binary representation of INT8 (mi_int8) values to and from
some C-language data types.

DataBlade API Function Description

mi_get_int8() Copies an aligned eight-byte integer, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_put_int8() Copies an aligned eight-byte integer, converting any
difference in alignment or byte order on the server
computer to that of the client computer

Function Name Description

ifx_int8cvasc() Converts a C char type value to an mi_int8 type value

ifx_int8cvdbl() Converts a C double (mi_double_precision) type value to an
mi_int8 type value

ifx_int8cvdec() Converts a C mi_decimal type value to an mi_int8 type value

ifx_int8cvflt() Converts a C float (mi_real) type value to an mi_int8 type value

ifx_int8cvint() Converts a C two-byte integer value to an mi_int8 type value

(1 of 2)

Server
3-12 IBM Informix DataBlade API Programmer’s Guide

Integer Binary Representations
Performing Operations on Eight-Byte Values

Use the following ESQL/C library functions to perform arithmetic operations
on INT8 (mi_int8) type values.

Any other operations, modifications, or analyses can produce unpredictable
results.

ifx_int8cvlong() Converts a C four-byte integer value to an mi_int8 type value

ifx_int8toasc() Converts an mi_int8 type value to a text string

ifx_int8todbl() Converts an mi_int8 type value to a C double
(mi_double_precision) type value

ifx_int8todec() Converts an mi_int8 type value to a mi_decimal type value

ifx_int8toflt() Converts an mi_int8 type value to a C float (mi_real) type value

ifx_int8toint() Converts an mi_int8 type value to a C two-byte integer value

ifx_int8tolong() Converts an mi_int8 type value to a C four-byte integer value

Function Name Description

ifx_int8add() Adds two mi_int8 numbers

ifx_int8cmp() Compares two mi_int8 numbers

ifx_int8copy() Copies an mi_int8 number

ifx_int8div() Divides two mi_int8 numbers

ifx_int8mul() Multiplies two mi_int8 numbers

ifx_int8sub() Subtracts two mi_int8 numbers

Function Name Description

(2 of 2)
Using Numeric Data Types 3-13

Fixed-Point Data
Fixed-Point Data
Fixed-point data is a decimal value with a fixed number of digits to the right
and left of the decimal point. The fixed number of digits to the right of the
decimal point is called the scale of the value. The total number of digits in the
fixed-point value is called the precision of the value.

The DataBlade API provides support for the following kinds of fixed-point
data (which correspond to existing SQL data types).

Each of these kinds of fixed-point values has a text and a binary
representation.

Fixed-Point Text Representations
The text representation of a fixed-point value is a quoted string that contains
a series of digits. The DataBlade API supports a text representation for both
decimal and monetary values.

Decimal Text Representation

The DataBlade API supports a decimal value in text representation as a
quoted string that contains the characters that the following table shows.

Type of Fixed-Point Value SQL Data Type

Decimal DECIMAL(p,s)

Monetary MONEY(p)

Contents of Fixed-Point String Character

Digits 0–9

Thousands separator: symbol between every three digits , (comma)

Decimal separator: symbol between the integer and fraction portions
of the number

. (period)
3-14 IBM Informix DataBlade API Programmer’s Guide

Fixed-Point Text Representations
A decimal value in its text representation is often called a decimal string. For
example, the following decimal string contains the value for 1,345.77:

"1,345.77"

In a decimal string, the thousands separator is optional.

A locale defines the end-user format for numeric values. The end-user format
is the format in which data appears in a client application when the data is a
literal string or character variable. The preceding decimal string is the end-
user format for the default locale, U.S. English. A nondefault locale can define
an end-user format that is particular to a country or culture outside the U.S.
For more information, see the IBM Informix GLS User’s Guide. ♦

Monetary Text Representation

The DataBlade API supports a monetary value in text representation as a
quoted string that contains the characters that the following table shows.

A monetary value in its text representation is often called a monetary string.
For example, the following money string contains the value for $1,345.77:

"$1,345.77"

In a monetary string, the thousands separator and the currency symbol are
optional. You can change the format of the monetary string with the
DBMONEY environment variable.

Contents of Fixed-Point String Character

Digits 0–9

Thousands separator: symbol between every three digits , (comma)

Decimal separator: symbol between the integer and fraction
portions of the number

. (period)

Currency symbol: symbol that identifies the units of currency (can
appear in front of or at the end of the monetary value)

$ (dollar sign)

GLS
Using Numeric Data Types 3-15

Fixed-Point Binary Representations
A locale defines the end-user format for monetary values. The end-user format
is the format in which data appears in a client application when the data is a
literal string or character variable. The preceding monetary string is the end-
user format for the default locale, U.S. English. A nondefault locale can define
monetary end-user formats that are particular to a country or culture outside
the U.S. For more information, see the IBM Informix GLS User’s Guide. ♦

Fixed-Point Binary Representations
The DataBlade API provides the following data types to support the binary
representations of SQL fixed-point data types.

Both the DECIMAL and MONEY data types use the same internal format to
store a fixed-point value. For more information on this format, see “Internal
Fixed-Point Decimal Format” on page 3-18.

DECIMAL Data Type: Fixed-Point Data

When you define a column with the DECIMAL(p,s) data type, the syntax of
this definition specifies a fixed-point value for the column. This value has a
total of p (<= 32) significant digits (the precision) and s (<= p) digits to the right
of the decimal point (the scale).

Tip: The DECIMAL data type can also declare a floating-point value with the syntax
DECIMAL(p). For more information, see “DECIMAL Data Type: Floating-Point
Data” on page 3-28. For a complete description of the DECIMAL data type, see the
“IBM Informix Guide to SQL: Reference.”

DataBlade API Data Type SQL Fixed-Point Data Type

mi_decimal, mi_numeric DECIMAL

mi_money MONEY

GLS
3-16 IBM Informix DataBlade API Programmer’s Guide

Fixed-Point Binary Representations
The SQL DECIMAL data type holds the internal (binary) format of a decimal
value. This value is a computer-independent method that represents
numbers of up to 32 significant digits, with valid values in the range 10-129 to
10+125. For more information, see “Internal Fixed-Point Decimal Format” on
page 3-18.

Tip: The internal format of the DECIMAL data type is often referred to as its binary
representation.

The DataBlade API supports the SQL DECIMAL data type with the
mi_decimal data type. Therefore, the mi_decimal data type also holds the
binary representation of a decimal value. The mi_numeric data type is a
synonym for mi_decimal.

Values of the mi_decimal data type cannot fit into an MI_DATUM structure.
They must be passed by reference within C UDRs. ♦

All data types, including mi_decimal, must be passed by reference within
client LIBMI applications. ♦

MONEY Data Type

When you define a column with the MONEY(p) data type, it has a total of p
(<= 32) significant digits (the precision) and a scale of 2 digits.

The default value that the database server uses for scale is locale-dependent.
The default locale specifies a default scale of two. For nondefault locales, if
the scale is omitted from the declaration, the database server creates MONEY
values with a locale-specific scale. For more information, see the IBM Informix
GLS User’s Guide. ♦

You can also specify a scale with the MONEY(p,s) syntax, where s represents
the scale. For a complete description of the MONEY data type, see the
IBM Informix Guide to SQL: Reference.

Tip: The internal format of the MONEY data type is often referred to as its binary
representation.

The DataBlade API supports the SQL MONEY data type with the mi_money
data type. The mi_money data type holds the internal (binary) format of a
MONEY value. This binary representation of the MONEY data type has the
same structure as the fixed-point DECIMAL data type. For more information,
see “Internal Fixed-Point Decimal Format” on page 3-18.

Server

Client

GLS
Using Numeric Data Types 3-17

Fixed-Point Binary Representations
Values of the mi_money data type cannot fit into an MI_DATUM structure.
They must be passed by reference within C UDRs. ♦

All data types, including mi_money, must be passed by reference within
client LIBMI applications. ♦

The decimal.h Header File

The decimal.h header file contains definitions for use with the DECIMAL and
MONEY data types. This header file defines the following items:

� The dec_t typedef

� The decimal macros

� The DECIMAL-type functions of the ESQL/C library

The mitypes.h header file automatically includes decimal.h. In turn, the
milib.h header file automatically includes mitypes.h, and mi.h automati-
cally includes milib.h. Therefore, you automatically have access to the dec_t
structure, the mi_decimal and mi_money data types, any of the decimal
macros, or any of the ESQL/C DECIMAL-type functions when you include
mi.h in your DataBlade API module.

Internal Fixed-Point Decimal Format

The DECIMAL and MONEY data types store fixed-point values in an Informix-
proprietary internal format: the dec_t structure. This structure holds the
internal (binary) format of a DECIMAL or MONEY value, as follows:

#define DECSIZE 16

struct decimal
{
short dec_exp;
short dec_pos;
short dec_ndgts;
char dec_dgts[DECSIZE];
};

typedef struct decimal dec_t;

Server

Client
3-18 IBM Informix DataBlade API Programmer’s Guide

Fixed-Point Binary Representations
This dec_t structure stores the number in pairs of digits. Each pair is a number
in the range 00 to 99. (Therefore, you can think of a pair as a base-100 digit.)
Figure 3-1 shows the four parts of the dec_t structure.

Figure 3-1
Fields in the dec_t Structure

Field Description

dec_exp The exponent of the normalized dec_t type number

The normalized form of this number has the decimal point at the left
of the left-most digit. This exponent represents the number of digit
pairs to count from the left to position the decimal point (or as a
power of 100 for the number of base-100 numbers).

dec_pos The sign of the dec_t type number

The dec_pos can assume any one of the following three values:

1 when the number is zero or greater

0 when the number is less than zero

-1 when the value is null

dec_ndgts The number of digit pairs (number of base-100 significant digits) in the
dec_t type number

This value is also the number of entries in the dec_dgts array.

dec_dgts[] A character array that holds the significant digits of the normalized
dec_t type number, assuming dec_dgts[0] != 0

Each byte in the array contains the next significant base-100 digit in
the dec_t type number, proceeding from dec_dgts[0] to
dec_dgts[dec_ndgts].
Using Numeric Data Types 3-19

Fixed-Point Binary Representations
Figure 3-2 shows some sample dec_t values.

Figure 3-2
Sample Decimal Values

The mi_decimal and mi_money data types use the dec_t structure to hold
the binary representation of a DECIMAL and MONEY value, respectively.

Value

dec_t Structure Field Values

dec_exp dec_pos dec_ndgts dec_dgts[]

-12345.6789 3 0 5 dec_dgts[0] = 01

dec_dgts[1] = 23

dec_dgts[2] = 45

dec_dgts[3] = 67

dec_dgts[4] = 89

1234.567 2 1 4 dec_dgts[0] = 12

dec_dgts[1] = 34

dec_dgts[2] = 56

dec_dgts[3] = 70

-123.456 2 0 4 dec_dgts[0] = 01

dec_dgts[1] = 23

dec_dgts[2] = 45

dec_dgts[3] = 60

480 2 1 2 dec_dgts[0] = 04

dec_dgts[1] = 80

.152 0 1 2 dec_dgts[0] = 15

dec_dgts[1] = 20

-6 1 0 1 dec_dgts[0] = 06
3-20 IBM Informix DataBlade API Programmer’s Guide

Fixed-Point Binary Representations
The Decimal Macros

The decimal.h header file also includes the following macros that might be
useful in a DataBlade API module.

Tip: For a complete list of decimal macros, consult the decimal.h header file that is
installed with your database server. This header file resides in the incl/public subdi-
rectory of the INFORMIXDIR directory.

ESQL/C DECIMAL-Type Functions

Because the binary representation of DECIMAL (mi_decimal) and MONEY
(mi_money) values is an Informix-proprietary format, you cannot use
standard system functions to perform decimal operations on mi_decimal
and mi_money values. Instead, the DataBlade API provides support for the
following ESQL/C functions on the DECIMAL and MONEY data types.

Any other operations, modifications, or analyses can produce unpredictable
results.

Decimal Macro Description

DECLEN(p, s) Calculates the minimum number of bytes required to hold
the DECIMAL(p,s) value

DECPREC(size) Calculates a default precision given the number of bytes
(size) used to store the number

PRECTOT(dec) Returns the total precision of the dec value

PRECDEC(dec) Returns the scale of the dec value

PRECMAKE(p, s) Creates a precision value from the specified total precision
(p) and scale (s)

Type of DECIMAL Function More Information

Conversion functions “ESQL/C Functions for Decimal Conversion”
on page 3-24

Arithmetic-operation functions “Performing Operations on Decimal Data” on
page 3-25
Using Numeric Data Types 3-21

Transferring Fixed-Point Data
Transferring Fixed-Point Data
To transfer fixed-point data between different computer architectures, the
DataBlade API provides the following functions that handle type alignment
and byte order.

The mi_get_decimal(), mi_get_money(), mi_put_decimal(), and
mi_put_money() functions are useful in the send and receive support
function of an opaque data type that contains mi_decimal or mi_money
values. They ensure that fixed-point (DECIMAL or MONEY) values remain
aligned when transferred to and from client applications. For more infor-
mation, see “Conversion of Opaque-Type Data with Computer-Specific Data
Types” on page 15-34.

DataBlade API Function Description

mi_get_decimal() Copies an aligned mi_decimal value, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_get_money() Copies an aligned mi_money value, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_put_decimal() Copies an aligned mi_decimal value, converting any
difference in alignment or byte order on the server
computer to that of the client computer

mi_put_money() Copies an aligned mi_money value, converting any
difference in alignment or byte order on the server
computer to that of the client computer

Server
3-22 IBM Informix DataBlade API Programmer’s Guide

Converting Decimal Data
Converting Decimal Data
Both the DataBlade API library and the ESQL/C library provide functions that
convert the binary representation for DECIMAL (mi_decimal) or MONEY
(mi_money) values.

DataBlade API Functions for Decimal Conversion

The DataBlade API library provides the following functions that convert
between a text (string) representation of a decimal or monetary value and its
binary (internal) equivalent.

The mi_decimal_to_string(), mi_money_to_string(),
mi_string_to_decimal(), and mi_string_to_money() functions are useful in
the input and output support function of an opaque data type that contains
mi_decimal or mi_money values. They allow you to convert fixed-point
(DECIMAL or MONEY) values between their external format (text) and their
internal format (dec_t) when transferred to and from client applications. For
more information, see “Conversion of Opaque-Type Data Between Text and
Binary Representations” on page 15-26. ♦

The mi_decimal_to_string(), mi_money_to_string(),
mi_string_to_decimal(), and mi_string_to_money() functions use the
current processing locale to handle locale-specific formats in the decimal or
monetary string. For more information, see the IBM Informix GLS User’s
Guide. ♦

DataBlade API Function Converts from Converts to

mi_decimal_to_string() DECIMAL (mi_decimal) Decimal string

mi_money_to_string() MONEY (mi_money) Interval string

mi_string_to_decimal() Decimal string DECIMAL (mi_decimal)

mi_string_to_money() Monetary string MONEY (mi_money)

Server

GLS
Using Numeric Data Types 3-23

Converting Decimal Data
ESQL/C Functions for Decimal Conversion

The ESQL/C function library provides the following functions to convert a
DECIMAL (or MONEY) value to and from some C-language data types.

Tip: The ESQL/C library also provides functions to convert some numeric data types
to formatted strings. For more information, see “Formatting Numeric Strings” on
page 3-33.

Function Name Description

deccvasc() Converts a C char type to an mi_decimal type value

deccvdbl() Converts a C double (mi_double_precision) type to an
mi_decimal type value

deccvint() Converts a C two-byte integer value to an mi_decimal
type value

deccvlong() Converts a C four-byte integer value to an mi_decimal
type value

dececvt() and decfcvt() Converts an mi_decimal type value to text

dectoasc() Converts an mi_decimal type value to text

dectodbl() Converts an mi_decimal type value to a C double
(mi_double_precision) type value

dectoint() Converts an mi_decimal type value to a C two-byte
integer value

dectolong() Converts an mi_decimal type value to a C four-byte
integer value
3-24 IBM Informix DataBlade API Programmer’s Guide

Performing Operations on Decimal Data
Performing Operations on Decimal Data
The ESQL/C function library provides the following functions to perform
arithmetic operations on DECIMAL (mi_decimal) and MONEY (mi_money)
values.

Any other operations, modifications, or analyses can produce unpredictable
results.

Function Name Description

decadd() Adds two mi_decimal numbers

deccmp() Compares two mi_decimal numbers

deccopy() Copies a mi_decimal number

decdiv() Divides two mi_decimal numbers

decmul() Multiplies two mi_decimal numbers

decround() Rounds an mi_decimal number

decsub() Subtracts two mi_decimal numbers

dectrunc() Truncates an mi_decimal number
Using Numeric Data Types 3-25

Obtaining Fixed-Point Type Information
Obtaining Fixed-Point Type Information
The DataBlade API provides the following functions to obtain the scale and
precision of a fixed-point (DECIMAL and MONEY) data type.

Floating-Point Data
A floating-point value is a large decimal value that is stored in a fixed field
width. Because the field width is fixed, a floating-point number that is larger
than the field width only retains its most significant digits. That is, digits that
do not fit into the fixed width are dropped (rounded or truncated).

The DataBlade API provides support for the following kinds of floating-point
data (which correspond to existing SQL data types).

These floating-point values have both text and binary representations.

Source DataBlade API Functions

For a data type mi_type_precision(), mi_type_scale()

For a UDR argument mi_fp_argprec(), mi_fp_setargprec(),
mi_fp_argscale(), mi_fp_setargscale()

For a UDR return value mi_fp_retprec(), mi_fp_setretprec(),
mi_fp_retscale(), mi_fp_setretscale()

For a column in a row
(or field in a row type)

mi_column_precision(), mi_column_scale()

For an input parameter in
a prepared statement

mi_parameter_precision(), mi_parameter_scale()

Type of Floating-Point Value SQL Data Type

Decimal DECIMAL(p)

True floating-point SMALLFLOAT, FLOAT
3-26 IBM Informix DataBlade API Programmer’s Guide

Floating-Point Text Representation
Floating-Point Text Representation
The DataBlade API supports a floating-point value in text representation as a
quoted string that contains the following characters.

For example, the following integer string contains the value for 1,345.77431:

"1,345.77431"

In a floating-point string, the thousands separator is optional.

Important: Because floating-point numbers retain only their most significant digits,
the number that you enter in this type of column and the number the database server
displays can differ slightly.

A locale defines the end-user format for numeric values. The end-user format
is the format in which data appears in a client application when the data is a
literal string or character variable. The preceding floating-point string is the
end-user format for the default locale, U.S. English. A nondefault locale can
define an end-user format that is particular to a country or culture outside the
U.S. For more information, see the IBM Informix GLS User’s Guide. ♦

Contents of Integer String Character

Digits 0–9

Thousands separator: symbol between every three digits , (comma)

Decimal separator: symbol between the integer and fraction portions
of the number

. (period)

GLS
Using Numeric Data Types 3-27

Floating-Point Binary Representations
Floating-Point Binary Representations
The DataBlade API provides the following data types to support the binary
representations of floating-point values.

DECIMAL Data Type: Floating-Point Data

When you define a column with the DECIMAL(p) data type, the syntax of this
definition specifies a floating-point value for the column. This value has a
total of p (<= 32) significant digits (its precision). DECIMAL(p) has an absolute
value range between 10-130 and 10124.

Tip: The DECIMAL data type can also declare a fixed-point value with the syntax
DECIMAL(p,s). For more information, see “DECIMAL Data Type: Fixed-Point
Data” on page 3-16. For a complete description of the DECIMAL data type, see the
“IBM Informix Guide to SQL: Reference.”

SQL Floating-Point Data Type DataBlade API Data Type

DECIMAL mi_decimal

SMALLFLOAT mi_real

FLOAT mi_double_precision
3-28 IBM Informix DataBlade API Programmer’s Guide

Floating-Point Binary Representations
The mi_decimal data type stores floating-point DECIMAL values as well as
fixed-point values. Therefore, information about mi_decimal in “Fixed-Point
Data” on page 3-14 also applies to mi_decimal when it contains a floating-
point value. In particular, the following statements are true.

Values of the mi_decimal data type cannot fit into an MI_DATUM structure.
They must be passed by reference within C UDRs. ♦

All data types, including mi_decimal, must be passed by reference within
client LIBMI applications. ♦

SMALLFLOAT Data Type

The SQL SMALLFLOAT data type can hold single-precision floating-point
values. The DataBlade API supports the SMALLFLOAT data type with the
mi_real data type. The mi_real data type stores internal SMALLFLOAT
values, as 32-bit floating-point values.

Although an mi_real value can fit into an MI_DATUM structure, values of
this data type are always passed by reference. Unlike other four-byte values,
mi_real values cannot be passed by value. All values greater than four bytes
are passed by reference.

Decimal Information More Information

The mi_decimal data type stores values in an
internal (binary) format.

“Internal Fixed-Point Decimal
Format” on page 3-18

All the ESQL/C library functions that handle
fixed-point values in mi_decimal can also handle
mi_decimal when it contains floating-point
values.

“ESQL/C DECIMAL-Type
Functions” on page 3-21

All DataBlade API functions that accept
fixed-point values in mi_decimal also accept
mi_decimal when it contains a floating-point
value.

“Transferring Fixed-Point
Data” on page 3-22 and
“Converting Decimal Data” on
page 3-23

Server

Client

Server
Using Numeric Data Types 3-29

Floating-Point Binary Representations
Therefore, if a UDR is called from an SQL statement, the database server
passed a pointer to any mi_real arguments; it does not pass the actual value.
Similarly, if a user-defined function returns an mi_real value to an SQL
statement, you must allocate space for the value, fill this space, and return a
pointer to this space.

DataBlade API modules that are not invoked from SQL statements might pass
mi_real values by value. However, for consistency, you might want to pass
them by reference. ♦

All data types, including mi_real, must be passed by reference within client
LIBMI applications. ♦

Important: To make your DataBlade API module portable across different architec-
tures, it is recommended that you use the DataBlade API data type, mi_real, instead
of the native C-language counterpart, float. The mi_real data type handles the
different sizes of small floating-point values across computer architectures.

The FLOAT Data Type

The SQL FLOAT data type can hold double-precision floating-point values.
The DataBlade API supports the FLOAT data type with the
mi_double_precision data type. The mi_double_precision data type stores
internal FLOAT values, as 64-bit floating-point values.

Values of the mi_double_precision data type cannot fit into an MI_DATUM
structure. They must be passed by reference within C UDRs. ♦

All data types, including mi_double_precision, must be passed by reference
within client LIBMI applications. ♦

Important: To make your DataBlade API module portable across different architec-
tures, it is recommended that you use the DataBlade API data type,
mi_double_precision, instead of the native C-language counterpart, double. The
mi_double_precision data type handles the different sizes of large floating-point
values across computer architectures.

Client

Server

Client
3-30 IBM Informix DataBlade API Programmer’s Guide

Transferring Floating-Point Data
Transferring Floating-Point Data
To transfer floating-point data between different computer architectures, the
DataBlade API provides the following functions that handle type alignment
and byte order.

The mi_get_decimal(), mi_get_double_precision(), mi_get_real(),
mi_put_decimal(), mi_put_double_precision(), and mi_put_real()
functions are useful in the send and receive support function of an opaque
data type that contains mi_decimal, mi_double_precision, or mi_real
values. They ensure that floating-point (DECIMAL, FLOAT, or SMALLFLOAT)
values remain aligned when transferred to and from client applications. For
more information, see “Conversion of Opaque-Type Data with Computer-
Specific Data Types” on page 15-34.

DataBlade API Function Description

mi_get_decimal() Copies an aligned mi_decimal value, converting
any difference in alignment or byte order on the
client computer to that of the server computer

mi_get_double_precision() Copies an aligned mi_double_precision value,
converting any difference in alignment or byte order
on the client computer to that of the server
computer

mi_get_real() Copies an aligned mi_real value, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_put_decimal() Copies an aligned mi_decimal value, converting
any difference in alignment or byte order on the
server computer to that of the client computer

mi_put_double_precision() Copies an aligned mi_double_precision value,
converting any difference in alignment or byte order
on the server computer to that of the client
computer

mi_put_real() Copies an aligned mi_real value, converting any
difference in alignment or byte order on the server
computer to that of the client computer

Server
Using Numeric Data Types 3-31

Converting Floating-Point Decimal Data
Converting Floating-Point Decimal Data
Both the DataBlade API library and the ESQL/C library provide functions that
convert between floating-point decimal strings and internal DECIMAL
formats. For more information, see “Converting Decimal Data” on page 3-23.

Obtaining Floating-Point Type Information
The DataBlade API provides the following functions to obtain the precision
of a floating-point DECIMAL (DECIMAL(p)).

Tip: The FLOAT and SMALLFLOAT data types do not have precision and scale
values.

Source DataBlade API Functions

For a data type mi_type_precision()

For a UDR argument mi_fp_argprec(), mi_fp_setargprec()

For a UDR return value mi_fp_retprec(), mi_fp_setretprec()

For a column mi_column_precision()

For an input parameter in a prepared
statement

mi_parameter_precision()
3-32 IBM Informix DataBlade API Programmer’s Guide

Formatting Numeric Strings
Formatting Numeric Strings
The ESQL/C library provides special functions that enable you to format
numeric expressions as strings. These numeric-formatting functions apply a
given formatting mask to a numeric value to allow you to line up decimal
points, right- or left-justify the number, enclose a negative number in paren-
theses, and so on. The ESQL/C library includes the following functions that
support numeric-formatting masks for numeric values.

Tip: Both the ESQL/C library and the DataBlade API library provide functions to
convert between mi_decimal values and other C-language data types. For more
information, see “Converting Decimal Data” on page 3-23.

This section describes the characters that you can use to create a numeric-
formatting mask. It also provides extensive examples that show the results of
applying these masks to numeric values. A numeric-formatting mask specifies
a format to apply to some numeric value. This mask is a combination of the
following formatting characters:

Function Name Description

rfmtdec() Converts an mi_decimal value to a string

rfmtdouble() Converts a C-language double value to a string

rfmtlong() Converts a C-language long integer value to a string

* This character fills with asterisks any positions in the display field that
would otherwise be blank.

& This character fills with zeros any positions in the display field that
would otherwise be blank.

This character changes leading zeros to blanks. Use this character to
specify the maximum leftward extent of a field.

< This character left-justifies the numbers in the display field. It changes
leading zeros to a null string.
Using Numeric Data Types 3-33

Formatting Numeric Strings
Any other characters in the formatting mask are reproduced literally in the
result.

, This character indicates the symbol that separates groups of three dig-
its (counting leftward from the units position) in the whole-number
part of the value. By default, this symbol is a comma. You can set the
symbol with the DBMONEY environment variable. In a formatted
number, this symbol appears only if the whole-number part of the
value has four or more digits.

. This character indicates the symbol that separates the whole-number
part of a money value from the fractional part. By default, this symbol
is a period. You can set the symbol with the DBMONEY environment
variable. You can have only one period in a format string.

- This character is a literal. It appears as a minus sign when expr1 is less
than zero. When you group several minus signs in a row, a single
minus sign floats to the rightmost position that it can occupy; it does
not interfere with the number and its currency symbol.

+ This character is a literal. It appears as a plus sign when expr1 is greater
than or equal to zero and as a minus sign when expr1 is less than zero.
When you group several plus signs in a row, a single plus or minus
sign floats to the rightmost position that it can occupy; it does not
interfere with the number and its currency symbol.

(This character is a literal. It appears as a left parenthesis to the left of a
negative number. It is one of the pair of accounting parentheses that
replace a minus sign for a negative number. When you group several
in a row, a single left parenthesis floats to the rightmost position that
it can occupy; it does not interfere with the number and its currency
symbol.

) This is one of the pair of accounting parentheses that replace a minus
sign for a negative value.

$ This character displays the currency symbol that appears at the front
of the numeric value. By default, the currency symbol is the dollar ($)
sign. You can set the currency symbol with the DBMONEY environ-
ment variable. When you group several dollar signs in a row, a single
currency symbol floats to the rightmost position that it can occupy; it
does not interfere with the number.
3-34 IBM Informix DataBlade API Programmer’s Guide

Formatting Numeric Strings
When you use the following characters within a formatting mask, the
characters float; that is, multiple occurrences of the character at the left of the
pattern in the mask appear as a single character as far to the right as possible
in the formatted number (without removing significant digits):

-
+
(
)
$

For example, if you apply the mask $$$,$$$.## to the number 1234.56, the
result is $1,234.56.

When you use rfmtdec(), rfmtdouble(), or rfmtlong() to format MONEY
values, the function uses the currency symbols that the DBMONEY
environment variable specifies. If you do not set this environment variable,
the numeric-formatting functions use the currency symbols that the client
locale defines. The default locale, U.S. English, defines currency symbols as if
you set DBMONEY to “$,.”. (For a discussion of DBMONEY, see the
IBM Informix Guide to SQL: Reference). For more information on locales, see the
IBM Informix GLS User’s Guide. ♦

Figure 3-3 shows sample format strings for numeric expressions. The
character b represents a blank or space.

Figure 3-3
Sample Format Patterns and Their Results

Formatting Mask Numeric Value Formatted Result

"#####"
"&&&&&"
"$$$$$"
"*****"
"<<<<<"

0
0
0
0
0

bbbbb
00000
bbbb$

(null string)

“##,###”
"##,###"
"##,###"
"##,###"
"##,###"
"##,###"
"##,###"

12345
1234
123
12
1
-1
0

12,345
b1,234
bbb123
bbbb12
bbbbb1
bbbbb1
bbbbbb

(1 of 5)

GLS
Using Numeric Data Types 3-35

Formatting Numeric Strings
"&&,&&&"
"&&,&&&"
"&&,&&&"
"&&,&&&"
"&&,&&&"
"&&,&&&"
"&&,&&&"

12345
1234
123
12
1
-1
0

12,345
01,234
000123
000012
000001
000001
000000

"$$,$$$"
"$$,$$$"
"$$,$$$"
"$$,$$$"
"$$,$$$"
"$$,$$$"
"$$,$$$"
"$$,$$$"
(DBMONEY set to DM)

12345
1234
123
12
1
-1
0
1234

***** (overflow)
$1,234
bb$123
bbb$12
bbbb$1
bbbb$1
bbbbb$
DM1,234

"**,***"
"**,***"
"**,***"
"**,***"
"**,***"
"**,***"

12345
1234
123
12
1
0

12,345
*1,234
***123
****12
*****1

"##,###.##"
"##,###.##"
"##,###.##"
"##,###.##"
"##,###.##"
"##,###.##"
"##,###.##"
"##,###.##"
"##,###.##"

12345.67
1234.56
123.45
12.34
1.23
0.12
0.01
-0.01
-1

12,345.67
b1,234.56
bbb123.45
bbbb12.34
bbbbb1.23
bbbbbb.12
bbbbbb.01
bbbbbb.01
bbbbb1.00

"&&,&&&.&&"
"&&,&&&.&&"
"&&,&&&.&&"
"&&,&&&.&&"

.67
1234.56
123.45
0.01

000000.67
01,234.56
000123.45
000000.01

Formatting Mask Numeric Value Formatted Result

(2 of 5)
3-36 IBM Informix DataBlade API Programmer’s Guide

Formatting Numeric Strings
"$$,$$$.$$"
"$$,$$$.$$"
"$$,$$$.##"
"$$,$$$.##"
"$$,$$$.&&"
"$$,$$$.&&"

12345.67
1234.56
0.00
1234.00
0.00
1234.00

********* (overflow)
$1,234.56
bbbbb$.00
$1,234.00
bbbbb$.00
$1,234.00

"-##,###.##"
"-##,###.##"
"-##,###.##"
"--#,###.##"
"---,###.##"
"---,-##.##"
"---,--#.##"
"--#,###.##"
"---,--#.##"

-12345.67
-123.45
-12.34
-12.34
-12.34
-12.34
-12.34
-1.00
-1.00

-12,345.67
-bbb123.45
-bbbb12.34
b-bbb12.34
bb-bb12.34
bbbb-12.34
bbbb-12.34
b-bbbb1.00
bbbbb-1.00

"-##,###.##"
"-##,###.##"
"-##,###.##"
"-##,###.##"
"--#,###.##"
"---,###.##"
"---,-##.##"
"---,---.##"
"---,---.--"
"---,---.&&"

12345.67
1234.56
123.45
12.34
12.34
12.34
12.34
1.00
-.01
-.01

b12,345.67
bb1,234.56
bbbb123.45
bbbbb12.34
bbbbb12.34
bbbbb12.34
bbbbb12.34
bbbbbb1.00
bbbbbb-.01
bbbbbb-.01

"-$$$,$$$.&&"
"-$$$,$$$.&&"
"-$$$,$$$.&&"
"--$$,$$$.&&"
"--$$,$$$.&&"
"--$$,$$$.&&"
"--$$,$$$.&&"
"--$$,$$$.&&"

-12345.67
-1234.56
-123.45
-12345.67
-1234.56
-123.45
-12.34
-1.23

-$12,345.67
-b$1,234.56
-bbb$123.45
-$12,345.67
b-$1,234.56
b-bb$123.45
b-bbb$12.34
b-bbbb$1.23

Formatting Mask Numeric Value Formatted Result

(3 of 5)
Using Numeric Data Types 3-37

Formatting Numeric Strings
"----,--$.&&"
"----,--$.&&"
"----,--$.&&"
"----,--$.&&"
"----,--$.&&"
"----,--$.&&"

-12345.67
-1234.56
-123.45
-12.34
-1.23
-.12

-$12,345.67
b-$1,234.56
bbb-$123.45
bbbb-$12.34
bbbbb-$1.23
bbbbbb-$.12

"$***,***.&&"
"$***,***.&&"
"$***,***.&&"
"$***,***.&&"
"$***,***.&&"
"$***,***.&&"

12345.67
1234.56
123.45
12.34
1.23
.12

$*12,345.67
$**1,234.56
$****123.45
$*****12.34
$******1.23
$*******.12

"($$$,$$$.&&)"
"($$$,$$$.&&)"
"($$$,$$$.&&)"

-12345.67
-1234.56
-123.45

($12,345.67)
(b$1,234.56)
(bbb$123.45)

"(($$,$$$.&&)"
"(($$,$$$.&&)"
"(($$,$$$.&&)"
"(($$,$$$.&&)"
"(($$,$$$.&&)"
"((((,(($.&&)"
"((((,(($.&&)"
"((((,(($.&&)"
"((((,(($.&&)"
"((((,(($.&&)"
"((((,(($.&&)"

-12345.67
-1234.56
-123.45
-12.34
-1.23
-12345.67
-1234.56
-123.45
-12.34
-1.23
-.12

($12,345.67)
b($1,234.56)
b(bb$123.45)
b(bbb$12.34)
b(bbbb$1.23)
($12,345.67)
b($1,234.56)
bbb($123.45)
bbbb($12.34)
bbbbb($1.23)
bbbbbb($.12)

"($$$,$$$.&&)"
"($$$,$$$.&&)"
"($$$,$$$.&&)"

12345.67
1234.56
123.45

b$12,345.67
bb$1,234.56
bbbb$123.45

“(($$,$$$.&&)”
"(($$,$$$.&&)"
"(($$,$$$.&&)"
"(($$,$$$.&&)"
"(($$,$$$.&&)"

12345.67
1234.56
123.45
12.34
1.23

b$12,345.67
bb$1,234.56
bbbb$123.45
bbbbb$12.34
bbbbbb$1.23

Formatting Mask Numeric Value Formatted Result

(4 of 5)
3-38 IBM Informix DataBlade API Programmer’s Guide

Formatting Numeric Strings
"((((,(($.&&)"
"((((,(($.&&)"
"((((,(($.&&)"
"((((,(($.&&)"
"((((,(($.&&)"
"((((,(($.&&)"

12345.67
1234.56
123.45
12.34
1.23
.12

b$12,345.67
bb$1,234.56
bbbb$123.45
bbbbb$12.34
bbbbbb$1.23
bbbbbbb$.12

"<<<,<<<"
"<<<,<<<"
"<<<,<<<"
"<<<,<<<"

12345
1234
123
12

12,345
1,234
123
12

Formatting Mask Numeric Value Formatted Result

(5 of 5)
Using Numeric Data Types 3-39

4
Chapter
Using Date and Time Data Types
In This Chapter . 4-3

Date Data . 4-4
Date Text Representation 4-4
Date Binary Representation 4-5
Transfers of Date Data 4-6
Conversion of Date Representations 4-7

DataBlade API Functions for Date Conversion. 4-7
ESQL/C Functions for Date Conversion 4-8

Operations on Date Data 4-9

Date-Time or Interval Data 4-10
Date-Time or Interval Text Representation 4-11
Date-Time or Interval Binary Representation 4-12

The DATETIME Data Type 4-13
The INTERVAL Data Type 4-14

The datetime.h Header File. 4-16
Retrieval and Insertion of DATETIME and INTERVAL Values . . 4-18

Fetch or Insert into an mi_datetime Variable 4-18
Fetch or Insert into an mi_interval Variable 4-19
Implicit Data Conversion 4-20

Transfers of Date-Time or Interval Data 4-21
Conversion of Date-Time or Interval Representations 4-22

DataBlade API Functions for Date-Time or Interval Conversion. 4-22
ESQL/C Functions for Date, Time, and Interval Conversion . . 4-23

Operations on Date and Time Data 4-25
Functions to Obtain Information on Date and Time Data 4-26

Qualifier of a Date-Time or Interval Data Type. 4-27
Precision of a Date-Time or Interval Data Type 4-28
Scale of a Date-Time or Interval Data Type 4-28

4-2 IBM
 Informix DataBlade API Programmer’s Guide

In This Chapter
The DataBlade API provides support for the following date and time data
types.

This chapter describes these date and time data types as well as the functions
that the DataBlade API supports to process date and time data.

SQL Date and
Time Data Type

Standard C or ESQL/C
Date and Time Data Type

DataBlade API Date and
Time Data Type

DATE C: four-byte integer

ESQL/C: date

mi_date

DATETIME ESQL/C: datetime, dtime_t mi_datetime

INTERVAL ESQL/C: interval, intrvl_t mi_interval
Using Date and Time Data Types 4-3

Date Data
Date Data
Date data is a calendar date. The DataBlade API provides support for date
values in both their text and binary representations.

Date Text Representation
The DataBlade API supports a date value in text representation as a quoted
string with the following format:

"mm/dd/yyyy"

A date value in its text representation is often called a date string. For
example, the following date string contains the value for July 12, 1999 (for the
default locale):

"7/12/1999"

You can change the format of the date string with the DBDATE environment
variable.

A locale defines the end-user format of a date. The end-user format is the
format in which data appears in a client application when the data is a literal
string or character variable. The preceding date string is the end-user format
for the default locale, U.S. English. A nondefault locale can define an end-user
format that is particular to a country or culture outside the U.S. You can also
customize the end-user format of a date with the GL_DATE environment
variable. For more information, see the IBM Informix GLS User’s Guide. ♦

mm is the 2-digit month.

dd is the 2-digit day of the month.

yyyy is the 4-digit year.

GLS
4-4 IBM Informix DataBlade API Programmer’s Guide

Date Binary Representation
Date Binary Representation
The SQL DATE data type holds the internal (binary) format of a decimal value.
This value is an integer value that represents the number of days since
December 31, 1899. Dates before December 31, 1899, are negative numbers,
while dates after December 31, 1899, are positive numbers. For a detailed
description of the SQL DATE data type, see the IBM Informix Guide to SQL:
Reference.

Tip: The internal format of the DATE data type is often referred to as its binary
representation.

The DataBlade API supports the SQL DATE data type with the mi_date data
type. Therefore, the mi_date data type also holds the binary representation of
a date value.

The mi_date data type is guaranteed to be four bytes on all computer archi-
tectures. All mi_date values can fit into an MI_DATUM structure and can be
passed by value within C UDRs. ♦

All data types, including mi_date, must be passed by reference within client
LIBMI applications. ♦

Because the binary representation of a DATE (and mi_date) value is an
Informix-proprietary format, you cannot use standard system functions to
obtain date information from mi_date values. Instead, the DataBlade API
provides the following support for the DATE data type.

Category of DATE Function More Information

Conversion functions “Conversion of Date Representations” on page 4-7

Operation functions “Operations on Date Data” on page 4-9

Server

Client
Using Date and Time Data Types 4-5

Transfers of Date Data
Transfers of Date Data
For date data to be portable when transferred across different computer
architectures, the DataBlade API provides the following functions to handle
type alignment and byte order.

The mi_get_date() and mi_put_date() functions are useful in the send and
receive support function of an opaque data type that contains mi_date
values. They enable you to ensure that DATE values remain aligned when
transferred to and from client applications, which possibly have unaligned
data buffers. For more information, see “Conversion of Opaque-Type Data
with Computer-Specific Data Types” on page 15-34.

DataBlade API
Function Description

mi_get_date() Copies an aligned mi_date value, converting any difference
in alignment or byte order on the client computer to that of
the server computer

mi_put_date() Copies an aligned mi_date value, converting any difference
in alignment or byte order on the server computer to that of
the client computer

Server
4-6 IBM Informix DataBlade API Programmer’s Guide

Conversion of Date Representations
Conversion of Date Representations
Both the DataBlade API library and the ESQL/C library provide functions that
convert from the text (string) representation of a date value to the binary
(internal) representation for DATE.

DataBlade API Functions for Date Conversion

The DataBlade API provides the following functions for conversion between
text and binary representations of date data.

The mi_date_to_string() and mi_string_to_date() functions are useful in
the input and output support functions of an opaque data type that contains
mi_date values. They allow you to convert DATE values between their
external format (text) and their internal (binary) format when transferred to
and from client applications. For more information, see “Conversion of
Opaque-Type Data Between Text and Binary Representations” on
page 15-26. ♦

The mi_date_to_string() and mi_string_to_date() functions use the current
processing locale to handle locale-specific formats in the date string. For
more information, see the IBM Informix GLS User’s Guide. ♦

DataBlade API Function Convert from Convert to

mi_date_to_string() DATE (mi_date) Date string

mi_string_to_date() Date string DATE (mi_date)

Server

GLS
Using Date and Time Data Types 4-7

Conversion of Date Representations
ESQL/C Functions for Date Conversion

The ESQL/C function library provides the following functions to convert a
DATE (mi_date) value to and from char strings.

The rdatestr() and rstrdate() functions convert mi_date values to and from
a date string that is formatted with the DBDATE environment variable.

These functions also examine the GL_DATE environment variable for the
format of the date string. When you use a nondefault locale and do not set the
DBDATE or GL_DATE environment variable, rdatestr() uses the date end-
user format that the client locale defines. For more information, see the
IBM Informix GLS User’s Guide. ♦

The rdefmtdate() and rfmtdate() functions convert mi_datetime values to
and from a date-time string using a date-formatting mask. A date-formatting
mask specifies a format to apply to some date value. This mask is a combi-
nation of the following formats.

Function Name Description

rdatestr() Converts an internal format to string

rdefmtdate() Converts a string to an internal format using a formatting mask

rfmtdate() Converts an internal format to a string using a formatting mask

rstrdate() Converts a string to an internal format

Format Meaning

dd Day of the month as a two-digit number (01 through 31)

ddd Day of the week as a three-letter abbreviation (Sun through Sat)

mm Month as a two-digit number (01 through 12)

mmm Month as a three-letter abbreviation (Jan through Dec)

yy Year as a two-digit number in the 1900s (00 through 99)

yyyy Year as a four-digit number (0001 through 9999)

GLS
4-8 IBM Informix DataBlade API Programmer’s Guide

Operations on Date Data
Any other characters in the formatting mask are reproduced literally in the
result.

When you use a nondefault locale whose dates contain eras, you can use
extended-format strings in a numeric-formatting mask. For more infor-
mation, see the IBM Informix GLS User’s Guide.

When you use rfmtdate() or rdefmtdate() to format DATE values, the
function uses the date end-user formats that the GL_DATE or DBDATE
environment variable specifies. If neither of these environment variables is
set, these date-formatting functions use the date end-user formats for the
locale. The default locale, U.S. English, uses the format mm/dd/yyyy. For a
discussion of GL_DATE and DBDATE, see the IBM Informix GLS User’s Guide.

In addition, you can use the character processing that the IBM Informix GLS
interface provides to handle locale-specific date and time formatting. For
more information, see the IBM Informix GLS Programmer’s Manual. ♦

Operations on Date Data
Use the following ESQL/C library functions to perform operations on DATE
(mi_date) values.

Any other operations, modifications, or comparisons can produce unpre-
dictable results.

Function Name Description

rdayofweek() Returns the day of the week

rjulmdy() Returns month, day, and year from an internal format

rleapyear() Determines whether a specified year is a leap year

rmdyjul() Returns an internal format from month, day, and year

rtoday() Returns a system date in internal format

GLS
Using Date and Time Data Types 4-9

Date-Time or Interval Data
Date-Time or Interval Data
The DataBlade API provides support for the following kinds of fixed-point
data, which correspond to existing SQL data types.

Date-time data is an instant in time that is expressed as a calendar date and
time of day, just a calendar date, or just a time of day. A date-time value can
also have a precision and a scale. The precision is the number of digits required
to store the value. The scale is the end qualifier of the date-time value, such
as YEAR TO HOUR.

Interval data is a span of time that is expressed as the number of units in either
of the following interval classes:

� Year-month intervals

A year-month interval value specifies the number of years and
months, years, or months that have passed.

� Day-time intervals

A day-time interval value specifies the number of days and hours,
days, or hours that have passed.

The DataBlade API provides support for date-time or interval data in both
text and binary representations.

Type of Fixed-Point Value SQL Data Type

Date and time, date, or time DATETIME

Year and month interval or day and time interval INTERVAL
4-10 IBM Informix DataBlade API Programmer’s Guide

Date-Time or Interval Text Representation
Date-Time or Interval Text Representation
The text representation of a date-time or interval value is a quoted string that
contains a series of digits and symbols. The DataBlade API supports a text
representation for date-time or interval values as quoted strings with the
formats that the following table shows.

The text representations in the preceding table use the following
abbreviations:

SQL Data Type Text Representation

DATETIME Date-time string:

The date-time string must match the qualifier of the DATETIME
column. The default format of the date-time string for the
largest DATETIME column is:

"yyyy-mm-dd HH:MM:SS.FFFF"

INTERVAL Interval string:

The interval string must match the qualifiers of the INTERVAL
column. INTERVAL columns have two classes. The default
format of an interval string for the largest year-month interval
follows:

"yyyy-mm"

The default format of an interval string for the largest day-time
interval follows:

"dd HH:SS.FFFF"

yyyy is the 4-digit year (for a DATETIME) or the number of years (for an
INTERVAL).

mm is the 2-digit month (for a DATETIME) or the number of months (for
an INTERVAL).

dd is the 2-digit day of the month (for a DATETIME) or the number of
days (for an INTERVAL).

HH is the 2-digit hour (for a DATETIME) or the number of hours (for an
INTERVAL).
Using Date and Time Data Types 4-11

Date-Time or Interval Binary Representation
A date-time value in its text representation is often called a date-time string.
For example, the following date-time string contains the value for 2 p.m. on
July 12, 1999, with a qualifier of year to minute:

"1999-07-12 14:00:00"

Usually, a date-time string must match the qualifier of the date-time binary
representation with which the string is associated.

The following interval string indicates a passage of three years and three
months:

"03-06"

A locale defines the end-user format of a date or time or interval value. The
end-user format is the format in which data appears in a client application
when the data is a literal string or character variable. The preceding strings
are the end-user formats for the default locale, U.S. English. A nondefault
locale can define date or time end-user formats that are particular to a
country or culture outside the U.S. You can also customize the end-user
format of a date with the GL_DATETIME environment variable. For more
information, see the IBM Informix GLS User’s Guide. ♦

Date-Time or Interval Binary Representation
The DataBlade API supports the following SQL data types that can hold infor-
mation about date-time or interval values.

MM is the 2-digit minute (for a DATETIME) or the number of minutes (for
an INTERVAL).

SS is the 2-digit second (for a DATETIME) or the number of seconds (for
an INTERVAL).

FFFF is a fraction of a second (for a DATETIME) or the number of years (for
an INTERVAL). Fractions can be from 1 to 5 digits.

DataBlade API Date and Time Data Type SQL Date and Time Data Type

mi_datetime DATETIME

mi_interval INTERVAL

GLS
4-12 IBM Informix DataBlade API Programmer’s Guide

Date-Time or Interval Binary Representation
The DATETIME Data Type

The SQL DATETIME data type provides the internal (binary) format of a date-
time value. This data type stores an instant in time expressed as a calendar
date and time of day, just a calendar date, or just a time of day. You choose
how precisely a DATETIME value is stored with a qualifier. The precision can
range from a year to a fraction of a second. For a detailed description of the
SQL DATETIME data type, see the IBM Informix Guide to SQL: Reference.

The DATETIME data type uses a computer-independent method to encode
the date or time qualifiers. It stores the information in the dtime_t structure,
as follows:

typedef struct dtime {
short dt_qual;
dec_t dt_dec;

} dtime_t;

The dtime structure and dtime_t typedef have two parts, which the
following table shows.

Tip: The internal format of the DATETIME data type is often referred to as its binary
representation.

The DataBlade API supports the SQL DATETIME data type with the
mi_datetime data type. Therefore, the mi_datetime data type holds the
binary representation of a date and/or time value.

Values of the mi_datetime data type cannot fit into an MI_DATUM structure.
They must be passed by reference within C UDRs. ♦

All data types, including mi_datetime, must be passed by reference within
client LIBMI applications. ♦

Field Description

dt_qual The qualifier of the datetime value

dt_dec The digits of the fields of the datetime value

This field is a decimal value.

Server

Client
Using Date and Time Data Types 4-13

Date-Time or Interval Binary Representation
Because the binary representation of a DATETIME (mi_datetime) value is an
Informix-proprietary format, you cannot use standard system functions to
perform operations on mi_datetime values. Instead, the DataBlade API
provides the following support for the DATETIME data type.

The INTERVAL Data Type

The SQL INTERVAL data type holds the internal (binary) format of an interval
value. It encodes a value that represents a span of time. INTERVAL types are
divided into two classes: year-month intervals and day-time intervals. A year-
month interval can represent a span of years and months, and a day-time
interval can represent a span of days, hours, minutes, seconds, and fractions
of a second. For a detailed description of the SQL INTERVAL data type, see the
IBM Informix Guide to SQL: Reference.

The INTERVAL data type uses a computer-independent method to encode the
interval qualifiers. It stores the information in the intrvl_t structure, as
follows:

typedef struct intrvl {
short in_qual;
dec_t in_dec;

} intrvl_t;

The intrvl structure and intrvl_t typedef have the two parts that Figure 4-1
shows.

Category of DATETIME Function More Information

Conversion functions “Conversion of Date-Time or Interval Representa-
tions” on page 4-22

Arithmetic-operation functions “Operations on Date and Time Data” on
page 4-25
4-14 IBM Informix DataBlade API Programmer’s Guide

Date-Time or Interval Binary Representation
Figure 4-1
Fields in the intrvl_t Structure

Tip: The internal format of the INTERVAL data type is often referred to as its binary
representation.

The DataBlade API supports the SQL INTERVAL data type with the
mi_interval data type. Therefore, an mi_interval data type holds the binary
representation of an interval value.

Values of the mi_interval data type cannot fit into an MI_DATUM structure.
They must be passed by reference within C UDRs. ♦

All data types, including mi_interval, must be passed by reference within
client LIBMI applications. ♦

Because the binary representation of an INTERVAL (mi_interval) value is an
Informix-proprietary format, you cannot use standard system functions to
perform operations on mi_interval values. Instead, the DataBlade API
provides the following support for the INTERVAL data type.

Field Description

in_qual The qualifier of the interval value

in_dec The digits of the fields of the interval value

This field is a decimal value.

Category of INTERVAL Function More Information

Conversion functions “Conversion of Date-Time or Interval Representa-
tions” on page 4-22

Arithmetic-operation functions “Operations on Date and Time Data” on
page 4-25

Server

Client
Using Date and Time Data Types 4-15

The datetime.h Header File
The datetime.h Header File
The datetime.h header file contains definitions for use with the DATETIME
and INTERVAL data types. The header file datetime.h contains the declara-
tions for the date, time, and interval data types, as follows:

� The internal format represents DATETIME and mi_datetime values
with the dtime_t structure.

� The internal format represents INTERVAL and mi_interval values
with the intrvl_t structure.

In addition to these data structures, the datetime.h file defines the constants
and macros for date and time qualifiers that Figure 4-2 shows.

Figure 4-2
Qualifier Macros and Constants for mi_datetime and mi_interval Data Types

Name of Macro Description

TU_YEAR The time unit for the YEAR qualifier field

TU_MONTH The time unit for the MONTH qualifier field

TU_DAY The time unit for the DAY qualifier field

TU_HOUR The time unit for the HOUR qualifier field

TU_MINUTE The time unit for the MINUTE qualifier field

TU_SECOND The time unit for the SECOND qualifier field

TU_FRAC The time unit for the leading qualifier field of FRACTION

TU_Fn The names for mi_datetime ending fields of FRACTION(n),
for n from 1 to 5

TU_START(q) Returns the leading field number from qualifier q

TU_END(q) Returns the trailing field number from qualifier q

TU_LEN(q) Returns the length in digits of the qualifier q

TU_FLEN(f) Returns the length in digits of the first field, f, of an interval
qualifier

(1 of 2)
4-16 IBM Informix DataBlade API Programmer’s Guide

The datetime.h Header File
Tip: For a complete list of date and time macros, consult the datetime.h header file
that is installed with your database server. This header file resides in the incl/public
subdirectory of the INFORMIXDIR directory.

Figure 4-2 on page 4-16 shows the macro definitions that you can use to
compose qualifier values. You need these macros only when you work
directly with qualifiers in binary form. For example, if your program does not
provide an mi_interval qualifier in the variable declaration, you need to use
the mi_interval qualifier macros to initialize and set the mi_interval variable,
as the following example shows:

/* Use the variable that was declared intvl1. */
mi_interval intvl1;

...
/* Set the interval qualifier for the variable */
intvl1.in_qual = TU_IENCODE(2, TU_DAY, TU_SECOND);
...
/* Assign a value to the variable */
incvasc ("5 2:10:02", &intvl1);

In the previous example, the mi_interval variable gets a day to second
qualifier. The precision of the largest field in the qualifier, day, is set to 2.

In addition to the declaration of the dtime_t typedef and the preceding date
and time macros, the datetime.h header file declares the DATETIME-type
functions of the ESQL/C library. The mitypes.h header file automatically
includes datetime.h. In turn, the milib.h header file automatically includes
mitypes.h and mi.h automatically includes milib.h. Therefore, you automat-
ically have access to the dtime_t and intrvl_t structures, the mi_datetime and
mi_interval data types, any of the date or time macros, or any of the ESQL/C
DATETIME-type functions when you include mi.h in your DataBlade API
module.

TU_ENCODE(p,f,t) Creates a qualifier from the first field number f with
precision p and trailing field number t

TU_DTENCODE(f,t) Creates an mi_datetime qualifier from the first field
number f and trailing field number t

TU_IENCODE(p,f,t) Creates an mi_interval qualifier from the first field
number f with precision p and trailing field number t

Name of Macro Description

(2 of 2)
Using Date and Time Data Types 4-17

Retrieval and Insertion of DATETIME and INTERVAL Values
Retrieval and Insertion of DATETIME and INTERVAL Values
When an application retrieves or inserts a DATETIME or INTERVAL value, the
DataBlade API module must ensure that the qualifier field of the variable is
valid:

� When an application fetches a DATETIME value into an mi_datetime
variable or inserts a DATETIME value from an mi_datetime variable,
the application must ensure that the dt_qual field of the dtime_t
structure is valid.

� When an application fetches an INTERVAL value into an mi_interval
variable or inserts an INTERVAL value from an mi_interval variable,
the application must ensure that the in_qual field of the intrvl_t
structure is valid.

Fetch or Insert into an mi_datetime Variable

When a DataBlade API module uses an mi_datetime variable to fetch or
insert a DATETIME value, the module must find a valid qualifier in the
mi_datetime variable. The DataBlade API takes one the following actions,
based on the value of the dt_qual field in the dtime_t structure that is
associated with the variable:

� When the dt_qual field contains a valid qualifier, the DataBlade API
extends the column value to match the dt_qual qualifier.

Extending is the operation of adding or dropping fields of a
DATETIME value to make it match a given qualifier. You can explic-
itly extend DATETIME values with the SQL EXTEND function and the
dtextend() function.
4-18 IBM Informix DataBlade API Programmer’s Guide

Retrieval and Insertion of DATETIME and INTERVAL Values
� When the dt_qual field does not contain a valid qualifier, the
DataBlade API takes different actions for a fetch and an insert:

❑ For a fetch, the DataBlade API uses the DATETIME column value
and its qualifier to initialize the mi_datetime variable.

Zero is an invalid qualifier. Therefore, if you set the dt_qual field
to zero, you can ensure that the DataBlade API uses the qualifier
of the DATETIME column.

❑ For an insert, the DataBlade API cannot perform the insert or
update operation.

The DataBlade API sets the SQLSTATE status variable to an error-
class code (and SQLCODE to a negative value) and the update or
insert operation on the DATETIME column fails.

Fetch or Insert into an mi_interval Variable

When a DataBlade API module uses an mi_interval variable to fetch or insert
an INTERVAL value, the DataBlade API must find a valid qualifier in the
mi_interval variable. The DataBlade API takes one of the following actions,
based on the value of the in_qual field the intrvl_t structure that is associated
with the variable:

� When the in_qual field contains a valid qualifier, the DataBlade API
checks it for compatibility with the qualifier from the INTERVAL
column value.

The two qualifiers are compatible if they belong to the same interval
class: either year to month or day to fraction. If the qualifiers are
incompatible, the DataBlade API sets the SQLSTATE status variable
to an error-class code (and SQLCODE is set to a negative value) and
the select, update, or insert operation fails.

If the qualifiers are compatible but not the same, the DataBlade API
extends the column value to match the in_qual qualifier. Extending is
the operation of adding or dropping fields within one of the interval
classes of an INTERVAL value to make it match a given qualifier. You
can explicitly extend INTERVAL values with the invextend()
function.
Using Date and Time Data Types 4-19

Retrieval and Insertion of DATETIME and INTERVAL Values
� When the in_qual field does not contain a valid qualifier, the
DataBlade API takes different actions for a fetch and an insert:

❑ For a fetch, if the in_qual field contains zero or is not a valid
qualifier, the DataBlade API uses the INTERVAL column value
and its qualifier to initialize the mi_interval variable.

❑ For an insert, if the in_qual field is not compatible with the
INTERVAL column or if it does not contain a valid value, the
DataBlade API cannot perform the insert or update operation.

The DataBlade API sets the SQLSTATE status variable to an error-
class code (and SQLCODE is set to a negative value) and the
update or insert operation on the INTERVAL column fails.

Implicit Data Conversion

You can select a DATETIME or INTERVAL column value into a character
variable. The DataBlade API converts the DATETIME or INTERVAL column
value to a character string before it stores it in the character variable. This
character string conforms to the ANSI SQL standards for DATETIME and
INTERVAL values.

Important: IBM Informix products do not support automatic data conversion from
DATETIME and INTERVAL column values to numeric (mi_double_precision,
mi_integer, and so on) variables.

You can also insert a DATETIME or INTERVAL column value from a character
variable. The DataBlade API uses the data type and qualifiers of the column
value to convert the character value to a DATETIME or INTERVAL value. It
expects the character string to contain a DATETIME or INTERVAL value that
conforms to ANSI SQL standards.

If the conversion fails, the DataBlade API sets the SQLSTATE status variable
to an error-class code (and SQLCODE status variable to a negative value) and
the update or insert operation fails.

Important: IBM Informix products do not support automatic data conversion from
numeric and mi_date variables to DATETIME and INTERVAL column values.
4-20 IBM Informix DataBlade API Programmer’s Guide

Transfers of Date-Time or Interval Data
Transfers of Date-Time or Interval Data
For date-time or interval values to be portable when transferred across
different computer architectures, the DataBlade API provides the following
functions to handle type alignment and byte order.

The mi_get_datetime(), mi_get_interval(), mi_put_datetime(), and
mi_put_interval() functions are useful in the send and receive support
function of an opaque data type that contains mi_datetime or mi_interval
values. They allow you to ensure that DATETIME or INTERVAL values
remained aligned when transferred to and from client applications. For more
information, see “Conversion of Opaque-Type Data with Computer-Specific
Data Types” on page 15-34.

DataBlade API Function Description

mi_get_datetime() Copies an aligned mi_datetime value, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_get_interval() Copies an aligned mi_interval value, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_put_datetime() Copies an aligned mi_datetime value, converting any
difference in alignment or byte order on the server
computer to that of the client computer

mi_put_interval() Copies an aligned mi_interval value, converting any
difference in alignment or byte order on the server
computer to that of the client computer

Server
Using Date and Time Data Types 4-21

Conversion of Date-Time or Interval Representations
Conversion of Date-Time or Interval Representations
Both the DataBlade API library and the ESQL/C library provide functions that
convert from the text (string) representation of a date, time, or interval value
to the binary (internal) representation for DATETIME or INTERVAL,
respectively.

DataBlade API Functions for Date-Time or Interval Conversion

The DataBlade API provides the following functions for conversion between
text and binary representations of date-time or interval data.

The mi_datetime_to_string(), mi_interval_to_string(),
mi_string_to_datetime(), and mi_string_to_interval() functions convert
DATETIME and INTERVAL values to and from the ANSI SQL standards
formats for these data types.

The mi_datetime_to_string(), mi_interval_to_string(),
mi_string_to_datetime(), and mi_string_to_interval() functions are useful
in the input and output support functions of an opaque data type that
contains mi_datetime and mi_interval values, as long as these values use the
ANSI SQL formats. They enable you to convert DATETIME and INTERVAL
values between their external format (text) and their internal (binary) format
when transferred to and from client applications. For more information, see
“Conversion of Opaque-Type Data Between Text and Binary Representa-
tions” on page 15-26. ♦

DataBlade API Function Convert from Convert to

mi_datetime_to_string() DATETIME
(mi_datetime)

Date-time string

mi_interval_to_string() INTERVAL
(mi_interval)

Interval string

mi_string_to_datetime() Date-time string DATETIME (mi_datetime)

mi_string_to_interval() Interval string INTERVAL (mi_interval)

Server
4-22 IBM Informix DataBlade API Programmer’s Guide

Conversion of Date-Time or Interval Representations
ESQL/C Functions for Date, Time, and Interval Conversion

The ESQL/C function library provides functions for conversion between text
and binary representations of date, time, and interval data.

Data Conversion for DATETIME Values

The ESQL/C library provides the following functions that convert internal
DATETIME (mi_datetime) values to and from char strings.

The dttoasc() and dtcvasc() functions convert mi_datetime values to and
from the ANSI SQL standard values for DATETIME strings. The ANSI SQL
standards specify qualifiers and formats for character representations of
DATETIME and INTERVAL values. The standard qualifier for a DATETIME
value is YEAR TO SECOND, and the standard format is as follows:

YYYY-MM-DD HH:MM:SS

The dttofmtasc() and dtcvfmtasc() functions convert mi_datetime values to
and from a date-time string using a time-formatting mask. This time-
formatting mask contains the same formatting directives that the DBTIME
environment variable supports. (For a list of these directives, see the
description of DBTIME in the IBM Informix Guide to SQL: Reference.)

Function Name Description

dtcvasc() Converts an ANSI-compliant character string to an mi_datetime
value

dtcvfmtasc() Converts a character string to an mi_datetime value

dtextend() Changes the qualifier of an mi_datetime value

dttoasc() Converts an mi_datetime value to an ANSI-compliant character
string

dttofmtasc() Converts an mi_datetime value to a character string
Using Date and Time Data Types 4-23

Conversion of Date-Time or Interval Representations
The dtextend() function extends an mi_datetime value to a different
qualifier. You can use it to convert between DATETIME and DATE values.

To convert a DATETIME value to a DATE value

1. Use dtextend() to adjust the DATETIME qualifier to year to day.

2. Apply dttoasc() to create a character string in the form yyyy-mm-dd.

3. Use rdefmtdate() with a pattern argument of yyyy-mm-dd to convert
the string to a DATE value.

To convert a DATE value into a DATETIME value

1. Declare a variable with a qualifier of year to day (or initialize the
qualifier with the value that the TU_DTENCODE (TU_YEAR,TU_DAY)
macro returns).

2. Use rfmtdate() with a pattern of yyyy-mm-dd to convert the DATE
value to a character string.

3. Use dtcvasc() to convert the character string to a value in the
prepared DATETIME variable.

4. If necessary, use dtextend() to adjust the DATETIME qualifier.

Data Conversion for INTERVAL Values

The ESQL/C library provides the following functions that convert internal
INTERVAL (mi_interval) values to and from char text.

Function Name Description

incvasc() Converts an ANSI-compliant character string to an interval value

incvfmtasc() Converts a character string to an interval value

intoasc() Converts an interval value to an ANSI-compliant character string

intofmtasc() Converts an interval value to a string

invextend() Copies an interval value under a different qualifier
4-24 IBM Informix DataBlade API Programmer’s Guide

Operations on Date and Time Data
The intoasc() and incvasc() functions convert mi_interval values to and
from the ANSI SQL standards for INTERVAL strings. The ANSI SQL standards
specify qualifiers and formats for character representations of DATETIME and
INTERVAL values. The standards for an INTERVAL value specify the
following two classes of intervals:

� The YEAR TO MONTH class has the following format:

YYYY-MM

A subset of this format is also valid: for example, just a month
interval.

� The DAY TO FRACTION class has the following format:

DD HH:MM:SS.F

Any subset of contiguous fields is also valid: for example, MINUTE
TO FRACTION.

The intofmtasc() and incvfmtasc() functions convert mi_interval values to
and from an interval string using a time-formatting mask. This time-
formatting mask contains the same formatting directives that the DBTIME
environment variable supports. (For a list of these directives, see the
description of DBTIME in the IBM Informix Guide to SQL: Reference.)

Operations on Date and Time Data
The ESQL/C library provides the following functions to perform operations
on DATETIME (mi_datetime) and INTERVAL (mi_interval) values.

Function Name Description

dtaddinv() Adds an mi_interval value to a mi_datetime value

dtcurrent() Gets current date and time

dtsub() Subtracts one mi_datetime value from another

dtsubinv() Subtracts an mi_interval value from a mi_datetime value

invdivdbl() Divides an mi_interval value by a numeric value

invdivinv() Divides an mi_interval value by an mi_interval value

invmuldbl() Multiplies an mi_interval value by a numeric value
Using Date and Time Data Types 4-25

Functions to Obtain Information on Date and Time Data
Any other operations, modifications, or analyses can produce unpredictable
results.

Functions to Obtain Information on Date and Time Data
Figure 4-3 shows the DataBlade API functions that obtain qualifier infor-
mation for a DATETIME (mi_datetime) or INTERVAL (mi_interval) value.

Figure 4-3
DataBlade API Functions That Obtain DATETIME or INTERVAL Information

Suppose you have a table with a single column, dt_col, of type DATETIME
YEAR TO SECOND. If row_desc is a row descriptor for a row in this table, the
code fragment in Figure 4-4 obtains the name, qualifier, precision, and scale
for this column value.

Source DataBlade API Functions

For a data type mi_type_qualifier(),
mi_type_precision(),
mi_type_scale()

For a UDR argument mi_fp_argprec(),
mi_fp_setargprec()
mi_fp_argscale(),
mi_fp_setargscale()

For a UDR return value mi_fp_retprec(),
mi_fp_setretprec()
mi_fp_retscale(),
mi_fp_setretscale()

For a column in a row (or field in a row type) mi_column_precision(),
mi_column_scale()

For an input parameter in a prepared statement mi_parameter_precision(),
mi_parameter_scale()
4-26 IBM Informix DataBlade API Programmer’s Guide

Functions to Obtain Information on Date and Time Data
In Figure 4-4, the value in the type_buf buffer would be as follows:

column=0, type name=datetime year to second, qualifier=3594 precision=14
scale=10

Qualifier of a Date-Time or Interval Data Type

The mi_type_qualifier() function returns the encoded qualifier of a
DATETIME or INTERVAL data type from a type descriptor. This qualifier is the
internal value that the database server uses to track the complete qualifier
range, from the starting field to the end field. It is the value stored in the
collength column of the syscolumns table for DATETIME and INTERVAL
columns. You can use the qualifier macros and constants (see Figure 4-2 on
page 4-16) to interpret this encoded value.

In Figure 4-4, the value in type_qual contains the encoded integer qualifier
(3594) for the dt_col column. You can obtain the starting qualifier for the
DATETIME value from the encoded qualifier with the TU_START macro, as
follows:

TU_START(type_qual)

This TU_START call yields 0, which is the value of the TU_YEAR constant in
the datetime.h header file. You can obtain also the ending qualifier for the
DATETIME value from the encoded qualifier with the TU_END macro, as
follows:

TU_END(type_qual)

MI_TYPE_DESC *col_type_desc;
MI_ROW_DESC *row_desc;
mi_string *type_name;
mi_integer type_qual;
...
col_type_desc = mi_column_typedesc(row_desc, 0);
type_name = mi_type_typename(col_type_desc);
type_qual = mi_type_qualifier(col_type_desc);
type_prec = mi_type_precision(col_type_desc);
type_scale = mi_type_scale(col_type_desc);
sprintf(type_buf,

"column=%d: type name=%s, qualifier=%d precision=%d \
scale=%d\n",
i, type_name, type_qual, type_prec, type_scale);

Figure 4-4
Obtaining Type

Information for a
DATETIME Value
Using Date and Time Data Types 4-27

Functions to Obtain Information on Date and Time Data
This TU_END call yields 10, which is the value of the TU_SECOND constant in
the datetime.h header file. Therefore, the encoded qualifier 3594 represents
the qualifier year to second.

Precision of a Date-Time or Interval Data Type

For the DATETIME and INTERVAL data types, the precision is the number of
digits required to store a value with the specified qualifier. In Figure 4-4, the
call to the mi_type_precision() function saves in type_prec the precision for
the dt_col column from its type descriptor. This precision has a value of 14
because a DATETIME YEAR TO SECOND value requires 14 digits:

YYYYMMDDHHMMSS

The DataBlade API also provides functions that obtain DATETIME or
INTERVAL precision of a column associated with an input parameter, a UDR
argument, UDR return value, or a row column. For a list of these functions,
see Figure 4-3 on page 4-26.

Scale of a Date-Time or Interval Data Type

For the DATETIME and INTERVAL data types, the scale is the encoded integer
value for the end qualifier. In Figure 4-4, the call to the mi_type_scale()
function stores in type_scale the scale for the dt_col column. This precision
has a value of 10 because the end qualifier for the DATETIME YEAR TO
SECOND data type is SECOND, whose encoded value (TU_SECOND) is 10.

The DataBlade API also provides functions that obtain DATETIME or
INTERVAL scale of an input parameter, a UDR argument, UDR return value, or
column. For a list of these functions, see Figure 4-3 on page 4-26.

YYYY is the 4-digit year.

MM is the 2-digit month.

DD is the 2-digit day of the month.

HH is the 2-digit hour.

MM is the 2-digit minute.

SS is the 2-digit second.
4-28 IBM Informix DataBlade API Programmer’s Guide

5
Chapter
Using Complex Data Types
In This Chapter . 5-3

Collections. 5-4
Collection Text Representation 5-4
Collection Binary Representation 5-5

Using a Collection Structure 5-6
Using a Collection Descriptor 5-6

Creating a Collection 5-7
Opening a Collection 5-8

Using mi_collection_open() 5-9
Using mi_collection_open_with_options() 5-10

Accessing Elements of a Collection 5-11
Positioning the Cursor 5-11
Inserting an Element 5-14
Fetching an Element. 5-16
Updating a Collection 5-22
Deleting an Element 5-23
Determining the Cardinality of a Collection 5-24

Releasing Collection Resources 5-25
Closing a Collection 5-25
Freeing the Collection Structure 5-25

The listpos() UDR. 5-26
SQL Statements 5-26
C-Language Implementation. 5-27
Sample listpos() Trace Output 5-41

Row Types . 5-43
Row-Type Text Representation 5-43
Row-Type Binary Representation 5-44

Using a Row Descriptor 5-45
Using a Row Structure 5-49

5-2 IBM
Creating a Row Type 5-50
Creating the Row Descriptor 5-50
Assigning the Field Values. 5-51
Example: Creating a Row Type 5-53

Accessing a Row Type 5-54
Copying a Row Structure 5-55
Releasing Row Resources 5-57

Freeing a Row Structure 5-57
Freeing a Row Descriptor 5-58
 Informix DataBlade API Programmer’s Guide

In This Chapter
The DataBlade API provides support for the following complex data types.

This chapter describes these complex data types as well as the functions that
the DataBlade API supports to process collection and row-type data.

Complex Data Type DataBlade API Data Type

Collection data types: MI_COLLECTION, MI_COLL_DESC

LIST
MULTISET
SET

Row types: MI_ROW, MI_ROW_DESC

Named
Unnamed
Using Complex Data Types 5-3

Collections
Collections
A collection is a complex data type that is made up of elements, each of which
has the same data type. A collection is similar to an array in the C language.
The DataBlade API provides support for collections in both their text and
binary representations.

Collection Text Representation
The DataBlade API supports a collection in text representation as a quoted
string with the following format:

"coll_type{elmnt_value, elmnt_value, ...}"

A collection in its text representation is often called a collection string. For
example, the following collection string provides the text representation for
a SET of integer values:

"SET{1, 6, 8, 3}"

For a complete description of the text representation of a collection, see the
description of the Literal Collection segment in the IBM Informix Guide to SQL:
Syntax.

coll_type is the type of the collection: SET, MULTISET, or LIST.

elmnt_value is the text representation of the element value.
5-4 IBM Informix DataBlade API Programmer’s Guide

Collection Binary Representation
Collection Binary Representation
The database server supports the following kinds of collections.

All collection data types use the same internal format to store their values.
For more information on collection data types, see the IBM Informix Guide to
SQL: Reference.

Tip: The internal format of a collection data type is often referred to as its binary
representation.

The DataBlade API supports the following SQL collection data types and data
type structures:

� A collection structure (MI_COLLECTION) holds the binary represen-
tation of the collection.

� A collection descriptor (MI_COLL_DESC) provides information about
the collection.

Collection Data Type Description

LIST An ordered group of elements that can contain duplicate
elements

MULTISET An unordered group of elements that can contain duplicate
elements

SET An unordered group of elements that cannot contain
duplicate elements
Using Complex Data Types 5-5

Collection Binary Representation
Using a Collection Structure

A collection structure, MI_COLLECTION, is a DataBlade API structure that
holds the collection (LIST, MULTISET, or SET) and its elements. The following
table summarizes the memory operations for a collection structure.

The following DataBlade API functions return an existing collection
structure.

Using a Collection Descriptor

A collection descriptor, MI_COLL_DESC, is a DataBlade API structure that
contains a collection cursor to access elements of a collection. The following
table summarizes the memory operations for a collection descriptor.

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_collection_copy(),
mi_collection_create(),
mi_streamread_collection()

Destructor mi_collection_free()

DataBlade API Function Description

mi_value(),
mi_value_by_name()

Returns a collection structure as a column value when the
function returns an MI_COLLECTION_VALUE value
status

Memory Duration Memory Operation Function Name

Current memory
duration

Constructor mi_collection_open(),
mi_collection_open_with_options()

Destructor mi_collection_close()
5-6 IBM Informix DataBlade API Programmer’s Guide

Creating a Collection
Important: To a DataBlade API module, the collection descriptor (MI_COLL_DESC)
is an opaque C data structure. Do not access its internal fields directly. The internal
structure of a collection descriptor may change in future releases. Therefore, to create
portable code, always use the functions that access collection elements.

Creating a Collection
To create a collection, use the mi_collection_create() function. The
mi_collection_create() function is the constructor function for the collection
structure (MI_COLLECTION). The collection structure includes the type of
collection (LIST, MULTISET, or SET) and the element data type.

The following code shows an example of how to use the
mi_collection_create() function to create a new list of integers:

/*
* Create a LIST collection with INTEGER elements
*/
MI_CONNECTION *conn;
MI_TYPEID *typeid;
MI_COLLECTION *coll;

typeid = mi_typestring_to_id(conn, "list(integer not null)");

if (typeid != NULL)
{
coll = mi_collection_create(conn, typeid);

...
Using Complex Data Types 5-7

Opening a Collection
Opening a Collection
Once you have a collection structure for a collection, you can open the
collection with one of the functions in Figure 5-1.

Figure 5-1
DataBlade API Functions To Open a Collection

Both of the functions in Figure 5-1 are constructor functions for a collection
descriptor. Use this collection descriptor in calls to DataBlade API functions
that access the collection.

When one of the functions in Figure 5-1 opens a collection, it creates a
collection cursor, which is an area of memory that serves as a holding place for
collection elements. This cursor has an associated cursor position, which
points to one element of the collection cursor. When these functions
complete, the cursor position points to the first element of the collection.

The difference between the mi_collection_open() and
mi_collection_open_with_options() functions is the open mode that they
create for the collection cursor.

DataBlade API Function Use

mi_collection_open() Opens a collection in a read/write scroll
cursor

mi_collection_open_with_options() Opens a collection in either of the following
open modes:

� Read only

� Nonscrolling
5-8 IBM Informix DataBlade API Programmer’s Guide

Opening a Collection
Using mi_collection_open()

When you open a collection with mi_collection_open(), you obtain an
update scroll cursor to hold the collection elements. Therefore, you can
perform the following operations on a collection opened with
mi_collection_open().

Figure 5-2 shows an example of using the mi_collection_open() function to
create and open a LIST collection with INTEGER elements.

Figure 5-3 shows the cursor position after the mi_collection_open() call.

Cursor Attribute Valid Operations

Read/write cursor Insert, delete, update, fetch

Scroll cursor Fetch forward and backward through the collection elements

All Fetch operations are valid. (See Figure 5-4 on page 5-12)

/*
* Create and open a collection

*/
MI_CONNECTION *conn;
MI_COLL_DESC *coll_desc;
MI_COLLECTION *coll_ptr;
MI_TYPEID *type_id;
...
type_id = mi_typestring_to_id(conn, "list(integer not null)");
coll_ptr = mi_collection_create(conn, type_id);
coll_desc = mi_collection_open(conn, coll_ptr);

Figure 5-2
Opening a LIST

(INTEGER)
Collection

Figure 5-3
Collection Cursor

After the Collection
Is Opened

Collection cursor
Cursor position

.

.

.

Using Complex Data Types 5-9

Opening a Collection
Using mi_collection_open_with_options()

When you open a collection with mi_collection_open_with_options(), you
can override the cursor characteristics that mi_collection_open() uses. The
control argument of mi_collection_open_with_options() can create a
collection cursor with any of the cursor characteristics in the following table.

Most collections need the capabilities of the read/write scroll cursor that
mi_collection_open() creates. However, the database server can perform a
special optimization for a collection from a collection subquery if you use a
read-only sequential cursor to hold the collection subquery. It can fetch each
row of the subquery on demand. That is, you can fetch the elements one at a
time with mi_collection_fetch(). You can use mi_collection_open() or
mi_collection_open_with_options() to create some other type of cursor for
a collection subquery. However, if a collection subquery resides in some other
type of cursor, the database server fetches all the rows of the subquery and
puts them in the collection cursor.

To create a collection subquery, preface the query with the MULTISET
keyword. For example, the following SQL statement creates a collection
subquery of order numbers for customer 120 and then sends them to the
check_orders() user-defined function (which expects a MULTISET
argument):

SELECT check_orders(
MULTISET(SELECT ITEM order_num FROM orders

WHERE customer_num = 120))
FROM customer
WHERE customer_num = 120;

Cursor Attribute Control Flag Valid Operations

Read-only cursor MI_COLL_READONLY Fetch only

Sequential
(nonscrolling)
cursor

MI_COLL_NOSCROLL Fetch forward only
(MI_CURSOR_NEXT) through the
collection elements

Any fetch operation that moves the
cursor position backward in the cursor
is not valid.
5-10 IBM Informix DataBlade API Programmer’s Guide

Accessing Elements of a Collection
To have the database server perform the collection-subquery optimization,
use the following call to mi_collection_open_with_options() when you
open a collection subquery:

mi_collection_open_with_options(conn, coll_ptr,
(MI_COLL_READONLY | MI_COLL_NOSCROLL));

Accessing Elements of a Collection
The DataBlade API provides the following functions for accessing collection
data types.

Positioning the Cursor

When you open a collection cursor with mi_collection_open(), the cursor
position points to the first element of the collection. The cursor position
identifies the current element in the collection cursor. The DataBlade API
functions that access a collection must specify where in the collection to
perform the operation. To specify location, these functions all have an action
argument of type MI_CURSOR_ACTION, which supports the cursor-action
constants in Figure 5-4.

DataBlade API Collection Function Description

mi_collection_copy() Creates a copy of an existing open collection

mi_collection_delete() Deletes an element from a collection

mi_collection_fetch() Fetches an element from a collection

mi_collection_insert() Inserts a new element into an open collection

mi_collection_update() Updates an element in an open collection
Using Complex Data Types 5-11

Accessing Elements of a Collection
Figure 5-4
Valid Cursor-Action Constants

Cursor Movement Cursor-Action Constant

Valid Cursor Types

Sequential Scroll

Move the cursor position one
element forward within the cursor

MI_CURSOR_NEXT Yes Yes

Move the cursor position one
element backward within the cursor

MI_CURSOR_PRIOR No Yes

Move the cursor position to the
beginning of the cursor, at the first
element

MI_CURSOR_FIRST Only if the cursor
position does not
move backward

Yes

Move the cursor position to the end
of the cursor, at the last element

MI_CURSOR_LAST Yes Yes

Move the cursor to the absolute
position within the cursor, where the
first element in the cursor is at
position 1.

MI_CURSOR_ABSOLUTE Yes Yes

As long as collection is a LIST because
only LISTs have ordered elements

Move the cursor forward or back a
specified number of elements from
the current position.

MI_CURSOR_RELATIVE Only if relative
position is a
positive value

Yes

Relative position
can be a negative
or positive value

As long as collection is a LIST because
only LISTs have ordered elements

Leave the cursor position at its
current location.

MI_CURSOR_CURRENT Yes Yes
5-12 IBM Informix DataBlade API Programmer’s Guide

Accessing Elements of a Collection
The following code fragment uses the mi_collection_fetch() function to
fetch a VARCHAR element from a collection:

/*
* Fetch next VARCHAR() element from a collection.
*/

MI_CONNECTION *conn;
MI_COLL_DESC *colldesc;
MI_ROW_DESC *rowdesc;
MI_COLLECTION *nest_collp;
MI_DATUM value;
mi_integer ret_code, ret_len;
char *buf;

/* Fetch a VARCHAR() type */
ret_code = mi_collection_fetch(conn, colldesc,

MI_CURSOR_NEXT, 0, &value, &ret_len);

switch (ret_code)
{
case MI_NORMAL_VALUE:

buf = mi_get_vardata((mi_lvarchar *)value);
DPRINTF("trace_class", 15, ("Value: %s", buf));
break;

case MI_NULL_VALUE:
DPRINTF("trace_class", 15, ("NULL"));
break;

case MI_ROW_VALUE:
rowdesc = (MI_ROW_DESC *)value;
break;

case MI_COLLECTION_VALUE:
nested_collp = (MI_COLLECTION *)value;
break;

case MI_END_OF_DATA:
DPRINTF("trace_class", 15,

("End of collection reached"));
return (100);

}

Using Complex Data Types 5-13

Accessing Elements of a Collection
Inserting an Element

You insert an element into an open collection with the mi_collection_insert()
function. You can perform an insert operation only on a read/write cursor. An
insert is not valid on a read-only cursor.

The mi_collection_insert() function uses an MI_DATUM value to represent
an element that it inserts into a collection. The contents of the MI_DATUM
structure depend on the passing mechanism that the function used, as
follows:

� In a C user-defined routine (UDR), when mi_collection_insert()
inserts an element value, it can pass the value by reference or by
value, depending on the data type of the column value. If the
function passes the element value by value, the MI_DATUM
structure contains the value. If the function passes the element value
by reference, the MI_DATUM structure contains a pointer to the
value. ♦

� In a client LIBMI application, when mi_collection_insert() inserts an
element value, it always passes the value in an MI_DATUM structure
by reference. Even for values that you can pass by value in a C UDR
(such as an INTEGER values), this function passes the element value
by reference. The MI_DATUM structure contains a pointer to the
value. ♦

The mi_collection_insert() function inserts the new element at the location
in the collection cursor that its action argument specifies. For a list of valid
cursor-action flags, see Figure 5-4 on page 5-12.

The following call to mi_collection_insert() can pass in an actual value
because it inserts an INTEGER element into a LIST collection and integer
values are passed by value in a C UDR:

MI_CONNECTION *conn;
MI_DATUM datum;
MI_COLL_DESC *colldesc;

datum=6;
mi_collection_insert(conn, colldesc, datum,

MI_CURSOR_ABSOLUTE, 1);

datum=3;
mi_collection_insert(conn, colldesc, datum,

MI_CURSOR_ABSOLUTE, 2);

Server

Client

Server
5-14 IBM Informix DataBlade API Programmer’s Guide

Accessing Elements of a Collection
datum=15;
mi_collection_insert(conn, colldesc, datum,

MI_CURSOR_ABSOLUTE, 3);

datum=1;
mi_collection_insert(conn, colldesc, datum,

MI_CURSOR_ABSOLUTE, 4);

datum=4;
mi_collection_insert(conn, colldesc, datum,

MI_CURSOR_ABSOLUTE, 5);

datum=8;
mi_collection_insert(conn, colldesc, datum,

MI_CURSOR_ABSOLUTE, 6);

♦

Figure 5-5 shows the cursor position after the preceding calls to
mi_collection_insert() complete.

These mi_collection_insert() calls specify absolute addressing
(MI_CURSOR_ABSOLUTE) for the collection because the collection is defined
as a LIST. Only LIST collections have ordered position assigned to their
elements. SET and MULTISET collections do not have ordered position of
elements.

Figure 5-5
Collection Cursor

After Inserts
Complete

Collection cursor

Cursor position

6
3
15
1
4
8

Using Complex Data Types 5-15

Accessing Elements of a Collection
Fetching an Element

You fetch an element from an open collection with the mi_collection_fetch()
function. You can perform a fetch operation on a read/write or a read-only
cursor. To fetch a collection element, you must specify:

� The connection with which the collection is associated

� The collection descriptor for the collection from which you want to
fetch elements

� The location of the cursor position at which to begin the fetch

� A variable that holds a single fetched element and one that holds its
length

Moving Through a Cursor

The mi_collection_fetch() function obtains the element specified by its
action argument from the collection cursor. For a list of valid cursor-action
flags, see Figure 5-4 on page 5-12. You can move the cursor position back to
the beginning of the cursor with the mi_collection_fetch() function, as the
following example shows:

mi_collection_fetch(conn, coll_desc, MI_CURSOR_FIRST, 0,
coll_element, element_len);

if (((mi_integer)coll_element != 1) ||
(element_len != sizeof(mi_integer)))

 /* raise an error */

This function moves the cursor position backward with respect to its position
after a call to mi_collection_insert() (Figure 5-5 on page 5-15). The
mi_collection_fetch() function is valid only for the following kinds of
cursors:

� Sequential collection cursors, if the cursor position does not move
backward

� Scroll collection cursors

Only scroll cursors provide the ability to move the cursor position
forward and backward.
5-16 IBM Informix DataBlade API Programmer’s Guide

Accessing Elements of a Collection
Figure 5-6 shows the cursor position and coll_element value after the
preceding call to mi_collection_fetch().

Figure 5-7 shows the cursor position and value of coll_element after the
following mi_collection_fetch() call:

mi_collection_fetch(conn, coll_desc, MI_CURSOR_NEXT, 0,
coll_element, element_len);

Figure 5-6
Collection Cursor

After Fetch First

Figure 5-7
Collection Cursor

After Fetch Next

Collection cursor
Cursor position

coll_element

66
3
15
1
4
8

Collection cursor

Cursor position

coll_element

36
3
15
1
4
8

Using Complex Data Types 5-17

Accessing Elements of a Collection
Figure 5-8 shows the cursor position and value of coll_element after the
following mi_collection_fetch() call:

mi_collection_fetch(conn, coll_desc, MI_CURSOR_RELATIVE, 3,
coll_element, element_len);

The preceding mi_collection_fetch() call is valid only if the collection is a
LIST. Only LIST collections are ordered. Therefore relative fetches, which
specify the number of elements to move forward or backward, can only be
used on LIST collections. If you try to perform a relative fetch on a SET or
MULTISET, mi_collection_fetch() generates an error.

Figure 5-9 shows the cursor position and value of coll_element after the
following mi_collection_fetch() call:

mi_collection_fetch(conn, coll_desc, MI_CURSOR_RELATIVE, -2,
coll_element, element_len);

Figure 5-8
Collection Cursor

After
Fetch Relative 3

Figure 5-9
Collection Cursor

After Fetch
Relative -2

Collection cursor

Cursor position

coll_element

46
3
15
1
4
8

Collection cursor

Cursor position

coll_element

156
3
15
1
4
8

5-18 IBM Informix DataBlade API Programmer’s Guide

Accessing Elements of a Collection
Because the preceding mi_collection_fetch() call moves the cursor position
backward, the call is valid only if the collection cursor is a scroll cursor. When
you open a collection with mi_collection_open(), you get a read/write scroll
collection cursor. However, if you open the collection with
mi_collection_open_with_options() and the MI_COLL_NOSCROLL option,
mi_collection_fetch() generates an error.

Figure 5-10 shows the cursor position and value of coll_element after the
following mi_collection_fetch() call:

mi_collection_fetch(conn, coll_desc, MI_CURSOR_ABSOLUTE, 6,
coll_element, element_len);

The preceding mi_collection_fetch() call is valid only if the collection is a
LIST. Because absolute fetches specify a position within the collection by
number, they can only be used on an ordered collection (a LIST). If you try to
perform an absolute fetch on a SET or MULTISET, mi_collection_fetch()
generates an error.

Because only six elements are in this collection, the absolute fetch of 6
positions the cursor on the last element in the collection. This result is the
same as if you had issued the following mi_collection_fetch():

mi_collection_fetch(conn, coll_desc, MI_CURSOR_LAST, 0,
coll_element, element_len);

The fetch last is useful when you do not know the number of elements in a
collection and want to obtain the last one.

Figure 5-10
Collection Cursor

After Fetch
Absolute 6

Collection cursor

Cursor position

coll_element

86
3
15
1
4
8

Using Complex Data Types 5-19

Accessing Elements of a Collection
Obtaining the Element Value

The mi_collection_fetch() function uses an MI_DATUM value to represent
an element that it fetches from a collection. You must pass in a pointer to the
value buffer in which mi_collection_fetch() puts the element value.
However, you do not have to allocate memory for this buffer. The
mi_collection_fetch() function handles memory allocation for the
MI_DATUM value that it passes back.

The contents of the MI_DATUM structure that holds the retrieved element
depends on the passing mechanism that the function used, as follows:

� In a C UDR, when mi_collection_fetch() passes back an element
value, it passes back the value by reference or by value, depending
on the data type of the column value. If the function passes back the
element value by value, the MI_DATUM structure contains the value.
If the function passes back the element value by reference, the
MI_DATUM structure contains a pointer to the value. ♦

� In a client LIBMI application, when mi_collection_fetch() passes
back an element value, it always passes back the value by reference.
Even for values that you can pass by value in a C UDR (such as an
INTEGER value), this function passes back the element value by
reference. The MI_DATUM structure contains a pointer to the
value. ♦

Important: The difference in behavior of mi_collection_fetch() between C UDRs
and client LIBMI applications means that collection-retrieval code is not completely
portable between these two types of DataBlade API modules. When you move your
DataBlade API code from one of these uses to another, you must change the collection-
retrieval code to use the appropriate passing mechanism for element values that
mi_collection_fetch() returns.

Server

Client
5-20 IBM Informix DataBlade API Programmer’s Guide

Accessing Elements of a Collection
You declare a value buffer for the fetched element and pass in the address of
this buffer to mi_collection_fetch(). You can declare the buffer in either of
the following ways:

� If you know the data type of the field value, declare the value buffer
of this data type.

Declare the value buffer as a pointer to the field data type, regardless
of whether the data type is passed by reference or by value.

� If you do not know the data type of the field value, declare the value
buffer to have the MI_DATUM data type.

Your code can dynamically determine the field type with the
mi_column_type_id() or mi_column_typedesc() function. You can
then convert (or cast) the MI_DATUM value to a data type that you
need.

Figures 5-6 through 5-19 fetch elements from a LIST collection of INTEGER
values. To fetch elements from this LIST, you can declare the value buffer as
follows:

mi_integer *coll_element;

Because you can pass INTEGER values by value in a C UDR, you access the
MI_DATUM structure that these calls to mi_collection_fetch() pass back as
the actual value, as follows:

int_element = (mi_integer)coll_element;

If the element type is a data type that must be passed by reference, the
contents of the MI_DATUM structure that mi_collection_fetch() passes back
is a pointer to the actual value. The following call to mi_collection_fetch()
also passes in the value buffer as a pointer. However, it passes back an
MI_DATUM value that contains a pointer to a FLOAT (mi_double_precision)
value:

mi_double_precision *coll_element, flt_element;
...
/* Fetch a FLOAT value in a C UDR */
mi_collection_fetch(conn, coll_desc, action, jump,

&coll_element, &retlen);
flt_element = *coll_element;

♦

Server
Using Complex Data Types 5-21

Accessing Elements of a Collection
For the fetches in Figures 5-6 through 5-19, a client LIBMI application declares
the value buffer in the same way as a C UDR. However, because all data types
are passed back by reference, the MI_DATUM structure that
mi_collection_fetch() passes back contains a pointer to the INTEGER value,
not the actual value itself:

mi_integer *coll_element, int_element;
...
/* Fetch an INTEGER value in a client LIBMI application */
mi_collection_fetch(conn, coll_desc, action, jump,

&coll_element, &retlen);
int_element = *coll_element;

♦

Updating a Collection

You update an element in an open collection with the
mi_collection_update() function. You can perform an update operation only
on a read/write cursor. An update is not valid on a read-only cursor.

The mi_collection_update() function uses an MI_DATUM value to represent
the new value for the element it updates in a collection. The contents of this
MI_DATUM structure depend on the passing mechanism that the function
used, as follows:

� In a C UDR, when mi_collection_update() updates an element
value, it can pass the value by reference or by value, depending on
the data type of the column value. If the function passes back the
element value by value, the MI_DATUM structure contains the value.
If the function passes back the element value by reference, the
MI_DATUM structure contains a pointer to the value. ♦

� In a client LIBMI application, when mi_collection_update() updates
an element value, it always passes the value by reference. Even for
values that you can pass by value in a C UDR (such as an INTEGER
value), these functions return the column value by reference. The
MI_DATUM structure contains a pointer to the value. ♦

The mi_collection_update() function updates the element at the location in
the collection cursor that its action argument specifies. For a list of valid
cursor-action flags, see Figure 5-4 on page 5-12.

Client

Server

Client
5-22 IBM Informix DataBlade API Programmer’s Guide

Accessing Elements of a Collection
The following code shows an example of using the mi_collection_update()
function to update the first element in a collection:

/*
* Update position 1 in the collection to contain 3.0
* Note that single-precision value is passed by REFERENCE.
*/
MI_CONNECTION *conn;
MI_COLL_DESC *colldesc;
MI_DATUM val;
mi_integer ret, jump;
mi_real value;

/* Update 1st element to 3.0 */
value = 3.0;
val = (MI_DATUM)&value;
jump = 1;
DPRINTF("trc_class", 11,

("Update set value %d @%d", value, jump));

/* Pass single-precision values by reference */
ret = mi_collection_update(conn, colldesc, val,

MI_CURSOR_ABSOLUTE, jump);

if (ret != MI_OK)
{
DPRINTF("trc_class", 11,

("Update @%d value %d MI_CURSOR_ABSOLUTE\
 failed", jump, value));

}

♦

Deleting an Element

You delete an element from an open collection with the
mi_collection_delete() function. You can perform a delete operation only on
a read/write cursor. A delete is not valid on a read-only cursor.

The mi_collection_delete() function deletes the element at the location in
the collection cursor that its action argument specifies. For a list of valid
cursor-action flags, see Figure 5-4 on page 5-12.

Server
Using Complex Data Types 5-23

Accessing Elements of a Collection
The following code shows an example of using the mi_collection_delete()
function to delete the last element of a collection:

/*
* Delete last element in the collection
*/
MI_CONNECTION *conn;
MI_COLL_DESC *coll_desc;
mi_integer ret;

ret = mi_collection_delete(conn, coll_desc,
MI_CURSOR_LAST, 0);

Determining the Cardinality of a Collection

The DataBlade API provides the mi_collection_card() function for obtaining
the number of elements in a collection (its cardinality). The following code
fragment uses the mi_collection_card() function to perform separate actions
based on whether a collection is NULL or has elements (possibly 0 elements):

MI_COLLECTION *collp;
mi_integer cardinality;
mi_boolean isnull;

/* Attach collp to a collection */

cardinality = mi_collection_card(collp, &isnull);
if (isnull == MI_TRUE)

{
mi_db_error_raise(conn, MI_MESSAGE, "Warning: Collection is NULL.");
}

else
{
if (cardinality > 0)

{
/* Open collection and perform action on individual elements */
}

}

5-24 IBM Informix DataBlade API Programmer’s Guide

Releasing Collection Resources
Releasing Collection Resources
When your DataBlade API module no longer needs a collection, you can
release the resources that it uses with the following DataBlade API functions.

Closing a Collection

A collection descriptor contains a collection cursor. The scope of the
collection descriptor and its associated collection cursor is from the time they
are created, by mi_collection_open_with_options() or
mi_collection_open(), until one of the following events occurs:

� The mi_collection_close() function frees the collection descriptor,
thereby closing and freeing the associated collection cursor.

� The current memory duration expires. ♦
� The mi_close() function closes the connection.

To conserve resources, use the mi_collection_close() function to free the
collection descriptor as soon as your DataBlade API module no longer needs
it. This function also explicitly closes and frees the associated collection
cursor. The mi_collection_close() function is the destructor function for the
collection descriptor as well as for its associated cursor.

Freeing the Collection Structure

The collection structure holds the collection elements. The scope of this
structure is from the time it is created, by mi_collection_create() or
mi_collection_copy(), until one of the following events occurs:

� The mi_collection_free() function frees the collection structure.

� The current memory duration expires. ♦
� The mi_close() function closes the connection.

DataBlade API Function Purpose

mi_collection_close() Closes the collection cursor and frees the collection
descriptor.

mi_collection_free() Frees the collection structure

Server

Server
Using Complex Data Types 5-25

The listpos() UDR
To conserve resources, use the mi_collection_free() function to free the
collection structure once your DataBlade API module no longer needs it. The
mi_collection_close() function is the destructor function for the collection
structure.

The listpos() UDR
The sample listpos() UDR consists of the following parts:

� The SQL statements that register the function, create a table, and run
the listpos() user-defined function

� The C code to implement the listpos() UDR

� Sample output from the listpos.trc trace file that the listpos() UDR
generates

SQL Statements

The SQL statements for the following tasks handle the database objects that
the listpos() function requires:

1. Register the user-defined function named listpos():
CREATE FUNCTION listpos()
RETURNS INTEGER
EXTERNAL NAME '$USERFUNCDIR/sql_listpos.udr'
LANGUAGE C;

2. Create a table named tab2:
CREATE TABLE tab2 (a INT);
INSERT INTO tab2 VALUES (1);

3. Add the trace class that the DPRINTF statements in listpos() use:
INSERT INTO informix.systraceclasses(name)

VALUES ('trace_class');

4. Run the listpos() UDR:
SELECT listpos() FROM tab2;

5. Clean up the resources:
DROP FUNCTION listpos;
DROP TABLE tab2;
5-26 IBM Informix DataBlade API Programmer’s Guide

The listpos() UDR
C-Language Implementation

The following C file contains the functions that implement the listpos() user-
defined function:

/* C file (listpos.c) contents:
* Examples of mi_collection_*() functions
*/

#include <stdio.h>
#include <mi.h>
#include <sqltypes.h>

void do_fetch(
MI_CONNECTION *conn,
MI_COLL_DESC *colldesc,
MI_CURSOR_ACTION action,
mi_integer type,
mi_integer jump,
MI_DATUM expected);

mi_integer create_collection(
MI_CONNECTION *conn,
char *typestring,
MI_COLLECTION **ret_coll_struc,
MI_COLL_DESC **ret_coll_desc);

mi_integer list_int_ins(MI_CONNECTION *conn);
mi_integer list_char_ins(MI_CONNECTION *conn);
mi_integer list_float_ins(MI_CONNECTION *conn);

/***
* Function: The listpos() user-defined routine
* Purpose: Run inserts on three types of LIST collections:
* LIST of INTEGER: list_int_ins()
* LIST of CHAR: list_char_ins()
* LIST of FLOAT: list_float_ins()
* Results are printed to a trace file named 'listpos.trc',
* which is the file that the mi_tracefile_set() function
* specifies.
* Return Values:
* 0 Success
* -1 No valid connection descriptor
* -50 Unable to convert data type to type identifer
* -51 Unable to create specified collection
* -52 Unable to open new collection
*/

mi_integer listpos()
{
 MI_CONNECTION *conn;
 mi_integer ret_code, error;
Using Complex Data Types 5-27

The listpos() UDR
/* Obtain a UDR connection descriptor and verify that it
* is valid
*/
conn = mi_open(NULL, NULL, NULL);
if (conn == NULL)

return (-1);

/* Turn on tracing of trace class "trace_class" and set the
* trace file to listpos.trc.
*/
mi_tracelevel_set("trace_class 20");
mi_tracefile_set("/usr/local/udrs/colls/listpos.trc");

/* Run list_int_ins() to insert INTEGER values into the LIST */
error = 0;
ret_code = list_int_ins(conn);
if (ret_code)

error = ret_code;

/* Run list_char_ins() to insert CHAR values into the LIST */
list_char_ins(conn);
if (ret_code)

error = ret_code;

/* Run list_float_ins() to insert FLOAT values into the LIST */
list_float_ins(conn);
if (ret_code)

error = ret_code;

return (ret_code);
} /* end listpos() */

/***
* Function: list_int_ins()
* Purpose:
* 1. insert 3 INTEGER values into a LIST
* 2. verify each inserted value
* 3. update first element
* Return Values:
* 0 Success
* -50 Unable to convert data type to type identifer
* -51 Unable to create specified collection
* -52 Unable to open new collection
* (status of steps in trace file)
*/

mi_integer list_int_ins(MI_CONNECTION *conn)
{

MI_COLLECTION *list;
MI_COLL_DESC *colldesc;

MI_CURSOR_ACTION action;
mi_integer jump, value, ret_code;
5-28 IBM Informix DataBlade API Programmer’s Guide

The listpos() UDR
/* Create the LIST of INTEGERs */
ret_code = create_collection(conn, "list(int not null)",

&list, &colldesc);
if (ret_code != 0)

return (ret_code);

action = MI_CURSOR_ABSOLUTE;

/* Insert three INTEGER values
* position 1: 1
* position 2: 2
* position 3: 3
* INTEGER datums are passed by value. Normally one would use
* an action of MI_CURSOR_NEXT (jump is ignored), but this
* function inserts at positions.
*/
value = jump = 1;
DPRINTF("trace_class", 15,

("Insert %d into LIST of INTEGER @%d", value,
jump));

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM) value, action, jump);

if (ret_code != MI_OK)
{
DPRINTF("trace_class", 15,

("list_int_ins: insert MI_CURSOR_ABSOLUTE %d @%d failed",
value, jump));
}

value = jump = 2;
DPRINTF("trace_class", 15,

("Insert %d into LIST of INTEGER @%d", value,
jump));

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM) value, action, jump);

if (ret_code != MI_OK)
{
DPRINTF("trace_class", 15,

("list_int_ins: insert MI_CURSOR_ABSOLUTE %d @%d failed",
value, jump));
}

Using Complex Data Types 5-29

The listpos() UDR
value = jump = 3;
DPRINTF("trace_class", 15,

("Insert %d into LIST of INTEGER @%d", value,
jump));

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM) value, action, jump);

if (ret_code != MI_OK)
{
DPRINTF("trace_class", 15,

("list_int_ins: insert MI_CURSOR_ABSOLUTE %d @%d failed",
value, jump));
}

/* Fetch each inserted INTEGER value from the collection,
* comparing it against the value actually inserted.
* Use a jump equal to the data value to simplify the
* validation.
*/
dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLINT, 1,

(MI_DATUM) 1);
dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLINT, 3,

(MI_DATUM) 3);
dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLINT, 2,

(MI_DATUM) 2);
dofetch(conn, colldesc, MI_CURSOR_PRIOR, SQLINT, 1,

(MI_DATUM) 1);
dofetch(conn, colldesc, MI_CURSOR_LAST, SQLINT, 3,

(MI_DATUM) 3);
dofetch(conn, colldesc, MI_CURSOR_FIRST, SQLINT, 1,

(MI_DATUM) 1);
dofetch(conn, colldesc, MI_CURSOR_RELATIVE, SQLINT, 2,

(MI_DATUM) 3);
dofetch(conn, colldesc, MI_CURSOR_RELATIVE, SQLINT, -2,

(MI_DATUM) 1);

/* Update 1st element to 3. */
jump=1;
value=3;
DPRINTF("trace_class", 15,

("Update %d into LIST of INTEGER @%d", value,
 jump));

ret_code = mi_collection_update(conn, colldesc,
(MI_DATUM) value, action, jump);

if (ret_code != MI_OK)
{
DPRINTF("trace_class", 15,

("list_int_ins: update MI_CURSOR_ABSOLUTE @%d failed",
jump));
}

/* Fetch the updated element back and validate it */
dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLINT, 1,

(MI_DATUM) 3);
5-30 IBM Informix DataBlade API Programmer’s Guide

The listpos() UDR
/* Free collection resources */
mi_collection_close(conn, colldesc);
mi_collection_free(conn, list);

return 0;
} /* end list_int_ins() */

/***
* Function: list_float_ins()
* Purpose:
* 1. insert 3 FLOAT values into a LIST
* 2. verify each inserted value
* 3. update first element
* Return Values:
* 0 Success
* -50 Unable to convert data type to type identifer
* -51 Unable to create specified collection
* -52 Unable to open new collection
* (status of steps in trace file)
*/

mi_integer list_float_ins(MI_CONNECTION *conn)
{

MI_COLLECTION *list;
MI_COLL_DESC *colldesc;

MI_CURSOR_ACTION action;
mi_integer jump, value, ret_code;
mi_double_precision val1, val2, val3, val4;

/* Create the LIST of FLOATs */
ret_code = create_collection(conn,

"list(float not null)", &list, &colldesc);
if (ret_code != 0)

return (ret_code);

action = MI_CURSOR_ABSOLUTE;

/* Insert three FLOAT values
* position 1: 1.1
* position 2: -2.2
* position 3: 3.3
* FLOAT datums are passed by reference.
*/
val1 = 1.1;
val2 = -2.2;
val3 = 3.3;
Using Complex Data Types 5-31

The listpos() UDR
jump = 1;
DPRINTF("trace_class", 15,

("Insert %f into LIST of FLOAT @%d", val1, jump));
ret_code = mi_collection_insert(conn, colldesc,

(MI_DATUM) &val1, action, jump);
if (ret_code != MI_OK)

{
DPRINTF("trace_class", 15,

("list_float_ins: insert MI_CURSOR_ABSOLUTE %f @%d failed",
val1, jump));
}

jump = 2;
DPRINTF("trace_class", 15,

("Insert %f into LIST of FLOAT @%d", val2, jump));
ret_code = mi_collection_insert(conn, colldesc,

(MI_DATUM) &val2, action, jump);
if (ret_code != MI_OK)

{
DPRINTF("trace_class", 15,

("list_float_ins: insert MI_CURSOR_ABSOLUTE %f @%d failed",
val2, jump));
}

jump = 3;
DPRINTF("trace_class", 15,

("Insert %f into LIST of FLOAT @%d", val3, jump));
ret_code = mi_collection_insert(conn, colldesc,

(MI_DATUM) &val3, action, jump);
if (ret_code != MI_OK)

{
DPRINTF("trace_class", 15,

("list_float_ins: insert MI_CURSOR_ABSOLUTE %f @%d failed",
val3, jump));
}

5-32 IBM Informix DataBlade API Programmer’s Guide

The listpos() UDR
/* Fetch each inserted FLOAT value from the collection,
* comparing it against the value actually inserted.
*/
dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLFLOAT, 1,

(MI_DATUM) &val1);
dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLFLOAT, 3,

(MI_DATUM) &val3);
dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLFLOAT, 2,

(MI_DATUM) &val2);
dofetch(conn, colldesc, MI_CURSOR_PRIOR, SQLFLOAT, 1,

(MI_DATUM) &val1);
dofetch(conn, colldesc, MI_CURSOR_LAST, SQLFLOAT, 3,

(MI_DATUM) &val3);
dofetch(conn, colldesc, MI_CURSOR_FIRST, SQLFLOAT, 1,

(MI_DATUM) &val1);
dofetch(conn, colldesc, MI_CURSOR_RELATIVE, SQLFLOAT, 2,

(MI_DATUM) &val3);
dofetch(conn, colldesc, MI_CURSOR_RELATIVE, SQLFLOAT, -2,

(MI_DATUM) &val1);

/* Update 1st element to 44E-4. */
jump=1;
val4=44e-4;
DPRINTF("trace_class", 15,

("Update %f into LIST of FLOAT @%d", val4, jump));
ret_code = mi_collection_update(conn, colldesc,

(MI_DATUM) &val4, action, jump);
if (ret_code != MI_OK)

{
DPRINTF("trace_class", 15,

("list_float_ins: update MI_CURSOR_ABSOLUTE @%d failed",
jump));
}

/* Fetch the updated element back and validate it */
dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLFLOAT, 1,

(MI_DATUM) &val4);

/* Free collection resources */
mi_collection_close(conn, colldesc);
mi_collection_free(conn, list);

return 0;
} /* end list_float_ins() */
Using Complex Data Types 5-33

The listpos() UDR
/***
* Function: list_char_ins()
* Purpose:
* 1. insert 3 CHAR values into a LIST
* 2. verify each inserted value
* 3. update first element
* Return Values:
* 0 Success
* -50 Unable to convert data type to type identifer
* -51 Unable to create specified collection
* -52 Unable to open new collection
* (status of steps in trace file)
*/

mi_integer list_char_ins(MI_CONNECTION *conn)
{

MI_COLLECTION *list;
MI_COLL_DESC *colldesc;

MI_CURSOR_ACTION action;
MI_DATUM val;
mi_integer retlen, jump, ret_code;
mi_lvarchar *lvc;
char *buf;
char *val1, *val2, *val3;

/* Create the LIST of CHAR(10)s */
ret_code = create_collection(conn,

"list(char(10) not null)", &list, &colldesc);
if (ret_code != 0)

return (ret_code);

action = MI_CURSOR_ABSOLUTE;

/* Insert three CHAR(10) values:
* position 1: "1234567689"
* position 2: "abcdefghij"
* position 3: "three"
* CHAR datums are passed by reference in an mi_lvarchar
* structure.
*/
val1 = "1234567689";
val2 = "abcdefghij";
val3 = "three";

lvc = mi_new_var(10);
buf = mi_get_vardata(lvc);
5-34 IBM Informix DataBlade API Programmer’s Guide

The listpos() UDR
jump = 1;
strcpy(buf, val1);
DPRINTF("trace_class", 15,

("Insert '%s' into LIST of CHAR @%d",
 buf, jump));

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM)lvc, action, jump);

if (ret_code != MI_OK)
{
DPRINTF("trace_class", 15,

("list_char_ins: insert MI_CURSOR_ABSOLUTE @%d failed",
jump));
}

jump = 2;
strcpy(buf, val2);
DPRINTF("trace_class", 15,

("Insert '%s' into LIST of CHAR @%d",
 buf, jump));

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM)lvc, action, jump);

if (ret_code != MI_OK)
{
DPRINTF("trace_class", 15,

("list_char_ins: insert MI_CURSOR_ABSOLUTE @%d failed",
jump));
}

jump = 3;
strcpy(buf, val3);
DPRINTF("trace_class", 15,

("Insert '%s' into LIST of CHAR @%d",
 buf, jump));

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM)lvc, action, jump);

if (ret_code != MI_OK)
{
DPRINTF("trace_class", 15,

("list_char_ins: insert MI_CURSOR_ABSOLUTE @%d failed",
jump));
}

Using Complex Data Types 5-35

The listpos() UDR
/* Fetch each inserted CHAR value from the collection,
* comparing it against the value actually inserted.
*/
dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLCHAR, 1,

val1);
dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLCHAR, 3,

val3);
dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLCHAR, 2,

val2);
dofetch(conn, colldesc, MI_CURSOR_PRIOR, SQLCHAR, 1,

val1);
dofetch(conn, colldesc, MI_CURSOR_LAST, SQLCHAR, 3,

val3);
dofetch(conn, colldesc, MI_CURSOR_FIRST, SQLCHAR, 1,

val1);
dofetch(conn, colldesc, MI_CURSOR_RELATIVE, SQLCHAR, 2,

val3);
dofetch(conn, colldesc, MI_CURSOR_RELATIVE, SQLCHAR, -2,

val1);

/* Update 1st element to "mnopqrstuv". */
jump=1;
strcpy(buf, "mnopqrstuv");
DPRINTF("trace_class", 15,

("Update '%s' into LIST of CHAR @ %d", buf, jump));
ret_code = mi_collection_update(conn, colldesc,

(MI_DATUM)lvc, action, jump);
if (ret_code != MI_OK)

{
DPRINTF("trace_class", 15,

("list_char_ins: update MI_CURSOR_ABSOLUTE @%d failed",
jump));
}

/* Fetch the updated element back and validate it */
dofetch(conn, colldesc, MI_CURSOR_FIRST, SQLCHAR, 1,

buf);

/* Free collection resources */
mi_collection_close(conn, colldesc);
mi_collection_free(conn, list);

return 0;
} /* end list_char_ins() */
5-36 IBM Informix DataBlade API Programmer’s Guide

The listpos() UDR
/***
* Function: do_fetch()
* Purpose: Fetch specified element from a collection and
* compare it with the specified expected value
* Return Values: NONE
*/

void do_fetch(
MI_CONNECTION *conn,
MI_COLL_DESC *colldesc,
MI_CURSOR_ACTION action,
mi_integer type,
mi_integer jump,
MI_DATUM expected)

{
MI_DATUM val;
mi_integer retlen, ret_code;
char *actionstr, *buf;

switch (action)
{

case MI_CURSOR_NEXT:
actionstr="MI_CURSOR_NEXT";
break;

case MI_CURSOR_PRIOR:
actionstr="MI_CURSOR_PRIOR";
break;

case MI_CURSOR_FIRST:
actionstr="MI_CURSOR_FIRST";
break;

case MI_CURSOR_LAST:
actionstr="MI_CURSOR_LAST";
break;

case MI_CURSOR_ABSOLUTE:
actionstr="MI_CURSOR_ABSOLUTE";
break;

case MI_CURSOR_RELATIVE:
actionstr="MI_CURSOR_RELATIVE";
break;

default:
actionstr="UNKNOWN";

}

DPRINTF("trace_class", 15,
("Fetch %s @ jump=%d:", actionstr, jump));
Using Complex Data Types 5-37

The listpos() UDR
/* Print what is the expected value */
switch (type)
{

case SQLINT:
DPRINTF("trace_class", 15,

(" should get %d: ", expected));
break;

case SQLCHAR:
DPRINTF("trace_class", 15,

(" should get '%s': ", expected));
break;

case SQLFLOAT:
DPRINTF("trace_class", 15,

(" should get %f: ", *(double *)expected));
break;

default:
DPRINTF("trace_class", 15,

(" type not handled: %d", type));
}

/* Fetch collection element at position 'jump' into 'val' */
ret_code = mi_collection_fetch(conn, colldesc, action,

jump, &val, &retlen);
if (ret_code != MI_NORMAL_VALUE)

{
DPRINTF("trace_class", 15,

("do_fetch: %s @%d failed", actionstr, jump));
return;
}

/* Compare fetched value with expected value */
switch (type)
{

case SQLINT:
if (expected != val)

{
DPRINTF("trace_class", 15,

("do_fetch: fetch value not expected; got %d",
val));
}

else
{
DPRINTF("trace_class", 15,

(" got %d, fetch succeeded", val));
}

break;
5-38 IBM Informix DataBlade API Programmer’s Guide

The listpos() UDR
case SQLCHAR:
buf = mi_get_vardata((mi_lvarchar *)val);
if (strcmp(buf, (char *)expected) != 0)

{
DPRINTF("trace_class", 15,

("do_fetch: fetch value not expected; got %s",
buf));
}

else
{
DPRINTF("trace_class", 15,

(" got '%s', fetch succeeded", buf));
}

break;

case SQLFLOAT:
if (*(double *)expected != *(double *)val)

{
DPRINTF("trace_class", 15,

("do_fetch: fetch value not expected; got %f",
*(double *)val));
}

else
{
DPRINTF("trace_class", 15,

(" got %f, fetch succeeded",
 *(double *)val));

}
break;

default:
DPRINTF("trace_class", 15,

("do_fetch: %d type not handled", type));
}

} /* end do_fetch() */

/***
* Function: create_collection()
* Purpose: create a collection of the specified type
* Return Values:
* thru parameters:
* ret_coll_desc: address of collection descriptor
* ret_coll_struc: address of collection structure
* thru return value:
* 0 Success
* -50 Unable to convert data type to type identifer
* -51 Unable to create specified collection
* -52 Unable to open new collection
*/
Using Complex Data Types 5-39

The listpos() UDR
mi_integer create_collection(
MI_CONNECTION *conn,
char *typestring,
MI_COLLECTION **ret_coll_struc,
MI_COLL_DESC **ret_coll_desc)

{
MI_TYPEID *typeid;
MI_COLLECTION *collstruc;
MI_COLL_DESC *colldesc;

/* Convert data type string to type identifier */
typeid = mi_typestring_to_id(conn, typestring);
if (typeid == NULL)

{
DPRINTF("trace_class", 15,

("create_collection: mi_typestring_to_id() failed"));
return (-50);
}

/* Create collection whose elements have the data type
* indicated by the specified type identifer
*/
if ((collstruc =

mi_collection_create(conn, typeid)) == NULL)
{
DPRINTF("trace_class", 15,

("create_collection: mi_collection_create() failed"));
return (-51);
}

/* Open the collection */
if ((colldesc =

mi_collection_open(conn, collstruc)) == NULL)
{
DPRINTF("trace_class", 15,

("mi_collection_open() failed"));
return -52;
}

/* Return through the parameters the addresses of:
* the collection descriptor: ret_coll_desc
* the collection structure: ret_coll_struc
*/
*ret_coll_desc = colldesc;
*ret_coll_struc = collstruc;

/* Return a status of zero to indicate success */
return 0;

/* end create_collection() */
5-40 IBM Informix DataBlade API Programmer’s Guide

The listpos() UDR
Sample listpos() Trace Output

When the listpos() user-defined function executes successfully, it produces
the following output in the listpos.trc file:

==

Tracing session: 18 on 03/16/2000

13:12:24 Insert 1 into LIST of INTEGER @1
13:12:24 Insert 2 into LIST of INTEGER @2
13:12:24 Insert 3 into LIST of INTEGER @3
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=1:
13:12:24 should get 1
13:12:24 got 1, fetch succeeded
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=3:
13:12:24 should get 3
13:12:24 got 3, fetch succeeded
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=2:
13:12:24 should get 2
13:12:24 got 2, fetch succeeded
13:12:24 Fetch MI_CURSOR_PRIOR @ jump=1:
13:12:24 should get 1
13:12:24 got 1, fetch succeeded
13:12:24 Fetch MI_CURSOR_LAST @ jump=3:
13:12:24 should get 3
13:12:24 got 3, fetch succeeded
13:12:24 Fetch MI_CURSOR_FIRST @ jump=1:
13:12:24 should get 1
13:12:24 got 1, fetch succeeded
13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=2:
13:12:24 should get 3
13:12:24 got 3, fetch succeeded
13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=-2:
13:12:24 should get 1
13:12:24 got 1, fetch succeeded
13:12:24 Update 3 into LIST of INTEGER @1
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=1:
13:12:24 should get 3
13:12:24 got 3, fetch succeeded
13:12:24 Insert '1234567689' into LIST of CHAR @1
13:12:24 Insert 'abcdefghij' into LIST of CHAR @2
13:12:24 Insert 'three' into LIST of CHAR @3
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=1:
13:12:24 should get '1234567689'
13:12:24 got '1234567689', fetch succeeded
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=3:
13:12:24 should get 'three'
13:12:24 got 'three', fetch succeeded
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=2:
13:12:24 should get 'abcdefghij'
13:12:24 got 'abcdefghij', fetch succeeded
Using Complex Data Types 5-41

The listpos() UDR
13:12:24 Fetch MI_CURSOR_PRIOR @ jump=1:
13:12:24 should get '1234567689'
13:12:24 got '1234567689', fetch succeeded
13:12:24 Fetch MI_CURSOR_LAST @ jump=3:
13:12:24 should get 'three'
13:12:24 got 'three', fetch succeeded
13:12:24 Fetch MI_CURSOR_FIRST @ jump=1:
13:12:24 should get '1234567689'
13:12:24 got '1234567689', fetch succeeded
13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=2:
13:12:24 should get 'three'
13:12:24 got 'three', fetch succeeded
13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=-2:
13:12:24 should get '1234567689'
13:12:24 got '1234567689', fetch succeeded
13:12:24 Update 'mnopqrstuv' into LIST of CHAR @1
13:12:24 Fetch MI_CURSOR_FIRST @ jump=1:
13:12:24 should get 'mnopqrstuv'
13:12:24 got 'mnopqrstuv', fetch succeeded
13:12:24 Insert 1.100000 into LIST of FLOAT @1
13:12:24 Insert -2.200000 into LIST of FLOAT @2
13:12:24 Insert 3.300000 into LIST of FLOAT @3
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=1:
13:12:24 should get 1.100000
13:12:24 got 1.100000, fetch succeeded
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=3:
13:12:24 should get 3.300000
13:12:24 got 3.300000, fetch succeeded
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=2:
13:12:24 should get -2.200000
13:12:24 got -2.200000, fetch succeeded
13:12:24 Fetch MI_CURSOR_PRIOR @ jump=1:
13:12:24 should get 1.100000
13:12:24 got 1.100000, fetch succeeded
13:12:24 Fetch MI_CURSOR_LAST @ jump=3:
13:12:24 should get 3.300000
13:12:24 got 3.300000, fetch succeeded
13:12:24 Fetch MI_CURSOR_FIRST @ jump=1:
13:12:24 should get 1.100000
13:12:24 got 1.100000, fetch succeeded
13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=2:
13:12:24 should get 3.300000
13:12:24 got 3.300000, fetch succeeded
13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=-2:
13:12:24 should get 1.100000
13:12:24 got 1.100000, fetch succeeded
13:12:24 Update 0.004400 into LIST of FLOAT @1
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=1:
13:12:24 should get 0.004400
13:12:24 got 0.004400, fetch succeeded
5-42 IBM Informix DataBlade API Programmer’s Guide

Row Types
Row Types
A row type is a complex data type that is made up of a sequence of one or more
elements called fields. Each field has a name and a data type. A row type is
similar to a C struct data type. The DataBlade API provides support for row
types in both their text and binary representations.

Row-Type Text Representation
The DataBlade API supports a text representation for row types as a quoted
string with the formats that the following table shows.

The text representations in the preceding table use the following
abbreviations:

A row type in its text representation is often called a row-type string. For
example, suppose you have the following unnamed row type defined:

ROW(fld1 INTEGER, fld2 CHAR(20))

The following row-type string provides the text representation for this
unnamed row type:

"ROW(7, 'Dexter')"

For a detailed description of the text representation of a row type, see the
description of the Literal Row segment in the IBM Informix Guide to SQL:
Syntax.

Row Type Text Representation

Unnamed "ROW(fld_value1, fld_value2, ...)"

Named "row_type(fld_value1, fld_value2, ...)"

fld_value1, fld_value2 are the text representations of the field values.

row_type is the name of the named row type.
Using Complex Data Types 5-43

Row-Type Binary Representation
Row-Type Binary Representation
The database server supports the following kinds of row types.

All row types use the same internal format to store their values. For more
information, see the IBM Informix Guide to SQL: Reference.

Tip: The internal format of a row type is often referred to as its binary representation.

The DataBlade API supports the SQL row types with the following data type
structures:

� A row descriptor (MI_ROW_DESC) provides information about the row
type.

� A row structure (MI_ROW) holds the binary representation of the field
values in the row type.

Important: The fields of a row type are comparable to the columns in the row of a
table. This similarity means that you use the same DataBlade API data type struc-
tures to access row types that you do to access columns in a row.

Row Type Description

Named row type A named row type is identified by its name. With the
CREATE ROW TYPE statement, you create a template of a
row type. You can then use this template to take the following
actions:

� Use type inheritance

� Define columns that all have the same row type

� Assign a named row type to a table with the OF TYPE
clause of the CREATE TABLE statement

Unnamed row type An unnamed row type is identified by its structure. With the
ROW keyword, you create a row type. This row type contains
fields but has no user-defined name. Therefore, if you want a
second column to have the same row type, you must respecify
all fields.
5-44 IBM Informix DataBlade API Programmer’s Guide

Row-Type Binary Representation
Using a Row Descriptor

A row descriptor, MI_ROW_DESC, is a DataBlade API structure that describes
the type of data in each field of a row type. The following table summarizes
the memory operations for a row descriptor.

Tip: A row descriptor can describe a row type or a row in a table. Therefore, you use
the same DataBlade API functions to handle memory operations for a row descriptor
when it describes a row type or a table row.

In a C UDR, the row structure and row descriptor are part of the same data
type structure. The row structure is just a data buffer in the row descriptor
that holds the column values of a row. A one-to-one correspondence exists
between the row descriptor (which mi_row_desc_create() allocates) and its
row structure (which mi_row_create() allocates). Therefore:

� When the mi_row_desc_create() function creates a new row
descriptor, it assigns a NULL-valued pointer to the data buffer.

� The mi_row_desc_free() function frees both the row descriptor and
its associated row structure. ♦

In a client LIBMI application, a row structure and a row descriptor are
separate data type structures. A one-to-many correspondence can exist
between a row descriptor and its associated row structures. When you call
mi_row_desc_free(), you free only the specified row descriptor. ♦

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_row_desc_create()

Destructor mi_row_desc_free()

Server

Client
Using Complex Data Types 5-45

Row-Type Binary Representation
Figure 5-11 lists the DataBlade API accessor functions that obtain information
about fields of a row type (or columns of a row) from the row descriptor.

Figure 5-11
Field and Column Information in the Row Descriptor

Important: To DataBlade API modules, the row descriptor (MI_ROW_DESC) is an
opaque C data structure. Do not access its internal fields directly. The internal
structure of MI_ROW_DESC may change in future releases. Therefore, to create
portable code, always use the accessor functions for this structure to obtain column
information.

Column Information
DataBlade API
Accessor Functions

The number of columns and/or fields in the row
descriptor

mi_column_count()

The name of the column or field, given its position in the
row

mi_column_name()

The column identifier, which is the position of the column
or field within the row, given its name

mi_column_id()

The precision (total number of digits) of a column or field
data type

mi_column_precision()

The scale of a column or field data type mi_column_scale()

Whether a column or field in the row descriptor has the
NOT NULL
constraint

mi_column_nullable()

The type identifier of the column or field data type mi_column_type_id()

The type descriptor of the column or field data type mi_column_typedesc()
5-46 IBM Informix DataBlade API Programmer’s Guide

Row-Type Binary Representation
The row descriptor stores column information in several parallel arrays.

All of the column arrays in the row descriptor have zero-based indexes.
Within the row descriptor, each column has a column identifier, which is a
zero-based position of the column (or field) in the column arrays. When you
need information about a column (or field), specify its column identifier to
one of the row-descriptor accessor functions in Figure 5-11 on page 5-46.

Tip: The system catalog tables refer to the unique number that identifies a column
definition as its “column identifier.” However, the DataBlade API refers to this
number as a “column number” and the position of a column within the row structure
as a “column identifier.” These two terms do not refer to the same value.

Column Array Contents

Column-type ID array Each element is a pointer to a type identifier
(MI_TYPEID) that indicates the data type of the
column.

Column-type-descriptor array Each element is a pointer to a type descriptor
(MI_TYPE_DESC) that describes the data type of
the column.

Column-scale array Each element is the scale of the column data type.

Column-precision array Each element is the precision of the column data
type.

Column-nullable array Each element has either of the following values:

� MI_TRUE: The column can contain SQL NULL
values.

� MI_FALSE: The column cannot contain SQL
NULL values.
Using Complex Data Types 5-47

Row-Type Binary Representation
Figure 5-12 shows how the information at index position 1 of these arrays
holds the column information for the second column in a row descriptor.

To access information for the nth column, provide an index value of n-1 to the
appropriate accessor function in Figure 5-11 on page 5-46. The following calls
to the mi_column_type_id() and mi_column_nullable() functions obtain
from a row descriptor that row_desc identifies the type identifier (col_type)
and whether the column is nullable (col_nullable) for the second column:

MI_ROW_DESC *row_desc;
MI_TYPEID *col_type;
mi_integer col_nullable;
...
col_type = mi_column_type_id(row_desc, 1);
col_nullable = mi_column_nullable(row_desc, 1);

To obtain the number of columns in the row descriptor (which is also the
number of elements in the column arrays), use the mi_column_count()
function.

Figure 5-12
Column Arrays in

the Row Descriptor

.

.

.

Type identifiers
0
1
2

n

Type descriptors Scales Precisions NULL values

.

.

.

0
1
2

n

.

.

.

0
1
2

n

.

.

.

0
1
2

n

.

.

.

0
1
2

n

All information for the second column
(at index position 1)
5-48 IBM Informix DataBlade API Programmer’s Guide

Row-Type Binary Representation
Using a Row Structure

The DataBlade API always holds fields of a row type in a row structure
(MI_ROW structure). Each row structure stores the data from a single row-
type column in a table. The following table summarizes the memory opera-
tions for a row structure.

Tip: A row structure can hold values for the fields of a row type or the columns of a
row in a table. Use the same DataBlade API functions to handle memory operations
for a row structure when it holds values for a row type or a table row.

In a C UDR, the row structure and row descriptor are part of the same data
type structure. The mi_row_create() function just adds a data buffer, which
holds the column values of a row, to the row descriptor. A one-to-one corre-
spondence exists between the row descriptor (which mi_row_desc_create()
allocates) and its row structure (which mi_row_create() allocates).

If you call mi_row_create() twice with the same row descriptor, the second
call overwrites the row values of the first call.

The mi_row_free() function frees the memory associated with the data
buffer and assigns a NULL-valued pointer to this buffer in the row
descriptor. ♦

In a client LIBMI application, a row structure and a row descriptor are
separate data type structures. A one-to-many correspondence exists between
a row descriptor and its associated row structures. When you call
mi_row_create() a second time with the same row descriptor, you obtain a
second row structure. The mi_row_free() function frees a row structure. ♦

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_row_create(),
mi_streamread_row()

Destructor mi_row_free()

Server

Client
Using Complex Data Types 5-49

Creating a Row Type
The following DataBlade API functions obtain field values from an existing
row structure.

Tip: A row structure can hold the fields of a row type or the columns of a database
row. You use the same DataBlade API functions to handle memory operations for a
row structure when it holds row-type fields as when it describes columns of a row.
For more information on how to obtain column values from a row, see “Obtaining
Column Values” on page 8-68.

Creating a Row Type
To create a row type, you create a row structure (MI_ROW) that holds the row
type. The mi_row_create() function is the constructor function for the row
structure (MI_ROW). To create a row type with mi_row_create(), you must
provide the following information to the function:

� A row descriptor that describes the fields of the row type (or columns
of a row)

� The values of the row-type fields (or row columns)

Creating the Row Descriptor

You create a new row descriptor for a row type with the
mi_row_desc_create() function. The mi_row_desc_create() is the
constructor function for a row descriptor. You provide this function with the
type identifier of the row type for which you want the row descriptor. If you
do not know the type identifier for your row type, use the
mi_type_typename() function or mi_typestring_to_id() to create a type
identifier based on the type name. The type name for a row type is its text
representation. For more information, see “Row-Type Text Representation”
on page 5-43.

DataBlade API Function Description

mi_value(),
mi_value_by_name()

Returns a row structure as a column value when the
function returns an MI_ROW_VALUE value status

The row structure holds the fields of the row type.
5-50 IBM Informix DataBlade API Programmer’s Guide

Creating a Row Type
Assigning the Field Values

To provide values for the columns (or fields) of a row structure, you pass
information for the columns in several parallel arrays:

� Column-value array

� Column-value null array

These column-value arrays are similar to the column arrays in the row
descriptor (see Figure 5-12 on page 5-48). They have an element for each
column in the row descriptor. The column-value arrays are different from the
column arrays in the row descriptor, in the following ways:

� The column-value arrays describe the actual value for a column.

Column arrays describe the column data type.

� You must allocate and manage the column-value arrays.

The DataBlade API does not provide accessor functions for these col-
umn-value arrays. For each column, your DataBlade API module
must declare, allocate, and assign values to these arrays.

All of the column-value arrays have zero-based indexes. Figure 5-13 shows
how the information at index position 1 of these arrays holds the column-
value information for the second column of a row.

The following sections provide additional information about each of the
column-value arrays.

Figure 5-13
Arrays for

Initialization of
Column

.

.

.

Values
0
1
2

n

Nulls

.

.

.

0
1
2

n

All information for the second column
(at index position 1)
Using Complex Data Types 5-51

Creating a Row Type
Column-Value Array

The column-value array, col_values, is the third argument of the
mi_row_create() function. Each element of the column-value array is a
pointer to an MI_DATUM structure that holds the value for each column. The
format of this value depends on whether the MI_DATUM value is passed by
reference or by value:

� For C UDRs, the data type of the value determines the passing
mechanism. If the function passes the value by value, the
MI_DATUM structure contains the value. If the function passes value
by reference, the MI_DATUM structure contains a pointer to the
value. ♦

� For client LIBMI applications, pass all values (regardless of data type)
by reference. The MI_DATUM structure contains a pointer to the
value. ♦

Important: The difference in behavior of mi_row_create() between C UDRs and
client LIBMI applications means that row-creation code is not completely portable
between these two types of DataBlade API module. When you move your DataBlade
API code from one of these uses to another, you must change the row-creation code to
use the appropriate passing mechanism for column values that mi_row_create()
accepts.

For more information on the passing mechanism for an MI_DATUM value,
see “Contents of an MI_DATUM Structure” on page 2-51.

Column-Value Null Array

The column-value null array, col_nulls, is the fourth argument of the
mi_row_create() function. Each element of the column-value null array is
either:

� MI_FALSE

The column value is not an SQL NULL value.

� MI_TRUE

The column value is an SQL NULL value.

Server

Client
5-52 IBM Informix DataBlade API Programmer’s Guide

Creating a Row Type
Example: Creating a Row Type

Suppose you have the row type that the following SQL statement creates:

CREATE ROW TYPE rowtype_t
(
id INTEGER,
name CHAR(20)

);

The following code shows how to use the mi_row_create() function to create
a new row type of type rowtype_t:

/*
* Create a row structure for the 'rowtype_t' row type
*/

MI_CONNECTION *conn;
MI_ROW_DESC *rowdesc;
MI_ROW *row;
MI_DATUM *values;
mi_boolean *nulls;
mi_integer num_cols;

/* Allocate a row descriptor for the 'rowtype_t' row type */
rowdesc = mi_row_desc_create(

mi_typestring_to_id(conn, "rowtype_t"));

/* Assume number of columns is known */
num_cols = 2;

/* Allocate the 'col_values' and 'col_nulls' arrays */
values = mi_alloc(num_cols *sizeof(MI_DATUM));
nulls = mi_alloc(num_cols *sizeof(mi_boolean));

/* Populate the 'col_values' and 'col_nulls' arrays */

/* Initialize value for field 1: 'id' */
values[0] = 1;
nulls[0] = MI_FALSE;

/* Initialize value for field 2: 'name' */
values[1] = mi_string_to_lvarchar("Dexter");
nulls[1] = MI_FALSE;

/* Create row structure for 'name_t' */
row = mi_row_create(conn, rowdesc, values, nulls);

Server
Using Complex Data Types 5-53

Accessing a Row Type
When this code completes, the row variable points to a row structure that
contains the following field values.

♦

If the preceding code fragment were part of a client LIBMI application, it
would require changes to the way the values are addressed in the values
array. For example, the INTEGER value would require the following cast to
create a copy of the column value:

mi_integer col_val;
...
/* Initialize value for field 1: 'id' */
col_val = 1;
values[0] = &col_val;
nulls[0] = MI_FALSE;

This different kind of addressing is required because in client LIBMI applica-
tions, mi_row_create() passes values for all data types by reference.
Therefore, the contents of the MI_DATUM structure is always a pointer to the
actual value, never the value itself. ♦

Accessing a Row Type
When a row type (named or unnamed) is used as a column of a table, its fields
can be accessed in exactly the same ways that the columns of a row are
accessed. That is, you create a series of nested loops that use the following
functions:

� The mi_next_row() function controls a loop that iterates through
each retrieved row type.

� The mi_value() or mi_value_by_name() function controls a loop
that iterates through each field value.

For more information on how to use these functions, see “Obtaining Row
Values” on page 8-79.

Field Name Field Value

fname "Dexter"

middle "M"

lname "Haven"

Client
5-54 IBM Informix DataBlade API Programmer’s Guide

Copying a Row Structure
Copying a Row Structure
To create a copy of a row structure, you must:

� Create a new row descriptor that describes the row type.

For more information, see “Creating the Row Descriptor” on
page 5-50.

� Copy the row values from the old row structure into the col_values
and col_nulls arrays to be used for the new row structure.

� Create the new row structure with the values in the col_values and
col_nulls arrays.

The following code fragment copies a row structure:

MI_CONNECTION *conn;
MI_ROW_DESC *rowdesc, *new_rowdesc;
mi_integer num_cols, i, len;
MI_DATUM *values;
mi_boolean *nulls;
MI_ROW *new_row;
...

/* Allocate a new row descriptor for the 'name_t' row type */
new_rowdesc = mi_row_desc_create(

mi_typestring_to_id(conn, "name_t"));

/* Determine number of columns needed */
num_cols = mi_column_count(new_rowdesc);

/* Allocate the 'col_values' and 'col_nulls' arrays */
values = mi_alloc(num_cols * sizeof(MI_DATUM));
nulls = mi_alloc(num_cols * sizeof(mi_boolean));

/* Populate the 'col_values' and 'col_nulls' arrays */
for (i=0; i < num_cols; i++)

{
nulls[i] = MI_FALSE; /* assume non-NULL value */

/* Put field value from original row type ('rowdesc')
* into 'values' array for new row type ('new_rowdesc'
*/

switch (mi_value(rowdesc, i, &values[i], &len))
{
case MI_ERROR:

/* Unable to get field value. Raise an error */
break;
Using Complex Data Types 5-55

Copying a Row Structure
case MI_NULL_VALUE:
/* Field value is an SQL NULL value. Set 'nulls'
* array for new row type ('new_rowdesc')
*/

nulls[i] = MI_TRUE;
break;

case MI_NORMAL_VALUE:
/* No action needed: mi_value() call has already
* copied field value into 'values' array
*/

break;

case MI_COLLECTION_VALUE:
/* Need to add code to handle collection */
break;

case MI_ROW_VALUE:
/* Need to add code to handle nested rows */
break;

default:
/* Handle error */
break;

} /* end switch */
} /* end for */

/* Create new row type with values copied from old row type */
new_row = mi_row_create(conn, new_rowdesc, values, nulls);

/* Deallocate memory for 'values' and 'nulls' arrays */
mi_free(values);
mi_free(nulls);

After this code fragment executes, the new_row row structure contains a
copy of the values in the row row structure.
5-56 IBM Informix DataBlade API Programmer’s Guide

Releasing Row Resources
Releasing Row Resources
After your DataBlade API module no longer needs the row type (or row) that
you allocated, you need to assess whether you can release resources that the
row is using, specifically the row descriptor and the row structure.

Freeing a Row Structure

A row structure has the current memory duration. A row remains valid until
one of the following events occurs:

� The mi_row_free() function frees the row.

� The current memory duration expires. ♦
� The mi_close() function closes the current connection.

To conserve resources, use the mi_row_free() function to explicitly
deallocate the row once your DataBlade API module no longer needs it. The
mi_row_free() function is the destructor function for a row structure. It frees
the row and any resources that are associated with it.

In a C UDR, the row structure and row descriptor are part of the same data
type structure. The mi_row_create() function just adds a data buffer, which
holds the column values of a row, to the row descriptor. The mi_row_free()
function drops the row structure from the row descriptor. It is useful for big
rows where the data you want has already been examined.

However, the mi_row_desc_free() function frees a row descriptor and the
associated row structure. Once mi_row_desc_free() frees the row descriptor,
you no longer have access to the row structure. Examine the contents of a row
structure before you deallocate the row descriptor with
mi_row_desc_free(). ♦

In a client LIBMI application, a row structure and a row descriptor are
separate data type structures. When you free a row descriptor with
mi_row_desc_free(), the associated row structure is not freed. You must
explicitly free the row structure with mi_row_free(). ♦

Important: Use mi_row_free() only for row structures that you have explicitly
allocated with mi_row_create(). Do not use this function to free row structures that
other DataBlade API functions (such as mi_next_row()) allocate.

Server

Server

Client
Using Complex Data Types 5-57

Releasing Row Resources
Freeing a Row Descriptor

A row descriptor has the current memory duration. A row descriptor
remains valid until one of the following events occurs:

� The mi_row_desc_free() function frees the row.

� The current memory duration expires. ♦
� The mi_close() function closes the current connection.

To conserve resources, use the mi_row_desc_free() function to explicitly
deallocate the row descriptor once your DataBlade API module no longer
needs it. The mi_row_desc_free() function is the destructor function for a
row descriptor. It frees the row descriptor and any resources that are
associated with it.

In a C UDR, the row structure and row descriptor are part of the same data
type structure. The mi_row_create() function just adds a data buffer, which
holds the column values of a row, to the row descriptor. The
mi_row_desc_free() function frees a row descriptor and the associated row
structure. Once mi_row_desc_free() frees the row descriptor, you no longer
have access to the row structure. ♦

In a client LIBMI application, a row structure and a row descriptor are
separate data type structures. When you free a row descriptor with
mi_row_desc_free(), the associated row structure is not freed. You must
explicitly free the row structure with mi_row_free(). ♦

Important: Use mi_row_desc_free() only for row descriptors that you have
explicitly allocated with mi_row_desc_create(). Do not use this function to free
row structures that other DataBlade API functions (such as
mi_get_row_desc_without_row()) allocate.

Server

Server

Client
5-58 IBM Informix DataBlade API Programmer’s Guide

6
Chapter
Using Smart Large Objects
In This Chapter . 6-5

Understanding Smart Large Objects 6-6
Parts of a Smart Large Object 6-7

The Sbspace 6-7
The LO Handle 6-8

Information About a Smart Large Object 6-8
Storage Characteristics 6-9
Status Information 6-22

Storing a Smart Large Object in a Database 6-24
Valid Data Types 6-24

CLOB and BLOB Data Types 6-24
Opaque Data Type 6-25

Access to a Smart Large Object 6-26
Selecting a Smart Large Object 6-26
Storing a Smart Large Object 6-27

Using the Smart-Large-Object Interface 6-28
Smart-Large-Object Data Type Structures 6-29

LO-Specification Structure 6-29
LO Handle 6-30
LO File Descriptor 6-32
LO-Status Structure 6-33

Smart-Large-Object Functions. 6-34
Functions That Create a Smart Large Object 6-35
Functions That Perform Input and Output on a

Smart Large Object 6-35
Functions That Manipulate an LO Handle 6-37
Functions That Access an LO-Specification Structure 6-39

6-2 IBM
Functions That Access an LO-Status Structure 6-41
Functions That Move Smart Large Objects to and from

Operating-System Files 6-42

Creating a Smart Large Object 6-43
Obtaining the LO-Specification Structure 6-44

Specifying New Storage Characteristics 6-45
Copying Storage Characteristics from an Existing

Smart Large Object 6-47
Choosing Storage Characteristics 6-49

Obtaining Storage Characteristics 6-49
Using the Storage-Characteristics Hierarchy 6-52

Initializing an LO Handle and an LO File Descriptor 6-69
Obtaining an LO Handle 6-70
Obtaining an LO File Descriptor. 6-72

Writing Data to a Smart Large Object 6-72
Storing an LO Handle 6-74
Freeing Resources 6-75

Freeing an LO-Specification Structure 6-75
Freeing an LO Handle 6-75

Sample Code to Create a New Smart Large Object 6-77

Accessing a Smart Large Object. 6-80
Selecting the LO Handle 6-81

Validating an LO Handle 6-82
Opening a Smart Large Object 6-83
Reading Data from a Smart Large Object 6-84
Freeing a Smart Large Object 6-85
Sample Code to Select an Existing Smart Large Object 6-85

Modifying a Smart Large Object 6-87
Updating a Smart Large Object 6-87
Altering Storage Characteristics 6-88

Obtaining Status Information for a Smart Large Object 6-89
Obtaining a Valid LO File Descriptor 6-90
Initializing an LO-Status Structure 6-91

Obtaining a Valid LO-Status Structure 6-91
Filling the LO-Status Structure 6-92

Obtaining Status Information 6-93
Freeing an LO-Status Structure 6-95
 Informix DataBlade API Programmer’s Guide

Deleting a Smart Large Object. 6-95
Managing the Reference Count 6-96

Reference Counts for CLOB and BLOB Columns 6-97
Reference Counts for Opaque-Type Columns. 6-98
Reference Counts for Transient Smart Large Objects 6-99

Freeing LO File Descriptors 6-100

Converting a Smart Large Object to a File or Buffer 6-101
Using Operating-System Files 6-101
Using User-Defined Buffers 6-102

Converting an LO Handle Between Binary and Text 6-103
Binary and Text Representations of an LO Handle 6-103
DataBlade API Functions for LO-Handle Conversion 6-104

Transferring an LO Handle Between Computers 6-104

Using Byte-Range Locking 6-105

Passing a NULL Connection 6-106
Using Smart Large Objects 6-3

6-4 IBM
 Informix DataBlade API Programmer’s Guide

In This Chapter
This chapter describes smart large objects and provides information about
performing the following tasks:

� Storing a smart large object in a database

� Using the smart-large-object interface

� Creating a smart large object

� Accessing a smart large object

� Modifying a smart large object

� Obtaining status information for a smart large object

� Deleting a smart large object

� Converting a smart large object to a file or buffer

� Converting an LO handle to text or binary representation

� Using byte-range locking

� Passing a NULL connection

Tip: For information on the DataBlade API support for simple large objects, see
“Simple Large Objects” on page 2-49.
Using Smart Large Objects 6-5

Understanding Smart Large Objects
Understanding Smart Large Objects
A smart large object is a large object with the following features:

� A smart large object can hold a very large amount of data.

Currently, a single smart large object can hold up to four terabytes of
data. This data is stored in a separate disk space called an sbspace.

� A smart large object is recoverable.

The database server can log changes to smart large objects and there-
fore can recover smart-large-object data in the event of a system or
hardware failure. Logging of smart large objects is not the default
behavior.

� A smart large object supports random access to its data.

Access to a simple large object (BYTE or TEXT) is on an “all or noth-
ing” basis; that is, the database server returns all of the simple-large-
object data that you request at one time. With smart large objects, you
can seek to a desired location and read or write the desired number
of bytes.

� You can customize storage characteristics of a smart large object.

When you create a smart large object, you can specify storage char-
acteristics for the smart large object, such as the following
characteristics:

❑ Whether the database server logs the smart large object in accor-
dance with the current database logging mode

❑ Whether the database server keeps track of the last time the
smart large object was accessed

❑ Whether the database server uses page headers to detect data
corruption

The rest of this section describes the parts of a smart large object and the
information that the database server keeps about a smart large object.
6-6 IBM Informix DataBlade API Programmer’s Guide

Parts of a Smart Large Object
Parts of a Smart Large Object
Each smart large object has two parts:

� The sbspace, which stores the data of the smart large object

� An LO handle, which identifies the location of the smart-large-object
data in its sbspace

Suppose you store the picture of an employee as a smart large object.
Figure 6-14 shows how the LO handle contains information about the
location of the actual employee picture in the sbspace1_100 sbspace.

The Sbspace

An sbspace is a logical storage area that contains one or more chunks and
stores only smart large objects. The sbspace can contain the following parts:

� A metadata area

The database server writes the following information to the meta-
data area of an sbspace:

❑ Internal information that helps the smart-large-object optimizer
manage the data efficiently

❑ Storage characteristics for the smart large object

❑ Status information for the smart large object

� A user-data area

User applications write smart-large-object data to the user-data area
of an sbspace.

Figure 6-14
Parts of a Smart

Large Object

LO handle

sbspace1_100

Disk 100

Picture for
employee
Using Smart Large Objects 6-7

Information About a Smart Large Object
In Figure 6-14 on page 6-7, the sbspace1_100 sbspace holds the actual
employee image that the LO handle identifies. For more information about
the structure of an sbspace, see the chapter on disk structures and storage in
your Administrator’s Guide.

The onspaces database utility creates and drops sbspaces for the database
server. For more information about the onspaces utility, see the chapter on
utilities in your Administrator’s Guide.

Important: Smart large objects can only be stored in sbspaces. They cannot be stored
in dbspaces. You must create an sbspace before you attempt to insert smart large
objects into the database.

The LO Handle

An LO handle is an opaque C data structure that identifies the location of the
smart-large-object data in its sbspace. Because a smart large object is poten-
tially very large, the database server stores only its LO handle in a database
table; it can then use this LO handle to locate the actual data of the smart large
object in the sbspace. This arrangement minimizes the table size.

Applications obtain the LO handle from the database and use it to locate the
smart-large-object data and to open the smart large object for read and write
operations. In Figure 6-14 on page 6-7, the LO handle identifies the location
of the actual employee image in the sbspace1_100 sbspace. You can store this
LO handle in a database column to save this reference for future use. For more
information, see “Access to a Smart Large Object” on page 6-26.

Information About a Smart Large Object
The database server keeps the following information about a smart large
object:

� Storage characteristics

� Status information

The database server stores this information in a metadata area of the sbspace
for the smart large object.
6-8 IBM Informix DataBlade API Programmer’s Guide

Information About a Smart Large Object
Storage Characteristics

The storage characteristics tell the database server how to manage a smart large
object in an sbspace. Three groups of information make up the storage
characteristics for a smart large object:

� Disk-storage information

� Attribute information

� Open-mode information

You can specify storage characteristics at three points.

The following sections describe the three groups of storage characteristics.
For additional information, see “Choosing Storage Characteristics” on
page 6-49.

Disk-Storage Information

Disk-storage information helps the smart-large-object optimizer of the
database server determine how to manage the smart large object most
efficiently on disk. The smart-large-object optimizer manages the allocation
of and access to smart large objects in an sbspace.

When Specified Method of Specification

When an sbspace is created Options of onspaces utility

When a database table is created Keywords in PUT clause of CREATE TABLE
statement

When a smart large object is created DataBlade API functions
Using Smart Large Objects 6-9

Information About a Smart Large Object
Each smart-large-object has the following disk-storage information:

� Allocation-extent information

An allocation extent is a collection of contiguous bytes within an
sbspace that the smart-large-object optimizer allocates to the smart
large object at one time. Information about allocation extents is as
follows:

❑ Extent size

The smart-large-object optimizer allocates storage for the smart
large object in the amount of the extent size.

❑ Next-extent size

The smart-large-object optimizer attempts to allocate an extent
as a single, contiguous region in a chunk. If no single extent is
large enough for the smart large object, the optimizer uses mul-
tiple extents as necessary to satisfy the current write request.
After the initial extent fills, the smart-large-object optimizer
attempts to allocate another extent of contiguous disk space.
This process is called next-extent allocation.

For more information on extents, see the chapter on disk structure
and storage in the Administrator’s Reference.

� Sizing information

❑ Average size of smart large objects in the sbspace

❑ Estimated number of bytes in the new smart large object

❑ Maximum number of bytes to which the smart large object can
grow

� Location

The name of the sbspace identifies the location at which to store the
smart large object.

The smart-large-object optimizer uses the disk-storage information to
determine how best to size, allocate, and manage the extents of the sbspace.
It can calculate all disk-storage information for a smart large object except the
sbspace name.

Important: For most applications, use the values that the smart-large-object
optimizer calculates for the disk-storage information.
6-10 IBM Informix DataBlade API Programmer’s Guide

Information About a Smart Large Object
For special situations, you can set disk-storage information for a smart large
object as part of its storage characteristics. For more information, see
“Choosing Storage Characteristics” on page 6-49.

Attribute Information

Attribute information tells the database server what options, or attributes, to
assign to the smart large object:

� Logging indicators, which tell the database server whether to log
changes to the smart large object in the system log file

� Last-access-time indicators, which tell the database server whether to
save the last-access time for a smart large object

� Data-integrity indicators, which tell the database server how to format
the pages in the sbspace of the smart large object

Logging

When a database performs logging, smart large objects might result in long
transactions for the following reasons:

� Smart large objects can be very large, even several gigabytes in size.

The amount of log storage needed to log user data can easily over-
flow the log.

� Smart large objects might be used in situations where the data
collection process can be quite long.

For example, if a smart large object holds low-quality audio record-
ing, the amount of data collection might be modest but the recording
session might be quite long.

A simple workaround is to divide a long transaction into multiple smaller
transactions. If this solution is not acceptable, you can control when the
database server performs logging of smart large objects. Figure 6-27 on
page 6-54 shows how you can control the logging behavior for a smart large
object.
Using Smart Large Objects 6-11

Information About a Smart Large Object
When logging is enabled, the database server logs changes to the user data of
a smart large object. It performs this logging in accordance with the current
database log mode. For a database that is not ANSI compliant, the database
server does not guarantee that log records that pertain to smart large objects
are flushed at transaction commit. However, the metadata is always
restorable to an action-consistent state; that is, to a state that ensures no struc-
tural inconsistencies exist in the metadata (control information of the smart
large object, such as reference counts).

An ANSI-compliant database uses unbuffered logging. When smart-large-
object logging is enabled, all log records (metadata and user-data) that
pertain to smart large objects are flushed to the log at transaction commit.
However, user data is not guaranteed to be flushed to its stable storage
location at commit time. ♦

When logging is disabled, the database server does not log changes to user
data even if the database server logs other database changes. However, the
database server always logs changes to the metadata. Therefore, the database
server can still restore the metadata to an action-consistent state.

Important: Consider carefully whether to enable logging for a smart large object. The
database server incurs considerable overhead to log smart large objects. You must also
ensure that the system log file is large enough to hold the value of the smart large
object. The logical-log size must exceed the total amount of data that the database
server logs while the update transaction is active.

Write your DataBlade API modules so that any transactions with smart large
objects that have potentially long updates do not cause other transactions to
wait. Multiple transactions can access the same smart-large-object instance if
the following conditions are satisfied:

� The transaction can access the database row that contains an LO
handle for the smart large object.

Multiple references can exist on the same smart large object if more
than one column holds an LO handle for the same smart large object.

� Another transaction does not hold a conflicting lock on the smart
large object.

For more information on smart-large-object locks, see “Locking
Modes” on page 6-20.

ANSI
6-12 IBM Informix DataBlade API Programmer’s Guide

Information About a Smart Large Object
The best update performance and fewest logical-log problems result when
you disable the logging feature when you load a smart large object and re-
enable it after the load operation completes. If logging is turned on, you
might want to turn logging off before a bulk load and then perform a level-0
backup.

By default, the database server does not log the user data of a smart large
object. You can control the logging behavior for a smart large object as part of
its storage characteristics. For more information, see “Choosing Storage
Characteristics” on page 6-49.

Last-Access Time

The last-access time of a smart large object is the system time at which the
database server last read or wrote to the smart large object. The last-access
time records access to the user data and metadata of a smart large object. The
database server stores this system time as number of seconds since January
1, 1970, in the metadata area of the sbspace.

Tip: The database server automatically tracks the last-change and last-modification
time for a smart large object in the status information. For more information, see
“Status Information” on page 6-22.

By default, the database server does not save the last access time. You can
choose to track the last-access time for a smart large object as part of its
storage characteristics. For more information, see “Choosing Storage Charac-
teristics” on page 6-49.

Important: Consider carefully whether to track last-access time for a smart large
object. To maintain last-access times for smart large objects, the database server
incurs considerable overhead in logging and concurrency.

Data Integrity

The structure of an sbpage in the sbspace determines how much data
integrity the database server can provide. An sbpage is the unit of allocation
for smart-large-object data, which is stored in the user-data area of an
sbspace. The database server supports the following levels of data integrity:

� High integrity tells the database server to use both a page header and
a page trailer in each sbpage.

� Moderate integrity tells the database server to use only a page
header in each sbpage.
Using Smart Large Objects 6-13

Information About a Smart Large Object
The database server uses the page header and trailer to detect incomplete
writes and data corruption. Moderate integrity provides the following
benefits:

� It eliminates an additional data copy operation that is necessary
when an sbpage has page headers and page trailers.

� It preserves the user data alignments on pages because no page
header and page trailer are present.

Moderate integrity might be useful for smart large objects that contain large
amounts of audio or video data that is moved through the database server
and that does not require a high data integrity. By default, the database server
uses high integrity (page headers and page trailers) for sbspace pages. You
can control the data integrity for a smart large object as part of its storage
characteristics. For more information, see “Choosing Storage Characteristics”
on page 6-49.

Important: Consider carefully whether to use moderate integrity for sbpages of a
smart large object. Although moderate integrity takes less disk space per page, it also
reduces the ability of the database server to recover information if disk errors occur.

For information on the structure of sbspace pages, see your Administrator’s
Guide.

Open-Mode Information

When you open a smart large object, you can specify the open mode for the
data. The open mode describes the context in which the I/O operations on the
smart large object are performed. It includes the following information:

� The access mode for the smart large object: read-only, dirty-read,
read/write, write-only, or write-append

� The access method for the smart large object: random or sequential

� The buffering mode for the data to and from the smart large object:
buffered or unbuffered

� The locking mode for the smart large object: lock-all or byte-range
mode
6-14 IBM Informix DataBlade API Programmer’s Guide

Information About a Smart Large Object
The database server uses the following system default open mode when it
opens a smart large object.

If your smart large object usually requires certain access capabilities when it
is opened, you can associate a default open mode with the smart large object.
The database server stores this default open mode with other storage charac-
teristics of the smart large object. For more information, see “Choosing
Storage Characteristics” on page 6-49. To override the default open mode,
you can specify an open mode for a particular smart large object when you
open it. For more information, see “Opening a Smart Large Object” on
page 6-83.

Access Modes

The smart-large-object open mode includes an access mode, which determines
which read and write operations are valid on the open smart large object.
Figure 6-15 shows the access modes for a smart large object.

Figure 6-15
Access Modes for Smart Large Objects

Open-Mode Information Default Open Mode

Access mode Read-only

Access method Random

Buffering Buffered access

Locking Whole-object locks

Access Mode Purpose

Read-only mode Only read operations are valid on the data.

Dirty-read mode You can read uncommitted data pages for the smart large
object. No locks are requested on the data. You cannot write
to a smart large object after you set the mode to
MI_LO_DIRTY_READ. When you set this flag, you reset the
current transaction isolation mode to dirty read for this
smart large object.

(1 of 2)
Using Smart Large Objects 6-15

Information About a Smart Large Object
Write-only mode Only write operations are valid on the data.

Write/append mode Any data you write is appended to the end of the smart large
object. By itself, it is equivalent to write-only mode followed
by a seek to the end of the smart large object. Read opera-
tions fail.

When you open a smart large object in write/append mode
only, the smart large object is opened in write-only mode.
Seek operations move the seek position, but read operations
to the smart large object fail, and the LO seek position
remains unchanged from its position just before the write.
Write operations occur at the LO seek position, and then the
seek position is moved.

Read/write mode Both read and write operations are valid on the data.

Truncate Delete any existing data in the smart large object and move
the LO seek position to the start of the smart large object
(byte 0). If the smart large object does not contain data, this
access mode has no effect.

Access Mode Purpose

(2 of 2)
6-16 IBM Informix DataBlade API Programmer’s Guide

Information About a Smart Large Object
Access Methods

The smart-large-object open mode includes the access method, which deter-
mines whether to access the smart-large-object data sequentially or with
random access. Figure 6-16 shows the access methods for a smart large object.

Figure 6-16
Access Methods for a Smart Large Object

The default access method is random, although the smart-large-object
optimizer might change this default based on a particular read pattern.

Method of Access Purpose

Random access Indicates that I/O is random

When you plan to read in nonsequential locations in the smart
large object, the smart-large-object optimizer should not read
ahead a few pages.

Sequential access Indicates that reads are sequential in either forward or reverse
direction

When you read a smart large object sequentially, the smart-
large-object optimizer can read ahead a few pages.

Forward Indicates that the direction of sequential access is
forward

If you do not specify a direction, the default is
forward.

Reverse Indicates that the direction of sequential access is
reverse
Using Smart Large Objects 6-17

Information About a Smart Large Object
Buffering Modes

The smart-large-object open mode includes a buffering mode, which deter-
mines how read and write operations on the open smart large object are
buffered. Figure 6-17 shows the buffering modes for a smart large object.

Figure 6-17
Buffering Modes for a Smart Large Object

Keep the following issues in mind when you use lightweight I/O:

� Be sure that you close smart large objects that use lightweight I/O.

Otherwise, the memory that has been allocated to the private buffers
remains allocated. This private-buffer memory is only deallocated
when you close the smart large object.

� Be careful about using lightweight I/O when you open the same
smart large object many times and concurrently access this object in
the same transaction.

All opens of the same smart large object share the same lightweight
I/O buffers. Potentially, an operation can cause the pages in the
buffer to be flushed while other operations might still expect these
pages to exist.

Buffering Mode Purpose

Buffered access Indicates that I/O of the smart-large-object data goes through
the buffer pool of the database server

This method of access is called buffered I/O. Buffered I/O tells
the optimizer that someone might be planning to reread the
same LO page.

Unbuffered access Indicates that I/O of the smart-large-object data does not use
the buffer pool

This method of access is called lightweight I/O. lightweight I/O
tells the smart-large-object optimizer to use private buffers
instead of the buffer pool for these I/O operations. These
private buffers are allocated out of the session pool of the
database server. With lightweight I/O, you bypass the
overhead of the buffer pool management when the database
server performs a sequential scan.
6-18 IBM Informix DataBlade API Programmer’s Guide

Information About a Smart Large Object
Important: In general, if read and write operations to the smart large objects are less
than 8080 bytes, do not use lightweight I/O. In other words, if you are reading or
writing short blocks of data, such as two kilobytes or four kilobytes, the default
buffered I/O operations provide better performance.

The smart-large-object optimizer imposes the following restrictions when
you switch from lightweight I/O to buffered I/O for a given smart large
object:

� You can alter the buffering mode of a smart large object that was
created with lightweight I/O to buffered I/O as long as no open
instances exist for that smart large object.

However, you cannot alter the buffering mode from buffered I/O to
one with lightweight I/O.

� You must specify lightweight I/O when you open a smart large
object that was created with lightweight I/O.

If an open smart large object specifies buffered I/O, the smart-large-
object optimizer ignores any attempt to open it with lightweight I/O.
However, if you first change the buffering mode from lightweight
I/O to buffered I/O, you can then specify buffered I/O when you
open the smart large object.

� You can specify lightweight I/O when you open a smart large object
that was created with buffered I/O only if you open the smart large
object in read-only mode.

In this case, the smart-large-object optimizer does not allow write
operations on the smart large object. Attempts to do so generate an
error. To write to the smart large object, you must close it then reopen
it with buffered I/O and an access mode that enables write
operations.

These limitations ensure consistency of the smart-large-object buffers
without imposing processing overhead for I/O operations.

If you do not specify a buffering mode, the default is buffered I/O. The smart-
large-object optimizer determines the default buffering mode for a smart
large object.
Using Smart Large Objects 6-19

Information About a Smart Large Object
Locking Modes

To prevent simultaneous access to smart-large-object data, the smart-large-
object optimizer obtains a lock on this data when you open the smart large
object. This smart-large-object lock is distinct from the following kinds of
locks:

� Row locks

A lock on a smart large object does not lock the row in which the
smart large object resides. However, if you retrieve a smart large
object from a row and the row is still current, the database server
might hold a row lock as well as a smart-large-object lock. Locks are
held on the smart large object instead of on the row because many
columns could be accessing the same smart-large-object data.

� Locks of different smart large objects in the same row of a table

A lock on one smart large object does not affect other smart large
objects in the row.

The smart-large-object open mode includes a lock mode, which determines the
kind of the lock requests made on a smart large object. Figure 6-18 shows the
lock modes that a smart large object can support.

Figure 6-18
Lock Modes for a Smart Large Object

Lock Mode Purpose Description

Lock-all Lock the entire smart
large object

Indicates that lock requests apply to all
data for the smart large object

Byte-range Lock only specified
portions of the smart
large object

Indicates that lock requests apply only to
the specified number of bytes of smart-
large-object data
6-20 IBM Informix DataBlade API Programmer’s Guide

Information About a Smart Large Object
When the smart-large-object optimizer opens a smart large object, it uses the
following information to determine the lock mode of the smart large object:

� The access mode of the smart large object

The database server obtains a lock as follows:

❑ In share mode, when you open a smart large object for reading
(read-only or dirty read)

❑ In update mode, when you open a smart large object for writing
(write-only, read-write, write/append, truncate)

When a write operation (or some other update) is actually per-
formed on the smart large object, the database server upgrades
this lock to an exclusive lock.

� The isolation level of the current transaction

If you have selected an isolation mode of repeatable read, the smart-
large-object optimizer does not release any locks that it obtains on a
smart large object until the end of the transaction.

By default, the smart-large-object optimizer chooses the lock-all lock mode.
You can request locks on the data of a smart large object at the byte level with
a byte-range lock. For more information, see “Accessing the Default Open
Flag” on page 6-64.

The smart-large-object optimizer retains the lock as follows:

� It holds share-mode locks and update locks (which have not yet been
upgraded to exclusive locks) until one of the following events occurs:

❑ The closing of the smart large object

❑ The end of the transaction

❑ An explicit request to release the lock (for a byte-range lock only)

� It holds exclusive locks until the end of the transaction even if you
close the smart large object.
Using Smart Large Objects 6-21

Information About a Smart Large Object
When one of the preceding conditions occurs, the smart-large-object
optimizer releases the lock on the smart large object.

Important: You lose the lock at the end of a transaction even if the smart large object
remains open. When the smart-large-object optimizer detects that a smart large object
has no active lock, it automatically obtains a new lock when the first access occurs to
the smart large object. The lock that it obtains is based on the original access mode of
the smart large object.

The smart-large-object optimizer releases the lock when the current trans-
action terminates. However, the optimizer obtains the lock again when the
next function that needs a lock executes. If this behavior is undesirable, use
BEGIN WORK transaction blocks and place a COMMIT WORK or ROLLBACK
WORK statement after the last statement that needs to use the lock.

Status Information

Figure 6-19 shows the status information that the database server maintains
for a smart large object.

Figure 6-19
Status Information for a Smart Large Object

Status Information Description

Last-access time The time, in seconds, that the smart large object was last
accessed

This value is available only if the last-access time attribute
is enabled for the smart large object.

Storage characteristics The storage characteristics for the smart large object

Last-change time The time, in seconds, of the last change in status for the
smart large object

A change in status includes changes to metadata and user
data (data updates and changes to the number of refer-
ences). This system time is stored as number of seconds
since January 1, 1970.

(1 of 2)
6-22 IBM Informix DataBlade API Programmer’s Guide

Information About a Smart Large Object
The database server stores the status information in the metadata area of the
sbspace.

Tip: The time values (such as last-access time and last-change time) might differ
slightly from the system time. This difference is due to the algorithm that the database
server uses to obtain the time from the operating system.

For more information on how to obtain status information in a DataBlade API
module, see “Obtaining Status Information for a Smart Large Object” on
page 6-89.

Last-modification time The time, in seconds, that the smart large object was last
modified

A modification includes only changes to user data (data
updates). This system time is stored as number of seconds
since January 1, 1970.

On some platforms, the last-modification time might also
have a microseconds component, which can be obtained
separately from the seconds component.

Reference count The number of references (LO handles) to the smart large
object

Size The size, in bytes, of the smart large object

Status Information Description

(2 of 2)
Using Smart Large Objects 6-23

Storing a Smart Large Object in a Database
Storing a Smart Large Object in a Database
To store a smart large object in a database, you must save its LO handle in a
column. This section describes the valid data types to hold an LO handle and
how to access a smart large object.

Valid Data Types
In the database, you can use either of the following ways to store a smart
large object in a column:

� For direct access to the smart large object, create a column of the
CLOB or BLOB data type.

� To hide the smart large object within an atomic data type, create an
opaque type that holds a smart large object.

CLOB and BLOB Data Types

You can store a smart large object directly in a column that has one of the
following data types:

� The CLOB data type holds text data.

� The BLOB data type can store any kind of binary data in an undiffer-
entiated byte stream.

The CLOB or BLOB column holds an LO handle for the smart large object.
Therefore, when you select a CLOB or BLOB column, you do not obtain the
actual data of the smart large object, but the LO handle that identifies this
data. The BLOB and CLOB data types have identical internal representation.
Externally, an LO handle is represented as a flat array of bytes with a length
of MI_LO_SIZE.
6-24 IBM Informix DataBlade API Programmer’s Guide

Valid Data Types
Suppose an employee table has a BLOB column named emp_picture to hold
the picture of an employee. Figure 6-20 shows that in a row of the employee
table, the emp_picture column contains an LO handle. This LO handle
contains information about the location of the actual employee picture in the
sbspace1_100 sbspace.

The CLOB and BLOB data types are often referred to collectively as smart-
large-object data types. For more information on these data types, see the
IBM Informix Guide to SQL: Reference.

Opaque Data Type

An opaque data type is a user-defined atomic data type. You can define a
field of an opaque data type to be a smart large object. The support functions
of the opaque type must perform the conversion between the LO handle in
the opaque type and the smart-large-object data in the sbspace. For more
information, see “Managing the Reference Count” on page 6-96.

In Figure 6-20, the emp_picture column could be an opaque data type named
picture instead of a BLOB data type. The picture data type could hold the
image in a smart large object in one field of its internal structure and other
information about the picture in other fields.

For more information on opaque data types, see the IBM Informix Guide to SQL:
Reference and the IBM Informix User-Defined Routines and Data Types Developer’s
Guide.

Figure 6-20
A

Smart Large Object
in a Database

Column

Database A

empno emp_picture
1234
1235

LO handle

BLOB column:
emp_picture

sbspace1_100

Disk 100

Picture for
employee

employee
Using Smart Large Objects 6-25

Access to a Smart Large Object
Access to a Smart Large Object
The DataBlade API provides the smart-large-object interface for access to
smart large objects. This interface contains a set of functions and data types
to provide access to smart large objects. (For more information, see “Using
the Smart-Large-Object Interface” on page 6-28.) The smart-large-object
interface provides access to the smart large object through its LO handle, as
follows:

� Once you select a column that contains an LO handle, you can use this
handle to access the smart-large-object data in an sbspace.

� To store a new smart large object, you create a new LO handle, write
the data to the sbspace, and store the LO handle in the column.

Selecting a Smart Large Object

A SELECT statement on a CLOB, BLOB, or opaque-type column retrieves an LO
handle for a smart large object. It does not retrieve the actual data for the
smart large object because this data resides in an sbspace.

To select a smart large object

1. Use a SELECT statement to retrieve the LO handle from the CLOB,
BLOB, or opaque-type column.

The LO handle identifies the location of the smart large object on
disk.

2. Read the smart-large-object data from the sbspace of the smart large
object.

The LO handle identifies the smart large object to open. Once you
open the smart large object, you obtain an LO file descriptor, which
you can use to read data from the sbspace of the smart large object.
6-26 IBM Informix DataBlade API Programmer’s Guide

Access to a Smart Large Object
Storing a Smart Large Object

Because a smart large object can be quite large, it is not practical to store it
directly in the database table. Instead, the INSERT and UPDATE statements
store the LO handle of the smart large object in the CLOB, BLOB, or opaque-
type column. The data of the smart large object resides in an sbspace.

To save a smart large object in a CLOB, BLOB, or opaque-type column

1. For a new smart large object, ensure that the smart large object has
an sbspace specified for its data.

For most smart large objects, the sbspace name is the only storage
characteristic that you need to specify. The smart-large-object opti-
mizer can calculate values for all other storage characteristics. You
can set particular storage characteristics to override these calculated
values. However, most applications do not need to set storage char-
acteristics at this level of detail. For more information, see
“Obtaining Storage Characteristics” on page 6-49.

2. Create a new LO handle for the smart large object and open the smart
large object.

When you create a smart large object, you obtain an LO handle and
an LO file descriptor for the new smart large object.

3. Write the smart-large-object data to the sbspace of the smart large
object.

Use the LO file descriptor to identify the smart large object whose
data you want to write to the sbspace.

4. Use the INSERT or UPDATE statement to store the LO handle into the
CLOB, BLOB, or opaque-type column.

The LO handle for the smart large object identifies the location of the
smart large object on disk. Once you have written the data to the
smart large object, provide its LO handle to the INSERT or UPDATE
statement to save it in the database. The smart-large-object data
remains in the sbspace.

Important: The sbspace for the smart large object must exist before the INSERT
statement executes.
Using Smart Large Objects 6-27

Using the Smart-Large-Object Interface
When you store an LO handle in the database, the database server can ensure
that the smart large objects are only freed when no more database columns
reference them. For more information, see “Deleting a Smart Large Object”
on page 6-95. For information on how to insert a smart large object from
within a DataBlade API module, see “Creating a Smart Large Object” on
page 6-43.

Using the Smart-Large-Object Interface
The smart-large-object interface contains a set of functions and data types to
provide access to smart large objects. It enables you to access the data of a
smart large object in much the same way as you would access an operating-
system file on UNIX, Linux, or Windows. The interface provides the
following:

� Smart-large-object functions

� Smart-large-object data type structures

The milo.h header file defines the functions and data type structures of the
smart-large-object interface. The mi.h header file automatically includes the
milo.h header file. You must include either mi.h or milo.h in any DataBlade
API routine that calls a smart-large-object function or declares one of the
smart-large-object data type structures.

Sections of this chapter describe how to use the smart-large-object interface
to perform the following operations on a smart large object.

Smart-Large-Object Operation More Information

Create a new smart large object page 6-43

Access data in an existing smart large object page 6-80

Modify an existing smart large object page 6-87

Obtain status information about an existing smart large object page 6-89

Delete a smart large object page 6-95
6-28 IBM Informix DataBlade API Programmer’s Guide

Smart-Large-Object Data Type Structures
Smart-Large-Object Data Type Structures
The smart-large-object interface provides data type structures that store
information about a smart large object. Figure 6-21 summarizes the data type
structures of the smart-large-object interface.

Figure 6-21
Data Types of the Smart-Large-Object Interface

These structures are all opaque to a DataBlade API module; that is, you do not
access their fields directly but instead use accessor functions that the smart-
large-object interface provides.

LO-Specification Structure

The LO-specification structure, MI_LO_SPEC, defines the storage characteristics
for an existing or a new smart large object. The storage characteristics
provide information about features of the smart large object and how to store
it on disk. For a description of the storage characteristics available, see
“Storage Characteristics” on page 6-9.

Smart-Large-Object Data
Type Structure Data Type Description

The LO-specification structure MI_LO_SPEC Holds storage characteristics
for a smart large object

The LO handle MI_LO_HANDLE Identifies the location of the
smart large object; analogous
to the filename of an
operating-system file

The LO file descriptor MI_LO_FD Identifies an open smart
large object; analogous to the
file descriptor of an
operating-system file

The LO-status structure MI_LO_STAT Holds status information
about a smart large object
Using Smart Large Objects 6-29

Smart-Large-Object Data Type Structures
The following table summarizes the memory operations for an LO-
specification structure.

To access an LO-specification structure in a DataBlade API module, declare a
pointer to an MI_LO_SPEC structure. For example, the following line shows
the valid syntax of a variable that accesses an LO-specification structure:

MI_LO_SPEC *myspec; /* valid syntax */

Declaration of a flat LO-specification structure generates a compile error. The
following line shows invalid syntax for an LO-specification structure:

MI_LO_SPEC myspec; /* INVALID syntax */

The milo.h header file defines the MI_LO_SPEC data type. Therefore, you
must include the milo.h (or mi.h) file in DataBlade API modules that access
this structure. For information on how to use an LO-specification structure,
see “Obtaining the LO-Specification Structure” on page 6-44.

LO Handle

An LO handle, MI_LO_HANDLE, serves as a reference to a smart large object.
It is analogous to the filename of an operating-system file in that it is a unique
identifier of a smart large object. The LO handle contains encoded infor-
mation about the smart large object, such as its physical disk location and
other security-related information. After a smart large object is created, an
associated LO handle is a valid reference for the life of that smart large object.

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_lo_spec_init()

Destructor mi_lo_spec_free()
6-30 IBM Informix DataBlade API Programmer’s Guide

Smart-Large-Object Data Type Structures
The following table summarizes the memory operations for an LO handle.

To access an LO handle in a user-defined routine (UDR), declare it in one of
the following ways:

� As a pointer to the MI_LO_HANDLE data type:
MI_LO_HANDLE *my_LOhndl; /* an LO-handle pointer */

When you declare an LO handle in this way, you must allocate mem-
ory for it before you use it. For more information, see “Obtaining an
LO Handle” on page 6-70.

� As a flat MI_LO_HANDLE structure:
MI_LO_HANDLE my_flat_LOhnld; /* a flat LO handle */

When you declare a flat MI_LO_HANDLE structure, you do not need
to allocate memory for it. This flat structure is useful when you need
to embed an LO handle within an opaque data type.

The milo.h header file defines the MI_LO_HANDLE data type. Therefore, you
must include the milo.h (or mi.h) file in DataBlade API modules that access
this handle. For information on how to use an LO handle, see “Initializing an
LO-Specification Structure” on page 6-46 and “Selecting the LO Handle” on
page 6-81.

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_get_lo_handle(),
mi_lo_copy(),
mi_lo_create(),
mi_lo_expand(),
mi_lo_from_buffer(),
mi_lo_from_string(),
mi_streamread_lo()

Destructor mi_lo_delete_immediate(),
mi_lo_release()
Using Smart Large Objects 6-31

Smart-Large-Object Data Type Structures
LO File Descriptor

The LO file descriptor, MI_LO_FD, is a reference to an open smart large object.
An LO file descriptor is similar to a file descriptor for an operating-system
file. It is an integer number that serves as a transient descriptor for
performing I/O on the data of the smart large object. It provides the following
information about an open smart large object:

� The LO seek position, the current position at which read and write
operations occur.

When you first open a smart large object, the seek position is at byte
zero (0).

� The open mode of the smart large object, which determines which
operations can be performed on the data and how to buffer the data
for I/O operations.

You specify the open mode when you open a smart large object. For
more information, see “Open-Mode Information” on page 6-14.

The following table summarizes the memory operations for an LO file
descriptor.

To access an LO file descriptor in a DataBlade API module, declare a variable
with the MI_LO_FD data type. For example, the following line declares the
variable my_lofd that is an LO file descriptor:

MI_LO_FD my_lofd;

Memory Duration Memory Operation Function Name

Not allocated from memory-duration
pools

Constructor mi_lo_copy(),
mi_lo_create(),
mi_lo_expand(),
mi_lo_from_file(),
mi_lo_open()

Destructor mi_lo_close()
6-32 IBM Informix DataBlade API Programmer’s Guide

Smart-Large-Object Data Type Structures
The milo.h header file defines the MI_LO_FD data type. Therefore, you must
include the milo.h (or mi.h) file in DataBlade API modules that access this
handle.

Tip: Other smart-large-object data type structures require that you declare a pointer
to them because the DataBlade API handles memory allocation for these structures.
However, you can declare an LO file descriptor directly.

Because you declare an LO file descriptor directly, its scope is that of the
variable you declare to hold it. When you assign an LO file descriptor to a
local variable, the LO file descriptor is deallocated when the function that
declares it ends. If you want to keep the LO file descriptor longer, you can
allocate user memory with the memory duration you want (up to the
advanced duration of PER_SESSION) and copy the LO file descriptor into this
memory. For example, you could assign the LO file descriptor to
PER_COMMAND memory and copy it into the user state of the MI_FPARAM
structure. For more information, see “Managing the Memory Duration” on
page 13-34 and “Saving a User State” on page 9-14.

Important: Although the scope of an LO file descriptor is determined by its decla-
ration, the scope of the open smart large object (which the LO file descriptor identifies)
is the entire session. Make sure you explicitly close a smart large object before the
scope of its LO file descriptor expires. For more information, see “Freeing a Smart
Large Object” on page 6-85. ♦

For information on how to use an LO file descriptor, see “Initializing an LO-
Specification Structure” on page 6-46.

LO-Status Structure

The LO-status structure, MI_LO_STAT, contains the status information for an
existing smart large object. The following table summarizes the memory
operations for an LO-status structure.

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_lo_stat()

Destructor mi_lo_stat_free()

Server
Using Smart Large Objects 6-33

Smart-Large-Object Functions
To access an LO-status structure in a DataBlade API module, declare a pointer
to an MI_LO_STAT structure. For example, the following line declares the
variable mystat that points to an LO-specification structure:

MI_LO_STAT *mystat; /* valid syntax */

Declaration of a flat LO-status structure generates a compile error. The
following line shows invalid syntax for an LO-status structure:

MI_LO_STAT mystat; /* INVALID syntax */

The milo.h header file defines the MI_LO_STAT data type. Therefore, you
must include the milo.h (or mi.h) file in DataBlade API modules that access
this structure. For information on how to allocate and use an LO-status
structure, see “Obtaining Status Information” on page 6-93.

Smart-Large-Object Functions
The smart-large-object interface includes functions that provide the
following operations on a smart large object:

� Creating a smart large object

� Performing input and output (I/O) on smart-large-object data

� Manipulating LO handles

� Accessing storage characteristics

� Obtaining status information

� Moving smart large objects to and from operating-system files

Most of the smart-large-object function names begin with the string ‘mi_lo_’.
The IBM Informix DataBlade API Function Reference contains an alphabetical list
of all DataBlade API functions, including the smart-large-object functions.
6-34 IBM Informix DataBlade API Programmer’s Guide

Smart-Large-Object Functions
Functions That Create a Smart Large Object

The smart-large-object creation functions create a new smart large object,
open it, and return a new LO handle and LO file descriptor for it. Figure 6-22
lists the smart-large-object creation functions.

Figure 6-22
Smart-Large-Object Creation Functions

For more information on how to use the smart-large-object creation
functions, see “Creating a Smart Large Object” on page 6-43.

Functions That Perform Input and Output on a Smart Large Object

The smart-large-object interface for Dynamic Server includes functions that
provide basic file operations such as create, open, seek, read, write, alter, and
truncate. These routines bypass the query processor, executor, and optimizer,
and give the application direct access to a smart large object. These functions
use an LO file descriptor to identify the open smart large object.

Smart-Large-Object
Creation Function Description

mi_lo_create() Creates a new, empty smart large object

mi_lo_copy() Creates a new smart large object that is a copy of an existing
smart large object

mi_lo_expand()
(deprecated)

Creates a new smart large object from existing multirepre-
sentational data

mi_lo_from_file() Creates a new smart large object from data in an operating-
system file
Using Smart Large Objects 6-35

Smart-Large-Object Functions
Figure 6-23 shows the basic file-like operations on a smart large object with
the smart-large-object function that performs them and the analogous
operating-system calls for file operations.

Figure 6-23
Main DataBlade API Functions of the Smart-Large-Object Interface

For more information, see “Opening a Smart Large Object” on page 6-83.

Smart-Large-Object Operation
Smart-Large-Object
Function

Operating-System
Call

Open the smart large object that
the LO handle identifies: the open
operation generates an LO file
descriptor for the smart large
object.

mi_lo_open() open()

Seek to the desired LO seek
position to begin a read or write
operation.

mi_lo_seek() seek()

Obtain the current LO seek
position.

mi_lo_tell() tell()

Lock the specified number of
bytes of data.

mi_lo_lock() lock()

Perform the read or write
operation for the specified number
of bytes.

mi_lo_read(),
mi_lo_readwithseek(),
mi_lo_write(),
mi_lo_writewithseek()

read(), write()

Unlock the specified number of
bytes of data.

mi_lo_unlock() unlock()

Obtain status information about a
particular smart large object.

mi_lo_stat() stat()

Truncate smart-large-object data
at a specified location.

mi_lo_truncate() truncate()

Close the smart large object and
free the LO file descriptor.

mi_lo_close() close()
6-36 IBM Informix DataBlade API Programmer’s Guide

Smart-Large-Object Functions
Functions That Manipulate an LO Handle

The following table shows the smart-large-object functions that act on an LO
handle, not on the smart large object that it identifies.

DataBlade API Function Purpose

mi_get_lo_handle() Obtains an LO handle from a user-defined buffer

mi_lo_alter() Alters the storage characteristics of the smart large object
that the LO handle identifies

mi_lo_copy() Copies the contents of a smart large object (that an LO
handle identifies) into a new smart large object and
initializes the LO handle of the new smart large object

mi_lo_create() Creates a new smart large object and initializes its LO
handle

mi_lo_decrefcount() Decrements the reference count of the smart large object
that the LO handle identifies

mi_lo_expand()
(deprecated)

Copies multirepresentational data into a new smart large
object and initializes the LO handle

mi_lo_filename() Returns the name of the file where the mi_lo_to_file()
function would store the smart large object that the LO
handle identifies

mi_lo_from_buffer() Copies a specified number of bytes from a user-defined
buffer into a smart large object that the LO handle identifies

mi_lo_from_file() Copies the contents of an operating-system file to a smart
large object that the LO handle identifies

mi_lo_from_string() Converts an LO handle from its text representation to its
binary representation

mi_lo_increfcount() Increments the reference count of the smart large object
that the LO handle identifies

mi_lo_invalidate() Marks an LO handle as invalid

mi_lo_lolist_create() Converts an array of LO handles into an MI_LO_LIST
structure

mi_lo_open() Opens the smart large object that the LO handle identifies

(1 of 2)
Using Smart Large Objects 6-37

Smart-Large-Object Functions
Important: The LO handle, MI_LO_HANDLE, is an opaque structure to DataBlade
API modules. Do not access its internal structure directly. There is no guarantee that
the internal structure of MI_LO_HANDLE will not change. To create portable code,
use the appropriate DataBlade API function to access this structure.

For more information on how to use these functions, see “Obtaining an LO
Handle” on page 6-70.

mi_lo_ptr_cmp() Compares two LO handles to see if they identify the same
smart large object

mi_lo_release() Releases resources held by a transient smart large object,
including its LO handle

mi_lo_to_buffer() Copies a specified number of bytes from a smart large
object that the LO handle identifies into a user-defined
buffer

mi_lo_to_file() Copies the smart large object that the LO handle identifies
to an operating-system file

mi_lo_to_string() Converts an LO handle from its binary representation to its
text representation

mi_lo_validate() Checks whether an LO handle is valid

mi_put_lo_handle() Puts an LO handle into a user-defined buffer

DataBlade API Function Purpose

(2 of 2)
6-38 IBM Informix DataBlade API Programmer’s Guide

Smart-Large-Object Functions
Functions That Access an LO-Specification Structure

The following table shows the smart-large-object functions that access the
LO-specification structure.

DataBlade API Function Purpose

mi_lo_alter() Alters the storage characteristics of an existing
smart large object

mi_lo_colinfo_by_ids() Updates the LO-specification structure with
the column-level storage characteristics for a
column identified by a row descriptor

mi_lo_colinfo_by_name() Updates the LO-specification structure with
the column-level storage characteristics for a
column identified by name

mi_lo_copy() Copies the contents of the smart large object
into a new smart large object, whose storage
characteristics the LO-specification structure
contains

mi_lo_create() Creates a new smart large object that has the
storage characteristics in the LO-specification
structure

mi_lo_expand()
(deprecated)

Copies multirepresentational data into a new
smart large object, whose storage character-
istics the LO-specification structure contains

mi_lo_from_file() Copies the contents of an operating-system file
to a smart large object, whose storage charac-
teristics the LO-specification structure contains

mi_lo_spec_free() Frees the resources of the LO-specification
structure

mi_lo_spec_init() Allocates and initializes an LO-specification
structure

mi_lo_specget_def_open_flags() Retrieves the default open mode from the LO-
specification structure

mi_lo_specget_estbytes() Retrieves the estimated number of bytes from
the LO-specification structure

(1 of 2)
Using Smart Large Objects 6-39

Smart-Large-Object Functions
Important: The LO-specification structure, MI_LO_SPEC, is an opaque structure to
DataBlade API modules. Do not access its internal structure directly. The internal
structure of MI_LO_SPEC may change in future releases. Therefore, to create
portable code, always use the LO-specification accessor functions to obtain and store
values in this structure.

mi_lo_specget_extsz() Accessor function to get the allocation extent
size from the LO-specification structure

mi_lo_specget_flags() Accessor function to get the attributes flag from
the LO-specification structure

mi_lo_specget_maxbytes() Accessor function to get the maximum number
of bytes from the LO-specification structure

mi_lo_specget_sbspace() Accessor function to get the name of the
sbspace from the LO-specification structure

mi_lo_specset_def_open_flags() Accessor function to set the default open mode
in the LO-specification structure

mi_lo_specset_estbytes() Accessor function to set the estimated number
of bytes in the LO-specification structure

mi_lo_specset_extsz() Accessor function to set the allocation extent
size in the LO-specification structure

mi_lo_specset_flags() Accessor function to set the attribute flags in
the LO-specification structure

mi_lo_specset_maxbytes() Accessor function to set the maximum number
of bytes in the LO-specification structure

mi_lo_specset_sbspace() Accessor function to set the name of the
sbspace in the LO-specification structure

mi_lo_stat_cspec() Returns a pointer to the LO-specification
structure that contains the storage character-
istics obtained from the LO-status structure of
an existing smart large object

DataBlade API Function Purpose

(2 of 2)
6-40 IBM Informix DataBlade API Programmer’s Guide

Smart-Large-Object Functions
For more information on how to use these functions, see “Obtaining the LO-
Specification Structure” on page 6-44 and “Choosing Storage Character-
istics” on page 6-49.

Functions That Access an LO-Status Structure

The following table shows the smart-large-object functions that access the
LO-status structure.

Important: The LO-status structure, MI_LO_STAT, is an opaque structure to
DataBlade API modules. Do not access its internal structure directly. The internal
structure of MI_LO_STAT may change in future releases. Therefore, to create portable
code, always use the LO-status accessor functions to obtain and store values from this
structure.

For more information on how to use these functions, see “Obtaining Status
Information” on page 6-93.

DataBlade API Function Purpose

mi_lo_stat() Allocates and initializes an LO-status structure with
status information of an open smart large object

mi_lo_stat_atime() Accessor function to get the last-access time

mi_lo_stat_cspec() Accessor function to get the storage characteristics

mi_lo_stat_ctime() Accessor function to get the last-change time

mi_lo_stat_free() Frees the resources of the LO-status structure

mi_lo_stat_mtime_sec() Accessor function to get the seconds component of the
last-modification time

mi_lo_stat_mtime_usec() Accessor function to get the microseconds component
of the last-modification time

mi_lo_stat_refcnt() Accessor function to get the reference count

mi_lo_stat_size() Accessor function to get the size of smart large object
Using Smart Large Objects 6-41

Smart-Large-Object Functions
Functions That Move Smart Large Objects to and from Operating-
System Files

The following table shows the smart-large-object functions that move smart
large objects to and from operating-system files.

For more information on how to use these functions, see “Using Operating-
System Files” on page 6-101.

DataBlade API Function Purpose

mi_file_to_file() Copies the contents of one operating-system file to
another

mi_lo_from_file() Copies the contents of an operating-system file to a
new smart large object

mi_lo_from_file_by_lofd() Copies the contents of an operating-system file to an
existing smart large object

mi_lo_to_file() Copies the contents of a smart large object to a new
operating-system file
6-42 IBM Informix DataBlade API Programmer’s Guide

Creating a Smart Large Object
Creating a Smart Large Object
To create a smart large object and save its LO handle in the database, you need
to take the following steps. For details on a step, see the page listed under
“More Information.”

Step Task Smart-Large-Object Function More Information

1. Obtain an LO-specification structure
to hold the storage characteristics for
the new smart large object.

mi_lo_spec_init(), mi_lo_stat_cspec() page 6-44

2. Ensure that the LO-specification
structure contains the desired storage
characteristics for the new smart large
object.

System-specified storage characteristics:
mi_lo_spec_init()

Column-level storage characteristics:
mi_lo_colinfo_by_name(),
mi_lo_colinfo_by_ids()

User-specified storage characteristics:
Figure 6-31 on page 6-60,
Figure 6-32 on page 6-62

page 6-49

3. Create an LO handle for the new
smart large object and open the smart
large object.

mi_lo_create(), mi_lo_expand(),
mi_lo_copy(), mi_lo_from_file()

page 6-69

4. Write a specified number of bytes
from a user-defined buffer to the open
smart large object.

mi_lo_write(), mi_lo_writewithseek() page 6-72

5. Pass the LO handle as the column
value for an INSERT or UPDATE
statement.

C Casting page 6-74

6. Execute an INSERT or UPDATE
statement to save the LO handle of the
smart large object in a database
column.

mi_exec(),
mi_exec_prepared_statement(),
mi_value()

page 6-74

7. Close the smart large object. mi_lo_close() page 6-85

8. Free resources. mi_lo_spec_free(), mi_lo_release() page 6-75
Using Smart Large Objects 6-43

Obtaining the LO-Specification Structure
Figure 6-24 shows the first six of these steps that a DataBlade API module
uses to insert the smart-large-object data into the emp_picture column of the
employee table (Figure 6-20 on page 6-25).

Obtaining the LO-Specification Structure
Before you create a new smart large object, obtain a valid LO-specification
structure to hold its storage characteristics. You can obtain an LO-specifi-
cation structure in either of the following ways:

� Create a new LO-specification structure to hold the storage character-
istics of a new smart large object with the mi_lo_spec_init() function.

� Obtain an LO-specification structure that holds the storage character-
istics of an existing smart large object with the mi_lo_stat_cspec()
function.

Figure 6-24
Inserting Into a BLOB Column

BLOB
column:
emp_picture

DAPI

DataBlade routine Server A

IDS 9.x

Sbspace1_100

Disk 100
Smart-large-object
data: employee image

Smart-
large-object
interface

User-defined buffer

write

employee

LO handle

...

LO file descriptors

create

➅ ➅

➁

➂

➃

➃

INSERT INTO employee
(emp_picture) VALUES...

➂

LO-specification
structure

➀

➄

LO handle

Database A

empno emp_picture
1234
1235
6-44 IBM Informix DataBlade API Programmer’s Guide

Obtaining the LO-Specification Structure
Specifying New Storage Characteristics

The mi_lo_spec_init() function is the constructor for the LO-specification
structure. This function performs the following tasks to create a new LO-
specification structure:

1. It allocates a new LO-specification structure when you provide a
NULL-valued pointer as an argument.

2. It initializes all fields of the LO-specification structure (disk-storage
information and attributes flag) to the appropriate null values.

Important: Do not handle memory allocation for an LO-specification structure with
system memory-allocation routines (such as malloc() or mi_alloc()) or by direct
declaration. You must use the LO-specification constructor, mi_lo_spec_init(), to
allocate a new LO-specification structure.

Allocating Memory for an LO-Specification Structure

When you pass a NULL-valued pointer as the second argument of the
mi_lo_spec_init() function, this function allocates an LO-specification
structure.

This new LO-specification structure has the current memory duration. ♦

The following code fragment declares a pointer named myspec and
initializes this pointer to NULL:

MI_LO_SPEC *myspec;
MI_CONNECTION *conn;
...
/* Allocate a new LO-specification structure */
myspec = NULL;
if (mi_lo_spec_init(conn, &myspec) != MI_OK)

handle_error();
/* Perform tasks with LO-specification structure */
...

/* Once finished with LO-specification structure, free it */
if (mi_lo_spec_free(conn, myspec)!= MI_OK)

handle_error();

After the execution of mi_lo_spec_init(), the myspec variable points to the
newly allocated LO-specification structure. For more information on how to
use an LO-specification structure to create a new smart large object, see
“Choosing Storage Characteristics” on page 6-49.

Server
Using Smart Large Objects 6-45

Obtaining the LO-Specification Structure
If you provide a second argument that does not point to NULL, the
mi_lo_spec_init() function assumes that this pointer references an existing
LO-specification structure that a previous call to mi_lo_spec_init() has
allocated. An LO-specification pointer that is not NULL allows a DataBlade
API module to reuse an LO-specification structure. The following code
fragment reuses the LO-specification structure that the LO_spec pointer refer-
ences when the first_time flag is false:

MI_CONNECTION *conn;
MI_LO_SPEC *LO_spec = NULL;
mi_integer first_time;
...
if (first_time)

{
...
LO_spec = NULL; /* tell interface to allocate memory */
first_time = 0; /* set "first_time" flag to false */
...
}

if (mi_lo_spec_init(conn, &LO_spec) != MI_OK)
{
/* error */
}

Important: Before you use an LO-specification structure, make sure that you either
call mi_lo_spec_init() with the LO-specification pointer set to NULL, or that you
have initialized this pointer with a previous call to mi_lo_spec_init().

Once you have a valid LO-specification structure, you can use the accessor
functions to obtain the storage characteristics from this LO-specification
structure. For more information, see “Defining User-Specified Storage
Characteristics” on page 6-59. For the syntax of mi_lo_spec_init(), see the
IBM Informix DataBlade API Function Reference.

Initializing an LO-Specification Structure

The mi_lo_spec_init() function initializes the LO-specification structure
with values that obtain the system-specified storage characteristics. The
system-specified storage characteristics are the defaults that the database
server uses. They are the storage characteristics at the bottom of the storage-
characteristics hierarchy.
6-46 IBM Informix DataBlade API Programmer’s Guide

Obtaining the LO-Specification Structure
After this initialization, you can change the values in the LO-specification
structure:

� The new smart large object inherits column-level storage character-
istics of a CLOB or BLOB column.

� You provide user-specified storage characteristics for the new smart
large object.

For more information on storage characteristics and the storage-
characteristics hierarchy, see “Choosing Storage Characteristics” on
page 6-49.

Copying Storage Characteristics from an Existing Smart Large Object

The mi_lo_stat_cspec() function copies the storage characteristics from an
existing smart large object to an LO-specification structure. This function
performs the following tasks:

1. It allocates a new LO-specification structure to hold the storage
characteristics.

2. It initializes all fields of this LO-specification structure (disk-storage
information and attributes flag) to the values of the storage charac-
teristics of the smart large object whose status information is in the
LO-status structure that you pass as an argument.

3. It returns the address of the newly allocated LO-specification
structure.

The LO-status structure holds status information for an existing smart large
object. You initialize an LO-status structure with the mi_lo_stat() function.
For more information on an LO-status structure, see “Obtaining Status Infor-
mation” on page 6-93.
Using Smart Large Objects 6-47

Obtaining the LO-Specification Structure
The following code fragment assumes that the old_LOfd variable has already
been initialized as the LO file descriptor of an existing smart large object. This
code fragment uses the storage characteristics of the existing smart large
object (which the mi_lo_stat() function puts into the LO-specification
structure that LO_spec specifies) as the storage characteristics for the new
smart large object (which the mi_lo_create() function creates).

MI_LO_HANDLE *LO_hdl = NULL;
MI_LO_STAT *LO_stat = NULL;
MI_LO_SPEC *LO_spec;
MI_LO_FD new_LOfd, old_LOfd;
...
if (mi_lo_stat(conn, old_LOfd, &LO_spec) != MI_OK)

{
/* handle error and exit */
}

LO_spec = mi_lo_stat_cspec(LO_stat);
new_LOfd = mi_lo_create(conn, LO_spec, flags, &LO_hdl);
6-48 IBM Informix DataBlade API Programmer’s Guide

Choosing Storage Characteristics
Choosing Storage Characteristics
After initializing an LO-specification structure, you need to ensure that this
structure contains the appropriate values for the storage characteristics you
want the smart large object to have. Then you pass this LO-specification
structure to one of the smart-large-object creation functions (Figure 6-22 on
page 6-35) so that the smart-large-object optimizer can obtain the storage
characteristics to use for the new smart large object.

To choose storage characteristics for a new smart large object

1. Use the system-specified storage characteristics as a basis for
obtaining the storage characteristics of a smart large object.

The system-specified storage characteristics are the default storage char-
acteristics for a smart large object.

2. Customize the storage characteristics.

You can override the system-specified storage characteristics with
one of the following levels of the storage-characteristics hierarchy:

� Storage characteristics defined for a particular CLOB or BLOB
column in which you want to store the smart large object

Storage characteristics that are unique to a particular CLOB or
BLOB column are called column-level storage characteristics.

� User-specified storage characteristics

Special storage characteristics that you define for this smart large
object only are called user-specified storage characteristics.

Important: For most applications, use the system-specified values for the disk-
storage information. Most DataBlade API modules need to ensure correct storage
characteristics only for an sbspace name (the location of the smart large object) and
for the smart-large-object attributes.

Obtaining Storage Characteristics

For most smart large objects, all you need to do is obtain the system-specified
storage characteristics. When you obtain these storage characteristics for a
smart large object, you can specify a location for it and override system-
specified attributes.
Using Smart Large Objects 6-49

Choosing Storage Characteristics
To obtain system-specified storage characteristics

1. Use the mi_lo_spec_init() function to allocate an LO-specification
structure and to initialize this structure to the appropriate null
values.

When a storage characteristic in the LO-specification structure has
the appropriate null value (zero or a NULL-valued pointer), the
smart-large-object optimizer obtains the system-specified value for
the storage characteristic. The smart-large-object optimizer calcu-
lates the system-specified values for disk-storage storage
characteristics. Most applications can use these system-specified val-
ues. For more information, see “Using System-Specified Storage
Characteristics” on page 6-55.

2. Specify the location of the smart large object to override the default
location. You can specify the location as one of the following:

� The name of the sbspace associated with the CLOB or BLOB
column in which you want to store the smart large object

To store a new smart large object in a CLOB or BLOB column, use
the mi_lo_colinfo_by_name() or mi_lo_colinfo_by_ids() func-
tion. These functions obtain the column-level storage
characteristics for this column. One of the storage characteristics
they obtain is the sbspace name for the column. For more infor-
mation, see “Obtaining Column-Level Storage Characteristics”
on page 6-57.

� The name of some other sbspace

You might want to specify an sbspace name for a new smart
large object that is embedded in an opaque data type. The
mi_lo_specset_sbspace() accessor function sets the name of the
sbspace in the LO-specification structure. For more information,
see “Defining User-Specified Storage Characteristics” on
page 6-59.
6-50 IBM Informix DataBlade API Programmer’s Guide

Choosing Storage Characteristics
3. Optionally, override any attributes for the smart large object with the
mi_lo_specset_flags() accessor function.

The system-specified attributes have both logging and last-access
time disabled. You might want to enable one or more attributes for
the new smart large object. The mi_lo_specset_flags() function sets
the attributes flag in the LO-specification structure. For more infor-
mation, see “Defining User-Specified Storage Characteristics” on
page 6-59.

4. Pass this LO-specification structure to one of the smart-large-object
creation functions (mi_lo_create(), mi_lo_copy(), mi_lo_expand(),
or mi_lo_from_file()) to create the new smart large object.

The smart-large-object creation function creates a new smart large
object that has storage characteristics that the LO-specification struc-
ture indicates. For more information, see “Initializing an LO-
Specification Structure” on page 6-46.

You would probably want to modify the storage characteristics of the new
smart large object in the following cases:

� Your application needs to obtain extra performance.

You can use other LO-specification accessor functions to change the
disk-storage information of a new smart large object. For more infor-
mation, see “Defining User-Specified Storage Characteristics” on
page 6-59.

� You want to use the storage characteristics of an existing smart large
object.

The mi_lo_stat_cspec() function can obtain the storage characteris-
tics of an open smart large object through its LO-status structure. For
more information, see “Copying Storage Characteristics from an
Existing Smart Large Object” on page 6-47.
Using Smart Large Objects 6-51

Choosing Storage Characteristics
Using the Storage-Characteristics Hierarchy

Dynamic Server uses the storage-characteristics hierarchy, which Figure 6-25
shows, to obtain the storage characteristics for a new smart large object.

For a given storage characteristic, any value defined at the column level
overrides the system-specified value, and any user-level value overrides the
column-level value. Figure 6-26 summarizes the ways to specify disk-storage
information for a smart large object.

Figure 6-25
Storage-

Characteristics
Hierarchy

Database server storage characteristics
(system defaults)

Sbspace storage characteristics
(assigned when the sbspace is created with the onspaces utility

or when you change the sbspace with onspaces -ch)

Column-level storage characteristics
(assigned when the table is created with the CREATE TABLE statement or

when you change the table with the ALTER TABLE statement)

User-specified storage characteristics
(assigned when the smart large object is created with a DataBlade API

mi_lo_create() function or ESQL/C ifx_lo_create() function)

System-specified
storage characteristics
6-52 IBM Informix DataBlade API Programmer’s Guide

Choosing Storage Characteristics
Figure 6-26
Specifying Disk-Storage Information

For most applications, use the values for the disk-storage information that
the smart-large-object optimizer determines. If you know the size of the
smart large object, it is recommended that you specify this size as a user-
specified storage characteristic, instead of as a system-specified or column-
level storage characteristic.

Disk-Storage Information

System-Specified Storage Characteristics

Column-Level
Storage
Characteristics

User-Specified
Storage
Characteristics

System Default
Value

Specified by
onspaces Utility

Specified by the
PUT clause of
CREATE TABLE

Specified by a
DataBlade API
Function

Size of extent Calculated by
smart-large-object
optimizer

EXTENT_SIZE EXTENT SIZE Yes

Size of next extent Calculated by
smart-large-object
optimizer

NEXT_SIZE No No

Minimum extent size Four kilobytes MIN_EXT_SIZE No No

Size of smart large
object

Calculated by
smart-large-object
optimizer

Average size of all
smart large objects
in sbspace:

AVG_LO_SIZE

No Estimated size of
a particular smart
large object

Maximum size of
a particular smart
large object

Maximum size of I/O
block

Calculated by
smart-large-object
optimizer

MAX_IO_SIZE No No

Name of sbspace SBSPACENAME -S option Name of an
existing sbspace
that stores a
smart large
object:

IN clause

Yes
Using Smart Large Objects 6-53

Choosing Storage Characteristics
For more information on any of the disk-storage information in Figure 6-26,
see “Disk-Storage Information” on page 6-9.

Figure 6-27 summarizes the ways to specify attribute information for a smart
large object.

Figure 6-27
Specifying Attribute Information

For more information on any of the attributes in Figure 6-27, see “Attribute
Information” on page 6-11.

Attribute Information

System-Specified Storage
Characteristics

Column-Level Storage
Characteristics

User-Specified
Storage
Characteristics

System Default
Value

Specified by the
onspaces Utility

Specified by the PUT
clause of CREATE TABLE

Specified by a
DataBlade API
Function

Logging OFF LOGGING LOG, NO LOG Yes

Last-access time OFF ACCESSTIME KEEP ACCESS TIME,

NO KEEP ACCESS
TIME

Yes

Buffering mode OFF BUFFERING No Yes

Lock mode Lock entire
smart large
object

LOCK_MODE No Yes

Data integrity High integrity No HIGH INTEG,
MODERATE INTEG

Yes
6-54 IBM Informix DataBlade API Programmer’s Guide

Choosing Storage Characteristics
Figure 6-28 summarizes the ways to specify open-mode information for a
smart large object.

Figure 6-28
Specifying Open-Mode Information

For more information on the open mode and the default open mode, see
“Attribute Information” on page 6-11.

Using System-Specified Storage Characteristics

The Database Administrator (DBA) establishes system-specified storage
characteristics when he or she initializes the database server and creates an
sbspace with the onspaces utility, as follows:

� If the onspaces utility has specified a value for a particular storage
characteristic, the smart-large-object optimizer uses the onspaces
value as the system-specified storage characteristic.

� If the onspaces utility has not specified a value for a particular
storage characteristic, the smart-large-object optimizer uses the
system default as the system-specified storage characteristic.

The system-specified storage characteristics apply to all smart large objects
that are stored in the sbspace, unless a smart large object specifically
overrides them with column-level or user-specified storage characteristics.

Storage
Characteristic

System-Specified Storage
Characteristics

Column-Level Storage
Characteristics

User-Specified
Storage
Characteristics

System Default
Value

Specified by the
onspaces Utility

Specified by the PUT
clause of CREATE TABLE

Specified by a
DataBlade API
Function

Open-mode
information

Default open
mode

No No Yes
Using Smart Large Objects 6-55

Choosing Storage Characteristics
The onspaces utility establishes storage characteristics for an sbspace. For the
storage characteristics that onspaces can set as well as the system defaults,
see Figure 6-26 on page 6-53 and Figure 6-27 on page 6-54. For example, the
following call to the onspaces utility creates an sbspace named sb1 in the
/dev/sbspace1 partition:

onspaces -c -S sb1 -p /dev/sbspace1 -o 500 -s 2000
-Df "AVG_LO_SIZE=32"

Figure 6-29 shows the system-specified storage characteristics for all smart
large objects in the sb1 sbspace.

Figure 6-29
System-Specified Storage Characteristics for the sb1 Sbspace

Storage Characteristic System-Specified Value
Specified by the
onspaces Utility

Disk-storage information:

Size of extent Calculated by smart-
large-object optimizer

system default

Size of next extent Calculated by smart-
large-object optimizer

system default

Minimum extent size Calculated by smart-
large-object optimizer

system default

Size of smart large object 32 kilobytes
(smart-large-object
optimizer uses as size
estimate)

AVG_LO_SIZE

Maximum size of I/O block Calculated by smart-
large-object optimizer

system default

Name of sbspace sb1 -S option

Attribute information:

Logging OFF system default

Last-access time OFF system default
6-56 IBM Informix DataBlade API Programmer’s Guide

Choosing Storage Characteristics
For a smart large object that has system-specified storage characteristics, the
smart-large-object optimizer calculates values for all disk-storage infor-
mation except the sbspace name. The DBA can specify a default sbspace name
with the SBSPACENAME configuration parameter in the ONCONFIG file.
However, you must ensure that the location (the name of the sbspace) is
correct for the smart large object that you create. If you do not specify an
sbspace name for a new smart large object, the database server stores it in this
default sbspace. This arrangement can quickly lead to space constraints.

Important: For new smart large objects, use the system-specified values of all disk-
storage information except the sbspace name. The smart-large-object optimizer can
best determine most of the values of the storage characteristics. Most applications
only need to specify an sbspace name for their disk-storage information.

Obtaining Column-Level Storage Characteristics

The DBA can establish column-level storage characteristics for a database
table with the CREATE TABLE statement. If the table contains a CLOB or BLOB
column, the PUT clause of CREATE TABLE can specify the storage character-
istics that Figure 6-26 on page 6-53 and Figure 6-27 on page 6-54 show. This
statement stores column-level storage characteristics in the syscolattribs
system catalog table.

The column-level storage characteristics apply to all smart large objects
whose LO handles are stored in the column, unless a smart large object specif-
ically overrides them with user-specified storage characteristics. Column-
level storage characteristics override any corresponding system-specified
storage characteristics.

For example, if the sb1 sbspace was defined as Figure 6-29 on page 6-56
shows, the following CREATE TABLE statement specifies column-level
storage characteristics of a location and last-access time for the cat_descr
column:

CREATE TABLE catalog2
(

catalog_num INTEGER,
cat_descr CLOB

) PUT cat_descr IN (sb1) (KEEP ACCESS TIME);

Figure 6-30 shows the storage characteristics for all smart large objects in the
cat_descr column.
Using Smart Large Objects 6-57

Choosing Storage Characteristics
Figure 6-30
Storage Characteristics for the cat_descr Column

For more information on the syntax of the CREATE TABLE statement, see its
description in the IBM Informix Guide to SQL: Syntax.

The following DataBlade API functions obtain column-level storage charac-
teristics for a specified CLOB or BLOB column:

� The mi_lo_colinfo_by_name() function allows you to identify the
column by the table and column name.

� The mi_lo_colinfo_by_ids() function allows you to identify the
column by an MI_ROW structure and the relative column identifier.

Storage Characteristic Column-Level Value
Specified by PUT Clause
of CREATE TABLE

Disk-storage information:

Size of extent Calculated by smart-
large-object optimizer

system-specified

Size of next extent Calculated by smart-
large-object optimizer

system-specified

Minimum extent size Calculated by smart-
large-object optimizer

system-specified

Size of smart large object 32 kilobytes
(smart-large-object
optimizer uses as size
estimate)

system-specified

Maximum size of I/O block Calculated by smart-
large-object optimizer

system-specified

Name of sbspace sb1 IN (sb1)

Attribute information:

Logging OFF system-specified

Last-access time ON KEEP LAST ACCESS
6-58 IBM Informix DataBlade API Programmer’s Guide

Choosing Storage Characteristics
Both these functions store the column-level storage characteristics for the
specified column in an existing LO-specification structure. When a smart-
large-object creation function receives this LO-specification structure, it
creates a new smart-large-object instance that has these column-level storage
characteristics.

Tip: When you use the column-level storage characteristics, you do not usually need
to override the name of the sbspace for the smart large object. The sbspace name is
specified in the PUT clause of the CREATE TABLE statement.

For example, the following code fragment obtains the column-level storage
characteristics for the emp_picture column of the employee table
(Figure 6-20 on page 6-25) and puts them in the LO-specification structure
that LO_spec references:

MI_LO_SPEC *LO_spec = NULL;
MI_CONNECTION *conn;
...
mi_lo_spec_init(conn, &LO_spec);
mi_lo_colinfo_by_name(conn, "employee.emp_picture",

LO_spec);

The call to mi_lo_colinfo_by_name() overwrites the system-specified
storage characteristics that the call to mi_lo_spec_init() put in the
LO-specification structure. The LO-specification structure that LO_spec refer-
ences now contains the column-level storage characteristics for the
emp_picture column.

Defining User-Specified Storage Characteristics

You can establish user-specified storage characteristics when you create a
new smart large object. DataBlade API functions can specify the storage
characteristics that Figure 6-26 on page 6-53 and Figure 6-27 on page 6-54
show. The user-specified storage characteristics apply only to the particular
smart-large-object instance that is being created. They override any corre-
sponding column-level or system-specified storage characteristics.

After you have an LO-specification structure allocated, you can use the
appropriate LO-specification accessor functions to set fields of this structure.
Accessor functions also exist to retrieve storage-characteristic values from
the LO-specification structure. When a smart-large-object creation function
receives the LO-specification structure, it creates a new smart-large-object
instance that has these user-specified storage characteristics.
Using Smart Large Objects 6-59

Choosing Storage Characteristics
Important: The LO-specification structure, MI_LO_SPEC, is an opaque structure to
DataBlade API modules. Do not access its internal structure directly. The internal
structure of MI_LO_SPEC may change in future releases. Therefore, to create
portable code, always use the LO-specification accessor functions to obtain and store
values from this structure.

The following sections describe how to access each group of storage charac-
teristics in the LO-specification structure.

Accessing Disk-Storage Information

Figure 6-31 shows the disk-storage information with the corresponding LO-
specification accessor functions.

Figure 6-31
Disk-Storage Information in the LO-Specification Structure

Disk-Storage
Information Description

LO-Specification
Accessor Function

Estimated number
of bytes

An estimate of the final size, in bytes, of the
smart large object

The smart-large-object optimizer uses this value to
determine the extents in which to store the smart
large object. This value provides optimization infor-
mation. If the value is grossly incorrect, it does not
cause incorrect behavior. However, it does mean
that the optimizer might not necessarily choose
optimal extent sizes for the smart large object.

By default, this value is -1, which tells the
smart-large-object optimizer to calculate the extent
size from a set of heuristics.

mi_lo_specget_estbytes()

mi_lo_specset_estbytes()

Maximum number
of bytes

The maximum size, in bytes, for the smart large
object

The smart-large-object optimizer does not allow the
smart large object to grow beyond this size. By
default, this value is -1, which tells the smart-large-
object optimizer that there is no preset maximum
size.

mi_lo_specget_maxbytes()

mi_lo_specset_maxbytes()

(1 of 2)
6-60 IBM Informix DataBlade API Programmer’s Guide

Choosing Storage Characteristics
For most applications, use the values for the disk-storage information that
the smart-large-object optimizer determines. If you know the size of the
smart large object, it is recommended that you specify this size in the
mi_lo_specset_estbytes() function instead of in the onspaces utility or the
CREATE TABLE or the ALTER TABLE statement. This
mi_lo_specset_estbytes() function (and the corresponding ESQL/C
ifx_lo_specset_estbytes() function) is the best way to set the extent size
because the database server can allocate the entire smart large object as one
extent. For more information, see “Disk-Storage Information” on page 6-9.

Allocation extent size The allocation extent size, in kilobytes

It is the size of the page extents for the smart
large object. By default, this value is -1, which tells
the smart-large-object optimizer to obtain the
allocation extent size from the storage-character-
istics hierarchy.

mi_lo_specget_extsz()

mi_lo_specset_extsz()

Name of the sbspace The name of the sbspace that contains the smart
large object

The sbspace name can be at most 18 characters long
and must be null terminated. By default, this value
is null, which tells the smart-large-object optimizer
to obtain the sbspace name from the storage-charac-
teristics hierarchy.

mi_lo_specget_sbspace()

mi_lo_specset_sbspace()

Disk-Storage
Information Description

LO-Specification
Accessor Function

(2 of 2)
Using Smart Large Objects 6-61

Choosing Storage Characteristics
Accessing Attributes

The LO-specification structure uses a bitmask flag, called an attributes flag, to
specify the attributes of a smart large object. Figure 6-32 shows the attribute
constants of an LO-specification structure.

Figure 6-32
Attribute Constants in the LO-Specification Structure

Attribute Attribute Constant Description

Logging: MI_LO_ATTR_LOG Log changes to the smart large object
in the system log file.

MI_LO_ATTR_NO_LOG Turn off logging for all operations that
involve the associated smart large
object.

Consider carefully whether to use the MI_LO_ATTR_LOG flag value. The database
server incurs considerable overhead to log smart large objects. For more information, see
“Logging” on page 6-11.

Last-access
time:

MI_LO_ATTR_KEEP_LASTACCESS_TIME Save the last-access time for the smart
large object.

MI_LO_ATTR_NOKEEP_LASTACCESS_TIME Do not maintain the last-access time
for the smart large object.

Consider carefully whether to use the MI_LO_ATTR_KEEP_LASTACCESS_TIME flag
value. The database server incurs considerable overhead in logging and concurrency to
maintain last-access times for smart large objects. For more information, see “Last-Access
Time” on page 6-13.

Data integrity: MI_LO_ATTR_HIGH_INTEG Use both a page header and a page
trailer for the pages of the sbspace.

MI_LO_ATTR_MODERATE_INTEG Use only a page header for the pages
of the sbspace.

Consider carefully whether to use the MI_LO_ATTR_MODERATE_INTEG flag value.
Although moderate integrity takes less disk space per page, it also reduces the ability of
the database server to recover information should disk errors occur. For more infor-
mation, see “Data Integrity” on page 6-13.
6-62 IBM Informix DataBlade API Programmer’s Guide

Choosing Storage Characteristics
The milo.h header file defines the attribute constants: MI_LO_ATTR_LOG,
MI_LO_ATTR_NO_LOG, MI_LO_ATTR_KEEP_LASTACCESS_TIME, and
MI_LO_ATTR_NOKEEP_LASTACCESS_TIME, MI_LO_ATTR_HIGH_INTEG, and
MI_LO_ATTR_MODERATE_INTEG.

Figure 6-33 shows the LO-specification accessor functions for the attribute
information.

Figure 6-33
Accessor Functions for Attribute Information in the LO-Specification Structure

To set an attributes flag

1. If you need to set more than one attribute, use the C-language bitwise
OR operator (|) to mask attribute constants together.

2. Use the mi_lo_specset_flags() accessor function to store the
attributes flag in the LO-specification structure.

Masking mutually exclusive flags results in an error. If you do not specify a
value for a particular attribute, the database server uses the storage-
characteristics hierarchy to determine this information.

LO-Specification
Accessor Function Description

mi_lo_specget_flags() Overrides system-specified or column-level attributes in
the LO-specification structure with the attributes that the
attributes flag specifies

mi_lo_specset_flags() Retrieves the attributes flag from the LO-specification
structure
Using Smart Large Objects 6-63

Choosing Storage Characteristics
For example, the following code fragment specifies the constants to enable
logging the last-access time for the attributes flag in the LO-specification
structure that LO_spec identifies:

MI_CONNECTION *conn;
MI_LO_SPEC *LO_spec = NULL;
mi_integer create_flgs;
...

if (mi_lo_spec_init(conn, &LO_spec) != MI_OK)
/* handle error and exit */

create_flgs =
MI_LO_ATTR_LOG | MI_LO_ATTR_KEEP_LASTACCESS_TIME;

if (mi_lo_specset_flags(LO_spec, create_flgs) != MI_OK)
/* handle error and exit */

For more information on the attributes of a smart large object, see “Attribute
Information” on page 6-11 and the descriptions of the mi_lo_specset_flags()
and mi_lo_specget_flags() functions in the IBM Informix DataBlade API
Function Reference.

Accessing the Default Open Flag

When you open a smart large object, you can specify the open mode for the
data. The open mode describes the context in which the I/O operations on the
smart large object are performed. The LO-specification structure uses a
bitmask flag, called a default-open-mode flag, to specify the default open mode
of a smart large object. Figure 6-34 shows the open-mode constants of an LO-
specification structure.
6-64 IBM Informix DataBlade API Programmer’s Guide

Choosing Storage Characteristics
Figure 6-34
Open-Mode Constants in the LO-Specification Structure

Open-Mode
Information Open-Mode Constant Description

Access modes MI_LO_RDONLY Read-only mode

MI_LO_DIRTY_READ Dirty-read mode

MI_LO_WRONLY Write-only mode

MI_LO_APPEND Write/append mode

MI_LO_RDWR Read/write mode

MI_LO_TRUNC Truncate

These access-mode flags for a smart large object are patterned after the UNIX
System V file-access modes. For more information, see “Access Modes” on
page 6-15.

Access methods MI_LO_RANDOM Random access

MI_LO_SEQUENTIAL Sequential access

MI_LO_FORWARD Forward

MI_LO_REVERSE Reverse

For more information, see “Access Methods” on page 6-17.

Buffering modes MI_LO_BUFFER Buffered access (Buffered I/O)

MI_LO_NOBUFFER Unbuffered access (Lightweight
I/O)

For more information, see “Buffering Modes” on page 6-18.

Locking modes MI_LO_LOCKALL Lock-all locks

MI_LO_LOCKRANGE Byte-range locks

For more information, see “Locking Modes” on page 6-20.
Using Smart Large Objects 6-65

Choosing Storage Characteristics
The milo.h header file defines the open-mode constants: MI_LO_RDONLY,
MI_LO_DIRTY_READ, MI_LO_WRONLY, MI_LO_APPEND, MI_LO_RDWR,
MI_LO_TRUNC, MI_LO_RANDOM, MI_LO_SEQUENTIAL, MI_LO_FORWARD,
MI_LO_REVERSE, MI_LO_BUFFER, MI_LO_NOBUFFER, MI_LO_LOCKALL, and
MI_LO_LOCKRANGE.
6-66 IBM Informix DataBlade API Programmer’s Guide

Choosing Storage Characteristics
Figure 6-35 shows the LO-specification accessor functions for the default-
open-mode information.

Figure 6-35
Accessor Functions for Attribute Information in the LO-Specification Structure

To set a default-open-mode flag

1. Use the appropriate open-mode constants from the list in Figure 6-34
on page 6-65. If you need to set more than one default-open-mode
value, use the C-language bitwise OR operator (|) to mask open-
mode constants together.

2. Use the mi_lo_specset_def_open_flags() accessor function to store
the default-open-mode flag in the LO-specification structure.

LO-Specification
Accessor Function Description

mi_lo_specget_def_open_flags() Overrides the system default open mode with
the open mode that the default-open-mode flag
specifies

mi_lo_specset_def_open_flags() Retrieves the default-open-mode flag from the
LO-specification structure
Using Smart Large Objects 6-67

Choosing Storage Characteristics
Masking mutually exclusive flags results in an error. However, you can mask
the MI_LO_APPEND constant with another access-mode constant. In any of
these OR combinations, the seek operation remains unaffected. The following
table shows the effect that each of the OR combinations has on the read and
write operations.

For more information on access modes of a smart large object, see “Access
Modes” on page 6-15.

OR Operation Read Operations Write Operations

MI_LO_RDONLY |
MI_LO_APPEND

Starts at the LO seek
position and then
moves the seek position
to the end of the data
that has been read

Fails and does not move the LO
seek position

MI_LO_WRONLY |
MI_LO_APPEND

Fails and does not move
the LO seek position

Moves the LO seek position to the
end of the smart large object and
then writes the data

The LO seek position is at the end
of the data after the write
operation.

MI_LO_RDWR |
MI_LO_APPEND

Starts at the LO seek
position and then
moves the seek position
to the end of the data
that has been read

Moves the LO seek position to the
end of the smart large object and
then writes the data

The LO seek position is at the end
of the data after the write
operation.
6-68 IBM Informix DataBlade API Programmer’s Guide

Initializing an LO Handle and an LO File Descriptor
If you do not specify a value for a particular part of the open mode, the
database server assumes the following system default open mode when you
open a smart large object.

You can specify a different open mode for a particular smart large object
when you open a smart large object. For more information on how to open a
smart large object, see “Opening a Smart Large Object” on page 6-83.

Initializing an LO Handle and an LO File Descriptor
Once you have an LO-specification structure that describes the storage
characteristics for the new smart large object, you can create the smart large
object with one of the smart-large-object creation functions: mi_lo_copy(),
mi_lo_create(), mi_lo_expand(), or mi_lo_from_file(). These smart-large-
object creation functions perform the following tasks to create a new smart
large object:

1. Initialize the LO handle for the new smart large object

You provide a pointer to an LO handle as an argument to these func-
tions. The creation functions initialize the LO handle with
information about the location of the new smart large object.

2. Store the storage characteristics in a user-supplied LO-specification
structure for the new smart large object in the metadata area of the
sbspace

You provide a pointer to an LO-specification structure as an argu-
ment to these functions. For more information, see “Obtaining the
LO-Specification Structure” on page 6-44.

Access Capability Default Open Mode Smart-Large-Object Constant

Access mode Read-only MI_LO_RDONLY

Access method Random MI_LO_RANDOM

Buffering Buffered access MI_LO_BUFFER

Locking Whole-object locks MI_LO_LOCKALL
Using Smart Large Objects 6-69

Initializing an LO Handle and an LO File Descriptor
3. Open the new smart large object in the specified access mode

You provide the open mode as an argument to the mi_lo_create(),
mi_lo_copy(), or mi_lo_expand() function. The mi_lo_from_file()
function opens a smart large object in read/write mode. For more
information, see “Opening a Smart Large Object” on page 6-83.

4. Write any associated data to the new smart large object

The mi_lo_copy(), mi_lo_expand(), and mi_lo_from_file() func-
tion specifies data to write to the sbspace of the new smart large
object.

5. Return an LO file descriptor that identifies the open smart large
object

The LO file descriptor is needed for most subsequent operations on
the smart large object. However, this LO file descriptor is only valid
within the current database connection.

These smart-large-object creation functions initialize the following data type
structures for a smart large object:

� An LO handle, which identifies the location of the smart large object
and can be stored in a CLOB, BLOB, or opaque-type column

� An LO file descriptor, which identifies the open smart large object

Obtaining an LO Handle

A DataBlade API module can obtain an LO handle with any of the following
methods:

� Any of the smart-large-object creation functions can allocate an LO
handle for a new smart large object.

� A DataBlade API module can explicitly allocate an LO handle.

� A SELECT statement can return an LO handle from a CLOB or BLOB
column in the database.

For more information, see “Selecting the LO Handle” on page 6-81.
6-70 IBM Informix DataBlade API Programmer’s Guide

Initializing an LO Handle and an LO File Descriptor
Implicitly Allocating an LO Handle

Any of the smart-large-object creation functions (Figure 6-22 on page 6-35)
can allocate memory for an LO handle when you specify a NULL-valued
pointer for the last argument. For example, the following code fragment
declares a pointer to an LO handle named LO_hdl, initializes it to NULL, and
then calls the mi_lo_create() function to allocate memory for this LO handle:

MI_CONNECTION *conn;
MI_LO_SPEC *LO_spec;
MI_LO_HANDLE *LO_hdl = NULL; /* request allocation */
MI_LO_FD LO_fd;
mi_integer flags;
...
LO_fd = mi_lo_create(conn, &LO_spec, flags, &LO_hdl);

After the execution of mi_lo_create(), the LO_hdl variable is a pointer to the
new LO handle, which identifies the location of the new smart large object.

This new LO handle has a default memory duration of PER_ROUTINE. If you
switch the memory duration, the creation function uses the current memory
duration for the LO handle that it allocates. ♦

If you provide an LO-handle pointer that does not point to NULL, the smart-
large-object creation function assumes that memory has already been
allocated for the LO handle and it uses the LO handle that you provide.

Explicitly Allocating an LO Handle

You can explicitly allocate an LO handle in either of the following ways:

� Dynamically, with one of the DataBlade API memory-management
functions such as mi_alloc():

MI_LO_HANDLE *LO_hdl = mi_alloc(sizeof(MI_LO_HANDLE));

� On the stack, with a direct declaration:
MI_LO_HANDLE my_LOhndl;
MI_LO_HANDLE *LO_hdl2, &my_LOhndl;

However, this LO handle is still an opaque C data structure; that is, it is
declared as a flat array of undifferentiated bytes and its fields are not
available to the DataBlade API module.

Server
Using Smart Large Objects 6-71

Writing Data to a Smart Large Object
Important: The LO handle structure is the only smart-large-object structure that a
DataBlade API module can allocate directly. You must allocate other smart-large-
object data type structures, such as the LO-specification structure and the LO-status
structure, with the appropriate DataBlade API constructor function.

Obtaining an LO File Descriptor

The smart-large-object creation functions (Figure 6-22 on page 6-35) return
an LO file descriptor for a smart large object. The LO file descriptor is needed
for most subsequent operations on the smart large object. However, this LO
file descriptor is only valid within the current database connection.

The following code fragment uses the mi_lo_create() function to generate an
LO file descriptor for a new smart large object:

MI_LO_FD LO_fd;
MI_LO_HANDLE *LO_hdl;
MI_LO_SPEC *LO_spec;
MI_CONNECTION *conn;
...
LO_fd = mi_lo_create(conn, LO_spec, MI_LO_RDONLY, &LO_hdl);

Tip: A return value of zero (0) from a smart-large-object creation function does not
indicate an error. The value zero (0) is a valid LO file descriptor.

Writing Data to a Smart Large Object
To write data to the sbspace of a smart large object, use one of the following
smart-large-object functions:

� The mi_lo_write() function begins the write operation at the current
LO seek position.

You can obtain the current LO seek position with the mi_lo_tell()
function, or you can set the LO seek position with the mi_lo_seek()
function.

� The mi_lo_writewithseek() function performs the seek and write
operations with a single function call.

You specify the seek position at which to begin the write operation as
arguments to mi_lo_writewithseek().
6-72 IBM Informix DataBlade API Programmer’s Guide

Writing Data to a Smart Large Object
These functions both write a specified number of bytes from a user-defined
character buffer to the open smart large object that an LO file descriptor
identifies. The smart-large-object optimizer determines the default extent
size for the smart large object based on the amount of data that you write.
Therefore, try to maximum the amount of data you write in a single call to
mi_lo_write() or mi_lo_writewithseek().

Important: An attempt to write data to an sbspace that does not exist results in an
error.

In addition to a write operation, you might also need to perform the
following operations on the open smart large object.

Task
Smart-Large-Object
Function More Information

Read data from the sbspace mi_lo_read(),
mi_lo_readwithseek()

page 6-84

Obtain the LO seek position mi_lo_tell() page 6-84

Obtain status information mi_lo_stat() page 6-93

Obtain storage characteristics mi_lo_stat_cspec() page 6-49
Using Smart Large Objects 6-73

Storing an LO Handle
Storing an LO Handle
The INSERT or UPDATE statement can store the LO handle of a smart large
object into the CLOB, BLOB, or opaque-type column.

To store a smart large object in the database

1. Provide the LO handle to the INSERT or UPDATE statement, as
follows:

� For a CLOB or BLOB column, provide the LO handle as data for
the column.

� For an opaque-type column, store the LO handle in the internal
structure of the opaque data type and pass this internal structure
as data for the column.

2. Execute the INSERT or UPDATE statement with a DataBlade API
function such as mi_exec() or mi_exec_prepared_statement().

Tip: The data of the smart large object is stored when you write it to the sbspace of
the smart large object.

When you save the LO handle in the CLOB or BLOB column, the smart-large-
object optimizer increments the reference count of the smart large object by
one. When you save the LO handle in an opaque-type column, the assign()
support function for the opaque type must increment the reference count.

If you create a new smart large object but do not store it in a database column,
the smart large object is a transient smart large object. The database server does
not guarantee that transient smart large objects remain valid once they are
closed. When all references to the smart large objects are deleted, the
database server deletes the smart large object. For more information, see
“Deleting a Smart Large Object” on page 6-95.

For more information on how to execute an INSERT or UPDATE statement, see
“Executing SQL Statements” on page 8-1.
6-74 IBM Informix DataBlade API Programmer’s Guide

Freeing Resources
Freeing Resources
After you store the new smart large object in the database, make sure that any
resources you no longer need are freed. When you create a new smart large
object, you might need to free resources of the following data type structures:

� The LO-specification structure

� The LO handle

If any of the smart-large-object data type structures has a memory duration
of PER_ROUTINE, the database server automatically frees the structure when
the UDR completes. ♦

Freeing an LO-Specification Structure

The mi_lo_spec_init() function allocates an LO-specification structure in the
current memory duration. Therefore, if an LO-specification structure has a
memory duration of PER_ROUTINE, the database server automatically frees
it when the UDR completes. ♦

To explicitly free the resources assigned to an LO-specification structure, use
the mi_lo_spec_free() function. The mi_lo_spec_free() function is the
destructor function for the LO-specification structure. When these resources
are freed, they can be reallocated to other structures that your program needs.

Freeing an LO Handle

The LO handle structure is allocated with the current memory duration.
Therefore, if it has the default memory duration of PER_ROUTINE, the
database server automatically frees it when the UDR completes. ♦

Server

Server

Server
Using Smart Large Objects 6-75

Freeing Resources
To explicitly free the resources assigned to an LO handle, you can use one of
the following DataBlade API functions.

When these resources are freed, they can be reallocated to other structures
that your program needs.

DataBlade API Function Object Freed

mi_lo_release() Frees resources of a transient smart large object

Frees an LO handle that the DataBlade API allocated

mi_free() Frees an LO handle that you have allocated

If you allocate an LO handle with a DataBlade API
memory-management function (such as mi_alloc()
or mi_dalloc()), use mi_free() to explicitly free the
resources.

mi_lo_delete_immediate() Immediately frees the resources of a smart large
object (rather than waiting for the end of the
transaction)
6-76 IBM Informix DataBlade API Programmer’s Guide

Sample Code to Create a New Smart Large Object
Sample Code to Create a New Smart Large Object
Suppose you want to create a new smart large object for the cat_descr column
in the catalog2 table that contains the following data:

The rain in Spain stays mainly in the plain. In Hartford,
Hereford, and Hampshire, hurricanes hardly happen.

The following code fragment creates a new smart large object, which assumes
the storage characteristics of its column, cat_descr, and then modifies the
logging behavior:

#include "int8.h"
#include "mi.h"

#define BUFSZ 10000

{
MI_CONNECTION *conn;
MI_LO_SPEC *create_spec = NULL;
MI_LO_HANDLE *descrip = NULL;
MI_LO_FD lofd;
char buf[BUFSZ];
mi_integer buflen = BUFSZ;
mi_int8 offset, est_size;
mi_integer numbytes;

...
/* Allocate and initialize the LO-specification structure */

if (mi_lo_spec_init(conn, &create_spec) == MI_ERROR)
handle_lo_error("mi_lo_spec_init()");

/* Obtain the following column-level storage characteristics
* for the cat_desc column:
* sbspace name = sb1 (this sbspace must already exist)
* keep last access time is ON
*/
if (mi_lo_colinfo_by_name(conn, "catalog2.cat_descr",

create_spec) == MI_ERROR)
handle_lo_error("mi_lo_colinfo_by_name()");

/* Provide user-specified storage characteristics:
* logging behavior is ON
* size estimate of two kilobytes
*/
mi_lo_specset_flags(create_spec, MI_LO_ATTR_LOG);
ifx_int8cvint(2000, &est_size);
mi_lo_specset_estbytes(create_spec, &est_size)
Using Smart Large Objects 6-77

Sample Code to Create a New Smart Large Object
/* Create an LO handle and LO file descriptor for the new
* smart large object
*/
if (lofd = mi_lo_create(conn, create_spec, MI_LO_RDWR,

&descrip) == MI_ERROR)
handle_lo_error("mi_lo_create()");

/* Copy data into the character buffer 'buf' */
sprintf(buf, "%s %s %s"

"The rain in Spain stays mainly in the plain. ",
"In Hartford, Hereford, and Hampshire, hurricanes",
" hardly happen.");

/* Write contents of character buffer to the open smart
* large object to which lofd points.
*/
ifx_int8cvint(0, &offset);
if (numbytes = mi_lo_writewithseek(conn, lofd, buf,

buflen, &offset, MI_LO_SEEK_SET) == MI_ERROR)
handle_lo_error("mi_lo_writewithseek()");

/* Close the LO file descriptor */
mi_lo_close(conn, lofd);

/* Free LO-specification structure */
mi_lo_spec_free(conn, create_spec);

After the mi_lo_create() function executes, the following items are true:

� The create_spec LO handle was allocated and identifies the new
smart large object.

� The lofd LO file descriptor identifies the open smart large object.

� The new smart large object has user-specified storage characteristics
for logging behavior and estimated size.

The smart large object inherits the other storage characteristics.
Figure 6-36 shows the complete storage characteristics for this new
smart large object.
6-78 IBM Informix DataBlade API Programmer’s Guide

Sample Code to Create a New Smart Large Object
Figure 6-36
Storage Characteristics for the New Smart Large Object

Figure 6-30 on page 6-58 shows the column-level storage characteristics for
the cat_descr column and Figure 6-29 on page 6-56 shows the system-
specified storage characteristics for the sb1 sbspace.

The mi_lo_writewithseek() function writes the buf data to the smart large
object that lofd identifies. When the write operation is successful, the descrip
LO handle is ready to be stored in the CLOB column with the INSERT
statement.

For more information on how to insert a value into a column, see “Executing
SQL Statements” on page 8-1.

Storage Characteristic Value Specified By

Disk-storage information:

Size of extent Calculated by smart-large-object optimizer system-specified

Size of next extent Calculated by smart-large-object optimizer system-specified

Minimum extent size Calculated by smart-large-object optimizer system-specified

Size of smart large object Two kilobytes (smart-large-object optimizer
uses as size estimate)

mi_lo_specset_estbytes()

Maximum size of I/O block Calculated by smart-large-object optimizer system-specified

Name of sbspace sb1 column-level

Attribute information:

Logging ON mi_lo_specset_flags()
with MI_LO_ATTR_LOG

Last-access time ON column-level
Using Smart Large Objects 6-79

Accessing a Smart Large Object
Accessing a Smart Large Object
To access an existing smart large object in the database, you need to perform
the following steps. For details on a step, see the page listed under “More
Information.”

Step Task Smart-Large-Object Function
More
Information

1. Execute a SELECT statement
to obtain the LO handle of
the smart large object from
the CLOB or BLOB column.

mi_exec(),
mi_exec_prepared_statement(),
mi_value()

page 6-81

2. Convert the returned
column value into an LO
handle.

C Cast page 6-103

3. Open the smart large object
that the LO handle identifies
and return a valid LO file
descriptor.

mi_lo_open() page 6-83

4. Read a specified number of
bytes and store them in a
user-defined buffer.

mi_lo_read(),
mi_lo_readwithseek()

page 6-84

5. Close the smart large object. mi_lo_close() page 6-85

6. Free resources. mi_lo_release() page 6-75
6-80 IBM Informix DataBlade API Programmer’s Guide

Selecting the LO Handle
Figure 6-37 shows the first four of these steps that a DataBlade API module
uses to access the smart-large-object data from the emp_picture column of
the employee table (Figure 6-20 on page 6-25).

Selecting the LO Handle
The SELECT statement can select an LO handle of a smart large object from a
CLOB, BLOB, or opaque-type column. Because the desired result of a query is
usually the contents of an object, not just its LO handle, the DataBlade API
module must then use the LO handle that the mi_value() or
mi_value_by_name() function returns to access the smart-large-object data
in its sbspace.

Figure 6-37
Selecting a BLOB Column

BLOB
column:
emp_picture

LO handle

DAPI

DataBlade routine Server A

IDS 9.x

Sbspace1_100

Disk 100
Smart-large-object
data: employee image

Smart-
large-object
interface

User-defined buffer

read

employee

empno emp_picture
1234
1235

LO handle

...

LO file descriptors

open

➀ ➀

➁➁➁

➂ ➂

➃

➃

SELECT emp_picture
FROM employee

Database A
Using Smart Large Objects 6-81

Selecting the LO Handle
To select a smart large object from the database

1. Execute the SELECT statement with a DataBlade API statement-
execution function such as mi_exec() or
mi_exec_prepared_statement().

2. Obtain the column value that the mi_value() or
mi_value_by_name() function passes back in the MI_DATUM
structure as appropriate for the control mode of the query:

� For binary representation, the MI_DATUM structure contains a
pointer to an LO handle.

� For text representation, the MI_DATUM structure contains the
hexadecimal dump of an LO handle. To access the smart-large-
object data, you must convert the LO handle to its binary repre-
sentation with mi_lo_from_string().

For more information, see “Binary and Text Representations of an LO
Handle” on page 6-103.

3. Optionally, ensure that the LO handle is valid with mi_lo_validate().

For more information on how to select smart large objects, see “Accessing
Smart Large Objects” on page 8-77.

Validating an LO Handle

An LO handle is valid when it correctly identifies the location of a smart large
object in an sbspace. An LO handle might be invalid for either of the
following reasons:

� The memory address is invalid or a NULL-valued pointer.

� The LO handle contains invalid reference data.

Use the mi_lo_validate() function to check whether an LO handle is valid. If
mi_lo_validate() returns a positive integer, the LO handle is invalid. You can
mark this LO handle as invalid with the mi_lo_invalidate() function. The
following code fragment checks whether the LO handle that LO_hdl refer-
ences is valid:

if (mi_lo_validate(conn, LO_hdl) > 0)
mi_lo_invalidate(conn, LO_hdl);
6-82 IBM Informix DataBlade API Programmer’s Guide

Opening a Smart Large Object
You can use the mi_lo_validate() function in the support function of an
opaque data type that contains smart large objects. In the lohandles()
support function, this function can determine unambiguously which LO
handles are valid for the given instance of the opaque type.

Opening a Smart Large Object
You can open a smart large object with one of the following functions:

� The mi_lo_open() function

� One of the smart-large-object creation functions: mi_lo_copy(),
mi_lo_create(), mi_lo_expand(), or mi_lo_from_file()

These functions open the smart large object in a particular open mode, which
in turn determines the lock mode of the smart large object. When you open a
smart large object with the mi_lo_copy(), mi_lo_create(), mi_lo_expand(),
or mi_lo_open() function, you tell the database server the open mode for the
smart large object in either of the following ways:

� Provide an open mode of zero (0) as an argument to specify use of the
default open mode of the smart large object.

For information on how to associate a default open mode with a
smart large object, see “Accessing the Default Open Flag” on
page 6-64.

� Provide a non-zero open-mode argument to override the default
open mode with an open mode you provide.

Choose the appropriate open-mode constants from the list in
Figure 6-34 on page 6-65. If you need to set more than one open-
mode value, use the C-language bitwise OR operator (|) to mask
open-mode constants together.

Tip: The mi_lo_from_file() function does not require an open mode for the smart
large object it creates. It always opens a smart large object in read/write access mode.
The smart-large-object optimizer determines which method of access is most efficient
(buffered I/O or lightweight I/O).

All these open functions return an LO file descriptor, through which you can
access the data of a smart large object as if it were in an operating-system file.
Using Smart Large Objects 6-83

Reading Data from a Smart Large Object
Reading Data from a Smart Large Object
To read data from the sbspace of a smart large object, use one of the following
smart-large-object functions:

� The mi_lo_read() function begins the read operation at the current
LO seek position.

You can obtain the current LO seek position with the mi_lo_tell()
function, or you can set the LO seek position with the mi_lo_seek()
function.

� The mi_lo_readwithseek() function performs a seek to a specified LO
seek position and then begins the read operation.

You specify the seek position at which to begin the read operation as
arguments to mi_lo_readwithseek().

These functions both read a specified number of bytes from the open smart
large object to a user-defined character buffer. For information on the syntax
of the mi_lo_read() and mi_lo_readwithseek() functions, see the
IBM Informix DataBlade API Function Reference.

You might also need to perform other operations on the open smart large
object.

Task
Smart-Large-Object
Function

For More
Information

Write data to the sbspace mi_lo_write(),
mi_lo_writewithseek()

page 6-72

Obtain the LO seek position mi_lo_tell() page 6-84

Obtain status information mi_lo_stat() page 6-93

Obtain storage characteristics mi_lo_stat_cspec() page 6-49
6-84 IBM Informix DataBlade API Programmer’s Guide

Freeing a Smart Large Object
Freeing a Smart Large Object
A smart large object remains open until it is freed in either of the following
ways:

� Explicitly, by a call to the mi_lo_close() function

� Implicitly, when the current session ends

Once you finish the operations on the smart large object, you can close it
explicitly with the mi_lo_close() function. This function frees the resources
associated with the LO file descriptor and LO handle so that they can be
reallocated to other structures that your program needs. In addition, the LO
file descriptor can be reassigned to another smart large object.

When you close a smart large object, you release any share-mode or update-
mode locks on that object. However, you do not release exclusive locks until
the end of the transaction. For more information, see “Locking Modes” on
page 6-20.

Important: The end of a transaction does not close any smart large objects that are
open. However, it does release any locks on the smart large objects.

If you do not explicitly close a smart large object, the database server closes
it automatically at the end of the session. For information on the syntax of the
mi_lo_close() function, see the IBM Informix DataBlade API Function Reference.
For more information on when the database server deletes a smart large
object, see “Deleting a Smart Large Object” on page 6-95.

Sample Code to Select an Existing Smart Large Object
Suppose you want to select the following data from a smart large object that
was inserted into a CLOB column named cat_descr in the catalog2 table:

The rain in Spain stays mainly in the plain. In Hartford,
Hereford, and Hampshire, hurricanes hardly happen.
Using Smart Large Objects 6-85

Sample Code to Select an Existing Smart Large Object
The following code fragment assumes that the descrip LO handle identifies
the smart large object that was selected from the CLOB column. This LO
handle was obtained with the SELECT statement on the cat_descr column.

#include "int8.h"
#include "mi.h"

#define BUFSZ 1000

{
MI_CONNECTION *conn;
MI_LO_HANDLE *descrip;
MI_LO_FD lofd;
char buf[BUFSZ];
mi_integer buflen = BUFSZ;
mi_int8 offset;
mi_integer numbytes;

...

/* Use the LO handle to identify the smart large object
* to open and get an LO file descriptor.
*/
lofd = mi_lo_open(conn, descrip, MI_LO_RDONLY);
if (lofd < 0)

handle_lo_error("mi_lo_open()");

/* Use the LO file descriptor to read the data of the
* smart large object.
*/
ifx_int8cvint(0, &offset);
strcpy(buf, "");
numbytes = mi_lo_readwithseek(conn, lofd, buf, buflen,

&offset, MI_LO_SEEK_CUR);
if (numbytes == 0)

handle_lo_error("mi_lo_readwithseek()");

/* Close the smart large object */
mi_lo_close(lofd);

}

The mi_lo_readwithseek() function reads 1000 bytes of data from the smart
large object that lofd identifies to the buf user-defined buffer.

For more information on how to select a value from a column, see “Accessing
Smart Large Objects” on page 8-77.
6-86 IBM Informix DataBlade API Programmer’s Guide

Modifying a Smart Large Object
Modifying a Smart Large Object
Once you have an LO file descriptor for an open smart large object, you can
modify the smart large object, as follows:

� You can update the smart large object.

� You can alter some storage characteristics of the smart large object.

The following sections describe each of these tasks.

Updating a Smart Large Object
A smart large object has two parts: its LO handle and its data in the sbspace.
You can update either of these parts.

The UPDATE statement can store a new LO handle in a CLOB, BLOB, or
opaque-type column. For the steps to update a column, see “Storing an LO
Handle” on page 6-74.

To update an LO handle

1. Update the column with a new smart large object.

Overwrite the existing LO handle in the column with the LO handle
for the new smart large object.

2. Store an additional reference to an existing smart large object.

Multiple columns can reference the same smart large object on disk.
You can overwrite an existing LO handle in the column with the LO
handle for an existing smart large object. Both columns now refer-
ence the same smart large object.

To update the data of an existing smart large object

1. Use the SELECT statement to obtain the LO handle that identifies the
location of the data.

For more information, see “Selecting the LO Handle” on page 6-81.

2. Open the smart large object to obtain an LO file descriptor.

For more information, see “Opening a Smart Large Object” on
page 6-83.
Using Smart Large Objects 6-87

Altering Storage Characteristics
3. Read data from and write data to the open smart large object.

For more information, see “Reading Data from a Smart Large Object”
on page 6-84 and “Writing Data to a Smart Large Object” on
page 6-72.

4. Close the smart large object.

For more information, see “Freeing a Smart Large Object” on
page 6-85.

Important: To update data of an existing smart large object, you do not need to use
the UPDATE statement to update the CLOB, BLOB, or opaque-type column. The LO
handle in the column does not need to change if you modify only the smart-large-
object data.

Altering Storage Characteristics
After you create a smart large object, you can change some of its storage
characteristics with the mi_lo_alter() function. This function enables you to
alter the following storage characteristics:

� Logging behavior

� Last-access time

� Extent size

All other storage characteristics cannot be changed once the smart large object
is created. For information on the syntax of the mi_lo_alter() function, see
the IBM Informix DataBlade API Function Reference.

You can alter these storage characteristics in either of the following ways:

� Execute the SQL statement, ALTER TABLE.

The PUT clause of ALTER TABLE enables you to modify any storage
characteristics. However, any changes do not affect existing smart
large objects; they only affect smart large objects in rows created after
the ALTER TABLE statement executes. For more information, see the
description of ALTER TABLE in the IBM Informix Guide to SQL: Syntax.

� Call the mi_lo_alter() function.

This function enables you to modify the logging characteristics, last-
access time characteristics, and the extent size.
6-88 IBM Informix DataBlade API Programmer’s Guide

Obtaining Status Information for a Smart Large Object
Obtaining Status Information for a Smart Large
Object
To obtain the status information for an existing smart large object, take the
following steps.

Step Task
Smart-Large-Object
Function

More
Information

1. Obtain a valid LO file descriptor for
the smart large object whose status
information you need.

mi_lo_create(),
mi_lo_copy(),
mi_lo_expand(),
mi_lo_from_file()
mi_lo_open()

page 6-72

2. Initialize an LO-status structure with
the status information for the smart
large object.

mi_lo_stat() page 6-91

3. Use the appropriate LO-status
accessor function to obtain the status
information that you need.

Figure 6-40 on page 6-93 page 6-93

4. Free resources. mi_lo_stat_free() page 6-95
Using Smart Large Objects 6-89

Obtaining a Valid LO File Descriptor
Figure 6-38 shows the first three of these steps that a DataBlade API module
uses to obtain status information for the smart large object data in the
emp_picture column of the employee table (Figure 6-20 on page 6-25).

Obtaining a Valid LO File Descriptor
You can obtain status information for any smart large object for which you
have a valid LO file descriptor. To obtain an LO file descriptor, you can take
any of the following actions:

� Select an existing smart large object from a column in a database and
open it

For more information, see “Accessing a Smart Large Object” on
page 6-80.

� Create a new smart large object

For more information, see “Creating a Smart Large Object” on
page 6-43.

Figure 6-38
Obtaining Status Information

BLOB
column:
emp_picture

DAPI

DataBlade routine ServerA

IDS 9.x

Sbspace1_100

Disk 100
Smart-large-object
data: employee image

Smart-
large-object
interface

LO-status structure

status

employee

empno emp_picture
1234
1235

...

LO file descriptors

open
➀

➁

➁

➂

Database A
6-90 IBM Informix DataBlade API Programmer’s Guide

Initializing an LO-Status Structure
� Receive the LO handle as an argument

A DataBlade API module can receive an argument that might pro-
vide the LO handle directly or it might provide an opaque data type
in which the smart large object is embedded.

Initializing an LO-Status Structure
The mi_lo_stat() function performs the following tasks:

1. It obtains either a new or existing LO-status structure.

2. It fills the LO-status structure with all status information for the
smart large object that the specified LO file descriptor identifies.

Important: Do not handle memory allocation for an LO-status structure with system
memory-allocation routines (such as malloc() or mi_alloc()) or by direct decla-
ration. You must use the LO-status constructor, mi_lo_stat(), to allocate a new LO-
status structure.

Obtaining a Valid LO-Status Structure

The mi_lo_stat() function is the constructor for the LO-status structure. The
third argument to the mi_lo_stat() function indicates whether to create a
new LO-status structure:

� When you pass a NULL-valued pointer, the mi_lo_stat() function
allocates a new LO-status structure.

This LO-status structure has the current memory duration. ♦
� When you pass a pointer that does not point to NULL, the

mi_lo_stat() function assumes that the pointer references an existing
LO-status structure that a previous call to mi_lo_stat() has allocated.

An LO-status pointer that does not point to NULL allows a DataBlade
API module to reuse an LO-status structure.

Server
Using Smart Large Objects 6-91

Initializing an LO-Status Structure
For example, the code fragment in Figure 6-39 uses the mi_lo_stat() function
to allocate memory for the LO-status structure only when the first_time flag
is true.

Filling the LO-Status Structure

Once mi_lo_stat() has a pointer to a valid LO-status structure, it fills this
structure with the status information for the open smart large object. You
pass an LO file descriptor of the open smart large object as an argument to the
mi_lo_stat() function.

After the execution of mi_lo_stat() in Figure 6-39, the LO_stat variable points
to an allocated LO-status structure that contains status information for the
smart large object that the LO file descriptor, LO_fd, identifies.

Important: Before you use an LO-status structure, make sure that you either call
mi_lo_stat() with the LO-status pointer set to NULL or initialize this pointer with
a previous call to mi_lo_stat().

For more information, see Figure 6-40. For the syntax of the mi_lo_stat()
function, see the IBM Informix DataBlade API Function Reference.

MI_CONNECTION *conn;
MI_LO_HANDLE *LO_hdl;
MI_LO_STAT *LO_stat;
MI_LO_FD LO_fd;
mi_integer first_time;
...
LO_fd = mi_lo_open(conn, LO_hdl, MI_LO_RDONLY);
if (first_time)

{
...
LO_stat = NULL; /* tell interface to allocate memory */
first_time = 0; /* set "first_time" flag to false */
...
}

err = mi_lo_stat(conn, LO_fd, &LO_stat);

Figure 6-39
Sample

mi_lo_stat() Call
6-92 IBM Informix DataBlade API Programmer’s Guide

Obtaining Status Information
Obtaining Status Information
Once you have a valid LO-status structure, you can use the accessor functions
to obtain the status information from this structure. Figure 6-40 shows the
status information that an LO-status structure contains and the corre-
sponding LO-status accessor functions.

Figure 6-40
Status Information in the LO-Status Structure

Important: The LO-status structure, MI_LO_STAT, is an opaque structure to
DataBlade API modules. Do not access its internal structure directly. The internal
structure of MI_LO_STAT may change in future releases. Therefore, to create portable
code, always use the LO-status accessor functions for this structure.

Status Information LO-Status Accessor Function

Last-access time

This value is available only if the last-access time
attribute
(MI_LO_ATTR_KEEP_LASTACCESS_TIME) is set
for this smart large object.

mi_lo_stat_atime()

Storage characteristics

These characteristics are stored in an
LO-specification structure. Use the LO-specifi-
cation accessor functions (see “Defining User-
Specified Storage Characteristics” on page 6-59) to
obtain information from this structure.

mi_lo_stat_cspec()

Last-change time mi_lo_stat_ctime()

Last-modification time mi_lo_stat_mtime_sec(),
mi_lo_stat_mtime_usec()

Reference count mi_lo_stat_refcnt()

Size mi_lo_stat_size()
Using Smart Large Objects 6-93

Obtaining Status Information
The following code fragment obtains the reference count from an LO-status
structure that the LO_stat variable references:

MI_CONNECTION *conn;
MI_LO_HANDLE *LO_hdl;
MI_LO_FD LO_fd;
MI_LO_STAT *LO_stat = NULL; /* DataBlade API allocates */
mi_integer ref_count, err;
...
/* Open the selected large object */
LO_fd = mi_lo_open(conn, LO_hdl, MI_LO_RDONLY);
if (LO_fd == MI_ERROR)

/* handle error */

/* Allocate LO-specification structure and get status
* information for the opened smart large object
*/

if (mi_lo_stat(conn, LO_fd, &LO_stat) != MI_OK)
/* handle error */

else
{
/* get reference count for this smart large object */
ref_count = mi_lo_stat_refcnt(LO_stat);

/* free the LO-status structure */
err = mi_lo_stat_free(LO_stat);
}

The mi_lo_open() function opens the smart large object that the LO handle,
LO_hdl, identifies. The mi_lo_stat() function then obtains the status infor-
mation for this open smart large object. The mi_lo_stat() function performs
the following tasks:

1. Allocates a new LO-status structure because the value of *LO_stat is
NULL

The mi_lo_stat() function assigns a pointer to this new LO-status
structure to the LO_stat variable.

2. Initializes the LO_stat structure with the status information for the
open smart large object that the LO file descriptor, LO_fd, identifies

Once the LO-status structure contains the status information, the
mi_lo_stat_refcnt() accessor function obtains the reference count from the
LO-status structure and returns it into the ref_count variable. When the code
no longer needs the LO-status structure, it frees this structure with the
mi_lo_stat_free() function.
6-94 IBM Informix DataBlade API Programmer’s Guide

Freeing an LO-Status Structure
Freeing an LO-Status Structure
The mi_lo_stat() function allocates an LO-status structure in the current
memory duration. Therefore, if the current memory duration is the default
duration of PER_ROUTINE, an LO-status structure has a memory duration of
PER_ROUTINE and the database server automatically frees it when the UDR
completes. ♦

To explicitly free the resources assigned to an LO-status structure, use the
mi_lo_stat_free() function. The mi_lo_stat_free() function is the destructor
function for an LO-status structure. When the resources are freed, they can be
reallocated to other structures that your program needs.

Deleting a Smart Large Object
The following table shows the methods that can cause a smart large object to
be marked for deletion.

Alternatively, you can mark an LO handle as invalid with the
mi_lo_invalidate() function to indicate that it no longer identifies a valid
smart large object.

Location of Smart
Large Object Task for Deletion Method for Deletion

For a CLOB or
BLOB column

Remove the LO handle as
data for the column

The DELETE statement

For an opaque-type
column (for an
opaque type that
contains a smart
large object)

Remove the LO handle
from the internal
structure of the opaque
data type and store this
revised internal structure
as data for the column

The destroy() support function

Transient smart
large object

Remove the LO handle Wait for the end of the session.

The mi_lo_delete_immediate()
function

Server
Using Smart Large Objects 6-95

Managing the Reference Count
When you delete an LO handle, the database server decrements the reference
count of the smart large object that the LO handle references by one. The
database server cannot delete a smart large object until it meets the following
conditions:

� A reference count of zero

To decrement the reference count of a smart large object, you delete
an LO handle that references that smart large object. For more infor-
mation, see “Managing the Reference Count” on page 6-96.

� No open LO file descriptors

When the smart large object is closed, its LO file descriptor is freed.
For more information, see “Freeing an LO Handle” on page 6-75.

Managing the Reference Count
The reference count of a smart large object is the number of LO handles that
refer to the smart large object in its sbspace. Each LO handle contains the
location of the smart large object in an sbspace. The reference count is stored
with the smart-large-object data in an sbspace. (For more information on
sbspaces, see your Administrator’s Guide.) You can obtain the reference count
with the mi_lo_stat_refcnt() function.

A smart large object remains allocated as long as its reference count is greater
than zero (0). A reference count greater than zero indicates that at least one
column contains an LO handle that references the smart large object. In this
sense, the smart large object is permanent. The management that the database
server performs on a reference count depends on the associated smart large
object:

� A smart large object whose LO handle is stored in a CLOB or BLOB
column

� A smart large object whose LO handle is stored in an opaque data
type

� A transient smart large object
6-96 IBM Informix DataBlade API Programmer’s Guide

Managing the Reference Count
Reference Counts for CLOB and BLOB Columns

For smart-large-object columns (CLOB and BLOB), the database server
automatically manages the reference count, as follows:

� When you store an LO handle into a CLOB or BLOB column, the
smart-large-object optimizer increments by one (1) the reference
count for the smart large object that the LO handle identifies.

� When you delete an LO handle from a CLOB or BLOB column, the
smart-large-object optimizer decrements by one (1) the reference
count for the smart large object that the LO handle identifies.

At the end of the transaction, the smart-large-object optimizer automatically
deletes all smart large objects stored in CLOB or BLOB columns with reference
counts of zero and no open LO file descriptors.
Using Smart Large Objects 6-97

Managing the Reference Count
Reference Counts for Opaque-Type Columns

The database server does not automatically manage the reference count for an
opaque type that contains a smart large object (including multirepresenta-
tional opaque types). For these opaque-type columns, you must explicitly
manage the reference count in special support functions of the opaque data
type, as follows.

If you increment or decrement the reference count for a smart large object
within a transaction causing it to end up with a value of zero (0), the database
server automatically deletes the smart large object at the end of the trans-
action (as long as it has no open LO file descriptors).

Support Function Reference-Count Task DataBlade API Function

assign() Increment the reference count by
one each time a new LO handle for
the smart large object is saved in
the database.

mi_lo_increfcount()

destroy() Decrement the reference count by
one each time an LO handle that is
stored in the database is removed
from the database.

mi_lo_decrefcount()

lohandles() If the opaque type does not have an lohandles() support
function, you must handle the reference count in the assign()
and destroy() support functions.

If the opaque type has an lohandles() support function, you
do not need to handle the reference count in the assign() and
destroy() support functions. The database server handles the
decrement of the reference count when it executes the
lohandles() support function.
6-98 IBM Informix DataBlade API Programmer’s Guide

Managing the Reference Count
Reference Counts for Transient Smart Large Objects

A transient smart large object is one that you created but have not stored its
LO handle in the database. Transient smart large objects can occur in the
following ways:

� You create a smart large object (with mi_lo_create(), mi_lo_copy(),
mi_lo_expand(), or mi_lo_from_file()) but do not insert its LO
handle into a column of the database.

� You invoke a UDR that creates a smart large object in a query but
never assigns its LO handle to a column of the database.

For example, the following query creates one smart large object for each row
in the table1 table:

SELECT FILETOBLOB(...) FROM table1;

However, the preceding query does not store the LO handles for these smart
large objects in any database column. Therefore, each of these smart large
objects is transient.

Important: A smart large object is “temporary” in the sense that it will automati-
cally be deleted at the end of the session (unless its LO handle is stored in the
database). A transient smart large object is not a smart large object that is stored in
a temporary sbspace.

You only increment the reference count to tell the database server that the LO
handle for the smart large object is going to be stored in the database (and
become a permanent smart large object). Therefore, the reference count of a
transient smart large object is zero. The database server deletes the transient
smart large object at the end of the session.

You can explicitly deallocate the LO handle for a transient smart large object
with the mi_lo_release() function.

You can explicitly delete a transient smart large object with the
mi_lo_delete_immediate() function.
Using Smart Large Objects 6-99

Freeing LO File Descriptors
Freeing LO File Descriptors
An LO file descriptor exists until one of the following conditions occurs:

� You explicitly close a smart large object with the mi_lo_close()
function.

When mi_lo_close() closes a smart large object, the associated LO
file descriptor is freed.

� The database server implicitly closes any open smart large objects at
a session boundary (when the current database or connection closes).

The resources that an open smart large object uses get automatically
released at the end of a session. However, LO handles get released
based on their memory duration. For more information on the mem-
ory duration of LO handles, see “Freeing an LO Handle” on
page 6-75.

The effect of closing the LO file descriptors of a smart large object depends on
whether the smart large object is permanent or transient:

� Closing a permanent smart large object

When you close all its LO file descriptors, a permanent smart large
object (one that is referenced by at least one column) remains allo-
cated. The database server does not delete the data until the reference
count is zero.

� Closing a transient smart large object

However, when you close the last LO file descriptor for a transient
smart large object, the database server marks the smart large object
for deletion because both deallocation conditions are true:

❑ The reference count of the transient smart large object is zero (0).

The reference count of any transient smart large object is zero
because it has no LO handles stored in the database. For more
information, see “Managing the Reference Count” on page 6-96.

❑ No LO file descriptors exist for the transient smart large object.

Once you close the last open LO file descriptor (explicitly or
implicitly), no more references to this smart large object exist,
and the data is not kept.
6-100 IBM Informix DataBlade API Programmer’s Guide

Converting a Smart Large Object to a File or Buffer
Converting a Smart Large Object to a File or Buffer
The DataBlade API provides support for the conversion of a smart large
object to or from either of the following structures:

� Operating-system file

� User-defined buffer

Using Operating-System Files
The DataBlade API supports the following types of functions for conversion
between operating-system files and smart large objects.

The file functions have a set of file-mode constants that are distinct from the
open modes of smart large objects, as the table in Figure 6-41 shows.

Figure 6-41
File Modes for Operating-System Files

DataBlade API
Function Description

mi_lo_from_file(),
mi_lo_from_file_by_lofd()

Copies data in an operating-system file to a smart
large object

mi_lo_to_file(),
mi_lo_filename()

Copies data in a smart large object to an operating-
system file

File Mode for
Operating-System
Files Purpose

MI_O_EXCL Fail if the file already exists

MI_O_APPEND Append to the end of file

MI_O_TRUNC Truncate to zero if file exists

MI_O_RDWR Read/write mode (default)

(1 of 2)
Using Smart Large Objects 6-101

Using User-Defined Buffers
You can include an environment variable in the filename path for the
mi_lo_to_file(), mi_lo_from_file(), and mi_lo_from_file_by_lofd()
functions. This environment variable must be set in the server environment;
that is, it must be set before the database server starts.

Using User-Defined Buffers
The DataBlade API supports the following functions for conversion between
user-defined buffers and smart large objects.

MI_O_RDONLY Read-only mode (copying from operating-system files only)

MI_O_WRONLY Write-only mode (copying to operating-system files only)

MI_O_TEXT Text mode (default off)

MI_O_CLIENT_FILE Indication that file is on client computer (default)

MI_O_SERVER_FILE Indication that file is on server computer

DataBlade API Function Description

mi_lo_from_buffer() Copies data in a user-defined buffer to a smart large object

mi_lo_to_buffer() Copies data in a smart large object to a user-defined buffer

File Mode for
Operating-System
Files Purpose

(2 of 2)
6-102 IBM Informix DataBlade API Programmer’s Guide

Converting an LO Handle Between Binary and Text
Converting an LO Handle Between Binary and Text
The DataBlade API library provides functions that convert between the
binary (internal) representation of an LO handle and its text (string)
representation.

Binary and Text Representations of an LO Handle
The MI_LO_HANDLE data type (for an LO handle) is an opaque C data
structure with a length of MI_LO_SIZE. The binary representation of the LO
handle is a flat array of MI_LO_SIZE bytes. You can perform the following
actions on the binary representation of an LO handle:

� Store it in a C variable of type MI_LO_HANDLE.

� Pass it to a UDR.

� Bind it an MI_LO_HANDLE variable to hold a smart large object
retrieved by a query whose control mode is binary representation
(for example, in mi_exec()).

� Store it in a CLOB or BLOB column of the database.

� Send it as part of the internal (binary) representation of an opaque
type.

The text representation of an LO handle is the text hexadecimal dump of the
flat binary array. To represent the hexadecimal format, each binary byte
requires two bytes of characters. You can perform the following actions on
the text representation of an LO handle:

� Store it in a C character string or array.

� Bind it to a character-pointer variable to hold a smart large object
retrieved by a query whose control mode is text representation (for
example, in mi_exec()).

� Store it in a CHAR (or other character-based) column in a database.
Using Smart Large Objects 6-103

DataBlade API Functions for LO-Handle Conversion
DataBlade API Functions for LO-Handle Conversion
The DataBlade API provides the following functions for conversion between
binary and text representations of an LO handle.

The mi_lo_to_string() and mi_lo_from_string() functions are useful in the
input and output support function of an opaque data type that contains
smart large objects. These functions enable you to convert CLOB and BLOB
values (LO handles) between their external format (text) and their internal
format (binary) when you transfer them to and from client applications. For
more information, see “Conversion of Opaque-Type Data Between Text and
Binary Representations” on page 15-26. ♦

Transferring an LO Handle Between Computers
For an LO handle to be portable when transferred across different computer
architectures, the DataBlade API provides the following functions to handle
type alignment and byte order.

DataBlade API Function Converts from Converts to

mi_lo_to_string() LO handle
(MI_LO_HANDLE)

Text representation of LO
handle

mi_lo_from_string() Text representation of LO
handle

LO handle
(MI_LO_HANDLE)

DataBlade API Function Description

mi_get_lo_handle() Copies an aligned LO handle, converting any difference in
alignment or byte order on the client computer to that of
the server computer

mi_put_lo_handle() Copies an aligned LO handle, converting any difference in
alignment or byte order on the server computer to that of
the client computer

Server

Server
6-104 IBM Informix DataBlade API Programmer’s Guide

Using Byte-Range Locking
The mi_get_lo_handle() and mi_put_lo_handle() functions are useful in
the send and receive support function of an opaque data type that contains a
smart large object. They enable you to ensure that BLOB or CLOB values (LO
handles) remained aligned when transferred to and from client applications.
For more information, see “Conversion of Opaque-Type Data with
Computer-Specific Data Types” on page 15-34.

Using Byte-Range Locking
By default, the database server uses whole lock-all locks when it needs to lock
a smart large object. Lock-all locks are an “all or nothing” lock; that is, they
lock the entire smart large object. When the database server obtains an
exclusive lock, no other user can access the data of the smart large object as
long as the lock is held. (For more information on the default locking, see
“Locking Modes” on page 6-20.)

If this locking is too restrictive for the concurrency requirements of your
application, you can use byte-range locking instead of lock-all locking. With
byte-range locking, you can specify the range of bytes to lock in the smart-
large-object data. If other users access other portions of the data, they can still
acquire their own byte-range lock.

To use byte-range locking

1. Enable the byte-range locking feature on the smart large object you
need to lock.

You can specify the byte-range locking feature either when you cre-
ate the smart large object or when you open it, as follows:

� At the time of smart-large-object creation

You can specify the LO_LOCKRANGE lock-mode constant as a
default open flag for the new smart large object.

� When you open the smart large object

You can specify the LO_LOCKRANGE lock-mode constant in the
open-mode argument of mi_lo_open().
Using Smart Large Objects 6-105

Passing a NULL Connection
2. Handle the lock requests for the byte-range locks with the appro-
priate function of the smart-large-object interface.

The smart-large-object interface provides the following functions for
handle lock requests of byte-range locks.

With the mi_lo_lock() function, you can specify the following information
for the lock request of the byte-range lock:

� The location in the smart-large-object data at which to begin the byte-
range lock

� The number of bytes to lock

� The type of lock to obtain: shared or exclusive lock

Passing a NULL Connection
Many functions in the smart-large-object interface take a connection
descriptor as a parameter. However, many of the functions also accept a
NULL-valued pointer as a connection descriptor. Use of a NULL-valued
connection descriptor has the following performance impact:

� The smart-large-object functions do not need to check the validity of
a connection descriptor.

� The calling code is not required to open and close a connection.

Byte-Range Locking
Function Description

mi_lo_lock() Obtains a byte-range lock on the specified
number of bytes in a smart large object

mi_lo_unlock() Releases a byte-range lock on a smart large object

Server
6-106 IBM Informix DataBlade API Programmer’s Guide

Passing a NULL Connection
To improve performance, you can pass a NULL-valued pointer as a connec-
tion descriptor to any of the following functions of the smart-large-object
interface:

The following code fragment passes a valid connection descriptor to the
mi_lo_alter() function:

conn = mi_open(NULL, NULL, NULL);
if (mi_lo_alter(conn, LO_ptr, LO_spec) == MI_ERROR)

/* Code execution does not reach here when a database server
* exception occurs.
*/
return MI_ERROR;

mi_close(conn);

When you specify a NULL-valued pointer as a connection descriptor, you can
omit the calls to mi_open() and mi_close(), as the following code fragment
shows:

if (mi_lo_alter(NULL, LO_ptr, LO_spec) == MI_ERROR)

/* Code execution does not reach here when a database server
* exception occurs.
*/
return MI_ERROR;

mi_lo_alter()
mi_lo_close()
mi_lo_colinfo_by_ids()
mi_lo_colinfo_by_name()
mi_lo_copy()
mi_lo_create()
mi_lo_decrefcount()
mi_lo_delete_immediate()
mi_lo_expand()
mi_lo_filename()
mi_lo_from_buffer()
mi_lo_from_file()
mi_lo_from_file_by_lofd()
mi_lo_increfcount()
mi_lo_invalidate()
mi_lo_lock()
mi_lo_lolist_create()
mi_lo_open()

mi_lo_spec_init()
mi_lo_stat()
mi_lo_stat_free()
mi_lo_tell()
mi_lo_to_buffer()
mi_lo_to_file()
mi_lo_truncate()
mi_lo_unlock()
mi_lo_utimes()
mi_lo_validate()
mi_lo_write()
mi_lo_writewithseek()
mi_lo_ptr_cmp()
mi_lo_read()
mi_lo_readwithseek()
mi_lo_release()
mi_lo_seek()
mi_lo_spec_free()
Using Smart Large Objects 6-107

n
III
Database Access
Se
ct

io
Chapter 7 Handling Connections

Chapter 8 Executing SQL Statements

Chapter 9 Executing User-Defined Routines

Chapter 10 Handling Exceptions and Events

7
Chapter
Handling Connections
In This Chapter . 7-3

Understanding Session Management 7-4
Client Connection 7-5
UDR Connection 7-6
Connection Descriptor 7-6

Initializing a Client Connection 7-8
Using Connection Parameters 7-8

Establishing Default Connection Parameters 7-10
Obtaining Current Connection Parameters 7-12

Using Database Parameters 7-12
Establishing Default Database Parameters 7-13
Obtaining Current Database Parameters 7-15

Using Session Parameters 7-16
Using System-Default Session Parameters 7-17
Using User-Defined Session Parameters 7-17

Setting Connection Parameters for a Client Connection 7-18

Establishing a Connection 7-20
Establishing a UDR Connection 7-21

Obtaining a Connection Descriptor 7-21
Obtaining a Session-Duration Connection Descriptor 7-23

Establishing a Client Connection 7-25
Connections with mi_open(). 7-25
Connections with mi_server_connect() 7-27

Associating User Data with a Connection 7-28

Initializing the DataBlade API 7-29

Closing a Connection 7-31

7-2 IBM
 Informix DataBlade API Programmer’s Guide

In This Chapter
When a DataBlade API module begins execution, it has no communication
with a database server; however, for SQL statements to execute, such commu-
nication must exist. To establish this communication, a DataBlade API
module must take the following steps:

1. Initialize a connection to the database server and, optionally, a
database. ♦

2. Establish the connection and initialize the DataBlade API.

To end the communication, the DataBlade API module must close the
connection.

This chapter describes how to initialize, establish, and close connections.

Client
Handling Connections 7-3

Understanding Session Management
Understanding Session Management
Session management is the handling of a connection to a database server and
the associated session within a DataBlade API module. A session is the period
of time that elapses between when a client application establishes a
connection and when this connection is closed.

A connection is the mechanism over which a DataBlade API module commu-
nicates with the database server and, optionally, a database that this database
server manages. The term connection has different meanings depending on
whether it refers to a connection within a client LIBMI application or a C user-
defined routine (UDR), as follows:

� A client connection is established by a client application to a particular
database server and database.

� A UDR connection is established by a C UDR to obtain information
about the current session.
7-4 IBM Informix DataBlade API Programmer’s Guide

Client Connection
Client Connection
For a client application, a connection is the mechanism that the application
uses to request a synchronization with the database server for the purpose of
exchanging data. A client application (such as an ESQL/C or client LIBMI
application) takes the following steps to request a connection:

1. Initializes the connection

A client LIBMI application can set connection, database, and session
parameters to determine attributes of the connection.

For more information, see “Initializing a Client Connection” on
page 7-8.

2. Establishes the connection

An IBM Informix ESQL/C client application uses SQL statements
(such as CONNECT or DATABASE) to establish a connection. A client
LIBMI application uses the DataBlade API to establish a connection in
either of the following ways:

� Uses the mi_open() function

� Uses the mi_server_connect() function

For more information, see “Establishing a Client Connection” on
page 7-25.

When a client application connects to the database server, the database server
performs the following tasks:

� Creates a session structure, called a session control block, to hold infor-
mation about the connection and the user

� Creates a thread structure, called a thread-control block (TCB), to hold
information about the current state of the thread

� Determines the server-processing locale, the locale to use for SQL
statements during the session

� Initializes a primary thread, called the session thread (or sqlexec
thread), to handle client-application requests

When the client application successfully establishes a connection, it begins a
session. Only a client application can begin a session. The session context
consists of data structures and state information that are associated with a
specific session, such as cursors, save sets, and user data.

Client
Handling Connections 7-5

UDR Connection
UDR Connection
A C UDR cannot establish a connection to the database server. It must run
within an existing session, which a client application begins when it estab-
lishes a client connection. To obtain access to an existing session, a UDR
establishes a UDR connection. A UDR uses the mi_open() function (with
NULL-valued pointers for all arguments) to establish a UDR connection. A
UDR can have one or more UDR connections to the session.

Because a C UDR cannot establish a connection, it never begins a session.
Instead, it inherits the context of an existing session from the SQL statement
that invokes the UDR. This SQL statement executes within a session that the
client application has begun. Therefore, the UDR is already connected to a
particular database server and has access to a database that has already been
opened. The UDR is also inside the current transaction.

A UDR connection provides access to the session context. This session context
persists across all invocations of a UDR instance because a UDR connection
has the duration of an SQL command. That is, the mi_open() function and its
corresponding mi_close() function do not necessarily have to be called from
within the same invocation of the UDR but they do have to be called within
the same instance. For more information, see “Establishing a UDR
Connection” on page 7-21.

Connection Descriptor
A DataBlade API module (C UDR or client LIBMI application) obtains access
to the session context through a connection descriptor, MI_CONNECTION. This
descriptor is an opaque C data structure that points to the threadsafe context-
sensitive portion of the session information. The session context includes the
information in Figure 7-1.

Server
7-6 IBM Informix DataBlade API Programmer’s Guide

Connection Descriptor
Figure 7-1
Session-Context Information in a Connection Descriptor

You obtain a connection descriptor when you establish a connection in the
DataBlade API module. For more information, see “Establishing a
Connection” on page 7-20.

Connection Information More Information

Save sets “Using Save Sets” on page 8-95

Statement descriptors:

� For SQL statement, last executed
with mi_exec()

� For prepared statements

“Executing Basic SQL Statements” on
page 8-10

“Executing Prepared SQL Statements” on
page 8-18

Cursors (implicit and explicit) “Queries and Implicit Cursors” on page 8-8
and “Defining an Explicit Cursor” on
page 8-35

Resources for the current row of the
current statement:

� Row descriptor

� Row structure

“Retrieving Query Data” on page 8-64

Function descriptors “Obtaining a Function Descriptor” on
page 9-26

Callbacks registered for the
connection

“Registering a Callback” on page 10-7

User data “Associating User Data with a Connection”
on page 7-28

The integer byte order of the client
computer

“Conversion of Opaque-Type Data with
Computer-Specific Data Types” on
page 15-34
Handling Connections 7-7

Initializing a Client Connection
Initializing a Client Connection
Before a client LIBMI application can establish a connection, it must initialize
the connection with the name of the database server and database to which it
needs to connect. This initialization occurs in the following steps.

Using Connection Parameters
To indicate which database server the client LIBMI application needs to
connect to, the application uses connection parameters. The DataBlade API
provides a connection-information descriptor, MI_CONNECTION_INFO, to
access connection parameters. This data type structure is similar in concept
to a file descriptor in UNIX. It identifies the database server for a particular
session.

Unlike most DataBlade API structures, the connection-information descriptor
is not an opaque C data structure. To access connection parameters, you must
allocate a connection-information descriptor and directly access its fields.
Figure 7-2 shows the fields in the connection-information descriptor.

Connection-Initialization Steps DataBlade API Task

1. Indicate the database server to which
you want to connect.

Set connection parameters in the
connection-information descriptor.

2. Indicate the database to which you want
to connect and the user you want to log
in as.

Set database parameters in the
database-information descriptor.

3. Indicate settings for session-specific
features (optional).

Set session parameters in the
parameter-information descriptor.

Client
7-8 IBM Informix DataBlade API Programmer’s Guide

Using Connection Parameters
Figure 7-2
Fields in the Connection-Information Descriptor

The milib.h header file defines the MI_CONNECTION_INFO structure.

With the connection-information descriptor, you can use the following
DataBlade API functions to perform the connection-parameter tasks.

Field Data Type Description

server_name char * The name of the default database server

This field corresponds to the value of the
INFORMIXSERVER environment variable.

server_port mi_integer This value is ignored. It must always be set to zero (0).

A client LIBMI application does not need to specify the
server port. It only needs to specify a database server
by its name (the server_name field).

locale char * In a C UDR: The name of the server locale

This field corresponds to the SERVER_LOCALE
environment variable (as set on the computer with the
database server).

In a client LIBMI application: the name of the database
locale

This field corresponds to the DB_LOCALE
environment variable (as set on the computer with the
client LIBMI application).

reserved1 mi_integer Unused

reserved2 mi_integer Unused

Connection-Parameter Task DataBlade API Function

Access the default connection parameters to
determine the database server for the
connection

mi_set_default_connection_info(),
mi_get_default_connection_info()

Obtain current connection parameters for
an open connection

mi_get_connection_info()
Handling Connections 7-9

Using Connection Parameters
Establishing Default Connection Parameters

The default connection parameters identify to which database server to
connect. Before you establish a connection, determine which of the following
connection parameters to use:

� The system-default connection parameters

� Default connection parameters that you specify

System-Default Connection Parameters

The database server obtains values for the system-default connection param-
eters from the execution environment of the client LIBMI application. When
you use system-default connection parameters, you enable your application
to be portable across client/server environments. However, before the appli-
cation begins execution, you must ensure that the client/server environment
is correctly initialized.

Figure 7-3 shows the system-default connection parameters that the database
server uses to establish a connection.

Figure 7-3
System-Default Connection Parameters

The system-default connection parameters provide connection information
for all connections made within a client LIBMI application unless you
explicitly override them within the application.

To use the default database server, initialize the server_name field to a NULL-
valued pointer and server_port to 0.

System-Default Connection Parameter System-Default Connection Value

Database server name INFORMIXSERVER environment variable

(Server) Server locale SERVER_LOCALE environment variable or
default locale (en_us)

(Client) Database locale DB_LOCALE environment variable or
default locale (en_us)
7-10 IBM Informix DataBlade API Programmer’s Guide

Using Connection Parameters
User-Defined Connection Parameters

The database server obtains values for the connection parameters from the
connection-information descriptor. The database server initializes the
connection-information descriptor with the system-default connection
parameters in Figure 7-7 on page 7-17. You can initialize your own
connection-information descriptor to override the system-default connection
parameters. When you override system-default connection parameters, you
enable your application to have connection information that is independent
of the client/server environment in which it runs.

To override the system-default connection parameters

1. Allocate a connection-information descriptor.

2. Fill the fields of the connection-information descriptor with the
default connection parameters you need.

To change the database server, specify a value for server_name. Any
non-zero value for the server_port field is ignored. If you do not set
a particular field, the database server uses the system-default value
in Figure 7-3 on page 7-10 for the associated connection parameter.

3. Pass a pointer to this connection-information descriptor to the
mi_set_default_connection_info() function.

The user-defined connection parameters provide connection information for
all connections made within a client LIBMI application after these functions
execute (unless the functions are called again to set new default values).

You can obtain existing default connection parameters with the
mi_get_default_connection_info() function. This function populates a user-
defined connection-information descriptor with the current default
connection parameters.

In a C UDR, mi_get_default_connection_info() obtains the same infor-
mation as mi_get_connection_info(). The
mi_set_default_connection_info() function is ignored when it is used in a
UDR. ♦

Server
Handling Connections 7-11

Using Database Parameters
Obtaining Current Connection Parameters

To obtain connection parameters associated with an open connection, use the
mi_get_connection_info() function. This function populates a user-defined
connection-information descriptor with values from the specified open
connection.

The mi_get_connection_info() function is valid when it is used in a C UDR.
For more information, see “Accessing the Session Environment” on
page 12-91. ♦

Using Database Parameters
To indicate which database it needs to connect to, the client LIBMI application
uses database parameters. The DataBlade API provides a database-information
descriptor, MI_DATABASE_INFO, to access database parameters. This data
type structure identifies the database for a particular session.

Unlike most DataBlade API structures, the database-information descriptor is
not an opaque C data structure. To access database information, you must
allocate a database-information descriptor and directly access its fields.
Figure 7-4 shows the fields in the database-information descriptor.

Figure 7-4
Fields in the Database-Information Descriptor

The milib.h header file defines the MI_DATABASE_INFO structure.

Field Data Type Description

database_name char * The name of the database

user_name char * The user account name, as defined by the operating
system

password char * The account password, as defined by the operating
system

Server
7-12 IBM Informix DataBlade API Programmer’s Guide

Using Database Parameters
With the database-information descriptor, you can use the following
DataBlade API functions to perform the database-parameter tasks.

Establishing Default Database Parameters

The default database parameters identify the database and user for the
connection. Before you establish a connection, you can determine which of
the following database parameters to use:

� The system-default database parameters

� Default database parameters that you specify

System-Default Database Parameters

The database server obtains values for the system-default database param-
eters from the execution environment of the client LIBMI application. When
you use system-default database parameters, you enable your application to
be portable across client/server environments. However, you must ensure
that the client/server environment is correctly initialized to provide the
system-default values.

Database-Parameter Task DataBlade API Function

Access the default database parameters to
determine the database and user for the
connection

mi_set_default_database_info(),
mi_get_default_database_info()

Obtain current database parameters for an
open connection

mi_get_database_info()
Handling Connections 7-13

Using Database Parameters
Figure 7-5 shows the system-default database parameters that the database
server uses to open a database.

Figure 7-5
System-Default Database Parameters

The system-default database parameters provide database information for all
connections made within a client LIBMI application unless you explicitly
override them within the application.

User-Defined Database Parameters

The database server obtains values for the database parameters from the
database-information descriptor. The database server initializes the
database-information descriptor with the system-default database param-
eters in Figure 7-5. You can initialize your own database-information
descriptor to override the default database parameters. When you override
system-default database parameters, you enable your application to have
database information that is independent of the client/server environment in
which it runs.

To override the system-default database parameters

1. Allocate a database-information descriptor.

2. Fill the fields of the database-information descriptor with the default
database parameters you need.

If you do not set a particular field, the database server uses the sys-
tem-default value in Figure 7-5 for the associated database
parameter.

3. Pass a pointer to this database-information descriptor to the
mi_set_default_database_info() function.

System-Default Database Parameter System-Default Value

Database name None

User-account name Account name of user that invoked the client
LIBMI application

Account password Account password of user that invoked the
client LIBMI application
7-14 IBM Informix DataBlade API Programmer’s Guide

Using Database Parameters
The user-defined database parameters provide database information for all
connections made within a client LIBMI application after these functions
execute (unless the functions are called again to set new default values).

You can obtain existing default database parameters with the
mi_get_default_database_info() function. This function populates a user-
defined database-information descriptor with the current default database
parameters.

In a C UDR, mi_get_default_database_info() obtains the same information
as mi_get_database_info(). The mi_set_default_database_info() function
is ignored. ♦

Obtaining Current Database Parameters

To obtain database parameters associated with an open connection, use the
mi_get_database_info() function. This function populates a user-defined
database-information descriptor with values from the specified open
connection.

The mi_get_database_info() function is valid with a C UDR. ♦

Server

Server
Handling Connections 7-15

Using Session Parameters
Using Session Parameters
The parameter-information descriptor, MI_PARAMETER_INFO, allows you to set
the following session parameters for the client LIBMI application:

� Disables invocation of callbacks

� Enables checking of pointers

Unlike most DataBlade API structures, the parameter-information descriptor
is not an opaque C data structure. To access session-parameter information,
you must directly access the fields of a parameter-information descriptor that
you allocate. Figure 7-6 shows the fields in the MI_PARAMETER_INFO
structure.

Figure 7-6
Fields in the Parameter-Information Descriptor

The milib.h header file defines the MI_PARAMETER_INFO structure.

Before you establish a connection, you can determine which of the following
session parameters to use:

� The system-default session parameters

� Default session parameters that you specify

Field Data Type Description

callbacks_enabled mi_integer Indicates whether callbacks are enabled:

� A value of 1 indicates that callbacks are
enabled.

� A value of 0 indicates that callbacks are
disabled.

pointer_checks_enabled mi_integer Indicates whether pointers (such as
MI_ROW pointers) that the client LIBMI
application passes to the database server
are checked to ensure that they are within
the heap space of the process:

� A value of 1 indicates that pointers are
checked.

� A value of 0 indicates that pointers are
not checked.
7-16 IBM Informix DataBlade API Programmer’s Guide

Using Session Parameters
Using System-Default Session Parameters

When the database server establishes a connection, it uses the values in
Figure 7-7 as the system-default session parameters.

Figure 7-7
System-Default Session Parameters

The system-default session parameters provide session-parameter infor-
mation for all connections made within a client LIBMI application unless you
explicitly override them within the application.

Using User-Defined Session Parameters

The database server obtains values for the session parameters from the
parameter-information descriptor. The database server initializes the
parameter-information descriptor with the system-default session param-
eters in page 7-17. To override these system-default values, you can initialize
your own parameter-information descriptor to set session parameters.

The following DataBlade API functions access default session parameters for
a client LIBMI application.

System-Default Session Parameter System-Default Value

Callbacks Enabled? Yes

Pointers Checked? Yes

DataBlade API Function Purpose

mi_set_parameter_info() Sets session parameters for the current session

mi_get_parameter_info() Obtains session parameters for the current session
Handling Connections 7-17

Setting Connection Parameters for a Client Connection
To override the system-default session parameters

1. Allocate a parameter-information descriptor.

2. Fill the fields of the parameter-information descriptor with the
default session parameters you need.

If you do not set a particular field, the database server uses the sys-
tem-default value in Figure 7-7 on page 7-17 for the associated
session parameter.

3. Pass a pointer to this parameter-information descriptor to the
mi_set_parameter_info() function.

You can examine existing session parameters with the
mi_get_parameter_info() function. This function populates a user-defined
parameter-information descriptor with the current session parameters.

Setting Connection Parameters for a Client Connection
The following example shows one way to set default connection parameters.
Assume that the system-default connection parameters are as follows.

System-Default Parameter Parameter Value

Default database server joe

(INFORMIXSERVER environment variable is set to joe.)

Default user tester

Default user password No password

Callbacks enabled? Yes (system default)

Pointers checked? Yes (system default)
7-18 IBM Informix DataBlade API Programmer’s Guide

Setting Connection Parameters for a Client Connection
The following code fragment uses DataBlade API functions to change the
following default system values.

extern void MI_PROC_CALLBACK all_callback();
MI_CONNECTION *conn;
MI_CONNECTION_INFO conn_info;
MI_DATABASE_INFO db_info;

/* Initialize DataBlade API */
mi_register_callback(conn, MI_Exception, all_callback,

NULL, NULL);

/* Assign default connection parameter in the
* connection-information descriptor
*/

conn_info.server_name = "beth";
conn_info.server_port = 0;

/* Set default connection parameters for the application */
if (mi_set_default_connection_info(&conn_info) == MI_ERROR)

printf("FAILED: mi_set_default_connection_info()\n");

/* Assign default database parameters in the
* database-information descriptor
*/

db_info.user_name = "miadmin";
db_info.database_name = "template1";
db_info.password = NULL;

/* Set default database parameters for the application */
if (mi_set_default_database_info(&db_info) == MI_ERROR)

printf("FAILED: mi_set_default_database_info()\n");

/* Get default connection and database parameters for
* application
*/

mi_get_default_connection_info(&conn_info);
mi_get_default_database_info(&db_info);

DataBlade API Function Default Parameter Default Value

mi_set_default_connection_info() Database server name beth

Server port = 0 None

mi_set_default_database_info() Database name template1

User-account name miadmin

User-account password No password
Handling Connections 7-19

Establishing a Connection
/* Make sure the right database server is set as the default */
if (strcmp("beth", conn_info.server_name) != 0)

printf("FAILED: got server_name %s, should be beth\n",
conn_info.server_name);

/* Connect to database server 'beth' */
conn = mi_server_connect(&conn_info);
if (conn == NULL)

printf("FAILED: CONNECT to beth\n");
else

{
printf("OK: connected to %s\n", conn_info.server_name);

}

After these new defaults are established, the application calls
mi_server_connect() to request a connection to the beth database server. If
this request is successful, the application opens the template1\. For more
information on mi_server_connect(), see “Connections with
mi_server_connect()” on page 7-27.

Establishing a Connection
The following DataBlade API functions are constructor functions for a
connection descriptor:

� The mi_open() function

� The mi_server_connect() function ♦

These functions establish a connection and return a pointer to a connection
descriptor, which holds information from the session context. You can then
pass this connection descriptor to subsequent DataBlade API functions that
need to access the session context.

The DataBlade API supports the establishment of two kinds of connections:

� UDR connection

� Client connection

Client
7-20 IBM Informix DataBlade API Programmer’s Guide

Establishing a UDR Connection
Establishing a UDR Connection
A UDR connection is the way that a C UDR obtains access to the session
context; that is, to the database server and database that the calling client
application has already established. For a summary of restrictions that the
UDR imposes on a session, see “Session Restrictions” on page 11-10.

A C UDR can establish one of two kinds of connections to a session:

� The public connection descriptor provides the C UDR invocations
within an SQL command with access to the session context.

� The session-duration connection descriptor provides the C UDR
invocations within a session with access to the session context.

Obtaining a Connection Descriptor

A public connection descriptor (usually just called a connection descriptor)
provides a local copy of session information for the use of the UDR. Because
it has a PER_STMT_EXEC memory duration, all UDR invocations in the same
SQL statement can share the session-context information (see Figure 7-1 on
page 7-7). The following table summarizes the memory operations for a
connection descriptor in a C UDR.

Memory Duration Memory Operation Function Name

PER_STMT_EXEC Constructor mi_open()

Destructor mi_close()

Server
Handling Connections 7-21

Establishing a UDR Connection
To establish a UDR connection, pass all three arguments of mi_open() as
NULL-valued pointers. The following code fragment uses mi_open() to
establish a connection for a UDR:

mi_integer func1()
{

MI_CONNECTION *conn;

/* Open a connection from C UDR to database server
* of current session context:
* database = currently open database
* user = operating-system user account which is running
* the SQL statement that called this
* user-defined routine
* password = default specified for this user
*/
conn = mi_open(NULL, NULL, NULL);

/* If connection descriptor is NULL, there was an error
* connecting to the session context.
*/
if (conn == NULL)

{
mi_db_error_raise(conn, MI_EXCEPTION,

"func1: cannot establish connection", NULL);
}

... /* Code for use of this connection goes here */
}

Important: When called within a C UDR, many DataBlade API functions do not use
the connection descriptor. You can pass a NULL-valued pointer as a connection
descriptor to the DataBlade API functions for smart large objects, which have the
mi_lo_ prefix. The “IBM Informix DataBlade API Function Reference” describes
these functions. Exceptions to this rule are listed in the documentation. Instead, pass
in the connection descriptor that the mi_open() function obtains.

The mi_open() call can be expensive in a C UDR. If the UDR instance contains
many invocations, you can obtain the connection descriptor the first time the
UDR is invoked and store it as part of the MI_FPARAM state information, as
Figure 10-12 on page 10-45 shows. For more information, see “Saving a User
State” on page 9-14.

Tip: It is not valid for a UDR to cache a connection descriptor at a memory duration
higher than PER_COMMAND. If you need session-context information with a higher
duration, use a session-duration connection descriptor. For more information, see
“Obtaining a Session-Duration Connection Descriptor” on page 7-23.
7-22 IBM Informix DataBlade API Programmer’s Guide

Establishing a UDR Connection
Obtaining a Session-Duration Connection Descriptor

A session-duration connection descriptor provides a public copy of connection
information, providing access to the actual session information of the client
application. Because this connection descriptor has a PER_SESSION memory
duration, all UDR invocations in the session can share the session-context
information (see Figure 7-1 on page 7-7). (For more information on a session,
see “PER_SESSION Memory Duration” on page 13-25.)

The following table summarizes the memory operations for a session-
duration connection descriptor in a C UDR.

Warning: The advanced mi_get_session_connection() function can adversely
affect your UDR if you use it incorrectly. Use it only when a regular function cannot
perform the task you need done.

The mi_get_session_connection() function is not a true constructor, in the
sense that it does not actually allocate a connection descriptor in a
PER_SESSION duration. Instead, it returns a handle to the actual session
connection, which has a PER_SESSION duration. Therefore, the
mi_get_session_connection() is often faster than mi_open() (which does
allocate a connection descriptor in PER_COMMAND memory).

The minmprot.h header file defines the restricted-access
mi_get_session_connection() function. The minmmem.h header file
automatically includes the minmprot.h header file. However, the mi.h
header file does not automatically includes minmmem.h. To use
mi_get_session_connection(), you must include minmmem.h in any
DataBlade API routine that calls these functions.

Memory Duration Memory Operation Initiator of Operation

PER_SESSION Constructor mi_get_session_connection()

Destructor End of session
Handling Connections 7-23

Establishing a UDR Connection
A session-duration connection descriptor is useful in the following cases:

� As an alternative to frequent calls to mi_open()

The mi_open() function is a relatively expensive call. If you need to
open connections frequently in your UDR,
mi_get_session_connection() is the preferred alternative. With a
session-duration connection descriptor, the database server caches a
connection for you.

� To obtain access to session-duration function descriptors

One of the DataBlade API data type structures that the connection
descriptor holds is a function descriptor. When you pass a Fastpath
look-up function (see Figure 9-11 on page 9-26) a public connection
descriptor, the function descriptor that these functions allocate is
valid until the SQL command completes. If you pass these look-up
functions a session-duration connection descriptor instead of a pub-
lic connection descriptor, you can obtain a session-duration function
descriptor, which is valid until the session ends. In this way, other
UDRs can use Fastpath to execute the same UDR without having to
create and destroy its function descriptor for each execution. For
more information, see “Reusing a Function Descriptor” on page 9-45.

Keep the following restrictions in mind when you decide to use a session-
duration connection:

� Do not use mi_close() to free a session-duration connection
descriptor.

A session-duration connection descriptor has the duration of the ses-
sion. An attempt to free a session-duration connection with
mi_close() generates an error.

� Do not cache a session-duration connection descriptor in the user
state of an MI_FPARAM structure.

You must obtain a session-duration connection descriptor in each
UDR that uses it.

� Do not call mi_get_session_connection() in a parallelizable UDR.

If the UDR must be parallelizable, use mi_open() to obtain a connec-
tion descriptor.
7-24 IBM Informix DataBlade API Programmer’s Guide

Establishing a Client Connection
Establishing a Client Connection
A client LIBMI application can establish a client connection in either of the
following ways:

� The mi_open() function

� The mi_server_connect() function

These DataBlade API functions obtain a connection descriptor for the client
connection. The following table summarizes the memory operations for a
connection descriptor in a client LIBMI application.

Important: When called within a client LIBMI application, DataBlade API functions
always use the connection descriptor. Therefore, never send in a NULL-valued pointer
as a connection descriptor to DataBlade API functions. Instead, pass in the
connection descriptor that the mi_open(), mi_server_connect(), or
mi_server_reconnect() function obtains.

After the client LIBMI application has established a connection, the session
begins.

Connections with mi_open()

The mi_open() function establishes a default connection for the calling
DataBlade API module and returns a connection descriptor. A default
connection is a connection to the default database server (which the
INFORMIXSERVER environment variable specifies) and a specified database.

Memory Duration Memory Operation Function Name

For the duration of the
session

Constructor mi_open(), mi_server_connect()

Destructor mi_close()

Client
Handling Connections 7-25

Establishing a Client Connection
To establish a default connection, the mi_open() function accepts the
following information as arguments.

All of these arguments are passed as pointers to character strings. You can
specify NULL for any of these arguments, in which case mi_open() uses the
specified default values. If the client LIBMI application uses a shared-memory
communication, it can only establish one connection per application.

The following code fragment demonstrates the simplest way for a client
LIBMI application to initiate a connection to the default database server and
to open a database:

/*
* Use mi_open() to connect to the database passed on the
* client application command line. Close the connection with
* mi_close().
*/

#include <mi.h>
#include <stdio.h>

main(mi_integer argc, char *argv[])
{
 MI_CONNECTION *conn;

mi_open()
Argument Purpose

Default Used When
Argument is NULL

Database name The name of the database to
open

None

User account name The name of the login account
for the user who is to open the
database

This account must be valid on
the server computer.

The name of the system-
defined user account

(See Figure 7-5 on page 7-14.)

Account password The password of the login
account for the user who is to
open the database

This account must be valid on
the server computer.

The password of the system-
defined user account

(See Figure 7-5 on page 7-14.)
7-26 IBM Informix DataBlade API Programmer’s Guide

Establishing a Client Connection
/* Check incomming parameters from command line */
if (argc != 2)

{
printf(stderr, "Usage:%s <db name>\n", argv[0]);
exit(2);
}

/* Open a connection from client LIBMI application to
* database server.
* database = parameter on command line
* user = operating-system user account which is
* running this application
* password = default specified for this user
*/
conn = mi_open(argv[1], NULL, NULL);

/* If connection descriptor is NULL, there was an error
* attempting to connect to the database server and database
* specified. Exit application.
*/
if (NULL == conn)

{
fprintf(stderr, "Cannot open database: %s\n",

argv[1]);
exit(3);
}

/* Code for application use of this connection goes here */
...

/* Valid connection has occurred. Close the connection
* and exit the application.
*/
mi_close(conn);
exit(0);

}

In this example, the name of the database to be opened is passed on the
command line. The user_name and the user_password arguments to
mi_open() are both passed as NULL, which indicates that mi_open() uses
the default user and password.

Connections with mi_server_connect()

To exercise more control over which connection to establish, a client LIBMI
application can use mi_server_connect(), which establishes a connection to
a specified database server. The mi_server_connect() function obtains infor-
mation about which database server to connect to from a connection-
information descriptor. This function does not open a database.
Handling Connections 7-27

Associating User Data with a Connection
This DataBlade API function provides greater flexibility for client LIBMI
applications that run against different database servers. You can pass infor-
mation about the connection through descriptors.

Associating User Data with a Connection
The connection descriptor provides information about various data type
structures associated with the current connection. (For a list of this infor-
mation, see Figure 7-1 on page 7-7.) In addition, you can store the address of
private information, called user data, in the connection descriptor. The
connection descriptor can hold this user-data pointer, which points to the
private user-data information.

You allocate the user data with a DataBlade API memory-management
function from the shared memory of the database server. The memory
duration of this user data must correspond with the connection descriptor
that holds the user-data pointer, as the following table shows.

Therefore, your user data is available to all UDRs that can access its
connection descriptor.

Important: A session-duration connection descriptor is a restricted feature that can
adversely affect your UDR if used incorrectly. Use it only when a public connection
descriptor will not support the task you need to perform. For more information, see
“Obtaining a Session-Duration Connection Descriptor” on page 7-23. ♦

Server

Type of Connection Descriptor
Memory Duration
of User Data Which UDRs Can Access User Data

Public connection descriptor
(with mi_open())

MI_COMMAND All UDR invocations in the same SQL
command have access to the connection
descriptor that mi_open() returns.

Session-duration connection descriptor
(with mi_get_session_connection())

MI_SESSION All C UDR invocations in the session have
access to the connection descriptor that
mi_get_session_connection() returns.
7-28 IBM Informix DataBlade API Programmer’s Guide

Initializing the DataBlade API
The user data is allocated in client-side memory. Therefore, your user data is
available to all DataBlade API functions that execute in the session. ♦

Figure 7-8 shows the functions that the DataBlade API provides to access the
user data of a connection descriptor.

Figure 7-8
DataBlade API Accessor Functions for User Data in the Connection Descriptor

The size of the connection user data is the size of a pointer of type “void *”.
The DataBlade API does not interpret or touch the associated user-data
address, other than to store and retrieve it from the connection descriptor.

Initializing the DataBlade API
Before you can use the DataBlade API to communicate with the database
server, you must make sure that it is initialized. When you establish a
connection, the DataBlade API function automatically initializes the
DataBlade API. However, if your DataBlade API module does not establish a
connection, it must still ensure that it initializes the DataBlade API.

Important: If the DataBlade API was not initialized, calls to subsequent DataBlade
API functions generate errors.

DataBlade API
Accessor Function User-State Information

mi_get_connection_user_data() Obtains the user-data pointer from the
connection descriptor

mi_set_connection_user_data() Sets the user-data pointer in the connection
descriptor

Client
Handling Connections 7-29

Initializing the DataBlade API
Figure 7-9 lists the functions that can initialize the DataBlade API.

Figure 7-9
DataBlade API Functions That Initialize the DataBlade API

One of the functions listed in Figure 7-9 must be the first DataBlade API
function called in a DataBlade API session. If you do not call one of these
functions, the DataBlade API is not initialized and all subsequent DataBlade
API calls return error status.

DataBlade API Initialization Function
Valid in Client
LIBMI Application?

Valid in User-Defined
Routine?

mi_client_locale() Yes Yes

mi_get_default_connection_info() Yes Yes

mi_get_default_database_info() Yes Yes

mi_get_next_sysname() Yes No

mi_get_parameter_info() Yes Yes

mi_init_library() Yes No

mi_open() Yes Yes

mi_register_callback() Yes Yes

mi_server_connect() Yes No

mi_set_default_connection_info() Yes Ignored

mi_set_default_database_info() Yes Ignored

mi_set_parameter_info() Yes No

mi_sysname() Yes Yes
7-30 IBM Informix DataBlade API Programmer’s Guide

Closing a Connection
Closing a Connection
To close a connection, free the associated connection descriptor. When the
connection descriptor is freed, the DataBlade API also frees the session-
context resources, including the following:

� Save sets

� Prepared statements (explicit statement descriptors)

� For an SQL statement executed with mi_exec() (also called the
current statement):

❑ The implicit statement descriptor for the current statement

❑ The row structure and associated row descriptor for the current
statement

� Cursors (implicit and explicit)

� Function descriptors

� Callbacks registered for the connection

� Connection user data

To conserve resources, use mi_close() to deallocate the connection descriptor
explicitly once your DataBlade API module no longer needs it. The
mi_close() function is the destructor function for a connection descriptor. It
frees the connection descriptor and any resources that are associated with it.

In a C UDR, a public connection descriptor has a memory duration of
PER_STMT_EXEC. Therefore, a connection descriptor remains active until one
of the following events occurs:

� The mi_close() function closes the specified UDR connection.

� The current SQL statement completes execution.

Server
Handling Connections 7-31

Closing a Connection
When a UDR connection is closed, the UDR can no longer access the
associated connection information (see Figure 7-1 on page 7-7). However, the
session remains open until the client application ends it. Therefore, a UDR can
obtain a new UDR connection with another call to mi_open().

Tip: After a C UDR closes a connection, the UDR can no longer access the connection
resources in Figure 7-1 on page 7-7. Any open smart large objects and operating-
system files, however, remain valid for the duration of the session. You can explicitly
close these descriptors with the mi_lo_close() and mi_file_close() functions,
respectively.

A session-duration connection descriptor has a memory duration of
PER_SESSION. Therefore, it and its associated connection information remain
valid until the end of the session. However, a session-duration connection is
a restricted feature of the DataBlade API. Use it only when a public connection
descriptor will not perform the task you need. For more information, see
“Obtaining a Session-Duration Connection Descriptor” on page 7-23. ♦

In a client LIBMI application, a connection descriptor has a scope of the
session. When the client connection closes, the session ends. Therefore, a
connection descriptor remains active until one of the following events occurs:

� The mi_close() function closes the specified connection, ending the
session.

� The client LIBMI application completes.

Tip: Once a client LIBMI application closes a connection, it can no longer access the
connection information. In addition, any open smart large objects and files are
closed. ♦

Client
7-32 IBM Informix DataBlade API Programmer’s Guide

8
Chapter
Executing SQL Statements
In This Chapter . 8-3

Executing SQL Statements 8-4
Choosing a DataBlade API Function 8-5

Type of Statement 8-6
Prepared Statements and Input Parameters 8-7
Queries and Implicit Cursors. 8-8

Executing Basic SQL Statements 8-10
Assembling a Statement String 8-11
Sending an SQL Statement 8-12

Executing Prepared SQL Statements 8-18
Preparing an SQL Statement 8-19
Obtaining Input-Parameter Information 8-24
Sending the Prepared Statement 8-27
Releasing Prepared-Statement Resources 8-51

Executing Multiple SQL Statements. 8-53

Processing Statement Results 8-54
Executing the mi_get_result() Loop. 8-55

Handling Unsuccessful Statements 8-56
Handling a DDL Statement 8-56
Handling a DML Statement 8-57
Handling Query Rows 8-61
Handling “No More Data” 8-61

Example: The get_results() Function 8-62

Retrieving Query Data 8-64
Obtaining Row Information 8-65
Obtaining Column Information 8-66
Retrieving Rows 8-66

Accessing the Current Row 8-66
Executing the mi_next_row() Loop 8-67

8-2 IBM
Obtaining Column Values 8-68
Executing the Column-Value Loop 8-69
Accessing the Columns 8-69
Obtaining Normal Values 8-71
Obtaining NULL Values 8-79
Obtaining Row Values 8-79
Obtaining Collection Values 8-83
Example: The get_data() Function 8-86

Completing Execution 8-90
Finishing Execution 8-90

Processing Remaining Rows 8-91
Releasing Statement Resources 8-91

Interrupting Execution 8-93

Inserting Data into the Database 8-93
Assembling an Insert String 8-93
Sending the Insert Statement 8-94
Processing Insert Results 8-94

Using Save Sets . 8-95
Creating a Save Set. 8-96
Inserting Rows into a Save Set 8-96
Building a Save Set 8-97
Freeing a Save Set 8-101
 Informix DataBlade API Programmer’s Guide

In This Chapter
One basic task of a DataBlade API module is to send SQL statements to the
database server for execution. To execute an SQL statement, a DataBlade API
module must perform the following tasks:

� Assemble the SQL statement and send it to the database server for
execution

� Process results that the database server returns to the module

� If the SQL statement (such as a SELECT) returns rows, obtain each row
of data

� For each row, obtain the column value or values of interest

� Complete the execution of the statement

This chapter describes each of these execution steps in detail.
Executing SQL Statements 8-3

Executing SQL Statements
Executing SQL Statements
To execute an SQL statement, a DataBlade API module must send the SQL
statement to the database server, where the statement is actually executed.
The DataBlade API provides the following statement-execution functions for
use in a DataBlade API module:

� mi_exec()

� mi_exec_prepared_statement()

� mi_open_prepared_statement()

All of these functions perform the same basic task: they send a string repre-
sentation of an SQL statement to the database server, which executes it and
returns statement results. The mi_exec() function is the simplest way to
execute an SQL statement.

A C user-defined routine (UDR) that executes SQL statements must be regis-
tered as a variant function; that is, its CREATE FUNCTION statement must
either include the VARIANT routine modifier or omit both the NOT VARIANT
and VARIANT routine modifiers (VARIANT is the default). ♦

This section provides a summary of factors to consider when choosing the
DataBlade API statement-execution function to use. It then describes the two
methods for statement execution.

Tip: Before you use a DataBlade API function that sends an SQL statement to the
database server, make sure you obtain a valid connection descriptor.

Method of Statement Execution More Information

Parse, optimize, and execute the
statement in one step

“Executing Basic SQL Statements” on
page 8-10

Parse and optimize the statement to
create a prepared statement

Execute the prepared statement

“Executing Prepared SQL Statements” on
page 8-18

Server
8-4 IBM Informix DataBlade API Programmer’s Guide

Choosing a DataBlade API Function
Choosing a DataBlade API Function
Figure 8-1 shows the functions that the DataBlade API provides to send SQL
statements to the database server for execution.

Figure 8-1
Statement-Execution Functions of the DataBlade API

As the preceding table shows, you need to consider the following factors
when deciding which DataBlade API statement-execution function to use:

� What type of SQL statement do you need to send?

� Does your SQL statement contain input parameters?

� If the SQL statement is a query, can you use an implicit cursor to
access the retrieved rows?

Choose the DataBlade API statement-execution function that is appropriate
for the needs of your DataBlade API application.

DataBlade API Function

When to Use Function

Type of Statement

Statement Executed
Many Times or Contains
Input Parameters?

Query Can Use
Implicit
Cursor?

mi_exec() Query

Other valid SQL
statements

No Yes

mi_exec_prepared_statement() Query

Other valid SQL
statements

Yes Yes

mi_open_prepared_statement() Query only Yes No
Executing SQL Statements 8-5

Choosing a DataBlade API Function
Type of Statement

The DataBlade API statement-execution functions can execute the following
types of SQL statements:

� An SQL statement that does not return rows of data (is not a SELECT
statement and not an EXECUTE FUNCTION statement that executes
an iterator function)

Most SQL statements do not return rows. For example, all data defi-
nition (DDL) statements and most data manipulation (DML)
statements return only a status to indicate the statement’s success.

� An SQL statement that does return one or more rows of data

The following SQL statements return rows:

❑ SELECT statement

❑ EXECUTE FUNCTION statement, when the user-defined function
returns more than one row of data

An SQL statement that returns rows is often called a query because it
asks the database server to answer a question: which rows match?

Tip: The term “query” is sometimes used to refer to any SQL statement. However,
this manual uses the more specific definition of “query”: an SQL statement that
returns rows.

The following table shows how to choose a DataBlade API statement-
execution function based on the type of SQL statement.

Type of Statement DataBlade API Function

Query,
Other valid statements

mi_exec(),
mi_exec_prepared_statement()

Query only mi_open_prepared_statement()
8-6 IBM Informix DataBlade API Programmer’s Guide

Choosing a DataBlade API Function
Prepared Statements and Input Parameters

A prepared SQL statement is the parsed version of an SQL statement. The
database server prepares an SQL statement for execution at a later time.
Preparing a statement enables you to separate the parsing and execution
phases of the statement execution. When you prepare a statement, you send
the statement to the database server to be parsed. The database server checks
the statement for syntax errors and creates an optimized version of the
statement for execution.

You need to prepare an SQL statement only once. You can then execute the
statement multiple times. Each time you execute the statement, you avoid the
parsing phase. Prepared statements are useful for SQL statements that
execute often in your DataBlade API module.

SQL statements that have missing column or expression values are called
parameterized statements because you use input parameters as placeholders for
missing column or expression values. An input parameter is a placeholder in
an SQL statement that indicates that the actual column value is provided at
runtime. You can specify input parameters in the statement text represen-
tation of an SQL statement for either of the following reasons:

� A column or expression value is unknown at the time you prepare
the SQL statement.

� A column or expression value changes for each execution of the SQL
statement.

For a parameterized SQL statement, your DataBlade API module must
provide the following information to the database server for each of its input
parameters.

You can also obtain information about the input parameters after the param-
eterized statement is prepared. For more information, see “Obtaining Input-
Parameter Information” on page 8-24.

Input-Parameter Information More Information

Specify the input parameter in the text of
the SQL statement

“Assembling a Prepared Statement” on
page 8-19

Specify the value for the input
parameter when the statement executes

“Assigning Values to Input Parameters”
on page 8-44
Executing SQL Statements 8-7

Choosing a DataBlade API Function
A DataBlade API module can prepare an SQL statement for the following
reasons:

� To increase performance by reducing the number of times that the
database server parses and optimizes the statement

� To execute a parameterized SQL statement and provide different
input-parameter values each time the statement executes

The following table shows how to choose a DataBlade API statement-
execution function based on whether the SQL statement needs to be
prepared.

The mi_exec_prepared_statement() or mi_open_prepared_statement()
function provides argument values for specifying the input-parameter
values when the function executes the statement. You can also use these
functions to execute prepared statements that do not have input parameters.

Queries and Implicit Cursors

When a DataBlade API statement-execution function executes a query, the
function must create a place to hold the resulting rows. Each of these
functions (mi_exec(), mi_exec_prepared_statement(), or
mi_open_prepared_statement()) automatically creates a row cursor (often
called simply a cursor). The row cursor is an area of memory that serves as a
holding place for rows that the database server has retrieved.

Statement Needs To Be Prepared? DataBlade API Function

No mi_exec()

Yes mi_exec_prepared_statement(),
mi_open_prepared_statement()
8-8 IBM Informix DataBlade API Programmer’s Guide

Choosing a DataBlade API Function
The simplest way to hold the rows of a query is to use an implicit cursor, which
is defined with the following characteristics.

Most DataBlade API modules can use an implicit cursor for accessing rows.
However, if the cursor characteristics of the implicit cursor are not adequate
for the needs of your DataBlade API module, you can define an explicit cursor
with any of the following cursor characteristics.

For more information on these cursor characteristics, see “Defining an
Explicit Cursor” on page 8-35.

Cursor Characteristic Restriction

Read-only You can only examine the contents of the row cursor. You
cannot modify these contents.

Sequential A sequential cursor allows movement through the rows of
the cursor in the forward direction only. You cannot go
backward through the cursor. To reaccess a row that you
have already accessed, you must close the cursor, reopen it,
and move to the desired row.

Cursor Characteristic Description

Cursor type In which direction does the cursor enable you to access
rows? You can choose a sequential cursor or a scroll cursor.

Cursor mode Which operations are valid on the rows in the cursor? You
can choose read-only or update mode.

Cursor lifespan How long does the cursor remain open? You can choose
whether to use a hold cursor.
Executing SQL Statements 8-9

Executing Basic SQL Statements
The following table shows how to choose a DataBlade API statement-
execution function based on the type of cursor that the query requires.

With the mi_open_prepared_statement() function, you can specify an
explicit cursor to hold the query rows. In addition, you can assign a name to
the cursor that you can use in other SQL statements.

Executing Basic SQL Statements
The mi_exec() function provides the simplest way to send a basic SQL
statement to the database server for execution. A basic SQL statement is one
that does not need to be prepared. That is, the statement does not execute
many times in the DataBlade API module or it does not contain input param-
eters. To send a basic SQL statement to the database server for execution, take
the following steps:

� Assemble a statement string, which contains the SQL statement to
execute.

� Send the statement string to the database server with mi_exec().

The database server parses the statement string, optimizes it, executes it, and
sends back the statement results.

Can Query Use Implicit Cursor? DataBlade API Function

Yes mi_exec(),
mi_exec_prepared_statement()

No mi_open_prepared_statement()
8-10 IBM Informix DataBlade API Programmer’s Guide

Executing Basic SQL Statements
Assembling a Statement String

The mi_exec() function passes the SQL statement to the database server as a
statement string, which is a text representation of the SQL statement. To
execute a statement with mi_exec(), the statement string must include the
entire SQL statement; that is, it cannot contain any input parameters.

You can assemble this statement string in the following ways:

� If you know all the information at compile time, assemble the
statement as a fixed string.

If you know the whole statement structure, you can specify the string
itself as the argument to mi_exec(), as the following line shows:

mi_exec(conn,
“select company from customer where \
customer_num = 101;”, MI_QUERY_BINARY);

� If you do not know all the information about the statement at compile
time, you can use the following features to assemble the statement
string:

❑ Character variables can hold the identifiers in the SQL statement
(column names or table names) or parts of the statement like the
WHERE clause. They can also contain keywords of the statement.

You can then build the SQL statement as a series of string opera-
tions, as Figure 8-2 shows.

Figure 8-2
Assembling a SELECT Statement from a Character String

mi_string stmt_txt[30];
mi_string fld_name[15];
...
stcopy("select ", stmt_txt);
fld_name = obtain_fldname(...);
stcat(fld_name, stmt_txt);
stcat("from customer where customer_num = 101", stmt_txt);
...
mi_exec(conn, stmt_txt, MI_QUERY_BINARY);
Executing SQL Statements 8-11

Executing Basic SQL Statements
❑ If you know what column values the statement specifies, you can
declare program variables to provide column values that are
needed in a WHERE clause or to hold column values that
database server returns.

Figure 8-3 shows the SELECT statement of Figure 8-2 changed so
that it uses a variable to determine the customer number
dynamically.

The statement string can contain multiple SQL statements. Each SQL
statement must be terminated with the semicolon (;) symbol. For more infor-
mation, see “Executing Multiple SQL Statements” on page 8-53.

Sending an SQL Statement

The mi_exec() function is for the execution of basic SQL statements, both
queries and other valid SQL statements. In a DataBlade API module, use the
following DataBlade API functions to execute a basic SQL statement.

Figure 8-3
Using a Variable to Assemble a SELECT Statement

mi_string stmt_txt[30];
mi_integer cust_num;
...
stcopy("select company from customer where customer_num = ",

stmt_txt);
cust_num = obtain_custnum(...);
stcat(cust_num, stmt_txt);
...
stmt_desc = mi_exec(conn, stmt_txt, MI_QUERY_BINARY);

Step in Execution of Basic SQL Statement DataBlade API Function

Send the basic SQL statement to the database server for
execution and open any cursor required

mi_exec()

Release statement resources mi_query_finish(),
mi_query_interrupt()
8-12 IBM Informix DataBlade API Programmer’s Guide

Executing Basic SQL Statements
Once the database server executes the statement that mi_exec() sends, the
statement becomes the current statement. The current statement is the most
recent SQL statement on the connection. Only one statement per connection
is current. The database server sends back the results of the current
statement, including whether the current statement was successful.

The mi_exec() function creates an implicit statement descriptor to hold the
information about the current statement. The following table summarizes the
memory operations for an implicit statement descriptor.

Figure 8-4 lists the DataBlade API accessor functions for the implicit
statement descriptor that mi_exec() creates.

Figure 8-4
Accessor Functions for an Implicit Statement Descriptor

You obtain the status of the current statement with the mi_get_result()
function. For more information, see “Processing Statement Results” on
page 8-54.

Tip: The return value that the mi_exec() function returns does not indicate the
success of the current statement. It indicates if mi_exec() was able to successfully
send the statement to the database server.

Memory Duration Memory Operation Function Name

Not allocated from memory-duration
pools

Constructor mi_exec()

Destructor mi_query_finish()

Statement-Descriptor Information DataBlade API Accessor Function

The name of the SQL statement that is
the current statement

mi_result_command_name()

A row descriptor for the columns in
the current statement

mi_get_row_desc_without_row()

From the row descriptor, you can use the
row-descriptor accessor functions to obtain
information about a particular column (see
Figure 5-11 on page 5-46).
Executing SQL Statements 8-13

Executing Basic SQL Statements
When mi_exec() executes a query, it performs the following additional steps:

1. Opens an implicit cursor to hold the query rows

2. Reads the query rows into the open cursor

The Implicit Row Cursor

When mi_exec() executes a query, it automatically opens an implicit cursor to
hold the resulting rows. This cursor is associated with the current statement
and is stored as part of the connection descriptor. Therefore, only one cursor
per connection can be current. For more information, see “Queries and
Implicit Cursors” on page 8-8.

Tip: If the implicit cursor that mi_exec() creates does not adequately meet the needs
of your DataBlade API module, you can use the mi_open_prepared_statement()
function to define other types of cursors. For more information, see “Defining an
Explicit Cursor” on page 8-35.

When the mi_exec() function successfully fetches the query results into the
cursor, the cursor position points to the first row of the cursor, and the
mi_get_result() function returns a status of MI_ROWS to indicate that the
cursor contains rows.

You can access these rows one at a time with the mi_next_row() function.
Each access obtains the row to which the cursor position points. After each
access to the cursor, the cursor position moves to the next row. For more
information, see “Retrieving Query Data” on page 8-64.

Control Modes for Query Data

The data that the database server returns for a query can be in one of two
control modes:

� In text representation, the query data is represented as null-
tcrminated strings. Data in its text representation is often called a
literal value.

� In binary representation, the query data is represented in its internal
format; that is, in the format that the database server uses to store the
value.
8-14 IBM Informix DataBlade API Programmer’s Guide

Executing Basic SQL Statements
Figure 8-5 shows the format of different data types in the two control modes.

Figure 8-5
Control Modes for Data

Type of Data Text Representation Binary Representation

Character Null-terminated string Varying-length structure:
mi_lvarchar

Date "mm/dd/yyyy"

Nondefault locale: End-user date format

Integer number of days since
December 31, 1899

(DATE, mi_date)

Date/time "yyyy-mm-dd HH:MM:SS"

Nondefault locale: End-user date and time format

dtime_t

(DATETIME, mi_datetime)

Interval "yyyy-mm"

"dd HH:MM:SS"

Nondefault locale: End-user date and time format

intrvl_t

(INTERVAL, mi_interval)

Integer Integer value as a string:

thousands separator = ","

Nondefault locale: End-user numeric format

Internal format:

� Two-byte integer
(SMALLINT, mi_smallint)

� Four-byte integer
(INTEGER, mi_integer)

� Eight-byte integer: ifx_int8_t
(INT8, mi_int8)

Decimal Fixed-point value as a string:

thousands separator = ","
decimal separator = "."

Nondefault locale: End-user numeric format

dec_t

(DECIMAL, mi_decimal)

Monetary Fixed-point value as a string:

thousands separator = ","
decimal separator = "."
currency symbol = "$"

Nondefault locale: End-user monetary format

dec_t

(MONEY, mi_money)

(1 of 2)
Executing SQL Statements 8-15

Executing Basic SQL Statements
Floating-point Floating-point value as a string:

thousands separator = ","
decimal separator = "."

Nondefault locale: End-user numeric format

Internal format:

� single-precision floating point
(SMALLFLOAT, mi_real)

� double-precision floating
point (FLOAT,
mi_double_precision)

Boolean "t" or "T"

"f" or "F"

MI_TRUE, MI_FALSE

(BOOLEAN, mi_boolean)

Smart large
object

Text representation of the LO handle
(obtained with mi_lo_to_string())

LO handle

(CLOB, BLOB;
MI_LO_HANDLE)

Row type Unnamed row type:

"ROW(fld_value1, fld_value2, ...)"

Named row type:

"row_type(fld_value1, fld_value2, ...)"

Row structure

(ROW, named row type;
MI_ROW)

Collection type "SET{elmnt_value, elmnt_value, ...}"

"MULTISET{elmnt_value, elmnt_value, ...}"

"LIST{elmnt_value, elmnt_value, ...}"

Collection structure

(SET, LIST, MULTISET;
MI_COLLECTION)

Varying-length
opaque type

External format of opaque type
(as returned by output support function)

Varying-length structure:
mi_bitvarying
(which contains the internal C
data type)

Fixed-length
opaque type

External format of opaque type
(as returned by output support function)

Internal C data type

Distinct type Text representation of its source data type Binary representation of its
source data type

Type of Data Text Representation Binary Representation

(2 of 2)
8-16 IBM Informix DataBlade API Programmer’s Guide

Executing Basic SQL Statements
The mi_exec() function indicates the control mode of the query with a bit-
mask control argument, which is one of the following flags.

In the send_statement() function (page 8-17), mi_exec() sets the control
mode of the query data to text representation.

To determine the control mode for query data, use the mi_binary_query()
function. The mi_binary_query() function determines the control mode for
data of the current statement.

Example: The send_statement() Function

The send_statement() function takes an existing open connection and an
SQL statement string as arguments and sends the statement to the database
server with the mi_exec() function. It specifies text representation for the
query results.

/* FUNCTION: send_statement()
* PURPOSE: To send an SQL statement to the database server for
* execution
*
* CALLED BY: Called from within a C user-defined function to
* execute a basic SQL statement
*/

mi_integer
send_statement(MI_CONNECTION *conn, mi_string *stmt)
{

mi_integer count;

/* Send the statement, specifying results be sent
* in their text representation (MI_QUERY_NORMAL)
*/

if (MI_ERROR == mi_exec(conn, stmt, MI_QUERY_NORMAL))
{
 mi_db_error_raise(conn, MI_EXCEPTION,

"mi_exec failed\n");
}

Control Mode Control-Flag Value

Text representation MI_QUERY_NORMAL

Binary representation MI_QUERY_BINARY
Executing SQL Statements 8-17

Executing Prepared SQL Statements
/* Get the results of the current statement */
count = get_results(conn);

/* Release statement resources */
if (mi_query_finish(conn) == MI_ERROR)

{
mi_db_error_raise(conn, MI_EXCEPTION,

"mi_query_finish failed\n");
}

return (count);
}

The send_statement() function calls another user function, get_results(), to
examine the status of the current statement. For the implementation of the
get_results() function, see “Example: The get_results() Function” on
page 8-62.

Executing Prepared SQL Statements
A prepared statement is an SQL statement that is parsed and ready for
execution. For these statements, you prepare the statement once and execute
it as many times as needed. The DataBlade API provides the following
functions to execute a prepared SQL statement.

DataBlade API Function Step in Prepared-Statement Execution

mi_prepare() Prepares a text representation of the SQL
statement to execute

mi_statement_command_name(),
mi_get_statement_row_desc(), or
input-parameter accessor function
(Figure 8-9 on page 8-24)

Obtains information about the prepared
statement

mi_exec_prepared_statement() or
mi_open_prepared_statement()

Sends the prepared statement to the
database server for execution

mi_drop_prepared_statement() Releases prepared-statement resources
8-18 IBM Informix DataBlade API Programmer’s Guide

Executing Prepared SQL Statements
Preparing an SQL Statement

To turn a statement string for an SQL statement into a format that the
database server can execute, use the mi_prepare() statement. The
mi_prepare() function performs the following tasks to create a prepared
statement:

� Sends a statement string to the database server for parsing

� Assigns an optional name to the SQL statement

� Returns a pointer to a statement descriptor for the prepared
statement

Tip: The mi_prepare() function performs the same basic task for a DataBlade API
module as the SQL PREPARE statement does for an IBM Informix ESQL/C
application.

Assembling a Prepared Statement

The mi_prepare() function passes the SQL statement to the database server
as a statement string. For the mi_prepare() function, a statement string can
contain either of the following formats of an SQL statement:

� An unparameterized SQL statement (the same as the mi_exec()
function accepts)

� A parameterized SQL statement, which contains input parameters

Assembling Unparameterized Statements

If you know all the statement information before the statement is prepared,
you assemble an unparameterized statement as the statement string. Pass the
SQL statement as a string (or a variable that contains a string) to the
mi_prepare() function. For example, Figure 8-6 prepares an unparame-
terized SELECT statement that obtains column values from the customer
table.

For more information, see “Assembling a Statement String” on page 8-11.

stmt_desc = mi_prepare(conn,
"SELECT * FROM customer;", NULL)

Figure 8-6
Preparing an

Unparameterized
Statement
Executing SQL Statements 8-19

Executing Prepared SQL Statements
Assembling Parameterized Statements

If some column or expression value is provided when the statement actually
executes, you assemble the parameterized statement as the statement string.
Specify input parameters in the statement text representation of an SQL
statement. For a description of an input parameter, see “Prepared Statements
and Input Parameters” on page 8-7.

You indicate the presence of an input parameter with a question mark (?)
anywhere within a statement where an expression is valid. You cannot list a
program-variable name in the text of an SQL statement because the database
server knows nothing about variables declared in the DataBlade API module.
You cannot use an input parameter to represent an identifier such as a
database name, a table name, or a column name.

For example, Figure 8-7 shows an INSERT statement that uses input param-
eters as placeholders for two column values in the customer table.

In Figure 8-7, the first input parameter is defined for the value of the
customer_num column and the second for the value of the company column.

Before the prepared statement executes, your DataBlade API module must
assign a value to the input parameter. You pass these input-parameter values
as arguments to the mi_exec_prepared_statement() or
mi_open_prepared_statement() function. For more information, see
“Assigning Values to Input Parameters” on page 8-44.

Assigning an Optional Name

You can obtain access to a prepared statement through its statement
descriptor. However, other SQL statements that need to reference the
prepared statement cannot use a statement descriptor. Therefore, you can
assign an optional string name to a prepared SQL statement. Specify a name
as the third argument of the mi_prepare() function.

insrt_stdesc = mi_prepare(conn,
"INSERT INTO customer (customer_num, company)

\
VALUES (?,?);", NULL

Figure 8-7
Preparing a

Statement That
Contains Input

Parameters
8-20 IBM Informix DataBlade API Programmer’s Guide

Executing Prepared SQL Statements
The last argument to mi_prepare() specifies the cursor name for the prepared
statement. Assigning a cursor name is useful for a statement that includes an
update cursor so that an UPDATE or DELETE statement that contains the
following clause can reference the cursor in this clause:

WHERE CURRENT OF cursor_name

You can specify an update cursor in the syntax of the SELECT statement that
you prepare, as the following versions of the SELECT statement show:

SELECT customer_num, company FROM customer
WHERE customer_num = 104 FOR UPDATE OF company;

SELECT customer_num, company FROM customer
WHERE customer_num = 104;

For more information on the FOR UPDATE keywords of SELECT with
databases that are ANSI compliant and not ANSI compliant, see “Defining a
Cursor Mode” on page 8-36. ♦

The following code fragment uses the mi_prepare() statement to assign a
name to a cursor and an UPDATE WHERE CURRENT OF statement to update
the fifth row in this cursor:

/* Prepare the FOR UPDATE statement */
if ((stmt1 = mi_prepare(conn,

"select * from tab1 for update;",
"curs1")) == NULL)

return MI_ERROR;

/* Open the cursor */
if (mi_open_prepared_statement(stmt1, MI_BINARY,

MI_QUERY_BINARY, num_params, values, lengths, nulls,
types, NULL, 0, NULL) != MI_OK)

return MI_ERROR;

/* Fetch the 5th row */
if (mi_fetch_statement(stmt1, MI_CURSOR_NEXT, 0, 5)

!= MI_OK)
return MI_ERROR;

/* Get values from 5th row */
if (mi_get_result(conn) != MI_ROWS

|| mi_next_row(conn, &res) == NULL)
return MI_ERROR;

/* Update 5th row */
if (mi_exec("update tab1 set int_col = int_col + 2 \

where current of curs1;", NULL) != MI_OK)
return MI_ERROR;

Server
Executing SQL Statements 8-21

Executing Prepared SQL Statements
/* Clean up */
if (mi_close_statement(stmt1) != MI_OK)

return MI_ERROR;
if (mi_drop_prepared_statement(stmt1) != MI_OK)

return MI_ERROR;

The mi_open_prepared_statement() function also provides the ability to
name the cursor. However, if you specify a cursor name in mi_prepare(),
make sure that you pass a NULL-valued pointer as the cursor name to
mi_open_prepared_statement(). Conversely, if you want to specify the
cursor name in mi_open_prepared_statement(), use a NULL-valued pointer
as the cursor name in mi_prepare(). If you specify a cursor name in both
mi_prepare() and mi_open_prepared_statement(), the DataBlade API uses
the cursor name that mi_open_prepared_statement() provides.

If your prepared statement does not fetch rows, pass a NULL-valued pointer
as the third argument to mi_prepare(). ♦

The last argument to mi_prepare() specifies the statement name for the
prepared statement. The cursor_name argument of
mi_open_prepared_statement() specifies the cursor name for the prepared
statement. If you do not need to assign a statement name, pass a NULL-
valued pointer as the last argument to mi_prepare(). ♦

Returning a Statement Descriptor

The mi_prepare() function sends the contents of an SQL statement string to
the database server, which parses the statement and returns it in an
optimized executable format. The function returns a pointer to an explicit
statement descriptor (usually called just a statement descriptor). A statement
descriptor, MI_STATEMENT, is a DataBlade API structure that contains the
information about a prepared SQL statement, including the executable
format of the SQL statement.

The following table summarizes the memory operations for a statement
descriptor.

Memory Duration Memory Operation Function Name

Not allocated from
memory-duration pools

Constructor mi_prepare()

Destructor mi_drop_prepared_statement(),
mi_close_statement()

Client
8-22 IBM Informix DataBlade API Programmer’s Guide

Executing Prepared SQL Statements
A statement descriptor can be identified in either of the following ways:

� As a pointer to an MI_STATEMENT structure, which mi_prepare()
returns

The mi_prepare() function is a constructor function for a statement
descriptor.

� As an integer statement identifier, which the mi_get_id() function
returns when passed MI_STATEMENT_ID as its second argument

Figure 8-8 lists the DataBlade API accessor functions for an explicit statement
descriptor.

Figure 8-8
Accessor Functions for an Explicit Statement Descriptor

Important: To DataBlade API modules, the statement descriptor (MI_STATEMENT)
is an opaque C structure. Do not access the internal fields of this structure directly.
The internal structure of the MI_STATEMENT may change in future releases.
Therefore, to create portable code, always use these accessor functions to obtain
prepared-statement information.

You pass a statement descriptor to the other DataBlade API functions that
handle prepared statements, including mi_exec_prepared_statement(),
mi_open_prepared_statement(), mi_fetch_statement(),
mi_close_statement(), and mi_drop_prepared_statement().

Statement-Descriptor Information DataBlade API Accessor Function

The name of the SQL statement that was
prepared

mi_statement_command_name()

Information about any input parameters
in the prepared statement

The input-parameter accessorfunctions
(Figure 8-9 on page 8-24)

A row descriptor for the columns in the
prepared statement

mi_get_statement_row_desc()

From the row descriptor, you can use the
row-descriptor accessor functions to
obtain information about a particular
column (see Figure 5-11 on page 5-46).
Executing SQL Statements 8-23

Executing Prepared SQL Statements
Obtaining Input-Parameter Information

From a statement descriptor, you can obtain information about an input
parameter once an SQL statement has been prepared. An input parameter
indicates a value that is provided when the prepared statement executes.
Figure 8-9 lists the DataBlade API accessor functions that obtain input-
parameter information from the statement descriptor.

Figure 8-9
Input-Parameter Information in the Statement Descriptor

Important: To DataBlade API modules, the input-parameter information in the
statement descriptor (MI_STATEMENT) is part of an opaque C data structure. Do not
access the internal fields of this structure directly. The internal structure of the
MI_STATEMENT structure may change in future releases. Therefore, to create
portable code, always use these accessor functions to obtain input-parameter
information.

Column Information
DataBlade API
Accessor Function

The number of input parameters in the prepared
statement

mi_parameter_count()

The precision (total number of digits) of the column
associated with an input parameter

mi_parameter_precision()

The scale of a column that is associated with the
input parameter

mi_parameter_scale()

Whether the column associated with each input
parameter was defined with the NOT NULL
constraint

mi_parameter_nullable()

The type identifier of the column that is associated
with the input parameter

mi_parameter_type_id()

The type name of the column that is associated with
the input parameter

mi_parameter_type_name()
8-24 IBM Informix DataBlade API Programmer’s Guide

Executing Prepared SQL Statements
Input-parameter information is available only for the INSERT and UPDATE
statements. Support for the UPDATE statement includes the following forms
of UPDATE:

� UPDATE with or without a WHERE clause

� UPDATE WHERE CURRENT OF

If you attempt to request input-parameter information for other SQL state-
ments, the input-parameter functions in Figure 8-9 raise an exception.

The statement descriptor stores input-parameter information in several
parallel arrays.

All of the input-parameter arrays in the statement descriptor have zero-based
indexes. Within the statement descriptor, each input parameter in the
prepared statement has a parameter identifier, which is the zero-based position
of the input parameter within the input-parameter arrays. When you need
information about an input parameter, specify its parameter identifier to one
of the statement-descriptor accessor functions in Figure 8-9 on page 8-24.

Input-Parameter Array Contents

Parameter-type ID
array

Each element is a pointer to a type identifier (MI_TYPEID)
that indicates the data type of the input parameter.

Parameter-type
name array

Each element is a pointer to the string name of the data type
for each input parameter.

Parameter-scale
array

Each element is the scale of the column associated with the
input parameter.

Parameter-precision
array

Each element is the precision of the column associated with
the input parameter.

Parameter-nullable
array

Each element is either MI_FALSE or MI_TRUE:

� MI_FALSE indicates that the input parameter is
associated with a column that cannot contain SQL NULL
values.

� MI_TRUE indicates that the input parameter is associated
with a column that can contain SQL NULL values.
Executing SQL Statements 8-25

Executing Prepared SQL Statements
Figure 8-10 shows how the information at index position 1 of these arrays
holds the input-parameter information for the second input parameter of a
prepared statement.

To access information for the nth input parameter, provide an index value of
n-1 to the appropriate accessor function in Figure 8-9 on page 8-24. The
following calls to the mi_parameter_type_id() and
mi_parameter_nullable() functions obtain from the statement descriptor
that stmt_desc identifies the type identifier (param_type) and whether the
column is nullable (param_nullable) for the second input parameter:

MI_STATEMENT *stmt_desc;
MI_TYPEID *param_type;
mi_integer param_nullable;
...
param_type = mi_parameter_type_id(stmt_desc, 1);
param_nullable = mi_parameter_nullable(stmt_desc, 1);

To obtain the number of input parameters in the prepared statement (which
is also the number of elements in the input-parameter arrays), use the
mi_parameter_count() function.

Figure 8-10
Input-Parameter

Arrays in the
Statement
Descriptor

.

.

.

Type identifiers
0
1
2

n

Type names Scales Precisions NULL values

.

.

.

0
1
2

n

.

.

.

0
1
2

n

.

.

.

0
1
2

n

.

.

.

0
1
2

n

All information for the second input parameter
(at index position 1)
8-26 IBM Informix DataBlade API Programmer’s Guide

Executing Prepared SQL Statements
Sending the Prepared Statement

For a prepared statement to be executed, you must send it to the database
server with one of the following DataBlade API functions.

Both these functions support the following parameters.

DataBlade API Function When To Use

mi_exec_prepared_statement() If the prepared statement does not return rows

If the prepared statement does return rows but
you only need to access these rows sequentially
(with an implicit cursor)

mi_open_prepared_statement() If the prepared statement does return rows and
you need to perform one of the following tasks:

� Access these rows with a scroll, update, or
hold cursor (instead of a read-only sequential
cursor)

� Control how many rows the database server
puts into the cursor at one time

Parameter Description

stmt_desc Is a pointer to a statement descriptor for the prepared
statement

The mi_prepare() function generates this statement
descriptor.

control flag Determines whether any query rows are in binary or text
representation

params_are_binary Indicates whether the input-parameter values are in binary or
text representation

n_params Is the number of input-parameter values in the input-
parameter-value arrays

(1 of 2)
Executing SQL Statements 8-27

Executing Prepared SQL Statements
Once the database server executes the prepared statement, the statement
becomes the current statement. The database server sends back the statement
results, including whether the current statement was successful. Obtain the
status of the current statement with the mi_get_result() function. For more
information, see “Processing Statement Results” on page 8-54.

Tip: The return value that the mi_exec_prepared_statement() or
mi_open_prepared_statement() function returns does not indicate the success of
the current statement. It indicates if mi_exec_prepared_statement() or
mi_open_prepared_statement() was able to successfully send the prepared
statement to the database server.

Input-parameter-
value arrays:

� values

� types

� lengths

� nulls

Arrays that contain the following information for each input-
parameter value:

� Value

� Data type

� Length (for varying-length data types)

� Whether the input-parameter value is an SQL NULL value

For more information, see “Assigning Values to Input Param-
eters” on page 8-44.

retlen The number of column values that are in each retrieved row

rettypes An array that contains the data types of any returned column
values

Parameter Description

(2 of 2)
8-28 IBM Informix DataBlade API Programmer’s Guide

Executing Prepared SQL Statements
Statements with mi_exec_prepared_statement()

The mi_exec_prepared_statement() function is for the execution of prepared
statements, both queries and other valid SQL statements. In a DataBlade API
module, use the following DataBlade API functions to execute a prepared
SQL statement with mi_exec_prepared_statement().

The mi_exec_prepared_statement() function performs the following tasks
for the prepared SQL statement:

� Binds any input-parameter values to the appropriate input param-
eters in the prepared statement

For more information, see “Assigning Values to Input Parameters”
on page 8-44.

� Sends the prepared statement to the database server for execution

The control flag supports the MI_BINARY flag to indicate that query
rows are to be returned in binary representation. For more informa-
tion, see “Determining Control Mode for Query Data” on page 8-50.

� When it executes a query, it performs the following additional steps:

❑ Opens an implicit cursor to hold the query rows

❑ Reads the query rows into the open cursor

The DataBlade API stores the cursor as part of the statement descrip-
tor. For more information on this row cursor, see “Queries and
Implicit Cursors” on page 8-8.

DataBlade API Function Step in Prepared-Statement Execution

mi_prepare() Prepares the statement string for execution

mi_statement_command_name(),
mi_get_statement_row_desc(), or
input-parameter accessor function
(Figure 8-9 on page 8-24)

Obtains information about the prepared
statement (optional)

mi_exec_prepared_statement() Sends the prepared statement to the database
server for execution and opens any cursor
required

mi_drop_prepared_statement() Releases prepared-statement resources
Executing SQL Statements 8-29

Executing Prepared SQL Statements
Tip: If the implicit cursor that mi_exec_prepared_statement() creates does not
adequately meet the needs of your DataBlade API module, you can use the
mi_open_prepared_statement() function to define other types of cursors. For
more information, see “Defining an Explicit Cursor” on page 8-35.

When the mi_exec_prepared_statement() function successfully fetches the
query rows into the cursor, the cursor position points to the first row of the
cursor, and the mi_get_result() function returns a status of MI_ROWS to
indicate that the cursor contains rows.

You can access these rows one at a time with the mi_next_row() function.
Each access obtains the row to which the cursor position points. After each
access to the cursor, the cursor position moves to the next row. For more
information, see “Retrieving Query Data” on page 8-64.

The following variation of the send_statement() function (page 8-17) uses
mi_exec_prepared_statement() instead of mi_exec() to send an SQL
statement to the database server:

mi_integer send_statement2(conn, stmt)
MI_CONNECTION *conn;
mi_string *stmt;

{
mi_integer count;
MI_STATEMENT *stmt_desc;

/* Prepare the statement */
if ((stmt_desc = mi_prepare(conn, stmt, NULL)) == NULL)

mi_db_error_raise(conn, MI_EXCEPTION,
"mi_prepared failed\n");

/* Send the basic statement, specifying that query
* be sent in its text representation
*/

if (mi_exec_prepared_statement(stmt_desc, 0, MI_FALSE,
0, NULL, NULL, NULL, 0, NULL) == MI_ERROR)

mi_db_error_raise(conn, MI_EXCEPTION,
"mi_exec_prepared_statement failed\n");

/* Get the results of the current statement */
count = get_results(conn);
8-30 IBM Informix DataBlade API Programmer’s Guide

Executing Prepared SQL Statements
/* Release statement resources */
if (mi_drop_prepared_statement(stmt_desc) == MI_ERROR)

mi_db_error_raise(conn, MI_EXCEPTION,
"mi_drop_prepared_statement failed\n");

if (mi_query_finish(conn) == MI_ERROR)
mi_db_error_raise(conn, MI_EXCEPTION,

"mi_query_finish failed\n");

return (count);
}

The mi_exec_prepared_statement() function allocates type descriptors for
each of the data types of the input parameters. If the calls to
mi_exec_prepared_statement() are in a loop in which these data types do
not vary between loop iterations, mi_exec_prepared_statement() can reuse
the type descriptors, as follows:

� On the first call to mi_exec_prepared_statement(), specify in the
types array the correct data type names for the input parameters.

� On subsequent calls to mi_exec_prepared_statement(), replace the
array of data type names with a NULL-valued pointer.

This method saves on the number of type descriptors that
mi_exec_prepared_statement() must allocate, thereby reducing memory
usage.
Executing SQL Statements 8-31

Executing Prepared SQL Statements
In Figure 8-11, mi_exec_prepared_statement() in the initial pass of the for
loop specifies the INTEGER data type for the single input parameter in an
INSERT statement. For subsequent passes of the for loop,
mi_exec_prepared_statement() receives a NULL-valued pointer for its types
array. When it receives this NULL-valued pointer,
mi_exec_prepared_statement() reuses the type descriptor that it has already
created.

mi_string *types[1] = {"int"};
mi_string **types_exec;
...
sprintf(command, "insert into tabA values(?, %d);", j);
if ((stmt_desc = mi_prepare(conn, command, NULL)) == NULL)

{
return -1;
}

types_exec = types;
for (j=0; j < numLoop; j++)

{
values[0] = (MI_DATUM) j;

if ((ret = mi_exec_prepared_statement(stmt_desc,
MI_BINARY, 1, 1, values, lengths, nulls,
types_exec, 0, NULL)))

{
return -2;
}

if ((ret = mi_get_result(conn)) == MI_ERROR)
return -4;

if (ret == MI_DML || MI_DDL)
row_count += mi_result_row_count(conn);

types_exec = NULL; /* reuse data types from 1st pass */
}

Figure 8-11
Reusing Type
Descriptors in

Repeated Calls to
mi_exec_prepared_

statement()
8-32 IBM Informix DataBlade API Programmer’s Guide

Executing Prepared SQL Statements
Statements with mi_open_prepared_statement()

The mi_open_prepared_statement() function is for the execution of queries.
In a DataBlade API module, use the following DataBlade API functions to
execute a prepared SQL statement with mi_open_prepared_statement().

The mi_open_prepared_statement() function performs the following tasks
for the prepared SQL statement:

� Binds any input-parameter values to the appropriate input param-
eters in the prepared statement

For more information on how to assign input-parameter values, see
“Assigning Values to Input Parameters” on page 8-44.

� Sends the prepared statement to the database server for execution

� Creates and opens an explicit cursor with characteristics specified in
the control argument

The DataBlade API stores the cursor as part of the statement descrip-
tor. For more information on this cursor, see “Defining an Explicit
Cursor” on page 8-35.

Tip: The mi_open_prepared_statement() function performs the same basic task
for a DataBlade API module as the SQL OPEN statement does for an IBM Informix
ESQL/C application.

DataBlade API Function Step in Execution of Prepared Statement

mi_prepare() Prepares the statement string for execution

mi_statement_command_name(),
mi_get_statement_row_desc(), or
input-parameter accessor function
(Figure 8-9 on page 8-24)

Obtains information about the prepared
statement (optional)

mi_open_prepared_statement() Sends the prepared statement to the database
server for execution and open the cursor

mi_fetch_statement() Retrieves any data that the query returns

mi_close_statement(),
mi_drop_prepared_statement()

Releases prepared-statement resources
Executing SQL Statements 8-33

Executing Prepared SQL Statements
The main difference between mi_exec_prepared_statement() and
mi_open_prepared_statement() is that the latter allows more flexibility in
the definition of the cursor used for the query rows. With
mi_open_prepared_statement(), you can define an explicit cursor. In
particular, mi_open_prepared_statement() allows you to specify:

� A string name to assign to the cursor

The cursor_name parameter is a pointer to the string name that you
want to assign to the cursor. You can use this cursor_name for an
update cursor so that the UPDATE or DELETE statement can reference
the cursor in its clause:

WHERE CURRENT OF cursor_name

For more information, see “Assigning an Optional Name” on
page 8-20.

To use an internally-generated unique name for the cursor, specify a
NULL-valued pointer for the cursor_name argument.

� The type of cursor to use for holding the query rows

The mi_open_prepared_statement() function supports several flag
values in its control flag that determine the type of cursor it creates.
For more information, see “Defining an Explicit Cursor” on
page 8-35.

In addition, the control flag also supports the MI_BINARY flag to indi-
cate that query rows are to be returned in binary representation. For
more information, see “Determining Control Mode for Query Data”
on page 8-50.

� The number of rows to read into the cursor at one time

Unlike mi_exec() and mi_exec_prepared_statement(),
mi_open_prepared_statement() does not read any retrieved rows
into the open cursor. To fetch rows into the explicit cursor, use the
mi_fetch_statement() function. For more information, see “Fetching
Rows Into a Cursor” on page 8-38.

Client
8-34 IBM Informix DataBlade API Programmer’s Guide

Executing Prepared SQL Statements
The mi_open_prepared_statement() function allocates type descriptors for
each of the data types of the input parameters. If the calls to
mi_open_prepared_statement() are in a loop in which these data types do
not vary between loop iterations, mi_open_prepared_statement() can reuse
the type descriptors, as follows:

� On the first call to mi_open_prepared_statement(), specify in the
types array the correct data type names for the input parameters.

� On subsequent calls to mi_open_prepared_statement(), replace the
array of data type names with a NULL-valued pointer.

This method saves on the number of type descriptors that
mi_open_prepared_statement() must allocate, thereby reducing memory
usage. For sample code in which the mi_exec_prepared_statement()
function reuses type descriptors, see Figure 8-11 on page 8-32.

Defining an Explicit Cursor

The control flag of mi_open_prepared_statement() allows you to define an
explicit cursor to hold the rows that the prepared query returns. You can
choose the following cursor characteristics when you define the cursor:

� The cursor type

� The cursor mode

� The cursor lifespan
Executing SQL Statements 8-35

Executing Prepared SQL Statements
Defining a Cursor Type

The mi_open_prepared_statement() function supports the following types
of cursors for holding query rows.

Figure 8-12 shows the control-flag values that determine cursor type and
cursor mode.

Defining a Cursor Mode

You can specify one of the following cursor modes for the cursor with the
control-flag bit mask.

Cursor Type Description

Sequential cursor Enables you to move through the rows of the cursor in the
forward direction only

You can pass only once through the rows.

Scroll cursor Enables you to move through the rows of the cursor in the
forward and backward directions

You can move back in the rows without having to reopen the
cursor; however, the database server stores the data for a scroll
cursor in a temporary table. The data can become stale; that is,
the data in the cursor is consistent with the data in the database
when the cursor is filled, but if the data in the database changes,
the data in the cursor does not reflect these changes.

Cursor Mode Description SELECT Statement

Update Enables you to read and modify the
data within the cursor

SELECT...FOR UPDATE

Read-only Enables you to read the data within the
cursor; does not allow you to update or
delete any row it fetches

SELECT...FOR READ ONLY
8-36 IBM Informix DataBlade API Programmer’s Guide

Executing Prepared SQL Statements
When you execute a prepared SELECT statement with no FOR UPDATE or FOR
READ ONLY clause, the cursor mode you need depends on whether your
database is ANSI-compliant, as follows:

� In a database that is not ANSI compliant, the SELECT statement
specifies a read-only mode by default.

You do not need to specify the FOR READ ONLY keywords in the
SELECT statement. The only advantage of specifying the FOR READ
ONLY keywords explicitly is for better program documentation. To
specify an update mode, you must specify the FOR UPDATE key-
words in the SELECT statement.

� In an ANSI-compliant database, the SELECT statement specifies an
update mode by default.

You do not need to specify the FOR UPDATE keywords in the SELECT
statement. The only advantage of specifying the FOR UPDATE key-
words explicitly is for better program documentation. To specify a
read-only mode, you must specify the FOR READ ONLY keywords in
the SELECT statement. ♦

For more information on the FOR UPDATE and FOR READ ONLY clauses, see
the description of the SELECT statement in the IBM Informix Guide to SQL:
Syntax.

By default, both the sequential and scroll cursor types have a cursor mode of
update (also called read/write). Figure 8-12 shows the cursor types and cursor
modes, with the required bit-mask values for the control flag.

Figure 8-12
Control-Flag Values for Cursor Type and Mode

Cursor Control-Flag Value

Update sequential cursor None (default)

Read-only sequential cursor MI_SEND_READ

Update scroll cursor MI_SEND_SCROLL

Read-only scroll cursor MI_SEND_READ + MI_SEND_SCROLL

ANSI
Executing SQL Statements 8-37

Executing Prepared SQL Statements
Defining a Cursor Lifespan

You can define the lifespan of the cursor with the control-flag bit mask. By
default, the database server closes all cursors at the end of a transaction. If
your DataBlade API module requires uninterrupted access to a set of rows
across transaction boundaries, you can define a hold cursor. A hold cursor can
be either a sequential or a scroll cursor.

To define a hold cursor, you specify the MI_SEND_HOLD constant in the
control-flag bit mask of the mi_open_prepared_statement() function, as the
following table shows.

Fetching Rows Into a Cursor

When mi_open_prepared_statement() successfully opens a cursor, the
cursor is empty, with the cursor position pointing to the first location of the
cursor, and the mi_get_result() function returns a status of
MI_NO_MORE_RESULTS to indicate that the cursor does not contain rows.

Cursor Control-Flag Value

Update sequential cursor with hold MI_SEND_HOLD

Read-only sequential cursor with hold MI_SEND_READ + MI_SEND_HOLD

Update scroll cursor with hold MI_SEND_SCROLL + MI_SEND_HOLD

Read-only scroll cursor with hold MI_SEND_READ + MI_SEND_SCROLL +
MI_SEND_HOLD
8-38 IBM Informix DataBlade API Programmer’s Guide

Executing Prepared SQL Statements
Figure 8-13 shows the state of the explicit cursor that contains one integer
column after mi_open_prepared_statement() executes.

To populate the open cursor, use the mi_fetch_statement() function, which
fetches the specified number of retrieved rows from the database server into
the cursor. You can perform a fetch operation on an update or a read-only
cursor. To fetch rows into a cursor, you must specify the following infor-
mation to mi_fetch_statement():

� The statement descriptor for the prepared statement that returns
rows

� The location in the rows on the database server at which to begin the
fetch

� The number of rows to fetch into the cursor

The mi_fetch_statement() function requests the specified number of
retrieved rows from the database server and copies them into the cursor,
which is associated with the specified statement descriptor. When
mi_fetch_statement() completes successfully, the following items are true:

� The cursor contains the number of rows that the num_rows argument
specifies.

� The cursor position points to the first of the fetched rows in the
cursor.

� The mi_get_result() function returns a status of MI_ROWS to
indicate that the cursor does contain rows.

Figure 8-13
Row Cursor After

mi_open_prepared
_statement()

Next row to
retrieve

Connection Descriptor

Retrieved rows

Database server

Row cursor

DataBlade API module

6
4
8

5

Cursor position

3

Executing SQL Statements 8-39

Executing Prepared SQL Statements
With mi_fetch_statement(), you can request rows at different locations
based on the type of cursor that mi_open_prepared_statement() has
defined. To specify location, mi_fetch_statement() has an action argument of
type MI_CURSOR_ACTION, which supports the cursor-action constants in the
following table.

Figure 8-14 shows the state of a row cursor that Figure 8-13 on page 8-39
defines after the following mi_fetch_statement() executes:

mi_fetch_statement(stmt_desc, MI_CURSOR_NEXT, 0, 0);

Cursor-Action Flag Description Type of Cursor

MI_CURSOR_NEXT Fetches the next num_rows rows,
starting at the current retrieved row
on the database server

Sequential

Scroll

MI_CURSOR_PRIOR Fetches the previous num_rows rows,
starting at the current retrieved row

Scroll

MI_CURSOR_FIRST Fetches the first num_rows rows Sequential

Scroll

MI_CURSOR_LAST Fetches the last num_rows rows Sequential

Scroll

MI_CURSOR_ABSOLUTE Moves jump rows into the retrieved
rows and fetches num_rows rows

Sequential (as long as the jump
argument does not move the cursor
position backward)

Scroll

MI_CURSOR_RELATIVE Moves jump rows from the current
retrieved row and fetch num_rows
rows

Sequential (as long as the jump
argument is a positive number)

Scroll
8-40 IBM Informix DataBlade API Programmer’s Guide

Executing Prepared SQL Statements
Once the rows reside in the cursor, your DataBlade API module can access
these rows one at a time with the mi_next_row() function. For more infor-
mation, see “Retrieving Query Data” on page 8-64.

Figure 8-14
Fetching All

Retrieved Rows
Into a Cursor

Next row to
retrieve

Connection descriptor

Retrieved rows

Database server

Row cursor

DataBlade API module

6
4
8

5

Cursor position

3

6
4
8

5
3

Executing SQL Statements 8-41

Executing Prepared SQL Statements
If you specify a non-zero value for the num_rows argument,
mi_fetch_statement() fetches the requested number of rows into the cursor.
Specify a non-zero value for num_rows if your DataBlade API module needs
to handle rows in smaller groups. In this case, you retrieve num_rows number
of query rows from the cursor with mi_next_row(). When mi_next_row()
indicates that no more rows are in the cursor, you must determine whether to
fetch any remaining rows from the database server into the cursor, as follows:

� If you do not need to examine additional rows, exit the
mi_next_row() and mi_get_result() loops normally and close the
cursor with mi_close_statement().

� If you do need to fetch any rows remaining on the database server
into the cursor, execute the mi_fetch_statement() function again
after the following conditions occur:

❑ The mi_get_result() function returns MI_DML (for a SELECT
statement).

❑ The number of query rows that mi_next_row() obtains is less
than the number of rows that mi_fetch_statement() fetches
(num_rows) from the database server.

You can obtain the number of query rows with the
mi_result_row_count() function.
8-42 IBM Informix DataBlade API Programmer’s Guide

Executing Prepared SQL Statements
The mi_fetch_statement() for Figure 8-14 on page 8-41 specified a value of
zero (0) as the number of rows to fetch, which tells the function to fetch all
retrieved rows. Figure 8-15 shows the state of the row cursor that Figure 8-13
on page 8-39 defines when the mi_fetch_statement() function specifies a
num_rows argument of three instead of zero, as follows:

mi_fetch_statement(stmt_desc, MI_CURSOR_NEXT, 0, 3);

The following code fragment uses the mi_open_prepared_statement()
function to assign an input-parameter value, execute a SELECT statement,
and retrieve the query rows:

mi_string *cmd =
"select order_num from orders \
 where customer_num = ?;";

MI_STATEMENT *stmt;
...
if ((stmt = mi_prepare(conn, cmd, NULL)) == NULL)

mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_prepare() failed");

values[0] = 104;
types[0] = "integer";
lengths[0] = 0;
nulls[0] = MI_FALSE;

/* Open the read-only cursor to hold the query rows */
if (mi_open_prepared_statement(stmt, MI_SEND_READ,

MI_TRUE, 1, values, lengths, nulls, types,
"cust_select", retlen, rettypes)
!= MI_OK)

mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_open_prepared_statement() failed");

Figure 8-15
Fetching First Three
Rows into a Cursor

Next row to
retrieve

Connection Descriptor
Retrieved rows

Database server

Row cursor

DataBlade API module

6
4
8

5

Cursor position
3

6
4
8

Server
Executing SQL Statements 8-43

Executing Prepared SQL Statements
/* Fetch the retrieved rows into the cursor */
if (mi_fetch_statement(stmt, MI_CURSOR_NEXT, 0, 3) != MI_OK)

mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_fetch_statement() failed");

if (mi_get_result(conn) != MI_ROWS)
mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_get_result() failed or found nonquery statement");

/* Retrieve the query rows from the cursor */
if (!(get_data(conn)))

mi_db_error_raise(NULL, MI_EXCEPTION,
"get_data() failed");

/* Close the cursor */
if (mi_close_statement(stmt) == MI_ERROR)

mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_close_statement() failed");

/* Release resources */
if (mi_drop_prepared_statement(stmt) == MI_ERROR)

mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_drop_prepared_statement() failed");

if (mi_close(conn) == MI_ERROR)
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_close() failed");

This code fragment sends its input-parameter value in binary representation.
The code fragment is part of a C UDR because it passes the INTEGER input-
parameter value by value. For more information, see “Assigning Values to
Input Parameters” on page 8-44. ♦

Assigning Values to Input Parameters

For a parameterized SQL statement, your DataBlade API module must
perform the following steps:

1. Specify input parameters in the text of the SQL statement.

2. Send the SQL statement to the database server for parsing.

3. Provide input-parameter values when the SQL statement executes.

The mi_prepare() statement performs these first two steps for a parame-
terized statement. For more information, see “Preparing an SQL Statement”
on page 8-19.
8-44 IBM Informix DataBlade API Programmer’s Guide

Executing Prepared SQL Statements
The mi_exec_prepared_statement() and mi_open_prepared_statement()
functions assign values to input parameters when they send a parameterized
SQL to the database server for execution. To provide a value for an input
parameter, you pass information in several parallel arrays:

� Parameter-value array

� Parameter-value type array

� Parameter-value length array

� Parameter-value null array

These input-parameter value arrays are similar to the input-parameter arrays
in the statement descriptor (see Figure 8-10 on page 8-26). They have an
element for each input parameter in the prepared statement. However, they
are unlike the input-parameter arrays in the statement descriptor in the
following ways:

� An input-parameter value array describes the actual value for an
input parameter.

An input-parameter array describes the column with which the
input parameter is associated.

� You must allocate and manage an input-parameter value array.

The DataBlade API does not provide accessor functions for input-
parameter value arrays. For each input parameter, your DataBlade
API module must declare, allocate, and assign a value to the array.
Executing SQL Statements 8-45

Executing Prepared SQL Statements
All of the input-parameter-value arrays have zero-based indexes. Figure 8-16
shows how the information at index position 1 of these arrays holds the
input-parameter-value information for the second input parameter of a
prepared statement.

You specify the number of input-parameter values in the input-parameter
value arrays with the nparams argument of mi_exec_prepared_statement()
or mi_open_prepared_statement().

The following sections provide additional information about each of the
input-parameter-value arrays.

Parameter-Value Array

The parameter-value array, values, is the fifth argument of the
mi_exec_prepared_statement() and mi_open_prepared_statement()
functions. Each element of the parameter-value array is a pointer to an
MI_DATUM structure that holds the value for each input parameter. The
format of this value depends on:

� Whether the control mode for the input-parameter data is text or
binary representation:

The params_are_binary argument of mi_exec_prepared_statement()
or mi_open_prepared_statement() indicates this control mode. For
more information on the format of data for different control modes,
see Figure 8-5 on page 8-15.

Figure 8-16
Arrays for

Initialization of
Input Parameters

.

.

.

values
0
1
2

n

lengths nulls types

.

.

.

0
1
2

n

.

.

.

0
1
2

n

.

.

.

0
1
2

n

All information for the second input parameter
(at index position 1)
8-46 IBM Informix DataBlade API Programmer’s Guide

Executing Prepared SQL Statements
� In binary representation, whether the MI_DATUM value is passed by
reference or by value:

❑ For C UDRs, the data type of the value determines the passing
mechanism. ♦

❑ For client LIBMI applications, pass all values (regardless of data
type) by reference. ♦

For more information, see “Contents of an MI_DATUM Structure”
on page 2-51.

For the prepared INSERT statement in Figure 8-7 on page 8-20, the code
fragment in Figure 8-17 assigns values to the input parameters for the
customer_num and company columns. These values are in text represen-
tation because the params_are_binary argument of
mi_exec_prepared_statement() is MI_FALSE.

Server

Client

/* Initialize input parameter for customer_num column */
values[0] = "0"; /* value of '0' for SERIAL customer_num */
lengths[0] = 0; /* SERIAL is built-in type: no length */
types[0] = "serial";
nulls[0] = MI_FALSE;

/* Initialize input parameter for company column */
stcopy("Trievers Inc.", strng);
values[1] = strng;
lengths[1] = stleng(strng); /* CHAR types need length! */
types[1] = "char(20)";
nulls[1] = MI_FALSE;

/* Send INSERT statement to database server for execution along
* with the input-parameter-value arrays
*/

mi_exec_prepared_statement(insrt_stdesc, 0, MI_FALSE, 2
values, lengths, nulls, types, 0, NULL);

Figure 8-17
Executing a

Statement That
Contains Text-

Representation
Input Parameters
Executing SQL Statements 8-47

Executing Prepared SQL Statements
The following code fragment initializes the input parameters to the same
values but it assigns these values in binary representation instead of text
representation:

/* Initialize input parameter for customer_num column */
values[0] = 0; /* value of 0 for SERIAL customer_num */
lengths[0] = 0; /* SERIAL is built-in type: no length */
types[0] = "serial";
nulls[0] = MI_FALSE;

/* Initialize input parameter for company column */
values[1] = mi_string_to_lvarchar("Trievers Inc.");
lengths[1] = 0; /* CHAR types need length! */
types[1] = "char(20)";
nulls[1] = MI_FALSE;

/* Send INSERT statement to database server for execution along
* with the input-parameter-value arrays
*/

mi_exec_prepared_statement(insrt_stdesc, 0, MI_TRUE, 2
values, lengths, nulls, types, 0, NULL);

In the preceding code fragment, the first element of the values array is
assigned an integer value. Because this code executes in a C UDR, the integer
value in the MI_DATUM structure of this array must be passed by value. ♦

In a client LIBMI application, all values in MI_DATUM structure must be
passed by reference. Therefore, to assign values to input parameters within a
client LIBMI application, you must assign all values in the values array as
pointers to the actual values.

The preceding code fragment assumes that it executes within a C UDR
because it passes the value for the first input parameter (an INTEGER column
by value). In a client LIBMI application, you cannot use the pass-by-value
mechanism. Therefore, the assignment to the first input parameter must pass
a pointer to the integer value, as follows:

col1 = 0;
values[0] = &col1;

♦

Server

Client
8-48 IBM Informix DataBlade API Programmer’s Guide

Executing Prepared SQL Statements
Parameter-Value Length Array

The parameter-value length array, lengths, is the sixth argument of the
mi_exec_prepared_statement() and mi_open_prepared_statement()
functions. Each element of the parameter-value length array is the integer
length (in bytes) of the data type for the input-parameter value.

The meaning of the values in the lengths array depends on the control mode
of the input-parameter values, as follows:

� For input-parameter values that are in text representation, the lengths
array lists the lengths of the text strings.

Make sure the lengths value matches the length of the null-
terminated string of the input-parameter value (minus the null ter-
minator). Use a library function, such as strlen() or stleng(), to
determine the string length.

� For input-parameter values that are in binary representation, the
database server does not need to access the entry of the parameter-
value length array.

Lengths are not needed in the following special cases:

❑ Input parameters whose data types (such as mi_integer) are
passed with fixed lengths

❑ Input parameters with string values are passed in varying-
length structures

A varying-length structure holds its own data length.

Important: Even though there are some cases in which the database server does not
read the length of the input-parameter value, it is recommended that you always
specify lengths to maintain consistency of code.

Parameter-Value Null Array

The parameter-value null array, nulls, is the seventh argument of the
mi_exec_prepared_statement() and mi_open_prepared_statement()
functions. Each element of the parameter-value null array is either:

� MI_FALSE: the input-parameter value is not an SQL NULL value

� MI_TRUE: the input-parameter value is an SQL NULL value
Executing SQL Statements 8-49

Executing Prepared SQL Statements
Parameter-Value Type Array

The parameter-value type array, types, is the eighth argument of the
mi_exec_prepared_statement() and mi_open_prepared_statement()
functions. Each element of the parameter-value type array is a pointer to a
string that identifies the data type of the input-parameter value. The type
names must match those that the mi_type_typename() function would
generate for the data type.

If the prepared statement has input parameters and is not an INSERT
statement, you must use the types array to supply the data types of the input
parameters. Otherwise, you can pass in a NULL-valued pointer as the types
argument.

Determining Control Mode for Query Data

The mi_exec_prepared_statement() and mi_open_prepared_statement()
functions specify the control mode for the data of a prepared query in their
bit-mask control argument. To determine the control mode, set the control
argument as the following table shows.

For mi_exec_prepared_statement(), MI_BINARY is the only valid control-
flag constant for the control argument. Therefore, a default value of zero (0)
as the control argument indicates text representation of the data. The
following mi_exec_prepared_statement() call specifies a control mode of
binary representation:

mi_open_prepared_statement(stmt_desc, MI_BINARY, ...);

Control Mode Control Argument

Text representation Zero (default)

Binary representation MI_BINARY
8-50 IBM Informix DataBlade API Programmer’s Guide

Executing Prepared SQL Statements
For mi_open_prepared_statement(), the control argument indicates the
cursor characteristics in addition to the control mode. To specify a text repre-
sentation, omit the MI_BINARY control-flag constant from the control
argument. Including MI_BINARY in the control argument indicates that
results are to be returned in binary representation. The following
mi_open_prepared_statement() call specifies an update scroll cursor and a
control mode of binary representation:

mi_open_prepared_statement(
stmt_desc,
MI_BINARY + MI_SEND_SCROLL,
...);

For information on how to specify cursor characteristics to
mi_open_prepared_statement(), see “Defining an Explicit Cursor” on
page 8-35. For more information on the control mode, see “Control Modes for
Query Data” on page 8-14.

Releasing Prepared-Statement Resources

When your DataBlade API module no longer needs a prepared statement,
you can release the resources that it uses with the following DataBlade API
functions.

Closing a Statement Cursor

For prepared queries (SQL statements that return rows), the statement
descriptor has a cursor associated with it. The scope of this cursor is from the
time it is opened, with mi_exec_prepared_statement() or
mi_open_prepared_statement(), until one of the following events occurs:

� The mi_close_statement() function closes the cursor (explicit
cursors only).

� The mi_drop_prepared_statement() function frees the statement
descriptor.

Prepared-Statement Resource DataBlade API Function

Explicit cursor mi_close_statement()

Statement descriptor (including any cursor) mi_drop_prepared_statement()
Executing SQL Statements 8-51

Executing Prepared SQL Statements
� The mi_close() function closes the connection.

� The SQL statement that invoked the C UDR ends. ♦

To conserve resources, use the mi_close_statement() function to explicitly
close an explicit cursor once your DataBlade API module no longer needs it.
The mi_close_statement() function is the destructor function for an explicit
cursor that is associated with a statement descriptor. That is, it frees the
cursor that the mi_open_prepared_statement() function opens. Until you
drop the prepared statement with mi_drop_prepared_statement(), you can
still reopen an explicit cursor with another call to
mi_open_prepared_statement().

Tip: The mi_close_statement() function performs the same basic task for a
DataBlade API module as the SQL CLOSE statement does for an IBM Informix
ESQL/C application.

The mi_close_statement() function is not the destructor function for an
implicit cursor that is associated with a statement descriptor. That is, it does
not free the cursor that the mi_exec_prepared_statement() function opens.
To close an implicit cursor, use the mi_drop_prepared_statement() function.

Dropping a Prepared Statement

A statement descriptor describes a prepared statement. However, this
DataBlade API structure is not allocated from the memory-duration pools.
Instead, its scope is from the time it is created with mi_prepare() until
whichever of the following events occurs first:

� The mi_drop_prepared_statement() function frees the statement
descriptor.

� The mi_close() function closes the connection.

� The SQL statement that invoked the C UDR ends. ♦

To conserve resources, use the mi_drop_prepared_statement() function to
explicitly deallocate the statement descriptor once your DataBlade API
module no longer needs it. The mi_drop_prepared_statement() function is
the destructor function for a statement descriptor. It frees the statement
descriptor and any resources (such as an implicit or explicit cursor) that are
associated with the statement descriptor. These resources include the
prepared statement and any associated row cursor. Once you drop a
prepared statement, you must reprepare it before it can be executed again.

Server

Server
8-52 IBM Informix DataBlade API Programmer’s Guide

Executing Multiple SQL Statements
Executing Multiple SQL Statements
A DataBlade API statement-execution function can send more than one SQL
statement to the database server at a time. In this case, the statement string
contains several SQL statements, each terminated by a semicolon (;). When
the statement string contains more than one SQL statement, the
mi_get_result() function executes for each statement in the string.

Suppose you send the following statement string for execution:

"insert into tab1 (id) values (1); \
insert into tab1 (id) values (2); \
insert into tab1 (id) values (3); "

For the preceding statement string, the mi_get_result() function executes
four times, three times returning an MI_DML status for each INSERT
statement and once to return the final MI_NO_MORE_RESULTS status. For
more information on mi_get_result(), see “Processing Statement Results” on
page 8-54.

Keep in mind that the effects of one part of the statement string are not visible
to other parts. If one SQL statement depends on an earlier one, do not put
them both in the same statement string. For example, the following statement
string causes an error:

mi_exec(myconn, "create table tab1(a int, b int); \
insert into tab1 values (1,2);",
MI_QUERY_NORMAL);

The preceding mi_exec() call generates an error because the INSERT
statement cannot see the result of the CREATE TABLE statement. The solution
is to call mi_exec() twice, as follows:

/* Execute CREATE TABLE statement in first mi_exec() call */
mi_exec(myconn, "create table tab1 (a integer, b integer);",

MI_QUERY_NORMAL);
mi_query_finish(myconn);

/* Execute INSERT statement in second mi_exec() call */
mi_exec(myconn, "insert into tab1 values (1,2);",

MI_QUERY_NORMAL);
mi_query_finish(myconn);
Executing SQL Statements 8-53

Processing Statement Results
Processing Statement Results
Once a DataBlade API statement-execution function (see Figure 8-1 on
page 8-5) executes, the SQL statement that it sent to the database server is the
most recent SQL statement on the connection. This most recent SQL statement
is called the current statement. Information about the current statement is
associated with a connection. Only one statement is current at a time.

After you send the current statement to the database server for execution,
your DataBlade API module must process the statement results by:

� Determining the status of the current statement, including whether
results are available

� Retrieving any results

Retrieving the results of an SQL statement is a multiphase process that
involves several levels of nested iteration, as the following table shows.

The first step in processing statement results is to determine the status of the
current statement with the mi_get_result() function, as follows:

� Execute the mi_get_result() function in a loop that iterates for each
current statement.

� Interpret the statement status that mi_get_result() returns for each
current statement.

Statement-Processing
Loop Description More Information

mi_get_result() loop Outermost loop of the row-retrieval code
iterates through each current statement.

“Executing the mi_get_result()
Loop” on page 8-55

mi_next_row() loop Middle loop of the row-retrieval code iterates
through each row that the current statement
has retrieved.

“Executing the mi_next_row()
Loop” on page 8-67

Column-value loop Innermost loop of the row-retrieval code
iterates through each column value of a query
row. This loop uses the mi_value() or
mi_value_by_name() function to obtain the
column values.

“Executing the Column-Value
Loop” on page 8-69
8-54 IBM Informix DataBlade API Programmer’s Guide

Executing the mi_get_result() Loop
For a sample function that shows one way to use mi_get_result() to process
statement results, see “Example: The get_data() Function” on page 8-86.

Executing the mi_get_result() Loop
The mi_get_result() function is usually executed in a loop after one of the
DataBlade API statement-execution functions (in Figure 8-1 on page 8-5)
sends a statement to the database server. The function is normally called in
the outermost loop of row-retrieval code. This loop executes for each of
several states of the database server as it processes statement results. These
states are represented as the status of the current statement. The
mi_get_result() function can return the following status information.

You can use a switch statement based on these statement-status constants to
determine how to handle the status of the current statement. The
mi_get_result() loop terminates when mi_get_result() returns the status
MI_NO_MORE_RESULTS. Think of the mi_get_result() loop as an iteration
over the states of the database server.

Information About Current SQL Statement Statement-Status Constant

The current statement has generated an error. MI_ERROR

The current statement is a data definition (DDL)
statement that has completed successfully.

MI_DDL

The current statement is a data manipulation (DML)
statement that has completed successfully.

MI_DML

The current statement is a query that has executed
successfully.

MI_ROWS

No more results are pending for the current statement. MI_NO_MORE_RESULTS
Executing SQL Statements 8-55

Executing the mi_get_result() Loop
Handling Unsuccessful Statements

The mi_get_result() function returns a status of MI_ERROR to indicate that
the current statement did not execute successfully. When mi_get_result()
returns this status, you can use the mi_db_error_raise() function to raise a
database server exception. If you have registered a callback on the
MI_Exception event type, you can obtain an SQL status variable (SQLCODE or
SQLSTATE) from the error descriptor that the database server passes to the
callback. This SQL status variable can help determine the cause of the failure.
For more information on how to handle the MI_Exception event, see
“Database Server Exceptions” on page 10-32.

Handling a DDL Statement

The mi_get_result() function returns a status of MI_DDL to indicate that the
current statement was a DDL statement that has successfully executed. When
you receive the MI_DDL statement status, you can use the
mi_result_command_name() function to obtain the name of the DDL
statement that executed as the current statement.

The mi_get_result() function returns an MI_DDL status for any SQL
statement that is valid in a UDR and is not a DML statement (see Figure 8-18
on page 8-57). For example, mi_get_result() returns the MI_DDL status for a
GRANT statement, even though SQL does not strictly consider GRANT as a
DDL statement. However, the following SQL statements are not valid with a
UDR:

ALTER ACCESS_METHOD
ALTER FRAGMENT
ALTER INDEX
ALTER OPTICAL CLUSTER
ALTER TABLE
CREATE ACCESS_METHOD
CREATE CAST
CREATE DISTINCT TYPE
CREATE OPCLASS
CREATE ROLE
CREATE ROW TYPE
CREATE TRIGGER
DROP ACCESS_METHOD
DROP CAST

DROP INDEX
DROP OPCLASS
DROP OPTICAL CLUSTER
DROP ROLE
DROP ROW TYPE
DROP SYNONYM
DROP TABLE
DROP TRIGGER
DROP TYPE (distinct types only)
DROP VIEW
RENAME COLUMN
RENAME TABLE
SET CONSTRAINTS
8-56 IBM Informix DataBlade API Programmer’s Guide

Executing the mi_get_result() Loop
For any valid DDL statement, the mi_get_result() loop returns the following
states of the database server:

1. An MI_DDL status indicates that the SQL statement has successfully
completed.

2. In the next iteration of the mi_get_result() loop, mi_get_result()
returns MI_NO_MORE_RESULTS.

Handling a DML Statement

The mi_get_result() function returns a status of MI_DML to indicate that the
current statement is a data manipulation (DML) statement that has success-
fully executed. SQL contains the DML statements that Figure 8-18 lists.

Figure 8-18
SQL Statements with an MI_DML Status

Tip: The mi_get_result() function returns the MI_DML status when the current
statement is the EXECUTE FUNCTION statement. This SQL statement can return
rows of data and therefore is handled in the same way as the SELECT statement.
However, execution of the EXECUTE PROCEDURE statement causes a statement
status of MI_DDL because this SQL statement never returns rows.

DML Statement Purpose
Statement-Status
Constant

DELETE Remove a row from a database table MI_DML

INSERT Add a new row to a database table MI_DML

UPDATE Modify values in an existing row of a
database table

MI_DML

SELECT Fetch a row or group of rows from the
database

MI_ROWS,
MI_DML

EXECUTE
FUNCTION

Execute a user-defined function MI_ROWS,
MI_DML
Executing SQL Statements 8-57

Executing the mi_get_result() Loop
When you receive the MI_DML statement status, you can use the DataBlade
API functions in the following table to obtain information about the results of
the current statement.

Important: If you want a count of the numbers of rows that satisfy a given query, but
you do not want the data in the rows, you can run a query that uses the COUNT
aggregate more efficiently than you can run a query that returns the actual rows. For
example, the following query counts the number of rows in mytable:

SELECT COUNT(*) FROM mytable;

Result Information DataBlade API Function Additional Information

The name of the
DML statement
that executed as
the current
statement

mi_result_command_name() This function might be useful
in an interactive application in
which the statement sent is not
determined until runtime. Use
this routine only when
mi_get_result() reports that a
DML or DDL statement has
completed.

The number of
rows that the
current
statement
affected

mi_result_row_count() This function is applicable
only when mi_get_result()
reports that a DML statement
completed.
8-58 IBM Informix DataBlade API Programmer’s Guide

Executing the mi_get_result() Loop
Figure 8-19 shows a sample function, named handle_dml(), that handles the
MI_DML statement status that mi_get_result() returns.

The handle_dml() function in “Sample Function to Handle MI_DML
Statement Status” on page 8-59 uses the mi_result_command_name() and
mi_result_row_count() functions to obtain additional information about the
DML statement. The function returns the number of rows affected (from
mi_result_row_count()) to the calling routine.

The handle_dml() function in Figure 8-19 assumes it is called from within a
C UDR because it uses the DPRINTF statement. The DPRINTF statement is part
of the DataBlade API tracing feature and available only to C UDRs. The first
DPRINTF statement in Figure 8-19 sends the name of the current statement to
a trace file when the current trace level is 11 or higher. For more information
on tracing, see “Using Tracing” on page 11-46. ♦

mi_integer handle_dml(conn)
MI_CONNECTION *conn;

{
char *cmd;
mi_integer count;

/* What kind of statement was it? */
cmd = mi_result_command_name(conn);
DPRINTF("trc_class", 11,

("Statement executed was %s", cmd));

/* Get # rows affected by statement */
if ((count = mi_result_row_count(conn)) == MI_ERROR)

{
DPRINTF("trc_class", 11,

("Cannot get row count\n"));
return(-1);
}

else if (count = 0)
{
DPRINTF("trc_class", 11,

("No rows returned from query\n"));
}

else
DPRINTF("trc_class", 11,

("Rows Returned\n"));

return (count);
}

Figure 8-19
Sample Function to

Handle MI_DML
Statement Status

Server
Executing SQL Statements 8-59

Executing the mi_get_result() Loop
For the handle_dml() function to execute in a client LIBMI application, it
would need to replace the DPRINTF statements with a client-side output
function such as printf() or fprintf(). The following line shows the use of the
printf() function to display the name of the current statement:

printf("Statement executed was %s", cmd);

♦

For an example of how to call handle_dml(), see the MI_DML case of the
switch statement in “Example: The get_results() Function” on page 8-62.

For a successful UPDATE, INSERT, and DELETE statement, the
mi_get_result() loop returns the following states of the database server:

1. An MI_DML status indicates that the DML statement has successfully
completed.

2. In the next iteration of the mi_get_result() loop, mi_get_result()
returns MI_NO_MORE_RESULTS.

For a successful SELECT (or EXECUTE FUNCTION) statement, the
mi_get_result() loop returns the following states of the database server:

1. An MI_ROWS statement status indicates that the current statement is
a query that has executed successfully and whose cursor is ready for
processing of query rows.

2. After all query rows are retrieved, the next iteration of the
mi_get_result() loop returns an MI_DML statement status to indicate
that the SELECT (or EXECUTE FUNCTION) has successfully
completed.

3. The next iteration of the mi_get_result() loop returns the
MI_NO_MORE_RESULTS status to indicate that statement processing
is complete.

For more information, see “Handling Query Rows” on page 8-61.

Client
8-60 IBM Informix DataBlade API Programmer’s Guide

Executing the mi_get_result() Loop
Handling Query Rows

The mi_get_result() function returns a status of MI_ROWS to indicate that a
current statement is a query that has successfully executed and a cursor is
open. A query can be instigated by a SELECT or an EXECUTE FUNCTION
statement. The MI_ROWS statement status does not indicate that rows are in
the cursor. If the query has not found any matching rows (the NOT FOUND
condition), mi_get_result() still returns MI_ROWS. To retrieve rows from the
cursor, use the mi_next_row() statement. If no rows exist in the cursor,
mi_next_row() returns a NULL-valued pointer. For more information, see
“Retrieving Query Data” on page 8-64.

Handling “No More Data”

The mi_get_result() function returns a status of MI_NO_MORE_RESULTS to
indicate that statement processing for the current statement is complete. The
function can return MI_NO_MORE_RESULTS when any of the following
conditions occur for the current statement:

� When the cursor is empty after mi_open_prepared_statement() has
opened the cursor and before mi_fetch_statement() has fetched
rows into this cursor

� After mi_next_row() has retrieved the last row from the cursor

� When the query is complete, after mi_query_finish() or
mi_query_interrupt() has executed

� When any non-query statement is complete: after mi_get_result()
has returned the MI_DML or MI_DDL statement status

Tip: When a SELECT or FETCH statement encounters NOT FOUND (or END OF
DATA), the database server sets SQLSTATE to "02000" (class = "02"). However, the
NOT FOUND condition does not generate a database server exception.
Executing SQL Statements 8-61

Example: The get_results() Function
Example: The get_results() Function
The following user function, get_results(), demonstrates the
mi_get_result() row-retrieval loop, controlled with the mi_get_result()
function. It also demonstrates the use of the mi_result_command_name()
function to get the name of the current statement and the
mi_result_row_count() function to get the number of rows affected by this
statement.

/*
* FUNCTION: get_results()
* PURPOSE: Get results of current statement.
* Obtain the kind of statement and the number of
* rows affected.
* Return the number of rows affected.
*
* CALLED BY: send_statement(), see page 8-17.
*/

#include "mi.h"

mi_integer get_results(MI_CONNECTION *conn)
{

mi_integer count;
mi_integer result;
char cmd[25];

while ((result = mi_get_result(conn))
!= MI_NO_MORE_RESULTS)

{
switch(result)

{
case MI_ERROR:

mi_db_error_raise(conn, MI_EXCEPTION,
"Could not get statement results (mi_get_result)\n");

case MI_DDL:
count = 0;
break;

case MI_DML:
count = handle_dml(conn);
break;

case MI_ROWS:
count = get_data(conn);
break;
8-62 IBM Informix DataBlade API Programmer’s Guide

Example: The get_results() Function
default:
mi_db_error_raise(conn, MI_EXCEPTION,

"Unknown statement results (mi_get_result)\n");

} /* end switch */
} /* end while */

return (count);
}

When a query returns rows of data, the mi_get_result() loop in get_results()
executes three times:

1. The first iteration of the mi_get_result() loop returns MI_ROWS to
indicate that the query has successfully opened a cursor.

The get_results() function executes the MI_ROWS case of the switch
statement. This function then calls another user function, get_data(),
to iterate over all query rows. For the implementation of the
get_data() function, see “Example: The get_data() Function” on
page 8-86.

2. The second iteration of the mi_get_result() loop returns MI_DML to
indicate that the cursor processing has completed and the query has
successfully completed.

The get_data() function has handled the rows in the cursor so no
more query rows remain to be processed. The get_results() function
executes the MI_DML case of the switch statement, which calls the
handle_dml() function to obtain the name and number of state-
ments from the current statement. For the implementation of the
handle_dml() function, see Figure 8-19 on page 8-59.

3. The third iteration of the mi_get_result() loop returns
MI_NO_MORE_RESULTS to indicate that processing for the query is
complete.

The MI_NO_MORE_RESULTS value from mi_get_result() causes the
mi_get_result() loop to terminate.
Executing SQL Statements 8-63

Retrieving Query Data
Retrieving Query Data
When mi_get_result() returns the MI_ROWS statement status, the query has
executed and a cursor is open, as follows:

� For SQL statements sent with mi_exec() or
mi_exec_prepared_statement(), the database server opens an
implicit cursor. This cursor contains the retrieved rows, with the
database server controlling the rows that are fetched.

� For SQL statements sent with mi_open_prepared_statement(), the
database server opens an explicit cursor. This cursor is empty, with
the mi_fetch_statement() controlling the rows that are fetched.

The DataBlade API module receives the query data on a row-by-row basis. To
handle the rows that the current statement has retrieved, the DataBlade API
creates the following data type structures:

� The row descriptor is the data-description portion, which contains
information such as row size and column data types.

� The row structure is the data portion, which holds one row of data
that the query returns.

A one-to-one correspondence occurs between row descriptors and rows.
Each row descriptor has an associated row structure.

In a C UDR, the row structure and row descriptor are part of the same data
type structure. The row structure is just a data buffer in the row descriptor
that holds copies of the column values of a row. ♦

In a client LIBMI application, the row structure and row descriptor are
separate structures. ♦

The row descriptor and row structure are valid until the next row is fetched.
A row descriptor might need to change on a row-to-row basis for jagged
rows. (For more information, see “Obtaining Jagged Rows” on page 8-81.) A
row structure holds each row, one row at a time.

Server

Client
8-64 IBM Informix DataBlade API Programmer’s Guide

Obtaining Row Information
To retrieve the row of query data

1. Get a copy of the row descriptor for a query row.

2. Get the number of columns from the row descriptor.

3. Retrieve query rows, one row at a time.

4. For every query row, get the value of any desired column.

Obtaining Row Information
A row descriptor (MI_ROW_DESC) contains information about the columns in
a row. For example, the row descriptor for the following query would contain
two columns, order_num and order_date:

SELECT order_num, order_date FROM orders
WHERE ship_date > "07/15/98";

To obtain a row descriptor for a row, you can use one of the DataBlade API
functions in the following table.

These functions allocate the memory for the row descriptor that they allocate.

To obtain a row descriptor for the query rows in an implicit or explicit cursor,
use the mi_get_row_desc_without_row() function. To free this row
descriptor, complete the query. For more information, see “Completing
Execution” on page 8-90.

Use DataBlade API Function Description

For rows with
the same type
and size:

mi_get_row_desc_without_row() Returns a row descriptor
for the current statement

mi_get_statement_row_desc() Returns a row descriptor
for a prepared statement

For rows of
different types
or sizes
(jagged rows):

mi_get_row_desc() Returns a row descriptor
associated with a
particular row structure

mi_get_row_desc_from_type_desc() Returns a row descriptor
based on a type descriptor
Executing SQL Statements 8-65

Obtaining Column Information
Obtaining Column Information
Once you have a row descriptor for the row, you can obtain information
about the columns with the row-descriptor access functions, which
Figure 5-11 on page 5-46 shows. For each column in an SQL statement, you
can obtain information about the column (such as its data type) from the row
descriptor.

You can use the mi_column_count() function to determine how many
columns are in the row. The number of columns in the row descriptor is the
number of columns that the query has retrieved. Use this value to control the
number of times to call the mi_value() or mi_value_by_name() function.
Each call to mi_value() or mi_value_by_name() passes back one column
value from the row structure to the DataBlade API module. For more infor-
mation, see “Obtaining Column Values” on page 8-68.

Retrieving Rows
After a query executes, a cursor holds the query rows. The mi_next_row()
function takes the following actions to obtain the rows from a cursor:

� Obtains access to the current row

� Executes the mi_next_row() function in a loop that iterates for each
query row

For a sample function that shows one way to use mi_next_row() to retrieve
query rows, see “Example: The get_data() Function” on page 8-86.

Accessing the Current Row

The mi_next_row() function accesses rows in the cursor that is associated
with the current statement. Because a current statement is associated with a
connection, you must pass a connection descriptor into mi_next_row() to
identify the cursor to access. From this cursor, mi_next_row() obtains the
current row. The current row is the row in the cursor that the cursor position
identifies. Each time mi_next_row() retrieves a row, this cursor position
moves by one. One cursor per connection is current and within this cursor,
only one row at a time is current.
8-66 IBM Informix DataBlade API Programmer’s Guide

Retrieving Rows
The mi_next_row() function returns the current row in an implicit row
structure (MI_ROW structure). The row structure stores the column values of
a single query row. The contents of this row structure are valid until
mi_next_row() returns the next row. You can obtain column values from the
row structure with the mi_value() or mi_value_by_name() function. For
more information, see “Obtaining Column Values” on page 8-68.

This implicit row structure is freed when the query is completed, which can
occur in any of the following ways:

� When mi_next_row() returns the NULL-valued pointer to indicate
no more rows exist in the cursor

� When the mi_query_finish() function executes

� When the connection is closed

Executing the mi_next_row() Loop

The mi_next_row() function is usually the middle loop of row-retrieval
code. In the mi_next_row() loop, each call to mi_next_row() returns one
query row from the cursor that is associated with the current statement. This
query row is the current row only until the next iteration of the loop, when
mi_next_row() retrieves another row from the cursor. This loop terminates
when mi_next_row() returns a NULL-valued pointer and its error argument
is zero (0). These conditions indicate either that no more rows exist in the
cursor or that the cursor is empty. Think of the mi_next_row() loop as an
iteration over the matching rows of the query.

The contents of a row structure become invalid as soon as you fetch a new
row into it with mi_next_row(). If you want to save the row values that you
obtain with mi_value() or mi_value_by_name(), copy the values that these
functions pass back before the next call to mi_next_row().

Tip: If your DataBlade API module requires simultaneous access to several rows at a
time, you can use a save set to hold rows. Save sets are useful for comparing or
processing multiple rows. For more information, see “Using Save Sets” on
page 8-95.

The mi_next_row() function allocates memory for the row structure that it
returns. To free this row structure, you must complete the query. For more
information, see “Completing Execution” on page 8-90.
Executing SQL Statements 8-67

Obtaining Column Values
As long as rows remain to be retrieved from the cursor, the mi_get_result()
function returns a statement status of MI_ROWS. Therefore, you cannot exit
the mi_get_result() loop until one of the following actions occurs:

� The mi_next_row() loop continues until no more rows exist in the
cursor. That is, mi_next_row() returns a NULL-valued pointer.

� You terminate the mi_get_result() loop prematurely with a call to
mi_query_finish() or mi_query_interrupt().

Obtaining Column Values
When the mi_next_row() function retrieves a query row from the cursor, it
returns this row in a row structure. The DataBlade API provides the following
functions to get actual column values from a row structure.

Use mi_value() or mi_value_by_name() to retrieve columns from the
current row as follows:

� Execute the mi_value() or mi_value_by_name() function in a loop
that iterates for each desired column value.

� Interpret the value status that these functions return to correctly
access the column value.

The final section, “Example: The get_data() Function” on page 8-86, contains
sample code that shows one way to use mi_value() to get column values.

DataBlade API Function Obtaining a Column Value

mi_value() Obtains a column value, as identified by its column
identifier, from a row structure

mi_value_by_name() Obtains a column value, as identified by its column name,
from a row structure
8-68 IBM Informix DataBlade API Programmer’s Guide

Obtaining Column Values
Executing the Column-Value Loop

The mi_value() or mi_value_by_name() function is usually called in the
innermost loop of row-retrieval code. In the column-value loop, mi_value()
or mi_value_by_name() retrieves a column value from the current row. This
loop terminates when a value is retrieved for every column in the row (or
every column your DataBlade API module needs to access). You can obtain
the number of columns in a row with the mi_column_count() function.

Accessing the Columns

The mi_value() and mi_value_by_name() functions access the row
structure for the current row. The current row is in the cursor that is
associated with the current statement. Because a current statement is
associated with a connection, you must pass a connection descriptor into
mi_value() or mi_value_by_name() to identify the row to access.

These functions pass back the column value as an MI_DATUM value. The
format of this value depends on whether the control mode for the query data
is text or binary representation. Each of the DataBlade API statement-
execution functions indicates the control mode for query data. For more
information, see “Control Modes for Query Data” on page 8-14 and “Deter-
mining Control Mode for Query Data” on page 8-50.

To obtain this column value, your DataBlade API module must perform the
the following steps:

� Declare a value buffer to hold the column value that mi_value() or
mi_value_by_name() passes back.

� Obtain the column value from the value buffer, based on the value
status that mi_value() or mi_value_by_name() returns.
Executing SQL Statements 8-69

Obtaining Column Values
Passing In the Value Buffer

To obtain the column value, you must pass in a pointer to a value buffer as an
argument to mi_value() or mi_value_by_name(). The value buffer is the
place that these functions put the column value that they retrieve from the
current row. Both mi_value() and mi_value_by_name() represent a column
value as a pointer to an MI_DATUM structure.

You can declare the value buffer in either of the following ways:

� If you know the data type of the column value, declare the value
buffer of this data type.

Declare the value buffer as a pointer to the column data type, regard-
less of whether the data type is passed by reference or by value.

� If you do not know the data type of the column value, declare the
value buffer with the MI_DATUM data type.

Your code can dynamically determine column type with the
mi_column_type_id() or mi_column_typedesc() function. You can
then convert (or cast) the MI_DATUM value to the data type that you
need.

The mi_value() and mi_value_by_name() functions allocate memory for
the value buffer. However, this memory is only valid until a new SQL
statement executes or until the query completes. In addition, the DataBlade
API might overwrite the value-buffer data in any of the following cases:

� The mi_next_row() function is called on the same connection.

� A call to mi_row_create() uses the row descriptor.

� The mi_row_free() function is called on the row structure.

� The mi_row_desc_free() function is called on the row descriptor.

If you need to save the value-buffer data for later use, you must create your
own copy of the data in the value buffer.

Tip: If your DataBlade API module requires simultaneous access to several rows at a
time, you can use a save set to hold rows. Save sets are useful for comparing or
processing multiple rows. For more information, see “Using Save Sets” on
page 8-95.
8-70 IBM Informix DataBlade API Programmer’s Guide

Obtaining Column Values
Interpreting Column-Value Status

The mi_value() and mi_value_by_name() functions return a value status,
which identifies how to interpret the column value that these functions pass
back. The following table shows the kinds of column values that these
functions can identify.

You can use a switch statement based on these value-status constants to
determine how to handle the column value.

Obtaining Normal Values

The mi_value() and mi_value_by_name() functions return the
MI_NORMAL_VALUE value status for a column with any data type other than
a row type or collection. Therefore, these functions return
MI_NORMAL_VALUE for columns that have a built-in data type, smart large
object, opaque type, or distinct type.

Type of Column Value Value-Status Constant More Information

A built-in, opaque,
or distinct data type

MI_NORMAL_VALUE “Obtaining Normal Values”
on page 8-71

An SQL NULL value MI_NULL_VALUE “Obtaining NULL Values” on
page 8-79

A row type MI_ROW_VALUE “Obtaining Row Values” on
page 8-79

A collection MI_COLLECTION_VALUE “Obtaining Collection
Values” on page 8-83
Executing SQL Statements 8-71

Obtaining Column Values
When the mi_value() or mi_value_by_name() function returns
MI_NORMAL_VALUE, the contents of the MI_DATUM structure that holds the
column value depends on whether the control mode for the query data is text
or binary representation, as follows:

� Text representation: the MI_DATUM structure contains a pointer to a
null-terminated string, which has the text representation of the
column value.

� Binary representation: the MI_DATUM structure contains a value
whose interpretation depends on the passing mechanism used, as
follows:

❑ When mi_value() or mi_value_by_name() passes back a
column value to a C UDR, it can pass the value by reference or by
value, depending on the data type of the column value. If the
function passes back the value by value, the MI_DATUM
structure contains the value. If the function passes back the value
by reference, the MI_DATUM structure contains a pointer to the
value. ♦

❑ When mi_value() or mi_value_by_name() passes back a
column value to a client LIBMI application, it always passes the
value by reference. Even for values that you can pass by value in
a C UDR (such as an INTEGER value), these functions return the
column value by reference. The MI_DATUM structure contains a
pointer to the value. ♦

For a list of the text and binary representations of built-in, opaque, and
distinct data types, see Figure 8-5 on page 8-15. For more information on the
passing mechanism for an MI_DATUM value, see “Contents of an
MI_DATUM Structure” on page 2-51.

Important: The difference in behavior of mi_value() and mi_value_by_name()
between C UDRs and client LIBMI applications means that row-retrieval code is not
completely portable between these two types of DataBlade API modules. When you
move your DataBlade API code from one of these uses to another, you must change
the row-retrieval code to use the appropriate passing mechanism for column values
that mi_value() or mi_value_by_name() returns.

Server

Client
8-72 IBM Informix DataBlade API Programmer’s Guide

Obtaining Column Values
Column Values Passed Back to a C UDR

Within a C UDR, the value buffer that mi_value() or mi_value_by_name()
fills can contain either of the following values:

� For data types that are passed by value, the value buffer contains the
actual column value.

� For data types that are passed by reference, the value buffer contains
a pointer to this column value.

Tip: The value buffer also contains a pointer to the column value if the return status
of mi_value() or mi_value_by_name() is MI_ROW_VALUE or
MI_COLLECTION_VALUE. For more information, see “Obtaining Row Values” on
page 8-79 and “Obtaining Collection Values” on page 8-83.

Therefore, within your C UDR, you cannot assume what the MI_DATUM
value contains without checking its data type (or length).

If the mi_value() or mi_value_by_name() function passes back a value
smaller than the size of an MI_DATUM structure, the DataBlade API cast
promotes the smaller value to the size of MI_DATUM. (For more information,
see “MI_DATUM in a C UDR” on page 2-51). If you now want to pass a
pointer in the MI_DATUM structure, you might have problems on Windows
if you passed the address of the MI_DATUM value, as the following
pseudocode shows:

MI_DATUM datum;
mi_integer length;
mi_char bool;
mi_short small;
mi_int large;
void *pointer;

switch (mi_value(..., &datum, &length))
{
....
} /* end switch */

/* Assume that 'datum' contains a BOOLEAN value
* (which uses only one byte of the MI_DATUM storage space).
* Pass the address of the actual data to another function.
* YOU CANNOT ALWAYS DO THIS!
* my_func(&datum, length);
* This address might point to the wrong byte! */

Server

Windows
Executing SQL Statements 8-73

Obtaining Column Values
The preceding code fragment works if datum always contains a pointer to a
column value or contains data the size of MI_DATUM. It might not work on
some computer architectures, however, for data that is smaller than
MI_DATUM (such as mi_boolean).

To convert the MI_DATUM value into a pointer to the data value, you must
be sure that the address points to the starting position of the cast-promoted
data. The following code fragment determines what the MI_DATUM value in
datum contains and then correctly copies the value and obtains its address,
based on the length of datum:

MI_ROW_DESC *row_desc;
MI_ROW *row;
MI_DATUM datum;
mi_integer length;
mi_boolean *bool;
mi_smallint *small_int;
mi_integer *full_int;
mi_date *date_val;
mi_string *col_type_name;
void *ptr_to_value;
...
switch (mi_value(row, i, col_id, &datum, &length))

{
...
case MI_NORMAL_VALUE:

col_type_name =
mi_type_typename(

mi_column_typedesc(row_desc, i));

/* To obtain the datum value and its address, first check
* if the value is passed by value. If not, assume that
* the value is passed by reference.
*/

switch(length)
{

/* Case 1: Assume that a length of one byte means
* that 'datum' contains a BOOLEAN value.
*/
case 1:

bool = (mi_boolean) datum;
ptr_to_value = &bool;
break;

/* Case 2: Assume that a length of two bytes means
* that 'datum' contains a SMALLINT value
*/
case 2:

small_int = (mi_smallint) datum;
ptr_to_value = &small_int;
break;
8-74 IBM Informix DataBlade API Programmer’s Guide

Obtaining Column Values
/* Case 4: Assume that a length of four bytes means
* that 'datum' contains an INTEGER or DATE value
*/
case 4:

if (stcopy(col_type_name, "date") == 0)
{
date_val = (mi_date) datum;
ptr_to_value = &date_val;
}

else /* data type is INTEGER */
{
full_int = (mi_integer) datum;
ptr_to_value = &full_int;
}

break;

/* Default Case: Assume that any for any other lengths,
* 'datum' contains a pointer to the value.
*/
default:

ptr_to_value = &datum;
break;

} /* end switch */

my_func(ptr_to_value);

The preceding code fragment handles only built-in data types that are passed
by value. It was not written to handle all possible user-defined types (such as
small fixed-length opaque types) because these do not have unique
lengths. ♦

In a C UDR, if the data type of the column value can fit into an MI_DATUM
structure, the value buffer contains the actual column value. If you know the
data types of the column values, the value buffers you declare to hold the
column values must be declared as pointers to their data type. For example,
the code fragment declares the value buffer that holds a SMALLINT value can
be declared as follows:

mi_integer *small_int_ptr;

After the call to mi_value(), the C UDR must cast the contents of the value
buffer from a pointer variable (as small_int_ptr is declared) to the actual data
type. For the SMALLINT value, the code can perform the following cast to
create a copy of the column value:

small_int = (mi_smallint) small_int_ptr;
Executing SQL Statements 8-75

Obtaining Column Values
This cast is necessary only for column values whose data types are passed by
value because the MI_DATUM structure contains the actual column value,
not a pointer to the value.

You can use the mi_type_byvalue() function to determine the passing
mechanism of the column value that mi_value() passes back, as the
following code fragment shows:

row_desc = mi_get_row_desc_without_row(conn);
...
switch (mi_value(row, i, col_id, &datum, &length))

{
...
case MI_NORMAL_VALUE:

if (mi_type_byname(mi_column_typedesc(row_desc, i))
== MI_TRUE)

{
/* handle pass-by-value data types */;

The mi_type_byvalue() function helps to determine if a one-, two-, or four-
byte value is actually passed by value. You can use this function to determine
the passing mechanism of a fixed-length opaque data type.

Column Values Passed Back to a Client LIBMI Application

The mi_value() and mi_value_by_name() functions pass back by reference
column values for all data types; therefore, the returned MI_DATUM
structure always contains a pointer to the actual value, never the value itself.
Even column values that can fit into an MI_DATUM structure are passed by
reference. For example, a SMALLINT value could have the same value-buffer
declaration as it would in a C UDR, as follows:

mi_integer *small_int_ptr;

Unlike a C UDR, however, the column value in the value buffer does not
require a cast to create a copy:

small_int = *small_int_ptr;

Client
8-76 IBM Informix DataBlade API Programmer’s Guide

Obtaining Column Values
Accessing Smart Large Objects

In a database, smart large objects are in columns with the data type CLOB or
BLOB. A smart-large-object column contains an LO handle that describes the
smart large object, including the location of its data in an sbspace. This LO
handle does not contain the actual smart-large-object data.

When a query retrieves a smart large object (a BLOB or CLOB column), the
mi_value() and mi_value_by_name() functions return the
MI_NORMAL_VALUE value status. For a BLOB or CLOB column, the
MI_DATUM structure that these functions pass back contains the LO handle
for the smart large object. The control mode of the query data determines
whether this LO handle is in text or binary representation, as follows.

When query data is in binary representation, the mi_value() and
mi_value_by_name() functions pass back the LO handle by reference.
Regardless of whether you obtain a smart large object in a C UDR or a client
LIBMI application, the MI_DATUM structure that these functions pass back
contains a pointer to an LO handle (MI_LO_HANDLE *).

To make a copy of the LO handle within your DataBlade API module, you can
copy the contents of the value buffer, as follows:

MI_LO_HANDLE *blob_col, my_LO_hdl;
...
switch (mi_value(row, i, col_id, &blob_col, &length))

{
...
case MI_NORMAL_VALUE:

my_LO_hdl = *blob_col;

Query Control Mode Contents of Value Buffer

Text representation Character string that contains the hexadecimal dump of
the LO-handle structure

Binary representation Pointer to an LO-handle structure (MI_LO_HANDLE *)
Executing SQL Statements 8-77

Obtaining Column Values
To obtain the smart-large-object data, use the binary representation of the LO
handle with the functions of the smart-large-object interface. The smart-
large-object interface allows you to access smart-large-object data through its
LO handle. You access the smart-large-object data with read, write, and seek
operations similar to an operating-system file.

The following code fragment implements the get_smart_large_object()
function, which reads smart-large-object data in 4,000-byte chunks:

#define BUFSIZE 4000;

mi_integer get_smart_large_object(conn, LO_hndl)
MI_CONNECTION *conn;
MI_LO_HANDLE *LO_hndl;

{
MI_LO_FD LO_fd;
mi_char read_buf[BUFSIZE];

/* Open the selected smart large object */
LO_fd = mi_lo_open(conn, LO_hndl, MI_LO_RDONLY);
if (LO_fd == MI_ERROR)

/* handle error */
return (-1);

else
{
while (mi_lo_read(conn, LO_fd, read_buf, BUFSIZE)

!= MI_ERROR)
{
/* perform processing on smart-large-object data */
...
}

mi_lo_close(conn, LO_fd);
return (0);
}

}

For a description of the smart-large-object interface, see Chapter 6, “Using
Smart Large Objects.”
8-78 IBM Informix DataBlade API Programmer’s Guide

Obtaining Column Values
Obtaining NULL Values

The mi_value() and mi_value_by_name() functions return the
MI_NULL_VALUE value status for a column that contains the SQL NULL
value. These functions return MI_NULL_VALUE for columns of any data type.
When the mi_value() or mi_value_by_name() function returns
MI_NULL_VALUE, the contents of the MI_DATUM structure that these
functions pass back depends on whether the control mode for the query data
is text or binary representation, as the following table shows.

Obtaining Row Values

The mi_value() and mi_value_by_name() functions return the
MI_ROW_VALUE value status for a column that meets either of the following
conditions:

� The column has a row type (a named or unnamed row type) as its
data type.

� The item being selected is a correlation variable that represents an
entire row.

A correlation variable is used in a select list when jagged rows are
selected from a supertable in an inheritance hierarchy, as in the
query:

SELECT p FROM parent p;

When the mi_value() or mi_value_by_name() function returns
MI_ROW_VALUE, the MI_DATUM structure that these functions pass back
contains a pointer to the row structure, regardless of whether the query data
is in binary or text representation. You can extract the individual values from
the row structure by passing the returned MI_ROW pointer to mi_value() or
mi_value_by_name() for each value you need to retrieve.

Control Mode
Contents of Value Buffer
(From mi_value() or mi_value_by_name())

Text representation No valid value

Binary representation The internal representation of the SQL NULL value for the
data type
Executing SQL Statements 8-79

Obtaining Column Values
Obtaining Row Types

The mi_value() and mi_value_by_name() functions can return the
MI_ROW_VALUE value status for a column with a row data type: unnamed or
named. The contents of the MI_DATUM structure that these functions pass
back is a pointer to a row structure that contains the fields of the row type.
The format of the field values depends on whether the control mode for the
query data is text or binary representation, as the following table shows.

For a list of the text and binary representations of data types, see Figure 8-5
on page 8-15.

You can extract the individual field value from the row type by passing the
returned MI_ROW pointer to mi_value() or mi_value_by_name() for each
field value you need to retrieve.

The get_data() function calls the get_row_data() function for an mi_value()
return value of MI_ROW_VALUE (see the example on page 8-86). This
function takes the pointer to a row structure as an argument and uses
mi_value() on it to obtain field values in text representation.

mi_integer get_row_data(row)
MI_ROW *row;

{
mi_integer numflds, fldlen;
MI_ROW_DESC *rowdesc;
mi_integer i;
char *fldname, *fldval;
mi_boolean is_nested_row;

/* Get row descriptor */
rowdesc = mi_get_row_desc(row);

/* Get number of fields in row type */
numflds = mi_column_count(rowdesc);

Control Mode Contents of Fields Within Row Structure

Text representation Null-terminated strings

Binary representation Internal formats of field values
8-80 IBM Informix DataBlade API Programmer’s Guide

Obtaining Column Values
/* Display the field names of the row type */
for (i=0; i < numflds; i++)

{
fldname = mi_column_name(rowdesc, i);
DPRINTF("trc_class, 11, ("%s\t", fldname));
}

DPRINTF("trc_class", 11, ("\n"));

/* Get field values for each field of row type */
for (i=0, i < numflds; i++)

{
is_nested_row = MI_FALSE;
switch(mi_value(row, i, &fldval, &fldlen))

{
case MI_ERROR:

...

case MI_NULL_VALUE:
fldval = "NULL";
break;

case MI_NORMAL_VALUE:
break;

case MI_ROW_VALUE:
/* have nested row type - make recursive call */

is_nested_row = MI_TRUE;
get_row_data((MI_ROW *)fldval);
break;

default:
...

}
if (is_nested_row == MI_FALSE)

DPRINTF("trc_class", 11, ("%s\t", fldval));
}

return (0);
}

Obtaining Jagged Rows

When all the rows that a query retrieves are not the same type and length, the
rows are called jagged rows. Jagged rows occur as a result of a query that uses
the following syntax to request all the rows in a supertable and all its
subtables:

SELECT correlation_variable
FROM table_name correlation_variable;
Executing SQL Statements 8-81

Obtaining Column Values
In the preceding query, table_name represents a supertable in an inheritance
hierarchy. Suppose you create the following schema in which the table parent
has one column, child has two columns, and grandchild has three columns:

CREATE TABLE parent OF TYPE parent_t (num1 INTEGER);
INSERT INTO parent VALUES (10);

CREATE TABLE child OF TYPE child_t (num2 SMALLFLOAT)
UNDER parent;

INSERT INTO child VALUES (20, 3.5);

CREATE TABLE grandchild OF TYPE grandchild_t (name TEXT)
UNDER child;

INSERT INTO grandchild VALUES (30, 7.8, 'gundrun');

The following SELECT statement queries the parent supertable:

SELECT p FROM parent p;

This query returns the following three jagged rows:

The DataBlade API indicates that a query returned a jagged row as follows:

� The mi_value() or mi_value_by_name() function returns a value
status of MI_ROW_VALUE.

� The contents of the MI_DATUM structure that holds the retrieved
column is a pointer to a row structure.

p (parent_t)
num1
10

p (child_t)
num1
20

num2
3.5E+00

p (grandchild_t)
num1
30

num2
7.8E+00

name
gundrun
8-82 IBM Informix DataBlade API Programmer’s Guide

Obtaining Column Values
The format of the columns depends on whether the control mode for the
query data is text or binary representation, as the following table shows.

For a list of the text and binary representations of data types, see Figure 8-5
on page 8-15.

To retrieve jagged rows

1. Use the mi_get_row_desc() function to get a row descriptor for each
row structure that mi_value() or mi_value_by_name() obtains.

2. Use the mi_column_count() function with the row descriptor to get
a column count for each row that mi_next_row() retrieves.

3. Retrieve the individual components of the row within an inner
column-value loop.

Obtaining Collection Values

For a collection, the value that the mi_value() and mi_value_by_name()
functions return depends on whether the control mode for the query data is
text or binary representation, as the following table shows.

Control Mode Contents of Elements within Row Structure

Text representation Null-terminated strings

Binary representation Internal formats of column values

Return Value Control Mode Contents of Value Buffer

MI_NORMAL_VALUE Text representation Null-terminated string that
contains the text represen-
tation of the collection

MI_COLLECTION_VALUE Binary representation A pointer to a collection
structure
(MI_COLLECTION)
Executing SQL Statements 8-83

Obtaining Column Values
In a DataBlade API module, a collection can be created in either of the
following ways:

� A column has a collection type (SET, LIST, or MULTISET) as its data
type.

� An item being selected is a collection subquery, which represents a
collection.

A Collection in Text Representation

When the control mode of the query data is text representation, the
mi_value() or mi_value_by_name() function returns a value status of
MI_NORMAL_VALUE for a collection column. The value buffer contains the
text representation of the column.

For example, suppose that a query selects the set_col column, which is
defined as Figure 8-20 shows.

If the set_col column contains a SET collection with the values of 3, 5, and 7,
the value buffer contains the following string after mi_value() or
mi_value_by_name() executes:

"SET{3 ,5 ,7 }"

For a description of collection text representation, see “Collection Text Repre-
sentation” on page 5-4.

REATE TABLE table1
(
....
set_col SET(INTEGER NOT NULL),
...
)

Figure 8-20
A Sample Collection

Column
8-84 IBM Informix DataBlade API Programmer’s Guide

Obtaining Column Values
A Collection in Binary Representation

When the control mode of the query data is in binary representation, the
mi_value() or mi_value_by_name() function returns a value status of
MI_COLLECTION_VALUE for a collection column. The value buffer contains a
pointer to the collection structure for the collection. You can extract the
individual elements from the collection structure with the DataBlade API
collection functions, as follows:

� The mi_collection_open() function opens the collection that the
collection structure describes.

� The mi_collection_fetch() functions fetches the elements from the
collection. The element that mi_collection_fetch() obtains is in its
binary representation.

� The mi_collection_close() function closes the collection that the
collection structure describes.

For more information on the use of the DataBlade API collection functions,
see “Collections” on page 5-4.

For the collection column that Figure 8-20 on page 8-84 defines, the following
code fragment handles the MI_COLLECTION_VALUE value status that
mi_value() or mi_value_by_name() returns for a collection column in
binary representation:

switch(mi_value(row, i, &colval, &collen))
{
...
case MI_COLLECTION_VALUE:

if ((colldesc = mi_collection_open(conn,
(MI_COLLECTION *)colval) != NULL)

{
while (mi_collection_fetch(conn, colldesc,

MI_CURSOR_NEXT, 0, (MI_DATUM *)&elmtval,
&elmtlen) != MI_END_OF_DATA)

{
int_val = (mi_integer)elmtval;
DPRINTF("trc_class", 11,

("Element value=%d\n", int_val));
}

}
break;
Executing SQL Statements 8-85

Obtaining Column Values
Example: The get_data() Function

The get_data() function retrieves data from a query that mi_exec() sends to
the database server. This example makes the following assumptions:

� The query data is in text representation because the original call to
mi_exec() in the send_statement() function specifies the
MI_QUERY_NORMAL control flag (see the example on page 8-17).

� All the rows are of the same type and therefore share the same row
descriptor (that is, no jagged rows).

The code for the get_data() function follows:

/*
* FUNCTION: get_data()
* PURPOSE: Gets rows that a query returns.
*
* CALLED BY: get_results() (See page 8-62.)
*/

#include "mi.h"

mi_integer get_data(MI_CONNECTION *conn)
{

MI_ROW *row = NULL;
MI_ROW_DESC *rowdesc;
mi_integer error;
mi_integer numcols;
mi_integer i;
mi_string *colname;
mi_integer collen;
mi_string *colval;
mi_integer is_nested_row;

/* Get the row descriptor for the current statement */
rowdesc = mi_get_row_desc_without_row(conn);

/* Get the number of columns in the row */

numcols = mi_column_count(rowdesc);
8-86 IBM Informix DataBlade API Programmer’s Guide

Obtaining Column Values
/* Obtain the column names from the row desriptor */
i = 0;
while(i < numcols)

{
colname = mi_column_name(rowdesc, i);
DPRINTF("trc_class", 11, (" %s\t", colname));

i++;
}

DPRINTF("trc_class", 11,("\n\n"));

/* For each retrieved row: */
while (NULL != (row = mi_next_row(conn, &error)))

{
/* For each column */
for (i = 0; i < numcols; i++)

{
is_nested_row = MI_FALSE;

/* Initialize column value and length */
colval = NULL;
collen = 0;

/* Put the column value in colval */
switch(mi_value(row, i, &colval, &collen))

{
case MI_ERROR:

mi_db_error_raise(conn, MI_EXCEPTION,
"\nCannot get column value (mi_value)\n");

case MI_NULL_VALUE:
colval = "NULL";
break;

case MI_NORMAL_VALUE:
break;

case MI_ROW_VALUE:
is_nested_row = MI_TRUE;
get_rowtype_data((MI_ROW *)colval);
break;

default:
mi_db_error_raise(conn, MI_EXCEPTION,

"\nUnknown value (mi_value)\n");
return(-1);

} /* end switch */

if (is_nested_row)
{
/* process row type */
}

Executing SQL Statements 8-87

Obtaining Column Values
else
{
/* Print the column value */
DPRINTF("trc_class", 11, (" %s\t", colval));
}

} /* end for */

DPRINTF("trc_class", 11, ("\n"));
} /* end while */

if (MI_ERROR == error)
{
DPRINTF("trc_class", 11, ("\nReached last row\n"));
}

DPRINTF("trc_class", 11, ("\n"));

return(1);
}

The get_data() function calls mi_get_row_desc_without_row() to obtain
the row descriptor and mi_column_count() to obtain the number of
columns. It then calls mi_column_name() in a for loop to obtain and print
the names of the columns in the row descriptor.

The get_data() function assumes it is called from within a C UDR. The
function uses the DPRINTF statement, which is part of the DataBlade API
tracing feature and is available only to C UDRs. The first DPRINTF statement
sends the name of each retrieved column to a trace file when the trace level is
11 or higher. Another DPRINTF statement sends the column value to the trace
file. For more information on tracing, see “Using Tracing” on page 11-46. ♦

For the get_data() function to execute in a client LIBMI application, it would
need to replace the DPRINTF statement with a client-side output function
such as printf() or fprintf(). The following code fragment uses the fprintf()
function to display the names of retrieved columns:

while(i < numcols)
{
colname = mi_column_name(rowdesc, i);
fprintf(stderr, "%s\t", colname);

i++;
}
fprintf(stderr, "\n\n");

All occurrences of DPRINTF would need to be replaced by appropriate client-
side output functions. ♦

Server

Client
8-88 IBM Informix DataBlade API Programmer’s Guide

Obtaining Column Values
In the outer loop, mi_next_row() obtains every row, and in the inner loop,
mi_value() obtains every value in the row. The pointer returned in the value
buffer is not valid after the next call to mi_value(). If the data were needed
for later use, you would need to copy the data in the value buffer into a previ-
ously defined variable.

The get_data() function retrieves column data that is in text representation.
The return values of the mi_value() function handle the text representations
as follows:

� For the MI_NORMAL_VALUE return value, get_data() breaks out of
the switch statement.

It does not need to perform any special handling based on column
data type because values for all data types have the same data type:
they are all null-terminated strings. Therefore, the colval variable
that is passed into mi_value() is declared as a pointer to an
mi_string. After mi_value() completes, colval points to the null-ter-
minated string for the column value.

� For the MI_NULL_VALUE return value, get_data() assigns the string
"NULL" as the column value.

The mi_value() function does not assign a null-terminated string to
a column value when the column contains the SQL NULL value.
Therefore, get_data() explicitly sets the column value to hold the
null-terminated string: "NULL".

� For the MI_ROW_VALUE return value, get_data() calls the
get_row_data() function to handle the row structure.

The get_row_data() function obtains values from the row structure
in their text representation. For more information, see “Obtaining
Row Values” on page 8-79.

� The get_data() function does not handle the
MI_COLLECTION_VALUE return status.

The mi_value() function returns the MI_NORMAL_VALUE value sta-
tus for a collection column when the query is in text representation.
For sample code that handles a collection column when query data
is in binary mode, see “A Collection in Binary Representation” on
page 8-85.
Executing SQL Statements 8-89

Completing Execution
Completing Execution
The DataBlade API provides the following functions to complete execution of
the current statement.

After each of these functions executes, the next iteration of the
mi_get_result() function returns a status of MI_NO_MORE_RESULTS.

Finishing Execution
The mi_query_finish() function completes execution of the current
statement. The function performs the following steps:

� Processes any pending results that are not already processed with
calls to mi_next_row()

� Releases the implicit resources for the current statement

The mi_query_finish() function does not affect prepared statements or calls
to DataBlade API file-access functions. To determine whether the current
statement has completed execution, use the mi_command_is_finished()
function.

DataBlade API Function Statement Completion

mi_query_finish() Finishes processing any remaining rows and
releases implicitly allocated resources for the
current statement

mi_query_interrupt() Releases implicitly allocated resources for the
current statement
8-90 IBM Informix DataBlade API Programmer’s Guide

Finishing Execution
Processing Remaining Rows

The mi_exec() function opens an implicit cursor to hold the resulting rows
of a query. For such queries, the mi_query_finish() function ensures that the
database server processes the results of a statement. The mi_query_finish()
function processes all the remaining rows in the cursor of the current
statement and throws them away.

If the current statement failed, mi_query_finish() returns MI_ERROR. In this
case, mi_query_finish() guarantees that the database server is ready for the
next statement (unless the database server has dropped the connection). All
callbacks are properly invoked during mi_query_finish() processing.

Releasing Statement Resources

The mi_query_finish() function releases implicitly allocated resources
associated with the current statement. The following table summarizes the
implicitly allocated resources for different query executions.

DataBlade API Function That
Allocated Statement Resource Resources That mi_query_finish() Releases

mi_exec() � Close any implicit cursor (for queries).

� Release the implicit statement descriptor
associated with the current statement.

� Release any other resources associated with
the current statement.

mi_exec_prepared_statement(),
mi_open_prepared_statement()

None

Use mi_close_statement() and
mi_drop_prepared_statement(). For more
information, see “Releasing Prepared-
Statement Resources” on page 8-51.

mi_next_row() Release the row structure for the current row.

mi_get_row_desc_without_row() Release the row descriptor for the current row.
Executing SQL Statements 8-91

Finishing Execution
The mi_exec() function creates an implicit statement descriptor and opens
an implicit cursor for the SQL statement it executes. These structures have as
their scope from the time they are allocated with mi_exec() until whichever
of the following events occurs first:

� The mi_query_finish() function finishes execution of the current
statement.

� The mi_query_interrupt() function interrupts execution of the
current statement.

� The mi_close() function closes the connection.

� The SQL statement that invoked the C UDR ends. ♦

To conserve resources, use the mi_query_finish() function to explicitly close
the implicit cursor and free the implicit statement descriptor once your
DataBlade API module no longer needs access to the current statement. The
mi_query_finish() function is the destructor function for the implicit cursor
and its associated implicit statement descriptor.

The mi_query_finish() and mi_query_interrupt() functions also free the
implicit row structure and row descriptor that hold each row as it is fetched
from a cursor. A general rule of DataBlade API programming is that you do
not explicitly free a data type structure that you have not explicitly allocated.
This rule applies to the row structure and row descriptor of the current
statement, in particular:

� Do not explicitly free the row structure for the current statement
(which the mi_next_row() function returns).

� Do not explicitly free the row descriptor for the current statement
(which the mi_get_row_desc_without_row() function returns).

These data type structures are freed when the connection closes. For more
information, see “Closing a Connection” on page 7-31.

Server
8-92 IBM Informix DataBlade API Programmer’s Guide

Interrupting Execution
Interrupting Execution
The mi_query_interrupt() function interrupts execution of the current
statement on a connection. It releases resources that an mi_exec() function
implicitly allocates without processing any remaining rows in a query. To
release resources, mi_query_interrupt() has the same behavior as
mi_query_finish(). For more information, see “Releasing Statement
Resources” on page 8-91.

Inserting Data into the Database
To insert a row of data into a database, you must execute the INSERT
statement.

To send an INSERT statement to the database server for execution

1. Assemble the statement string.

2. Send the INSERT statement with either mi_exec() or
mi_exec_prepared_statement().

3. Process the results of the completed statement.

Assembling an Insert String
Assemble a statement string for the INSERT statement you want to execute. If
you know the values you want to insert into the columns, you can create a
basic SQL statement; that is, one that you can execute with mi_exec(). If you
do not know the column values, use input parameters in the statement string
in place of the column values in the VALUES clause. You must prepare any
parameterized INSERT statement with a call to mi_prepare(). Figure 8-7 on
page 8-20 shows a statement string for an INSERT that contains input
parameters.
Executing SQL Statements 8-93

Sending the Insert Statement
Sending the Insert Statement
The choice of DataBlade API statement-execution function for an INSERT
statement depends on whether the statement string was prepared with
mi_prepare(), as follows:

� If the statement string is not prepared, use mi_exec() to send the
INSERT to the database server.

� If the statement string was prepared, use
mi_exec_prepared_statement() to send the INSERT to the database
server.

Processing Insert Results
After the database server executes an INSERT statement, the mi_get_result()
function returns a MI_DML statement status. You can obtain the following
information about the statement:

� The mi_result_row_count() function returns the number of rows
that were inserted.

� The value of the SERIAL or SERIAL8 column in the row just inserted.

The SERIAL and SERIAL8 data types allow you to have an integer column for
which the database server automatically increments the value with each
insert. You can obtain the newly inserted serial value for the most recent
INSERT statement with the following DataBlade API functions.

Serial Data Type DataBlade API Function

SERIAL mi_last_serial()

SERIAL8 mi_last_serial8()
8-94 IBM Informix DataBlade API Programmer’s Guide

Using Save Sets
Using Save Sets
Save sets provide a mechanism for a DataBlade API module to access several
rows simultaneously. When a DataBlade API module retrieves rows from a
cursor in an mi_next_row() loop, only one row is current at a time. Each
iteration of mi_next_row() overwrites the row from the previous iteration. If
your DataBlade API module needs to perform comparisons or other types of
processing on more than one row, you can save the rows in a save set. The
DataBlade API maintains a save set as a FIFO (first-in, first-out) queue.

The DataBlade API provides the save-set structure, MI_SAVE_SET, to hold the
rows of a save set. The following table summarizes the memory operations
for a save-set structure.

Figure 8-21 lists the functions that the DataBlade API provides for use with a
save set.

Figure 8-21
Save-Set Functions of the DataBlade API

Memory Duration Memory Operation Function Name

PER_STMT_EXEC Constructor mi_save_set_create()

Destructor mi_save_set_destroy()

Save-Set Operation DataBlade API Function

Determine the number of rows in a save set mi_save_set_count()

Create a new save set mi_save_set_create()

Delete a row from a save set mi_save_set_delete()

Free resources associated with a save set mi_save_set_destroy()

Get first row from a save set mi_save_set_get_first()

Get last row from a save set mi_save_set_get_last()

Get next row from a save set mi_save_set_get_next()

(1 of 2)
Executing SQL Statements 8-95

Creating a Save Set
Creating a Save Set
You create a save set with mi_save_set_create(), which returns a pointer to a
save-set structure (MI_SAVE_SET). The mi_save_set_create() function is a
constructor for the save-set structure. You pass this save-set structure to other
DataBlade API save-set functions so they can access the save set.

The save set is associated with a specified connection. Therefore, you must
pass a connection descriptor into mi_save_set_create().

Inserting Rows into a Save Set
The mi_save_set_insert() function inserts a row into a save set.

To insert a new row into a save set

1. Obtain a row structure for the row you want to insert into the save
set.

This row structure is usually the row that the mi_next_row() func-
tion retrieves from a cursor of a query.

2. Pass a pointer to this row structure to mi_save_set_insert().

Because a save set is a FIFO structure, mi_save_set_insert() appends
the new row to the end of the save set.

If the insert is successful, the mi_save_set_insert() function returns a pointer
to the row structure it just inserted.

Get previous row from a save set mi_save_set_get_previous()

Insert a new row into the save set mi_save_set_insert()

Determine if a specified row is a member of a save
set

mi_save_set_member()

Save-Set Operation DataBlade API Function

(2 of 2)
8-96 IBM Informix DataBlade API Programmer’s Guide

Building a Save Set
Building a Save Set
To build a save set, a DataBlade API module can create a save set and fetch
rows into it from the mi_next_row() loop. The rows inserted into the save set
are copies of the rows in the database, so modifications to the database after
a row is inserted into a save set are not reflected in the save set. In effect, the
save set stores stale rows.

To build a save set

1. Create the save set with mi_save_set_create().

2. Execute the query to select rows from the database (for example,
with mi_exec()).

3. When mi_get_result() returns MI_ROWS, initiate an mi_next_row()
loop to get the rows.

4. Inside the mi_next_row() loop, for each row that you want to save
in the save set, invoke mi_save_set_insert().

The user function build_saveset() creates a save set and inserts rows into it.
It is called when mi_get_result() returns MI_ROWS and the application
wants to store the rows temporarily in a save set. Another user function,
get_saveset_data(), is called to access and manipulate the data in the save
set.

/*
* Example of how to build a save set.
*/

#include <mi.h>

mi_integer build_saveset(MI_CONNECTION *conn)
{
MI_SAVE_SET *save_set;
MI_ROW *row;
MI_ROW *row_in_saveset;

mi_integer error;

save_set = mi_save_set_create(conn);

if (NULL == save_set)
{
DPRINTF("trc_class", 11,

("Could not create save set\n"));
return (-1);
}

Executing SQL Statements 8-97

Building a Save Set
/* Insert each row into the save set */
while(NULL != (row = mi_next_row(conn, &error)))

{

row_in_saveset = mi_save_set_insert(save_set, row);

if(NULL == row_in_saveset)
{
mi_db_error_raise(conn, MI_MESSAGE,

"Could not insert into save set\n");
return (-1);
}

} /* end while */

/* Check reason for mi_next_row() completion */
if (error == MI_ERROR)
{
 mi_db_error_raise(conn, MI_MESSAGE,

"Could not get next row\n");
 return(-1);
}

/* Print out message to trace file */
DPRINTF("trc_class", 11,

("%d rows inserted in save set\n",
mi_save_set_count(save_set)));

get_saveset_data(save_set);

error = mi_save_set_destroy(save_set);
if(MI_ERROR == error)

{
mi_db_error_raise(conn, MI_MESSAGE,

"Could not destroy save set\n");
return (-1);
}

return(0);
}

Once the build_saveset() function successfully completes, the
get_saveset_data() function can traverse the save set as a FIFO queue. The
mi_save_set_get_first() function retrieves the first row of the save set, which
is the most recently added row. The DataBlade API module can scan forward
through the save set with mi_save_set_get_next() and then backward with
mi_save_set_get_previous(). All of these routines return a pointer to the row
structure (MI_ROW) for the current row in the save set.
8-98 IBM Informix DataBlade API Programmer’s Guide

Building a Save Set
The following function, get_saveset_data(), traverses the save set:

/*
* Get Save-Set Data Example
*/

#include "mi.h"

mi_integer get_saveset_data(MI_SAVE_SET *save_set)
{
MI_ROW *row;
MI_ROW_DESC *rowdesc;
mi_integer error;
mi_integer numcols;
mi_integer i;
char *colname;
mi_integer collen;
char *colval;

/* Get the first row from the save set */
row = mi_save_set_get_first(save_set, &error);
if (error == MI_ERROR)

{
DPRINTF("trc_class", 11,

("Could not get first row from save set\n"));
return(-1);
}

/* Get the description of the row */
rowdesc = mi_get_row_desc(row);

/* Get the number of columns in the row */
numcols = mi_column_count(rowdesc);

/* Print the column names */
for (i = 0; i < numcols; i++)

{
colname = mi_column_name(rowdesc, i);
DPRINTF("trc_class", 11, ("%s\t", colname));
} /* end for */

DPRINTF("trc_class", 11, ("\n\n"));

/* For each column */
for (i = 0; i < numcols; i++)

{
switch(mi_value(row, i, &colval, &collen))

{
case MI_ERROR:

DPRINTF("trc_class", 11,
("\nCannot get value\n"));

return(-1);
Executing SQL Statements 8-99

Building a Save Set
case MI_NULL_VALUE:
colval = "NULL";
break;

case MI_NORMAL_VALUE:
break;

default:
DPRINTF("trc_class", 11,

("\nUnknown value\n"));
return(-1);

} /* end switch */

DPRINTF("trc_class", 11, ("%s\t", colval));
} /* end for */

/* For each row */
while ((row = mi_save_set_get_next(save_set, &error))

!= NULL)
{
if (error == MI_ERROR)

{
DPRINTF("trc_class", 11,

("\nCould not get next row"));
return (-1);
}

/* For each column */
for (i = 0; i < numcols; i++)

{
switch(mi_value(row, i, &colval, &collen))

{
case MI_ERROR:

DPRINTF("trc_class", 11,
("\nCannot get value\n"));

return(-1);

case MI_NULL_VALUE:
colval = "NULL";
break;

case MI_NORMAL_VALUE:
break;

default:
DPRINTF("trc_class", 11,

("\nUnknown value\n"));
break;

} /* end switch */
8-100 IBM Informix DataBlade API Programmer’s Guide

Freeing a Save Set
DPRINTF("trc_class", 11, ("%s\t", colval));

} /* end for */

DPRINTF("trc_class", 11, ("\n"));

} /* end while */

DPRINTF("trc_class", 11, ("\n"));
return(1);

}

When a row is obtained from the save set, its values are extracted using an
mi_value() loop, as demonstrated in “Example: The get_data() Function” on
page 8-86.

Freeing a Save Set
A save-set structure has a memory duration of PER_STMT_EXEC. Therefore, a
save-set structure remains active until one of the following events occurs:

� The mi_save_set_destroy() function frees the save-set structure.

� The end of the current SQL statement is reached.

� The mi_close() function closes the current connection.

To conserve resources, use the mi_save_set_destroy() function to explicitly
deallocate the save set once your DataBlade API module no longer needs it.
The mi_save_set_destroy() function is the destructor function for a save-set
structure. It frees the save-set structure and any resources that are associated
with it.
Executing SQL Statements 8-101

9
Chapter
Executing User-Defined
Routines
In This Chapter . 9-3

Accessing MI_FPARAM Routine-State Information. 9-3
Checking Routine Arguments 9-5

Determining the Data Type of UDR Arguments 9-5
Handling NULL Arguments with MI_FPARAM 9-8

Accessing Return-Value Information 9-10
Determining the Data Type of UDR Return Values 9-11
Returning a NULL Value 9-13

Saving a User State 9-14
Obtaining Other Routine Information 9-18

Calling UDRs Within a DataBlade API Module 9-20
Invoking a UDR Through an SQL Statement. 9-20
Calling a UDR Directly 9-21

Calling UDRs with the Fastpath Interface 9-22
Obtaining a Function Descriptor 9-26

Looking Up UDRs 9-27
Looking Up Cast Functions 9-30

Obtaining Information from a Function Descriptor 9-35
Obtaining the MI_FPARAM Structure 9-35
Obtaining a Routine Identifier 9-36
Determining If a UDR Handles NULL Arguments 9-36
Checking for a Variant Function. 9-38
Checking for a Negator Function 9-39
Checking for a Commutator Function. 9-39

Executing the Routine 9-40
Passing in Argument Values 9-41
Receiving the Return Value 9-41
Sample mi_routine_exec() Calls 9-42
Reusing a Function Descriptor 9-45

9-2 IBM
Using a User-Allocated MI_FPARAM Structure. 9-53
Creating a User-Allocated MI_FPARAM Structure 9-54
Using a User-Allocated MI_FPARAM Structure 9-55
Passing a User-Allocated MI_FPARAM Structure 9-56
Freeing a User-Allocated MI_FPARAM 9-56

Releasing Routine Resources 9-57
 Informix DataBlade API Programmer’s Guide

In This Chapter
This chapter covers the following topics about how to call a user-defined
routine (UDR):

� How to access routine-state information from within a UDR

� How to use the DataBlade API Fastpath interface to execute a regis-
tered UDR

Accessing MI_FPARAM Routine-State Information
When the routine manager calls a UDR, it passes the routine-state infor-
mation as an extra argument, called the function-parameter structure, to the
routine. This function-parameter structure, MI_FPARAM, holds the routine-
state information for the C UDR with which it is associated.

This MI_FPARAM structure that the routine manager passes lasts for the
duration of an SQL command (subquery execution). The following table
summarizes the memory operations for an MI_FPARAM structure.

Memory Duration
Memory
Operation Function Name

PER_COMMAND Constructor Routine manager (when it invokes a UDR)

mi_fparam_allocate(), mi_fparam_copy()

Destructor Routine manager (when it exits a UDR)

mi_fparam_free()
Executing User-Defined Routines 9-3

Accessing MI_FPARAM Routine-State Information
Most UDRs do not need to access this routine-state information. For such
routines, you do not have to include an MI_FPARAM structure as a parameter
in the C declaration. Your UDR needs to declare an MI_FPARAM parameter
only if it needs to perform one of the following tasks.

Tip: When you declare an MI_FPARAM parameter, this declaration must be the last
parameter in the C declaration of your UDR. For more information, see
“MI_FPARAM Argument” on page 12-7.

The UDR can then use the DataBlade API accessor functions that Figure 9-1
on page 9-5, Figure 9-4 on page 9-10, and Figure 9-8 on page 9-18 list to
access values in the MI_FPARAM structure.

Important: The MI_FPARAM structure is an opaque C structure to DataBlade API
modules. Do not access its internal fields directly. The internal structure of
MI_FPARAM may change in future releases. Therefore, to create portable code,
always use the accessor functions for this structure to obtain and store values.

A UDR can also allocate an MI_FPARAM structure for a UDR that it invokes
with the Fastpath interface. For more information, see “Using a User-
Allocated MI_FPARAM Structure” on page 9-53.

Task More Information

Obtain information about each routine
argument, such as data type and whether it is
NULL

“Checking Routine Arguments”
on page 9-5

Obtain or set information about each return
value, such as data type and whether it is
NULL

“Accessing Return-Value Infor-
mation” on page 9-10

Maintain user-state information between
invocations of the routine for the duration of a
single SQL statement

“Saving a User State” on page 9-14

Obtain information about the routine itself,
such as the routine identifier and iterator
information

“Obtaining Other Routine Infor-
mation” on page 9-18
9-4 IBM Informix DataBlade API Programmer’s Guide

Checking Routine Arguments
Checking Routine Arguments
The user state of a C UDR provides the following information about routine
arguments:

� Data type information about any arguments

� Boolean value to indicate whether an argument is NULL

Figure 9-1 lists the DataBlade API accessor functions that obtain and set infor-
mation about routine arguments in an MI_FPARAM structure.

Figure 9-1
Argument Information in an MI_FPARAM Structure

Determining the Data Type of UDR Arguments

With the MI_FPARAM structure, you can write UDRs that operate over a type
hierarchy, rather than on a single type. At runtime, the routine can examine
the MI_FPARAM structure to determine what data types were passed to the
current invocation of the routine.

Argument Information
DataBlade API
Accessor Function

The number of arguments for the UDR with which the
MI_FPARAM structure is associated

mi_fp_nargs()
mi_fp_setnargs()

The type identifier of each argument that the MI_FPARAM
structure contains

mi_fp_argtype()
mi_fp_setargtype()

The length of each argument that the MI_FPARAM
structure contains

mi_fp_arglen()
mi_fp_setarglen()

The precision (total number of digits) of each argument that
the MI_FPARAM structure contains

mi_fp_argprec()
mi_fp_setargprec()

The scale of each argument that the MI_FPARAM structure
contains

mi_fp_argscale()
mi_fp_setargscale()

Whether each argument that the MI_FPARAM structure
contains is an SQL NULL value

mi_fp_argisnull()
mi_fp_setargisnull()
Executing User-Defined Routines 9-5

Checking Routine Arguments
The MI_FPARAM structure stores the information about each UDR argument
in several parallel arrays.

Use the appropriate MI_FPARAM accessor function in Figure 9-1 on page 9-5
to access the desired argument array.

Argument Array Contents

Argument-type array Each element is a pointer to a type identifier
(MI_TYPEID) that indicates the data type of the
argument.

Argument-length array Each element is the integer length of the data type for
each argument.

Argument-scale array Each element is the integer scale in the fixed-point
argument.

The default value of the scale elements is zero (0).
Therefore, any arguments that do not have a fixed-point
data type have a scale value of zero (0).

Argument-precision
array

Each element is the integer precision in the fixed-point
or floating-point argument.

The default value of the precision elements is zero (0).
Therefore, any arguments that have neither fixed-point
nor floating-point data types have a precision value of
zero (0).

Parameter-null array Each element is either MI_FALSE or MI_TRUE:

� MI_FALSE indicates that the argument is not an SQL
NULL value.

� MI_TRUE indicates that the argument is an SQL
NULL value.

For more information, see “Handling NULL Arguments
with MI_FPARAM” on page 9-8.
9-6 IBM Informix DataBlade API Programmer’s Guide

Checking Routine Arguments
All the argument arrays in the MI_FPARAM structure have zero-based
indexes. To access information for the nth argument, provide an index value
of n-1 to the appropriate accessor function, as Figure 9-1 on page 9-5 shows.
Figure 9-2 shows how the information at index position 1 of these arrays
holds the argument information for the second argument of the UDR.

The following calls to the mi_fp_argtype() and mi_fp_arglen() functions
obtain the type identifier (arg_type) and length (arg_len) for the second
argument from an MI_FPARAM structure that fparam_ptr identifies:

mi_integer my_func(arg0, arg1, arg2, fparam_ptr)
MI_DATUM arg0;
MI_DATUM arg1;
MI_DATUM arg2;
MI_FPARAM *fparam_ptr;

{
MI_TYPEID *arg_type;
mi_integer arg_len;
...
arg_type = mi_fp_argtype(fparam_ptr, 1);
arg_len = mi_fp_arglen(fparam_ptr, 1);

Figure 9-2
Argument Arrays in

the MI_FPARAM
Structure

.

.

.

Type identifiers
0
1
2

n

Lengths Scales Precisions NULL arguments

.

.

.

0
1
2

n

.

.

.

0
1
2

n

.

.

.

0
1
2

n

.

.

.

0
1
2

n

All information for the second argument
(at index position 1)
Executing User-Defined Routines 9-7

Checking Routine Arguments
To obtain the number of arguments passed to the UDR (which is also the
number of elements in the argument arrays), use the mi_fp_nargs() function.
For the argument arrays of the MI_FPARAM structure in the preceding code
fragment, mi_fp_nargs() would return a value of 3. The mi_fp_setnargs()
function stores the number of routine arguments in the MI_FPARAM
structure.

Tip: For more information on type identifiers and lengths, see “Type Identifiers” on
page 2-4. For more information on the scale and precision of fixed-point and floating-
point data types, see Chapter 3, “Using Numeric Data Types.”

Handling NULL Arguments with MI_FPARAM

By default, C UDRs do not handle SQL NULL values. A UDR is not executed if
any of its arguments is NULL; the routine automatically returns a NULL
value. If you want your UDR to be invoked when it receives NULL values as
arguments, take the following steps:

1. Use the following DataBlade API functions to programmatically
handle SQL NULL values within the C UDR:

� Use the mi_fp_argisnull() function to determine whether an
argument is NULL.

� Use the mi_fp_setargisnull() function to set an argument to
NULL.

2. Register the UDR that checks for and handles NULL values with the
HANDLESNULLS routine modifier in the CREATE FUNCTION or
CREATE PROCEDURE statement.

For more information on how to register a UDR, see “Registering a C
UDR” on page 11-23.
9-8 IBM Informix DataBlade API Programmer’s Guide

Checking Routine Arguments
The mi_fp_argisnull() function obtains an mi_boolean value from an
element in the null-argument array of the MI_FPARAM structure. If
mi_fp_argisnull() returns MI_TRUE, your UDR can take the appropriate
action, such as supplying a default value or exiting gracefully from the
routine. The code in Figure 9-3 implements the add_one() function that
returns a NULL value if the argument is NULL.

The following CREATE FUNCTION statement registers a function named
add_one() in the database:

CREATE FUNCTION add_one(i INTEGER) RETURNS INTEGER
WITH (HANDLESNULLS)
EXTERNAL NAME '/usr/lib/db_funcs/add.so(add_one)'
LANGUAGE C;

This CREATE FUNCTION statement omits the MI_FPARAM parameter of the
add_one() user-defined function from the definition of the SQL add_one()
UDR.

mi_integer add_one(i, fParam)
mi_integer i;
MI_FPARAM *fParam;

{
/* determine if the first argument is NULL */
if (mi_fp_argisnull(fParam, 0) == MI_TRUE)

{
mi_db_error_raise(NULL, MI_MESSAGE,

"Addition to a NULL value is undefined.\n");

/* return an SQL NULL value */
mi_fp_setreturnisnull(fParam, 0, MI_TRUE);

/* the argument to this "return" statement is ignored by the
 * database server because the previous call to the
 * mi_fp_setreturnisnull() function has set the return value
 * to NULL
*/
return 0;
}

else
return(i+1);

}

Figure 9-3
The add_one()

User-Defined
Routine
Executing User-Defined Routines 9-9

Accessing Return-Value Information
Accessing Return-Value Information
The MI_FPARAM structure of a C user-defined function provides the
following information about function return values:

� Data type information about any return values

� Boolean value to indicate whether a return value is NULL

Important: Because a user-defined function is written in the C language, it can only
return a single value. However, this single value can be a structure (such as a row
descriptor) that contains multiple values. For information on how to return multiple
values, see “Returning Multiple Values” on page 12-22.

Figure 9-4 lists the DataBlade API accessor functions that obtain and set infor-
mation about function return values in an MI_FPARAM structure. (Only user-
defined functions return values; user-defined procedures do not.)

Figure 9-4
Return-Value Information in the MI_FPARAM Structure

Return-Value Information
DataBlade API
Accessor Function

The number of return values for the C UDR with which
the MI_FPARAM structure is associated

mi_fp_nrets()
mi_fp_setnrets()

The type identifier of each return value that the
MI_FPARAM structure contains

mi_fp_rettype()
mi_fp_setrettype()

The length of each return value that the MI_FPARAM
structure contains

mi_fp_retlen()
mi_fp_setretlen()

The precision (total number of digits) of each return
value that the MI_FPARAM structure contains

mi_fp_retprec()
mi_fp_setretprec()

The scale (number of digits to the right of the decimal
point) of each fixed-point and floating-point return
value that the MI_FPARAM structure contains

mi_fp_retscale()
mi_fp_setretscale()

Whether each return value that the MI_FPARAM
structure contains is NULL

mi_fp_returnisnull()
mi_fp_setreturnisnull()
9-10 IBM Informix DataBlade API Programmer’s Guide

Accessing Return-Value Information
Determining the Data Type of UDR Return Values

The database server sets the return-value data type of the user-defined
function. Most user-defined functions might need to check the return-value
data type but they do not need to set it.

The routine manager uses the return-value information to determine how to
bind the return value to a return variable or an SQL value. You need to access
return-value information only if your UDR needs to perform one of the
following tasks:

� Override the expected return type (for type hierarchies)

You can set this return-value data type in the MI_FPARAM structure

� Set the actual length, precision, or scale of the return value

� Return an SQL NULL value

See “Returning a NULL Value” on page 9-13.

� Check the return value of a UDR that you are going to execute with
the Fastpath interface and for which you have created a user-
allocated MI_FPARAM structure

See“Using a User-Allocated MI_FPARAM Structure” on page 9-53.

If your UDR does not need to perform these tasks, it does not need to modify
return-value information in the MI_FPARAM structure.

The MI_FPARAM structure uses several parallel arrays to store the following
information about each return value.

Return-Value Array Contents

Return-type array Each element is a pointer to a type identifier
(MI_TYPEID) that indicates the data type of the return
value.

Return-length array Each element is the integer length of the data type for
each return value.

(1 of 2)
Executing User-Defined Routines 9-11

Accessing Return-Value Information
Use the appropriate MI_FPARAM accessor function in Figure 9-4 on
page 9-10 to access the desired return-value array.

All of the return-value arrays in the MI_FPARAM structure have zero-based
indexes. To access information for the nth return value, provide an index
value of n-1 to the appropriate accessor function in Figure 9-4 on page 9-10.
Figure 9-5 shows how the information at index position 0 of these arrays
holds the return-value information for the first (and only) return value of a
user-defined function.

Return-scale array Each element is the integer scale in the fixed-point return
value.

Return-precision array Each element is the integer precision of the fixed-point or
floating-point return value.

Return-null array Each element has either of the following values:

� MI_FALSE: The return value is not an SQL NULL
value.

� MI_TRUE: The return value is an SQL NULL value.

For more information, see “Returning a NULL Value” on
page 9-13.

Return-Value Array Contents

(2 of 2)

Figure 9-5
Return-Value
Arrays in the
MI_FPARAM

Structure
.
.
.

Type identifiers
0
1
2

n

Lengths Scales Precisions NULL arguments

.

.

.

0
1
2

n

.

.

.

0
1
2

n

.

.

.

0
1
2

n

.

.

.

0
1
2

n

All information for the first return value
(at index position 0)
9-12 IBM Informix DataBlade API Programmer’s Guide

Accessing Return-Value Information
The following calls to the mi_fp_rettype() and mi_fp_retlen() functions
obtain the type identifier (ret_type) and length (ret_len) for the first (and
only) return value from an MI_FPARAM structure that fparam_ptr identifies:

MI_FPARAM *fparam_ptr;
MI_TYPEID *ret_type;
mi_integer ret_len;
...
ret_type = mi_fp_rettype(fparam_ptr, 0);
ret_len = mi_fp_retlen(fparam_ptr, 0);

To obtain the number of return values of the user-defined function, use the
mi_fp_nrets() function. However, the number of return values is always 1 for
a C user-defined function. The mi_fp_setnrets() function stores the number
of return values in the MI_FPARAM structure.

Returning a NULL Value

To return most values from a user-defined function, you use a C return
statement. (For more information, see “Returning a Value” on page 12-17.) To
return the SQL NULL value, however, you must access the MI_FPARAM
structure of the UDR.

The DataBlade API provides the following functions to support the return of
an SQL NULL value from a C user-defined function:

� To indicate that your user-defined function returns a NULL value, use
the mi_fp_setreturnisnull() function to store the value of MI_TRUE
at the appropriate index position in the null-return array of the
MI_FPARAM structure.

� The mi_fp_returnisnull() function accesses the MI_FPARAM
structure to determine whether a return value is NULL.

The mi_fp_setreturnisnull() function sets an mi_boolean value to indicate
whether the return value is NULL. The code in Figure 9-3 on page 9-9 imple-
ments the add_one() function that uses the mi_fp_setreturnisnull()
function to return a NULL value when add_one() receives a NULL argument.

Warning: Do not return a NULL-valued pointer from a UDR. If you need to have the
UDR return an SQL NULL value, always use mi_fp_setreturnisnull(). Otherwise,
serious memory corruption might occur.
Executing User-Defined Routines 9-13

Saving a User State
Saving a User State
The routine manager provides information about arguments and return
values of a UDR in the MI_FPARAM structure that is associated with a UDR.
In addition, you can store the address of private-state information, called
user-state information, in a special field of the MI_FPARAM structure.

The database server passes the same MI_FPARAM structure to every
invocation of the UDR within the same routine sequence. When your user-
state information is part of the MI_FPARAM structure, your UDR can access
this information across all the invocations within the same routine sequence.
Your routine can use this private area of the MI_FPARAM structure to cache
information that preserves its own state.

Tip: For more information about user state and the routine sequence, see “Creating
the Routine Sequence” on page 11-34.

The MI_FPARAM structure can hold a user-state pointer that points to this
private state information. The user-state pointer references a thread-private
place holder that allows a UDR to associate a user-defined state information
with a routine sequence. Figure 9-6 shows that the DataBlade API provides
the following accessor functions to access the user state of a UDR.

Figure 9-6
User-State Information in the MI_FPARAM Structure

User-State Information
DataBlade API
Accessor Function

Obtain the user-state pointer from the MI_FPARAM
structure of a UDR.

mi_fp_funcstate()

Set the user-state pointer in the MI_FPARAM structure
of a UDR.

mi_fp_setfuncstate()
9-14 IBM Informix DataBlade API Programmer’s Guide

Saving a User State
User-state information is useful for a UDR in the following cases:

� To save information between invocations of an iterator function

For more information, see “Writing an Iterator Function” on
page 14-5.

� To replace static or global variables in C function

Use of the MI_FPARAM structure to hold state information enables a
UDR to access global information without the use of static or global
variables. It is never safe to use static and global variables that are
updated because the updated value is not visible if the thread
migrates to another virtual processor (VP) and concurrent activity is
not interleaved.

Warning: Avoid the use of static and global variables in a UDR. If a UDR uses
variables with these scopes, it is an ill-behaved routine. You must execute an ill-
behaved UDR in a separate virtual-processor class, called a user-defined VP. For more
information, see “Using Virtual Processors” on page 12-26.

To save user-state information in the first invocation of a UDR

1. Use the mi_fp_funcstate() function to retrieve the user-state pointer
from the MI_FPARAM structure.

Once the UDR has the user-state pointer, it can obtain state informa-
tion from the private storage area on subsequent invocations.

2. Check for a NULL-valued user-state pointer.

On the first invocation of your UDR, the user-state pointer is a NULL-
valued pointer. If the user-state pointer is a NULL-valued pointer,
allocate a private user-defined buffer or structure for the user-state
information.

When you allocate memory for the user-state information, you must
protect this memory so that it is not reclaimed while it is still in use.
Define a memory duration of PER_COMMAND for this memory with
a DataBlade API memory-allocation function such as mi_dalloc() or
mi_switch_mem_duration(). For more information, see “Choosing
the Memory Duration” on page 13-7.

3. Put the private data in the user-defined buffer or structure to
initialize the user state.
Executing User-Defined Routines 9-15

Saving a User State
4. If the UDR has just allocated the private user-state buffer, use the
mi_fp_setfuncstate() function to store the address of this user-
defined buffer or structure as a user-state pointer in the MI_FPARAM
structure.

You save the user-state pointer in the MI_FPARAM structure so that
later UDR invocations of the routine sequence can access the routine-
state information.

To obtain user-state information in subsequent invocations of the UDR

1. Use the mi_fp_funcstate() function to retrieve the user-state pointer
from the MI_FPARAM structure.

2. If the user-state pointer is not a NULL-valued pointer, cast the pointer
to the data type of your user-state information.

Once the user-state pointer points to the correct data type, you can
access the user-state information.

The MI_FPARAM structure is associated with the routine sequence.
Therefore, for a UDR in a query that executes in parallel, each thread has its
own routine sequence and therefore its own MI_FPARAM structure. The first
invocation of the routine by each thread would have to perform any initial-
ization. Only UDRs that are declared as parallelizable can be executed in
parallel queries. The database server always executes an SQL statement that
contains a nonparallelizable UDR serially.

Tip: By default, the CREATE FUNCTION statement registers a UDR as non-
parallelizable. To declare a user-defined function as parallelizable, specify the PARAL-
LELIZABLE routine modifier in the CREATE FUNCTION or CREATE PROCEDURE
statement. For more information, see “Creating Parallelizable UDRs” on
page 14-94.

The MI_FPARAM structure has a memory duration of PER_COMMAND. The
database server reinitializes the user-state information that
mi_fp_funcstate() references to NULL at the end of the SQL command (for
example, at the end of the subquery execution for each outer row from an
outer query).
9-16 IBM Informix DataBlade API Programmer’s Guide

Saving a User State
The code example in Figure 9-7 implements the rowcount() function. This
function uses the MI_FPARAM structure to hold a count of the number of
rows in a query.

The rowcount() function uses the mi_fp_funcstate() function to obtain the
user-state pointer from the MI_FPARAM structure. If this pointer is NULL,
rowcount() allocates memory for the count variable and uses the
mi_fp_setfuncstate() function to store this pointer as the user-state pointer
in the MI_FPARAM structure. It uses the mi_dalloc() function to allocate this
memory with a duration of PER_COMMAND so that the database server does
not deallocate the memory after the first invocation of the function.

Tip: The rowcount() function in Figure 9-7 shows how to use the MI_FPARAM
structure to hold private user-state information. This method removes the need for
global or static variables, which can make a C UDR ill-behaved. Figure 12-9 on
page 12-39 shows the bad_rowcount() function, which incorrectly implements a
row counter with a static variable.

/* The rowcount() function maintains the row count with a variable that
* is stored as user-state information in the MI_FPARAM structure
*/
mi_integer rowcount (fparam_ptr)

MI_FPARAM *fparam_ptr;
{

mi_integer *count = NULL;

/* obtain the current user-state pointer from the MI_FPARAM structure */
count = (mi_integer *)mi_fp_funcstate(fparam_ptr);

/* if the user-state pointer is NULL, this is the first
* invocation of the function
*/
if (count == NULL)

{
/* allocate memory for the user-state information */
count = (mi_integer *)mi_dalloc(sizeof(mi_integer), PER_COMMAND);

/* save user-state pointer in the MI_FPARAM structure */
mi_fp_setfuncstate(fparam_ptr, (void *)count);

/* initialize the row counter */
*count = 0;
}

/* increment the row counter */
(*count)++;
return (*count);

}

Figure 9-7
Using the

MI_FPARAM
Structure to Hold

Private-State
Information
Executing User-Defined Routines 9-17

Obtaining Other Routine Information
For the rowcount() function to be used in an SQL statement, it must be regis-
tered in the database. The following CREATE FUNCTION statement registers
the rowcount() function for use in SQL statements:

CREATE FUNCTION rowcount() RETURNS INTEGER
EXTERNAL NAME '/usr/lib/db_funcs/count.so(rowcount)'
LANGUAGE C;

The CREATE FUNCTION statement must omit the MI_FPARAM argument;
therefore the registered rowcount() function has no arguments. Suppose that
the following query uses the rowcount() function:

SELECT rowcount() from employee;

The query calls the rowcount() function for each row in the employee table.
Because the rowcount() function uses the MI_FPARAM structure to hold its
state information (the count variable), each query has its own private count
variable. Separate queries do not interfere with one another as they might
with static and global variables.

Tip: You could also implement the rowcount() function as a user-defined aggregate
function. User-defined aggregates do not use the MI_FPARAM structure to hold state
information. For more information, see “Writing an Aggregate Function” on
page 14-18.

Obtaining Other Routine Information
The MI_FPARAM structure of a C UDR provides additional information about
a UDR. Figure 9-8 lists the DataBlade API accessor functions that obtain and
set other routine information of a UDR.

Figure 9-8
Other Routine Information in the MI_FPARAM Structure

Routine Information
DataBlade API
Accessor Function

The name of the UDR mi_fp_funcname()

The iterator status for this iteration of an iterator
function

Values are SET_INIT, SET_RETONE, and SET_END.

mi_fp_request()

(1 of 2)
9-18 IBM Informix DataBlade API Programmer’s Guide

Obtaining Other Routine Information
For more information about the use of the iterator-completion flag and
iterator status, see “Writing an Iterator Function” on page 14-5. For infor-
mation about the use of routine identifiers, see “Routine Resolution” on
page 11-30.

The iterator-completion flag, which indicates whether an
iterator function has finished returning rows of data

mi_fp_setisdone()

The identifier of the UDR with which the MI_FPARAM
structure is associated

mi_fp_getfuncid(),
mi_fp_setfuncid()

The MI_FPARAM structure of the UDR

A UDR needs to obtain the address of its MI_FPARAM
structure only in special cases. For more information,
see the description of the accessor function.

mi_fparam_get_current()

The column identifier associated with the UDR

A UDR needs to access its column identifier only in
special cases. For more information, see the description
of the accessor function.

mi_fp_getcolid()
mi_fp_setcolid()

The row structure associated with the UDR

A UDR needs to access its row structure only in special
cases. For more information, see the description of the
accessor function.

mi_fp_getrow()
mi_fp_setrow()

Routine Information
DataBlade API
Accessor Function

(2 of 2)
Executing User-Defined Routines 9-19

Calling UDRs Within a DataBlade API Module
Calling UDRs Within a DataBlade API Module
Within a DataBlade API module, you can use either of the following methods
to call a UDR, as long as you know the name of the UDR you want to call:

� Execute an SQL statement that invokes a registered UDR

� Call directly any UDR that resides in the same shared-object file ♦

Invoking a UDR Through an SQL Statement
You can call any registered UDR in an SQL statement. When your UDR is
called in an SQL statement, the database server parses the statement and
produces a query plan. It then automatically performs any routine resolution
necessary and loads the shared-object file in which that UDR resides into
shared memory (if it is not already loaded) when it parses and compiles the
SQL statement. For more information on how the database server executes a
UDR in an SQL statement, see “Executing a UDR” on page 11-29.

Within the DataBlade API, you can execute SQL statements with the
mi_exec() function and execute prepared SQL statements with the
mi_exec_prepared_statement() function. For example, the following call to
mi_exec() sends the EXECUTE FUNCTION statement to the database server to
execute the myfunc() user-defined function:

mi_exec(conn, "EXECUTE FUNCTION myfunc(5,5);",
MI_QUERY_BINARY);

For more information on the use of mi_exec() and
mi_exec_prepared_statement(), see Chapter 7, “Handling Connections.”

Server
9-20 IBM Informix DataBlade API Programmer’s Guide

Calling a UDR Directly
Calling a UDR Directly
From within a C UDR, you can directly call another C function when the
following conditions are met:

� At compile time, you know the name of the C function that you want
to call.

� The C function resides in the same shared-object file as the calling
UDR.

This C function can be a registered UDR. In Figure 9-9, assume that the
func2() and func3() functions were registered as user-defined functions
with the CREATE FUNCTION statement. The func3() user-defined function
can directly call the func2() UDR because func3() and func2() reside in the
same shared-object file, source1.so.

If the UDR that you want to call is an overloaded routine, the database server
executes the version of the UDR that resides in the same shared-object file.
This UDR gets neither parameter casting nor a default MI_FPARAM structure.
If no version of this UDR exists in the same shared-object file, you receive a
runtime error. To execute UDRs in other shared-object files, use the Fastpath
interface.

Server

Figure 9-9
Calling a UDR
Directly from
Another UDR

Server computer

Client app

Server

IDS 9.x

source1.so

func1(...) {...}
func2(...) {...}
mi_integer func3(...)
{...
/* directly call func2() */

a = func2(...);
...}

source1.c

SELECT x
FROM tab1
WHERE
func3(y)
= 13

Shared-object
file
Executing User-Defined Routines 9-21

Calling UDRs with the Fastpath Interface
Calling UDRs with the Fastpath Interface
The DataBlade API Fastpath interface allows DataBlade API modules to
directly invoke a UDR that was registered in the database. This interface
bypasses the overhead associated with invoking a UDR through an SQL
statement. This interface bypasses the query optimizer and executor (which
are needed for an SQL statement). You can use this interface to execute any
SQL routine.

Important: You cannot use the Fastpath interface to execute iterator functions or SPL
functions with the WITH RESUME keywords in their RETURN statement. For more
information on iterator functions, see “Writing an Iterator Function” on page 14-5.

The Fastpath interface is useful for calling a UDR in the following situations:

� You do not know the location of the UDR you want to call.

� At compile time, you do not know the name of the UDR you want to
call.

� You need to promote or cast arguments of the UDR you want to call.

� The UDR you want to call is an overloaded routine and you need to
obtain the version for particular argument data types.

� The UDR you want to call resides in a different shared-object file or
DataBlade. ♦

The Fastpath interface looks up a UDR or cast function in the system catalog
tables to obtain information about the routine and then executes it. It passes
any return values from the routine to the caller in internal (binary) format.
With the Fastpath interface, a DataBlade API module can call a foreign UDR.

For a C UDR, a foreign UDR is a UDR that does not reside in the same shared-
object file as the UDR that calls it. One UDR can only call another UDR directly
when that called UDR resides within the same shared-object file or DataBlade
module as the calling UDR. For example, in Figure 9-9 on page 9-21, the
func3() user-defined function can directly call func2() because both of these
functions reside in the source1.so shared-object file.

Server

Server
9-22 IBM Informix DataBlade API Programmer’s Guide

Calling UDRs with the Fastpath Interface
However, there is no portable way for the C code in one shared-object file to
directly call a function in another shared-object file. Different operating
systems provide different degrees of support for this type of calling. In
addition, if the foreign UDR is part of a DataBlade module, your UDR has no
way of knowing which DataBlade modules might be installed at a particular
customer site.

To call a foreign UDR, a C UDR must use the DataBlade API Fastpath interface.
Figure 9-10 shows how a UDR that is one shared-object file, source1.so, can
call a foreign UDR, funcB(). Even though the funcB() routine is defined in
the source2.so shared-object file, func3() can invoke it through the Fastpath
interface.

In Figure 9-10, the Fastpath interface loads the source2.so shared-object file,
which contains the funcB() routine, into memory. For Fastpath to be able to
invoke funcB(), the funcB() routine must already have been registered in
the database. The call to funcB() within funcC() does not require use of the
Fastpath interface because these two functions reside in the same shared-
object file, source2.so.

Figure 9-10
Using Fastpath to

Access a Routine in
Another

Shared-Object File

Server computer

Client app

Server
IDS 9.x

source1.so
Shared-object

file

func1(...) {...}
func2(...) {...}
mi_integer func3(...)
{...
/* use Fastpath to call funcB() */

...}

source1.c

source2.so

funcA(...) {...}
funcB(...) {...}
funcC(...)
{...

a = funcB()
...}

source2.c
Fastpath
interface

SELECT x
FROM tab1
WHERE

func3(y)
= 13

Shared-object
file
Executing User-Defined Routines 9-23

Calling UDRs with the Fastpath Interface
The Fastpath interface allows a DataBlade developer to extend a DataBlade
module that someone else provides. This developer can define new UDRs on
data types that some other DataBlade provides. ♦

For a client LIBMI application, a foreign UDR is any UDR that is registered in
the database that is currently open. Client LIBMI programs can use the
Fastpath interface to directly invoke registered UDRs. ♦

You can execute foreign UDRs with an SQL statement, such as EXECUTE
FUNCTION. (For more information, see “Calling UDRs Within a DataBlade
API Module” on page 9-20.) However, Fastpath is usually a quicker method
for the execution of a UDR because it bypasses query processing.

Important: For the Fastpath interface to execute a UDR, the UDR must be registered
in the database with a CREATE FUNCTION or CREATE PROCEDURE statement.
When you create a DataBlade, register internal UDRs that might be of general use.
In this way, you can cleanly protect private interfaces and support public ones.

The Fastpath interface provides the following DataBlade API functions to
look up a registered UDR, execute it, and free resources.

DataBlade API Function Purpose
More
Information

Look up a UDR and obtain a function descriptor for it: page 9-26

mi_cast_get() Looks up a cast function that casts between two
data types (specified by type identifiers) and
returns its function descriptor

mi_func_desc_by_typeid() Looks up a UDR by its routine identifier and
returns its function descriptor

mi_routine_get() Looks up a UDR by its routine signature (specified
as a character string) and returns its function
descriptor

mi_routine_get_by_typeid() Looks up a UDR by its routine signature (specified
as separate arguments) and returns its function
descriptor

mi_td_cast_get() Looks up a cast function that casts between two
data types (specified by type descriptors) and
returns its function descriptor

(1 of 2)

Client
9-24 IBM Informix DataBlade API Programmer’s Guide

Calling UDRs with the Fastpath Interface
The following sections describe each of these tasks in detail.

Obtain information from a function descriptor: page 9-35

mi_fparam_get() Returns a pointer to the MI_FPARAM structure
that is associated with the function descriptor

mi_func_handlesnulls() Determines whether the UDR that is associated
with the function descriptor can handle NULL
arguments

mi_func_isvariant() Determines whether the user-defined function
that is associated with the function descriptor is a
variant function

mi_func_negator() Determines whether the user-defined function
that is associated with the function descriptor has
a negator function

mi_routine_id_get() Returns the identifier for the routine that is
associated with the function descriptor

Execute the UDR through its function descriptor: page 9-40

mi_routine_exec() Executes a UDR that is associated with a specified
function descriptor

Use a user-allocated MI_FPARAM structure for the UDR: page 9-53

mi_fparam_allocate() Allocates an MI_FPARAM structure

mi_fparam_copy() Creates a copy of an existing MI_FPARAM
structure

mi_fparam_free() Deallocates a user-allocated MI_FPARAM
structure

mi_fp_usr_fparam() Determines whether a specified MI_FPARAM has
been allocated by the database server or the user

Free resources that the function descriptor uses: page 9-57

mi_routine_end() Releases resources that are associated with the
function descriptor

DataBlade API Function Purpose
More
Information

(2 of 2)
Executing User-Defined Routines 9-25

Obtaining a Function Descriptor
Obtaining a Function Descriptor
A function descriptor, MI_FUNC_DESC, contains static information about a
UDR that is to be invoked with the Fastpath interface. It is basically a struc-
tured version of the row in the sysprocedures system catalog table that
describes the UDR. The function descriptor also identifies the routine
sequence for the associated UDR. (For more information on the routine
sequence, see “Creating the Routine Sequence” on page 11-34.)

The following table summarizes the memory operations for a function
descriptor.

Tip: Function descriptors are stored with the connection descriptor. Because a
connection descriptor has a PER_COMMAND duration, so too does a function
descriptor. However, it is possible to obtain a session-duration connection descriptor
and, consequently, session-duration function descriptors. For more information, see
“Obtaining a Session-Duration Connection Descriptor” on page 7-23.

A calling DataBlade API module uses a function descriptor as a handle to
identify the UDR it needs to invoke with the Fastpath interface. To obtain a
function descriptor, call one of the Fastpath look-up functions in Figure 9-11.

Figure 9-11
Fastpath Look-Up Functions

Memory Duration Memory Operation Function Name

PER_COMMAND Constructor mi_cast_get(),
mi_func_desc_by_typeid(),
mi_routine_get(),
mi_routine_get_by_typeid(),
mi_td_cast_get()

Destructor mi_routine_end()

Type of UDRs Fastpath Look-Up Function

Looking up general UDRs mi_func_desc_by_typeid(),
mi_routine_get(),
mi_routine_get_by_typeid()

Looking up cast functions mi_cast_get(), mi_td_cast_get()
9-26 IBM Informix DataBlade API Programmer’s Guide

Obtaining a Function Descriptor
Looking Up UDRs

To look up a UDR, use one of the following Fastpath look-up functions.

The mi_func_desc_by_typeid() function is available only within a C UDR. It
is not valid within a client LIBMI application. ♦

To obtain a function descriptor for a UDR, a Fastpath look-up function
performs the following steps:

1. Asks the database server to look up the UDR in the sysprocedures
system catalog

If the name of the UDR in the routine signature that you specify is not
unique in the database, the mi_routine_get() and
mi_routine_get_by_typeid() functions use the routine signature to
perform routine resolution. For more information, see “Routine Res-
olution” on page 11-30.

A routine identifier uniquely identifies a UDR, so the
mi_func_desc_by_typeid() function does not need to perform rou-
tine resolution. The routine identifier corresponds to the entry for the
UDR in sysprocedures.procid. A negative routine identifier indicates
a built-in function that does not have an entry in sysprocedures. The
database server looks up information for a built-in function in an
internal cache. ♦

DataBlade API Function How It Looks Up a UDR

mi_routine_get() Looks up a UDR using a routine signature that is
passed as a character string

mi_routine_get_by_typeid() Looks up a UDR using a routine signature that is
passed as separate arguments

mi_func_desc_by_typeid() Looks up a UDR by its routine identifier and
returns its function descriptor

Server

Server
Executing User-Defined Routines 9-27

Obtaining a Function Descriptor
2. Allocates a function descriptor for the routine and save the routine
sequence in this descriptor

You can obtain information about the UDR from this function
descriptor. For more information, see “Obtaining Information from a
Function Descriptor” on page 9-35. You can also allocate your own
MI_FPARAM structure to use instead of this automatically allocated
one. For more information, see “Using a User-Allocated
MI_FPARAM Structure” on page 9-53.

3. Allocates an MI_FPARAM structure for the function descriptor

You can get a pointer to this structure with the mi_fparam_get()
function. For more information, see “Obtaining the MI_FPARAM
Structure” on page 9-35.

4. Returns a pointer to the function descriptor that identifies the
specified UDR

Subsequent calls to mi_routine_exec() can use this function descrip-
tor to identify the UDR to execute. For more information, see
“Executing the Routine” on page 9-40.

Suppose the following CREATE FUNCTION statements register three user-
defined functions named numeric_func() in your database:

CREATE FUNCTION numeric_func(INTEGER, INTEGER) RETURNS INTEGER;
CREATE FUNCTION numeric_func(FLOAT, FLOAT) RETURNS FLOAT;
CREATE FUNCTION numeric_func(MONEY, MONEY) RETURNS MONEY;
9-28 IBM Informix DataBlade API Programmer’s Guide

Obtaining a Function Descriptor
The numeric_func() user-defined function is an overloaded routine. The
code fragment in Figure 9-12 uses the mi_routine_get() function to obtain
the function descriptor for the version of numeric_func() that handles
INTEGER arguments.

The mi_routine_get() function returns a NULL-valued pointer to indicate
either no matching routine exists or the routine has multiple return values.
Figure 9-12 also shows how to determine which of these conditions a NULL
return value indicates. It uses the mi_fparam_get() function to obtain the
MI_FPARAM structure that is associated with the located numeric_func()
function. (The mi_routine_get() function has allocated and initialized this
MI_FPARAM structure as part of the look-up process.) The code fragment
then uses the mi_fp_nrets() accessor function to obtain the number of UDR
return values from this MI_FPARAM structure. Because C UDRs can only
return one value, any UDR that returns more than one value must be an SPL
routine.

Use mi_routine_get() when you can create the full signature of the UDR as a
literal string. Otherwise, you can use the mi_routine_get_by_typeids()
function to build the routine signature. For example, if you have a user-
supplied query, you could use mi_column_typeid() to get the type identifier
for the column that the query returns. The mi_routine_get_by_typedesc()
function is also useful when you need to invoke overloaded UDRs with
different parameter data types (and you have parameter type identifiers).

MI_CONNECTION *conn;
MI_FUNC_DESC *fdesc = NULL;
MI_FPARAM *fparam;
...
fdesc = mi_routine_get(conn, 0,

"function numeric_func(integer, integer)");
if (fdesc =! NULL)

{
fparam = mi_fparam_get(conn, fdesc);
if (mi_fp_nrets(fparam) > 1)

/* multiple return values: have SPL routine */
...

else
/* no matching user-defined routine*/
...

}

Figure 9-12
Obtaining a

Function Descriptor
for the

numeric_func()
Function
Executing User-Defined Routines 9-29

Obtaining a Function Descriptor
In Figure 9-12, you could replace the call to mi_routine_get() with the
following call to the mi_routine_get_by_typeid() function:

MI_TYPEID *arg_types[2];
...
arg_type[0] = mi_typestring_to_id(conn, "integer");
arg_type[1] = arg_type[0];
fdesc = mi_routine_get_by_typeid(conn, MI_FUNC,

"numeric_func", NULL, 2, arg_types);

In this call to mi_routine_get_by_typeid(), the arg_types array contains
pointers to the type identifiers for the two INTEGER parameters.

If you already have a routine identifier for the UDR that you want to execute
with Fastpath, use the mi_func_desc_by_typeid() function to obtain the
function descriptor of the UDR. In Figure 9-12, you could replace the call to
mi_routine_get() with the following call to mi_func_desc_by_typeid():

mi_funcid rout_id;
...
fdesc = mi_func_desc_by_typeid(conn, rout_id);

In this call, the mi_funcid data type holds the routine identifier of the UDR to
look up. ♦

When you call mi_routine_get() or mi_routine_get_by_typeid() from a
client LIBMI application, the function allocates a local copy (on the client
computer) of the function descriptor and MI_FPARAM structure. You can use
the function descriptor and MI_FPARAM accessor functions within a client
LIBMI application to access these local copies.

The mi_func_desc_by_typeid() function is not valid within a client LIBMI
application. ♦

Looking Up Cast Functions

A cast function is a user-defined function that converts one data type (the
source data type) to a different data type (the target data type).

Tip: For more information on how to register a cast function, see the “IBM Informix
User-Defined Routines and Data Types Developer’s Guide.”

Server

Client
9-30 IBM Informix DataBlade API Programmer’s Guide

Obtaining a Function Descriptor
The way that a cast is called depends on the type of the cast, as the following
table shows.

To look up a cast function by its source and target data types, use one of the
following Fastpath look-up functions.

Type of Cast How It Is Called

Built-in cast Called by the database server automatically when built-in types need
conversion in an SQL statement or a UDR call

Implicit cast Called by the database server automatically when castable data types
are part of an SQL statement

Explicit cast � Called explicitly within an SQL statement with the :: operator or
CAST AS keywords

� Called explicitly within a DataBlade API module with the Fastpath
interface

DataBlade API Function How It Looks Up a Cast Function

mi_cast_get() Looks up a cast function for source and target data types
specified as type identifiers

mi_td_cast_get() Looks up a cast function for source and type data types
specified as type descriptors
Executing User-Defined Routines 9-31

Obtaining a Function Descriptor
To obtain a function descriptor for a cast function, the mi_cast_get() or
mi_td_cast_get() function performs the following steps:

1. Asks the database server to look up the cast function in the syscasts
system catalog

Once the function locates a syscasts entry for the cast function, it
obtains routine information for the cast function from the sysproce-
dures system catalog table. These functions also determine the type
of cast that the cast function performs: an explicit cast, an implicit
cast, or a built-in cast.

2. Allocates a function descriptor for the cast function and save the
routine sequence in this descriptor

You can obtain information about the UDR from this function
descriptor. For more information, see “Obtaining Information from a
Function Descriptor” on page 9-35.

3. Allocates an MI_FPARAM structure for the function descriptor

You can get a pointer to this structure with the mi_fparam_get()
function. For more information, see “Obtaining the MI_FPARAM
Structure” on page 9-35. You can also allocate your own MI_FPARAM
structure to use instead of this automatically allocated one. For more
information, see “Using a User-Allocated MI_FPARAM Structure”
on page 9-53.

4. Returns a pointer to the function descriptor that identifies the
specified cast function

Subsequent calls to mi_routine_exec() can use this function descrip-
tor to identify the cast function to execute. For more information, see
“Executing the Routine” on page 9-40.

Tip: The mi_cast_get() and mi_td_cast_get() functions search for cast functions
only in the syscasts system catalog table. Therefore, these functions can locate only
cast functions that the CREATE CAST statement has registered.

Suppose the following CREATE CAST statements register explicit casts
between the DECIMAL and mytype data types in your database:

CREATE CAST (mytype AS DECIMAL(5,3) WITH mt_to_dec);
CREATE CAST (DECIMAL(5,3) AS mytype WITH dec_to_mt);
9-32 IBM Informix DataBlade API Programmer’s Guide

Obtaining a Function Descriptor
Figure 9-13 uses the mi_cast_get() function to obtain the function descriptor
for a cast function that casts from a DECIMAL data type to the mytype data
type.

The mi_cast_get() function allocates and initializes a function descriptor,
fdesc2, for the dec_to_mt() cast function. The src_type and trgt_type
variables are pointers to the type identifiers for the DECIMAL(5,3) and
mytype data types, respectively.

MI_CONNECTION *conn;
MI_FUNC_DESC *fdesc2 = NULL;
MI_TYPEID *src_type, *trgt_type;
mi_char cast_status = 0;
mi_boolean need_cast = MI_TRUE;
mi_integer error;
MI_DATUM *ret_val;
mi_decimal dec_val;
...
/* Get type identifiers for source and target types */
src_type = mi_typestring_to_id(conn, "DECIMAL(5,3)");
trgt_type = mi_typestring_to_id(conn, "mytype");

/* Look up cast function based on type identifiers */
fdesc2 = mi_cast_get(conn, src_type, trgt_type, &cast_status);

switch (cast_status)
{
case MI_ERROR_CAST: /* error in function look-up */

mi_db_error_raise(NULL, MI_EXCEPTION, "mi_cast_get() failed");
break;

case MI_NO_CAST: /* no cast function exists */
mi_db_error_raise(NULL, MI_EXCEPTION, "No cast function found");
break;

case MI_NOP_CAST: /* do not need a cast */
need_cast = MI_FALSE;
break;

}

if (need_cast)
/* Execute the cast function with Fastpath */
...

Figure 9-13
Obtaining a Cast

Function for a
DECIMAL-to-

mytype
Cast
Executing User-Defined Routines 9-33

Obtaining a Function Descriptor
The mi_cast_get() function returns a NULL-valued pointer to indicate
several different conditions. In Figure 9-13, the cast_status variable identifies
which of these conditions has occurred, as follows.

The switch statement handles the possible status cast_status values from the
mi_cast_get() call.

If you have type descriptors instead of type identifiers for the source and
target types, use the mi_td_cast_get() function instead of mi_cast_get(). For
example, the casting process might need information about scale and
precision for built-in data types that have this information. A type descriptor
stores scale and precision; a type identifier does not.

You could replace the call to mi_cast_get() in Figure 9-13 with the following
call to the mi_td_cast_get() function:

MI_TYPEID *src_type, *trgt_type;
MI_TYPE_DESC *src_tdesc, *trgt_tdesc;

...
/* Get type descriptors for source and target types */
src_tdesc = mi_type_typedesc(conn, src_type);
trgt_tdesc = mi_type_typedesc(conn, trgt_type);

/* Look up cast function based on type descriptors */
fdesc2 = mi_td_cast_get(conn, src_tdesc, trgt_tdesc,

&cast_status);

The src_tdesc and trgt_tdesc variables are pointers to type descriptors for the
DECIMAL(5,3) and mytype data types, respectively. The mi_type_typedesc()
function creates type descriptors from the type identifiers that src_type and
trgt_type reference.

cast_status Value Condition

MI_ERROR_CAST The mi_cast_get() function has not executed successfully.

MI_NO_CAST No cast function exists between the specified source and
target types.

MI_NOP_CAST No cast function is needed between the specified source
and target types.
9-34 IBM Informix DataBlade API Programmer’s Guide

Obtaining Information from a Function Descriptor
When you call mi_cast_get() or mi_td_cast_get() from a client LIBMI appli-
cation, the function allocates a local copy (on the client computer) of the
function descriptor and MI_FPARAM structure. You can use the function-
descriptor and MI_FPARAM accessor functions within a client LIBMI appli-
cation to access these local copies. ♦

Obtaining Information from a Function Descriptor
You can use the following DataBlade API functions to obtain additional infor-
mation about the UDR or cast function that is associated with a function
descriptor.

Obtaining the MI_FPARAM Structure

By default, the Fastpath look-up functions allocate an MI_FPARAM structure
and assign a pointer to this structure in the function descriptor. To obtain the
MI_FPARAM structure that is associated with a function descriptor, use the
mi_fparam_get() function. After the call to mi_fparam_get(), you can use
the MI_FPARAM accessor functions to retrieve information from the
MI_FPARAM structure, such as argument information (Figure 9-1 on
page 9-5) and return-value information (Figure 9-4 on page 9-10). For infor-
mation about these accessor functions and the information that they can
retrieve from an MI_FPARAM structure, see “Accessing MI_FPARAM
Routine-State Information” on page 9-3.

DataBlade API Function Description

mi_fparam_get() Returns a pointer to the MI_FPARAM structure that
is associated with the function descriptor

mi_routine_id_get() Returns the identifier for the UDR or cast function

mi_func_commutator() Determines if the UDR has a commutator function

mi_func_handlesnulls() Determines whether the UDR or cast function
handles NULL arguments

mi_func_isvariant() Determines if the UDR or cast function is a variant
function

mi_func_negator() Determines if the UDR has a negator function

Client
Executing User-Defined Routines 9-35

Obtaining Information from a Function Descriptor
Figure 9-12 on page 9-29 shows the use of the mi_fparam_get() function to
obtain the MI_FPARAM structure that is associated with the numeric_func()
user-defined function. This code fragment uses the mi_fp_nrets() accessor
function to obtain the number of return values for numeric_func() from the
MI_FPARAM structure.

Tip: You can allocate your own MI_FPARAM structure for a UDR that you execute
with the Fastpath interface. For more information, see “Using a User-Allocated
MI_FPARAM Structure” on page 9-53.

Obtaining a Routine Identifier

To obtain the identifier for a UDR or cast function that a function descriptor
describes, use the mi_routine_id_get() function. A routine identifier is a
unique integer that identifies a UDR within the sysprocedures system
catalog. This routine identifier is stored in the procid column of
sysprocedures.

The following code fragment obtains the identifier for the numeric_func()
function that accepts INTEGER arguments:

MI_CONNECTION *conn;
MI_FUNC_DESC *fdesc;
mi_integer rout_id;
...
fdesc = mi_routine_get(conn, 0,

"function numeric_func(integer, integer)");
rout_id = mi_routine_id_get(conn, fdesc);

If your UDR is executing many other UDRs and it needs to keep several
function descriptors for subsequent execution, it can use the routine identi-
fiers to distinguish the different function descriptors. ♦

Determining If a UDR Handles NULL Arguments

Before you execute a UDR with the Fastpath interface, you can determine
whether this routine handles SQL NULL values as arguments. If the current
argument values are SQL NULL values and the UDR does not handle NULL
values, you do not need to call the actual UDR. By default, a C UDR does not
handle NULL values. When the routine manager receives NULL arguments
for such a UDR, it does not even invoke the UDR. It just returns a NULL value.

Server
9-36 IBM Informix DataBlade API Programmer’s Guide

Obtaining Information from a Function Descriptor
To determine whether the UDR or cast function that a function descriptor
describes can handle SQL NULL values as arguments, use the
mi_func_handlesnulls() function. This function determines whether the
UDR was registered with the HANDLESNULLS routine modifier of the
CREATE FUNCTION or CREATE PROCEDURE statement (stored in the
handlesnulls column of the sysprocedures system catalog table).

The mi_func_handlesnulls() function indicates whether a UDR can handle
SQL NULL values, as follows.

The code fragment in Figure 9-14 determines whether to invoke the
numeric_func() function based on whether it handles NULL arguments.

mi_func_handlesnulls()
Return Value Meaning

1 The routine that the function descriptor describes has been
registered with the HANDLESNULLS routine modifier.

2 The routine that the function descriptor describes has not
been registered with the HANDLESNULLS routine
modifier.

MI_CONNECTION *conn;
MI_FUNC_DESC *fdesc;
MI_FPARAM *fdesc_fparam;
MI_DATUM ret_val;
mi_integer error;
...
fdesc = mi_routine_get(conn, 0,

"function numeric_func(integer, integer)");

/* Determine whether to execute the UDR */
if (mi_func_handlesnulls(fdesc) == 1)

{
fdesc_fparam = mi_fparam_get(conn, fdesc);
mi_fp_setargisnull(fdesc_fparam, 0, MI_TRUE);
ret_val = mi_routine_exec(conn, fdesc, &error, 0, 2);
}

else
/* have numeric_func() return zero if it has NULL args */
ret_val = 0;

Figure 9-14
Handling Fastpath

Execution of a UDR
with NULL
Arguments
Executing User-Defined Routines 9-37

Obtaining Information from a Function Descriptor
If numeric_func() handles NULL arguments, the mi_func_handlesnulls()
function returns 1 and the code fragment invokes numeric_func() with
arguments of NULL and 2. The code fragment uses the mi_fparam_get() and
mi_fp_setargisnull() functions to set the first argument to an SQL NULL
value.

If numeric_func() does not handle NULL arguments, the code fragment does
not invoke numeric_func(); instead, it sets the return value of
numeric_func() to zero (0).

Checking for a Variant Function

Before you execute a UDR with the Fastpath interface, you might need to
determine whether this routine is variant. By default, a UDR is a variant
function. A variant function has one of the following characteristics:

� It returns different values when it is invoked with the same
arguments.

� It has variant side effects that access some database or variable state.

A nonvariant function always returns the same value when it receives the
same arguments and it has none of the above variant side effects. Therefore,
nonvariant functions cannot contain SQL statements or access external files.

To determine whether a UDR is variant, pass its function descriptor to the
mi_func_isvariant() function. This function determines whether the user-
defined function was registered with the VARIANT or NOT VARIANT routine
modifier of the CREATE FUNCTION or CREATE PROCEDURE statement. If the
UDR was registered with neither the VARIANT nor NOT VARIANT modifier,
the variant column of sysprocedures indicates that the UDR is variant.

The mi_func_isvariant() function indicates whether a UDR is variant, as
follows.

mi_func_isvariant()
Return Value Meaning

1 The routine that the function descriptor describes is variant.

2 The routine that the function descriptor describes is not
variant.
9-38 IBM Informix DataBlade API Programmer’s Guide

Obtaining Information from a Function Descriptor
For more information about variant and nonvariant functions, see the
IBM Informix User-Defined Routines and Data Types Developer’s Guide.

Checking for a Negator Function

Before you execute a Boolean user-defined function with the Fastpath
interface, you might want to determine whether this function has a negator
function. A negator function evaluates the Boolean NOT condition for its
associated Boolean user-defined function. In many cases, a negator can be
more efficient to execute than the actual Boolean user-defined function.

To determine whether a user-defined function has a negator function, pass its
function descriptor to the mi_func_negator() function. This function deter-
mines whether the user-defined function associated with this function
descriptor was registered with the NEGATOR routine modifier of the CREATE
FUNCTION statement. If so, mi_func_negator() returns the name of the
negator function (from the negator column of the sysprocedures system
catalog table). If the negator is more efficient, you can use this function name
to obtain a function descriptor for the negator function with a Fastpath
function such as mi_routine_get().

For more information about negator functions, see “Creating Negator
Functions” on page 14-91.

Checking for a Commutator Function

Before you execute a user-defined function with the Fastpath interface, you
might want to determine whether this function has a commutator function.
If a user-defined function has either of the following characteristics, it is a
commutator of another user-defined function:

� A user-defined function takes the same arguments as another user-
defined function, but in opposite order.

� A user-defined function returns the same result as another user-
defined function.

In many cases, a commutator function can be more efficient to execute than
the actual user-defined function.
Executing User-Defined Routines 9-39

Executing the Routine
To determine whether a user-defined function has a commutator function,
pass its function descriptor to the mi_func_commutator() function. This
function determines whether the user-defined function associated with this
function descriptor was registered with the COMMUTATOR routine modifier
of the CREATE FUNCTION statement. If so, mi_func_commutator() returns
the name of the commutator function (from the commutator column of the
sysprocedures system catalog table). If the commutator is more efficient, you
can use this function name to obtain a function descriptor for the commutator
function with a Fastpath function such as mi_routine_get().

For more information about commutator functions, see “Creating Commu-
tator Functions” on page 14-92.

Executing the Routine
The mi_routine_exec() function can execute any UDR that is registered in the
open database. Therefore, any UDR that you can use in an SQL statement, you
can directly execute with mi_routine_exec(). Once you obtain a function
descriptor for a registered UDR or cast function, the mi_routine_exec()
function sends it to the routine manager for execution. You can use the
function descriptor in repeated calls to mi_routine_exec(). This executed
routine runs in the virtual processor (VP) that was defined for it. This VP is
not necessarily the VP in which the calling UDR runs.

Important: You cannot use the Fastpath interface to execute iterator functions or SPL
functions with the WITH RESUME keywords in their RETURN statement. However,
to simulate iterator functionality, you can call the same UDR repeatedly, passing it
the same MI_FPARAM structure. Each invocation of the UDR can return one value.
For more information on iterator functions, see “Writing an Iterator Function” on
page 14-5.

The mi_routine_exec() function takes the following steps:

1. Passes the argument values in its argument list to the UDR

2. Returns any return value from the user-defined function to the
calling module
9-40 IBM Informix DataBlade API Programmer’s Guide

Executing the Routine
Passing in Argument Values

When you call mi_routine_exec(), you provide argument values for the UDR
that Fastpath is to execute. Keep the following points in mind when you
create the argument list for mi_routine_exec():

� If an argument has a default value, you do not need to include its
argument value in this argument list.

� You must pass in the arguments as MI_DATUM values.

Therefore, you must pass in the arguments with the appropriate
passing mechanism for the data type. Most data types are to be
passed by reference to the UDR. For a list of data types that can be
passed by value, see Figure 2-18 on page 2-51. For examples of how
to pass arguments to a UDR through mi_routine_exec(), see “Sam-
ple mi_routine_exec() Calls” on page 9-42.

� If the UDR can handle NULL arguments, pass a NULL-valued pointer
as an argument to mi_routine_end(), as Figure 9-14 on page 9-37
shows.

If you call a UDR that does not handle NULLs with a NULL argument
value, the routine might return incorrect values.

� If you allocate your own MI_FPARAM structure, pass in a pointer to
this structure as the last argument in the argument list.

For more information, see “Using a User-Allocated MI_FPARAM
Structure” on page 9-53.

The mi_routine_exec() function dispatches the UDR through the routine
manager. Therefore, each UDR gets a call to mi_call() because the routine
manager checks for sufficient space before it executes the UDR.

Receiving the Return Value

When the mi_routine_exec() function executes a user-defined function, it
returns as an MI_DATUM value the return value of the user-defined function
that it has executed. This MI_DATUM value contains a value appropriate for
the passing mechanism for the data type. Most data types are to be passed by
reference from the UDR. For a list of data types that can be passed by value,
see Figure 2-18 on page 2-51.
Executing User-Defined Routines 9-41

Executing the Routine
You can then use C casting to convert this MI_DATUM value to the appro-
priate data type. You can obtain information about the return type (such as
its data type) from the MI_FPARAM structure.

If the user-defined function returned an SQL NULL value, mi_routine_exec()
returns a NULL-valued pointer and sets the status argument to MI_OK.

For examples of how to receive a UDR return value from mi_routine_exec(),
see “Sample mi_routine_exec() Calls” on page 9-42. For more information on
MI_DATUM values, see “The MI_DATUM Data Type” on page 2-50.

Sample mi_routine_exec() Calls

The code fragment in Figure 9-15 uses the mi_routine_exec() function to
execute the numeric_func() routine that has INTEGER parameters.

MI_CONNECTION *conn;
MI_FUNC_DESC *fdesc;
MI_DATUM ret_val;
mi_integer int_ret;
mi_integer error;
...
/* fdesc obtains from code in Figure 9-12 on page 9-29 */
ret_val = mi_routine_exec(conn, fdesc, &error, 1, 2);
if (ret_val == NULL)

{
if (error == MI_OK)

/* numeric_func() returned an SQL NULL value */
...

else /* error in mi_routine_exec() */
{
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_routine_exec() failed");
return MI_ERROR;
}

}
else /* cast MI_DATUM in ret_val to INTEGER */

{
int_ret = (mi_integer) MI_DATUM;
...

Figure 9-15
Executing the

numeric_func()
Function with

INTEGER
Arguments
9-42 IBM Informix DataBlade API Programmer’s Guide

Executing the Routine
In Figure 9-15, the mi_routine_exec() function uses the fdesc function
descriptor that the mi_routine_get() function obtained for the
numeric_func() function that accepts INTEGER arguments and returns an
INTEGER value (Figure 9-12 on page 9-29). The last two arguments to
mi_routine_exec() are the integer argument values for numeric_func(). The
ret_val variable is an MI_DATUM value for the mi_integer data type that the
numeric_func() function returns.

Figure 9-15 also tests the return status of mi_routine_exec() to check for the
return value from numeric_func(). If the return value (ret_val) is a NULL-
valued pointer, the code then determines which of the following results this
NULL value indicates:

� The numeric_func() function has returned an SQL NULL value: error
is MI_OK.

� The mi_routine_exec() function failed: error is not MI_OK.

Finally, the code fragment in Figure 9-15 casts the MI_DATUM value that
mi_routine_exec() has returned to an mi_integer value. The MI_DATUM
structure contains the actual return value because the routine manager can
pass integer values by value (they can fit into an MI_DATUM structure).

Suppose the call to mi_routine_get() had been calling the version of
numeric_func() that accepted a FLOAT argument and returned a FLOAT
value, as follows:

fdesc = mi_routine_get(conn, 0,
"function numeric_func(float)");

The call to mi_routine_exec() to execute this version of numeric_func()
would require that the argument and the return value be passed by reference,
because the FLOAT data type cannot be stored directly in an MI_DATUM
structure.
Executing User-Defined Routines 9-43

Executing the Routine
Figure 9-16 shows a sample call to mi_routine_exec() to execute the
numeric_func(FLOAT) user-defined function. The argument list to
mi_routine_exec() passes the FLOAT value by reference and the returned
FLOAT value is returned by reference.

The execution of a user-defined cast function is different from the execution
of a built-in case function. A user-defined cast function takes only one
argument, the data value to be converted, but a built-in cast function takes
three arguments:

� Data value to be converted

� Data length

� Data precision

The following call to mi_routine_exec() executes the DECIMAL-to-mytype
cast function for which Figure 9-13 on page 9-33 obtained the function
descriptor, fdesc2:

ret_val = mi_routine_exec(conn, fdesc2, &error, dec_val);
mytype_val = (mytype *)ret_val;

MI_CONNECTION *conn;
MI_FUNC_DESC *fdesc;
MI_DATUM ret_val;
mi_double_precision double_arg1, double_arg2, double_ret;
mi_integer error;
...
fdesc = mi_routine_get(conn, 0, "function numeric_func(float)");
ret_val = mi_routine_exec(conn, fdesc, &error, &double_arg1,

&double_arg2);
if (ret_val == NULL)

{
if (error == MI_OK)

/* numeric_func() returned an SQL NULL value */
...

else /* error in mi_routine_exec() */
{
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_routine_exec() failed");
return MI_ERROR;
}

}
else /* cast MI_DATUM in ret_val to FLOAT */

{
double_ret = (mi_double_precision *)MI_DATUM;
...

Figure 9-16
Executing the

numeric_func()
Function with

INTEGER
Arguments
9-44 IBM Informix DataBlade API Programmer’s Guide

Executing the Routine
The dec_val argument is an mi_decimal variable that contains the DECIMAL
source data type to cast to the mytype target data type with the dec_to_mt()
cast function. The ret_val variable is an MI_DATUM value of the mytype data
type that contains the casted DECIMAL value.

Reusing a Function Descriptor

Looking up a UDR and creating its function descriptor can be an expensive
operation. If you have multiple UDR invocations calling the same UDR
through Fastpath, you can cache the function descriptor to make it available
for reuse within either of the following scopes:

� Within the current SQL command

If the same UDR executes many times within a single SQL command,
you can cache this function descriptor as part of the MI_FPARAM
structure of the UDR.

� Within the session

If the same UDR executes many times within a session, you can cache
the function descriptor in PER_SESSION named memory.

When you reuse the function descriptor, you save the overhead of looking up
the UDR and allocating a function descriptor each time you reexecute the
same UDR.

Function Descriptors Within an SQL Command

When you pass a public connection descriptor to one of the Fastpath look-up
functions (see Figure 9-11 on page 9-26), the look-up function allocates the
function descriptor with a PER_COMMAND memory duration. Therefore, the
function descriptor remains allocated for the duration of the SQL command
that invokes the UDR.

To cache the function descriptor, save its address in the MI_FPARAM
structure of the UDR. The MI_FPARAM structure has a PER_COMMAND
duration. Therefore, storing the function-descriptor address in the user state
of MI_FPARAM guarantees that all UDR invocations within the SQL
command can access it. You can also cache the connection description in
MI_FPARAM. When the SQL command completes, the function descriptor,
the connection descriptor, and the MI_FPARAM structure are deallocated.
Executing User-Defined Routines 9-45

Executing the Routine
The following code fragment for the non_optimal() UDR opens a connection
and obtains the function descriptor for the user-defined function equal() for
each invocation of non_optimal():

mi_integer non_optimal(arg1, arg2, fparam)
mi_integer arg1, arg2;
MI_FPARAM *fparam;

{
MI_CONNECTION *conn=NULL;
MI_FUNC_DESC *func_desc=NULL;
MI_DATUM func_result;
mi_integer func_error;
mi_string *func_sig="equal(int, int)";

/* Open a connection */
if ((conn = mi_open(NULL, NULL, NULL))

== (MI_CONNECTION *)NULL)
{
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_open() call failed");
return MI_ERROR;
}

/* Get the function descriptor for equal() */
if ((func_desc = mi_routine_get(conn, 0, func_sig))

== (MI_FUNC_DESC *)NULL)
{
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_routine_get() call failed");
return MI_ERROR;
}

/* Execute the equal() user-defined function */
func_result = mi_routine_exec(conn, func_desc, &func_error,

arg1, arg2);
if (func_error == MI_ERROR)

{
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_routine_exec() call failed");
return MI_ERROR;
}

...
9-46 IBM Informix DataBlade API Programmer’s Guide

Executing the Routine
When you cache the function descriptor in the user state of MI_FPARAM, you
do not have to repeatedly call mi_routine_get() for each invocation of the
equal() function. Instead, you can call mi_routine_get() only in the first
invocation of equal(). The following code fragment opens a connection and
gets the function descriptor in the first invocation of the user-defined function
equal() only. It caches these descriptors into the user_state structure, whose
address it stores in the user-state pointer of MI_FPARAM, for subsequent
invocations of equal():

typedef struct user_state
{
MI_CONNECTION *conn;
MI_FUNC_DESC *func_desc;
};

mi_integer optimal(arg1, arg2, fparam)
mi_integer arg1, arg2;
MI_FPARAM *fparam;

{
MI_CONNECTION *local_conn = NULL;
MI_FUNC_DESC *local_fdesc = NULL;
mi_string *func_sig="equal(int, int)";
user_state *func_state;

/* Obtain the connection descriptor from MI_FPARAM */
func_state = (user_state *)mi_fp_funcstate(fparam);
if (func_state == NULL) /* first time UDR is called */

{
/* Allocate a user_state structure */
func_state =

(user_state *)mi_dalloc(sizeof(user_state),
PER_COMMAND);

/* Obtain the connection descriptor */
if ((local_conn = mi_open(NULL, NULL, NULL))

== (MI_CONNECTION *)NULL)
{
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_open() call failed");
return MI_ERROR;
}

/* Obtain the function descriptor for equal() */
if ((local_fdesc =

mi_routine_get(local_conn, 0, func_sig))
== (MI_FUNC_DESC *)NULL)

{
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_routine_get() call failed");
return MI_ERROR;
}

Executing User-Defined Routines 9-47

Executing the Routine
/* Cache the connection descriptor and function
* descriptor in MI_FPARAM
*/

func_state->conn = local_conn;
func_state->func_desc = local_fdesc;

/* Save the user state in MI_FPARAM */
mi_fp_setfuncstate(fparam, (void *)func_state);
}

/* Execute the equal() user-defined function */
func_result = mi_routine_exec(func_state->conn,

func_state->func_desc, &func_error, arg1, arg2);
if (func_error == MI_ERROR)

{
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_routine_exec() call failed");
return MI_ERROR;
}

...

Function Descriptors Within a Session

When you pass a session-duration connection descriptor to one of the
Fastpath look-up functions (see Figure 9-11 on page 9-26), the look-up
function allocates a function descriptor with a PER_SESSION memory
duration, called a session-duration function descriptor. The session-duration
function descriptor remains allocated until the session ends. In this case, all
UDRs within the session can access the cached function descriptor.

Warning: The session-duration connection descriptor and session-duration function
descriptor are advanced features of the DataBlade API. They can adversely affect your
UDR if you use them incorrectly. In addition, session-duration function descriptors
require named memory to store the pointers to function descriptors. Without named
memory, UDRs cannot share these pointers. Named memory is also an advanced
feature of the DataBlade API. Use a session-duration function descriptor only when
a regular function descriptor cannot perform the task you need done.

Server
9-48 IBM Informix DataBlade API Programmer’s Guide

Executing the Routine
The following table summarizes the memory operations for a session-
duration function descriptor in a C UDR.

Caching a Session-Duration Function Descriptor

To cache the function descriptor, save its address in PER_SESSION named
memory. This location guarantees that all UDRs within the session can access
the function descriptor. A UDR can create a session-duration function
descriptor and cache it as follows:

� Obtain a session-duration connection descriptor with the
mi_get_session_connection() function.

� Allocate named memory with a PER_SESSION memory duration to
hold the address of the session-duration function descriptor.

The UDR must store the pointers to these function descriptors in a
named-memory block so that they can be accessed across different
UDRs. Use the mi_named_alloc() or mi_named_zalloc() function to
allocate the PER_SESSION memory. Other UDRs might also be using
the same session-duration connection. Therefore, you might need to
handle concurrency issues on the named memory.

� Allocate a session-duration function descriptor by passing the
session-duration connection descriptor to one of the Fastpath look-
up functions (see Figure 9-11 on page 9-26).

When one of these look-up functions receives a session-duration
connection descriptor (instead of a public connection descriptor), it
allocates a session-duration function descriptor.

Memory Duration Memory Operation Function Name

PER_SESSION Constructor mi_cast_get(), mi_func_desc_by_typeid(),
mi_routine_get(),
mi_routine_get_by_typeid(),
mi_td_cast_get()

When passed a session-duration connection
descriptor instead of a public connection
descriptor

Destructor mi_routine_end()

When the session ends
Executing User-Defined Routines 9-49

Executing the Routine
The following code fragment uses the mi_routine_get() function to obtain a
session-duration function descriptor for the func1() UDR:

MI_CONNECTION *sess_conn;
MI_FUNC_DESC **fdesc;
mi_integer status;

/* Obtain a session-duration connection descriptor */
sess_conn = mi_get_session_connection();

/* Allocate a PER_SESSION named-memory block named
* 'funcptr_blk'. Assign address of this block to fdesc
* pointer.
*/

if ((status = mi_named_alloc((sizeof)(MI_FUNC_DESC *),
"funcptr_blk", PER_SESSION, (void **)&fdesc))
!= MI_OK)

{
/* Unable to allocate named-memory block. Handle error */
}

/* Obtain the session-duration function descriptor for
* func1(). Store function descriptor in named-memory block.
*/

if ((*fdesc = mi_routine_get(sess_conn, 0,
"function func1(int, char)") == (MI_FUNC_DESC *)NULL)

{
/* Unable to obtain function descriptor for func1() UDR.
* Handle error.
*/

}

The preceding code fragment uses the mi_get_session_connection()
function to obtain the session-duration connection descriptor, sess_conn. It
then passes sess_conn to the mi_routine_get() function to obtain a session-
duration function descriptor for func1(). The address of this session-
duration function descriptor is stored in a PER_SESSION named-memory
block named funcptr_blk. All UDRs that need to access the func1() function
descriptor can obtain it from funcptr_blk. For more information, see
“Reusing the Session-Duration Function Descriptor” on page 9-51.
9-50 IBM Informix DataBlade API Programmer’s Guide

Executing the Routine
Important: Do not store the address of a session-duration function descriptor in the
MI_FPARAM structure of the UDR. Neither should you allocate PER_SESSION
memory with mi_dalloc() and store the address of this memory in MI_FPARAM.
Both these methods cause the address of the session-duration function descriptor to
be lost because the MI_FPARAM structure gets freed when the UDR instance
completes. However, you can optimize the named-memory look-up by caching the
address of the named-memory block in MI_FPARAM. This method requires only one
call to mi_named_get() for each instance of the UDR. The first UDR invocation that
needs the information must allocate the named-memory block and populate the
named memory.

Reusing the Session-Duration Function Descriptor

To reuse the session-duration function descriptor in another UDR, you:

� Get the address of the PER_SESSION named-memory block that
contains the function descriptor.

� Extract the address of the session-duration function descriptor from
the named-memory block.

� Pass the session-duration function descriptor to the
mi_routine_exec() function to execute the associated UDR.

The following code fragment shows how other UDRs can access the fdesc
function descriptor until the session ends:

MI_CONNECTION *sess_conn;
MI_FUNC_DESC **fdesc;
mi_integer status, error;
mi_integer i = 55;
mi_char ch = 'c';
MI_DATUM *value;

/* Obtain a public and session-duration connection
* descriptor
*/

conn = mi_open(NULL, NULL, NULL);
sess_conn = mi_get_session_connection();
Executing User-Defined Routines 9-51

Executing the Routine
/* Obtain the address of the 'funcptr_blk' named-memory block,
* which contains the session-duration function descriptor
*/

if ((status = mi_named_get("funcptr_blk", PER_SESSION,
(void **)&fdesc)) != MI_OK)

{
/* Handle error */
...
}

/* Execute the UDR associated with the 'fdesc'
* session-duration function descriptor
*/

value = mi_routine_exec(conn, *fdesc, &error, i, c);

Once you obtain the session-duration function descriptor, the
mi_routine_exec() function can execute the associated UDR. You can specify
either a public connection descriptor or a session-duration connection
descriptor to mi_routine_exec(). If the UDR that the function descriptor
references is dropped while the session-duration function descriptor is still in
use, the database server generates an error when you try to execute the
routine.

Deallocating a Session-Duration Function Descriptor

The session-duration function descriptor has a PER_SESSION memory
duration. The function descriptor remains active until either of the following
events occurs:

� The mi_routine_end() function explicitly releases the session-
duration function descriptor.

To explicitly free a session-duration function descriptor, you must
free both the function descriptor with mi_routine_end() and the
associated PER_SESSION named memory with mi_named_free(), as
the following code fragment shows:

/* Free resources for the session-duration function
* descriptor
*/

if (mi_routine_end(sess_conn, *fdesc) != MI_OK)
{
/* Handle error */
...
}

mi_named_free("funcptr_blk", PER_SESSION);
9-52 IBM Informix DataBlade API Programmer’s Guide

Using a User-Allocated MI_FPARAM Structure
� The client application ends the session.

The database server automatically frees memory for the session-
duration function descriptor and its PER_SESSION named memory at
the end of the session.

Using a User-Allocated MI_FPARAM Structure
The Fastpath look-up functions (in Figure 9-11 on page 9-26) automatically
allocate an MI_FPARAM structure and save a pointer to this structure in the
function descriptor that they allocate. However, there are some cases in
which you might want to allocate your own MI_FPARAM structure for the
UDR that Fastpath executes.

The following DataBlade API functions support use of a user-allocated
MI_FPARAM structure.

DataBlade API Function Description

mi_fparam_allocate() Allocates a new MI_FPARAM structure

mi_fparam_copy() Copies an existing MI_FPARAM structure into a new
MI_FPARAM structure

mi_fparam_free() Frees a user-allocated MI_FPARAM structure

mi_fp_usr_fparam() Determines whether a specified MI_FPARAM structure
was allocated by the database server or by a UDR
Executing User-Defined Routines 9-53

Using a User-Allocated MI_FPARAM Structure
Creating a User-Allocated MI_FPARAM Structure

The following DataBlade API functions create a user-allocated MI_FPARAM
structure and return a pointer to this newly allocated structure:

� The mi_fparam_allocate() function allocates an MI_FPARAM
structure and returns a pointer to this newly allocated structure.

This user-allocated MI_FPARAM structure holds the number of argu-
ments that you specify to mi_fparam_allocate().

� The mi_fparam_copy() function copies an existing MI_FPARAM
structure to a new MI_FPARAM structure that the function allocates.

The user-allocated MI_FPARAM structure holds the same number of
arguments as the MI_FPARAM structure that mi_fparam_copy()
copied.

Both these functions are constructor functions for an MI_FPARAM structure.
They allocate the user-allocated MI_FPARAM structure in the current memory
duration. By default, the current memory duration is PER_ROUTINE. For
calling a UDR with Fastpath, the PER_ROUTINE memory duration refers to
the duration of the calling UDR, not the UDR that you call with Fastpath.

If you have changed the current memory duration with the
mi_switch_mem_duration() function, mi_fparam_allocate() or
mi_fparam_copy() uses the current memory duration that
mi_switch_mem_duration() has specified for the MI_FPARAM structure
that it allocates.

If the current memory duration is not acceptable for your use of the
MI_FPARAM structure, call mi_switch_mem_duration() with the desired
memory duration before the call to mi_fparam_allocate() or
mi_fparam_copy(). Keep in mind that when you call
mi_switch_mem_duration(), you change the current memory duration for
all subsequent memory allocations, including those made by mi_alloc().
9-54 IBM Informix DataBlade API Programmer’s Guide

Using a User-Allocated MI_FPARAM Structure
Using a User-Allocated MI_FPARAM Structure

For C UDRs, one of the primary uses of a user-allocated MI_FPARAM
structure is for data type control for generic routines. If you are calling a
generic UDR, one that handles many possible data types, you can set the
arguments in the MI_FPARAM structure to the specific data type. Possible
uses for generic UDRs include over collection types or over type hierarchies.
You can set the MI_FPARAM structure to accept the correct parameter data
types for a particular invocation of the routine. For example, you could pass
an employee_t data type into a UDR that was defined with the supertype
person_t.

Suppose you have a type hierarchy with person_t as the supertype and
employee_t as a subtype of person. The person_udr() UDR might be called
with either the person_t or employee_t data type in the first two arguments.
Suppose person_udr() needs to use Fastpath to execute another UDR, named
person_udr2(), to handle some additional task. The following code fragment
shows how the second and third arguments from person_udr() are passed to
person_udr2():

person_udr(person1, person2, data, fparam)
pers_type *person1;
pers_type *person2;
mi_lvarchar *data;
MI_FPARAM *fparam;

{
MI_TYPEID *pers2_typeid;
MI_FUNC_DESC *my_funcdesc;
MI_FPARAM *my_fparam;
mi_integer *myint_error;

...

pers2_typeid = mi_fp_argtype(fparam, 1);
my_funcdesc = mi_routine_get(conn, 0,

"myfunc(person_t, lvarchar)");
my_fparam = mi_fparam_get(conn, my_funcdesc);
mi_fp_setargtype(my_fparam, 0, pers2_typeid);
mi_routine_exec(conn, my_funcdesc, &myint_error, person2,

data, my_fparam);
...
}

Server
Executing User-Defined Routines 9-55

Using a User-Allocated MI_FPARAM Structure
In the preceding code fragment, the first argument of person_udr2() is set to
have the same type as the second argument of person_udr(), based on its
MI_FPARAM structure. In this implementation, person_udr2() needs the
actual data type of the argument, not the supertype.

Tip: Another possible use of a user-allocated MI_FPARAM structure is in
conjunction with per-session function descriptors. Per-session function descriptors
are an advanced feature of the DataBlade API. For more information, see “Obtaining
a Session-Duration Connection Descriptor” on page 7-23.

Passing a User-Allocated MI_FPARAM Structure

To pass the user-allocated MI_FPARAM structure to the Fastpath interface,
specify it as the last argument of the argument list that you provide to
mi_routine_exec(). The following call to mi_routine_exec() executes the
numeric_func() UDR (see Figure 9-12 on page 9-29) and specifies a user-
allocated MI_FPARAM structure:

my_fparam = mi_fparam_allocate(2);
...
ret_val = mi_routine_exec(conn, fdesc, &error, 1, 2,

my_fparam);

Freeing a User-Allocated MI_FPARAM

The database server automatically deallocates memory for the MI_FPARAM
structures that it allocates for the function descriptor of a UDR. However, the
database server does not deallocate any MI_FPARAM structure that you
allocate. A user-defined MI_FPARAM structure has a memory duration of
PER_COMMAND.

To conserve resources, use the mi_fparam_free() function to deallocate
explicitly the user-defined MI_FPARAM structure once your DataBlade API
module no longer needs it. The mi_fparam_free() function is the destructor
function for a user-defined MI_FPARAM structure. It frees the MI_FPARAM
structure and any resources that are associated with it.
9-56 IBM Informix DataBlade API Programmer’s Guide

Releasing Routine Resources
Releasing Routine Resources
A function descriptor for a UDR has a memory duration of PER_COMMAND.
Therefore, a function descriptor remains active until one of the following
events occurs:

� The mi_routine_end() function frees the function descriptor.

� The end of the current SQL command is reached.

� The mi_close() function closes the current connection.

To conserve resources, use the mi_routine_end() function to explicitly
deallocate the function descriptor once your DataBlade API module no
longer needs it. The mi_routine_end() function is the destructor function for
a function descriptor. It frees the function descriptor and any resources that
are associated with it.

The following call to mi_routine_end() explicitly releases the resources for
the fdesc function descriptor that the code in Figure 9-12 on page 9-29 and
Figure 9-15 on page 9-42 uses:

if (mi_routine_end(conn, fdesc) != MI_OK)
/* handle error */
...

Important: It is recommended that you explicitly deallocate function descriptors
with mi_routine_end() once you no longer need them. Otherwise, these function
descriptors remain until the end of the associated SQL command.

If your UDR accesses any session-duration function descriptors, these
descriptors have a memory duration of PER_SESSION. Therefore, they remain
active until the end of the session. You can explicitly deallocate them with
mi_routine_end().

Warning: Session-duration function descriptors are an advanced feature of the
DataBlade API. Do not use session-duration function descriptors unless regular
function descriptors (PER_COMMAND) cannot perform the task you need done. For
more information, see “Obtaining a Session-Duration Connection Descriptor” on
page 7-23. ♦

Server
Executing User-Defined Routines 9-57

10
Chapter
Handling Exceptions and
Events
In This Chapter . 10-3

DataBlade API Event Types 10-3

Event-Handling Mechanisms 10-5
Invoking a Callback 10-6

Registering a Callback 10-7
Enabling and Disabling a Callback 10-13
Retrieving a Callback Function 10-13

Using Default Behavior 10-18
Default Behavior in a C UDR. 10-18
Default Behavior in Client LIBMI Applications 10-19

Callback Functions 10-20
Declaring a Callback Function 10-20

Return Value of a Callback Function 10-21
MI_PROC_CALLBACK Modifier 10-23
Callback-Function Parameters 10-24

Writing a Callback Function 10-26
Restrictions on Content. 10-26
Event Information 10-27

Database Server Exceptions 10-32
Understanding Database Server Exceptions 10-32

Warnings and Errors 10-33
Status Variables 10-35

Providing Exception Handling 10-40
Exceptions in a C UDR 10-41
Exceptions in a Client LIBMI Application 10-49

Returning Error Information to the Caller. 10-51
Defining a User-Defined Error Structure 10-51
Implementing the Callback 10-52

10-2 IBM
Handling Multiple Exceptions. 10-59
Raising an Exception 10-61

Specifying the Connection 10-62
Specifying the Message 10-65

State-Transition Events 10-75
Understanding State-Transition Events. 10-75

Beginning a Transaction 10-76
Ending a Session 10-77

Providing State-Transition Handling 10-78
State Transitions in a C UDR 10-78
State Transitions in a Client LIBMI Application 10-84

Client LIBMI Errors 10-84
 Informix DataBlade API Programmer’s Guide

In This Chapter
This chapter covers the following topics, which describe events and explain
how to handle them in DataBlade API modules:

� DataBlade API event types

� Event-handling mechanisms

� Callback functions

� Database server exceptions

� State-transition events

� Client LIBMI errors

DataBlade API Event Types
For a DataBlade API module, an event is a communication from IBM Informix
software that indicates the existence of some predefined condition, usually
the occurrence of an exception (warning or error). The DataBlade API repre-
sents an event as one of the enumerated values of the MI_EVENT_TYPE data
type. Figure 10-1 shows the MI_EVENT_TYPE values that the DataBlade API
supports.
Handling Exceptions and Events 10-3

DataBlade API Event Types
Figure 10-1
DataBlade API Event Types

Important: MI_All_Events is a deprecated event type and is not listed with the
MI_EVENT_TYPE values. Using the MI_All_Events event type is not recommended.

Event Type Occurrence

Where Event Occurs

C UDR
Client LIBMI
Application

MI_Exception Raised when the database server generates an
exception (a warning or an error)

Yes Yes

MI_EVENT_SAVEPOINT Raised after the cursor flushes within an explicit
transaction

Yes No

MI_EVENT_COMMIT_ABORT Raised when the database server reaches the end
of a transaction in which work was done

Yes No

MI_EVENT_END_XACT Raised when the database server reaches the end
of a transaction, or if a hold cursor is involved,
raised only after the hold cursor is closed

It is preferable to register the
MI_EVENT_COMMIT_ABORT callback.

Yes No

MI_EVENT_END_STMT Raised when the database server completes the
execution of the current SQL statement, or for
statements associated with a cursor, raised when
the cursor is closed

Yes No

MI_EVENT_POST_XACT Raised just after the database commits or rolls
back a transaction if work was done in the trans-
action or if an MI_EVENT_END_XACT event was
raised

Yes No

MI_EVENT_END_SESSION Raised when the database server reaches the end
of the current session

Yes No

MI_Xact_State_Change Raised when the database server starts or ends a
transaction, whether the transaction contains one
or multiple SQL statements

No Yes

MI_Client_Library_Error Raised when the client LIBMI library encounters
an error

No Yes
10-4 IBM Informix DataBlade API Programmer’s Guide

Event-Handling Mechanisms
The milib.h header file defines the MI_EVENT_TYPE data type and its event
types. The DataBlade API event types can be grouped as follows.

Event-Handling Mechanisms
An event-handling mechanism provides a way for one DataBlade API module
to inform another module (or another part of the same module) that an event
has occurred during execution of a function. An event-handling mechanism
has two parts:

� A function that throws an event

A function in a DataBlade API module might encounter a condition
that it cannot handle. Events represent many common conditions
(see Figure 10-1 on page 10-4). When a module encounters one of
these conditions, it can throw the associated event to indicate that
some event handling needs to be performed.

� A function that catches an event

A special function, called a callback function, is invoked when its asso-
ciated event occurs. The callback function can perform the
appropriate actions to handle or recover from this event.

Event Type Event Group More Information

MI_Exception Database server
exceptions

“Database Server Excep-
tions” on page 10-32

MI_EVENT_SAVEPOINT

MI_EVENT_COMMIT_ABORT

MI_EVENT_POST_XACT

MI_EVENT_END_STMT

MI_EVENT_END_XACT

MI_EVENT_END_SESSION

MI_Xact_State_Change

State-transition
events

“State-Transition Events”
on page 10-75

MI_Client_Library_Error Client LIBMI errors “Client LIBMI Errors” on
page 10-84
Handling Exceptions and Events 10-5

Invoking a Callback
This division of event-handling responsibility enables you to put common
event-handling code for a particular condition in a single location, in a
callback function. Any DataBlade API module that requires the associated
event handling can then register this callback function.

When an event occurs, the DataBlade API performs event handling based on
whether it finds a registered callback that can catch (or handle) the event, as
follows:

� If a registered callback exists for the event, the DataBlade API invokes
this callback.

� If no registered callback exists for the event, the DataBlade API takes
the appropriate default behavior.

Invoking a Callback
A callback function (or just callback) is a function that you write to handle a
particular event. The DataBlade API provides the following functions to
handle invocation of a callback function.

Callback Task DataBlade API Function

Register a callback mi_register_callback(),
mi_unregister_callback()

Enable a callback mi_enable_callback()

Disable a callback mi_disable_callback()

Retrieve a pointer to the callback function mi_retrieve_callback()
10-6 IBM Informix DataBlade API Programmer’s Guide

Invoking a Callback
For the DataBlade API to invoke a callback when the associated event occurs,
the following conditions must be met in the DataBlade API module:

� The module must register the callback for the event on the current
connection.

The mi_register_callback() function registers a callback for a partic-
ular event. The DataBlade API module that requires the event
handling must register the callback.

� The registered callback must be enabled.

It is possible to disable a registered callback to suspend its invoca-
tion. The mi_enable_callback() function enables a previously
disabled callback.

In addition, a module can save a registered callback and restore it at a later
time.

Registering a Callback

For a callback to execute when its associated event occurs, you must register
it with the mi_register_callback() function. When you register a callback,
you take the following actions:

� Associate the callback function with the event it is to catch.

� Provide arguments for the callback parameters.

The call to the mi_register_callback() function must occur before the
statement for which you want the exception handling. If you register more
than one callback to handle a particular event, all registered callbacks execute
when the event occurs. The order in which these callbacks execute is not
predetermined.

Tip: You do not need to register a callback function in the database with the CREATE
FUNCTION statement. You need to register the callback only with the
mi_register_callback() function.
Handling Exceptions and Events 10-7

Invoking a Callback
The mi_register_callback() function requires the following arguments.

These arguments initialize many of the parameters of the callback function.
For more information, see Figure 10-4 on page 10-25.

When mi_register_callback() registers the callback, the function returns a
callback handle for the callback. For more information, see “Callback
Handle” on page 10-12.

If a callback is not registered when its event occurs, the DataBlade API takes
the default behavior. For more information, see “Using Default Behavior” on
page 10-18.

By default, a callback remains registered until the end of the connection. For
more information, see “Registration Duration” on page 10-12.

Argument Type Description More Information

MI_CONNECTION * A pointer to the connection
on which the callback is to
be registered. It might be
NULL if the connection is
undefined, as is the case
with some client LIBMI
errors and state-transition
events.

“Connection
Descriptor” on
page 10-9

MI_EVENT_TYPE The event type that the
callback handles

“Types of Callbacks”
on page 10-9

MI_CALLBACK_FUNC A pointer to the callback
function to invoke when
the specified event occurs

“Callback-Function
Pointer” on
page 10-11

void * A pointer to the user data,
which is passed to the
callback function when the
specified event occurs. It
can be used to pass
additional information to
and from the callback.

“Returning Error
Information to the
Caller” on page 10-51

“Managing Memory
Allocations” on
page 10-79

MI_CALLBACK_HANDLE * Must be NULL “Callback Handle”
on page 10-12
10-8 IBM Informix DataBlade API Programmer’s Guide

Invoking a Callback
Types of Callbacks

The second argument of the mi_register_callback() function is the event
type. The DataBlade API supports a type of callback for each event type. The
following table lists the types of callbacks that the DataBlade API supports
and the events that invoke them.

For a general introduction on how to write a callback function, see “Callback
Functions” on page 10-20.

Connection Descriptor

The first argument of the mi_register_callback() function is a connection
descriptor. This connection descriptor can be either a NULL-valued pointer or
a pointer to a valid connection. The valid value depends on whether the
calling module is a C user-defined routine (UDR) or a client LIBMI
application.

Callback Type Event Type More Information

Exception callback MI_Exception “Database Server
Exceptions” on
page 10-32

State-transition callbacks: “State-Transition
Events” on page 10-75

Savepoint callback

Commit-abort callback

Post-transaction callback

End-of-statement callback

End-of-transaction callback

End-of-session callback

State-change callback

MI_EVENT_SAVEPOINT

MI_EVENT_COMMIT_ABORT

MI_EVENT_POST_XACT

MI_EVENT_END_STMT

MI_EVENT_END_XACT

MI_EVENT_END_SESSION

MI_Xact_State_Change

Client LIBMI callback MI_Client_Library_Error “Client LIBMI Errors”
on page 10-84
Handling Exceptions and Events 10-9

Invoking a Callback
For a UDR, the connection descriptor must be a NULL-valued pointer when
you register callbacks for the following state-transition events:

� MI_EVENT_SAVEPOINT

� MI_EVENT_COMMIT_ABORT

� MI_EVENT_POST_XACT

� MI_EVENT_END_STMT

� MI_EVENT_END_XACT

� MI_EVENT_END_SESSION

For example, the following call to mi_register_callback() specifies a
connection descriptor of NULL to register the endxact_callback() end-of-
transaction callback, (which “State Transitions in a C UDR” on page 10-78
defines):

cback_hndl = mi_register_callback(NULL, MI_EVENT_END_XACT,
endxact_callback, NULL, NULL);

The mi_register_callback() function requires a valid connection descriptor
for the MI_Exception event type. For example, the following code fragment
registers the handle_errs() callback:

conn = mi_open(NULL, NULL, NULL);

if (mi_register_callback(conn, MI_Exception, handle_errs,
NULL, NULL) == NULL)

/* handle error */

In the preceding code fragment, the mi_register_callback() function
specifies a valid connection descriptor, which the mi_open() function has
initialized.

For the MI_Exception event, you can also provide a NULL-valued pointer as
a connection descriptor. In this case, the DataBlade API looks for callbacks
registered by the function that called the C UDR. If no callback exists for this
calling function, the DataBlade API continues up the calling hierarchy
looking for registered callbacks until it reaches the client application (which
initially invoked the UDR). This hierarchy of callbacks takes advantage of the
calling hierarchy.

For further information on how to register an exception callback, see “Excep-
tions in a C UDR” on page 10-41. ♦

Server
10-10 IBM Informix DataBlade API Programmer’s Guide

Invoking a Callback
For a client LIBMI application, you must provide a valid connection
descriptor to mi_register_callback() to register callbacks for the following
event types:

� MI_Exception

� MI_Xact_State_Change

� MI_Client_Library_Error

If the connection descriptor is not valid, the mi_register_callback() function
raises an exception. ♦

Callback-Function Pointer

The third argument of the mi_register_callback() function is a callback-
function pointer. The DataBlade API stores a pointer to the location of a
callback function in the MI_CALLBACK_FUNC data type. In the
mi_register_callback() function, you can specify the callback function in
either of the following ways:

� The name of the function

When you specify the function name as the third argument,
mi_register_callback() creates a callback-function pointer from the
function name.

The sample callback registrations in “Connection Descriptor” on
page 10-9 pass the name of the callback as the third argument of
mi_register_callback(). Both of these registrations are the first time
that the callback is registered within the module.

� A pointer to an MI_CALLBACK_FUNC variable

If mi_register_callback() has already initialized a callback-function
pointer, you can specify this pointer as the third argument of
mi_register_callback().

In the code fragment in “Retrieving a Callback Function” on
page 10-13, the second registration of the initial_cback() function
passes a pointer to an MI_CALLBACK_FUNC variable
(&initial_cbptr) as the third argument of mi_register_callback().

Client
Handling Exceptions and Events 10-11

Invoking a Callback
Callback Handle

The mi_register_callback() function returns a callback handle, which accesses
a registered callback within a DataBlade API module. A callback handle has
the MI_CALLBACK_HANDLE data type. Use a callback handle to identify a
callback for the following tasks.

Tip: The last argument of the mi_register_callback() function is also a callback
handle, but this argument is reserved for future use and must currently be a NULL-
valued pointer.

Registration Duration

The registration of a callback survives until one of the following conditions is
met:

� The connection on which the callback is registered closes (either the
UDR exits or the mi_close() function executes).

� The DataBlade API calls the callback, which happens for state-
transition callbacks when one of the following events occurs:

❑ MI_EVENT_SAVEPOINT

❑ MI_EVENT_COMMIT_ABORT

❑ MI_EVENT_POST_XACT

❑ MI_EVENT_END_STMT

❑ MI_EVENT_END_XACT

❑ MI_EVENT_END_SESSION

� You explicitly unregister the callback with the
mi_unregister_callback() function.

Callback Task DataBlade API Function

Enable a callback mi_enable_callback()

Disable a callback mi_disable_callback()

Retrieve a pointer to a callback function mi_retrieve_callback()

Unregister a callback mi_unregister_callback()
10-12 IBM Informix DataBlade API Programmer’s Guide

Invoking a Callback
Enabling and Disabling a Callback

A callback must be enabled for the database server to invoke it. The
mi_register_callback() function automatically enables the callback that it
registers. You can explicitly disable a registered callback with the
mi_disable_callback() function. When you disable a callback, you suspend
its invocation. You can later explicitly reenable it with the
mi_enable_callback() function.

Tip: If you want to reuse a callback, it is usually less resource intensive to disable and
reenable the callback than to unregister and reregister it.

Both the mi_enable_callback() and mi_disable_callback() functions take
the following arguments:

� A connection descriptor

The connection descriptor must have the same value that the
mi_register_callback() statement used when it registered the call-
back. For more information, see “Connection Descriptor” on
page 10-9.

� An MI_EVENT_TYPE value

This argument identifies the event type that the callback handles. For
more information, see Figure 10-1 on page 10-4.

� A callback handle for a registered callback

The mi_register_callback() function returns a callback handle when
it successfully registers a callback. This handle identifies the callback
to the mi_enable_callback() or mi_disable_callback() function. For
more information, see “Callback Handle” on page 10-12.

Retrieving a Callback Function

The mi_retrieve_callback() function returns a callback-function pointer
(MI_CALLBACK_FUNC) when you pass in a callback handle
(MI_CALLBACK_HANDLE). This function is useful when a DataBlade API
module needs to change temporarily the callback that is registered for a
particular event.
Handling Exceptions and Events 10-13

Invoking a Callback
To change a registered callback temporarily

1. Register the initial callback with mi_register_callback().

The mi_register_callback() function returns a callback handle for
the callback that it receives as its third argument.

2. Perform tasks that require the event handling of the initial callback.

3. Obtain the callback-function pointer for the initial callback with
mi_retrieve_callback().

Pass the callback handle for the initial callback as an argument to the
mi_retrieve_callback() function. The function returns a callback-
function pointer, which saves the location of the registered initial
callback.

The initial callback should be unregistered.

4. Register the temporary callback with mi_register_callback().

This call to mi_register_callback() overwrites the previous callback
that was registered for the event and returns a callback handle for the
temporary callback.

5. Perform the tasks that require the event handling of the temporary
callback.

6. Restore the initial callback with mi_register_callback().

Pass the saved callback-function pointer (step 3) of the initial call-
back as the third argument of mi_register_callback(). The function
returns a new callback handle for the initial callback.

A temporary callback is useful when C UDRs are nested and some inner
function wants to trap an event type in its own way instead of in the way that
the outer function provides.
10-14 IBM Informix DataBlade API Programmer’s Guide

Invoking a Callback
For example, suppose the func1() function specifies the func1_callback()
function to handle event_type events and then calls the func2() function, as
follows:

func1(...)
{

MI_CALLBACK_HANDLE *cback_hndl;
...
/* Set callback for event_type event type in func1() */
cback_hndl = mi_register_callback(conn, event_type,

func1_callback, ...)

/* do some stuff */
...
/* call func2(), which "inherits" func1() callback */
func2()
...

}

func2()
{

MI_CALLBACK_HANDLE *cback_hndl;
MI_CALLBACK_FUNC *old_callback;

/* Save func1() callback in 'old_callback' */
if (mi_retrieve_callback(conn, event_type, cback_hndl,

old_callback, NULL) == MI_ERROR)
/* handle error */

/* Set up func2() callback */
mi_unregister_callback(conn, event_type, cback_hndl);
mi_register_callback(conn, event_type, func2_callback, ...);

/* do some other stuff */
...

/* restore func1() callback */
cback_hndl = mi_register_callback(conn, event_type,

old_callback, ...)
...

}

Handling Exceptions and Events 10-15

Invoking a Callback
By default, the database server uses the func1_callback() callback to handle
any event_type events that occur during execution of func2(). For the func2()
routine to trap an event_type event in its own way, the routine must save the
func1_callback() callback and then register its own callback for the
event_type event type.

In the preceding code, the func2() function performs the following tasks:

1. Saves the func1_callback() from the func1() function

The func2() function passes in the func1_callback() callback handle
(cback_hndl) to the mi_retrieve_callback() function, which puts the
MI_CALLBACK_FUNC handle for func1_callback() into the
old_callback argument.

2. Registers its own callback, func2_callback()

The mi_register_callback() function registers the func2_callback()
function for the event_type event type.

3. Performs its own work

Any event_type event that occurs during this work causes the data-
base server to invoke the func2_callback() function.

4. Restores the callback of the func1() function

The func2() function uses mi_register_callback() again, this time to
restore the func1_callback() as the callback for the event_type event
type.

For example, suppose the UDR func1() specifies the initial_cback() function
to handle the MI_Exception event type, but the UDR requires the
tmp_cback() callback for MI_Exception events during a portion of its
execution. The following code fragment shows the use of
mi_retrieve_callback() and mi_register_callback() to save the
initial_cback() callback, to use the tmp_cback() callback temporarily, and
then to restore initial_cback():

func1()
{

MI_CONNECTION *conn;
MI_CALLBACK_HANDLE *initial_hndl, *tmp_hndl;
MI_CALLBACK_FUNC initial_cbptr;

conn = mi_open(NULL, NULL, NULL);

Server
10-16 IBM Informix DataBlade API Programmer’s Guide

Invoking a Callback
/* Register the initial callback (register #1). */
initial_hndl = mi_register(conn, MI_Exception,

initial_cback, NULL, NULL);

/* Do tasks that require initial_cback() as callback. */
...
/* Retrieve the current callback-function pointer on
* this connection into initial_cbptr. Pass in the
* callback handle of initial_cback().
*/

mi_retrieve_callback(conn, MI_Exception, initial_hndl,
&initial_cbptr, NULL);

/* Register the temporary callback (register #2).
* Callback handle for initial callback is overwritten.
*/

tmp_hndl = mi_register_callback(conn, MI_Exception,
tmp_cback, NULL, NULL);

/* Do tasks that require tmp_cback() as callback. */
...
/* Restore initial callback (register #3) */
initial_hndl = mi_register(conn, MI_Exception,

&initial_cbptr, NULL, NULL);

/* Continue with tasks that require initial_cback() as
 * callback.
*/

...
}

♦

Handling Exceptions and Events 10-17

Using Default Behavior
Using Default Behavior
If no callback is registered for a particular event, the DataBlade API uses its
default behavior when this event occurs. The default event handling depends
on whether the event occurs in a C UDR or in a client LIBMI application.

Default Behavior in a C UDR

If an exception occurs during the execution of the UDR and the UDR does not
register any callback to handle this event, the DataBlade API takes one of the
following default actions.

If a UDR does not register a callback for the MI_Exception event whose
exception level is MI_EXCEPTION (a runtime error), the DataBlade API aborts
the UDR and returns control to the calling module, which might have been
either of the following modules:

� A client application that called the UDR in an SQL statement

� Another UDR that called the UDR that encountered the runtime error

The calling module might have a registered callback (or some other method)
to handle the exception. To prevent database runtime errors from aborting a
UDR, use the mi_register_callback() function to register callbacks in the
UDR. For more information, see “Exceptions in a C UDR” on page 10-41.

Exception Type Default Behavior

MI_Exception An unhandled MI_MESSAGE exception does not halt
execution of the current statement. The DataBlade API
passes the warning to the client application, and
processing continues at the next statement of the UDR.

An unhandled MI_EXCEPTION exception aborts
execution of the current statement in the UDR. The
DataBlade API returns control to the calling module.

MI_Xact_State_Change When received in a UDR, an MI_Xact_State_Change
exception is treated the same as an
MI_EVENT_END_XACT event.

Server
10-18 IBM Informix DataBlade API Programmer’s Guide

Using Default Behavior
Important: Programming errors do not cause execution of callbacks. If a UDR
contains a serious programming error (such as a segmentation fault), execution
jumps out of the routine and back to the routine manager. The routine manager
attempts to make an entry in the database server message log file (online.log by
default).

Default Behavior in Client LIBMI Applications

If an exception occurs during the execution of a client LIBMI application and
the application does not register any callback to handle the exception, the
client LIBMI takes one of the following default actions.

On UNIX or Linux, the system-default callback causes the client LIBMI appli-
cation to send an error or warning message to stderr in response to an
unhandled exception. ♦

On Windows, the system-default callback causes the client LIBMI to display
an error or warning message in a Windows message box in response to an
unhandled exception. ♦

Exception Type Default Behavior

MI_Exception The client LIBMI executes the system-default callback.
The mi_default_callback() function implements this
system-default callback.

An unhandled MI_MESSAGE does not halt execution of
the current statement. The DataBlade API passes the
warning to the client LIBMI application, and processing
continues at the next statement of this client application.

An unhandled MI_EXCEPTION aborts execution of the
current statement in the client LIBMI application. The
DataBlade API passes the error to the client LIBMI
application and returns control to this client application.

MI_Xact_State_Change An unhandled MI_Xact_State_Change does not halt
execution of the current statement. Processing continues
at the next statement of the client LIBMI application.

MI_Client_Library_Error The client LIBMI executes the system-default callback.
The mi_default_callback() function implements this
system-default callback.

Client

UNIX/Linux

Windows
Handling Exceptions and Events 10-19

Callback Functions
To prevent the execution of the system-default callback, use the
mi_register_callback() function to register callbacks in the client LIBMI
application. For more information, see “Exceptions in a Client LIBMI Appli-
cation” on page 10-49 and “Client LIBMI Errors” on page 10-84.

Callback Functions
To catch or handle an event, you create a C function called a callback function.
In your DataBlade API module, you can register callback functions to handle
recovery from events. The DataBlade API invokes a registered (and enabled)
callback when the event associated with the callback occurs.

This section describes how to declare a callback function and how to write the
body of a callback function. For more information on how to register
callbacks, see “Registering a Callback” on page 10-7.

Declaring a Callback Function
To declare a callback function, you provide the following information:

� The MI_CALLBACK_STATUS return type ♦
� The optional MI_PROC_CALLBACK modifier

� Parameter declarations

Figure 10-2 shows the declaration of a callback function named myhandler()
for use in a UDR.

Server

Figure 10-2
A Sample Callback Declaration

MI_CALLBACK_STATUS MI_PROC_CALLBACK
myhandler(event_type, conn, event_data, user_data)

Callback Declaration
10-20 IBM Informix DataBlade API Programmer’s Guide

Declaring a Callback Function
Return Value of a Callback Function

When a callback function completes execution, it returns any return value
that it might have to the DataBlade API, which invoked it. The data type of
the callback return value depends on whether a UDR or a client LIBMI appli-
cation triggered the callback.

When a UDR causes a callback function to be invoked, the DataBlade API
expects the callback-function return value to be one of the enumerated values
of the MI_CALLBACK_STATUS data type. The MI_CALLBACK_STATUS
values indicate how to continue handling the event once the callback
completes. Figure 10-3 shows the valid values for the
MI_CALLBACK_STATUS return type.

Server
Handling Exceptions and Events 10-21

Declaring a Callback Function
Figure 10-3
MI_CALLBACK_STATUS Return-Status Values

The milib.h header file defines MI_CALLBACK_STATUS and its return-status
values.

The end-of-transaction callback on page 10-78 shows use of the
MI_CB_CONTINUE status. For information on the use of these return codes in
exception callbacks, see “Determining How to Handle the Exception” on
page 10-46. ♦

Return Status Description

MI_CB_EXC_HANDLED Only an exception callback can return this status value.
When the callback completes, the DataBlade API
returns control to the first statement after the statement
that raised the exception event. This return status
indicates that the callback has successfully handled the
event and the DataBlade API does not need to continue
with event handling. Therefore, the DataBlade API
does not abort the statement that invoked the callback.

MI_CB_CONTINUE This is the only status value that a callback other than
an exception callback can return. If a nonexception
callback returns this value, the database server
continues processing after the callback completes.

When an exception callback completes, the DataBlade
API continues to look for registered callbacks that
handle the event:

� Callbacks registered for the same event (on the same
connection) and at the same level in the calling
sequence

� Callbacks registered for the same event (on the same
connection) in a higher level of the calling sequence

When an exception callback returns this value to the
highest-level function in a calling sequence and no
other registered callback exists, the DataBlade API
aborts the UDR and any current transaction.
10-22 IBM Informix DataBlade API Programmer’s Guide

Declaring a Callback Function
When a client LIBMI application causes a callback to be invoked, the
DataBlade API does not expect the callback to return a status value. The client
LIBMI ignores any return value from a callback that a client LIBMI application
registers. Therefore, any such callbacks can return void.

In effect, the client LIBMI always assumes a MI_CB_EXC_HANDLED return
status from a callback. The client LIBMI returns control to the first statement
after the one that threw the event. The client LIBMI application must include
code that decides how to proceed based on the failure.

If a callback returns MI_CB_CONTINUE, the client LIBMI ignores the return
code because this return value does not have a meaning within a client appli-
cation. Within a C UDR, you can pass an exception up to a higher level in the
calling sequence because the routine executes in the context of the database
server. However, a client LIBMI application does not execute in the context of
the database server. Therefore, it cannot assume this general exception-
handling mechanism.

For an example of a callback that a client LIBMI application registers, see the
clntexcpt_callback() function in “Returning Error Information to the Caller”
on page 10-51. ♦

MI_PROC_CALLBACK Modifier

The MI_PROC_CALLBACK modifier on a callback definition is required for
callbacks that execute with Windows applications. For all other operating
systems, this modifier is optional. To make callbacks portable between
operating systems, include the MI_PROC_CALLBACK modifier in your
callback declaration.

The MI_PROC_CALLBACK modifier follows the callback return type and
precedes the callback name. Figure 10-2 on page 10-20 shows the location of
the MI_PROC_CALLBACK modifier in the declaration of the myhandler()
callback.1fs

Client

Windows
Handling Exceptions and Events 10-23

Declaring a Callback Function
Callback-Function Parameters

A callback function takes the following parameters.

Argument Type Description
Initialized by
mi_register_callback()?

MI_EVENT_TYPE The event type that triggers the
callback

Yes

MI_CONNECTION * A pointer to the connection on
which the event occurred

If the connection is undefined, it
might be NULL, as is the case
with some client-library errors
and state-transition events.

Yes

void * A pointer to an event-type
structure that holds event
information

For example, if the event is an
MI_Exception event, the
DataBlade API passes in an
MI_ERROR_DESC structure,
which holds the exception level
and the message text.

No

The DataBlade API
sets this pointer to the
associated event
structure when it
invokes the callback.

void * A pointer to any user data, which
you can use to pass any
additional information to and
from the callback

Yes
10-24 IBM Informix DataBlade API Programmer’s Guide

Declaring a Callback Function
When you register a callback with the mi_register_callback() function, you
provide arguments for most parameters of the callback. Figure 10-4 shows
how a call to mi_register_callback() provides the arguments that initialize
the parameters of the myhandler() callback.

The only callback parameter that the mi_register_callback() call does not
initialize is the event-type structure (the event_data parameter in Figure 10-4).
For more information about event-type structures, see “Event Information”
on page 10-27.

Figure 10-4
Initializing a Callback

MI_CALLBACK_STATUS MI_PROC_CALLBACK
myhandler(event_type, conn, event_data, user_data)

mi_register_callback(conn, MI_Exception, myhandler, NULL, NULL);

Callback Declaration

Callback Registration
Handling Exceptions and Events 10-25

Writing a Callback Function
Writing a Callback Function
Within the body of a callback function, you provide the code that handles a
particular event or events. Only certain tasks are valid within a callback.
When a callback function is invoked for an event, the DataBlade API passes
information about the event to the callback.

Restrictions on Content

A callback can call a DataBlade API function to perform its task. Callbacks
often clean up resources with such functions as mi_free(), mi_close(), and
mi_lo_spec_free(). The MI_EXCEPTION, MI_END_SESSION, and
MI_EVENT_POST_XACT callbacks cannot perform the following tasks:

� Execute SQL statements

� Raise database server exceptions

� Register other callbacks

The following types of callbacks are not subject to the same restrictions as
other callbacks:

� Commit-abort callback

� End-of-statement callback

� End-of-transaction callback

� Savepoint callback

Server
10-26 IBM Informix DataBlade API Programmer’s Guide

Writing a Callback Function
Specifically, these callbacks can raise an exception and they can register their
own exception callbacks. If an end-of-transaction or end-of-statement
callback issues a call to a DataBlade API function that generates an exception,
the action taken depends on whether the callback has registered its own
exception callback, as follows:

� If the callback has not registered any exception callback, any failure
of a DataBlade API function results in the return of the MI_ERROR or
NULL failure code from the DataBlade API function.

The callback must check for possible failure and take any necessary
exception-handling tasks.

� If the callback has registered an exception callback, control is thrown
to the exception callback.

For information on how an end-of-event callback can handle excep-
tions, see “State Transitions in a C UDR” on page 10-78.

� An MI_EVENT_POST_XACT callback cannot raise an error because the
transaction has already been committed or rolled back. ♦

Event Information

When a callback function is invoked for a particular event, the DataBlade API
passes an event-type structure as the third parameter of this function. This
event-type structure contains information about the event that triggered the
callback. The DataBlade API stores event information in one of the following
structures based on the event type:

� Exceptions and errors are stored in error descriptors.

� State transitions are stored in transition descriptors.
Handling Exceptions and Events 10-27

Writing a Callback Function
The following table shows the event types and the corresponding event-type
structures that describe them.

The milib.h header file defines the MI_ERROR_DESC and
MI_TRANSITION_DESC structures.

Using an Error Descriptor

The DataBlade API stores information about exceptions and errors in an error
descriptor. An error descriptor is an MI_ERROR_DESC structure. It holds
information for the MI_Exception and MI_Client_Library_Error event types.
The following table summarizes the memory operations for an error
descriptor.

When an MI_Exception or MI_Client_Library_Error event occurs, the
DataBlade API invokes the appropriate callback. To this callback, the
DataBlade API passes an initialized error descriptor as the third callback
argument. The error descriptor contains information about the MI_Exception
or MI_Client_Library_Error event. Within the callback, use the accessor
functions in Figure 10-5 on page 10-29 to obtain the error information from
the error descriptor.

Event-Type Structure Event Type

Error descriptor
(MI_ERROR_DESC)

MI_Exception
MI_Client_Library_Error

Transition descriptor
(MI_TRANSITION_DESC)

MI_EVENT_SAVEPOINT
MI_EVENT_COMMIT_ABORT
MI_EVENT_POST_XACT
MI_EVENT_END_STMT
MI_EVENT_END_XACT
MI_EVENT_END_SESSION
MI_Xact_State_Change

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_error_desc_copy()

Destructor mi_error_desc_destroy()
10-28 IBM Informix DataBlade API Programmer’s Guide

Writing a Callback Function
Accessing an Error Descriptor

The error descriptor is an opaque structure. You must use the DataBlade API
functions in Figure 10-5 to access information within it.

Figure 10-5
Accessor Functions for an Error Descriptor

Each of the DataBlade API functions in Figure 10-5 requires that you pass in
a pointer to a valid error descriptor.

Important: The MI_ERROR_DESC structure is an opaque structure to DataBlade
API modules. Do not access its internal fields directly. The internal structure of
MI_ERROR_DESC may change in future releases. Therefore, to create portable code,
always use the accessor functions in Figure 10-5 to obtain values from this structure.

Error-Descriptor
Information Description

DataBlade API
Function

Error or warning
message

The text of the error or warning
message

mi_errmsg()

Exception or error
level

An MI_Exception event has an
exception level that indicates the
type of exception that has occurred:
a warning (MI_WARNING) or a
runtime error (MI_EXCEPTION)

An MI_Client_Library_Error event
has an error level to indicate the type
of error that has occurred. For a list
of possible client LIBMI error levels,
see “Client LIBMI Errors” on
page 10-84.

mi_error_level()

SQLSTATE value A five-character status value that is
compliant with ANSI and X/Open
standards. For more information, see
“SQLSTATE Status Value” on
page 10-35.

mi_error_sql_state()

SQLCODE value An Informix-specific status value
that contains an integer value. For
more information, see “SQLCODE
Status Value” on page 10-38.

mi_error_sqlcode()
Handling Exceptions and Events 10-29

Writing a Callback Function
For a sample callback that obtains information from an error descriptor, see
the excpt_callback2() function in “Associating with a Callback” on
page 10-53.

Creating a Copy of an Error Descriptor

The DataBlade API passes the error descriptor as an argument to the callback.
Therefore, the DataBlade API allocates memory for the error descriptor when
it invokes the callback and deallocates this memory when the callback exits.
To preserve the error information for the calling routine, you can create a user
copy of the error descriptor within the callback.

The following DataBlade API functions facilitate an error-descriptor copy.

Using a Transition Descriptor

The transition descriptor, MI_TRANSITION_DESC, stores information about a
transition in the processing state of the database server. It holds information
for all state-transition events:

� MI_EVENT_SAVEPOINT

� MI_EVENT_COMMIT_ABORT

� MI_EVENT_POST_XACT

� MI_EVENT_END_STMT

� MI_EVENT_END_XACT

� MI_EVENT_END_SESSION ♦
� MI_Xact_State_Change

DataBlade API Function Description

mi_error_desc_copy() Allocates memory for a user copy of a specified error
descriptor and returns a pointer to this user copy

mi_error_desc_is_copy() Determines whether the specified error descriptor is a
user copy

mi_error_desc_destroy() Frees memory for a specified user copy of an error
descriptor (which was allocated with
mi_error_desc_copy())

Server
10-30 IBM Informix DataBlade API Programmer’s Guide

Writing a Callback Function
The milib.h header file defines the MI_TRANSITION_DESC structure.

When a state transition event occurs, the DataBlade API invokes the appro-
priate callback. To this callback, the DataBlade API passes an initialized
transition descriptor as the third callback argument. The transition descriptor
contains the transition type that initiated the state-transition event. To obtain
the transition type from the descriptor, use the mi_transition_type()
function. This function returns a value of type MI_TRANSITION_TYPE to
indicate the transition type of the event that occurred. For a list of valid
MI_TRANSITION_TYPE values, see “Understanding State-Transition Events”
on page 10-75.

Important: The MI_TRANSITION_DESC structure is an opaque structure to
DataBlade API modules. Do not access its internal fields directly. The internal
structure of MI_TRANSITION_DESC may change in future releases. Therefore, to
create portable code, always use the mi_transition_type() accessor function to
obtain the transition type from this structure.

The following code fragment uses the mi_transition_type() function to
determine which action to take when it receives a state-transition event:

MI_TRANSITION_DESC *event_data;
MI_TRANSITION_TYPE trans_type;
mi_string s[30];
...
trans_type = mi_transition_type(event_data);
switch (trans_type)

{
case MI_BEGIN: /* client LIBMI apps only */

s = "Transaction started.";
break;

case MI_NORMAL_END:
s = "Successful event";
break;

case MI_ABORT_END:
s = "Event failed and rolled back,";
break;

default:
s = "Unknown transition type";
break;

}
fprintf(stderr, "%s\n", s);
Handling Exceptions and Events 10-31

Database Server Exceptions
Database Server Exceptions
When the database server or a UDR raises a database server exception, the
DataBlade API invokes any callbacks that are registered for the exception.
This section provides information about exception handling in DataBlade
API modules:

� An explanation of database server exceptions

� How to handle a database server exception in a UDR and in a client
LIBMI application

� How to return error information to the calling code

� How to handle errors that generate multiple exceptions

� How to explicitly raise a database server exception

Understanding Database Server Exceptions
A database server exception is an unexpected condition that occurs within the
database server. A database server exception can occur in any of the
following tasks:

� Within an SQL statement

The mi_exec() and mi_exec_prepared_statement() functions exe-
cute SQL statements. An exception can occur when the database
server executes an SQL statement.

� Within a UDR

The mi_routine_exec() function executes UDRs through the Fast-
path interface. An exception can occur when this UDR executes.

� By the DataBlade API function, mi_db_error_raise()

The mi_db_error_raise() function can explicitly raise a database
server exception within a DataBlade API module. For more informa-
tion, see “Raising an Exception” on page 10-61.

� Within the execution of some other DataBlade API function

Other functions in the DataBlade API might raise exceptions when
they execute.
10-32 IBM Informix DataBlade API Programmer’s Guide

Understanding Database Server Exceptions
When the database server encounters a database server exception, it raises
the MI_Exception event.

Warnings and Errors

The MI_Exception event indicates which of the following status conditions
has caused the database server exception:

� A warning is a condition that does not prevent successful execution of
an SQL statement; however, the effect of the statement is limited and
the statement might not produce the expected results.

� A runtime error (or failure) indicates that the SQL statement or
DataBlade API function did not execute successfully and it made no
change to the database.

Runtime errors can occur at the following levels:

❑ Hardware errors include controller failure, bad sector on disk,
and so on.

❑ Kernel errors include file-table overflow, insufficient
semaphores, and so on.

❑ Access-method errors include duplicated index keys, SQL NULL
inserted into non-null columns, and so on.

❑ Parser errors include invalid syntax, unknown objects, invalid
statements, and so on.

❑ DataBlade API library errors are usually caused by invalid
arguments.

The following list describes the most common DataBlade API library errors:

� The DataBlade API might not have been initialized.

� One of the DataBlade API initialization functions must be the first
DataBlade API call in the module. For more information, see “Initial-
izing the DataBlade API” on page 7-29.

� A function that passes a connection descriptor (MI_CONNECTION)
passes an invalid connection, one that was closed or dropped.

� A function that passes a row descriptor (MI_ROW_DESC) can pass an
invalid row descriptor.

� A function that passes a row structure (MI_ROW) passes an invalid
row.
Handling Exceptions and Events 10-33

Understanding Database Server Exceptions
� A function that passes a column name passes a column name that
does not exist in the object or objects being accessed.

� A function that passes a column number passes a column number
that is out of range (greater or less than the number of columns in the
object).

� A function that passes an event type (MI_EVENT_TYPE) passes a
nonexistent event type.

� A function that passes a save set (MI_SAVE_SET) passes an invalid
save set.

� A function that passes a buffer passes a null buffer or a buffer that is
too small.

� A function that passes a pointer passes an invalid pointer.

� If the pointer_checks_enabled field of the parameter information
structure is set, a pointer might not be within the process heap space.

Potential exceptions other than these types of common invalid arguments are
mentioned in the Return Values section of the individual function descrip-
tions in the IBM Informix DataBlade API Function Reference.

An error descriptor for an MI_Exception event indicates the status condition
of the event with one of the following exception levels.

The mi_error_level() function returns the exception level from an error
descriptor for the MI_Exception event.

Status Condition Exception Level Description

Warning MI_MESSAGE Raised when the database server generates a
warning or an informational message. The
database server passes a warning back to the
client application; it is up to the client to
display the warning message.

Runtime error
(failure)

MI_EXCEPTION Raised when the database server generates a
runtime error.
10-34 IBM Informix DataBlade API Programmer’s Guide

Understanding Database Server Exceptions
Status Variables

To identify the particular cause of an exception, the database server sets the
following status variables:

� The SQLSTATE status variable holds a five-character code that is
compliant with ANSI and X/Open standards.

� The SQLCODE status variable holds an integer value that is Informix
specific.

SQLSTATE Status Value

SQLSTATE is a five-character string that the database server sets after it
executes each DataBlade API function. The value of SQLSTATE indicates the
status of the function execution.

The SQLSTATE status variable is compliant with ANSI and X/Open
standards. ♦

This five-character code consists of a two-character class code and a three-
character subclass code. In Figure 10-6, "IX" is the class code and "000" is
the subclass code. The SQLSTATE value "IX000" indicates that an Informix-
specific error has occurred.

SQLSTATE can contain only digits and capital letters. The class code is unique
but the subclass code is not. The meaning of the subclass code depends on the
associated class code. The initial character of the class code indicates the
source of the exception, as Figure 10-7 summarizes.

Figure 10-6
The Structure of the

SQLSTATE Code
with the Value

"IX000"

ANSI

Class
Code

Subclass
Code

I X 0 0 0
Handling Exceptions and Events 10-35

Understanding Database Server Exceptions
Figure 10-7
Initial SQLSTATE Class-Code Values

Initial Class-
Code Value Source of Exception Code Notes

0 to 4
A to H

X/Open and ANSI/ISO The associated subclass codes also
begin in the range 0 to 4 or A to H.

5 to 9 Defined by the
implementation

Subclass codes are also defined by the
implementation.

I to Z Dynamic Server,
a DataBlade module,
a C UDR,
a client LIBMI
application

Any of the Informix-specific error
messages (those that the X/Open or
ANSI/ISO reserved range does not
support) have an initial class-code
value of "I" (SQLSTATE value of
"IX000").

If a UDR returns an error message that
this routine has defined, the initial
class-code value is "U" (SQLSTATE
value of "U0001").

Other SQLSTATE class-code values
can be defined by the implementation.
10-36 IBM Informix DataBlade API Programmer’s Guide

Understanding Database Server Exceptions
After the database server executes a DataBlade API function, it sets
SQLSTATE to indicate one of the status conditions, as Figure 10-8 shows.

Figure 10-8
Status Conditions in SQLSTATE

For a list of reserved ANSI and X/Open values for SQLSTATE, see the
description of the GET DIAGNOSTICS statement in the IBM Informix Guide to
SQL: Syntax. For more information on DataBlade API literal exceptions
("U0001" and "01U01"), see “Passing Literal Messages” on page 10-65. For
more information on DataBlade API custom exceptions, see “Raising Custom
Messages” on page 10-66.

Status
Condition

SQLSTATE Value

Class Code Subclass Code

Success "00" "000"

Success, but no rows
found

"02" "000"

Success, but warnings
generated

"01" For ANSI and X/Open warnings:

"000" to "006"

For Informix-specific warnings:

"I01" to "I11"

For literal warnings that DataBlade
API modules raise: "U01"

For custom warnings that DataBlade
API modules define: other subclass
values, as defined in the syserrors
system catalog table

Failure, runtime error
generated

For ANSI and X/Open errors: > "02"

For Informix-specific errors: "IX"

For literal errors that DataBlade API
modules raise: "U0"

For custom errors that DataBlade API
modules define: other class codes, as
defined in the syserrors system catalog
table

Error-specific value
Handling Exceptions and Events 10-37

Understanding Database Server Exceptions
Identifying Warnings with SQLSTATE

When the database server executes a DataBlade API function successfully but
encounters a warning condition, it takes the following actions:

� Sets the class code of SQLSTATE to "01"

� Sets the subclass code of SQLSTATE to a unique value that indicates
the cause of the warning (see Figure 10-8 on page 10-37)

� Throws an MI_Exception event with an MI_MESSAGE exception level

Identifying Runtime Errors with SQLSTATE

When an SQL statement results in a runtime error, the database server takes
the following actions:

� Sets the class code of SQLSTATE to a value greater than "02" (see
Figure 10-8 on page 10-37)

� Sets the subclass code of SQLSTATE to a unique value that indicates
the cause of the error

� Raises an MI_Exception event with an MI_EXCEPTION exception level

The actual class and subclass codes of SQLSTATE identify the particular error.
For Informix-specific errors (SQLSTATE is "IX000"), you can also check the
value of the SQLCODE variable to identify the error.

Tip: The database server sets SQLSTATE to "02000" (class = "02") when a SELECT
or FETCH statement encounters NOT FOUND (or END OF DATA). However, the
NOT FOUND condition does not cause a database server exception. Therefore, you do
not use SQLSTATE to detect this condition from within a callback of a DataBlade API
module. Instead, your DataBlade API module can check for the
MI_NO_MORE_RESULTS return code from the mi_get_result() function. For more
information, see “Retrieving Query Data” on page 8-64.

SQLCODE Status Value

Each SQLSTATE value also has an associated Informix-specific status code.
The database server saves this Informix-specific status code in the SQLCODE
status variable. The SQLCODE variable is an integer that indicates whether
the SQL statement succeeded or failed.
10-38 IBM Informix DataBlade API Programmer’s Guide

Understanding Database Server Exceptions
When the database server executes an SQL statement, the database server
automatically updates the SQLCODE variable. After an SQL statement
executes, the SQLCODE variable can indicate one of the status conditions that
Figure 10-9 shows.

Figure 10-9
Status Conditions In SQLCODE

Identifying Warnings with SQLCODE

When the database server executes an SQL statement successfully but
encounters a warning condition, it takes the following actions:

� Sets the SQLSTATE variable to a five-character warning value

� Sets the SQLCODE variable to zero (success)

� Raises the MI_Exception event with the MI_MESSAGE exception level

To identify warnings, examine the value of SQLSTATE. The SQLCODE value
does not indicate the cause of a warning. For more information, see “Identi-
fying Warnings with SQLSTATE” on page 10-38.

Identifying Runtime Errors with SQLCODE

When an SQL statement results in a runtime error, the database server takes
the following actions:

� Sets SQLCODE to a negative value

� Raises an MI_Exception event with an MI_EXCEPTION exception
level

Status Condition SQLCODE Value

Success 0

Success, but no rows found 100

Success, but warnings generated not available directly from SQLCODE

Failure, runtime error generated < 0
Handling Exceptions and Events 10-39

Providing Exception Handling
The actual number in SQLCODE identifies the particular Informix runtime
error. The finderr or Error Messages utility lists error messages and describes
corrective actions.

Tip: The database server sets SQLCODE to 100when a SELECT or FETCH statement
encounters NOT FOUND (or END OF DATA). However, the NOT FOUND condition
does not cause a database server exception. Therefore, you do not use SQLCODE to
detect this condition from within a callback of a DataBlade API module. Instead, your
DataBlade API module can check for the MI_NO_MORE_RESULTS return code from
the mi_get_result() function. For more information, see “Retrieving Query Data”
on page 8-64.

Providing Exception Handling
By default, the DataBlade API aborts the current statement when the
statement generates a database runtime error and continues execution when
the statement generates a database warning. (For more information, see
“Using Default Behavior” on page 10-18.)

To override the default exception handling, you must take the following
actions:

1. Write a callback function that handles the MI_Exception event.

To handle an MI_Exception event, you can write either of the follow-
ing types of callback functions:

� Exception callback, which executes only when the MI_Exception
event occurs

� All-events callback, which executes when many events occur
and can include handling for the MI_Exception event

Within a callback, the DataBlade API function mi_error_level()
returns the exception level for the database server exception. You can
also use mi_error_sql_state(), mi_error_sqlcode(), and
mi_errmsg() to get more details about the database server exception
from its error descriptor. For more information, see “Accessing an
Error Descriptor” on page 10-29.
10-40 IBM Informix DataBlade API Programmer’s Guide

Providing Exception Handling
2. Register the callback that handles the MI_Exception event in the
DataBlade API module that needs the exception handling.

Use the mi_register_callback() function to register callback func-
tions. After you register a callback that handles the MI_Exception
event, the DataBlade API invokes this callback instead of performing
its default exception handling for the event.

Important: Exception callbacks are subject to some restrictions on what tasks they
can perform. For more information, see “Writing a Callback Function” on
page 10-26.

A database server exception triggers an exception callback only if the
DataBlade API module has registered (and enabled) a callback that handles
the MI_Exception event. The way that your DataBlade API module handles a
database server exception depends on whether the DataBlade API module is
a UDR or a client LIBMI application.

Exceptions in a C UDR

If a C UDR has not registered an exception callback on the current connection,
the DataBlade API takes a default action based on the exception level of the
MI_Exception event. For more information, see “Default Behavior in a C
UDR” on page 10-18.

For example, in Figure 10-10, the return statement never executes when a
runtime error occurs in the SQL statement that mi_exec() executes.

Server

mi_integer
no_exception_handling(flag)

mi_integer flag;
{

MI_CONNECTION *conn;

conn = mi_open(NULL, NULL, NULL);
mi_exec(conn, "bad SQL statement", MI_QUERY_NORMAL);

/* Not reached; this function aborts on an exception. */
...

return 1;
}

Figure 10-10
A C UDR

with Default
Exception Handling
Handling Exceptions and Events 10-41

Providing Exception Handling
When an exception with an MI_EXCEPTION exception level occurs, the
DataBlade API aborts the mi_exec() call and the no_exception_handling()
routine. The database server returns control to the calling module.

To provide event handling for database server exceptions within a UDR,
perform the following tasks:

� Determine if a callback can handle the runtime error.

� In the UDR, register a callback that handles the MI_Exception event.

� In the callback function, return a value that determines how to
continue the exception handling once the callback completes.

Handling Errors from DataBlade API Functions

Function descriptions in the IBM Informix DataBlade API Function Reference
contain a section titled “Return Values.” This section lists the possible return
values for the associated DataBlade API function. However, whether the
calling code actually receives a return value depends on whether the
DataBlade API function throws an MI_Exception event when it encounters a
runtime error. The DataBlade API functions can be divided into the following
subsets based on their response to a database server exception:

� Functions that throw an MI_Exception event

� Functions that do not throw an MI_Exception event but provide
either MI_ERROR or a NULL-valued pointer when a database server
exception occurs

� Functions that can raise an error when a database server exception
occurs

Functions That Throw MI_Exception

Most DataBlade API functions throw an MI_Exception event when they
encounter a database server exception. For these functions, you can register
an exception callback to gain control after a database server exception occurs.
Whether the calling code receives a return value from the DataBlade API
function depends on how the registered callback handles the MI_Exception
event.

Tip: Even if you expect a DataBlade API function to throw an error, the exception
handling might possibly ignore it. Therefore, it is recommended that you always
check the return value of each DataBlade API function for possible failure.
10-42 IBM Informix DataBlade API Programmer’s Guide

Providing Exception Handling
Functions That Return MI_ERROR or NULL-Valued Pointer

The DataBlade API functions that do not throw an MI_Exception event when
they encounter a database server exception include the following functions:

� DataBlade API file-access functions: mi_file_allocate(),
mi_file_close(), mi_file_errno(), mi_file_open(), mi_file_read(),
mi_file_seek(), mi_file_sync(), mi_file_tell(), mi_file_to_file(),
mi_file_unlink(), and mi_file_write()

� Memory-allocation functions: mi_alloc(), mi_dalloc(),
mi_realloc(), and mi_zalloc()

When one of the preceding DataBlade API functions encounters an exception,
the function does not cause any callbacks registered for the MI_Exception
event to be invoked. Instead, these functions return one of the following
values to the calling code to indicate failure:

� MI_ERROR, if the function returns an integer value

� NULL-valued pointer, if the function returns a pointer

The calling code must check the return value of the DataBlade API function
and take the appropriate actions. Uncorrected error conditions might lead to
worse failures later in processing. For conditions that cannot be corrected, the
calling code can provide an informational message to notify the user about
what has occurred. The calling code can use the mi_db_error_raise()
function to perform the following tasks:

� Explicitly raise an MI_Exception event

� Send a message to the client application

Registering an Exception Callback

When the database server or a UDR raises a database server exception, the
database server invokes any callbacks that handle the MI_Exception event
and that the UDR has registered (and enabled) on the current connection. Use
the mi_register_callback() function to register such a callback. For general
information about mi_register_callback(), see “Registering a Callback” on
page 10-7.
Handling Exceptions and Events 10-43

Providing Exception Handling
The code fragment in Figure 10-11 contains the same mi_exec() call as
Figure 10-10 on page 10-41. However, this UDR, has_exception_handling(),
registers the excpt_callback() function as an exception callback.

When the database server exception occurs in the SQL statement that
mi_exec() executes, mi_exec() returns MI_ERROR and the if statement
handles the exception. For a sample implementation of the excpt_callback()
callback function, see Figure 10-13 on page 10-47.

For the excpt_callback() function to be invoked for database exceptions that
occur on the current connection, you must specify the connection descriptor
of the current connection when you register excpt_callback(). In
Figure 10-11, mi_register_callback() passes the conn connection descriptor,
which the mi_open() call has obtained, when it registers excpt_callback().

#include <mi.h>

mi_integer
has_exception_handling(flag)

mi_integer flag;
{

static MI_CALLBACK_STATUS MI_PROC_CALLBACK
excpt_callback();

MI_CONNECTION *conn = NULL;
MI_CALLBACK_HANDLE *cback_hndl;

/* Obtain the connection descriptor */
conn = mi_open(NULL, NULL, NULL);

/* Register the 'excpt_callback' function as an
** exception callback */
cback_hndl = mi_register_callback(conn, MI_Exception,

excpt_callback, NULL, NULL);

/* Generate a syntax error that excpt_callback() will
** catch */
ret = mi_exec(conn, "bad SQL statement",

MI_QUERY_NORMAL);
if (ret == MI_ERROR)

/* handle exception */
...

}

Figure 10-11
A C UDR

with Exception
Handling
10-44 IBM Informix DataBlade API Programmer’s Guide

Providing Exception Handling
The mi_open() function can be resource intensive. If your UDR is likely to be
executed many times in the context of a single SQL statement, you might
want to cache the connection descriptor from the initial mi_open() call in an
MI_FPARAM structure. After you save this descriptor, you can reuse it in
subsequent invocations of the UDR.

The C UDR in Figure 10-12, has_exception_handling2(), saves the
connection descriptor in its MI_FPARAM structure the first time it is called
and obtains the saved connection descriptor on subsequent calls.

For more information on the MI_FPARAM structure and the user state, see
“Saving a User State” on page 9-14.

mi_integer
has_exception_handling2(flag, fparam)

mi_integer flag;
MI_FPARAM *fparam;

{
MI_CONNECTION *conn = NULL;
MI_CALLBACK_HANDLE *cback_hndl;
DB_ERROR_BUF error;

/* Obtain the connection descriptor from MI_FPARAM */
conn = (MI_CONNECTION *)mi_fp_funcstate(fparam);
if (conn == NULL) /* first time routine is called */

{
/* Obtain the connection descriptor */
conn = mi_open(NULL, NULL, NULL);

/* Register the 'excpt_callback2() function as an
** exception callback on this connection */
cback_hndl = mi_register_callback(conn,

MI_Exception,
excpt_callback2, (void *)&error, NULL);

/* Save connection descriptor in MI_FPARAM */
mi_fp_setfuncstate(fparam, (void *)conn);
}

...
}

Figure 10-12
Caching the
Connection

Descriptor in an
Exception Callback
Handling Exceptions and Events 10-45

Providing Exception Handling
In the preceding code fragment, the has_exception_handling2() routine
registers the excpt_callback2() function as its exception callback. This
callback uses a user-provided buffer to store event information. As its fourth
argument, the mi_register_callback() call passes a user-defined buffer
named error to the exception callback. For more information, see “Returning
Error Information to the Caller” on page 10-51.

Determining How to Handle the Exception

The return value of an exception callback tells the database server how to
continue handling a database server exception once the callback completes.
An exception callback for a UDR must return one of the
MI_CALLBACK_STATUS values that Figure 10-3 on page 10-22 lists.

Handling an Exception in the Callback

To indicate that the callback function executes instead of the default exception
handling, an exception callback function returns the MI_CB_EXC_HANDLED
status. This return status tells the DataBlade API that the actions of the
callback have completely handled the exception.

An exception callback function returns the MI_CB_EXC_HANDLED status to
indicate that the callback has completely handled the exception. That is, the
actions of the callback have provided the exception handling. When the
DataBlade API receives the MI_CB_EXC_HANDLED return status, it does not
perform its default exception handling. It assumes that the callback has
executed instead of the default exception handling. (For more information, see
“Default Behavior in a C UDR” on page 10-18.)

When a callback returns MI_CB_EXC_HANDLED, the DataBlade API does not
propagate the exception up the calling sequence. Therefore, a client appli-
cation that has executed an SQL expression that contains a UDR does not
receive an error from the execution of the UDR (unless the callback uses a
user-provided error buffer). If the SQL expression contains no other excep-
tions, the client application would have an SQLSTATE value of 00000
(success).
10-46 IBM Informix DataBlade API Programmer’s Guide

Providing Exception Handling
Figure 10-13 shows the excpt_callback() exception callback, which is written
to handle the MI_Exception event. It returns MI_CB_EXC_HANDLED to
indicate that no further exception handling is required.

The excpt_callback() function in Figure 10-13 returns
MI_CB_EXC_HANDLED, which prevents the DataBlade API from taking any
further exception-handling steps, such as invoking other callbacks that
handle MI_Exception or aborting the current statement. This callback
executes instead of the default exception handling.

For the has_exception_handling() routine (which Figure 10-11 on
page 10-44 defines), the DataBlade API takes the following steps when the
mi_exec() function executes:

1. Executes the excpt_callback() callback when mi_exec() throws an
exception

2. Returns control to the first statement in has_exception_handling()
after mi_exec(). As a result, execution of the
has_exception_handling() routine returns from the mi_exec() call
with a return value of MI_ERROR.

Important: Because excpt_callback() returns MI_CB_EXC_HANDLED, the
database server assumes that the MI_Exception event does not require any further
handling. However, excpt_callback() does not actually take any exception-
handling steps; it contains only a return statement to return an
MI_CB_EXC_HANDLED status. In an actual DataBlade API module, you would
probably want to add code to excpt_callback() that provides exception handling.

static MI_CALLBACK_STATUS MI_PROC_CALLBACK
excpt_callback(event_type, conn, event_data, user_data)

MI_EVENT_TYPE event_type;
MI_CONNECTION *conn;
void *event_data;
void *user_data;

{
/* claim to have handled the exception */
return MI_CB_EXC_HANDLED;

}

Figure 10-13
A Simple Exception

Callback
Handling Exceptions and Events 10-47

Providing Exception Handling
Continuing with Exception Handling

To indicate that the callback function executes in addition to the default
exception handling, an exception callback function returns the
MI_CB_CONTINUE return status. This return status tells the DataBlade API
that the actions of the callback have not completely handled the exception
and that the DataBlade API should continue with its default exception
handling. (For more information, see “Default Behavior in a C UDR” on
page 10-18.) The actions of the callback provide supplemental exception
handling.

If the excpt_callback() function in Figure 10-13 had returned
MI_CB_CONTINUE instead of MI_CB_EXC_HANDLED, the database server
would handle the exception in the has_exception_handling() routine as
follows:

1. Execute the excpt_callback() function when the mi_exec() call
throws an exception.

2. Abort the mi_exec() call in has_exception_handling().

3. Return control back to the calling module that called
has_exception_handling().

If has_exception_handling() was a UDR in an SQL statement, the database
server would abort the SQL statement and return control to the client appli-
cation. The client application would be expected to handle the runtime error
for the end user.

However, if has_exception_handling() was called by another C UDR that
had registered an exception callback, the database server would have
executed this callback and continued with the exception handling as the
return status of this callback indicated (MI_CB_CONTINUE or
MI_CB_EXC_HANDLED). If this callback also returned MI_CB_CONTINUE, the
database server would continue up the calling sequence, looking for a regis-
tered callback that handled the MI_Exception event. If the database server
reached the top-most level in the calling sequence (the UDR within an SQL
statement) without locating an exception callback that returned
MI_CB_EXC_HANDLED, the database server would abort the UDR and return
control to the client application.
10-48 IBM Informix DataBlade API Programmer’s Guide

Providing Exception Handling
For more information on how to write a callback function for a UDR, see
“Callback Functions” on page 10-20.

Tip: The MI_Exception event might overlap with the MI_EVENT_END_STMT and
MI_EVENT_END_XACT events because an exception always causes either a
statement or a transaction to abort. Design the corresponding callbacks with this
relationship in mind.

Exceptions in a Client LIBMI Application

If the client LIBMI application has not registered a callback that handles the
MI_Exception event on the current connection, the client LIBMI calls the
system-default callback. (For more information, see “Default Behavior in
Client LIBMI Applications” on page 10-19.)

To provide event handling for database server exceptions within a client
LIBMI application, register a callback that handles the MI_Exception event in
the client LIBMI application. The DataBlade API invokes any exception
callback that the application has registered (and enabled) on the current
connection when either of the following actions occurs:

� A client LIBMI application executes a DataBlade API function that
throws an MI_Exception event.

� An exception occurs in a UDR that is invoked from a statement in the
client LIBMI application and any exception callbacks that the UDR
has registered return the MI_CB_CONTINUE return status.

Function descriptions in the IBM Informix DataBlade API Function Reference
contain a section titled “Return Values.” This section lists the possible return
values for the DataBlade API function. In a C UDR, DataBlade API function
calls might or might not return a value, depending on whether the DataBlade
API function throws an MI_Exception event when it encounters a runtime
error. However, DataBlade API function calls in a client LIBMI application
always indicate failure because client-side callbacks always return to the
DataBlade API function that generated the error.

Client
Handling Exceptions and Events 10-49

Providing Exception Handling
On failure, DataBlade API functions return one of the following values to a
client LIBMI application:

� MI_ERROR if the return value is an integer

� NULL if the return value is a pointer.

The client LIBMI application can check for these error values and take any
appropriate actions.

The client LIBMI application registers callbacks with the
mi_register_callback() function. You must provide a valid connection
descriptor to mi_register_callback() for all valid event types. For more infor-
mation, see “Registering a Callback” on page 10-7.

For example, the following mi_register_callback() call registers the
clntexcpt_callback() function to handle MI_Exception events:

int main (argc, arcv)
int argc;
char *argv;

{
MI_CONNECTION *client_conn;
MI_CALLBACK_HANDLE *client_cback;
mi_integer ret;

/* Open a connection to the database server */
client_conn = mi_open(argv[1], NULL, NULL);

/* Register the exception callback */
client_cback = mi_register_callback(client_conn,

MI_Exception, (MI_VOID *)clntexcpt_callback, NULL, NULL);
if (client_cback == NULL)

/* do something appropriate */
...
ret = mi_exec(client_conn, "bad SQL statement",

MI_QUERY_NORMAL);
if (ret == MI_ERROR)

/* perform error recovery */
...
}

For more information about how to write a callback function for a client
LIBMI application, see “Callback Functions” on page 10-20.
10-50 IBM Informix DataBlade API Programmer’s Guide

Returning Error Information to the Caller
Returning Error Information to the Caller
The fourth argument of a callback function is a pointer to callback user data.
The user data is a C variable or structure that contains application-specific
information that a callback can use. You pass the user data to a callback when
you register the callback with the mi_register_callback() function. The
fourth argument of mi_register_callback() provides a pointer to the user
data (see Figure 10-4 on page 10-25).

One of the most common uses of user data is a user-defined error structure.
When a callback handles exceptions, DataBlade API functions return either
MI_ERROR or NULL on failure. This information is often not specific enough
for the calling code to determine the cause of the error. You can create a user-
defined error structure to pass more specific error information back to the
calling code, as follows:

1. The calling code defines and allocates a user-defined error structure.

2. The callback function populates the user-defined structure with error
information.

Defining a User-Defined Error Structure

The calling code can define a user-defined error structure to hold error infor-
mation. This user-defined structure can be a single C variable or a structure
with several pieces of error information. It can contain as much error infor-
mation as the calling code requires.

Figure 10-14 shows a sample user-defined error structure named
DB_ERROR_BUF.

#define MSG_SIZE 256
typedef struct error_buf_
{

mi_integer error_type;
mi_integer error_level;
mi_string sqlstate[6];
mi_string error_msg[MSG_SIZE];

} DB_ERROR_BUF;

Figure 10-14
A Sample

User-Defined Error
Structure
Handling Exceptions and Events 10-51

Returning Error Information to the Caller
The DB_ERROR_BUF structure holds the following error information.

The calling code must allocate memory for the user-defined error structure.
You can use the DataBlade API memory-allocation functions such as
mi_alloc() and mi_dalloc(). When you allocate the user-defined error
structure, you must associate a memory duration with this structure that you
declare that is appropriate to its usage. For example, if the user-defined error
structure is to be associated with a registered callback, you must allocate the
structure with a memory duration of PER_STMT_EXEC so that this memory is
still allocated when the callback executes.

The following mi_dalloc() call allocates a DB_ERROR_BUF buffer with a
PER_STMT_EXEC memory duration:

mi_dalloc(sizeof(DB_ERROR_BUF), PER_STMT_EXEC);

Implementing the Callback

The calling code can use one of the following ways to make a user-defined
error structure available to a callback:

� Associate the user-defined structure with the callback.

� Associate the user-defined structure with the database connection.

Error Field Description

error_type The event type for the event

For exception handling, this event type should always be
MI_Exception.

error_level The exception level (or error level) for the event

For exception handling, this field holds the exception level:
MI_MESSAGE or MI_EXCEPTION.

sqlstate The value of the SQLSTATE variable, which indicates the cause of
the exception

error_msg The text of the error message, up to a limit of MSG_SIZE bytes
10-52 IBM Informix DataBlade API Programmer’s Guide

Returning Error Information to the Caller
Associating with a Callback

To associate a user-defined error structure with the registered callback,
specify the address of the structure as the fourth argument of
mi_register_callback() function. The call to mi_register_callback()
initializes the fourth parameter of the exception callback with a pointer to the
user-defined structure. For more information, see Figure 10-4 on page 10-25.

The following func1() UDR registers a callback named excpt_callback2(),
which puts error information in the DB_ERROR_BUF user-defined structure
(which Figure 10-14 on page 10-51 defines):

void func1(flag)
mi_integer flag;

{
MI_CONNECTION *conn;
MI_CALLBACK_HANDLE *cback_hndl;
DB_ERROR_BUF error;

/* Initialize information in the error buffer */
error.sqlstate[0] = '\0';
strcpy(error.error_msg,

"func3: initialized error buffer.");

/* Obtain connection descriptor */
conn = mi_open(NULL, NULL, NULL);
if (conn == NULL)

mi_db_error_raise(NULL, MI_EXCEPTION,
"func1: mi_open() call failed!");

/* Register the exception callback */
cback_hndl = mi_register_callback(conn, MI_Exception,

excpt_callback2, (void *)&error), NULL):

/* Execute SQL statement */
mi_exec(conn, "bad SQL statement", MI_QUERY_NORMAL);

/* Execution does not reach this point if the
* excpt_callback2() callback returns MI_CB_CONTINUE.
*/

Server
Handling Exceptions and Events 10-53

Returning Error Information to the Caller
The call to mi_register_callback() specifies the address of the user-defined
structure as its fourth argument. This structure is, in turn, passed in as the
third argument of the excpt_callback2() callback (see Figure 10-4 on
page 10-25). The following code implements the excpt_callback2() callback
function:

MI_CALLBACK_STATUS
excpt_callback2(event_type, conn, event_info, user_data)

MI_EVENT_TYPE event_type;
MI_CONNECTION *conn;
void *event_info;
void *user_data; /* user-defined error buffer gets

* passed here
*/

{
DB_ERROR_BUF *user_info;
mi_integer state_type;
mi_string *msg;

user_info = ((DB_ERROR_BUF *)user_data);
user_info->error_type = event_type;

if (event_type != MI_Exception)
{
user_info->sqlstate[0] = '\0';
sprintf(user_info->error_msg,

"excpt_callback2 called with wrong event type ",
 "%d", event_type);

}
else /* event_type is MI_Exception */

{
mi_error_sql_state((MI_ERROR_DESC *)event_info,

user_info->sqlstate, 6);
mi_errmsg((MI_ERROR_DESC *)event_info,

user_info->error_msg, MSG_SIZE-1);
}

return MI_CB_EXC_HANDLED;
}

Important: Make sure that you allocate the user-defined error structure with a
memory duration that is compatible with the callback that uses it. Memory durations
longer than PER_COMMAND exist for use with end-of-statement, end-of-trans-
action, and end-of-session callbacks. However, these longer memory durations should
be used only in special cases. For more information, see “Choosing the Memory
Duration” on page 13-7. ♦
10-54 IBM Informix DataBlade API Programmer’s Guide

Returning Error Information to the Caller
The following code fragment from a client LIBMI application registers a
callback named clntexcpt_callback2(), which puts error information in the
DB_ERROR_BUF user-defined structure (which Figure 10-14 on page 10-51
defines).

int main (argc, argv)
int argc;
char **argv;

{
MI_CONNECTION *conn = NULL;
char stmt[300];
MI_CALLBACK_HANDLE callback_hdnl;
DB_ERROR_BUF error_buff;
mi_integer ret;

/* Open a connection to the database server */
conn = mi_open(argv[1], NULL, NULL);
if (conn == NULL)

/* do something appropriate */

/* Register the exception callback, with the user-defined
* error structure as the fourth argument to
* mi_register_callback()
*/

callback_hndl = mi_register_callback(conn, MI_Exception,
(MI_VOID *)clntexcpt_callback2;
(MI_VOID *)&error_buff, NULL);

if (callback_hndl == NULL)
/* do something appropriate */

...
/* Execute the SQL statement that 'stmt' contains */
ret = send_statement(conn, stmt);
/* If an exception occurred during the execution of the
* SQL statement, the exception callback initialized the
* 'error_buff' structure. Obtain error information from
* 'error_buff'.
*/

if (ret == MI_ERROR)
{
if (error_buff.error_type == MI_Exception)

{
if (error_buf.error_level == MI_EXCEPTION)

{
fprintf(stderr, "MI_Exception: level = %d",

error_buff.error_level);
fprintf(stderr, "SQLSTATE='%s'\n",

error_buff.sqlstate);
fprintf(stderr, "message = '%s'\n",

error_buff.error_msg);
/* discontinue processing */
}

Client
Handling Exceptions and Events 10-55

Returning Error Information to the Caller
else /* error_level is MI_WARNING */
{
sprintf(warn_msg, "WARNING: %s\n",

error_buf.error_msg);
display_msg(warn_msg);
}

}
/* do something appropriate */

...
}

The call to mi_register_callback() specifies the address of the user-defined
structure as its fourth argument. This structure is, in turn, passed in as the
fourth argument of the clntexcpt_callback2() callback. The following code
implements the clntexcpt_callback2() callback function.

void clntexcpt_callback2(event_type, conn, event_info,
error_info)

MI_EVENT_TYPE event_type;
MI_CONNECTION *conn;
void *event_info;
void *error_info; /* user-defined error buffer here */

{
DB_ERROR_BUF *error_buf = (DB_ERROR_BUF *)error_info;

/* Fill user-defined structure with error information */
error_buf->error_type = event_type;
if (event_type == MI_Exception)

{
error_buf->error_level = mi_error_level(event_info);
mi_error_sql_state(event_info, error_buf->sqlstate, 6);
mi_errmsg(event_info, error_buf->error_msg, MSG_SIZE-1);
}

else
fprintf(stderr,

"Warning! clntexcpt_callback() fired for event ",
"%d", event_type);

return;
}

The clntexcpt_callback() function is an example of an exception callback for
a client LIBMI application. This callback returns void because the client LIBMI
does not interpret the MI_CALLBACK_STATUS return value, as does the
database server for UDRs. ♦
10-56 IBM Informix DataBlade API Programmer’s Guide

Returning Error Information to the Caller
Associating with the Connection

To associate a user-defined error structure with the connection, you:

� Use the mi_set_connection_user_data() function in the calling
function to bind the structure to a connection descriptor (an
MI_CONNECTION structure).

� Use the mi_get_connection_user_data() function in the callback to
obtain the structure that is bound to the connection descriptor.

Important: You can associate a user-defined error structure with a connection only
if a valid connection exists and this connection does not change between the point at
which the callback is registered and the point at which the exception event occurs. If
you cannot guarantee that these two conditions exist, associate the user-defined error
structure with the registered callback (page 10-53).

The following code fragment from a client LIBMI application binds the
DB_ERROR_BUF user-defined structure (Figure 10-14 on page 10-51) to a
connection:

int main (argc, argv)
int argc;
char **argv;

{
MI_CONNECTION *conn = NULL;
MI_CALLBACK_HANDLE *cback_hndl;
char query[300];
mi_integer ret;
DB_ERROR_BUF error_buff;

conn = mi_open(argv[1], NULL, NULL);
if (conn == NULL)

/* do something appropriate */
...

cback_hndl = mi_register_callback(conn, MI_Exception,
(MI_VOID)clntexcpt_callback2, NULL, NULL);

ret = mi_set_connection_user_data(conn,
(MI_VOID)&error_buff);

if (ret == MI_ERROR)
/* do something appropriate */
...

ret = send_command(conn, query);

Client
Handling Exceptions and Events 10-57

Returning Error Information to the Caller
if (ret == MI_ERROR)
{
fprintf(stderr, "MI_Exception: level = %d",

error_buff.error_level);
fprintf(stderr, "SQLSTATE='%s'\n",

error_buff.sqlstate);
fprintf(stderr, "message = '%s'\n",

error_buff.error_msg);
}

/* do something appropriate */
...

}

The call to mi_register_callback() does not specify the address of the user-
defined structure as its fourth argument because this structure is associated
with the connection. The following code implements the
clntexcpt_callback() callback function, which uses the
mi_get_connection_user_data() function to obtain the user-defined
structure:

void clntexcpt_callback2(event_type, conn, event_info,
user_data)

MI_EVENT_TYPE event_type;
MI_CONNECTION *conn; /* user-defined error buffer here */
void *event_info;
void *user_data;

{
DB_ERROR_BUF *error_buf

mi_get_connection_user_data(conn, (void **)&error_buf)
error_buf->error_type = event_type;
if (event_type == MI_Exception)

{
error_buf->error_level = mi_error_level(event_info);
mi_error_sql_state(event_info, error_buf->sqlstate, 6);
mi_errmsg(event_info, error_buf->error_msg, MSG_SIZE-1);
}

else
fprintf(stderr,

"Warning! clntexcpt_callback2() fired for event "
"%d", event_type);

return;
}

In the preceding code fragment, the italicized portion is the only difference
between this client LIBMI application and the one that registers a user-
defined variable with the callback (in “Associating with a Callback” on
page 10-53). ♦
10-58 IBM Informix DataBlade API Programmer’s Guide

Handling Multiple Exceptions
Handling Multiple Exceptions
The database server can generate multiple exceptions for a single SQL
statement. A single statement might generate multiple exceptions when any
of the following conditions have occurred:

� Multiple warnings occur.

� Multiple details are associated with a single error occurrence.

For example, a DROP TABLE statement might set both the SQLCODE
value and the ISAM error value. Similarly, nested UDRs might gener-
ate errors at many levels.

The database server normally calls a registered exception callback once for
each exception message. If a single error causes multiple exceptions, you
must use the following DataBlade API functions in the callback to process
multiple messages in a single invocation.

A callback is not called again for any messages that have already been
processed. The database server presents exceptions from highest message
level to lowest message level. Therefore, a UDR or SQL message occurs first,
followed by any ISAM message.

DataBlade API Function Description

mi_error_desc_next() Obtains the next error descriptor from the current
exception list

The list of exceptions that the current statement
generates is called the current exception list.

mi_error_desc_finish() Completes the processing of the current exception
list

A callback can use this function to prevent its being
called again for any more exceptions currently
associated with the current statement.
Handling Exceptions and Events 10-59

Handling Multiple Exceptions
The smart-large-object functions (mi_lo_*) raise an MI_Exception event if
they encounter a database server exception. However, the smart-large-object
error is the second message that the database server returns. Therefore, an
exception callback needs to include the following steps to obtain an exception
from an mi_lo_* function:

1. Call mi_error_sqlcode() to get the high-level SQLCODE value.

2. Call mi_error_desc_next() to get the next error descriptor.

3. Call mi_error_sqlcode() again to get the detailed smart-large-object
error (and ISAM error code).

The following callback function, excpt_callback3(), is a modified version of
the excp_callback2() callback that handles multiple exceptions:

MI_CALLBACK_STATUS excpt_callback3(event_type, conn,
event_info, user_data)

MI_EVENT_TYPE event_type;
MI_CONNECTION *conn;
void *event_info;
void *user_data; /* user-defined error buffer gets

* passed here
*/

{
DB_ERROR_BUF *user_info;
mi_integer state_type;
mi_string *msg;

mi_integer i=0;
/* Pointer to multiple error messages */
MI_ERROR_DESC *err_desc=NULL;

user_info = ((DB_ERROR_BUF *)user_data);

user_info->error_type = event_type;
if (event_type != MI_Exception)

{
user_info->sqlstate[0] = '\0';
sprintf(user_info->error_msg,

"excpt_callback3 called with wrong event type ",
 "%d", event_type);

/* Send trace message for default trace class */
DPRINTF("__myErrors__", 1, ("<<<<>>>> mesg=%s",

user_info->error_msg));
return MI_CB_CONTINUE;
}

10-60 IBM Informix DataBlade API Programmer’s Guide

Raising an Exception
err_desc = (MI_ERROR_DESC *)event_info;
i++;
mi_error_sql_state(err_desc, user_info->sqlcode, 6);
mi_errmsg(err_desc, user_info->error_msg, MSG_SIZE-1);

DPRINTF("__myErrors__", 1,
("<<<<>>>> mesg %d: sqlcode=%s, mesg=%s", i,
user_info->sqlcode, user_info->error_msg));

/* Overwrites previous error. Another approach would be to
* allocate enough 'user_info' space to store all errors
*/
if ((err_desc=

mi_error_desc_next((MI_ERROR_DESC *)event_info))
!= NULL)

{
i++;
mi_error_sql_state(err_desc, user_info->sqlcode, 6);
mi_errmsg(err_desc, user_info->error_msg,

MSG_SIZE-1);

DPRINTF("__myErrors__", 1,
("<<<<>>>> mesg %d: sqlcode=%s, mesg=%s", i,
user_info->sqlcode, user_info->error_msg));

}
return MI_CB_CONTINUE;

}

This callback also uses the DPRINTF macro to send trace messages to an
output file. For more information on tracing, see “Using Tracing” on
page 11-46.

Raising an Exception
If a DataBlade API module detects an error, it can use the
mi_db_error_raise() function to raise an exception.

In a C UDR, the mi_db_error_raise() function raises an exception to the
database server. ♦

In a client LIBMI application, the mi_db_error_raise() function sends the
exception over to the database server. ♦

Server

Client
Handling Exceptions and Events 10-61

Raising an Exception
When the mi_db_error_raise() function raises an exception, the database
server handles this exception in the same way it would if a database server
exception occurred in a DataBlade API function. If the DataBlade API module
has registered an exception callback, this call to mi_db_error_raise() invokes
the exception callback. If no exception callback has been registered, the
DataBlade API uses the default behavior for the handling of exceptions.

Specifying the Connection

The first argument to the mi_db_error_raise() function is a connection
descriptor. This connection descriptor can be either a NULL-valued pointer or
a pointer to a valid connection. Which values are valid depend on whether
the calling module is a UDR or a client LIBMI application.

In a C UDR, you can specify the connection descriptor to
mi_db_error_raise() as either of the following values:

� A NULL-valued pointer, which raises an exception on the parent
connection

� A pointer to the current connection descriptor, which raises an
exception on the current connection

Raising an Exception on the Parent Connection

When you specify a NULL-valued connection descriptor to the
mi_db_error_raise() function, this function raises the exception against the
parent connection, which is the connection on which the C UDR was invoked.
This connection might be a client connection or a UDR-owned connection that
was passed to mi_exec(), mi_exec_prepared_statement(), or
mi_routine_exec().

Server
10-62 IBM Informix DataBlade API Programmer’s Guide

Raising an Exception
If the raised exception has an MI_EXCEPTION exception level, the database
server aborts both the UDR and the current SQL expression. For both
exception levels (MI_EXCEPTION and MI_MESSAGE), the database server
passes the event message to the module on the parent connection and returns
control to this module. If the UDR needs control of the exception, it must call
mi_db_error_raise() with a pointer to the current connection descriptor. For
more information, see “Raising an Exception on the Current Connection” on
page 10-63.

The following example shows how the MI_EXCEPTION exception level causes
the my_function() UDR to abort when mi_db_error_raise() specifies a
NULL-valued pointer as its connection descriptor:

void MI_PROC_VACALLBACK my_function()
{

... Processing ...
if (error condition)

{
... do any clean-up here ...
ret = mi_db_error_raise ((MI_CONNECTION *)NULL,

MI_EXCEPTION, "FATAL ERROR in my_function()!");
}

... These lines never get reached ...
}

Execution returns to the code that called my_function(). If this code has an
exception callback, this callback determines how the exception handling
continues.

Raising an Exception on the Current Connection

When you specify a valid connection descriptor to the mi_db_error_raise()
function, this function raises the exception against the specified connection.
The DataBlade API invokes any callbacks that are registered for the
MI_Exception event on this same connection. If a registered callback returns
the MI_CB_EXC_HANDLED status, control returns to the UDR. (For more
information, see “Determining How to Handle the Exception” on page 10-46.
Handling Exceptions and Events 10-63

Raising an Exception
When the my_function() routine registers a callback, the callback can catch
the exception with an MI_EXCEPTION exception level, as the following
example shows:

void MI_PROC_VACALLBACK
my_function()
{

conn = mi_open(NULL, NULL, NULL);
...
cback_hndl = mi_register_callback(conn, MI_Exception,

excpt_callback, NULL, NULL);
... Processing ...
if (error condition)

{
... do any clean-up here ...
ret = mi_db_error_raise (conn, MI_EXCEPTION,

"The excpt_callback() function is invoked from \
 my_function().");

}
... These lines do get reached if excpt_callback()

returns MI_CB_EXC_HANDLED...
}

For a sample implementation of the excpt_callback() function, see
Figure 10-13 on page 10-47. ♦

In a client LIBMI application, you must specify a valid connection descriptor
to the mi_db_error_raise() function. For an exception callback to be invoked
when the mi_db_error_raise() function raises an exception, specify the same
connection descriptor as the one on which the callback was registered.

For example, in the following code fragment, the call to mi_db_error_raise()
causes the excpt_callback() function to be invoked when an MI_Exception
event occurs:

conn1 = mi_open(argv[1], NULL, NULL);
cback_hndl = mi_register_callback(conn1, MI_Exception,

clnt_callback, (void *)&error, NULL);
...
mi_db_error_raise(conn1, MI_EXCEPTION,

"The clnt_callback() callback is invoked.");

Both mi_register_callback(), which registers the callback for the
MI_Exception event, and mi_db_error_raise(), which raises the
MI_Exception event, specify conn1 as their connection descriptor. ♦

Client
10-64 IBM Informix DataBlade API Programmer’s Guide

Raising an Exception
Specifying the Message

The message that mi_db_error_raise() passes to an exception callback can be
either of the following types:

� A literal message, which you provide as the third argument to
mi_db_error_raise()

� A custom message that is associated with a SQLSTATE value, which
you provide as the third argument to mi_db_error_raise()

Passing Literal Messages

To raise an exception whose message text you provide, the
mi_db_error_raise() function requires the following information:

� A message type of MI_MESSAGE or MI_EXCEPTION

� The associated message text

When you pass the MI_MESSAGE or MI_EXCEPTION message type to the
mi_db_error_raise() function, the function raises an MI_Exception event
whose error descriptor contains the following information.

For example, the following call to mi_db_error_raise() raises an
MI_Exception event with an exception level of MI_MESSAGE, an SQLSTATE
value of "01U01", and the "Operation Successful" warning message:

mi_db_error_raise(conn, MI_MESSAGE, "Operation Successful");

For the following line, mi_db_error_raise() raises an MI_Exception event
with an exception level of MI_EXCEPTION, an SQLSTATE value of "U0001",
and the "Out of Memory!!!" error message:

mi_db_error_raise(conn, MI_EXCEPTION, "Out of Memory!!!");

Error Descriptor Field Warning Runtime Error

Exception level
(2nd argument)

MI_MESSAGE MI_EXCEPTION

SQLSTATE value "01U01" "U0001"

Message text
(3rd argument)

Specified warning text Specified error text
Handling Exceptions and Events 10-65

Raising an Exception
If any exception callback is registered for the same connection, the DataBlade
API sends this error descriptor to the callback when the MI_Exception event
is raised.

If the C UDR (or any if its calling routines) has not registered an exception
callback when the MI_Exception event is raised, the DataBlade API performs
the default exception handling, which depends on the exception level of the
exception:

� If the exception has an MI_EXCEPTION exception level, the database
server aborts the UDR and returns control to the calling module.

� If the exception has an MI_MESSAGE exception level, the database
server sends the warning message to the calling module and
continues execution of the UDR. ♦

If the client LIBMI application has not registered an exception callback when
the MI_Exception event is raised, the client LIBMI calls the system-default
callback, which provides the following information:

� The connection

� The exception type: MI_MESSAGE or MI_EXCEPTION

� The message text that is associated with the exception

For more information on the actions of the system-default callback, see
“Using Default Behavior” on page 10-18. ♦

Raising Custom Messages

The mi_db_error_raise() function can raise exceptions with custom
messages, which DataBlade modules and UDRs can store in the syserrors
system catalog table. The syserrors table maps these messages to five-
character SQLSTATE values.

To raise an exception whose message text is stored in syserrors, you provide
the following information to the mi_db_error_raise() function:

� A message type of MI_SQL

� The value of the SQLSTATE variable that identifies the custom
exception

� Optionally, values specified in parameter pairs that replace markers
in the custom exception message

Server

Client
10-66 IBM Informix DataBlade API Programmer’s Guide

Raising an Exception
When you pass the MI_SQL message type to the mi_db_error_raise()
function, the function raises an MI_Exception event whose error descriptor
contains the following information:

If any exception callback is registered for the same connection, the DataBlade
API sends this error descriptor to the callback when the MI_Exception event
is raised. For example, assume that the following predefined error message
is under an SQLSTATE value of "03I01" in the syserrors table:

Operation Interrupted.

The following call to mi_db_error_raise() sends this predefined error
message to a registered (and enabled) callback that handles the MI_Exception
event:

mi_db_error_raise (conn, MI_SQL, "03I01", NULL);

The exception level for this exception would be MI_EXCEPTION because any
SQLSTATE value whose class code is greater than "02" is considered to
represent a runtime error. If no such callback was registered (or enabled), the
database server would take its default exception-handling behavior.

If the SQLSTATE value had a class code of "01", mi_db_error_raise() would
raise a warning instead of an error. (For more information on SQLSTATE
values, see “SQLSTATE Status Value” on page 10-35.) The following
mi_db_error_raise() call raises an MI_Exception event whose exception level
is MI_MESSAGE:

mi_db_error_raise(conn, MI_SQL, "01877", NULL);

Error Descriptor Field Warning Runtime Error

Exception level MI_MESSAGE

(If the SQLSTATE value has
a class code of "01")

MI_EXCEPTION

(If the SQLSTATE value has a
class code of "02" or greater)

SQLSTATE value
(3rd argument)

Specified warning value:

"01xxx"

Specified error value:

"xxxxx"

(class code of "02" or greater)

Message text Associated warning text
from syserrors table

Associated error text from
syserrors table
Handling Exceptions and Events 10-67

Raising an Exception
When this exception is raised, execution continues at the next line after this
call to mi_db_error_raise().

Tip: Both of the preceding mi_db_error_raise() examples specify NULL as the last
argument because neither of their syserrors messages contains parameter markers.
For more information on parameter markers, see “Specifying Parameter Markers” on
page 10-71.

Searching for Custom Messages

When the mi_db_error_raise() function initiates a search of the syserrors
table, it requests the message in which all components of the locale
(language, territory, code set, and optional modifier) are the same in the
current processing locale and the locale column of syserrors.

Tip: For more information on the columns of the syserrors system catalog table, see
the chapter on the system catalog tables in the “IBM Informix Guide to SQL:
Reference.” For more information on SQLSTATE, see “SQLSTATE Status Value” on
page 10-35.

For DataBlade API modules that use the default locale, the current processing
locale is U.S. English (en_us). (The name of the default code set depends upon
the platform you use. For more information on default code sets, see the
IBM Informix GLS User’s Guide.) When the current processing locale is U.S.
English, mi_db_error_raise() looks only for messages that use the U.S.
English locale.

For DataBlade API modules that use nondefault locales, the current
processing locale is one of the following locales:

� For C UDRs, the current processing locale is the server-processing
locale. ♦

� For client LIBMI applications, the current processing locale is the
client locale. ♦

For more information on the client, database server, and server-processing
locales, see the IBM Informix GLS User’s Guide. ♦

GLS

Server

Client
10-68 IBM Informix DataBlade API Programmer’s Guide

Raising an Exception
A GLS locale name has the format ll_tt.codeset@modf, in which ll is the name
of the language, tt is the name of the territory, codeset is the name of the code
set, and modf is the 4-character name of the optional locale modifier. (For
more information on locale names, see the IBM Informix GLS User’s Guide.) The
ll_tt.codeset@modf format is the standard GLS locale name. Locale names can
take other forms. However, mi_db_error_raise() first attempts to convert the
names of the current processing locale and the syserrors locale into this
standard GLS format.

The mi_db_error_raise() function then performs a string comparison on
these two locale names. The function attempts to match a value in the locale
column of syserrors with the GLS name of the current processing locale as
follows:

1. Convert the current processing locale and syserrors locale names
into standard GLS names, if possible.

If mi_db_error_raise() cannot map the current processing locale
name to a standard name, it cannot perform the match.

2. Match the current processing locale name with an entire locale name,
if possible.

Locate a row in syserrors whose locale column has a value that
matches the full ll_tt.codeset@modf locale name.

3. Match the current processing locale name with only the language
and territory part of a locale name, if possible.

Locate a row in syserrors whose locale column starts with the value
ll_tt (only language and territory names match).

4. Match the current processing locale name with only the language
part of a locale name, if possible.

Locate a row in syserrors whose locale column starts with the value
ll (only language name matches).

5. Match the current processing locale name with the default locale
(U.S. English), if it is available.

Locate a row in syserrors whose locale column matches the standard
GLS name of the default locale.
Handling Exceptions and Events 10-69

Raising an Exception
When mi_db_error_raise() finds a matching locale name for the specified
SQLSTATE value, it then verifies that the code set of the locale name from
syserrors is compatible with the code set of the current processing locale. A
compatible code set is one that is either the same as or can be converted to the
current processing code set. If the two code sets are not compatible,
mi_db_error_raise() continues to search the syserrors table for rows that
match the specified SQLSTATE value. Once mi_db_error_raise() finds a
matching row, it obtains the text from the corresponding message column of
syserrors.

For example, suppose the current processing locale is the French Canadian
locale, fr_ca.8859-1, and you issue the following call to mi_db_error_raise():

mi_db_error_raise(conn, MI_SQL, "08001", NULL);

The mi_db_error_raise() function performs the following search process to
locate entries in syserrors:

1. Is there a row with the sqlstate column of "08001" and a locale value
that matches "fr_ca.8859-1"?

2. Is there a row with the sqlstate column of "08001" and a locale value
that starts with "fr_ca"?

3. Is there a row with the sqlstate column of "08001" and a locale value
that starts with "fr"?

4. Is there a row with the sqlstate column of "08001" and a locale value
that starts with "en_us"?

Suppose mi_db_error_raise() finds a row in syserrors with an sqlstate value
of "08001" and a locale of "fr_ca.1250". The function obtains the associated
text from the message column of this row if it can find valid code-set
conversion files between the ISO8859-1 code set (8859-1) and the Microsoft
1250 code set (1250).

For C UDRs, these code-set conversion files must exist on the server
computer. ♦

For client LIBMI applications, these code-set conversion files must exist on the
client computer. ♦

Server

Client
10-70 IBM Informix DataBlade API Programmer’s Guide

Raising an Exception
Specifying Parameter Markers

The custom message in the syserrors system catalog table can contain
parameter markers. These parameter markers are sequences of characters
enclosed by a single percent sign on each end (for example, %TOKEN%). A
parameter marker is treated as a variable for which the mi_db_error_raise()
function can supply a value.

For messages with parameter markers, mi_db_error_raise() can handle a
variable-length parameter list, as follows:

� Values specified in parameter pairs can replace parameter markers in
the syserrors error or warning message.

� The function passes in NULL to terminate the list of parameter pairs.

The mi_db_error_raise() function requires a parameter pair for each
parameter marker in the message. A parameter pair has the following values:

� The first member of the pair is a null-terminated string that repre-
sents the name and format of the parameter marker.

� The second member of the pair is the value to assign the parameter.

Parameter pairs do not have to be in the same order as the markers in the
string.

Important: Terminate the parameter list arguments with a NULL pointer. If a NULL
pointer does not terminate the list, the results are unpredictable.

The first member of the parameter pair has the following syntax:

parameter_name%format_character

The mi_db_error_raise() function supports following format_character
values.

Format Character Meaning

d Integer

f,g,G,e,E Double (by reference)

T Text (mi_lvarchar type, that is, a pointer to mi_lvarchar)

t Length followed by string (two separate parameters)

s Null-terminated C string
Handling Exceptions and Events 10-71

Raising an Exception
For example, suppose that the following message is under an SQLSTATE
value of "2AM10" in the syserrors table:

"Line %LINE%: Syntax error at '%TOKEN%':%CMD%"

This message contains the following parameter markers: LINE, TOKEN, and
CMD. The following call to mi_db_error_raise() assigns the string "selecl"
to the TOKEN parameter, 500 to the LINE parameter, and the text of the query
to the CMD parameter in the message text:

mi_db_error_raise (conn, MI_SQL, "2AM10",
"TOKEN%s", "selecl",
"LINE%d", (mi_integer)500,
"CMD%s", "selecl * from tables\;",
NULL);

The string "TOKEN%s" indicates that the value that replaces the parameter
marker %TOKEN% in the message string is to be formatted as a string (%s).
The next member of the parameter pair, the string "selecl", is the value to
format.

This mi_db_error_raise() call sends the following message to an exception
callback:

"Line 500: Syntax error at 'selecl':selecl * from tables;"

The mi_db_error_raise() function assumes that any message text or message
parameter strings that you supply are in the current processing locale. ♦

Adding Custom Messages

You can store custom status codes and their associated messages in the
syserrors system catalog table.

To add a custom message

1. Determine the SQLSTATE code for the message you want to add.

2. Insert a row into the syserrors system catalog table for the new
message.

GLS
10-72 IBM Informix DataBlade API Programmer’s Guide

Raising an Exception
Choosing an SQLSTATE Code

The syserrors system catalog table holds custom messages for DataBlade
modules and UDRs. A unique SQLSTATE value identifies each row in the
syserrors system catalog table. Therefore, to store a custom message in
syserrors, you assign it an SQLSTATE value.

You must ensure that this SQLSTATE value is unique within syserrors. When
you choose an SQLSTATE value, keep the following restrictions in mind:

� The database server has its own set of system messages.

Messages that the database server provides are not stored in the
syserrors system catalog table. However, any special modules that
are included with the database server (such as R-tree support) might
have their own messages in syserrors.

� SQL reserves various SQLSTATE codes for its own use.

These messages are not stored in the syserrors table. For a list of the
reserved values of SQLSTATE, see “SQLSTATE Status Value” on
page 10-35.

� All SQLSTATE values for warnings begin with the "01" class code.

To define a custom warning message, you must define an SQLSTATE
value that has a "01" class code and an unused subclass code.

� An installed DataBlade module might have stored its messages in
syserrors.

When a DataBlade module is installed, associated messages might be
added to syserrors. Avoid the use of any SQLSTATE values that an
installed DataBlade module might use. You must also take care not
to delete installed messages, or they must be re-created by a restore
from a backup or a reinstallation.

� If you are developing a DataBlade module, coordinate your
SQLSTATE values with other DataBlade modules that you are using.

You can group warnings and errors for your DataBlade modules into
the same class code, each with a different subclass code.

You can use the following query to determine the current list of SQLSTATE
message strings in syserrors:

SELECT sqlstate, locale, message FROM syserrors
ORDER BY sqlstate, locale;
Handling Exceptions and Events 10-73

Raising an Exception
The locale column is used for the internationalization of error and warning
messages. For more information, see “Searching for Custom Messages” on
page 10-68. ♦

Adding New Messages

To create a new message, insert a row into the syserrors system catalog table.
By default, all users can view this table, but only users with the DBA privilege
can modify it. For more information on columns of the syserrors system
catalog table, see the IBM Informix Guide to SQL: Reference.

For example, the following INSERT statement inserts a new message into
syserrors whose SQLSTATE value is "03I01":

INSERT INTO syserrors
VALUES ("03I01", "en_us.8859-1", 0, 1,

"Operation Interrupted.");

Enter message text in the language of the target locale, with the characters in
the locale code set. By convention, do not include any newline characters in
the message. Make sure you also update the locale column of syserrors with
the name of the target locale of the message text. For information on locale
names, see the IBM Informix GLS User’s Guide.

Do not allow any code-set conversion to take place when you insert the
message text. If the code sets of the client and database locales differ, tempo-
rarily set both the CLIENT_LOCALE and DB_LOCALE environment variables
in the client environment to the name of the database locale. This
workaround prevents the client application from performing code-set
conversion.

If you specify any parameters in the message text, include only ASCII
characters in the parameters names. Following this convention means that
the parameter name can be the same for all locales. All code sets include the
ASCII characters. ♦

GLS

GLS
10-74 IBM Informix DataBlade API Programmer’s Guide

State-Transition Events
State-Transition Events
When the database server raises a state-transition event, the database server
invokes any callbacks registered for the state transition. This section provides
information about state-transition handling in DataBlade API modules,
including an explanation of state-transition events and a description of how
to handle a state-transition event in a C UDR and a client LIBMI application.

Understanding State-Transition Events
State-transition events occur when the database server changes its processing
state. The DataBlade API represents a state transition as one of the
enumerated values of the MI_TRANSITION_TYPE data type. The following
table shows the transitions in the server-processing state and the corre-
sponding MI_TRANSITION_TYPE values.

The milib.h header file defines the MI_TRANSITION_TYPE data type and its
state-transition values.

State-Transition Type Description

MI_BEGIN The database server is beginning a new transaction.

MI_NORMAL_END The database server just completed the current event
successfully.

MI_ABORT_END The database server just rolled back the current event.
(The statement failed, or the transaction was aborted or
rolled back.)
Handling Exceptions and Events 10-75

Understanding State-Transition Events
The following table shows the state-transition types and the state-transition
events that they can cause.

Beginning a Transaction

When the database server begins a transaction block, it raises only the
MI_Xact_State_Change event. The MI_Xact_State_Change event occurs only in
the context of a client LIBMI application when the database server enters and
leaves a transaction block. Only client callback functions can catch this begin-
transaction event.

You handle the MI_Xact_State_Change event only in the context of a client
LIBMI application. It occurs within a client LIBMI application when the
current transaction ends with either a commit or a rollback. The
MI_Xact_State_Change event also occurs when the database server begins a
transaction. ♦

State-Transition Type
Event in
Client LIBMI Application

Event in
C UDR

Begin transaction or
savepoint (MI_BEGIN)

MI_Xact_State_Change None

Event end: commit
(MI_NORMAL_END)

MI_Xact_State_Change MI_EVENT_SAVEPOINT
MI_EVENT_COMMIT_ABORT
MI_EVENT_POST_XACT
MI_EVENT_END_STMT
MI_EVENT_END_XACT
MI_EVENT_END_SESSION

Event end: rolled back
(MI_ABORT_END)

MI_Xact_State_Change MI_EVENT_SAVEPOINT
MI_EVENT_COMMIT_ABORT
MI_EVENT_POST_XACT
MI_EVENT_END_STMT
MI_EVENT_END_XACT
MI_EVENT_END_SESSION

Client
10-76 IBM Informix DataBlade API Programmer’s Guide

Understanding State-Transition Events
A state-transition callback executes when the following state-transition event
occurs.

A C UDR does not begin transactions. It inherits the transaction of the client
application that calls the SQL statement that contains the UDR.

Ending a Session

The MI_EVENT_END_SESSION event occurs when the database server reaches
the end of the current session. A session begins when the client application
opens a database connection and ends when the client application closes the
connection (or when the client application ends). For more information, see
“Closing a Connection” on page 7-31.

These events occur only within the context of a C UDR. Their main purpose is
to clean up resources that the UDR might have allocated. The database server
does not throw the MI_EVENT_END_SESSION event when it terminates
abnormally. ♦

State-Transition Event Type Callback Type

MI_Xact_State_Change State-change callback

Server
Handling Exceptions and Events 10-77

Providing State-Transition Handling
Providing State-Transition Handling
The database server throws a state-transition event when it changes its
processing state.

To handle a transition in the processing state

1. Write a state-transition callback.

Within a state-transition callback, use the mi_transition_type()
function on the transition descriptor to determine the state-transition
type (begin, normal end, or abort end) that caused the event. The
processing required is typically different for each transition type.

2. Register the state-transition callback in the DataBlade API module
that needs the state-transition handling.

To provide required DataBlade processing at a state-transition point,
your DataBlade API module must register state-transition callbacks
with the mi_register_callback() function.

The way that your DataBlade API module handles a state-transition event
depends on whether the DataBlade API module is a C UDR or a client LIBMI
application.

State Transitions in a C UDR

In a C UDR, the following state-transition events might occur:

� MI_EVENT_SAVEPOINT

� MI_EVENT_COMMIT_ABORT

� MI_EVENT_POST_XACT

� MI_EVENT_END_STMT

� MI_EVENT_END_XACT

� MI_EVENT_END_SESSION

For these state-transition events, the mi_transition_type() function returns a
state-transaction type of normal end (MI_NORMAL_END) or abort end
(MI_ABORT_END). In a UDR, state-transition callbacks are always called at the
end of a transaction (normal or aborted), never at the beginning.

Server
10-78 IBM Informix DataBlade API Programmer’s Guide

Providing State-Transition Handling
Managing Memory Allocations

If your code allocates memory for user data that the callback function needs,
this memory must have a duration long enough to persist until the execution
of the callback. Otherwise, the callback cannot access the user data. This user
data might include information that the callback function needs to handle the
event or to notify users of the cause of the event.

The following table shows the memory durations associated with callback
and event types.

At the end of the memory duration associated with the callback, the database
server deallocates the memory as part of its final cleanup.

For more information on memory durations, see “Choosing the Memory
Duration” on page 13-7.

Managing the Transaction

The transaction system of the database server only guarantees transaction
semantics on all objects that are internal to the database. However, transac-
tions might also include operations on external objects. A UDR might
perform such operations, such as creating a temporary file or sending a
message.

Callback or Event Type Memory Duration to Use

End-of-statement PER_STMT_EXEC

End-of-transaction PER_TRANSACTION

End-of-session PER_SESSION

MI_EVENT_POST_XACT PER_TRANSACTION

MI_EVENT_SAVEPOINT PER_TRANSACTION

MI_EVENT_COMMIT_ABORT PER_TRANSACTION
Handling Exceptions and Events 10-79

Providing State-Transition Handling
For transactions that consist of operations on both internal and external
objects, you can use one of the following types of callbacks to commit or to
undo (if possible) the operations on the external objects, based on the trans-
action status:

� Commit-abort callback (MI_EVENT_COMMIT_ABORT)

� End-of-statement callback (MI_EVENT_END_STMT)

Each SQL statement behaves like a subtransaction when in a transac-
tion block or like a transaction when not in a transaction block.

� End-of-transaction callback (MI_EVENT_END_XACT)

Registration of a commit-abort callback is preferable.

� Savepoint callback (MI_EVENT_SAVEPOINT)

Each cursor flush behaves like a subtransaction when in a transaction
block.

To enable these callbacks to roll back a transaction, the DataBlade API allows
end-of-statement and end-of-transaction callbacks to raise an exception and
register their own exception callbacks.

The database server calls an end-of-statement or end-of-transaction callback
before it attempts to commit the transaction. When called before a commit,
these callbacks receive a transition descriptor that has a transition state of
MI_NORMAL_END. However, if either of these callbacks encounters an error
during its execution, you probably do not want to allow the transaction to
commit.

To cause an event to be aborted or rolled back, you can raise an exception
from a state-transition callback by calling the mi_db_error_raise() function.
When a state-transition callback raises an exception, the DataBlade API takes
the following actions:

1. Terminates further processing of the end-of-statement or end-of-
transaction callback

2. Terminates the current transaction and changes the transition state
from MI_NORMAL_END (commit) to MI_ABORT_END (rollback)

3. Invokes any end-of-statement or end-of-transaction callbacks again,
this time with the MI_ABORT_END transition state

4. Invokes any exception callback that the end-of-statement or end-of-
transaction callback has registered to handle the exception
10-80 IBM Informix DataBlade API Programmer’s Guide

Providing State-Transition Handling
An end-of-transaction callback executes within a C UDR when the
MI_EVENT_END_XACT event occurs. The following code implements an end-
of-transaction callback named endxact_callback(), which inserts a row into
a database table, tran_state, to indicate the state of the current transaction:

MI_CALLBACK_STATUS MI_PROC_CALLBACK
endxact_callback(event_type, conn, event_data, user_data)

MI_EVENT_TYPE event_type;
MI_CONNECTION *conn;
void *event_data;
void *user_data;

{
MI_CONNECTION *cb_conn;
cb_conn = mi_open(NULL, NULL, NULL);
(void) mi_register_callback(cb_conn, MI_Exception,

eox_excpt_callback(), NULL, NULL);
if (event_type == MI_EVENT_END_XACT)

{
mi_integer change_type;

change_type = mi_transition(event_data);
switch (change_type)

{
case MI_NORMAL_END:

ret = mi_exec(cb_conn,"insert \
into tran_state \
values(\"Transaction Committed.\")\;",
0);

if (ret == MI_ERROR)
mi_db_error_raise(cb_conn, MI_EXCEPTION,

"Unable to save transaction \
state: Commit.");

break;
case MI_ABORT_END:

ret = mi_exec(cb_conn,"insert \
into tran_state \
values(\"Transaction Aborted.\")\;",
0);

if (ret == MI_ERROR)
make_log_entry(log_file,

"Unable to save transaction state: \
Roll Back.");

break;

default:
mi_exec(cb_conn,"insert into tran_state \

values(\"Unhandled Transaction \
Event.\")\;", 0);

break;
}

}

Handling Exceptions and Events 10-81

Providing State-Transition Handling
else
{
mi_exec(cb_conn, "insert into tran_state \

values(\"Unhandled Event.\");", 0);
break;
}

mi_close(cb_conn);
return MI_CB_CONTINUE;

}

MI_CALLBACK_STATUS MI_PROC_CALLBACK
eox_excpt_callback(event_type, conn, event_data, user_data)

MI_EVENT_TYPE event_type;
MI_CONNECTION *conn;
void *event_data;
void *user_data;

{
... Perform clean-up tasks ...
return MI_CB_CONTINUE;

}

The database server invokes the endxact_callback() callback with a
transition state of MI_NORMAL_END just before it commits the transaction.
The endxact_callback() function executes as follows:

1. It executes the MI_NORMAL_END case in the switch statement.

2. If mi_exec() in the MI_NORMAL_END case fails, mi_exec() returns
MI_ERROR, as does any DataBlade API function except
mi_db_error_raise().

3. The condition in the if statement evaluates to TRUE and
mi_db_error_raise() executes, which raises an exception.

4. The DataBlade API invokes the registered exception callback,
eox_excpt_callback().

5. Because eox_excpt_callback() returns a status of MI_CB_CONTINUE,
the database server aborts the transaction.

If eox_excpt_callback() had instead returned
MI_CB_EXC_HANDLED, execution would continue at the next state-
ment of the endxact_callback() callback:

mi_close(cb_conn);

The endxact_callback() function would then return
MI_CB_CONTINUE, which would cause the database server to com-
mit current transaction.
10-82 IBM Informix DataBlade API Programmer’s Guide

Providing State-Transition Handling
6. Before the database server aborts the transaction, it invokes
endxact_callback() with a transition state of MI_ABORT_END. This
second invocation of endxact_callback() proceeds as follows:

a. It executes the MI_ABORT_END case in the switch statement.

b. It calls mi_exec() to execute the INSERT statement.

c. If mi_exec() fails, the database server invokes the registered
exception callback eox_excpt_callback(). The mi_exec()
function does not return MI_ERROR. Because
eox_excpt_callback() returns MI_CB_CONTINUE, control does
not return to endxact_callback().

If endxact_callback() had not registered its own exception callback, then
when mi_exec() in the MI_NORMAL_END case fails, execution would
proceed as follows:

1. The mi_exec() function returns MI_ERROR.

2. The condition in the if statement evaluates to TRUE and
mi_db_error_raise() executes, which raises an exception.

3. When mi_db_error_raise() throws an exception, the database server
aborts the transaction.

4. Before the database server aborts the transaction, it invokes
endxact_callback() with a transition state of MI_ABORT_END. This
second invocation of endxact_callback() proceeds as follows:

a. Execute the MI_ABORT_END case in the switch statement.

b. Call mi_exec() to execute the INSERT statement.

c. If mi_exec() fails, it returns MI_ERROR.

d. The condition in the if statement evaluates to TRUE and the user-
defined make_log_entry() function makes a log entry in a text
file.

Unlike some other types of callbacks, an end-of-transaction callback can
register callbacks of its own. The preceding end-of-transaction callback
registers the excpt_callback() to handle database server exceptions that
might arise from the INSERT statements that mi_exec() executes. For a
sample implementation of the excpt_callback() callback, see Figure 10-13 on
page 10-47. ♦
Handling Exceptions and Events 10-83

Client LIBMI Errors
State Transitions in a Client LIBMI Application

In a client LIBMI application, the only state-transition event that might occur
is MI_Xact_State_Change. The MI_Xact_State_Change event occurs only
within a client application.

In a client LIBMI application, a state-change callback is invoked for the
following state-transition types:

� An explicit begin transaction

You execute an explicit begin with the SQL statement, BEGIN WORK.

� An ANSI-standard implicit begin

In databases that are ANSI compliant, every SQL statement is a sepa-
rate transaction. Therefore, ANSI-compliant databases execute an
implicit begin for each SQL statement. ♦

� An explicit end transaction

You execute an explicit end transaction with one of the following SQL
statements: COMMIT WORK (normal end) or ROLLBACK WORK
(aborted end).

Client LIBMI Errors
The DataBlade API throws the MI_Client_Library_Error event to indicate an
error in the client LIBMI library. The MI_Client_Library_Error event indicates
the type of error that has occurred with one of the error levels that Figure 10-15
shows.

Figure 10-15
Client LIBMI Error Levels

Error Level Description

MI_LIB_BADARG Raised when a DataBlade API function receives an
incorrect argument, such as a bad connection descriptor or
a NULL value where a pointer is required

MI_LIB_BADSERV Raised when the DataBlade API client library is unable to
connect to a database server

(1 of 2)

Client

ANSI

Client
10-84 IBM Informix DataBlade API Programmer’s Guide

Client LIBMI Errors
To handle a client LIBMI error

1. Write a callback that handles the MI_Client_Library_Error event.

To handle an MI_Client_Library_Error event, you can write either of
the following types of callback function:

� A client LIBMI callback executes only when the
MI_Client_Library_Error event occurs.

� An all-events callback executes when many events occur and can
include handling for the MI_Client_Library_Error event.

2. Register the callback function that handles the
MI_Client_Library_Error event in the client LIBMI application that
requires the error handling.

Use the mi_register_callback() function to register callback func-
tions. After you register a callback that handles the
MI_Client_Library_Error event, the client LIBMI invokes this callback
instead of performing its default error handling.

MI_LIB_DROPCONN Raised when the DataBlade API client library has lost the
connection to the database server

MI_LIB_INTERR Raised when an internal DataBlade API error occurs

MI_LIB_NOIMP Raised when the called function or feature has not yet been
implemented

MI_LIB_USAGE Raised when a DataBlade API function is called out of
sequence; for example, a call to mi_next_row() occurs
when the statement did not return row data

Error Level Description

(2 of 2)
Handling Exceptions and Events 10-85

Client LIBMI Errors
Write a callback that handles MI_Client_Library_Error when you need to
provide special handling for one or more client LIBMI errors, which
Figure 10-15 on page 10-84 shows. Within the callback, the mi_error_level()
function returns the error level for the client LIBMI error. You can also use the
following DataBlade API functions to get more details about the client LIBMI
error from its error descriptor:

� The mi_error_sql_state() function returns an SQLSTATE value of
"IX000" to indicate an Informix-specific error.

� The mi_error_sqlcode() function returns the Informix-specific error.

� The mi_errmsg() function returns the error message text.

For more information, see “Accessing an Error Descriptor” on page 10-29.

Important: Client LIBMI callbacks are subject to some restrictions on what tasks they
can perform. For more information, see “Writing a Callback Function” on
page 10-26.
10-86 IBM Informix DataBlade API Programmer’s Guide

Client LIBMI Errors
The following sample code uses special-purpose handlers (not shown) to
handle messages (message_handler()) and database server exceptions
(exception_handler()). The message_handler() routine might simply
display a message on standard error, while the other handlers could take
some specific user-defined action based on the type of exception.

/* This routine dispatches callback events for the following
* events:
* MI_Exception (client-side & server-side),
* MI_Client_Library_Error (client-side only)
* MI_Xact_State_Change (client-side only)
*/

#include "mi.h"

MI_CALLBACK_STATUS MI_PROC_CALLBACK
all_callback(event_type, conn, event_data, user_data)

MI_EVENT_TYPE event_type;
MI_CONNECTION *conn;
void *event_data;
void *user_data;

{
mi_integer elevel;
char err_msg[200];
char *msg;

switch (event_type)
{
/* A database server exception calls a special-purpose
** handler to handle a message (warning) or an
** exception. */

case MI_Exception:
/* Obtain exception level from event */
elevel = mi_error_level(event_data);

switch (elevel)
{
case MI_MESSAGE:

message_handler(event_data, user_data);
break;

case MI_EXCEPTION:
exception_handler(event_data,

user_data);
break;

}
break;
Handling Exceptions and Events 10-87

Client LIBMI Errors
/* A client LIBMI error is any type of internal
** client-library error, library-usage problem, or
** a dropped connection. */
case MI_Client_Library_Error:

/* Obtain error level from event */
elevel = mi_error_level(event_data);

switch (elevel)
{
case MI_LIB_BADARG:

msg = "MI_LIB_BADARG";
break;

case MI_LIB_USAGE:
msg = "MI_LIB_USAGE";
break;

case MI_LIB_INTERR:
msg = "MI_LIB_INTERR";
break;

case MI_LIB_NOIMP:
msg = "MI_LIB_NOIMP";
break;

case MI_LIB_DROPCONN:
msg = "MI_LIB_DROPCONN";
break;

default:
msg = "UNKNOWN";
break;

}
mi_errmsg(event_data, err_msg, 200);
fprintf(stderr, "%s: %s\n", msg, err_msg);
break;

/* A transaction-state-change event occurs whenever
** the client LIBMI module begins or ends a
** transaction block. */
case MI_Xact_State_Change:

{
mi_integer change_type;

/* Obtain transition type from event */
change_type = mi_transition_type(event_data);

switch (change_type)
{
case MI_BEGIN:

msg = "Transaction started.";
break;
10-88 IBM Informix DataBlade API Programmer’s Guide

Client LIBMI Errors
case MI_NORMAL_END:
msg = "Transaction committed.";
break;

case MI_ABORT_END:
msg = "Transaction aborted!";
break;

default:
msg = "Unknown transaction type!";
break;

}
fprintf(stderr, "%s\n", msg);
break;
}

/* No other types of events are expected here,
* although they could happen. Let the user know
* what happened and continue.
*/

default:
fprintf(stderr,

"Caught an unexpected event type.\n");
break;

}
return MI_CB_CONTINUE;

}

The all_callback() callback returns a status of MI_CB_CONTINUE when it is
invoked from a C UDR. Therefore, the database server would check for
additional callbacks that are registered for the event once it completed
execution of all_callback(). If no additional callbacks existed, the database
server would abort the UDR. ♦

Server
Handling Exceptions and Events 10-89

n
IV
Creating User-Defined

Routines
Se
ct

io
Chapter 11 Developing a User-Defined Routine

Chapter 12 Writing a User-Defined Routine

Chapter 13 Managing Memory

Chapter 14 Creating Special-Purpose UDRs

Chapter 15 Extending Data Types

11
Chapter
Developing a User-Defined
Routine
In This Chapter . 11-3

Designing a UDR 11-4
Development Tools 11-4
Uses of a C UDR 11-6
Portability . 11-7

DataBlade API Data Types 11-7
Data Conversion 11-7

Insert and Update Operations 11-8

Creating UDR Code 11-9
Variable Declaration 11-9
Session Management 11-10

Session Restrictions 11-10
Transaction Management 11-11

SQL Statement Execution 11-16
Setting Input Parameters 11-16
Retrieving Column Values 11-17

Routine-State Information 11-17
Event Handling. 11-18
Well-Behaved Routines 11-18

Compiling a C UDR 11-19
Compiling Options 11-19
Creating a Shared-Object File 11-20

Registering a C UDR 11-23
The External Name 11-24

Specifying the Entry Point. 11-25
Using Environment Variables 11-25

The UDR Language 11-25

11-2 IBM
Routine Modifiers 11-26
Parameters and Return Values. 11-27
Privileges for the UDR 11-28

Executing a UDR. 11-29
Routine Resolution 11-30
The Routine Manager. 11-31

Loading a Shared-Object File 11-32
Creating the Routine Sequence 11-34
Pushing Arguments Onto the Stack 11-35
Managing UDR Execution 11-38
Returning the Value 11-39
Releasing the Routine Sequence 11-40

Debugging a UDR 11-40
Using a Debugger 11-40

Creating a Debugging Version 11-41
Connecting to the Database Server from a Client 11-41
Loading the Shared-Object File for Debugging 11-41
Identifying the VP Process. 11-42

Running a Debugging Session 11-43
Breakpoints 11-43
Debugging Hints 11-43
Possible Memory Errors 11-44
Symbols in Shared-Object Files 11-45

Using Tracing 11-46
Adding a Tracepoint in Code 11-47
Using Tracing at Runtime 11-53
Understanding Tracing Output 11-56

Changing a UDR. 11-57
Altering a Routine 11-57
Unloading a Shared-Object File 11-57
 Informix DataBlade API Programmer’s Guide

In This Chapter
A C user-defined routine (UDR) is a UDR that is written in the C language and
uses the server-side implementation of the DataBlade API to communicate
with the database server. C UDRs (functions and procedures) are imple-
mented as C-language functions. DataBlade modules often include C UDRs
that are surfaced to DataBlade module users.

Tip: The terms “C UDR” and “UDR” are used interchangeably in this manual.

The development process for a C UDR follows these steps:

1. Design the use and development process for the UDR

2. Code a C routine that uses the DataBlade API functions to interact
with the database server

3. Compile and link the C routine to create a shared-object file

4. Register the C routine with the CREATE FUNCTION or CREATE
PROCEDURE statement

5. Execute the UDR

6. Use tracing and the debugging features to work out any problems in
the UDR

7. Change any characteristics of the UDR that are required during its
lifetime

8. Optimize performance of the UDR

This chapter describes each of these steps in the development of a C UDR. For
general information on the development steps of a UDR, see the IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

This chapter covers topics specific to the development of a C UDR. This
material does not apply to the creation of client LIBMI applications with the
client-side implementation of the DataBlade API. ♦

Client
Developing a User-Defined Routine 11-3

Designing a UDR
Designing a UDR
This section provides the following design considerations for the devel-
opment of a C UDR:

� Development tools

� Uses of a UDR

� Portability

� Insert and update operations

Development Tools
The creation of a C UDR involves the production of source code, header files,
SQL statements, and many other files. This manual describes how to generate
the code for C UDRs yourself, using the DataBlade API and the basic tools
available with an operating system.

However, IBM provides a package of development tools, called the DataBlade
Developer’s Kit (DBDK), that helps you build and manage the C UDRs of a
DataBlade module project. A DataBlade module is a package of software that
extends the functionality of the database server. It can include the following
objects:

� New or extended data types

� UDRs

� Error messages

� Functional tests

� Interfaces to other DataBlade modules

� Packaging and installation scripts
11-4 IBM Informix DataBlade API Programmer’s Guide

Development Tools
The DBDK runs on Windows. The following table summarizes the devel-
opment tools of the DBDK.

These development tools include online help to describe their use. The
DataBlade Developer’s Kit User’s Guide is provided to describe these tools. ♦

BladeSmith can develop source code and a makefile that can be compiled on
UNIX or Linux. ♦

Consider using the development tools of the DBDK to generate the initial
code for your C UDRs. You can then use the information in this manual to
enhance and change this code to handle the unique needs of your C UDR or
DataBlade module.

DBDK Development Tool Description

BladeSmith � Provides an interactive wizard and generates code for
many C UDRs

� Generates a project, with as much code as possible,
including source for opaque-type support functions,
header files, a makefile for compilation, SQL state-
ments, and functional tests

BladePack � Understands the contents of a project that BladeSmith
produces, enabling it to be extended to include
documentation and online help

� Produces a releasable package for a DataBlade module

BladeManager Understands the contents of the releasable package that
BladePack creates, enabling it to install a DataBlade
module in a database

Windows

UNIX/Linux
Developing a User-Defined Routine 11-5

Uses of a C UDR
Uses of a C UDR
The following table summarizes the tasks that a C UDR can perform. It also
describes where you can find additional information in this manual for each
of these UDR uses.

Type of UDR Purpose More Information

Cast function A UDR that converts one data type to
another

“Writing a Cast Function” on
page 14-4

Cost function A UDR that determines the cost of
execution for an expensive UDR

“Writing Selectivity and Cost
Functions” on page 14-81

End-user routine A UDR that performs some common task
for an end user

“Writing an End-User Routine” on
page 14-3

Iterator function A function that returns more than one row
of data

“Writing an Iterator Function” on
page 14-5

Opaque-type
support function

One of a group of user-defined functions
that tell the database server how to handle
the data of an opaque data type

“Creating an Opaque Data Type”
on page 15-3

Operator-class function User-defined functions that define
operators to use with a particular
secondary access method

See your access-method
documentation.

Negator function A user-defined function that calculates the
Boolean NOT operation for a particular
operator or function.

“Creating Negator Functions” on
page 14-91

Selectivity function A UDR that determines the percentage of
rows likely to be returned by an expensive
UDR

“Writing Selectivity and Cost
Functions” on page 14-81

Parallelizable UDR A UDR that can run in parallel when
executed within a PDQ statement

“Creating Parallelizable UDRs” on
page 14-94

User-defined aggregate A function that calculates an aggregate
value on a particular column or value

“Writing an Aggregate Function”
on page 14-18
11-6 IBM Informix DataBlade API Programmer’s Guide

Portability
Portability
To ensure portability of your C UDR, include the following items in the
design and implementation of your C UDR:

� Use the DataBlade API data types for data types whose size might
vary across computer architectures.

� Use the DataBlade API functions to transfer data between client and
server computers.

DataBlade API Data Types

The DataBlade API provides platform-independent data types, such as
mi_smallint (two-byte integer), mi_integer (four-byte integer), and
mi_double_precision (floating-point values). For a complete list of
DataBlade API data types, see Figure 1-1 on page 1-14. The mitypes.h header
file defines these data types.

Tip: The mi.h header file automatically includes the milib.h header, which in turn
includes the mitypes.h header file. Therefore, you do not need to explicitly include
mitypes.h to use the DataBlade API data types.

To ensure maximum portability of your code, use these platform-
independent data types instead of their C-language equivalents.

Data Conversion

The DataBlade API provides special functions to handle the following data
conversions that a C UDR might need to perform:

� Data conversion between the text and binary representations of the
data

The control mode of a query determines whether the query results
are in text or binary representation. The DataBlade API provides
functions that convert between these two representations. Conver-
sion between these two representations might also be useful in the
input and output support functions of an opaque type. For a list of
these functions, see “Conversion of Opaque-Type Data Between Text
and Binary Representations” on page 15-26.
Developing a User-Defined Routine 11-7

Insert and Update Operations
� Data transfer between a client application and the database server

When opaque-type data is transferred between a client application
and the database server, the database server calls the send and
receive support functions. For these UDRs, you can handle potential
differences in computer architecture that might affect the byte order-
ing or size with special DataBlade API functions. For more
information, see “Conversion of Opaque-Type Data with Computer-
Specific Data Types” on page 15-34.

Insert and Update Operations
An SPL routine has the restriction that it cannot perform INSERT or UPDATE
operations in an SPL routine that is invoked from a DML statement. This
restriction ensures that the SPL routine cannot change the state of the
statement that invoked it.

This restriction is relaxed for UDRs. The database server issues an error if the
table that is being accessed in the UDR is referenced in the statement that
invoked it. If this is a nested UDR invocation, then the database server checks
the chain of parent queries.

If a UDR is called as part of an INSERT, UPDATE, DELETE, or SELECT statement
and if the referenced table appears in the chain of statements that eventually
invoked the UDR, the called routine cannot execute any of the following
statements:

� ALTER FRAGMENT

� ALTER INDEX

� ALTER OPTICAL

� ALTER TABLE

� DROP INDEX

� DROP OPTICAL

� DROP SYNONYM

� DROP TABLE

� DROP TRIGGER

� DROP VIEW
11-8 IBM Informix DataBlade API Programmer’s Guide

Creating UDR Code
� RENAME COLUMN

� RENAME TABLE

Creating UDR Code
This section provides an overview of C UDR development:

� Variable declarations

� Session management

� SQL statement execution

� Routine-state information

� Event handling

� Well-behaved routines

Tip: For a discussion of special implementation issues specific to a C UDR, see
Chapter 12, “Writing a User-Defined Routine.”

Variable Declaration
In a C UDR, you declare variables to hold information just as you would in a
C function. The DataBlade API provides many data types for variable decla-
ration. The DataBlade API prepends special prefixes to the names of its data
types, as the following table shows.

Figure 1-2 on page 1-17 lists where in this manual each of the SQL data types
is discussed in detail.

DataBlade API Data Type Data Type Prefix More Information

Data types to hold SQL data types mi_ Figure 1-1 on page 1-14

Data type structures that hold infor-
mation for DataBlade API functions

MI_ Figure 1-4 on page 1-20
Developing a User-Defined Routine 11-9

Session Management
Use the DataBlade API data types for variable declaration in your C UDR even
if there is a C-language equivalent. The DataBlade API data types are more
portable if your C UDR moves to different computer architectures. For more
information, see “DataBlade API Data Types” on page 11-7.

Session Management
Session management is different in a C UDR than in a client LIBMI appli-
cation. Unlike a client LIBMI application, which can simultaneously connect
to several databases, a UDR inherits a particular session context. That is, it is
within an existing session and uses a database that is already opened. For
information, see “Establishing a UDR Connection” on page 7-21.

Because a C UDR can establish only a UDR connection, not a client connection,
restrictions apply in the following areas:

� Sessions

� Transactions

Session Restrictions

The following restrictions exist within a UDR with respect to the session:

� Session-connection restrictions

A UDR runs within an existing session. It can only obtain a connec-
tion to this session after a client application has already begun the
session. However, a UDR can obtain more than one connection to the
session.

� Cursor restrictions

❑ Cursors opened in one session are only visible in the context of
that session. Cursors defined on one UDR are not visible in other
UDRs. Therefore, multiple UDRs can use the same cursor names.

❑ A cursor opened in a session persists until an mi_close() or an
mi_drop_prepared_statement() function, or until the end of the
statement that called the UDR (if mi_close() was not called).
Therefore, cursors last across routine invocations.
11-10 IBM Informix DataBlade API Programmer’s Guide

Session Management
� Database restrictions

❑ A UDR cannot connect to a remote database server.

❑ A UDR uses the default database, which the client application
has established. However, it cannot change the database.

� Table restrictions

The scope of temporary tables created in a logging database is the
current session. Temporary tables created in a database that does not
use logging or with a CREATE TABLE statement that includes the
WITH NO LOG clause persist until beyond the CLOSE DATABASE
statement.

� Constraint restrictions

Violations that are associated with the execution of the UDR are
added to a violation temporary table. Therefore, if the SET CON-
STRAINTS statement sets the constraint mode to IMMEDIATE,
constraint checking is done per statement. Otherwise, constraint
checking is deferred to the time when the transaction is committed.
If the constraint mode is set to IMMEDIATE, the constraint is checked
after each statement in the UDR. If you want per-UDR constraint
checking, change the constraint mode to DEFERRED at the beginning
of the UDR and back to IMMEDIATE at the end of the UDR.

Transaction Management

Against databases that use logging, a UDR inherits the transaction state that
is started by the SQL statement that invoked the UDR. All statements in a UDR
occur inside a transaction because the UDR is called from within an SQL
statement. An SQL statement is always part of a transaction. The type of trans-
action that the SQL statement is part of is based on the type of database and
whether it uses transaction logging, as Figure 11-1 shows.
Developing a User-Defined Routine 11-11

Session Management
Figure 11-1
Types of Transactions

Status of Database Status of SQL Statement Description

Database is not ANSI-compliant:

Database does not
use transaction
logging.

Database does use
transaction logging.

No transactions exist. The database server does not log changes to the database
that SQL statements might make. Any UDRs that are part
of the SQL statement are not logged and their actions
cannot be rolled back.

Each SQL statement is within either an explicit transaction or a single-statement
transaction:

� Explicit transaction The client application begins an explicit transaction with
the BEGIN WORK statement and ends it with either the
COMMIT WORK statement (transaction successful) or
the ROLLBACK WORK statement (transaction not
successful). Operations within a single cursor (from
OPEN to CLOSE) constitute a transaction as well.

SQL statements between the BEGIN WORK and
COMMIT WORK or ROLLBACK WORK statements (or
within a cursor) execute within the explicit transaction. If
these SQL statements contain any UDRs, each of the
UDRs executes within the explicit transaction.

� Single-statement
transaction

The client application begins a single-statement transaction
for any SQL statement that is not contained within a
BEGIN WORK statement and a COMMIT WORK or
ROLLBACK WORK statement. Any UDRs that are part of
the SQL statement are within this single-statement trans-
action. The only exception to this rule is the EXECUTE
FUNCTION statement; it does not execute within a
transaction.

(1 of 2)
11-12 IBM Informix DataBlade API Programmer’s Guide

Session Management
You can obtain the transaction ID of the current transaction with the
mi_get_transaction_id() function.

As a rule, a C UDR must not issue any of the following SQL transaction state-
ments because they interfere with transaction boundaries:

� BEGIN WORK

� COMMIT WORK

� ROLLBACK WORK

In all databases that use logging, an SQL statement is within a transaction. In
such databases, a DML statement (SELECT, INSERT, UPDATE, DELETE)
implicitly starts a transaction, if a transaction is not already in effect. If a UDR
that executes one of these SQL transaction statements is called from a DML
statement, the database server raises an error (-535).

However, the EXECUTE PROCEDURE and EXECUTE FUNCTION statements do
not implicitly start another transaction, if they are not already in a trans-
action. If a UDR is called from an EXECUTE PROCEDURE or EXECUTE
FUNCTION statement, the database server only raises an error if the UDR
interferes with the current transaction boundaries.

Database is ANSI-compliant:

Database logging is
always in effect.

Each SQL statement
executes within an
implicit transaction,
which is always in
effect.

The client application invokes an SQL statement, which
begins the implicit transaction, and the transaction ends
explicitly with COMMIT WORK or ROLLBACK WORK.
Any UDRs within the SQL statement that began the
implicit transaction are automatically part of the trans-
action. In addition, any SQL statements that execute
before the COMMIT WORK or ROLLBACK WORK
statement ends the transaction are also part of the implicit
transaction.

Status of Database Status of SQL Statement Description

(2 of 2)
Developing a User-Defined Routine 11-13

Session Management
For example, suppose you have a UDR named udr1() that uses the mi_exec()
function to execute two SQL statements:

void udr1(...)
{

mi_exec(...DML statement 1...);
mi_exec(...DML statement 2...);

}

Suppose also that you execute this UDR with the EXECUTE PROCEDURE
statement, as follows:

EXECUTE PROCEDURE udr1();

If a transaction has not already been started, this UDR would have two trans-
actions, one for each call to mi_exec().

To get a single transaction, you could surround these SQL statements with a
begin and end work, as udr2() shows:

void udr2(...)
{

mi_exec(...'begin work'..);
mi_exec(...DML statement 1...);
mi_exec(...DML statement 2...);
mi_exec(...'commit work'...);

}

However, you can only start a transaction within a UDR if you are not already
in a transaction. Therefore, you can only invoke a UDR that starts a trans-
action when the following restrictions are met:

� You must invoke the UDR with the EXECUTE PROCEDURE or
EXECUTE FUNCTION statement.

Because udr2() is a user-defined procedure, you must use EXECUTE
PROCEDURE to invoke it, as follows:

EXECUTE PROCEDURE udr2();

Suppose you tried to invoke udr2() with the following SELECT
statement:

SELECT udr2() FROM tab WHERE x=y;

If a transaction had not started, the SELECT operation starts its own
implicit transaction. The database server raises an error when execu-
tion reaches the first call to mi_exec() in udr2():

mi_exec(...'begin work'..);
11-14 IBM Informix DataBlade API Programmer’s Guide

Session Management
� The UDR calling context must not have already started a transaction.

The following code fragment fails because the EXECUTE PROCEDURE
statement is already within a transaction block and udr2() attempts
to start another transaction:

BEGIN WORK;
...
EXECUTE PROCEDURE udr2(); /* This statement fails. */
...
COMMIT WORK:

The database server raises an error when execution reaches the first
call to mi_exec() in udr2():

mi_exec(...'begin work'..);

Important: Unless a UDR knows its calling context, it should not issue an SQL
transaction statement. If the caller has already begun a transaction, the UDR fails.

You can execute an SQL transaction statement in a UDR that you call directly
from a DataBlade API module (not from within an SQL statement). You can
also choose whether to commit or rollback the current transaction from
within an end-of-statement or end-of-transaction callback function. For more
information, see “State Transitions in a C UDR” on page 10-78.

In a database with logging, the database server creates an internal savepoint
before execution of each statement within a UDR that might affect the
database state. If one of these statements fails, the database server performs
a rollback to this internal savepoint. At this point, the database server does
not release table locks. However, the same user can obtain a lock on the same
table in the same transaction. The database server releases the table lock
when the entire transaction ends (commit or rollback).

Warning: For databases that do not use logging, no changes to the database that a
UDR might make are logged. Therefore, none of these changes can be rolled back.
Consider carefully whether you want to use logging for your database.
Developing a User-Defined Routine 11-15

SQL Statement Execution
SQL Statement Execution
The differences in the execution of SQL statements in a C UDR and a client
LIBMI application are because of the differences in passing mechanisms that
they use for the contents of an MI_DATUM structure. In a C UDR, you must
consider the data type of the value in the MI_DATUM structure to determine
how to obtain the value. For more information on the passing mechanism for
an MI_DATUM value, see “Contents of an MI_DATUM Structure” on
page 2-51.

In SQL statement execution, the DataBlade API uses an MI_DATUM structure
for the following values:

� Input-parameter value that the DataBlade API sends to a prepared
statement

� Column value that the DataBlade API retrieves from a query

Setting Input Parameters

When you send a prepared statement for execution, you pass any input-
parameter values in MI_DATUM structures. Therefore, the data type of the
column associated with an input parameter determines the passing
mechanism for the input-parameter value, as follows:

� For data types that are passed by value, the MI_DATUM structure
must contain the actual input-parameter value.

� For data types that are passed by reference, the MI_DATUM structure
must contain a pointer to the input-parameter value.

Within your C UDR, you must use the column data type to determine how to
assign the input-parameter value in the MI_DATUM structure. To assign the
input-parameter values, you send an array of MI_DATUM structures to the
mi_exec_prepared_statement() or mi_open_prepared_statement()
function, which sends the prepared statement to the database server for
execution. For more information, see “Assigning Values to Input Param-
eters” on page 8-44.
11-16 IBM Informix DataBlade API Programmer’s Guide

Routine-State Information
Retrieving Column Values

When you execute a query (SELECT or EXECUTE FUNCTION statement) in a
C UDR, you choose a control mode for the retrieved data. If the query data is
in binary representation, the column value that mi_value() or
mi_value_by_name() passes back is in an MI_DATUM structure. Therefore,
the size of the data type associated with the column determines the passing
mechanism for the column value, as follows:

� For data types that are passed by value, the MI_DATUM structure
contains the actual column value.

� For data types that are passed by reference, the MI_DATUM structure
contains a pointer to this column value.

Within your C UDR, you must use the column data type to determine how to
obtain the column value in the MI_DATUM structure. For more information,
see “Obtaining Column Values” on page 8-68.

Routine-State Information
When the routine manager executes a C UDR, it puts information about the
routine sequence for the UDR in an MI_FPARAM structure and passes this
MI_FPARAM structure as the last argument to the UDR. From the
MI_FPARAM structure, the UDR can obtain the following information:

� The number and data types of its arguments

� The assumed data type of its return value (for a user-defined
function only)

� Any user data associated with the UDR

For information about how the routine manager executes a UDR, see
“Executing a UDR” on page 11-29. For information about how to access the
routine-state information in the MI_FPARAM structure, see “Accessing
MI_FPARAM Routine-State Information” on page 9-3.
Developing a User-Defined Routine 11-17

Event Handling
Event Handling
Your C UDR must perform event handling to ensure recovery from
unexpected results, usually a warning or runtime error from the database
server. To handle warnings and errors, the C UDR can define callback
functions that the DataBlade API invokes when a particular event occurs. A
C UDR can receive the following events.

The UDR can register callback functions for any of these events. For more
information about how to handle database server exceptions, see “Database
Server Exceptions” on page 10-32. For information on how to handle state-
transition events (such as end of statement, end of transaction, and end of
session), see “State-Transition Events” on page 10-75.

Well-Behaved Routines
The most efficient way for a C UDR to execute is in the CPU virtual-process
(CPU VP) class. However, to execute in the CPU VP, the UDR must be well-
behaved. A well-behaved UDR adheres to a set of safe-code requirements that
prevent the UDR from interfering with the efficient operation of the CPU VP.
Figure 12-7 on page 12-29 summarizes the safe-coding guidelines for a well-
behaved UDR. You must ensure that your C UDR follows these guidelines for
it to safely execute in the CPU VP class. Otherwise, the UDR must execute in a
user-defined VP class. For more information, see “Using Virtual Processors”
on page 12-26.

Event Description Event Type

Database server
exception

Raised when the database server generates an
exception (a warning or an error)

MI_Exception

End of statement Raised when the database server completes the
execution of the current SQL statement

MI_EVENT_END_STMT

End a transaction
(commit or rollback)

Raised when the database server reaches the
end of the current transaction, whether the
transaction contains one or many SQL
statements

MI_EVENT_END_XACT

End of session Raised when the database server reaches the
end of the current session

MI_EVENT_END_SESSION
11-18 IBM Informix DataBlade API Programmer’s Guide

Compiling a C UDR
Compiling a C UDR
To compile a C UDR, use a C compiler to compile the source file (.c file
extension) into an object file (.o file extension) and create a shared-object file
that contains the object file.

Tip: The IBM Informix BladeSmith development tool, which is part of the DataBlade
Developer’s Kit, automatically generates makefiles to compile the DataBlade module
code that it generates. It creates a makefile with a .mak extension for compilation on
UNIX or Linux or with a .dsw extension for compilation on Windows. A makefile
automates compilation of C UDRs.To compile a C UDR into a shared-object file (with
a .bld extension), you only have to run the appropriate makefile. For more infor-
mation, see the “DataBlade Developer’s Kit User’s Guide.”

Compiling Options
Use the C compiler to compile a C UDR. Include the following compiler
options:

� Specify the necessary paths for any header files that the file needs,
such as an mi.h header file, which includes the declarations of the
DataBlade API data type structures and functions.

These paths include the following subdirectories of the main Infor-
mix installation directory (which the INFORMIXDIR environment
variable specifies):

❑ The incl/public subdirectory contains public header files, such
as mi.h.

❑ The incl/esql subdirectory contains IBM Informix ESQL/C
header files, such as decimal.h.

� Indicate that the DataBlade API module is a C UDR with the
following compiler flag:

MI_SERVBUILD
Developing a User-Defined Routine 11-19

Creating a Shared-Object File
On UNIX or Linux, the following sample command compiles the C UDR in the
abs.c source file:

/compilers/bin/cc -I $INFORMIXDIR/incl
-I $INFORMIXDIR/incl/esql -c abs.c

cc -KPIC -DMI_SERVBUILD -I$INFORMIXDIR/incl/public \
-I$INFORMIXDIR/incl -L$INFORMIXDIR/esql/lib -c abs.c

♦

At runtime:

LB_LIBRARY_PATH=/opt/informix/lib:/opt/informix/lib/esql

The following command is a sample of how to compile a C UDR named abs.c
for Windows:

cl /DNT_MI_SAPI /DMI_SERVBUILD
-Id:\msdev\include -Id:\informix\incl\public
-Id:\informix\incl -c abs.c

♦

Creating a Shared-Object File
You create a shared-object file to hold the compiled UDRs. This file resides in
a directory on the server computer. Each UDR must have a unique name
within the shared-object file.

On UNIX or Linux a shared-object file is often called a shared library. On Solaris
systems, shared-object files have the .so file extension. ♦

On Windows a shared-object file is called a dynamic link library (DLL). DLLs
usually have the .dll file extension. ♦

UNIX/Linux

Windows

UNIX/Linux

Windows
11-20 IBM Informix DataBlade API Programmer’s Guide

Creating a Shared-Object File
When the database server executes an SQL statement that contains a UDR, it
loads in memory the shared-object file in which the UDR executable code
resides. It determines which shared-object file to load from the externalname
column of the row in the sysprocedures system catalog table that describes
the UDR. The CREATE FUNCTION or CREATE PROCEDURE statement creates
a row for a UDR in sysprocedures when it registers the UDR.

To create a shared-object file for a C UDR

1. Create a shared-object file and put the UDR object (.o file) file into this
shared-object file.

You can put C functions for related UDRs into the same shared-object
file. However, the name of each C function must be unique within the
shared-object file.

2. Put the shared-object file in a directory on which the user informix
has read permission and the shared-object owner has write
permission.

The shared-object file must not have permissions that allow any user
other than user informix to have write permission.

3. Specify the path of the shared-object file in the EXTERNAL NAME
clause of the CREATE FUNCTION (or CREATE PROCEDURE) statement
when you register the C UDR.

The shared-object file does not have to exist before you register its
path with CREATE FUNCTION or CREATE PROCEDURE. However, at
UDR runtime, the paths of the shared-object file and the registered
UDR must match for the database server to locate the UDR.

Important: If a shared-object file has write permission set to all, the database server
issues error -9793 and writes a message in the log file when someone tries to execute
any UDR in the shared object.
Developing a User-Defined Routine 11-21

Creating a Shared-Object File
For more information, see “Executing a UDR” on page 11-29. For information
on how to create a shared-object file, see the IBM Informix User-Defined
Routines and Data Types Developer’s Guide.

To create a shared-object file on UNIX or Linux

1. Load the abs.o object file into the abs.so shared library, as the
following example shows:

/compilers/bin/cc -K abs.o -o abs.so

ld -G abs.o -o abs.so

2. Put the shared library in a directory on which user informix has read
permission and set the permissions to 755 or 775 so that only the
owner can write to the shared libraries.

ls -ld /usr/code
drwxr-xr-x 12 informix devel 2560 Feb 25 05:27 /usr/code
chmod 775 /usr/code/abs.so
drwxrwxr-x 12 informix devel 2560 Feb 25 05:27

/usr/code

♦

To create a shared-object file on Windows

1. Load the abs.o object file into the abs.so DLL:, as the following
example shows:

link /DLL /OUT:abs.dll /DEF:abs.def abs.obj
d:\informix\lib\SAPI.LIB

The preceding command uses the IBM Informix software installed on
the d: drive in a directory named informix.

2. Put the DLL in a directory on which user informix has read
permission and set the READONLY attribute with the attrib +r
command:

attrib

♦

UNIX/Linux

Windows
11-22 IBM Informix DataBlade API Programmer’s Guide

Registering a C UDR
Registering a C UDR
The CREATE FUNCTION and CREATE PROCEDURE statements register user-
defined functions and user-defined procedures, respectively, in the database.
These functions store information about the UDR in the sysprocedures
system catalog table.

Registration for a C UDR requires the following special clauses of the CREATE
FUNCTION and CREATE PROCEDURE statements to help the database server
identify the routine:

� The required EXTERNAL NAME clause specifies the path to the
shared-object file that contains the compiled C code for the UDR.

� The required LANGUAGE clause specifies the language in which the
body of the UDR is written.

� The optional WITH clause specifies the routine modifiers for the UDR.

For example, Figure 11-2 shows a CREATE FUNCTION statement that registers
a user-defined function named abs_eq() whose corresponding C function is
in a shared-object file named abs.so.

Figure 11-2
Registering

a C UDR

Language name

Routine name

Path to shared-object file

Routine parameter list

Return value
(Functions only)

Routine modifiers
(optional)

CREATE FUNCTION abs_eq(arg1 INTEGER, arg2 INTEGER)
RETURNS BOOLEAN
WITH (NOT VARIANT)
EXTERNAL NAME

'/usr/code/abs.so'
LANGUAGE C;
Developing a User-Defined Routine 11-23

The External Name
Tip: The BladeSmith development tool, which is part of the DataBlade Developer’s
Kit, automatically generates a file with the SQL statements needed to register a
DataBlade. The BladeManager development tool can install and register a DataBlade
module. For more information, see the “DataBlade Developer’s Kit User’s Guide.”

The External Name
The EXTERNAL NAME clause of the CREATE FUNCTION or CREATE
PROCEDURE statement tells the database server where to find the object code
for the UDR. These statements store this location in the externalname column
of the sysprocedures system catalog table. When the database server
executes an SQL statement that contains a UDR, it loads into memory the
shared-object file that contains its executable code. The database server
examines the externalname column to determine which shared-object file to
load.

In Figure 11-2, the EXTERNAL NAME clause of this CREATE FUNCTION
statement tells the database server that the object code for the abs_eq() user-
defined function is in a Solaris shared-object file named abs.so, which resides
in the /usr/code directory.

By default, the database server uses the same name for the entry point into
the shared-object file for the UDR object code as the name of the UDR. For
example, the CREATE FUNCTION statement in Figure 11-2 on page 11-23
specifies that the entry point in the abs.so shared-object file for the abs_eq()
user-defined function is a C function named abs_eq().

The EXTERNAL NAME clause provides the following features to allow flexi-
bility in the UDR external-name specification:

� Specifying a different entry point

� Including environment variables in the pathname

Each of these features is described in more detail below. For more infor-
mation about the EXTERNAL NAME clause, see the External Reference
segment of the IBM Informix Guide to SQL: Syntax.
11-24 IBM Informix DataBlade API Programmer’s Guide

The UDR Language
Specifying the Entry Point

To specify an entry point whose name is different from the name of the UDR,
put the name of the actual entry point in parentheses after the name of the
shared-object file. You must specify an entry point when your UDR has a
different name from the UDR that it implements. The following CREATE
FUNCTION statement specifies that the entry point for the object code of the
abs_eq() UDR is a C function named abs_equal():

CREATE FUNCTION abs_eq(INTEGER, INTEGER)
RETURNS boolean
EXTERNAL NAME '/usr/code/abs.so(abs_equal)'
LANGUAGE C;

The database server invokes the C function abs_equal() whenever an SQL
statement calls the abs_eq() function with two arguments of INTEGER data
type.

Using Environment Variables

You can include environment variables in the external-name specification of
the EXTERNAL NAME clause. These environment variables must be set in the
database server environment; that is, they must be set before the database
server starts. For example, the following function registration specifies to
evaluate the USERFUNCDIR environment variable when determining the
location of the my_func() user-defined function:

CREATE FUNCTION my_func(arg INTEGER)
RETURNING FLOAT
EXTERNAL NAME "$USERFUNCDIR/funcs.udr"
LANGUAGE C;

The UDR Language
The LANGUAGE clause of the CREATE FUNCTION or CREATE PROCEDURE
statement tells the database server in which language the UDR is written. For
C UDRs, the LANGUAGE clause must be as follows:

LANGUAGE C

The database server stores valid UDR languages in the sysroutinelangs
system catalog table. These statements store the UDR language as an integer,
called a language identifier, in the langid column of the sysprocedures
system catalog table.
Developing a User-Defined Routine 11-25

Routine Modifiers
By default, only users with DBA privilege have the Usage privilege on the C
language for UDRs. These users include user informix and the user who
created the database. If you attempt to execute the CREATE FUNCTION or
CREATE PROCEDURE statement with the LANGUAGE C clause as some other
user, the database server generates an error.

To allow other users to register C UDRs in the database, a user with the DBA
privilege can grant the Usage privilege on the C language with the GRANT
statement. The following GRANT statement allows any user to register C
UDRs:

GRANT USAGE ON LANGUAGE C TO public;

This statement stores the UDR-language privileges in the syslangauth system
catalog table. By default, Usage privilege on C is only granted to the DBA. For
more information on the syntax of the GRANT statement, see the IBM Informix
Guide to SQL: Syntax.

Routine Modifiers
The routine modifiers tell the database server about attributes of the UDR.
You specify routine modifiers in the WITH clause of the CREATE FUNCTION
or CREATE PROCEDURE statement. The database server supports routine
modifiers for C UDRs to perform the following tasks.

Type of UDR Routine Modifier More Information

Iterator function ITERATOR “Writing an Iterator Function” on
page 14-5

Negator function NEGATOR “Creating Negator Functions” on
page 14-91

Selectivity function SELFUNC,
SELCONST

“Writing Selectivity and Cost
Functions” on page 14-81

Cost function COSTFUNC,
PERCALL_COST

“Writing Selectivity and Cost
Functions” on page 14-81

Parallelizable UDR PARALLEL-
IZABLE

“Creating Parallelizable UDRs”
on page 14-94

(1 of 2)
11-26 IBM Informix DataBlade API Programmer’s Guide

Parameters and Return Values
Parameters and Return Values
The CREATE FUNCTION and CREATE PROCEDURE statements specify any
parameters and return value for a C UDR. For user-defined functions, the
RETURN clause of the CREATE FUNCTION statement specifies the return
value. Use SQL data types for parameters and the return value. These SQL
data types must be compatible with the DataBlade API data types in the
routine declaration. Figure 1-1 on page 1-14 lists the SQL data types that
correspond to the different DataBlade API data types.

For example, suppose you have a C UDR with the following C declaration:

mi_double_precision *func1(parm1, parm2)
mi_integer parm1;
mi_double_precision *parm2;

The following CREATE FUNCTION statement registers the func1() user-
defined function:

CREATE FUNCTION func1(INTEGER, FLOAT)
RETURNS FLOAT;

Recursive UDR STACK “Managing Stack Usage” on
page 13-58

Ill-behaved UDR CLASS “Defining a User-Defined VP” on
page 12-55

UDR that handles SQL
NULL values as
arguments

HANDLESNULLS “Handling NULL Arguments” on
page 12-12

UDR that is not valid
within an SQL
statement

INTERNAL None

Type of UDR Routine Modifier More Information

(2 of 2)
Developing a User-Defined Routine 11-27

Privileges for the UDR
Use the opaque SQL data type, POINTER, to specify a data type for a C UDR
whose parameter or return type has no SQL data type equivalent. For
example, suppose you have a C UDR that has the following C declaration:

my_private_struc *func2(parm1, parm2)
mi_integer parm1, parm2;

The following CREATE FUNCTION statement registers the func2() user-
defined function:

CREATE FUNCTION func2(INTEGER, INTEGER)
RETURNS POINTER;

This CREATE FUNCTION statement uses the POINTER data type because the
data structure to which func2() returns a pointer is a private data type, not
one that is surfaced to users by registering it in the database.

Tip: If the C implementation of your UDR requires an MI_FPARAM structure in its
declaration, omit this structure from the parameter list of the CREATE FUNCTION
or CREATE PROCEDURE statement. For more information about when a C UDR
requires an MI_FPARAM structure, see “MI_FPARAM Argument” on page 12-7.

For more information about how to declare a C UDR, see “Coding a C UDR”
on page 12-3.

Privileges for the UDR
The CREATE FUNCTION and CREATE PROCEDURE statements assign the
Execute privilege to the user who registers the UDR. Routine privileges for
UDRs are stored in the sysprocauth system catalog table. By default, Execute
privilege is granted to public. Whether you need to explicitly grant the
Execute privilege for a UDR to other users depends on the whether or not the
database is ANSI-compliant and on the setting of the NODEFDAC
environment variable. For more information, see the description of the
GRANT statement in the IBM Informix Guide to SQL: Syntax.
11-28 IBM Informix DataBlade API Programmer’s Guide

Executing a UDR
Executing a UDR
After you register a UDR as an external routine in the database, it can be
called in one of the following ways:

� In a client application or SPL routine, through SQL statements:

❑ In the select list of a SELECT statement

❑ In the WHERE clause of a SELECT, UPDATE, or DELETE statement

❑ In the VALUES clause of an INSERT statement

❑ In the SET clause of an UPDATE statement

❑ With the EXECUTE PROCEDURE or EXECUTE FUNCTION
statement

� In a C UDR, as an SQL statement that one of the following DataBlade
API statement-execution functions sends to the database server:

❑ mi_exec()

❑ mi_exec_prepared_statement()

❑ mi_open_prepared_statement()

For more information on how to use statement-execution functions,
see Chapter 8, “Executing SQL Statements.”

� Through an implicit UDR call

An implicit UDR is a UDR that the database server calls automatically
in response to some SQL task. For example, in the following SELECT
statement, the database server calls the a_to_int() cast function
when it executes the SELECT statement:

CREATE IMPLICIT CAST (a AS INTEGER WITH a_to_int);
...
SELECT a:int FROM tab1 WHERE b > 6;

� Through the Fastpath interface

The Fastpath interface of the DataBlade API allows you to call a UDR
directly from within another UDR. For more information, see “Call-
ing UDRs with the Fastpath Interface” on page 9-22.

Tip: Within a C UDR, you can obtain the name of the SQL statement that invoked
the UDR with the mi_current_command_name() function.
Developing a User-Defined Routine 11-29

Routine Resolution
Each occurrence of a UDR, implicit or explicit, in an SQL or SPL statement is a
routine instance. One routine instance might involve several routine invoca-
tions. A routine invocation is one execution of the UDR. For example, if the
following query selects five matching rows, the query has one routine
instance of the a_func() user-defined function and five routine invocations
for this function:

SELECT a_func(x) FROM table1 WHERE y > 7;

Similarly an iterator function might contain many invocations in a single
routine instance.

To execute a UDR instance in an SQL statement, the database server takes the
following steps:

1. The query parser breaks the SQL statement into its syntactic parts
and performs any routine resolution required.

The query optimizer develops a query plan, which efficiently orga-
nizes the execution of the SQL-statement parts.

2. The query executer calls the routine manager, which handles
execution of the UDR instance and any invocations.

The following sections provide information about how the steps of UDR
execution can affect the way that you write the UDR. For more general infor-
mation, see the chapter on how a UDR runs in the IBM Informix User-Defined
Routines and Data Types Developer’s Guide.

Routine Resolution
If more than one registered UDR has the same routine name, the routine is
overloaded. Routine overloading enables several routines to share a name and
each of the routines to handle arguments of different data types. When an
SQL statement includes a call to an overloaded routine, the query parser uses
routine resolution to determine which of the overloaded routines best handles
the data type of the arguments in the routine call of the SQL statement.
11-30 IBM Informix DataBlade API Programmer’s Guide

The Routine Manager
To perform routine resolution, the query parser looks up information in the
system catalogs based on the routine signature. The routine signature contains
the following information:

� The routine name

� The number and data types of the arguments

� Whether the routine is a function or a procedure

The database server combines this information to create an identifier that
uniquely identifies the UDR. This routine identifier is in the procid column of
the sysprocedures system catalog.

Tip: The DataBlade API provides the mi_funcid data type to hold routine identifiers.
The mi_funcid data type has the same structure as the mi_integer data type. For
backward compatibility, some DataBlade API functions (such as
mi_routine_id_get()) continue to store an mi_integer for a routine identifier.

For a detailed description of the steps involved in routine resolution, see the
IBM Informix User-Defined Routines and Data Types Developer’s Guide.

The Routine Manager
After the query parser has used routine resolution to determine which UDR
to invoke, the query executor calls the routine manager to handle the UDR
execution. The routine manager performs the following steps to execute the
C UDR:

1. For each UDR instance:

a. Load the shared-object file that contains the object code for the
UDR into shared memory.

b. Allocate and initialize the routine sequence for the UDR.

2. For each invocation of the UDR:

a. Push the UDR argument values onto the thread stack.

b. Dispatch the UDR to the appropriate virtual-processor class for
execution.

c. Save the return value of a user-defined function on the thread
stack.

3. At the end of the UDR instance, release the routine sequence.
Developing a User-Defined Routine 11-31

The Routine Manager
The following sections briefly describe each of these steps. For a general
discussion of the routine manager, see the IBM Informix User-Defined Routines
and Data Types Developer’s Guide.

Loading a Shared-Object File

When you compile a C UDR, you store its object code in a shared-object file.
(For more information, see “Compiling a C UDR” on page 11-19.) For a UDR
to execute, its object code must reside in memory so that a virtual processor
(VP) can execute it. The database server uses virtual processors to service
client-application SQL requests. A thread is a database server task that a VP
schedules for processing.

Tip: For a detailed discussion of virtual processors and threads, see “Using Virtual
Processors” on page 12-26.

When the routine manager reaches the first occurrence of the UDR in the SQL
statement, the routine manager determines whether its shared-object file is
currently loaded into the memory space of the appropriate VP class. If the file
is not yet loaded, the routine manager dynamically loads its code and data
sections into the data segment for all virtual processors of the VP class. The
routine manager obtains the pathname of the shared-object file from the
externalname column of the row in the sysprocedures system catalog for the
UDR. This loading occurs for both explicit UDR calls and implicit calls (such
as operator functions and opaque-type support functions).
11-32 IBM Informix DataBlade API Programmer’s Guide

The Routine Manager
Figure 11-3 shows a schematic representation of what VPs look like after the
routine manager loads a shared-object file.

In Figure 11-3, assume that the func1(), func2() and func3() functions are
registered as user-defined functions with the CREATE FUNCTION statement
and linked into the source1.so UNIX or Linux shared-object file. The client
application calls the func1() user-defined function within a SELECT
statement. The routine manager loads the source1.so file into memory, if this
file is not yet loaded. For subsequent references to these UDRs, the routine
manager can skip the shared-object load.

Figure 11-3
Loading a Shared-Object File

Client

Client Application 1 Server name

IDS Shared memory

Virtual processor

CPU VP #1

Virtual processor

CPU VP #2

SELECT func1(col1)
FROM tab1
WHERE col2 > 6

func1(...)
{...}
func2(...)
{...}
func3(...)
{...}

source1.c

CPU VP stack

CPU VP heap

Shared-object data
Shared-object code

CPU VP data
CPU VP text

CPU VP stack

CPU VP heap

Shared-object data
Shared-object code

CPU VP data
CPU VP text
Developing a User-Defined Routine 11-33

The Routine Manager
The routine manager sends an entry to the message log file about the status
of the shared-object load, as follows:

� When it successfully loads the shared-object file

� When it is not able to load the shared-object file for any of the
following reasons:

❑ The routine manager cannot find the shared-object file.

❑ The shared-object file does not have read permission.

❑ One of the symbols in the shared-object file cannot be resolved.

� When it unloads a shared-object file

For example, when the routine manager loads the source1.so shared-object
file, the message log file would contain messages of the form:

12:28:45 Loading Module </usr/udrs/source1.so>
12:28:45 The C Language Module </usr/udrs/source1.so> loaded

Check the message log file for these messages to ensure that the correct
shared-object file is loaded into the virtual processors.

You can monitor the loaded shared-object files with the -g dll option of
onstat. This option lists the shared-object files that are currently loaded into
the database server.

For information on when the shared-object file is unloaded, see “Unloading
a Shared-Object File” on page 11-57. For information on how to create a
shared-object file, see “Creating a Shared-Object File” on page 11-20. For
general information about loading a shared-object file, see the IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

Creating the Routine Sequence

A routine sequence is the context in which the UDR executes. Generally, each
routine instance (whether implicit or explicit) creates a single, independent
routine sequence. For example, suppose you have the following query:

SELECT a_func(x) FROM table1 WHERE a_func(y) > 7;

When this query executes in serial, it contains two routine instances of
a_func(): one in the select list and the second in the WHERE clause. Therefore,
this query has two routine sequences.
11-34 IBM Informix DataBlade API Programmer’s Guide

The Routine Manager
However, when a query with a parallelizable UDR (one that is registered with
the PARALLELIZABLE routine modifier) executes in parallel, each routine
instance might have more than one routine sequence. For more information,
see “Executing the Parallelizable UDR” on page 14-97.

For each routine sequence, the routine manager creates a routine-state space,
called an MI_FPARAM structure, that contains routine-state information from
the routine sequence, including the following information:

� The routine identifier

� The number of arguments passed to the UDR

� Information about the UDR arguments

� The user state (optional)

The MI_FPARAM structure does not contain the actual argument values.

The routine manager allocates an MI_FPARAM structure when it initializes
the routine sequence. This structure persists across all routine invocations in
that routine sequence because the MI_FPARAM structure has a memory
duration of PER_COMMAND. The routine manager passes an MI_FPARAM
structure as the last argument to a UDR. (For more information, see
“MI_FPARAM Argument” on page 12-7.) To obtain routine-state infor-
mation, a C UDR invocation can access its MI_FPARAM structure. (For more
information, see “Accessing MI_FPARAM Routine-State Information” on
page 9-3.)

Pushing Arguments Onto the Stack

When the routine manager pushes arguments onto the thread stack, it pushes
them as MI_DATUM values. The routine manager takes the following factors
into account:

� Whether the argument is passed by value or by reference

� Whether the argument needs to be promoted
Developing a User-Defined Routine 11-35

The Routine Manager
Passing Mechanism for MI_DATUM Values

The routine manager pushes MI_DATUM values onto the thread stack before
it invokes the routine. The MI_DATUM structures contain the data in its
internal database format. The size of the MI_DATUM data type determines
whether the routine manager passes a particular argument by value or by
reference, as follows:

� The routine manager passes most argument values by reference; that
is, it passes a pointer to the actual argument value.

If the argument value has a data type whose size is greater than the
size of the MI_DATUM data type, the routine manager passes the
argument by reference because it cannot fit the actual value onto the
stack. Instead, the MI_DATUM structure that the routine manager
pushes onto the stack contains a pointer to the value. The routine
manager allocates the memory for these pass-by-reference argu-
ments with a PER_ROUTINE duration.

� The routine manager passes a few special types of argument by value;
that is, the MI_DATUM structure contains the actual argument value.

If the argument value is a data type whose size is less than or equal
to the size of the MI_DATUM data type, the routine manager passes
the argument by value because it can fit the actual value onto the
stack.

Figure 2-18 on page 2-51 lists the data types that the routine manager passes
by value. All arguments whose data type is listed in this figure are passed by
value unless the argument is an OUT parameter. OUT parameters are never
passed by value; they are always passed by reference. The routine manager
passes by reference any argument whose data type is not listed in Figure 2-18
on page 2-51.

Tip: For a particular argument data type, you can determine from its type descriptor
whether it is passed by reference or passed by value with the mi_type_byvalue()
function.

For information on how to code routine parameters, see “Defining Routine
Parameters” on page 12-4. For information on how the routine manager
passes return values out of a UDR, see “Returning the Value” on page 11-39.
11-36 IBM Informix DataBlade API Programmer’s Guide

The Routine Manager
Argument Promotion

C compilers that accept Kernighan-&-Ritchie (K&R) syntax promote all
arguments to the int data type when they are passed to a routine. The size of
this int data type is native for the computer architecture. ANSI C compilers
permit arguments to be shorter than the native computer architecture size of
an int. However, the routine manager uses K&R calling conventions when it
pushes an MI_DATUM value onto the thread stack.

Tip: Many ANSI C compilers can use K&R calling conventions so code does work
correctly across all platforms.

The routine manager cast promotes arguments with passed-by-value data
types whose sizes are smaller than the size of the MI_DATUM data type to the
size of MI_DATUM. When you obtain the smaller passed-by-value data type
from the MI_DATUM structure, you should reverse the cast promotion to
assure that your value is correct. For more information, see “MI_DATUM in
a C UDR” on page 2-51.

Tip: To avoid this cast-promotion situation, the BladeSmith product generates C
source code for BOOLEAN arguments as mi_integer instead of mi_boolean.

If you pass an argument smaller than an MI_DATUM structure, it is recom-
mended that you pass a small “by-value” SQL type as an mi_integer value.
Developing a User-Defined Routine 11-37

The Routine Manager
Managing UDR Execution

After the routine manager creates a routine sequence and pushes the
arguments onto the stack, it invokes the UDR. It then manages the execution
of the UDR associated with this routine sequence. The number of times that
the UDR is invoked depends on the following factors:

� Does the UDR handle SQL NULL values?

If an argument to the UDR is the SQL NULL value and the UDR does
not handle NULL values (it was not registered with the HAN-
DLESNULLS routine modifier), the routine manager does not invoke
the UDR.

� Is the UDR an iterator function?

An iterator function has several iterations. It executes once to initial-
ize the iterations, once for each iteration, and once to release iteration
resources. For more information, see “Writing an Iterator Function”
on page 14-5.

� Where is the UDR invoked within the SQL statement?

❑ If the UDR is in the select list, it executes once per row that the
WHERE clause qualifies.

❑ If the UDR is in the WHERE clause, the exact number of times that
it executes cannot be predicted. It might be less than or equal to
the number of rows or it might not be executed at all. The query
optimizer makes this determination.

❑ If the UDR is in an EXECUTE FUNCTION or EXECUTE
PROCEDURE statement, it executes once (unless it is an iterator
function).

A C UDR executes in one or more virtual processors (VPs). VPs are grouped
by the kind of task they perform into VP classes. The presence of the CLASS
routine modifier in the UDR registration determines in which VP class the
UDR executes, as follows:

� If the UDR registration did not have a CLASS routine modifier or this
CLASS routine modifier specified the CPU VP, the routine manager
dispatches the UDR to a CPU VP for execution.

� If the UDR registration has a CLASS routine modifier that specifies a
user-defined VP class, the routine manager dispatches the UDR to a
VP in the specified VP class for execution.
11-38 IBM Informix DataBlade API Programmer’s Guide

The Routine Manager
For more information on how VPs execute C UDRs, see “Using Virtual
Processors” on page 12-26.

Tip: The DataBlade API does provide some functions to change the VP environment
once the UDR begins execution; however, these are advanced functions. You should
use them only under special circumstances. For more information, see “Controlling
the VP Environment” on page 12-60.

Returning the Value

For execution of a user-defined function, the routine manager returns any
resulting value to the query executor when execution is complete. When the
routine manager returns the value from a user-defined function, it passes this
value as an MI_DATUM value. As with routine arguments, the passing
mechanism that the routine manager uses depends on the size of the return-
value data type, as follows:

� The routine manager passes most return values by reference; that is, it
passes a pointer to the actual return value.

If the return value has a data type whose size is greater than the size
of the MI_DATUM data type, the routine manager passes the return
value by reference because it cannot fit the actual value onto the
stack. The routine manager allocates the memory for these pass-by-
reference return values with a PER_ROUTINE duration.

� The routine manager passes a few special types of return values by
value; that is, the MI_DATUM structure contains the actual return
value.

If the return value is a data type whose size is less than or equal to
the size of the MI_DATUM data type, the routine manager passes the
return value back by value because it can fit the actual value onto the
stack. Figure 2-18 on page 2-51 lists the data types that the routine
manager passes by value.

Tip: For a particular return-value data type, you can determine from its type
descriptor whether it is passed by reference or passed by value with the
mi_type_byvalue() function.

The routine manager determines information about the return value (such as
whether it is an SQL NULL value) from the MI_FPARAM structure of the UDR.
For information on how to code routine return values, see “Defining a Return
Value” on page 12-17.
Developing a User-Defined Routine 11-39

Debugging a UDR
Releasing the Routine Sequence

At the end of the routine instance, the routine manager releases the
associated routine sequence. At this time, it also deallocates the MI_FPARAM
structure.

Debugging a UDR
Because a UDR runs as part of the database server process, the routine must
not do anything that might negatively affect the running of the database
server, such as exiting. (For information on how to minimize the likelihood
of interfering the database server, see “Creating a Well-Behaved Routine” on
page 12-28.)

This section provides information on how to use a C debugger to attach to a
virtual processor, handle the debugging session of a C UDR, and use
DataBlade API tracing.

Using a Debugger
To debug your DataBlade module, use a debugger that can attach to the
active server process and access the symbol tables of dynamically loaded
shared object files.

On UNIX or Linux, the debugger and dbx utilities meet these criteria. To start
a debugger, enter the following command at the shell prompt, in which pid is
the process identifier of the CPU or virtual processor:

debugger - pid

This command starts the debugger on the server virtual-processor process
without starting a new instance of the virtual processor. For more infor-
mation about available debugger commands, see the debugger manual
page. ♦

To attach to the database server process

1. Create a debugging version of the shared-object file.

2. Connect to the database server from a client application, such as
DB-Access.

UNIX/Linux
11-40 IBM Informix DataBlade API Programmer’s Guide

Using a Debugger
3. Make sure that the shared-object file is loaded into the server address
space.

4. Obtain the process identifier for the virtual processor you want to
debug.

5. Start the debugger on the server process.

The following sections describe these steps.

Creating a Debugging Version

To debug a shared-object file, you must compile the shared-object file with an
option that makes additional symbol-table information available to the
debugger. Many C compilers use the -g compiler option to create a
debugging version of a shared-object file. For more information on how to
compile, see “Compiling a C UDR” on page 11-19.

Connecting to the Database Server from a Client

To connect to the database server, choose a client tool that allows you to
submit ad-hoc queries.

On UNIX or Linux, you can use the DB-Access utility. For example, execute
the following command, where database is a database in which you registered
the shared-object file that you want to debug:

dbaccess database

♦

On Windows, you can use the SQL Editor. ♦

Loading the Shared-Object File for Debugging

To load the shared-object file, you must execute one of the UDRs within the
file. One technique is to execute the UDR itself within DB-Access. For
example, if a user-defined function named my_udf() resides within the
shared-object file, you can use the following SQL statement to execute
my_udf(), which causes the database server to load the shared-object file
that contains my_udf():

EXECUTE FUNCTION my_udf();

UNIX/Linux

Windows
Developing a User-Defined Routine 11-41

Using a Debugger
Another technique for loading the shared-object file is to define a dummy
UDR in the shared-object file that you use to load the shared-object file, as
follows:

1. Create the dummy UDR in the shared-object file.

The routine can be as simple as the following example:
mi_integer load_so()
{

return 0;
}

To prevent name conflicts with other shared-object files (or Dat-
aBlade modules), you can put a prefix in the routine name.

2. Compile the shared-object file.

3. Register the dummy UDR with the CREATE FUNCTION statement.
CREATE FUNCTION load_so()
RETURNS INTEGER
WITH (NOT VARIANT)
EXTERNAL NAME '/usr/lib/udrs/myudrs.so(load_so)'
LANGUAGE C;

To load the shared-object file, execute the dummy UDR. The following
SELECT statement in your client application (or DB-Access) loads the myudrs
shared-object file, which contains load_so():

SELECT load_so() FROM informix.systables WHERE tabid=1;

For more information about loading a shared-object file, see “Loading a
Shared-Object File” on page 11-32.

Identifying the VP Process

To find the virtual processor in which your shared-object file is loaded,
execute the onstat utility with the -g glo or -g sch option. Locate the CPU or
user-defined virtual processor that you want to debug and record its process
identifier (pid) for the next step. For more information on the -g glo and
-g sch options of onstat, see “Monitoring Virtual Processors” on page 12-59.
11-42 IBM Informix DataBlade API Programmer’s Guide

Running a Debugging Session
Running a Debugging Session
You can set breakpoints, examine the stack, resume execution, or carry out
any other normal debugger commands.

Breakpoints

You can set breakpoints in any function with an entry point known to your
debugger. Valid functions include internal functions and the UDRs in your
shared-object file. The database server is compiled with debugging support
turned off, so local storage and line number information is not available for
UDRs. However, because you compiled the shared-object file for debugging,
you can see line number information and local storage for your functions.

The database server routine that calls functions in your shared-object file is
named udr_execute(). When you enter a command in the client application
that calls one of your UDRs, the debugger stops in the udr_execute() routine.
You can then step through your UDR. Because your shared-object file is
compiled with debugging support, you can view the local variables and stack
for your functions.

On UNIX or Linux, you can set a breakpoint in the debugger utility on the
udr_execute() function as follows:

stop in udr_execute
cont

♦

Debugging Hints

When you need to debug a UDR, keep the following considerations in mind:

� During the development of a UDR, to avoid interfering with the
operation of the database server, develop UDRs on the client
computer even if they are eventually intended to run from the
database server process.

� Examine the database server log file for messages that the database
server generates when it executes the UDR.

The database server writes status messages to the message log file.
By default, this file is named online.log. You can change the name of
this file with the MSGPATH configuration parameter.

UNIX/Linux
Developing a User-Defined Routine 11-43

Running a Debugging Session
� Use the UDR tracing facility to insert trace messages within the body
of the function.

The database server puts these trace messages in a trace file when the
UDR executes. For more information, see “Using Tracing” on
page 11-46.

� Simplify the UDR to create a good test case.

Good test cases are as simple as possible.

� Install and register any required DataBlade modules

If your execution environment includes DataBlade modules, you
might want to first attempt debugging without these DataBlade
modules so that the environment is as simple as possible. However,
if this is not possible, make sure that you install and register any Dat-
aBlade modules that affect the execution of the UDR you are
debugging. To install and register other DataBlade modules, such as
the DataBlade modules included with Dynamic Server, see the
instructions that accompany them.

Possible Memory Errors

Memory errors are usually caused by overrunning memory in a UDR. To
avoid common causes of memory errors in a UDR, make sure you meet the
following memory-handling requirements.

Memory-Handling Requirement More Information

Do not return the NULL-valued pointer from a
UDR.

“Returning a NULL Value” on
page 12-19

Do not use null-terminated strings as data in a
varying-length structure such as mi_lvarchar.

“Varying-Length Data and Null
Termination” on page 2-28

(1 of 2)
11-44 IBM Informix DataBlade API Programmer’s Guide

Running a Debugging Session
Symbols in Shared-Object Files

The database server resolves undefined symbols in a shared-object file when
it loads the shared-object file. If a symbol is missing, the load fails on the first
execution of the UDR, and the database server writes a message in the log file.
Symbols defined in two different shared-object files are distinct entities and
do not resolve against each other.

A symbol defined in both a shared-object file and the Dynamic Server main
module behaves in one of two ways:

� If the symbol referenced in the shared-object file is in the same source
file that references it, the debugger accesses the symbol in the shared
object file, as expected.

� If the shared-object file includes more than one source file and a cross-
file symbol reference exists, the symbol is resolved to the main
module of the database server.

Do not return local variables from a UDR. “Returning a Value” on page 12-17

Make sure that you handle data types for
parameters and return values with the correct
passing mechanism.

“MI_DATUM Arguments” on
page 12-4 and “Returning a
Value” on page 12-17

Make sure memory that a UDR allocates is of
the appropriate memory duration for its use.
Do not access memory after its duration has
expired.

“Choosing the Memory Duration”
on page 13-7

Memory-Handling Requirement More Information

(2 of 2)
Developing a User-Defined Routine 11-45

Using Tracing
Using Tracing
A tracepoint is a point within the code that can send special information about
the current executing state of the UDR. Each tracepoint has the following
parts:

� A trace class groups related tracepoints together so that they can be
turned on and off at the same time.

� A trace message is the text that the database server sends to the
tracing-output file.

� A tracepoint threshold determines when the tracepoint executes; if a
tracepoint threshold is not greater than the current trace level, the
DataBlade API writes the associated trace message to the trace output
file.

Tip: The IBM Informix BladeSmith development tool, which is part of the DataBlade
Developer’s Kit, automatically includes tracing statements in the C source code that
it generates. For more information, see the “DataBlade Developer’s Kit User’s
Guide.”

The DataBlade API tracing support is available only in C UDRs. Do not use
this feature within client LIBMI applications. ♦

The mitrace.h header file defines the functions and data type structures of the
tracing interface. The mi.h header file automatically includes the mitrace.h
header file. You must include either mi.h or mitrace.h in any C UDR that uses
a DataBlade API tracing function.

The DataBlade API provides the following tracing support.

Time of Use Tracing Support

At UDR-development time Adds tracepoints in the C UDR with associated trace-
level thresholds

At UDR runtime Turns on different trace classes at specified trace levels

Client
11-46 IBM Informix DataBlade API Programmer’s Guide

Using Tracing
Adding a Tracepoint in Code

A user-defined tracepoint is a point within the code of a C UDR that can send
special information about the current executing state of that routine.

To use a user-defined tracepoint

1. Choose the trace class for the tracepoint.

2. Put trace messages into the UDR code.

A tracepoint contains a trace message whose text you want to out-
put. You assign to each tracepoint a trace class and a threshold level.
If a tracepoint threshold is not greater than the current trace level, the
DataBlade API writes the associated trace message to the trace output
file.

3. Turn tracing on with an appropriate trace level for the tracepoints
that you want to execute.

You assign the current trace level when you turn on tracing with the
mi_tracelevel_set() function.

Choosing a Trace Class

Trace messages are grouped into trace classes. A trace class enables you to set
up categories of related tracepoints, which you can then turn on or turn off
independently. Within your UDR, you can choose either type of trace class for
your tracepoint:

� The built-in __myErrors__ trace class

� A user-defined trace class

Using the Built-In Trace Class

The DataBlade API provides a built-in trace class named __myErrors__. The
__myErrors__ trace class writes out the full text of database server exceptions
(errors and warnings) as they occur. You can set the trace level of
__myErrors__ with mi_tracelevel_set(), just as with any other trace class.
Developing a User-Defined Routine 11-47

Using Tracing
The __myErrors__ trace class provides the following trace levels:

� A level of 10 or above to trace only error messages

� A level of 20 or above to trace both error and warning messages

Tip: The __myErrors__ trace class does not appear in the systraceclasses system
catalog table.

Creating a New Trace Class

To create your own trace class, define an entry for the trace class in the
systraceclasses system catalog table. By default, all users can view this table,
but only users with the DBA privilege can modify it. You can create as many
trace classes as you like. The database server prevents you from creating a
trace class name that is already in use.

Tip: The BladeSmith of the DataBlade Developer’s Kit (DBDK) can add trace
messages to the systracemsgs system catalog table. For more information, see your
BladeSmith documentation.

Figure 11-4 shows the INSERT statement that creates a trace class named
funcEntry.

When you insert a new trace class into systraceclasses, the database server
assigns it a unique identifier, called a trace-class identifier. It stores this trace-
class identifier in the classid column of systraceclasses.

Tip: For more information on the columns of the systraceclasses system catalog
table, see the “IBM Informix Guide to SQL: Reference.”

The built-in tracing that the DataBlade Developer’s Kit (DBDK) provides
assumes that you create a single trace class and that its name is the same as
the name of your DataBlade module. For more information, see the DataBlade
Developer’s Kit User’s Guide.

INSERT INTO informix.systraceclasses(name)
VALUES ('funcEntry');

Figure 11-4
Creating the funcEntry

Trace Class
11-48 IBM Informix DataBlade API Programmer’s Guide

Using Tracing
Putting Trace Messages into Code

The DataBlade API supports the following types of tracepoints in a C UDR:

� Tracepoints whose trace message is in U.S. English

� Internationalized tracepoints

For more information on internationalized tracepoints, see the
IBM Informix GLS User’s Guide. ♦

The DataBlade API provides the following tracing functions to insert U.S.
English tracepoints into UDR code:

� The DPRINTF macro

� The trace-block functions, tf() and tprintf()

Tip: The BladeSmith of the DataBlade Developer’s Kit (DBDK) can create tracing
routines and macros as part of the code it generates for a DataBlade module. For more
information, see your BladeSmith documentation.

Using DPRINTF Macro

The DPRINTF macro directly marks a tracepoint in the code. It formats a trace
message and specifies the threshold for the tracepoint. The syntax for
DPRINTF is as follows:

DPRINTF(trace_class, threshold, (format [, arg]...));

These syntax elements have the following values:

The DataBlade API also provides the GL_DPRINTF macro for formatting inter-
nationalized trace messages. For more information, see the IBM Informix GLS
User’s Guide. ♦

trace_class is either a trace-class name or the trace-class identifier (an inte-
ger value) expressed as a character string.

threshold is a non-negative integer that sets the tracepoint threshold for
execution.

format is a printf-style output format that formats the trace message
and can include print formatting directives.

arg is an expression to be evaluated for output. It provides the
value for a print formatting directive in the format argument.

GLS

GLS
Developing a User-Defined Routine 11-49

Using Tracing
The following example uses DPRINTF to insert a tracepoint of the funcEntry
trace_class (which Figure 11-4 on page 11-48 defines) after the doAbigPiece()
function executes:

result = doAbigPiece(x, "x location");
DPRINTF("funcEntry", 50,

("After calling doAbigPiece with x = %d and %s \
result = %f", x, "x location", result));

The trace message consists of the literal text, the print formatting directives,
and the expressions for the print formatting directives.

To determine the value of a trace-class identifier, you can query the
systraceclasses system catalog table for the classid column. The following
SELECT statement obtains the trace-class identifier for the funcEntry trace
class:

SELECT classid FROM informix.systraceclasses
WHERE name = 'funcEntry';

If the trace-class identifier for the funcEntry trace class is 42, the following
DPRINTF call performs the same task as the preceding DPRINTF call:

result = doAbigPiece(x, "x location");
DPRINTF("42", 50,

("After calling doAbigPiece with x = %d and %s \
result = %f", x, "x location", result));

The tracepoint threshold determines which tracepoints generate output, based
on the current trace levels of the trace class. If a tracepoint threshold is not
greater than the current trace level, the database server writes the associated
trace message to the trace-output file.

The simplest tracing scheme is to have only two trace levels:

� Trace level = 0

No tracing occurs.

� Trace level > 0

Any tracepoint with a threshold greater than zero (0) prints. All oth-
ers do not.
11-50 IBM Informix DataBlade API Programmer’s Guide

Using Tracing
A more complex scheme could have four states: no tracing, light tracing,
medium tracing, and heavy tracing. As an example, suppose you want to
define the following trace levels for the funcEntry trace class.

The maximum number of trace levels is the largest non-negative integer
representable on the platform.

Trace Blocks

In some cases, you might need to perform some computations before you
decide whether to output certain trace data. To perform computations for a
tracepoint, define a trace block. A trace block initially compares a specified
threshold with the current trace level to determine whether to continue with
the trace computations. Within the trace block, it can output a result in a trace
message.

The DataBlade API provides the following tracing functions for use in a trace
block:

� The tf() function acts as a threshold check that determines whether
to execute a particular trace block.

The syntax of the tf() function is as follows:
tf(trace_class, threshold)

This function returns a Boolean result; it is TRUE if the current trace
level of the trace_class class is greater than or equal to the threshold.

Tracing
Level

Threshold
Values Sample DPRINTF Call

None 0 None

Light 1 to 10 DPRINTF("funcEntry", 1, ("Entering doTheJob: the main
function"));

Medium 11 to 20 DPRINTF("funcEntry", 11, ("Entering doAbigPiece: a top-
level \help function"));

Heavy >= 20 DPRINTF("funcEntry", 21, ("Entering doAlittlePiece: an
often-called \helper"));
Developing a User-Defined Routine 11-51

Using Tracing
� The tflev() function returns the current trace level of the specified
trace class.

The syntax of the tflev() function is as follows:
tflev(trace_class)

This function returns an integer result that is the current trace level
of the trace_class class.

� The tprintf() function outputs a trace message but does not require
the threshold argument.

The syntax of the tprintf() function is as follows:
tprintf(format [,arg]...)

The format and arg arguments are the same as those in the DPRINTF
macro.

The DataBlade API also provides the gl_tprintf() function for formatting
internationalized trace messages within a trace block. For more information
on gl_tprintf(), see the IBM Informix GLS User’s Guide. ♦

You can combine these trace-block functions with conventional C structures.
The following example is typical:

/* Compare current trace level of "chck_consist" class and
* with a tracepoint threshold of 20. Continue execution of
* trace block if trace level >= 20
*/

if(tf("chck_consist", 20))
{
x = fastScan(aList, y);
consFactor = checkRconsit(x, bList);

/* Generate trace message (in U.S. English) */
tprintf("...in doWork: x = %f and consFactor = %f",

x, consFactor);
}

GLS
11-52 IBM Informix DataBlade API Programmer’s Guide

Using Tracing
Defining Internationalized Trace Messages

The DataBlade API also supports internationalized trace messages, which are
trace messages that correspond to a particular non-English locale. The
current database locale determines which code set the trace message uses.
Based on the current database locale, a given tracepoint can produce an inter-
nationalized trace message. Internationalized tracing enables you to develop
and test the same code in many different locales. For more information on
how to use internationalized trace messages, see the IBM Informix GLS User’s
Guide. ♦

Using Tracing at Runtime

When your C UDR executes, you can use DataBlade API functions to perform
the following tracing tasks.

After the trace-output file is created, you can examine its content for infor-
mation about the runtime behavior of your UDR.

Turning Tracing On

The mi_tracelevel_set() function sets the current trace level for one or more
trace classes. You can use this function to perform the following tasks:

� Turn tracing for specified trace classes on or off.

By default, tracing for a particular trace class is off; that is, the current
trace level of trace class is set to zero (0) for all trace classes. Any non-
zero value for a trace level turns tracing on for the specified trace
class.

� Change the current trace level for a trace class.

You can reset the trace level as often as necessary during testing.
Once set, tracing persists throughout the session.

Tracing Task DataBlade API Function

Turn on tracing for one or more trace classes mi_tracelevel_set()

Set the trace-output file mi_tracefile_set()

GLS
Developing a User-Defined Routine 11-53

Using Tracing
You pass to the mi_tracelevel_set() function a series of set commands, one set
command for each trace class that you want set. A set command has the
following format:

traceclass_name trace_level

The following example sets the trace class funcEntry (which Figure 11-4 on
page 11-48 defines) to a medium level (trace level of 14) and enables consis-
tency checking with a trace class named chk_consist:

mi_integer ret;
...
ret = mi_tracelevel_set("chk_consist 1000 funcEntry 14");

You can also change the current trace level of a trace class with the
mi_tracelevel_set() function. The following example changes the trace level
of the funcEntry trace class from 14 (from the previous example) to a lower
level of 5:

ret = mi_tracelevel_set("funcEntry 5");

Specifying the Trace-Output File

By default, the database server puts all trace messages in a system-defined
trace-output file with a .trc file extension. For the name of this system-defined
trace-output file, see the description of mi_tracefile_set() in the IBM Informix
DataBlade API Function Reference.

You can change the destination of trace messages with the mi_tracefile_set()
function. With this function, you can specify the name of the trace-output file.
For example, the following call to mi_tracefile_set() sets the trace file to a
UNIX file named test14_may2.trc in the /d2/blades/tests directory:

mi_integer status;
...
status =

mi_tracefile_set("/d2/blades/tests/test14_may2.trc");

For more information, see the description of the mi_tracefile_set() function.
11-54 IBM Informix DataBlade API Programmer’s Guide

Using Tracing
Creating a UDR to Turn Tracing On

As a shortcut for debugging a UDR, you can create a UDR that automatically
turns on tracing for your UDR. The registration of a sample user-defined
procedure to perform such a task follows:

CREATE PROCEDURE trace_on(LVARCHAR, LVARCHAR)
EXTERNAL NAME '/usr/lib/udrs/my_tools.so(trace_on)'
LANGUAGE C;

The code for this user-defined procedure could be something like the
following example:

void trace_on(trace_path, trace_cmds)
mi_lvarchar *trace_path;
mi_lvarchar *trace_level;

{
mi_tracefile_set(mi_lvarchar_to_string(trace_path));
mi_tracelevel_set(mi_lvarchar_to_string(trace_cmds));

};

After you register the trace-on procedure, you can turn on tracing for an SQL
session with the following SQL statement:

EXECUTE PROCEDURE trace_on('trace_log_path',
'my_trace_class 20');

In the preceding statement, trace_log_path is the path to your trace log.

Alternatively, you could create a user-defined procedure to turn on a
particular trace class. The following CREATE PROCEDURE statement registers
a user-defined procedure to turn on the MyBlade trace class:

CREATE PROCEDURE traceset_myblade(LVARCHAR, INTEGER)
EXTERNAL NAME '/usr/lib/udrs/myblade.bld(db_trace_on)'
LANGUAGE C;

The following code implements such a user-defined procedure:

void db_trace_on(trace_path, trace_level)
mi_lvarchar *trace_path;
mi_integer trace_level;

{
char[16] trace_cmd;

mi_tracefile_set(mi_lvarchar_to_string(trace_path));
sprintf(trace_cmd, "%s %d", "MyBlade", trace_level);
mi_tracelevel_set(trace_cmd);

}

Developing a User-Defined Routine 11-55

Using Tracing
Now the following SQL statement turns on tracing for trace class MyBlade
with a trace level of 20 whose tracing output goes in the UNIX file
/u/dexter/udrs/myblade.trc:

EXECUTE PROCEDURE trace_on('/u/dexter/udrs/myblade.trc', 20);

Understanding Tracing Output

The DataBlade API tracing functions prepend each trace message with a time
stamp to show the time that the trace message is written to the trace-output
file. The time stamp enables you to associate trace output with other infor-
mation, such as entries in the database server log file.

Suppose you use the DPRINTF macro to create the following tracepoints:

mi_string *udr_name = "myUDR";
...
DPRINTF("funcEntry", 15, ("%s: entering UDR", udr_name));
x = 9;
result = doSomething(x);
DPRINTF("funcEntry", 15,

("%s: after calling doSomething\(%d\), result = %f",
udr_name, x, result));

If you set a trace level of 15 or greater and run the UDR at 8:56 A.M., the trace-
points generate the following lines in the trace-output file:

08:56:03 myUDR: entering UDR
08:56:03 myUDR: after calling doSomething(9), result = value

In the previous trace output, value would be the value that the function call
of doSomething(9) returned.

When trace messages in the source of the UDR appear in English and the UDR
uses the default locale as its server-processing locale, messages appear in
English in the trace-output file. If the code set of the trace-message characters
in the UDR source is different from (but compatible with) the code set of the
server-processing locale, the database server performs the appropriate code-
set conversion on these trace messages.

To write an internationalized trace message to your trace-output file, the
database server must locate a row in the systracemsgs system catalog table
whose locale column matches (or is compatible with) the server-processing
locale for your UDR. For more information, see the IBM Informix GLS User’s
Guide. ♦

GLS
11-56 IBM Informix DataBlade API Programmer’s Guide

Changing a UDR
Changing a UDR
This section provides information about how to alter a C UDR and how to
unload a shared-object file.

Altering a Routine
The SQL statements ALTER FUNCTION, ALTER PROCEDURE, and ALTER
ROUTINE allow you to alter some of the routine modifiers of a UDR after the
UDR has been registered.

For information on how to alter a UDR, see the IBM Informix User-Defined
Routines and Data Types Developer’s Guide and the syntax of the ALTER
FUNCTION, ALTER PROCEDURE, and ALTER ROUTINE statements in the
IBM Informix Guide to SQL: Syntax.

Unloading a Shared-Object File
In an attempt to keep memory usage to a minimum, the routine manager
attempts to unload a shared-object file when it finds that no one is using any
of its UDRs. That is, it unloads a shared-object file when all references to the
UDRs within the shared-object file are removed from the internal cache of the
database server and any one of them is marked as being dropped.

The database server cleans up its cache entries when you take any of the
following actions:

� Explicitly drop a UDR

When you use the DROP FUNCTION, DROP PROCEDURE, or DROP
ROUTINE to drop all UDRs in a shared-object file, the routine man-
ager unloads the shared-object file.

� Explicitly drop a database

The routine manager unloads all shared-object files when DROP
DATABASE executes.

� Create and reference UDRs in a transaction
Developing a User-Defined Routine 11-57

Unloading a Shared-Object File
For example, in the following SQL fragment, the shared-object file thrashes in
and out of memory because the transaction has private cache entries until
committed and the management mechanism treats them as being dropped:

BEGIN WORK;
CREATE FUNCTION c_func() ...;
CREATE FUNCTION spl_func() RETURNING c_func()...;
COMMIT WORK;

To unload a shared-object file, you can take any of the following actions:

� For each routine that references the shared object (external file),
execute the following SQL statement

ALTER ROUTINE routine-name (args, ...)
WITH (

MODIFY EXTERNAL NAME = 'shared-obj'
);

The new pathname for the shared object must be different from the
existing one for the shared object to be unloaded. Instead of ROUTINE,
you can specify FUNCTION for a function or PROCEDURE for a
procedure.

After the last routine is altered, nothing in the database server should
refer to the old shared object, and a message appears in the online log
to report that the shared object has been unloaded.

� Drop all UDRs in the shared-object file

When you execute DROP FUNCTION, DROP PROCEDURE, or DROP
ROUTINE to drop all UDRs in a shared-object file, the routine man-
ager unloads the shared-object file. Similarly, the routine manager
unloads all shared-object files when DROP DATABASE executes. Exe-
cution of one of these SQL statements is the safest way to unload a
shared-object file.

� Execute the SQL procedure, ifx_unload_module(), to request that an
unused shared-object file be unloaded

The ifx_unload_module() function can only unload an unused
shared-object file; that is when no executing SQL statements (in any
database) are using any UDRs in the specified shared-object file. If
any UDR in the shared-object file is currently in use,
ifx_unload_module() raises an error.
11-58 IBM Informix DataBlade API Programmer’s Guide

Unloading a Shared-Object File
� Load a new module of a different name with the SQL function
ifx_replace_module()

With the ifx_replace_module() function, you do not have to change
all the routine definitions. This action should eventually cause the
old shared-object file to unload.

For the syntax of the ifx_unload_module() and ifx_replace_module()
functions, see the IBM Informix Guide to SQL: Syntax.

Important: Do not use the ifx_replace_module() function to reload a module of the
same name. If the full names of the old and new modules that you send to
ifx_replace_module() are the same, unpredictable results can occur.

DataBlade modules can be shared across databases. Therefore, you might
have more than one database using the same DataBlade module.

In Figure 11-3 on page 11-33, the routine manager has loaded the shared-
object file named source1.so. This shared-object file contains definitions for
the user-defined functions func1(), func2(), and func3().

The routine manager sends an entry in the message log file when it loads and
unloads a shared-object file. When the routine manager unloads the
source1.so shared-object file, the message-log file would contain messages of
the form:

19:14:44 Unloading Module </usr/udrs/source1.so>
19:14:44 The C Language Module </usr/udrs/source1.so> unloaded

The message-log file is a useful place to check that the shared-object file is
unloaded from the virtual processors. Alternatively, you can use the onstat -g
dll command to monitor the results of an shared-object-file unload.

For information about when the shared-object file is loaded, see “Loading a
Shared-Object File” on page 11-32. For information on how to prevent a
shared-object file from being unloaded, see “Locking a Shared-Object File in
Memory” on page 12-66.
Developing a User-Defined Routine 11-59

12
Chapter
Writing a User-Defined Routine
In This Chapter . 12-3

Coding a C UDR. 12-3
Defining Routine Parameters 12-4

Routines with No Arguments 12-4
MI_DATUM Arguments 12-4
MI_FPARAM Argument 12-7

Obtaining Argument Values 12-9
Handling Character Arguments. 12-9
Handling NULL Arguments 12-12
Handling Opaque-Type Arguments 12-12
Modifying Argument Values 12-16

Defining a Return Value 12-17
Returning a Value 12-17
Returning Multiple Values 12-22

Coding the Routine Body 12-25

Using Virtual Processors 12-26
Creating a Well-Behaved Routine 12-28

Preserving Availability of the CPU VP 12-30
Writing Threadsafe Code 12-34
Avoiding Restricted System Calls 12-42
Choosing the User-Defined VP Class 12-48
Defining a User-Defined VP 12-55
Assigning a C UDR to a User-Defined VP Class 12-57

Managing Virtual Processors 12-58
Initializing a VP Class 12-58
Adding and Dropping VPs 12-58
Monitoring Virtual Processors 12-59

12-2 IBM
Controlling the VP Environment 12-60
Obtaining VP-Environment Information 12-62

Identifying the Current VP 12-62
Identifying a VP Class 12-63

Changing the VP Environment 12-64
Executing on Another VP 12-64
Forking and Executing a Process 12-65

Locking a UDR 12-65
Locking a Routine Instance to a VP. 12-66
Locking a Shared-Object File in Memory 12-66

Performing Input and Output 12-67
Access to a Stream 12-67

Using Predefined Stream Classes 12-70
Creating a User-Defined Stream Class 12-75
Registering a UDR That Accesses a Stream 12-82
Releasing Stream Resources 12-82

Access to Operating-System Files. 12-83
Opening a File 12-85
Closing a File 12-88
Copying a File 12-89

Sample File-Access UDR. 12-89

Accessing the UDR Execution Environment 12-91
Accessing the Session Environment 12-91
Accessing the Server Environment 12-93
 Informix DataBlade API Programmer’s Guide

In This Chapter
This chapter outlines some implementation issues for C user-defined
routines (UDRs):

� Coding a C UDR

� Choosing the type of virtual processor in which to run your C UDR

� Controlling the virtual-processor environment

� Accessing operating-system files

� Accessing information in the server environment from within a C
UDR

For information on how to manage memory within a C UDR, see “Managing
Memory” on page 13-1.

This chapter covers topics specific to the creation of a C UDR. This material
does not necessarily apply to the creation of client LIBMI applications. For
information specific to the creation of client LIBMI applications, see
Appendix A, “Writing a Client LIBMI Application.” ♦

Coding a C UDR
When you code a C UDR, you perform the following tasks to write a C
function:

� Define routine parameters

� Obtain argument values

� Define a return value

� Code the routine body

Client
Writing a User-Defined Routine 12-3

Defining Routine Parameters
Defining Routine Parameters
When the routine manager invokes a C UDR, the routine manager passes to
the UDR any argument values that the calling SQL statement provided. When
you write a C UDR, you can define routine parameters that indicate the data
types of the arguments that you expect the UDR to handle.

This section provides information about how to define routine parameters
for the following UDR arguments:

� MI_DATUM argument

� MI_FPARAM argument, which the routine manager passes in to
every UDR

Tip: Routine arguments are optional; however, if your UDR does not require
arguments, you must still declare an MI_FPARAM parameter in the C-function
declaration. For more information, see “MI_FPARAM Argument” on page 12-7.

The routine manager uses the parameter data types in routine resolution.
Therefore, you can have multiple UDRs with the same name, provided that
their parameter lists uniquely identify the UDRs. For more information, see
“Routine Resolution” on page 11-30.

Routines with No Arguments

Routine parameters are optional. If your UDR does not need parameters,
follow your C-compiler conventions for the syntax to use when declaring the
C function.

MI_DATUM Arguments

When an SQL statement invokes a UDR, the statement can specify column
values or expressions to pass to the UDR. The routine manager passes these
argument values to a UDR as MI_DATUM values. The data type of each
argument determines the passing mechanism that the routine manager uses
for the argument value, as follows:

� Values of most data types cannot fit into an MI_DATUM structure.
The routine manager passes these argument values by reference.

� Values of a few data types can fit into an MI_DATUM structure. The
routine manager passes these argument values by value.
12-4 IBM Informix DataBlade API Programmer’s Guide

Defining Routine Parameters
The passing mechanism that the routine manager uses for a particular
argument determines how you must declare the corresponding parameter of
the UDR. For more information about how the routine manager passes
argument values to a C UDR, see “The MI_DATUM Data Type” on page 2-50
and “Pushing Arguments Onto the Stack” on page 11-35.

Pass-by-Reference Arguments

When an argument has a value that cannot fit into an MI_DATUM structure,
the routine manager passes the argument by reference. For each of these
pass-by-reference arguments, you declare a parameter that is a pointer to a
value of the parameter data type, in the C-function declaration.

Figure 12-1 shows the bigger_double() user-defined function, which
compares two mi_double_precision values. Because the routine manager
passes mi_double_precision values by reference, bigger_double() declares
the two parameters as pointers to values of the mi_double_precision data
type.

Important: Memory that the routine manager allocates to pass an argument by
reference has a PER_ROUTINE memory duration. Therefore, it is guaranteed to be
valid only for the duration of the UDR execution. The database server automatically
frees this memory when the UDR completes.

mi_double_precision *bigger_double(left, right)
mi_double_precision *left, *right;

{
mi_double_precision *dpp;

dpp = mi_alloc(sizeof(mi_double_precision));
if (*left > *right)

{
*dpp = *left;
return(dpp);
}

else
{
*dpp = *right;
return(dpp);
}

}

Figure 12-1
Passing Arguments

by Reference
Writing a User-Defined Routine 12-5

Defining Routine Parameters
Any C-language code that calls bigger_double() must pass the
mi_double_precision values by reference, as in the following sample call:

mi_double_precision double1, double2, *result;

double1 = 13497.931669;
double2 = 235521832.00484;
result = bigger_double(&double1, &double2);

Tip: For varying-length data, the routine manager does not pass a pointer to the
actual data itself. Instead, it stores the varying-length data inside a varying-length
structure. Therefore, your C UDR must declare parameters that expect varying-
length data as a pointer to the appropriate varying-length structure. Varying-length
data includes text arguments (see “Handling Character Arguments” on page 12-9)
and varying-length opaque data types (see “Handling Varying-Length Opaque-Type
Arguments” on page 12-14).

Values passed into a UDR are often also used in other places in the SQL
statement. If your UDR modifies a pass-by-reference value, successive
routines in the SQL statement might use the modified value. When your UDR
is run within the context of an SQL statement, a routine that runs before it can
see (and possibly modify) any pass-by-reference values.

Tip: Avoid the modification of a pass-by-reference argument within a C UDR. For
more information, see “Modifying Argument Values” on page 12-16.

Pass-by-Value Parameters

When an argument has a data type that can fit into an MI_DATUM structure,
the routine manager passes the argument by value. Figure 2-18 on page 2-51
lists data types for arguments that you can pass by value. For these pass-by-
value arguments, you declare a parameter as the actual parameter data type in
the C-function declaration.
12-6 IBM Informix DataBlade API Programmer’s Guide

Defining Routine Parameters
Figure 12-2 shows the bigger_int() UDR, which compares two mi_integer
values. Because the routine manager passes mi_integer values by value, the
UDR declares the two parameters with the mi_integer data type, not as
pointers to mi_integer.

Any C-language code that calls bigger_int() must also pass the mi_integer
values by value, as in the following sample call:

mi_integer int1, int2, result;
...
int1 = 6;
in2 = 8;
result = bigger_int(int1, int2);

MI_FPARAM Argument

The routine manager passes an MI_FPARAM structure into every UDR that it
executes. This structure contains routine-state information about the UDR,
such as information about arguments and return values. Because the routine
manager automatically passes an MI_FPARAM structure to a UDR, you do not
need to explicitly declare this structure in most C-function declarations.

mi_integer bigger_int(left, right)
mi_integer left, right;

{
if (left > right)

return(left);
else

return(right);
}

Figure 12-2
Passing Arguments

by Value
Writing a User-Defined Routine 12-7

Defining Routine Parameters
You should include an MI_FPARAM declaration in the C-function declaration
in the following cases:

� You need to access routine-state information within the UDR.

When you declare an MI_FPARAM parameter, this declaration must
be the last parameter in the C declaration of your UDR. For more
information about the DataBlade API functions that access the rou-
tine-state information from MI_FPARAM, see “Accessing
MI_FPARAM Routine-State Information” on page 9-3.

� You declare a UDR that does not take any arguments.

A C UDR always gets at least one argument: a pointer to the
MI_FPARAM structure. When the parameter list of your SQL UDR is
empty, you must still include a declaration for the MI_FPARAM struc-
ture, even if the UDR does not access routine-state information.

For example, the bigger_double() user-defined function in Figure 12-1 on
page 12-5 does not include a declaration for the MI_FPARAM structure
because it does not need to access routine-state information and it has other
parameters. However, suppose you register a user-defined function named
func_noargs() that does not require any arguments:

CREATE FUNCTION func_noargs() RETURNS INTEGER
EXTERNAL NAME '/usr/lib/udrs/udrs.so' LANGUAGE C;

In the C UDR, you can declare the func_noargs() function with a single
parameter, a pointer to the MI_FPARAM structure:

mi_integer func_noargs(MI_FPARAM *fparam)
{
...
}

The declaration of the MI_FPARAM structure allows the routine manager to
pass this structure into the UDR.

Tip: If your C UDR does not declare an MI_FPARAM structure but determines
dynamically that it needs information in this structure, it can use the
mi_fparam_get_current() function to obtain a pointer to its MI_FPARAM
structure. This function, however, is an advanced feature. Make sure you need it
before you use it in a C UDR.
12-8 IBM Informix DataBlade API Programmer’s Guide

Obtaining Argument Values
Obtaining Argument Values
To obtain the argument value with a C UDR, access the parameter that you
have specified in the C declaration of the function. The parameter declaration
indicates the appropriate passing mechanism for the UDR parameters. You
can access the argument values through these declarations, as you would any
other C-function parameter, as follows:

� For pass-by-reference parameters, access the argument value
through its pointer. Do not modify this pointer within the body of the
UDR.

Most data types are passed by reference. The sample UDR
bigger_double(), in Figure 12-1 on page 12-5, shows how to access
pass-by-reference arguments within a UDR.

� For pass-by-value parameters, you can access the argument value
directly through its parameter variable.

For a list of data types that can be returned by value, see Figure 2-18
on page 2-51. The sample UDR bigger_int(), in Figure 12-2 on
page 12-7, shows how to access pass-by-value arguments within a
UDR.

Tip: You can obtain information about an argument, such as its type and length,
from the MI_FPARAM structure. For more information, see “Checking Routine
Arguments” on page 9-5.

Handling Character Arguments

When the routine manager receives text data for a C UDR, it puts this text data
into an mi_lvarchar varying-length structure. It then passes a pointer to this
mi_lvarchar structure as the MI_DATUM structure for the UDR argument.
Therefore, a C UDR must have its text parameter declared as a pointer to an
mi_lvarchar structure when the parameter accepts data from the following
SQL character data types:

� CHAR

� LVARCHAR

� NCHAR

� NVARCHAR
Writing a User-Defined Routine 12-9

Obtaining Argument Values
� TEXT

� VARCHAR

For more information on the NCHAR and NVARCHAR data types, see the
IBM Informix GLS User’s Guide. ♦

Important: These SQL data types cannot be represented as null-terminated strings.
A C UDR never receives a null-terminated string as an argument. Do not code a C
UDR to receive null-terminated strings as arguments. For more information on how
to access mi_lvarchar, see “Varying-Length Data Type Structures” on page 2-21.

For example, suppose you want to define a user-defined function named
initial_cap() that accepts a VARCHAR string, ensures that the string begins
with an uppercase letter, and ensures that the rest of the string consists of
lowercase letters. This UDR would be useful in the following query to retrieve
a customer’s last name:

SELECT customer_num
FROM customer
WHERE initial_cap(lname) = "Sadler";

In the preceding query, use of the initial_cap() function means that you do
not have to ensure that the customer last names (in the lname column) were
entered with an initial uppercase letter. The preceding query would locate
the customer number for either Sadler or sadler.

The following CREATE FUNCTION statement registers the initial_cap()
function in the database:

CREATE FUNCTION initial_cap(str VARCHAR(50))
RETURNS VARCHAR(50)
EXTERNAL NAME '/usr/udrs/text/checkcaps.so'
LANGUAGE C;

The following declaration of initial_cap() specifies an mi_lvarchar pointer
as the parameter data type even though the function is registered to accept a
VARCHAR column value:

/* Valid C UDR declaration for string parameter */
mi_lvarchar *initial_cap(str)

mi_lvarchar *str;

GLS
12-10 IBM Informix DataBlade API Programmer’s Guide

Obtaining Argument Values
The following declaration of initial_cap() is invalid because it specifies an
mi_string pointer as the parameter data type:

/* INVALID declaration for string parameter */
mi_string *initial_cap(string)

mi_string *string;

The initial_cap() function in the preceding declaration would not execute
correctly because it interprets its argument as an mi_string value when the
routine manager actually sends this argument as an mi_lvarchar value.

Figure 12-3 shows the implementation of the initial_cap() function.

#include <mi.h>
#include <ctype.h>

mi_lvarchar *initial_cap(str)
mi_lvarchar *str;

{
char *var_ptr, one_char;
mi_lvarchar *lvarch_out;
mi_integer i, var_len;

/* Create copy of input data */
lvarch_out = mi_var_copy(str);

/* Obtain data pointer for varying-length data */
var_ptr = mi_get_vardata(lvarch_out);

/* Obtain data length */
var_len = mi_get_varlen(lvarch_out);

/* Check string for proper letter case */
for (i=0; i < var_len; i++)

{
one_char = var_ptr[i];

if (i == 0)
/* Change lowercase first letter to uppercase */
{
if (islower(one_char)) /* is lowercase */

var_ptr[i] = toupper(one_char);
}

else
/* Change uppercase other letters to lowercase */
if (isupper(one_char)) /* is uppercase */

var_ptr[i] = tolower(one_char);
}

return (lvarch_out);
}

Figure 12-3
Handling Character

Data in a UDR
Writing a User-Defined Routine 12-11

Obtaining Argument Values
Tip: A C UDR that returns data for one of the SQL character data types must return
a pointer to an mi_lvarchar. The initial_cap() function returns a varying-length
structure to hold the initial-capital string. For more information, see “Returning
Character Values” on page 12-20.

Handling NULL Arguments

By default, a C UDR does not handle SQL NULL values. When you call a UDR
with an SQL NULL as the argument, the routine manager does not invoke the
UDR. It returns a value of SQL NULL for the UDR. To have the UDR invoked
when it is called with SQL NULL arguments, register the UDR with the
HANDLESNULLS routine modifier and code the UDR to take special steps
when it receives a NULL argument.

To determine whether an argument is SQL NULL, declare the MI_FPARAM
structure as the last argument in the UDR and use the mi_fp_argisnull()
function to check for NULL argument values. Do not just compare the
argument with a NULL-valued pointer. For more information, see “Handling
NULL Arguments with MI_FPARAM” on page 9-8.

Handling Opaque-Type Arguments

When the routine manager receives opaque-type data for a C UDR, the way
the routine manager passes this data to the UDR depends on the kind of
opaque data type, as follows:

� For fixed-length opaque types, the routine manager usually passes a
pointer to the internal format of the opaque type.

� For varying-length opaque types, the routine manager passes a
pointer to an mi_bitvarying varying-length structure.

A C UDR must declare its opaque-type parameter appropriately.
12-12 IBM Informix DataBlade API Programmer’s Guide

Obtaining Argument Values
Handling Fixed-Length Opaque-Type Arguments

For UDR arguments that are fixed-length opaque types, the routine manager
passes a pointer to the internal format of the opaque type to the C UDR. If the
fixed-length opaque type is defined as passed by value, however, the routine
manager passes the actual internal format. For more information, see “Deter-
mining the Passing Mechanism for an Opaque Type” on page 15-12.

For example, suppose you want to define a user-defined function named
circle_area() that accepts a fixed-length opaque type named circle (which is
defined in Figure 15-2 on page 15-5) and computes its area. The following
CREATE FUNCTION statement registers the circle_area() function in the
database:

CREATE FUNCTION circle_area(arg1 circle)
RETURNS FLOAT
EXTERNAL NAME '/usr/udrs/circle/circle.so'
LANGUAGE C;

Because circle is a fixed-length data type that cannot fit into an MI_DATUM
structure, the following declaration of circle_area() specifies a pointer to the
internal format of circle:

/* Valid C UDR declaration for fixed-length opaque-type
* parameter
*/

mi_double_precision *circle_area(circle_ptr)
circle_t *circle_ptr;
Writing a User-Defined Routine 12-13

Obtaining Argument Values
Figure 12-4 shows the implementation of the circle_area() function.

Tip: A C UDR that returns fixed-length opaque data must return a pointer to the
internal format (unless the internal format can fit into an MI_DATUM structure and
is declared to be passed by value). For more information, see “Returning Opaque-
Type Values” on page 12-21.

Handling Varying-Length Opaque-Type Arguments

For UDR arguments that are varying-length opaque types, the routine
manager puts the data into an mi_bitvarying varying-length structure. It
then passes a pointer to this mi_bitvarying structure as the MI_DATUM
structure for the UDR argument. Your UDR must extract the actual opaque-
type data from the data portion of the mi_bitvarying varying-length
structure. For more information on how to access varying-length structures,
see “Using a Varying-Length Structure” on page 2-22.

#include <mi.h>
#include <ctype.h>
#include <circle.h>

mi_double_precision *circle_area(circle)
circle_t *circle;

{
mi_double_precision *area;

/* Allocate memory for mi_double_precision return
* value
*/

area = mi_alloc(sizeof(mi_double_precision));

/* Calculate circle area using radius from circle_t
* structure and constant PI_CONSTANT (defined in
* circle.h).
*/

*area = (circle->radius * circle->radius) * PI_CONSTANT;

return (area)
}

Figure 12-4
Handling

Fixed-Length
Opaque-Type Data

in a UDR
12-14 IBM Informix DataBlade API Programmer’s Guide

Obtaining Argument Values
Suppose that you want to create a user-defined function named image_id()
that accepts a varying-length opaque type named image (which is defined in
Figure 15-3 on page 15-8) and returns its integer image identifier (img_id).
The following CREATE FUNCTION statement registers the image_id()
function in the database:

CREATE FUNCTION image_id(arg1 image)
RETURNS INTEGER
EXTERNAL NAME '/usr/udrs/image/image.so'
LANGUAGE C;

Because image is a varying-length data type, the following declaration of
image_id() specifies an mi_bitvarying pointer as the parameter data type
even though the function is registered to accept a value of type image:

/* Valid C UDR declaration for varying-length opaque-type
* parameter
*/

mi_integer image_id(image)
mi_bitvarying *image;

The following declaration of image_id() is invalid because it specifies an
image pointer as the parameter data type:

/* INVALID declaration for varying-length opaque-type
* parameter
*/

mi_integer image_id(image)
image_t *image;

The image_id() function in the preceding declaration would not execute
correctly because it interprets its argument as the internal structure for image
(image_t) when the routine manager actually sends this argument as an
mi_bitvarying value.
Writing a User-Defined Routine 12-15

Obtaining Argument Values
Figure 12-5 shows the implementation of the image_id() function.

Tip: A C UDR that returns varying-length opaque-type data must return a pointer
to an mi_bitvarying structure. For more information, see “Returning Opaque-Type
Values” on page 12-21.

Modifying Argument Values

Do not modify a UDR argument unless it is an OUT parameter. The routine
manager does not make routine-specific copies of the arguments that it passes
to UDRs because it is more efficient not to do so. Keep in mind that values
passed into a UDR are often used on other places in the SQL statement. If you
modify a pass-by-reference value within the UDR, you also modify it for all
other parts of the SQL statement (including other UDRs) that operate on the
value after the UDR executes. When you modify a pass-by-reference
argument within the UDR, you might create an order-dependent result of the
SQL statement. That is, it now might make a difference when your UDR is run
within the SQL statement.

#include <mi.h>
#include <ctype.h>
#include <image.h>

mi_integer image_id(image)
mi_bitvarying *image;

{
image_t *image_ptr;

/* Obtain pointer to image_t structure, contained
* within the data portion of the mi_bitvarying
* structure.
*/

image_ptr = (image_t *)mi_get_vardata((mi_lvarchar *)image);

return (image_ptr->img_id);
}

Figure 12-5
Handling

Varying-Length
Opaque-Type Data

in a UDR
12-16 IBM Informix DataBlade API Programmer’s Guide

Defining a Return Value
Defining a Return Value
When you declare a C UDR, you specify the routine return value, as follows:

� For a user-defined function, the C declaration specifies the data type
that the UDR returns.

� For a user-defined procedure, the C declaration specifies the void
data type as a return value.

Important: A C user-defined function can only return one value.

Returning a Value

When a user-defined function completes, the routine manager returns its
value as an MI_DATUM value. The data type of the return value determines
the passing mechanism that the routine manager uses for the value, as
follows:

� Most data types cannot fit into an MI_DATUM structure and are
passed by reference.

� A few data types can fit into an MI_DATUM structure and are passed
by value (see Figure 2-18 on page 2-51).
Writing a User-Defined Routine 12-17

Defining a Return Value
The passing mechanism that the routine manager uses for a particular return
value determines how you must declare it in the user-defined function, as
follows.

Important: A user-defined function cannot return an automatic or local variable if
its data type cannot be returned by value. That is, any automatic or local variables
with data types that cannot fit into an MI_DATUM structure cannot be returned by
value from the UDR.

Return-Value Data Type Tasks to Return the Value

Data types that cannot fit into
an MI_DATUM structure

Return the value by reference:

� Declare a local variable that is a pointer to the
actual return value

� Allocate the memory for the return value with
the PER_ROUTINE memory duration. Use a
DataBlade API memory-management function.
For more information, see “Managing User
Memory” on page 13-32.

� Assign the address of this memory to a local
variable

� Store the return value in this memory

� Return the pointer to this memory as the return
value

Data types that can fit into the
MI_DATUM structure

Can return the value by value:

� Declare a local variable to hold the actual return
value

� Store the return value in this local variable

� Return the local variable as the return value
12-18 IBM Informix DataBlade API Programmer’s Guide

Defining a Return Value
To return a value, use the automatic or local variable that you declared in the
user-defined function, like you would any other C-function variable, as
follows:

� For a pass-by-reference return value, use a pointer to allocated
memory.

Most data types are passed by reference. The sample UDR
bigger_double(), in Figure 12-1 on page 12-5, shows how to return
an mi_double_precision value by reference. It allocates
PER_ROUTINE memory for the return value, which the database
server frees when the user-defined function completes.

� For a pass-by-value return value, you can return a variable directly
as the value.

For a list of data types that can be returned by value, see Figure 2-18
on page 2-51. The sample UDR bigger_int(), in Figure 12-2 on
page 12-7, shows how to return an mi_integer value by value.

Tip: You can obtain information about a return value, such as its type or maximum
length, from the MI_FPARAM structure. For more information, see “Accessing
Return-Value Information” on page 9-10.

Returning a NULL Value

To return an SQL NULL value from a user-defined function, pass the
MI_FPARAM structure as the last argument in the UDR and use the
mi_fp_setreturnisnull() function to set the NULL value in this MI_FPARAM
structure. You must call the mi_fp_setreturnisnull() function with MI_TRUE
before your UDR completes. If you do not, you might receive an incorrect
result from the UDR. Do not just return a NULL-valued pointer. For more
information, see “Returning a NULL Value” on page 9-13.
Writing a User-Defined Routine 12-19

Defining a Return Value
Returning Character Values

The routine manager handles all character return values from a C UDR as
mi_lvarchar values. Therefore, a C UDR must declare its return value as a
pointer to an mi_lvarchar when it returns data for any of the following SQL
character data types:

� CHAR

� LVARCHAR

� NCHAR

� NVARCHAR

� TEXT

� VARCHAR

For more information on the NCHAR and NVARCHAR data types, see the
IBM Informix GLS User’s Guide. ♦

Important: SQL data types are not represented as null-terminated strings, so do not
code a C UDR to return a null-terminated string. For more information on how to
access an mi_lvarchar structure, see “Varying-Length Data Type Structures” on
page 2-21.

For example, the initial_cap() function in Figure 12-3 on page 12-11 can
ensure that names are entered with an initial uppercase letter followed by
lowercase letters. This UDR would be useful in the following query to ensure
consistent capitalization of the customer last name:

INSERT INTO customer(customer_num, lname, fname)
VALUES (0, initial_cap("ANDERSON"), initial_cap("TASHI"));

The calls to initial_cap() in this INSERT statement convert the last and first
names of this customer as Anderson and Tashi, respectively.

Figure 12-3 on page 12-11 shows the following declaration for initial_cap():

/* Valid C UDR declaration for string return value */
mi_lvarchar *initial_cap(str)

mi_lvarchar *str;

GLS
12-20 IBM Informix DataBlade API Programmer’s Guide

Defining a Return Value
This declaration correctly specifies an mi_lvarchar pointer as the return type
so that the function can return the VARCHAR value. The following decla-
ration of initial_cap() is invalid because it specifies an mi_string pointer as
the return type:

/* INVALID declaration for string return value */
mi_string *initial_cap(string)

mi_lvarchar *string;

The initial_cap() function in the preceding declaration would not return the
expected value because the routine manager interprets the mi_string that the
UDR returns as an mi_lvarchar.

Tip: A C UDR that accepts data for one of these SQL character data types must also
declare its parameters as mi_lvarchar pointers. For more information, see
“Handling Character Arguments” on page 12-9.

Returning Opaque-Type Values

When the routine manager returns opaque-type data from a C UDR, the way
it handles the return value depends on the kind of opaque data type, as
follows:

� For fixed-length opaque types, the routine manager expects a pointer
to the internal format of the opaque type, unless it was declared as
pass by value.

Therefore, a C UDR must declare its return value as a pointer to the
internal format of the fixed-length opaque type. Only if the internal
format can fit into an MI_DATUM structure can the C UDR pass the
internal format by value.

� For varying-length opaque types, the routine manager expects a
pointer to an mi_bitvarying varying-length structure.

Therefore, a C UDR must declare its return value as a pointer to an
mi_bitvarying. To return a varying-length opaque type, the UDR
must put the varying-length structure into the data portion of the
mi_bitvarying structure and return a pointer to this mi_bitvarying
structure.

Tip: A C UDR that accepts opaque-type data must also declare its parameters based
on whether the opaque type is fixed-length or varying-length. For more information,
see “Handling Opaque-Type Arguments” on page 12-12.
Writing a User-Defined Routine 12-21

Defining a Return Value
Returning Multiple Values

Unlike an SPL routine, a C user-defined function can directly return at most
one value. However, a user-defined function can return multiple values
when you use the following features together:

� An OUT parameter in the user-defined function

� A statement local variable (SLV) in the SQL statement that calls the
user-defined function

OUT parameters and SLVs enable a user-defined function to return a second
value to the calling SQL statement.

Tip: This section discusses the use of SLVs and OUT parameters in the context of a
C user-defined function. You cannot use SLVs and OUT parameters in SPL functions.
A user-defined procedure with an OUT parameter must be called in the WHERE
clause of an SQL statement. For general information on how to use an OUT
parameter, see the discussion of how to return multiple values from external
functions in the “IBM Informix User-Defined Routines and Data Types Developer’s
Guide.”

An alternative to using an OUT parameter is an iterator function. This special-
purpose user-defined function can return multiple values, one value per
iteration of the function. For more information, see “Writing an Iterator
Function” on page 14-5.

Using an OUT Parameter

An OUT parameter is a routine argument that is always passed by reference to
the C user-defined function. A C user-defined function can use an OUT
parameter to return a value indirectly. For the OUT parameter, the database
server allocates storage for an opaque data type or for a data type that you
could pass by value (but not for a varying-length data type) and passes a
pointer to that storage to the UDR.
12-22 IBM Informix DataBlade API Programmer’s Guide

Defining a Return Value
For a C user-defined function to receive an OUT parameter, it must perform
the following actions:

� Declare the OUT parameter as the last parameter in the parameter list
(before any MI_FPARAM structure)

� Declare the OUT parameter as a pointer to the appropriate data type

The size of the OUT parameter must be the size of an MI_DATUM
structure. The passing mechanism for the parameter must be pass by
reference regardless of the data type that you pass back.

� Set the argument-value array of the MI_FPARAM structure to NULL

The UDR should update the argument-value array.

DataBlade API modules often use OUT parameters for Boolean functions to
return rank or scoring information (which can indicate how closely the return
result matched the query criteria). For example, Figure 12-6 shows a C UDR,
named out_test(), that does not actually search a particular title for a string,
but returns a 100 percent relative weight of match success as an OUT
parameter.

mi_integer out_test(
mi_lvarchar *doc,
mi_lvarchar *query,
mi_integer *weight, /* OUT parameter */
MI_FPARAM *fp)

{
/* Set the value of the OUT parameter */
*weight = 100;

/* Set the value of the OUT parameter to "not null" */
mi_fp_setargisnull(fp, 2, MI_FALSE);

return MI_TRUE;
}

Figure 12-6
The out_test()

User-Defined
Function
Writing a User-Defined Routine 12-23

Defining a Return Value
In Figure 12-6, the call to the mi_fp_setargisnull() function sets the third
argument, which is the OUT parameter, to MI_FALSE, which indicates that the
argument does not contain an SQL NULL value. The MI_FPARAM structure
stores routine arguments in zero-based arrays. Therefore, the
mi_fp_setargisnull() function specifies a position of 2 to access the third
argument.

Tip: For more information on how to access the MI_FPARAM structure, see
“Accessing MI_FPARAM Routine-State Information” on page 9-3.

When you register the user-defined function, precede the OUT parameter
with the OUT keyword. For example, the following CREATE FUNCTION
statement registers the out_test() function (which is defined in Figure 12-6):

CREATE FUNCTION out_test(doc LVARCHAR,
query VARCHAR(120),
OUT weight INTEGER)

RETURNING BOOLEAN
EXTERNAL NAME '/usr/udrs/udrs.so'
LANGUAGE C;

Using the Statement-Local Variable

When you call a user-defined function that has an OUT parameter, you must
declare a statement-local variable (SLV) in the WHERE clause of the SQL
statement. The SLV holds the value that the OUT parameter returns. Other
parts of the SQL statement can then access the OUT parameter value through
the SLV.

For example, the following SELECT statement calls the out_test() function
(which Figure 12-6 on page 12-23 defines) and saves the result of the OUT
parameter in a statement-local variable named weight:

SELECT title, weight FROM mytab
WHERE out_test(title, 'aaa', weight # INTEGER);
12-24 IBM Informix DataBlade API Programmer’s Guide

Coding the Routine Body
The SELECT statement specifies the statement-local variable in its select list so
it can return the value of the OUT parameter.

For more information on the syntax and use of SLVs, see the description of
how to return multiple values from a function in the IBM Informix User-
Defined Routines and Data Types Developer’s Guide.

Coding the Routine Body
The actual work of the C UDR is done with C-language statements in the
routine body. You can use the following statements and calls in the routine
body:

� C-language statements

� Calls to functions in libraries that the DataBlade API supports

For a description of these function libraries, see “Regular Public
Functions” on page 1-24.

� Calls to other C functions

You can call any of the following kinds of C functions:

❑ Any other C UDR that is linked into the same shared-object file

For more information, see “Calling UDRs Within a DataBlade
API Module” on page 9-20.

❑ A C UDR that does not reside in the same shared-object file

For more information, see “Calling UDRs with the Fastpath
Interface” on page 9-22.

You cannot directly call any other functions within a C UDR.
Writing a User-Defined Routine 12-25

Using Virtual Processors
Using Virtual Processors
To service multiple client-application SQL requests, the database server uses
virtual processors (VPs). The database server breaks the SQL request into
distinct tasks, based on the resource that the task requires. Different VP types,
called virtual-processor classes (VP classes), service the different kinds of tasks.
The following table lists some of the types of VP classes that the database
server supports.

Tip: User-defined VPs are also referred to as Extension VPs, EXP VPs, EVPs, or
Named VPs. This manual uses only the term “user-defined VP” to refer to a VP class
that you define.

The database server preserves the state of each request in a thread. The
database server assigns the thread to a VP class that manages the task or
resource that the request requires. The VPs in the VP class service multiple
requests for their resource by scheduling the threads on the resource.

Virtual-Processor Class Description

System VP classes:

CPU Central processing (the primary VP class, which
controls client-application requests)

AIO Asynchronous disk I/O

SHM Shared-memory network communications

User-defined VP class Special VP class for additional types of processing
12-26 IBM Informix DataBlade API Programmer’s Guide

Using Virtual Processors
The CPU virtual processor (CPU VP) is the main VP for the database server.
The CPU VP acts as the central processor for client-application SQL requests.
When a client application establishes a connection, the CPU VP creates the
session thread for that client application. A CPU VP runs multiple session
threads to service multiple SQL client applications.

Tip: This section describes VPs in the context of C UDRs. For a general description
of VPs and UDRs, see the description of VPs in the “IBM Informix User-Defined
Routines and Data Types Developer’s Guide.” For a general description of VPs, see
the chapter on database server architecture in your “Administrator’s Guide."

When an SQL request includes a C UDR, execution of this UDR becomes one
of the tasks that the thread performs. Because a session thread is the primary
thread for the processing of SQL requests, any C UDRs in an SQL request
normally execute in the CPU VP. However, the tasks that your C UDR needs
to perform might limit its ability to execute in the CPU VP, as follows:

� A well-behaved UDR can execute in the CPU VP.

A well-behaved UDR adheres to a set of safe-code requirements that
prevent the UDR from interfering with the efficient operation of the
CPU VP.

� An ill-behaved UDR cannot execute in the CPU VP.

If a C UDR does not follow all the safe-code requirements for a well-
behaved routine, it must execute in a user-defined VP class. Some of
the safe-code requirements can be relaxed for a C UDR that runs in a
user-defined VP.

Important: The success of your C UDRs and your DataBlade API project depends in
large degree on how well you implement the features related to the safety and interop-
erability of your C UDR.
Writing a User-Defined Routine 12-27

Creating a Well-Behaved Routine
Creating a Well-Behaved Routine
Because the CPU VP is used to execute all client requests, it is important that
the code it executes be well-behaved; that is, all code should have the following
attributes:

� Preserve availability of the CPU VP

The CPU VP performs system services and related tasks and executes
code for UDRs. If a UDR issues a standard blocking I/O call in a CPU
VP, then the VP must wait for the I/O to complete and cannot attend
to other threads and administrative tasks. The time spent waiting
adversely affects the overall performance of the system. DataBlade
API I/O functions enable the CPU VP to process the I/O asynchro-
nously and do not block the CPU VP.

The benefit of releasing the CPU VP so that it can execute other
threads outweighs the overhead involved in saving the current
thread state and switching to another thread. Each thread should
explicitly yield the CPU VP in a timely manner (at least every 1/10 of
a second).

� Be process safe

Well-behaved code must be able to migrate among processes with-
out loss of essential information or changing the global VP state. C
UDR code is process safe when all state information is entirely encap-
sulated within the arguments to each C function and within the
scope of the function itself. UDRs should not use global variables or
system calls that change the process state.

Code that is provided to execute within SQL statements (such as built-in SQL
functions) is well-behaved. However, IBM does not have control over the code
you write in your C UDR. A C UDR must be well-behaved to execute in the
CPU VP. As a UDR developer, you must ensure that your C UDR adheres to the
safe-code requirements in Figure 12-7.
12-28 IBM Informix DataBlade API Programmer’s Guide

Creating a Well-Behaved Routine
Figure 12-7
Safe-Code Requirements for a Well-Behaved UDR

If a UDR does not follow the safe-code requirements in Figure 12-7, it is called
an ill-behaved routine. An ill-behaved routine cannot safely execute in the CPU
VP.

Warning: Execution of an ill-behaved routine in the CPU VP can cause serious inter-
ference with the operation of the database server. In addition, the UDR itself might
not produce correct results.

Safe-Code
Requirement Coding Rule Possible Workarounds

Preserve
availability.

Yield the CPU VP in a timely
manner (at least every 1/10 of
a second).

To execute in the CPU VP, use mi_yield() to explicitly
yield the CPU VP during resource-intensive processing.

Otherwise, execute in a user-defined VP class.

Do not use blocking I/O calls. Execute in a yielding user-defined VP class.

Never change the working
directory.

None

Be process
safe.

No heap-memory allocation To execute in the CPU VP, use the DataBlade API
memory-management functions.

No modification of global or
static data

To execute in the CPU VP, use the MI_FPARAM structure
if you need to preserve state information. If necessary,
global or static data can be read, as long as it is not
updated.

Otherwise, execute in a nonyielding user-defined VP
class or a single-instance user-defined VP.

No modification of the global
state of the virtual processor

A C UDR that modifies the global VP state cannot execute
safely in any VP.

If modification of this data is essential to the application,
execute the C UDR in a nonyielding user-defined VP class
or a user-defined VP class that has only one VP defined.

Avoid unsafe
operating-
system calls.

Do not use any system calls
that might impair availability
or allocate local resources.

If use of such system calls is essential to the application,
execute the C UDR in a nonyielding user-defined VP class
and a single-instance VP and then change back.
Writing a User-Defined Routine 12-29

Creating a Well-Behaved Routine
If your C UDR has one of the ill-behaved traits in Figure 12-7, follow the
suggestions in the Possible Workarounds column. The following sections
describe more fully the safe-code requirements for a well-behaved C UDR.

Preserving Availability of the CPU VP

A well-behaved C UDR must preserve the availability of the CPU virtual
processor (CPU VP). The CPU virtual processor appears to execute multiple
threads simultaneously because it switches between threads. The database
server tries to keep a thread running on the same CPU VP that begins the
thread execution. However, if the current thread is waiting for some other
type of resource to be accessed or some other task to be performed, the CPU
virtual processor is needlessly held up. To avoid this situation, the database
server can migrate the current thread to another VP.

For example, a query request starts as a session thread in the CPU VP. Suppose
this query contains a C UDR that accesses a smart large object. While the
thread waits for the smart-large-object data to be fetched from disk, the
database server migrates the thread to an AIO VP, releasing control of the CPU
VP so that other threads can execute.

At a given time, a VP can run only one thread. To maintain availability for
session threads, the CPU VP swaps out one thread to allow another to execute.
This process of swapping threads is sometimes called thread yielding. This
continual thread yielding keeps the CPU VP available to process many
threads. The speed at which CPU-VP processing occurs produces the
appearance that the database server processes multiple tasks simultaneously.

Unlike an operating system, which assigns time slices to processes for their
CPU access, the database server does not preempt a running thread when a
fixed amount of time expires. Instead, it runs a thread until the thread yields
the CPU VP. Thread yielding can occur at either of the following events:

� When the thread explicitly calls mi_yield()

� When the thread requires some external resource to continue
execution (such as file or data I/O)
12-30 IBM Informix DataBlade API Programmer’s Guide

Creating a Well-Behaved Routine
When a thread yields, the VP switches to the next thread that is ready to run.
The VP continues execution and migration of threads until it eventually
returns to the original thread.

For a C UDR to preserve availability of the CPU VP, the UDR must ensure that
it does not monopolize the CPU VP. When a C UDR keeps exclusive control of
the CPU VP, the UDR blocks other threads from accessing this VP. A C UDR can
impair concurrency of client requests if it behaves in either of the following
ways:

� It does not regularly yield the CPU.

You must ensure that the C UDR yields the CPU VP at appropriate
intervals.

� It calls a blocking-I/O function.

You must ensure that the C UDR does not call any blocking I/O func-
tions because they can monopolize the CPU VP and possibly hang the
database server.

Denying other threads access to the CPU VP can affect every user on the
system, not just the users whose queries contain the same C UDR. If you
cannot code a C UDR to explicitly yield during resource-intensive processing
and to avoid blocking-I/O functions, the UDR is an ill-behaved routine and
must execute in a user-defined VP class.

Yielding the CPU VP

To preserve the availability of the CPU VP, a well-behaved C UDR must ensure
that it regularly yields the CPU VP to other threads. A C UDR might yield
when it calls a DataBlade API function because DataBlade API functions
automatically yield the VP when appropriate. For example, the UDR thread
might migrate to the AIO VP to perform any of the following kinds of I/O:

� Smart-large-object I/O with a DataBlade API function such as
mi_lo_open(), mi_lo_read(), or mi_lo_write()

� External-file I/O with a DataBlade API file-access function such as
mi_file_open(), mi_file_read(), or mi_file_write()
Writing a User-Defined Routine 12-31

Creating a Well-Behaved Routine
Therefore, you can assume that thread migration might occur during
execution of any DataBlade API function.

However, if your C UDR performs any of the following types of resource-
intensive tasks (which do not involve calls to DataBlade API functions), your
UDR does not automatically yield the VP:

� A task that is CPU- or I/O-bound

� A task that causes other threads to wait for an undue length of time
(usually longer than 0.1 seconds)

For such a C UDR to be well-behaved, it must explicitly yield the CPU VP with
the DataBlade API function mi_yield(). The mi_yield() function causes the
thread that is executing the UDR to voluntarily yield the CPU VP so that other
threads get a chance to execute in the VP. When the original thread is ready
to continue execution, execution resumes at the point immediately after the
call to the mi_yield() function.

Write your C UDR so that it yields the VP at strategic points in its processing.
Possible points include the beginning or end of lengthy loops and before
and/or after expensive computations. Judicious use of mi_yield() generally
leads to an improved response time overall.

If you cannot code the C UDR to explicitly yield during resource-intensive
passages of code, the UDR is considered an ill-behaved routine and must not
execute in the CPU VP. To isolate a resource-intensive UDR from the CPU VP,
you can assign the routine to a user-defined VP class. To determine which
kind of user-defined VP to define, you must also consider whether you need
to preserve availability of the user-defined VP. Keep in mind that all VPs of a
class share a thread queue. If there are multiple users of your UDR, multiple
threads can accumulate in the same thread queue. If your UDR does not yield,
it blocks other UDRs that execute in the same VP class. Therefore, the VP
might not effectively share between users. One user might have to wait while
the UDR in the query of some other user completes.
12-32 IBM Informix DataBlade API Programmer’s Guide

Creating a Well-Behaved Routine
You can use a user-defined VP to execute a resource-intensive routine:

� To preserve availability of a user-defined VP, execute the routine in a
yielding user-defined VP.

Within your UDR, you can use the mi_yield() function to yield the
user-defined VP to other threads that execute in the same VP class. To
increase availability, you can define multiple instances of the yield-
ing user-defined VP.

� If you cannot rewrite the routine to yield, add more user-defined VPs.

A nonyielding user-defined VP is used for code that must maintain
ownership of the process until it completes. A nonyielding VP might
modify a global variable or use a command resource that cannot be
shared.

Avoiding Blocking I/O Calls

To preserve concurrency, a well-behaved C UDR must avoid system calls that
perform blocking input and output operations (I/O). Some of these
operating-system calls follow:

When a C UDR executes any of these system calls, the CPU VP must wait for
the I/O to complete. In the meantime, the CPU VP cannot process any other
requests. The database server can appear to stall because the concurrency of
the CPU VP is impaired.

If your C UDR needs to perform file I/O, do not use operating-system calls to
perform this task. Instead, use the DataBlade API file-access functions. These
file-access functions allow the CPU VP to process the I/O asynchronously.
Therefore, they do not block the CPU VP. For more information, see “Access
to Operating-System Files” on page 12-83.

accept()
bind()
fopen()
getmsg()

msgget()
open()
pause()
poll()

putmsg()
read()
select()

semop()
wait()
write()
Writing a User-Defined Routine 12-33

Creating a Well-Behaved Routine
If your UDR must issue blocking I/O calls, assign the routine to execute in a
user-defined VP class. When a UDR blocks a user-defined VP, only those UDRs
that are assigned to that VP are affected. You might need to use a single
instance of a user-defined VP, which would affect client response. Your UDR
must also handle any problems that could occur if the thread yielded; for
example, operating-system file descriptors do not migrate with a thread if it
moves to a different VP.

Writing Threadsafe Code

A well-behaved C UDR must be threadsafe. During execution, an SQL request
might travel around the different VP classes. For example, a query starts in
the CPU VP, but it might migrate to a user-defined VP to execute a UDR that
was registered for that VP class. In turn, the UDR might fetch a smart large
object, which would cause the thread to migrate to the AIO VP.

Migrating a thread to a different VP means that the database server must
preserve the state of the thread before it migrates the thread. When a client
application connects to the database server, the database server creates a
thread-control block (TCB) to store thread-state information needed when a
thread switches VPs. The TCB includes the following thread-state
information:

� Contents of the VP system registers

� Program counter, which contains the address of the next instruction
to execute.

� Stack pointer, which points to private memory, called a thread stack

For more information on use of the thread stack by a UDR, see “Man-
aging Stack Space” on page 13-57.

Tip: For more information on the structure and use of the thread-control block, see
your “Administrator’s Guide.”

When a thread migrates from one VP to another, it releases its original VP so
this VP can execute other threads. The benefit of releasing the CPU VP
outweighs the overhead involved in saving the thread state. Therefore, a C
UDR must be able to continue execution without loss of information when it
migrates to a different VP.
12-34 IBM Informix DataBlade API Programmer’s Guide

Creating a Well-Behaved Routine
For a C UDR to successfully migrate among VPs, its code must be threadsafe;
that is, it must have the following attributes:

� Does not perform any dynamic memory allocation with operating-
system calls

� Does not modify global or static data

� Does not modify other global process-state information

Tip: A parallelizable UDR has additional coding restrictions. For more information,
see “Creating Parallelizable UDRs” on page 14-94.

Restricting Memory Allocation

To be threadsafe, a well-behaved C UDR must not use system memory-
management routines to allocate memory dynamically including the
following operating-system calls:

Many other system calls allocate memory as well.

These operating-system calls allocate memory from the program heap space.
The location of this heap space on only one VP creates the following
problems:

� Heap memory available to one VP is not visible after a thread
migrates to another VP.

Once the thread migrates, the UDR can no longer access any data that
was stored in heap memory. Even if the UDR allocates heap memory
at the beginning of execution and frees this memory before it com-
pletes, the thread might still migrate to a different VP during
execution of the UDR.

calloc()
free()
malloc()

mmap()
realloc()

shmat()
valloc()
Writing a User-Defined Routine 12-35

Creating a Well-Behaved Routine
� Other VPs are not prevented from using the same address space for
the shared-memory pool.

When a VP needs to extend the virtual memory pool, it negotiates the
addition of new shared-memory segments to the existing pool. The
VP then updates the resident portion of shared memory and sends a
signal to other VPs so that they can become aware of changes to
shared memory.

A VP that extends the memory pool is not aware of any portion of
memory that malloc() (or any other system memory-management
routine) is using. Therefore, the VP might try to use the same address
space that a system memory-management call has reserved.

� Heap memory that system memory-management calls allocate is not
automatically freed.

If a C UDR does not explicitly free this heap memory, memory leaks
can occur.

For a C UDR to be well-behaved, it must handle dynamic memory allocation
with the DataBlade API memory-management functions. These DataBlade
API functions provide the following benefits:

� They allocate user memory from the database server shared memory.

All VPs can access database server shared memory. Figure 13-2 on
page 13-6 shows the areas of memory from which DataBlade API and
operating-system memory-management functions allocate. For
more information, see “Managing User Memory” on page 13-32.

� They allocate user memory with a specified lifetime called a memory
duration.

If a C UDR does not explicitly free memory that these DataBlade API
functions allocate, the database server automatically deallocates it
when its memory duration has expired. This automatic reclamation
reduces memory leaks. For more information, see “Choosing the
Memory Duration” on page 13-7.

Important: Do not call operating-system memory-management functions from
within a C UDR. Use these DataBlade API memory-management functions instead.
The DataBlade API memory-management functions are safer in a C UDR than their
operating-system equivalents.
12-36 IBM Informix DataBlade API Programmer’s Guide

Creating a Well-Behaved Routine
If you are porting legacy code to a C UDR, you might want to write simple C
programs to implement system memory-management calls and link these
functions into your code before you make the UDR shared-object module.
The following code fragment shows a simple implementation of malloc()
and free() functions:

/* mallocfix.c: This file contains "fixed" versions of the
* malloc() and free() system memory-management
* calls for use in legacy code that currently
* uses malloc() and free().
* Use mi_alloc() and mi_free() in new code.
*/

#include <mi.h>
void *malloc(size_t size)
{

return (mi_alloc((mi_integer)size));
}

void free(void *ptr)
{

mi_free(ptr);
}

This code fragment uses mi_alloc(), which allocates user memory in the
current memory duration. Therefore, the fragment allocates the memory
with the default memory duration of PER_ROUTINE. For more information,
see “Managing the Memory Duration” on page 13-34.

If you cannot avoid using system memory-management functions, your C
UDR is ill-behaved. You can use system memory-management functions in
your UDR only if you can guarantee that the thread will not migrate. A thread
could migrate during any DataBlade API call. To guarantee that the thread
never migrates, you can either allocate and free the memory inside a code
block that does not execute any DataBlade API functions or use a single-
instance VP.

This restriction means that if you must use a system memory-management
function, you must segment the UDR into sections that use DataBlade API
functions and sections that are not safe in the CPU VP. All files must be closed
and memory deallocated before you leave the sections that are not safe in the
CPU VP. For more information, see “External-Library Routines” on
page 12-44.
Writing a User-Defined Routine 12-37

Creating a Well-Behaved Routine
Avoiding Modification of Global and Static Variables

To be threadsafe, a well-behaved C UDR must avoid use of global and static
variables. Global and static variables are stored in the address space of a
virtual processor, in the data segment of a shared-object file. These variables
belong to the address space of the VP, not of the thread itself. Modification of
or taking pointers to global or static variables is not safe across VP migration
boundaries.

When an SQL statement contains a C UDR, the routine manager loads the
shared-object file that contains the UDR object code into each VP. Therefore,
each VP receives its own copy of the data and text segments of a shared-object
file and all VPs have the same initial data in their shared-object data
segments. Figure 12-8 shows a schematic representation of a virtual
processor and indicates the location of global and static variables.

Figure 12-8
Location of Global

and Static Variables
in a VP

Shared memory

Virtual processor

CPU VP stack

CPU VP #1

CPU VP heap

Shared-object data

CPU VP data
CPU VP text

Virtual processor

CPU VP #2

CPU VP stack

CPU VP heap

Shared-object data

CPU VP data
CPU VP text

Global and static variables

Shared-object code Shared-object code
12-38 IBM Informix DataBlade API Programmer’s Guide

Creating a Well-Behaved Routine
As Figure 12-8 shows, global and static variables are not stored in database
server shared memory, but in the data and text segments of a VP. These
segments in one VP are not visible after a thread migrates to another VP.
Therefore, if a C UDR modifies global or static data in the data segment of one
VP, the same data is not available if the thread migrates.

Figure 12-9 shows an implementation of a C UDR named bad_rowcount()
that creates an incremented row count for the results of a query.

Suppose the following SELECT statement executes:

SELECT bad_rowcount(), customer_id FROM customer;

The CPU VP that is processing this query (for example, CPU-VP 1) executes the
bad_rowcount() function. The bad_rowcount() function is not well-
behaved because it uses a static variable to hold the row count. Use of this
static bad_count variable creates the following problems:

� The updated bad_count value is not visible when the thread
migrates to another VP.

When bad_rowcount() increments the bad_count variable to 1, it
updates the static variable in the shared-object data segment of CPU-
VP 1. If the thread now migrates to a different CPU VP (for example,
CPU-VP 2), this incremented value of bad_count is not available to
the bad_rowcount() function. This next invocation of
bad_rowcount() gets an initialized value of zero (0), instead of 1.

/* bad_rowcount()
* Increments a counter for each row in a query result.
* This is the WRONG WAY to implement the function
* because it updates a static variable.
*/

mi_integer
bad_rowcount(Gen_fparam)

MI_FPARAM *Gen_fparam;
{

static mi_integer bad_count = 0;
bad_count++;
return bad_count;

}

Figure 12-9
Incorrect Use of

Static Variable
in a C UDR
Writing a User-Defined Routine 12-39

Creating a Well-Behaved Routine
� Concurrent activity of the bad_rowcount() function is not
interleaved.

For example, suppose CPU-VP 1 and CPU-VP 2 are processing session
threads for three client applications, each of which execute the
bad_rowcount() function. Now two copies of the bad_count static
variable are being incremented among the three client applications.

A well-behaved C UDR can avoid use of global and static data with the
following workarounds.

Workaround Description

Use only local (stack)
variables and user
memory (which the
DataBlade API memory-
management functions
allocate).

Both of these types of memory remain accessible when
a thread migrates to another VP:

� Because the stack is maintained as part of the thread,
reads and writes of local variables are maintained
when the thread migrates among VPs. Write
reentrant code that keeps variables on the stack.

� User memory resides in database server shared
memory and therefore is accessible by all VPs.

For more information, see “Managing User Memory”
on page 13-32.

Use a function-parameter
structure, named
MI_FPARAM, to track
private state information
for a C UDR.

The MI_FPARAM structure is available to all invoca-
tions of a UDR within a routine sequence. Figure 9-7
on page 9-17 shows the implementation of the
rowcount() function, which uses the MI_FPARAM
structure to correctly implement the row counter that
bad_rowcount() attempts to implement. For more
information, see “Saving a User State” on page 9-14.

If necessary, you can use
read-only static or global
variables because the
values of these variables
remain the same in each
CPU VP.

Keep in mind, however, that addresses of global and
static variables as well as addresses of functions are not
stable when the UDR migrates across VPs.
12-40 IBM Informix DataBlade API Programmer’s Guide

Creating a Well-Behaved Routine
If your C UDR cannot avoid using global or static variables, it is an ill-
behaved routine. You can execute the ill-behaved routine in a nonyielding
user-defined VP class but not in the CPU VP. A nonyielding user-defined VP
prevents the UDR from yielding and thus from migrating to another VP.
Because the nonyielding VP executes the UDR to completion, any global (or
static) value is valid for the duration of a single invocation of the UDR. The
nonyielding VP prevents other invocations of the same UDR from migrating
into the VP and updating the global or static variables. However, it does not
guarantee that the UDR will return to the same VP for the next invocation.

For the global (or static) value to be valid across a single UDR instance (all
invocations of the UDR), define a single-instance user-defined VP. This VP class
contains one nonyielding VP. It ensures that all instances of the same UDR
execute on the same VP and update the same global variables. A single-
instance user-defined VP is useful if your UDR must access a global or static
variable by its address.

For more information, see “Choosing the User-Defined VP Class” on
page 12-48.

Modifying the Global Process State

To be VP safe, a well-behaved C UDR must avoid modification of the global
process state. All virtual processors that belong to the same VP class share
access to both data and processing queues in memory. However, the global
process state is not shared. The database server assumes that the global
process state of each VP is the same. This consistency ensures that VPs can
exchange work on threads.

For a C UDR to be well-behaved, it must avoid any programming tasks that
modify the global process state of the virtual processor. Update of global and
static data (“Avoiding Modification of Global and Static Variables” on
page 12-38) involves modification of the global process. A well-behaved UDR
must not use operating-system calls that can alter the process state, such as
chdir(), fork(), signal(), or unmask(). Such operating-system calls can
interfere with thread migration because the global process state does not
migrate with the thread. In addition, you need to be careful with tasks such
as opening file descriptors and using operating-system threads.
Writing a User-Defined Routine 12-41

Creating a Well-Behaved Routine
Avoiding Restricted System Calls

A well-behaved C UDR must avoid the use of restricted system calls, which
can have the following adverse effects:

� They might block I/O, which causes the operating system to suspend
the process that calls them.

This suspension slows down both the C UDR that contains the calls
and any other threads that share the same CPU virtual processor.

� Many system calls allocate resources local to the process and are not
re-entrant.

IBM cannot provide a definitive list of unsafe system calls because system
calls that are unsafe vary among versions of operating systems and different
types of operating systems. Additionally, the implementation of the VPs is
different between UNIX or Linux and Windows:

� On UNIX or Linux, the VPs are implemented as separate processes. ♦
� On Windows, each VP is a thread of a common process. ♦

The difference in VP implementation means that some system calls are
acceptable when the C UDR runs on Windows but not when this same UDR
runs on UNIX or Linux. There are also differences in how UNIX or Linux
handles shared libraries and how Windows handles dynamic link libraries
(DLLs) that can affect the platform on which operating-system calls are valid.
Therefore, UDRs might not be portable from one operating system to another.

Unsafe Operating-System Calls

A well-behaved C UDR must not include any of the categories of system calls
in Figure 12-10. The system calls listed in the Sample Operating-System Calls
column are listed only as possible examples. The operating-system calls that
are unsafe in your C UDR can depend on your operating system. Consult
your operating-system documentation for information on system calls that
perform the categories of tasks in Figure 12-10.

UNIX/Linux

Windows
12-42 IBM Informix DataBlade API Programmer’s Guide

Creating a Well-Behaved Routine
Figure 12-10
Unsafe Operating-System Calls

Warning: The database server reserves all operating-system signals for its own use.
The virtual processors use signals to communicate with one another. If a UDR were
to use signals, these signals would conflict with those that the virtual processors use.
Therefore, do not raise, handle, or mask signals within a C UDR.

You can use system utilities to check if undesired system calls were included
in your shared-object file:

� On UNIX or Linux, you can use the nm and ldd commands to obtain
this information. The ldd command lists the dynamic dependencies
from a shared object. ♦

� On Windows, you can use the DUMPBIN command with its
/IMPORTS option to obtain this information. ♦

Tip: Given a DataBlade build (.bld) file, check for unresolved references in the file
and all its dependencies. You can compare this list for system calls that violate the
rules of the VP you have chosen to execute your C UDR.

For a list of operating-system calls that are generally safe in a C UDR, see
“Safe Operating-System Calls” on page 12-45.

Type of Operating-System Call Sample Operating-System Calls

Calls that manipulate signals to processes signal(), alarm(), sleep()

Calls that modify the system security setuid(), seteuid(), setruid(), setgid(),
setegid(), setrgid()

Calls that initiate or halt system processes fork(), exec(), exit(), system(),
popen()

Calls that modify the shared-memory
segments

shmat()

Calls that modify the runtime
environment of the dynamic linker

dlopen(), dlsym(), dlerror(), dlclose()

Windows: LoadLibrary()

UNIX/Linux

Windows
Writing a User-Defined Routine 12-43

Creating a Well-Behaved Routine
External-Library Routines

It is recommended that a C UDR avoid the use of routines from existing
external libraries. Some of these external routines might contain system calls
that are restricted in your VP. If your C UDR must use an external routine, it
might be ill behaved. Avoid calling the following kinds of external library
routines, which are not safe in the CPU VP:

� Routines that do blocking I/O, such as routines that open files

� Routines that dynamically allocate memory, such as malloc()

� Routines that allocate static memory

To execute one of these routines safely in a UDR, the following steps are
possible:

1. Divide the UDR into critical-code sections and DataBlade-API-code
sections.

2. Execute the UDR in a user-defined VP.

The following text explains these steps.

Important: Any external-library routine that uses signals cannot be used in a C
UDR. Do not use this suggested workaround for any external library call that uses
signals.

For an external routine to execute safely, the thread that executes the UDR
must not migrate out of the VP as long as the UDR uses the unsafe resources
(open files, memory allocated with malloc(), or static-memory data).
However, DataBlade API functions might automatically yield the VP when
they execute. This yielding causes the thread to migrate to another VP.
12-44 IBM Informix DataBlade API Programmer’s Guide

Creating a Well-Behaved Routine
Therefore, you cannot interleave DataBlade API calls and external routines in
your UDR. Instead, you must segment your C UDR into the following distinct
sections:

� Critical-code sections

These sections contain only the external-library calls that are not safe
in the CPU VP. Before execution leaves the critical-code section, any
unsafe resources must be released: open files must be closed and
memory allocated with malloc() must be deallocated.

� DataBlade-API code sections

These sections contain only DataBlade API functions. No external-
library functions that are not safe in the CPU VP exist in these sections
because any DataBlade API function might cause the thread to
migrate.

Safe Operating-System Calls

The following table lists operating-system calls that are considered safe
within a well-behaved C UDR on all supported platforms. Be sure to use
threadsafe (_r) versions where applicable.

Category System Calls Notes

Character classification isalnum(), isalpha(), isascii(),
isastream(), isatty(), iscntrl(),
isdigit(), isgraph(), islower(),
isspace(), isprint(), ispunct(),
isupper(), isxdigit()

For character-classification routines
that handle code sets in nondefault
locales, see the IBM Informix GLS
Programmer’s Manual.

String manipulation tolower(), toupper(), toascii() For string-manipulation routines that
access the code set of a GLS locale, see
the IBM Informix GLS Programmer’s
Manual.

String parsing getopt(), getsubopt() None

Multibyte strings mbtowc(), wctomb(), mblen(),
mbstowcs(), wcstombs()

For multibyte-string routines that
handle multibyte code sets in GLS
locales, see the IBM Informix GLS
Programmer’s Manual.

(1 of 3)
Writing a User-Defined Routine 12-45

Creating a Well-Behaved Routine
String processing strcasecmp(), strcat(), strchr(),
strcmp(), strcoll(), strcpy(), strcspn(),
strdup(), strerror(), strlen(),
strncasecmp(), strncat(), strncmp(),
strncpy(), strpbrk(), strrchr(),
strsignal(), strspn(), strstr(), strtod(),
strtok(), strtok_r(), strtol(), strtoll(),
strtoul(), strtoull(), strxfrm()

For string-processing routines that
access GLS locales, see the
IBM Informix GLS Programmer’s
Manual.

String formatting sprintf(), sscanf() None

Numeric processing a641(), l64a(), abs(), labs(), llabs(),
atof(), atoi(), atol(), atoll(), div(),
ldiv(), lldiv(), lltostr(), strtoll()

None

Random-number
generation

srand(), rand(), srandom(), random(),
srand48(), drand48(), erand48(),
lrand48(), nrand48(), mrand48()

The random-number generator must
be reseeded whenever a thread
switch might have occurred.

Numeric conversion econvert(), fconvert(), gconvert(),
seconverty(), sfconvert(), sgconvert(),
qeconvert(), qfconvert(), ecvt(), fcvt(),
gcvt()

ifx_dececvt(), ifx_decfcvt()

Time functions ascftime(), strftime(), cftime(),
ctime(), ctime_r(), asctime(),
asctime_r(), gmtime(), gmtime_r(),
difftime(), localtime(),
localtime_r()clock(), gettimeofday(),
mktime()

No time-zone changes are permitted.

Date functions getdate() None

Sorting and searching bsearch(), qsort(), lfind(), lsearch() None

Encryption crypt(), setkey(), encrypt() None

Memory management memccpy(), memchr(), memcmp(),
memcpy(), memmove(), memset()

Use memmove() and memset() only
for memory that was allocated with
mi_alloc().

Environment
information

getenv() None

Category System Calls Notes

(2 of 3)
12-46 IBM Informix DataBlade API Programmer’s Guide

Creating a Well-Behaved Routine
Tip: The system calls in the preceding table follow the Portable Operating System
Interface for Computing Environments (POSIX) specification.

For a list of categories of operating-system calls that are generally unsafe in a
UDR, see “Unsafe Operating-System Calls” on page 12-42.

Bit manipulation ffs() None

Byte manipulation swab() None

Structure-member
manipulation

offsetof() None

Trigonometric
functions

acos(), acosh(), asin(), asinh(), atan(),
atan2(), atanh()

cos(), cosh(), sin(), sinh(), tan(),
tanh()

None

None

Bessel functions j0(), j1(), jn(), y0(), y1(), yn() None

Root extraction cbrt(), sqrt() None

Rounding ceil(), floor(), rint() None

IEEE functions copysign(), isnan(), fabs(), fmod(),
nextafter(), remainder()

None

Error functions erf(), erfc() None

Exponentials and
logarithms

exp(), expm1(), log(), log10(), log1p(),
pow()

None

Gamma functions lgamma(), lgamma_r() The contents of signgam are
unreliable after a thread switch.

Euclidean distance hypot() None

Category System Calls Notes

(3 of 3)
Writing a User-Defined Routine 12-47

Creating a Well-Behaved Routine
The following actions are valid only in C UDRs that run on Windows and
only if they do not interfere with the shared-memory model that the database
server uses:

� C UDRs can create additional threads or processes.

� C UDRs can use shared memory for interprocess communication.

♦

Important: Use of user-defined VPs can result in slightly lower performance because
the thread must migrate from the CPU VP to the user-defined VP on which the C UDR
executes. Use a user-defined VP only when necessary.

Choosing the User-Defined VP Class

When you run your C UDR in a user-defined VP, you can relax some, but not
all, of the CPU VP safe-code requirements (Figure 12-7 on page 12-29). You
must choose a user-defined VP that is appropriate for the ill-behaved traits of
your UDR. The following types of user-defined VPs allow a C UDR to contain
the ill-behaved traits.

Warning: The user-defined VP class frees the CPU VPs from effects of some ill-
behaved traits of a UDR. However, this VP class provides little protection from
process failures. Even when the UDR runs in a user-defined VP class, programming
errors that cause process failures can severely affect the database server.

Type of User-Defined VP Purpose

Yielding user-defined VP Prevents a UDR from blocking the CPU VP
because it blocks a user-defined VP thread

Nonyielding user-defined VP Preserves global state of the VP across one UDR
invocation

Single-instance user-defined VP Preserves global state of the VP across all UDR
invocations and instances

Windows
12-48 IBM Informix DataBlade API Programmer’s Guide

Creating a Well-Behaved Routine
The Yielding User-Defined VP

By default, a user-defined virtual processor is a yielding VP. That is, it expects
the thread to yield execution whenever the thread waits for other resources.
Once a thread yields a user-defined VP, the VP can run other threads that
execute UDRs assigned to this VP class. The most common use of a yielding
user-defined VP class is for execution of code that cannot be rewritten to use
the DataBlade API file-access functions to perform file-system activity.

The following table summarizes the programming requirements for C UDRs
that apply to execution in a yielding user-defined VP.

CPU VP Safe-Code Requirement Rule
Required for Yielding
User-Defined VP?

Yields the VP on a regular basis Recommended

Does not use blocking operating-system calls Not required

Does not allocate local resources, including heap memory Yes

Does not modify global or static data Yes

Does not modify other global process-state information Yes

Does not use restricted operating-system calls Yes
Writing a User-Defined Routine 12-49

Creating a Well-Behaved Routine
The main advantages of a yielding user-defined VP class are as follows:

� You can use the mi_yield() function in your UDR to explicitly yield
the user-defined VP.

Failure to use mi_yield() in a UDR creates the same loss of concur-
rency that it would in a CPU VP. However, loss of concurrency is not
as critical in user-defined VPs because these VPs do not handle all
query processing, as the CPU VPs do. For more information, see
“Yielding the CPU VP” on page 12-31.

� You are no longer restricted from use of blocking I/O calls in the
UDR.

The C UDR can issue direct file-system calls that block further VP pro-
cessing until the I/O is complete. Because user-defined VPs are not in
the same VP class as CPU VPs, this blocking does not affect concur-
rency of the CPU VP or threads on other VPs. The most common use
of a yielding user-defined VP is to run a UDR in which it is not prac-
tical to rewrite file-system activity with the DataBlade API file-access
functions. For more information, see “Avoiding Blocking I/O Calls”
on page 12-33.

Important: A yielding user-defined VP relaxes the restriction on use of blocking I/O
calls. However, they do not remove the restrictions on other types of unsafe system
calls. For more information, see “Avoiding Restricted System Calls” on page 12-42.

The main disadvantage of a yielding user-defined VP is that it can reduce
performance of UDR execution. Execution in the CPU VP maximizes perfor-
mance of a well-behaved UDR.

For more information, see “Defining a Yielding User-Defined VP Class” on
page 12-56.

The Nonyielding User-Defined VP

A nonyielding user-defined virtual-processor class runs a C UDR in a way that
gives the routine exclusive use of the VP. It executes the UDR serially. That is,
each UDR runs to completion before the next UDR begins. The C UDR does not
yield. The most common use of a nonyielding user-defined VP class is for
porting of legacy code that is not designed to handle concurrency issues
(non-reentrant code) or that uses global memory.
12-50 IBM Informix DataBlade API Programmer’s Guide

Creating a Well-Behaved Routine
The following table summarizes the programming rules that apply to
execution in a nonyielding user-defined VP.

The main advantages of a nonyielding user-defined VP class is that a single
invocation of the UDR is guaranteed to run on the same VP. This restriction
creates the following benefits for an ill-behaved routine.

CPU VP Safe-Code Requirement
Required for Nonyielding
User-Defined VP?

Yields the CPU on a regular basis Not required

Does not use blocking operating-system calls Not required

Does not allocate local resources, including
heap memory

Yes

Does not modify global or static data Not required
(for global changes accessed by a
single invocation of the UDR)

Does not modify other global data Not required
(for global changes accessed by a
single invocation of the UDR)

Does not use unsafe operating-system calls Yes

Feature of a Nonyielding User-Defined VP Benefit to an Ill-Behaved UDR

Provides the same support for blocking I/O as
a yielding user-defined VP

A UDR can perform blocking I/O functions. For a list of
some sample blocking I/O functions, see “Avoiding
Blocking I/O Calls” on page 12-33.

Can execute a C UDR that was not designed or
coded to handle the concurrency issues of
multiprocessing

A UDR executes to completion. A nonyielding user-
defined VP ignores requests for a yield within DataBlade
API functions as well as explicit calls to mi_yield().

Allows your UDR to modify global information A UDR can modify global information (such as global or
static variables, or global process information) as long as
the changes to this global information are only needed
within a single invocation of the UDR.

For more information, see “Avoiding Modification of
Global and Static Variables” on page 12-38 and
“Modifying the Global Process State” on page 12-41.
Writing a User-Defined Routine 12-51

Creating a Well-Behaved Routine
However, a nonyielding user-defined VP has the following disadvantages:

� It reduces concurrency of the UDR execution.

If you have multiple VPs in the nonyielding VP class, multiple
instances of the UDR can run concurrently, one per VP. However, each
UDR invocation runs to completion. No migration occurs while one
UDR invocation executes (or if the UDR performs blocking I/O).

� It does not guarantee that the state remains across multiple instances
of the UDR.

Two invocations of the UDR might not overlap on the same VP. There-
fore, the global VP state remains stable. However, another instance of
the UDR might migrate into the VP and change the global VP state.

Important: If your UDR needs to make changes to global information that is available
across the UDR instance, you must use a single-instance user-defined VP to execute
the UDR.

For more information, see “Defining a Nonyielding User-Defined VP Class”
on page 12-56.

The Single-Instance User-Defined VP

A single-instance user-defined VP class is a VP class that has only one VP.
Therefore, it runs a C UDR in a way that gives the routine exclusive use of the
entire VP class. As with a nonyielding user-defined VP, a single-instance VP
executes a C UDR serially. Therefore, the UDR does not need to yield. Because
a single-instance VP class has only one VP, the thread that executes the UDR
does not migrate to another VP.
12-52 IBM Informix DataBlade API Programmer’s Guide

Creating a Well-Behaved Routine
Depending on your requirements for yielding, a single-instance user-defined
VP can be regular or nonyielding. A regular single-instance user-defined VP
can handle the use of malloc() and other local memory access. If it is
nonyielding, the VP can deal with problems like modification of global
variables.

The main advantage of a single-instance user-defined VP class is that all
instances of the UDR are guaranteed to run on the same VP (that is, on the
same system process). Therefore, changes the UDR makes to the global infor-
mation (global or static variables, or the global process state) are accessible
across all instances of the UDR. A UDR might execute many times for a query,
once for each row processed. With multiple VPs in a class, you cannot
guarantee that all instances of a UDR execute on the same VP. Though
execution for the first invocation might be on one VP, the execution for the
next invocation might be on some other VP.

The only way to guarantee that all instances execute on one VP is to define a
single-instance user-defined VP class. Therefore, a single-instance user-
defined VP class is useful for a UDR that shares special information across
multiple instances. Examples might be a special iterator function or a user-
defined aggregate.

CPU VP Safe-Code Requirement
Required for Single-Instance
User-Defined VP?

Yields the CPU on a regular basis Not required

Does not use blocking operating-system calls Not required

Does not allocate local resources, including
heap memory

Yes

Does not modify global or static data Not required
(for global changes accessed by a
single instance of the UDR)

Does not modify other global process-state
information

Not required
(for global changes accessed by a
single instance of the UDR)

Does not use restricted operating-system calls Required for some calls
Writing a User-Defined Routine 12-53

Creating a Well-Behaved Routine
Tip: The DataBlade API supports the mi_udr_lock() function to explicitly lock a
UDR to a VP. For more information, see “Locking a Routine Instance to a VP” on
page 12-66.

For example, suppose you have a UDR that contains the following code
fragment:

{
static stat_var;
static file_desc;
mi_integer num_bytes_read;
...
file_desc = mi_file_open(....);
num_bytes_read = mi_file_read(file_desc);
...

}

If this UDR ran on a yielding user-defined VP, the thread might yield at the
mi_file_read() call. Another thread might then execute this same code and
change the value of file_desc. When the original thread returned, it would no
longer be reading from the file it had opened. Instead, if you can assign this
UDR to a nonyielding user-defined VP, the thread never yields and the value
of file_desc cannot be changed by other threads.

The main disadvantage of a single-instance user-defined VP is that it removes
concurrency of UDR execution. This loss of concurrency brings the following
restrictions:

� A single-instance user-defined VP is probably not a scalable solution.

All instances of the UDR that execute on a single-instance VP must
compete for the same VP. You cannot increase the number of VPs in
the single-instance class to improve performance.

� A single-instance user-defined VP does not support execution of
parallel UDRs.

Important: If your UDR needs to make changes to global information that is available
across only a single invocation of the UDR, use a nonyielding user-defined VP to
execute the UDR. For more information, see “The Nonyielding User-Defined VP” on
page 12-50.

You must weigh these advantages and disadvantages carefully when
choosing whether to use a single-instance user-defined VP class to execute
your ill-behaved UDR. For more information, see “Defining a Single-Instance
User-Defined VP Class” on page 12-57.
12-54 IBM Informix DataBlade API Programmer’s Guide

Creating a Well-Behaved Routine
Defining a User-Defined VP

You define a new virtual-processor class in the ONCONFIG file with the
VPCLASS configuration parameter. The num option specifies the number of
virtual processors in a user-defined VP class that the database server starts
during its initialization. The class name is not case sensitive, but it must have
fewer than 128 characters. If your DataBlade uses a prefix, such as USR, begin
the names of any user-defined VPs with this prefix.

Dynamic Server supports the following types of user-defined VP classes for
execution of an ill-behaved C UDR.

Important: When you edit the ONCONFIG file to create a new virtual-processor
class, you must add a VPCLASS parameter and remove the SINGLE_CPU_VP
parameter. For more information on the ONCONFIG file, see the “Administrator’s
Reference.”

After you add or modify the VPCLASS configuration parameter, restart the
database server with the oninit utility (or its equivalent). For more infor-
mation about how to restart the database server, see your Administrator’s
Guide. You can add or drop user-defined virtual processors while the
database server is online. For more information, see “Adding and Dropping
VPs” on page 12-58.

When you use a class of user-defined virtual processors to run a C UDR, you
must ensure that the name of the VP is the same in both of the following
locations:

� In the VPCLASS parameter in the ONCONFIG file, which defines the
VP class

� In the CLASS routine modifier of the CREATE FUNCTION or CREATE
PROCEDURE statement, which registers the C UDR in the database

Type of User-Defined VP Class VPCLASS Option

Yielding user-defined VP None
(default type of user-defined VP class)

Nonyielding user-defined VP noyield

Single-instance user-defined VP
(yielding or nonyielding)

num=1
Writing a User-Defined Routine 12-55

Creating a Well-Behaved Routine
For more information, see “Assigning a C UDR to a User-Defined VP Class”
on page 12-57.

Defining a Yielding User-Defined VP Class

The VPCLASS configuration parameter creates a yielding user-defined VP by
default. You can also use the num option to specify the number of VPs in the
yielding user-defined VP class.

Figure 12-11 defines a yielding user-defined VP class named newvp with
three virtual processors.

The C user-defined function, GreaterThanEqual(), in Figure 12-14 on
page 12-57, executes in the newvp VP class.

Defining a Nonyielding User-Defined VP Class

To create a nonyielding user-defined VP, include the noyield option of the
VPCLASS configuration parameter. You can also use the num option to
specify the number of VPs in the nonyielding user-defined VP class.

Tip: The noyield option is ignored for predefined virtual-processor classes such as
CPU and AIO. For more information on the VPCLASS configuration parameter, see
the “Administrator’s Reference.”

Figure 12-12 defines the nonyielding user-defined VP class named
nonyield_vp with two VPs in the class.

At runtime you can determine whether the VP on which a UDR is running is
part of a nonyielding user-defined VP class with the mi_vpinfo_isnoyield()
function. For more information, see “Obtaining VP-Environment Infor-
mation” on page 12-62.

VPCLASS newvp,num=3# Yielding VP class with 3 instances
Figure 12-11

Defining a Yielding
User-Defined VP Class

VPCLASS nonyield_vp, num=2, noyield# Nonyielding VP class
Figure 12-12

Defining a Nonyielding
User-Defined VP Class
12-56 IBM Informix DataBlade API Programmer’s Guide

Creating a Well-Behaved Routine
Defining a Single-Instance User-Defined VP Class

To define a single-instance user-defined VP, specify a value of one (1) for the
num option of the VPCLASS configuration parameter. Figure 12-13 creates a
yielding single-instance user-defined VP class, single_vp.

At runtime you can determine whether the VP on which a UDR is running is
part of a single-instance user-defined VP class with the mi_vpinfo_vpid()
and mi_class_numvp() functions. For more information, see “Obtaining VP-
Environment Information” on page 12-62.

Assigning a C UDR to a User-Defined VP Class

When you register an ill-behaved C UDR, you assign it to a class of user-
defined virtual processors with the CLASS routine modifier of the CREATE
FUNCTION or CREATE PROCEDURE statement.

Tip: By default, all C UDRs execute in any VP. To have your C UDR run only in the
CPU VP, you can specify the string “cpu vp” with the CLASS modifier. If your
C UDR can run anywhere, you should omit the CLASS modifier.

For example, Figure 12-14 shows a CREATE FUNCTION statement that regis-
ters the C user-defined function, GreaterThanEqual() and specifies that the
user-defined VP class named newvp executes this function.

Figure 12-11 on page 12-56 shows the definition of the newvp user-defined
VP class. All UDRs that specify the newvp VP class with the CLASS routine
modifier share the three VPs in the newvp VP class.

VPCLASS single_vp, num=1 # Single-instance VP class
Figure 12-13

Defining a Single-Instance
User-Defined VP Class

CREATE FUNCTION GreaterThanEqual(ScottishName, ScottishName)
RETURNS BOOLEAN
WITH (CLASS = 'newvp')
EXTERNAL NAME '/usr/lib/objects/udrs.so(grtrthan_equal'
LANGUAGE C;

Figure 12-14
Specifying a

User-Defined VP
Class for a C UDR
Writing a User-Defined Routine 12-57

Managing Virtual Processors
When you register user-defined functions or user-defined procedures with
the CREATE FUNCTION or CREATE PROCEDURE statement, you can reference
any user-defined VP class that you like. The CREATE FUNCTION and CREATE
PROCEDURE statements do not verify that the VP class you specify exists
when they register the UDR.

Important: When you try to run a UDR that was registered to execute in a user-
defined VP class, that VP class must exist and it must have virtual processors
assigned to it. If the class does not have any virtual processors, you receive an SQL
error. For information on how to define a user-defined VP, see “Defining a User-
Defined VP” on page 12-55.

For more information on the syntax of CREATE FUNCTION or CREATE
PROCEDURE to assign a C UDR to a VP class, see the description of the CLASS
routine modifier in the Routine Modifier segment of the IBM Informix Guide to
SQL: Syntax.

Managing Virtual Processors
To manage virtual processors, you need to perform the following tasks:

� Initialize VP classes

� Add and drop VPs

� Monitor VPs

Initializing a VP Class

Check your Administrator’s Guide and the Administrator’s Reference for infor-
mation on VP-class initialization.

Adding and Dropping VPs

You can add or drop virtual processors in a user-defined VP class or in the
CPU VP class while the database server is online. Use onmode -p to add a VP
to a class or to drop a VP from a class.

The following command adds one virtual processor to the newvp class
(which Figure 12-11 on page 12-56 defines):

onmode -p +1 newvp
12-58 IBM Informix DataBlade API Programmer’s Guide

Managing Virtual Processors
To remove a virtual processor, specify a negative value in the -p option. For
more information on the onmode utility, see the Administrator’s Reference.

Monitoring Virtual Processors

You can use the following options on the onstat utility to monitor VPs:

� The -g glo option generates information about global multithreading
such as CPU use of virtual processors and total number of sessions.

� The -g rea option generates information about the number of threads
in the ready queue of the VP class.

� The -g sch option generates information about the number of
semaphore operations, spins, and busy waits for each virtual
processor.

A user-defined VP class appears in the onstat -g glo output as a new process.
You can use the -g glo option to find the virtual process in which your
DataBlade API module is loaded. Figure 12-15 shows the last section of the
output of this onstat command.

In Figure 12-15, the onstat utility displays CPU usage for the CPU VP as the
first line of output. It displays the processor and CPU usage for the user-
defined VP newvp, which Figure 12-11 on page 12-56 defines, as the
thirteenth line of output. For more information on the onstat utility, see the
Administrator’s Reference.

Individual virtual processors:
 vp pid class usercpu syscpu total
 1 11440 cpu 31.66 1.41 33.07
 2 11441 adm 0.07 0.24 0.31
 3 11442 jvp 0.04 0.05 0.09
 4 11443 lio 0.25 1.57 1.82
 5 11444 pio 0.03 0.25 0.28
 6 11445 aio 0.37 1.77 2.14
 7 11446 msc 0.00 0.04 0.04
 8 11447 aio 0.25 1.47 1.72
 9 11448 aio 0.08 0.68 0.76
 10 11449 aio 0.19 0.68 0.87
 11 11450 aio 0.15 0.46 0.61
 12 11451 aio 0.06 0.35 0.41
 13 11615 newvp 0.00 0.02 0.02
 tot 33.15 8.99 42.14

Figure 12-15
onstat -g glo Command

Output
Writing a User-Defined Routine 12-59

Controlling the VP Environment
In addition, you can select information from the sysvpprof SMI table about
the virtual processors that are currently running. The sysvpprof SMI table
exists only in the sysmaster database.

Controlling the VP Environment
The routine manager executes your C UDR in a virtual-processor (VP)
environment. The VP environment consists of a VP and VP class, as follows:

� The current VP

When a C UDR executes, it runs on a particular virtual processor
called the current VP, which has an ID number from 1 to MAXVPS. A
current VP is an active VP; that is, it is currently performing some task.
The task that the active VP performs depends on the VP class to
which it belongs. For example, a CPU VP can execute SQL statements
and well-behaved UDRs. A user-defined VP executes those UDRs that
are assigned to it (with the CLASS routine modifier of the CREATE
FUNCTION or CREATE PROCEDURE statement).

� The VP class to which the current VP belongs

The UDR specifies its VP class with the CLASS routine modifier when
it is registered. If the CREATE FUNCTION or CREATE PROCEDURE
statement omits the CLASS modifier, the UDR executes in the current
active VP class.

The following traits of C UDRs are common reasons for needing to control the
VP environment:

� The code uses advanced operating-system calls.

For more information, see “Avoiding Restricted System Calls” on
page 12-42.

� The code performs some other task that is ill-behaved.

For more information, see “Preserving Availability of the CPU VP”
on page 12-30 and “Writing Threadsafe Code” on page 12-34.

� The code is written in C++.

All C++ code has the potential to not follow the memory manage-
ment rules for well-behaved code. The most serious violation of
these rules is the use of static virtual function pointers in C++ classes.
12-60 IBM Informix DataBlade API Programmer’s Guide

Controlling the VP Environment
Warning: The ability of the database server to support some C++ features should not
be taken as an open invitation to freely use C++ in your UDR code. Many C++
features implicitly violate the Safe-Coding Requirements for a well-behaved routine
(see Figure 12-7 on page 12-29). Problems can arise if some C++ features are used in
a UDR.

If the source code is not available to change the UDR so that it is well-
behaved, the only solution is to isolate the code execution from the CPU VP
class. Possible execution scenarios include executing:

� In a user-defined VP class

� Locked to one VP or VP class

� As a separate process

The DataBlade API provides the following functions to enable UDRs and
DataBlade modules to examine their VP environment and to control portions
thereof.

Warning: These advanced functions can adversely affect your UDR if you use them
incorrectly. Use them only when no regular DataBlade API functions can perform the
tasks you need done.

VP-Environment Information DataBlade API Function

Obtain information about the current VP environment
from within a UDR

mi_vpinfo_classid(),
mi_vpinfo_isnoyield(),
mi_vpinfo_vpid()
mi_class_id(),
mi_class_maxvps(),
mi_class_name(),
mi_class_numvp()

Lock the UDR to a VP environment mi_module_lock(),
mi_udr_lock()

Change the VP environment in which a UDR executes mi_call_on_vp(),
mi_process_exec()
Writing a User-Defined Routine 12-61

Obtaining VP-Environment Information
Obtaining VP-Environment Information
By default, the routine manager executes a C UDR in a CPU VP class, which is
a yielding VP class. However, execution on the CPU VP implies that the UDR
is well-behaved. (For more information, see “Creating a Well-Behaved
Routine” on page 12-28.) If your UDR is not well-behaved, you can specify
that the routine manager execute the UDR in a user-defined VP class.
However, a user-defined VP class imposes limitations on the tasks that the
UDR can perform. If these limitations are too restrictive for your UDR, the
UDR can dynamically obtain information about its VP environment and make
decisions about whether to change it.

Warning: The need to examine and possibly change the VP environment should only
be done in special cases. For the most efficient execution, a C UDR should be well-
behaved and thereby execute safely in the CPU VP. Ill-behaved routines can usually
execute in a user-defined VP class without changing the VP environment.

From within a C UDR, you can obtain the following kinds of information
about the VP environment:

� Information about the current VP

� Information about the VP class to which the current VP belongs

If a UDR can identify its VP environment, it can sometimes take care of its own
migratory needs.

Identifying the Current VP

A VP that is currently performing some task is called an active VP. The
database server assigns a unique integer, called the VP identifier, to each active
VP. The onstat -g glo command displays the VP identifier in the first column
of the output it generates (column with the heading “vp”). For example, the
onstat output in Figure 12-15 on page 12-59 shows information for VPs
whose VP identifiers range from 1 to 13.

The VP identifier uniquely identifies the running oninit process. You can use
it as an identifier for named memory that stores information unique to that
VP.
12-62 IBM Informix DataBlade API Programmer’s Guide

Obtaining VP-Environment Information
The active VP on which a UDR executes is the current VP for the UDR. To
obtain the VP identifier of the current VP, use the mi_vpinfo_vpid() function.
Once you have the VP identifier of the current VP, you can use the following
functions to obtain additional information about the VP environment of the
UDR.

Identifying a VP Class

The database server assigns a unique integer, called the VP-class identifier, to
each VP class, including:

� System VP classes (such as CPU and AIO)

� User-defined VP classes (which the VPCLASS configuration
parameter defines)

You can obtain a VP-class identifier with either of following DataBlade API
functions.

VP-Environment Information DataBlade API Function

VP-class identifier mi_vpinfo_classid()

Whether the current VP is part of a nonyielding VP class mi_vpinfo_isnoyield()

DataBlade API Function VP-Class Identifier Returned

mi_vpinfo_classid() The VP-class identifier for the VP class of the current VP
(the VP on which the current UDR is running)

mi_class_id() The VP-class identifier for a specified VP class
Writing a User-Defined Routine 12-63

Changing the VP Environment
Once you have a VP-class identifier for an active VP, you can obtain the
following information about the associated VP class.

Changing the VP Environment
If the UDR determines that its VP environment is not correct for its execution
requirements, it can perform either of the following tasks to change it.

Executing on Another VP

If the VP environment is not useful for the execution of your C function, you
can tell the routine manager to switch its execution to another VP with the
mi_call_on_vp() function. Pass the following arguments to this function:

� The VP identifier of the VP on which to execute the C function

� A pointer to the return value of the function

� The address of the C function to execute

� The number of arguments to the C function

� Any arguments that the C function needs to execute

The mi_call_on_vp() function switches the current thread to the specified VP
and executes the C function on this VP. When the C function completes,
mi_call_on_vp() stores as one of its arguments the C-function return value
and returns control to the originating VP.

VP-Class Information DataBlade API Function

VP-class name mi_class_name()

Maximum number of VPs in the VP class mi_class_maxvps()

Number of active VPs in the VP class mi_class_numvp()

Change to VP Environment DataBlade API Function

Execute a specified C function on another VP mi_call_on_vp()

Fork and execute a new process to perform some task mi_process_exec()
12-64 IBM Informix DataBlade API Programmer’s Guide

Locking a UDR
Forking and Executing a Process

If you need to run some program or script as a separate process, you can use
the mi_process_exec() function. The mi_process_exec() function forks and
executes a new process and returns immediately. The database server does
not wait for completion, and the new process is allowed to run
independently.

Warning: Never use the operating-system fork() and exec() calls from within a
UDR. These system calls are unsafe within a UDR. (For more information, see
“Unsafe Operating-System Calls” on page 12-42.) If you must execute a separate
process, use the mi_process_exec() function to create this new process.

The mi_process_exec() function is similar to most operating-system exec()
system calls in that you pass the function an argv array. This array contains
all the command strings that are to be passed after the new process is forked.
For more information on the syntax of the argv array, see the description of
the mi_process_exec() function in the IBM Informix DataBlade API Function
Reference.

Locking a UDR
If the UDR determines that its VP environment is correct and needs to remain
as it is, the UDR can perform either of the following tasks.

Lock UDR DataBlade API Function

Lock the UDR to the current VP mi_udr_lock()

Lock the shared-object file that contains the UDR into
memory

mi_module_lock()
Writing a User-Defined Routine 12-65

Locking a UDR
Locking a Routine Instance to a VP

If your UDR allocates resources that are process specific, it needs to be locked
onto the VP where it started execution. When you write a UDR that needs
access to global process information, you must take either of the following
actions:

� Restrict execution of the UDR to a single-instance VP class.

By executing in a single-instance VP, a UDR can be guaranteed that all
invocations and instances execute in the same VP. Therefore, all UDRs
can access global information of the process. (For more information,
see “Avoiding Modification of Global and Static Variables” on
page 12-38.) However, a single-instance VP class does have signifi-
cant impact on performance and parallel scalability.

� Lock the UDR to a VP with the mi_udr_lock() function.

When you call mi_udr_lock() with an argument of MI_TRUE, you set
the VP lock flag to prevent this instance of the UDR from migrating to
another VP. Therefore, the UDR instance always executes on the VP
where it is running. However, an MI_TRUE VP lock flag does not pre-
vent another instance of the UDR from executing on a different VP.

Important: These solutions do not address resource allocations that last longer than
the individual routine sequence in a statement or subquery. nor do they address the
general issue of reclaiming resources for these sequences.

Locking a Shared-Object File in Memory

If the set of UDRs in a shared-object file requires a lot of initialization or uses
external resources, it can be costly to have the routine manager continually
load and unload this shared-object file. To prevent the routine manager from
unloading a shared-object file, use the mi_module_lock() function. When
you call mi_module_lock() with an argument of MI_TRUE, you set the
module-lock flag, which locks the shared-object file in memory. Therefore,
the routine manager does not allow the shared-object file to be unloaded for
any reason.
12-66 IBM Informix DataBlade API Programmer’s Guide

Performing Input and Output
This feature enables a DataBlade (or group of related UDRs) to prevent its
shared-object file from being unloaded in any of the following cases:

� On execution of the DROP FUNCTION, DROP PROCEDURE, DROP
ROUTINE, or DROP DATABASE statements

� In various transaction rollback scenarios

Performing Input and Output
Because a C UDR executes in the context of the database server, it should not
use the standard input/output (I/O) calls such as scanf() and printf(). The
DataBlade API provides the following support for I/O from a UDR:

� I/O on a generic stream

� I/O on an operating-system file

Access to a Stream
The DataBlade API provides a stream I/O interface, which enables you to use
the same function calls to access different objects. Stream is a generic term for
an object that can be written to or read from. A stream has the following infor-
mation associated with it:

� The stream data, to which the stream provides access

� The stream seek position, which identifies where the next read or write
operation starts in the stream

When you first open a stream, its seek position is at byte zero (0).

� The stream descriptor, which contains information about the stream

Server
Writing a User-Defined Routine 12-67

Access to a Stream
To provide access to a stream from within a C UDR, the DataBlade API has the
MI_STREAM data type structure for stream descriptors. An MI_STREAM
structure contains information about a stream on a particular object. The
following table summarizes the memory operations for a stream descriptor.

To access a stream in your UDR

1. Open the stream with the appropriate type-specific stream-open
function.

The stream-open function is the stream I/O function that opens the
stream, making the data available for a read or write operation. It
returns a pointer to a stream descriptor, which the C UDR uses to
access the stream. For more information, see “The Stream-Open
Function” on page 12-76.

2. Access the opened stream with the appropriate generic stream I/O
function.

Once a particular stream is open, a UDR can use the generic functions
of the stream I/O interface to access the associated I/O object. Each of
the generic stream I/O functions requires a stream descriptor for the
stream on which the function is to operate. The usual sequence of
access is to seek to the desired location in the stream, read or write
the desired number of bytes, and close the stream.

Figure 12-16 shows the generic stream I/O functions of the DataBlade API.
You can use these generic stream I/O functions on any stream (as long as the
stream class implements them).

Memory Duration Memory Operation Function Name

Current memory
duration

Constructor mi_stream_open_fio(),
mi_stream_open_mi_lvarchar(),
mi_stream_open_str()

Other, user-defined stream-open functions

Destructor mi_stream_close()
12-68 IBM Informix DataBlade API Programmer’s Guide

Access to a Stream
Figure 12-16
Generic Stream I/O Functions

The advantage of accessing data through a stream is that the call to the
generic stream I/O function is the same, regardless of the format of the under-
lying data. With these generic stream-I/O functions, the DataBlade API
provides a common interface for the transportation and access of data
independent of the data type or destination.

For example, the following call to mi_stream_read() reads 164 bytes of data
from a stream into a user-defined buffer named buf:

nbytes_read = mi_stream_read(strm_desc, buf, 164);

The calling code does not need to concern itself about the format of the
underlying data. Whether mi_stream_read() reads the data from a file,
character array, varying-length structure, or user-defined stream depends on
which stream-open function has obtained the pointer to the stream
descriptor (MI_STREAM structure).

Stream-I/O Function Description

mi_stream_close() Close the stream.

mi_stream_eof() Check the stream for the end-of-stream condition.

mi_stream_get_error() Obtain the last error that occurred on the specified
stream.

mi_stream_getpos() Obtain the current stream seek position, returning it in a
function parameter.

mi_stream_length() Obtain the length of the stream data.

mi_stream_read() Read a specified number of bytes from the stream.

mi_stream_seek() Move the stream seek position to the desired location.

mi_stream_set_error() Sets the last error status on the specified stream.

mi_stream_setpos() Set the stream seek position.

mi_stream_tell() Obtain the current stream seek position, returning it from
the function.

mi_stream_write() Write a specified number of bytes to the stream.
Writing a User-Defined Routine 12-69

Access to a Stream
In addition to the generic stream I/O functions in Figure 12-16 on page 12-69,
the stream I/O interface contains the following functions for different stream
classes.

Using Predefined Stream Classes

The DataBlade API provides several predefined stream classes that you can
access with the stream I/O interface.

To use a predefined stream class in your UDR

1. Open a stream with the appropriate type-specific stream-open
function.

The following table shows the predefined stream classes that the
DataBlade API provides and their associated stream-open functions.

The mistrmtype.h header file declares these predefined stream-open
functions.

Classes of Stream I/O Function Stream I/O Function More Information

Stream-open functions for the
predefined stream classes:

� File stream

� String stream

� Varying-length-data stream

mi_stream_open_fio()

mi_stream_open_mi_lvarchar()

mi_stream_open_str()

“Using Predefined Stream
Classes” on page 12-70

Abstract stream I/O functions
for user-defined streams

mi_stream_init()

Type-specific stream-open
function

“Creating a User-Defined Stream
Class” on page 12-75

Predefined Stream Class Stream-Open Function

File stream mi_stream_open_fio()

String stream mi_stream_open_str()

Varying-length-data stream mi_stream_open_mi_lvarchar()
12-70 IBM Informix DataBlade API Programmer’s Guide

Access to a Stream
2. Access the open stream with the appropriate stream I/O function.

Figure 12-16 on page 12-69 lists the stream I/O functions that the
DataBlade API provides.

For example, the following code fragment reads 26 bytes of data from a string
stream into a user-defined buffer named buf:

#define STRING_SIZE = 80

MI_STREAM *strm_desc;
mi_integer nbytes;
char buf[200];
char string_txt[STRING_SIZE] =

"A stream is a generic term for some object that can be\
written to or read from."

strm_desc = mi_stream_open_str(NULL, string_txt, STRING_SIZE);
if ((nbytes = mi_stream_read(strm_desc, buf, 26)) != 26)

/* error in read */
mi_stream_close(strm_desc);

After this code fragment completes, the buf user-defined buffer contains the
following character string:

A stream is a generic term

The following sections provide additional details on each of the predefined
DataBlade API stream classes.

The File Stream

The file stream provides access to an operating-system file through the stream
I/O interface. To support a data stream on an operating-system file, the
DataBlade API provides the stream I/O functions in Figure 12-17.

Figure 12-17
Stream I/O Functions for a File Stream

Stream I/O Task Stream I/O Function

Initialize and open a file stream. mi_stream_open_fio()

Move the file seek position to the desired location. mi_stream_seek()

Read a specified number of bytes from the file stream. mi_stream_read()

(1 of 2)
Writing a User-Defined Routine 12-71

Access to a Stream
Tip: You can also use the mi_stream_get_error() and mi_stream_eof() functions
on a file stream.

As Figure 12-17 shows, the stream I/O interface for a file stream consists of a
type-specific stream-open function, mi_stream_open_fio(), plus the generic
stream I/O functions. The mi_stream_open_fio() function opens the file and
returns a new file stream.

The other stream I/O functions in Figure 12-17 handle return status differ-
ently from DataBlade API file-access functions because the stream I/O
functions do not allow you to obtain the errno status value directly. Instead,
these functions handle their return status as follows:

� A file-access function returns MI_OK for success and sets errno to
indicate an error, but a stream I/O function returns the MI_OK status
for success and a negative number to indicate an error.

The stream I/O function maps the values associated with errno to
DataBlade API constants that have negative values. The mistream.h
header file defines these constants.

� A file-access function returns the amount written to or read from a
file, but a stream I/O function returns either of the following values:

❑ On success, the amount written or read

❑ On failure, a negative number (defined in mistream.h)

Write a specified number of bytes to the file stream. mi_stream_write()

Obtain the current file seek position, returning it from
the function.

mi_stream_tell()

Obtain the current file seek position, returning it in a
function parameter.

mi_stream_getpos()

Set the file seek position. mi_stream_setpos()

Obtain the length of the operating-system file. mi_stream_length()

Close the file stream. mi_stream_close()

Stream I/O Task Stream I/O Function

(2 of 2)
12-72 IBM Informix DataBlade API Programmer’s Guide

Access to a Stream
The String Stream

The string stream provides access to a character array through the stream I/O
interface. The string stream does not handle character data as null-terminated
strings. It does not evaluate the contents of the data stream in any way. To
support a data stream on a character array, the DataBlade API provides the
stream I/O functions in Figure 12-18.

Figure 12-18
Stream I/O Functions for a String Stream

Tip: You can also use the mi_stream_get_error() and mi_stream_eof() functions
on a string stream.

As Figure 12-18 shows, the stream I/O interface for a string stream consists of
the generic stream I/O functions plus a type-specific stream-open function,
mi_stream_open_str().

Stream I/O Task Stream I/O Function

Initialize and open a string stream. mi_stream_open_str()

Move the string seek position to the desired location. mi_stream_seek()

Read a specified number of bytes from the string stream. mi_stream_read()

Write a specified number of bytes to the string stream. mi_stream_write()

Obtain the current string seek position, returning it from
the function.

mi_stream_tell()

Obtain the current string seek position, returning it in a
function parameter.

mi_stream_getpos()

Set the string seek position. mi_stream_setpos()

Obtain the length of the character array.

This is the str_len value to pass to mi_stream_open_str()
when you create the string stream.

mi_stream_length()

Close the string stream. mi_stream_close()
Writing a User-Defined Routine 12-73

Access to a Stream
The Varying-Length-Data Stream

The varying-length-data stream provides access to the data within a varying-
length structure (mi_lvarchar) through the stream I/O interface. A varying-
length-data stream does not handle varying-length data as null-terminated
strings. It also does not evaluate the contents of the data stream in any way.
To support a data stream on a varying-length structure, the DataBlade API
provides the stream I/O functions in Figure 12-19.

Figure 12-19
Stream I/O Functions for a Varying-Length-Data Stream

Tip: You can also use the mi_stream_get_error() and mi_stream_eof() functions
on a varying-length-data stream.

As Figure 12-19 shows, the stream I/O interface for a varying-length-data
stream consists of the generic stream I/O functions plus a type-specific
stream-open function, mi_stream_open_mi_lvarchar(). This function
returns a new varying-length-data stream.

Stream I/O Task Stream I/O Function

Initialize and open a varying-length-data
stream.

mi_stream_open_mi_lvarchar()

Move the stream seek position to the desired
location.

mi_stream_seek()

Read a specified number of bytes from the
varying-length-data stream.

mi_stream_read()

Write a specified number of bytes to the varying-
length-data stream.

mi_stream_write()

Obtain the current stream seek position,
returning it from the function.

mi_stream_tell()

Obtain the current stream seek position,
returning it in a function parameter.

mi_stream_getpos()

Set the stream seek position. mi_stream_setpos()

Obtain the length of the varying-length data. mi_stream_length()

Close the varying-length-data stream. mi_stream_close()
12-74 IBM Informix DataBlade API Programmer’s Guide

Access to a Stream
Creating a User-Defined Stream Class

You can provide a stream I/O interface to create your own protocol for recip-
rocal reading and writing of SQL data and other data streams. The DataBlade
API stream I/O interface provides a consistent interface for accessing data;
that is, each stream I/O function has a fixed function name and argument list,
regardless of the actual kind of stream that it accesses. This fixed syntax
provides the main benefits of stream access:

� The calling code can use the exact same syntax to access different
kinds of data.

� The underlying data can be transparent to the calling code.

Important: Enterprise Replication does not support user-defined stream classes.

To create a user-defined stream class, you need to write the following stream
I/O functions:

� A type-specific stream-open function

Each type of data to which a stream provides access usually has a
unique way of being opened. Its stream-open function must accept
as arguments the information required to open the data so that the
mi_stream_init() function can initialize the stream.

� Type-specific implementations for the generic stream I/O functions

You must implement the generic stream I/O functions that your
stream supports so that they correctly handle the format of your
stream data.

The mi_stream_init() function initializes the stream descriptor with the
arguments it receives. The following code fragment of a stream-open
function calls mi_stream_init() with the stream-operations structure in
Figure 12-21, the internal structure for the mytype opaque type, and a NULL-
valued pointer:

MI_STREAM *mi_stream_open_mytype(void *mydata)
{

MI_STREAM *strm_desc; /* could be passed in as input to open()
* also.
*/

/* Code to process any stream-open arguments */
...
Writing a User-Defined Routine 12-75

Access to a Stream
/* Call to mi_stream_init() to allocate and initialize
* the stream descriptor
*/
strm_desc = mi_stream_init(stream_ops_mytype, mydata, NULL);

/* Return pointer to newly allocated stream descriptor */
return strm_desc;

}

Because mi_stream_init() receives a NULL-valued pointer as its stream
descriptor, it allocates the stream descriptor in the current memory duration.
The mi_stream_init() function then returns a pointer to this newly allocated
structure, which the mi_stream_open_mytype() function also returns.

The Stream-Open Function

Your stream-open function must take the following steps:

1. Accept as its arguments the type-specific initialization information
and use them to open the data.

2. Call mi_stream_init() with appropriate information to initialize an
MI_STREAM structure (see Figure 1-4 on page 1-20).

The stream-open function must prepare the arguments for the call to the
mi_stream_init() function, which initializes and optionally allocates an
MI_STREAM structure. The mi_stream_init() function takes the following
arguments:

� The stream-operations structure

� The stream data

� A stream descriptor

The Stream-Operations Structure

The stream-operations structure contains pointers to the C functions that
implement the generic stream I/O functions for the particular stream. A valid
stream-operations structure must exist for the DataBlade API to locate at
runtime your type-specific implementations of these generic stream I/O
functions. Therefore, it must be initialized before the call to mi_stream_init().
12-76 IBM Informix DataBlade API Programmer’s Guide

Access to a Stream
Figure 12-20 shows the declaration of the stream-operations structure,
mi_st_ops. For the most current definition, see the mistream.h header file.

As Figure 12-20 shows, the stream-operations structure consists of the
following parts:

� The function pointers to the generic stream I/O functions

� The names of the generic stream I/O functions

� The function handles of the generic stream I/O functions

#define OPS_NAME_LENGTH 40

struct mi_stream_operations {
/* the pointers to the functions */
mi_integer (*close)(MI_STREAM *strm_desc);
mi_integer (*read)(MI_STREAM *strm_desc, void *buf,

mi_integer nbytes);
mi_integer (*write)(MI_STREAM *strm_desc, void *buf,

mi_integer nbytes);
mi_integer (*seek)(MI_STREAM *strm_desc,

mi_int8 *offset, mi_integer whence);
mi_int8 * (*tell)(MI_STREAM *strm_desc);
mi_integer (*setpos)(MI_STREAM *strm_desc,

mi_int8 *pos);
mi_integer (*getpos)(MI_STREAM *strm_desc,

mi_int8 *pos);
mi_integer (*length)(MI_STREAM *strm_desc,

mi_int8 *length);
/* names of the functions above */
char close_name [OPS_NAME_LENGTH];
char read_name [OPS_NAME_LENGTH];
char write_name [OPS_NAME_LENGTH];
char seek_name [OPS_NAME_LENGTH];
char tell_name [OPS_NAME_LENGTH];
char setpos_name[OPS_NAME_LENGTH];
char getpos_name[OPS_NAME_LENGTH];
char length_name[OPS_NAME_LENGTH];
/* the function handles for the functions above */
void *close_fhandle;
void *read_fhandle;
void *write_fhandle;
void *seek_fhandle;
void *tell_fhandle;
void *setpos_fhandle;
void *getpos_fhandle;
void *length_fhandle;

} mi_st_ops;

Figure 12-20
The Stream-Operations

Structure
Writing a User-Defined Routine 12-77

Access to a Stream
You should initialize the pointers and names and set the handles to NULL.

Figure 12-21 shows a sample stream-operations structure that provides
function pointers for the type-specific implementations of the
mi_stream_close(), mi_stream_read(), and mi_stream_write() functions
for a stream on a user-defined type named newstream.

The code fragment in Figure 12-21 statically initializes the stream-operations
structure. If you initialize this structure dynamically, do so in the stream-
open function.

The Stream Data

The second argument to mi_stream_init() is an uninterpreted data pointer
that is stored in the MI_STREAM structure initialized by the call to
mi_stream_init(). The stream interface does not interpret this pointer, which
is for the benefit of the stream implementer. You can retrieve the value of this
pointer through a call to mi_stream_get_dataptr().

static struct mi_st_ops stream_ops_newstream =
{

stream_close_newstream,
stream_read_newstream,
stream_write_newstream,
NULL,
NULL,
NULL,
NULL,
NULL,
"stream_close_newstream",
"stream_read_newstream",
"stream_write_newstream",
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL

};

Figure 12-21
A Sample Stream-

Operations Structure
12-78 IBM Informix DataBlade API Programmer’s Guide

Access to a Stream
The Stream Descriptor

A stream descriptor holds information about the stream that all stream I/O
functions need to access. The mi_stream_init() function accepts as its
stream-descriptor argument either of the following values:

� A NULL-valued pointer

� A pointer to a valid, allocated MI_STREAM structure

When you pass the mi_stream_init() function a NULL-valued pointer for its
stream-descriptor argument, the function allocates a new stream descriptor
in the current memory duration. If your application requires a specific
memory duration for the stream descriptor, your stream-open function can
perform one of the following tasks:

� Before the call to mi_stream_init(), change the current memory
duration to what is required.

The mi_switch_mem_duration() function changes the current
memory duration. Its return value is the previous current duration
so that you can return the duration to its original value. For more
information, see “Changing the Memory Duration” on page 13-36.

In this case, pass a NULL-valued pointer as the stream descriptor to
mi_stream_init() so that mi_stream_init() allocates a new stream
descriptor in the new current memory duration.

� Allocate a stream descriptor in the required memory duration.

In this case, pass a pointer to the allocated stream descriptor as the
stream descriptor for mi_stream_init() so that this function does not
allocate a new stream descriptor. The mi_stream_close() function
does not automatically free a stream descriptor that your stream-
open function allocates. Your code must handle the deallocation.

Initialization of the Stream Descriptor

After your type-specific stream-open function has prepared the arguments
for the mi_stream_init() function, it must call mi_stream_init() to initialize
the stream descriptor.

Tip: Whether the mi_stream_init() function actually allocates the stream
descriptor depends on the value of its third argument. For more information, see “The
Stream Descriptor” on page 12-79.
Writing a User-Defined Routine 12-79

Access to a Stream
The stream descriptor, MI_STREAM, holds information about the data stream
such as the data and its seek position. For the most current definition of the
MI_STREAM structure, see the mistream.h header file.

Support for Stream Access

To provide access to the data in your user-defined stream, you must
implement the appropriate generic stream I/O functions. The following table
shows which stream I/O functions to implement for the stream character-
istics that your stream supports.

Tip: You do not have to implement the stream I/O functions
mi_stream_get_error() and mi_stream_eof() for your user-defined stream. The
implementation of these functions is generic for any stream.

Consider the following information when deciding which stream I/O
functions to implement:

� Implement only those stream I/O functions needed to support the
selected stream mode.

If your stream is to be read-only, you need to implement the
mi_stream_read() function but not the mi_stream_write() function.
For a write-only stream, implement only the mi_stream_write()
function. For a read/write stream, implement both
mi_stream_read() and mi_stream_write().

Stream Characteristic Description Stream I/O Function

Stream seek position The location within the data at
which the next read or write
operation begins

mi_stream_seek(),
mi_stream_tell(),
mi_stream_getpos(),
mi_stream_setpos()

Stream length The size of the data

This length can be the size of the
data when the stream is initialized
or the current size of the data.

mi_stream_length()

Stream mode Which operations are valid: read-
only, read/write, or write-only

mi_stream_read(),
mi_stream_write()
12-80 IBM Informix DataBlade API Programmer’s Guide

Access to a Stream
� Implement stream I/O functions that access the stream seek position
only if your stream supports a seek position.

If your stream supports a seek position, you must maintain the
st_pos field of the stream descriptor. You can choose whether to sup-
port one or two methods of accessing the stream seek position:

❑ The mi_stream_seek() function provides specification of the
stream seek position through an offset and a “whence” stream
position.

❑ The mi_stream_getpos() function provides specification of the
stream seek position through an absolute position.

The mi_stream_tell() function returns the current stream seek posi-
tion as its return value. This function cannot return any negative
error value to indicate the cause of an error.

The mi_stream_setpos() function returns the current stream seek
position as one of its parameters. This function can return an integer
status value.

If your stream does not have a seek position, you do not need to write
any of the following functions: mi_stream_seek(),
mi_stream_tell(), mi_stream_getpos(), or mi_stream_setpos().

� Implement an mi_stream_close() function to deallocate stream
resources.

The type-specific implementation of mi_stream_close() must explic-
itly free any memory that the associated stream-open function (or
any other of the generic stream I/O functions) has allocated. For
information, see “Releasing Stream Resources” on page 12-82.

The following general rules apply to values that the generic stream I/O
functions return:

� All stream I/O functions except mi_stream_tell() must return the
following values:

❑ On success, MI_OK

❑ On failure, a negative integer defined in the mistream.h header
file
Writing a User-Defined Routine 12-81

Access to a Stream
� The mi_stream_tell() function must return the following values:

❑ On success, a valid pointer to the current stream seek position,
an mi_int8 value

❑ On failure, a NULL-valued pointer

Registering a UDR That Accesses a Stream

To declare a stream as an argument or return value of a C UDR, use the
MI_STREAM data type. When you register this UDR in the database, use the
opaque data type stream to represent the stream descriptor.

The database server represents a stream with the stream opaque type. As for
other opaque types, the database server stores information on stream in the
sysxtdtypes system catalog table.

For example, suppose you have a C declaration for a UDR named get_data():

mi_lvarchar *get_data(strm_desc, nbytes)
MI_STREAM *strm_desc;
mi_integer nbytes;

The following CREATE FUNCTION statement registers the get_data() UDR,
using the stream data type as its first argument:

CREATE FUNCTION get_data(data_source stream, nbytes INTEGER)
RETURNS VARCHAR
EXTERNAL NAME '/usr/local/udrs/stream/stream.so(get_data)'
LANGUAGE C;

Releasing Stream Resources

When your DataBlade API module no longer needs a stream, you need to
assess whether you can release resources that the stream is using. A stream
descriptor that the mi_stream_init() function allocated has the current
memory duration, so it remains valid until one of the following events
occurs:

� The mi_stream_close() function closes the stream, freeing the
stream descriptor.

� The current memory duration expires.
12-82 IBM Informix DataBlade API Programmer’s Guide

Access to Operating-System Files
To conserve resources, use the mi_stream_close() function to deallocate the
stream descriptor explicitly when your DataBlade API module no longer
needs it. The mi_stream_close() function is the destructor function for a
stream descriptor. This function frees a stream descriptor that
mi_stream_init() allocated and any associated resources, including the
stream-data buffer.

The mi_stream_close() function does not automatically free a stream
descriptor allocated by your stream-open function. If the mi_stream_init()
function does not allocate a stream descriptor, your type-specific implemen-
tation of mi_stream_close() must handle the deallocation.

Access to Operating-System Files
The DataBlade API provides file-access functions for access to operating-
system files from within a C UDR. These functions provide file management
that is similar to what operating-system file-access functions provide. The
DataBlade API file-access functions call the corresponding operating-system
functions to perform their tasks; however, the DataBlade API functions
periodically yield the virtual processor to limit the effects of blocking I/O.

Important: Do not call operating-system file I/O functions from within a C UDR.
Use these DataBlade API file-access functions instead because they are safer in a
C UDR than their operating-system equivalents. For more information, see
“Avoiding Blocking I/O Calls” on page 12-33.

Figure 12-22 lists the DataBlade API functions for the basic file-access opera-
tions and the analogous operating-system calls for these operations.

Figure 12-22
DataBlade API File-Access Functions

File-Access Operation File-Access Function Operating-System Call

Open an operating-system file and
generate a file descriptor for the file

mi_file_open() open()

Seek to a specified position to begin
a read or write operation

mi_file_seek() seek()

Obtain the current seek position mi_file_tell() tell()

(1 of 2)
Writing a User-Defined Routine 12-83

Access to Operating-System Files
Tip: The DataBlade API file-access functions execute in client LIBMI applications as
well as C UDRs. For DataBlade API modules that you design to run in both client
LIBMI applications and UDRs, use these file-access functions. For information on the
behavior of these functions in a client LIBMI application, see Appendix A, “Writing
a Client LIBMI Application.”

The DataBlade API accesses operating-system files through file descriptors.
These file descriptors are similar in purpose to operating-system file
descriptors. The following table summarizes the memory durations for a file
descriptor.

Perform a read or write operation
for a specified number of bytes

mi_file_read(),
mi_file_write()

read(), write()

Obtain status information about a
specified smart large object

mi_file_sync() sync()

Close an operating-system file and
deallocate the file descriptor

mi_file_close() close()

Unlink (remove) an operating-
system file

mi_file_unlink() unlink()

Obtain an errno value for the file
operation

mi_file_errno() GLOBAL INT
ERRNO;

Memory Duration Memory Operation Function Name

Duration of session
(PER_SESSION)

Constructor mi_file_open()

Destructor mi_file_close(), mi_file_unlink()

File-Access Operation File-Access Function Operating-System Call

(2 of 2)
12-84 IBM Informix DataBlade API Programmer’s Guide

Access to Operating-System Files
Opening a File

The mi_file_open() function is the constructor function for a file descriptor.
Through the file descriptor, you access an operating-system file. This section
provides the following information on how to open a file:

� How to specify the filename, including its path

� How to specify the open flags and open mode, which the underlying
operating-system call supports

� How UDRs can share open files

Specifying a Filename

The filename argument of mi_file_open() identifies the operating-system file
to open. This filename is relative to the server computer. You can include an
environment variable in the filename path for the mi_file_open() and
mi_file_to_file() file-access functions. This environment variable must be set
in the database server environment; that is, it must be set before the database
server starts.

For example, Figure 12-23 shows an mi_file_open() call that opens the
operating-system file data_file1, which resides in the directory that the
DATA_FILES environment variable specifies.

Suppose the DATA_FILES environment variable is set to the following
directory in the database server environment:

/usr/local/app/load_files

The call to mi_file_open() in Figure 12-23 opens the following file:

/usr/local/app/load_files/data_file1

fd = mi_file_open("$DATA_FILES/data_file1",
O_WRONLY | O_APPEND | O_CREAT, 0644);

Figure 12-23
Sample Call to

Open an Operating-
System File
Writing a User-Defined Routine 12-85

Access to Operating-System Files
Calling the Operating-System Open Call

To open a file, the mi_file_open() function calls the open system call that
your operating system supports.

On UNIX or Linux, the open() system call opens an operating-system file. ♦

On Windows, the _open command opens an operating-system file. ♦

The mi_file_open() function provides the following information about the
file to the appropriate system call.

The function takes this information and passes it directly to the underlying
operating-system call. Therefore, mi_file_open() supports the access modes
and open modes that your operating-system open call supports.

Tip: For more information on the open flags and open mode, see the documentation
for your operating-system open call.

Specifying Open Flags

The mi_file_open() function takes as its second argument the open flags
with which to open the operating-system file. The open flags value provides
two pieces of information:

� A masked flag value that specifies information such as access mode
(read/write, read-only, write-only)

The mi_file_open() function passes these open flags directly to the
underlying operating-system call that opens a file, so you must use
flag values that your operating system supports. Also, you must
include the operating-system header file (such as fcntl.h) that
defines the open-flag constants you use.

Argument of mi_file_open() Information Provided

open_flags (second argument) Access mode for the operating-system file

open_mode (third argument) Open mode for the operating-system file.

UNIX/Linux

Windows
12-86 IBM Informix DataBlade API Programmer’s Guide

Access to Operating-System Files
� A file-mode flag to indicate on which computer the file to open
resides

The DataBlade API file-access functions support access to a file on
either the server or client computer. By default, the mi_file_open()
function opens a file on the server computer. To open a server file,
you can omit the file-mode flag or specify the MI_O_SERVER_FILE
file-mode flag. To open a client file, you must include the
MI_O_CLIENT_FILE file-mode flag as part of the open flags.

For example, the mi_file_open() call in Figure 12-23 on page 12-85 masks the
following open flags for the file to open.

The example in Figure 12-23 on page 12-85 is based on the following
assumptions:

� The operating-system open call supports the O_WRONLY,
O_APPEND, and O_CREAT flags.

� The code that executes this mi_file_open() call includes the header
file that defines O_WRONLY, O_APPEND, and O_CREAT.

� The file resides on the server computer.

Specifying the Open Mode

The mi_file_open() function takes as its third argument the open mode in
which to open the operating-system file. The open mode specifies the
ownership of the file. The mi_file_open() function passes this open mode
directly to the underlying operating-system call. The semantics for mode must
match those that the underlying operating-system call supports.

Open-Flag Constant Purpose

O_WRONLY Open the file write-only.

O_APPEND Append new data to the end of the file.

O_CREAT If the file does not exist, create it.
Writing a User-Defined Routine 12-87

Access to Operating-System Files
For example, the mi_file_open() call in Figure 12-23 on page 12-85 specifies
an open mode of 0644:

� Read/write for owner

� Read-only for group

� Read-only for general public

Sharing Open Files

All UDRs that execute under the same connection can share a file (because
they have the same connection descriptor). For example, if UDR1 opens a file,
UDR2 can read, write to, or close this file, as long as these two UDRs execute
under the same connection. However, UDRs that do not execute under the
same connection cannot share a file.

The DataBlade API generates an error if your UDR attempts any of the
following file I/O tasks:

� To access a file that a UDR outside the session opened

� To access a file that was not opened at all

� To access a file that was opened and was closed

Closing a File

To close an operating-system file, free the associated file descriptor. A file
descriptor remains active until either of the following events occurs:

� The mi_file_close() function explicitly closes the file.

� The client application ends the session.

In a C UDR, a file descriptor has a memory duration of PER_SESSION. Files
remain open after the UDR closes the connection. ♦

In a client LIBMI application, a connection descriptor has a scope of the
session. For more information, see “Accessing Operating-System Files in
Client LIBMI Applications” on page A-5. ♦

Server

Client
12-88 IBM Informix DataBlade API Programmer’s Guide

Sample File-Access UDR
Copying a File

The DataBlade API provides the mi_file_to_file() function to enable you to
copy an operating-system file between the computer on which the database
server runs and the client computer. This function provides the open-mode
flags for the new operating-system file. Unlike the mi_file_open() function,
these open-mode flags are not those of the underlying operating-system open
function. Instead, mi_file_to_file() supports the set of DataBlade API file-
mode constants in Figure 6-41 on page 6-101.

Sample File-Access UDR
The following sample UDR, logmsg(), uses the DataBlade API file-access
functions to output messages to an external file:

#include <mi.h>
#include <fcntl.h>
#include <errno.h>

void logmsg (filename, message, Gen_fparam)
mi_lvarchar *filename,
mi_lvarchar *message,
MI_FPARAM *Gen_fparam

{
mi_integer fd, /* file descriptor */

ret, /* return status from file-access funcs
*functions
*/

error; /* mi_file_errno() errno return */

mi_string pathname[256], /* mi_lvarchar_to_buffer() result */
msg_str, / mi_lvarchar_to_string() result */
newline = "\n", / output new line */
 msg_error[150], /* errno error message */
 tmp_error[150], /* temp error message */
*p;

if (mi_get_varlen(filename) >= sizeof(pathname))
{
mi_db_error_raise(NULL, MI_EXCEPTION,

"Pathname exceeded 255 characters!");
return;
}

Writing a User-Defined Routine 12-89

Sample File-Access UDR
mi_var_to_buffer(filename, pathname);
msg_str = mi_lvarchar_to_string(message);

fd = mi_file_open(pathname,
O_WRONLY | O_APPEND | O_CREAT, 0644);

if (fd == MI_ERROR)
{
error = mi_file_errno();
switch(error)

{
/* Include your favorite errors from
* /usr/include/sys/errno.h.
*/

case ENOENT:
p = "No such file or directory";
break;

case EACCES:
p = "Permission denied";
break;

case EISDIR:
p = "Pathname is a directory instead of file";
break;

default:
p = "Unhandled errno case";
break;

}

tmp_error = "logmsg: mi_file_open() failed for";
sprintf(msg_error, "%s '%s' -- %s (errno=%d)",

tmp_error, pathname, p, error);

mi_db_error_raise(NULL, MI_EXCEPTION, msg_error);
return; /* not reached */
}

ret = mi_file_write(fd, msg_str, strlen(msg_str));
if(ret == MI_ERROR)

{
error=mi_file_errno();
switch(error)

{
case ENOSPC:

p = "No space left on device";
break;

default:
p = "Unhandled errno case";
break;

}

12-90 IBM Informix DataBlade API Programmer’s Guide

Accessing the UDR Execution Environment
tmp_err = "logmsg: mi_file_write() failed for"
sprintf(msg_error, "%s '%s' -- %s (errno=%d)",

tmp_err, pathname, p, error);
mi_db_error_raise(NULL, MI_EXCEPTION, msg_error);
return; /* not reached */
}

ret = mi_file_write(fd, newline, strlen(newline));
if(ret == MI_ERROR)

{
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_file_write() failed for newline!");
return;
}

mi_file_close(fd);
mi_free(msg_str); /* mi_lvarchar_to_string() allocated

* result
*/

return;
}

Accessing the UDR Execution Environment
When the UDR obtains a session, its execution environment is made up of the
following environments:

� The session environment, which describes the current connection

� The server environment, which describes the environment in which
the database server executes

Accessing the Session Environment
The session environment describes the current session, which includes the
database server and open database that are in effect when the client appli-
cation called the SQL statement that contains the UDR. The UDR obtains its
session environment when it obtains a connection descriptor with the
mi_open() function.
Writing a User-Defined Routine 12-91

Accessing the Session Environment
The following DataBlade API functions provide information about the
session environment of a UDR.

The session environment also includes the following locale information:

� The server-processing locale, which the database server creates
when the client application establishes a connection)

� The server locale (which is the locale that the database server uses to
read and write its own files)

You can obtain the name of the server locale from the connection-information
descriptor (MI_CONNECTION_INFO) with the mi_get_connection_info() or
mi_get_default_connection_info() function. For more information on these
locales, see the IBM Informix GLS User’s Guide. ♦

Tip: You can use the mi_get_id() function to obtain the session identifier for the
session. A session identifier uniquely identifies the session.

Session-Environment Information DataBlade API Function

Connection parameters:

� Name of the database server

� Server port for a connection

mi_get_connection_info(),
mi_get_default_connection_info()

Database parameters:

� Name of the open database

� Name of the account and password for the
user that established the connection

mi_get_database_info(),
mi_get_default_database_info()

Database options:

� ANSI compliant

� Transaction logging

� Exclusive mode

mi_get_connection_option()

GLS
12-92 IBM Informix DataBlade API Programmer’s Guide

Accessing the Server Environment
Accessing the Server Environment
The server environment describes the environment of the database server in
which the UDR executes. The server environment is established when the
database server is initialized with the oninit utility (or its equivalent). The
operating-system process that runs the oninit utility (or its equivalent) is
called the server-initialization process. This process invokes the database server
instance.

The server environment includes the following information.

The server environment includes the value of the SERVER_LOCALE
environment variable, which can specify a nondefault server locale. Values of
the DB_LOCALE and CLIENT_LOCALE environment variables in the server
locale do not necessarily apply to the UDR. While it executes, a UDR obtains
the client and database locales from the server-processing locale (which the
database server creates when the client application establishes a connection).
You can obtain the current value of DB_LOCALE with the
mi_get_db_locale() function. For more information on these locales, see the
IBM Informix GLS User’s Guide. ♦

The UDR obtains its server environment when it begins execution. You can
obtain the values of the server-environment variables and configuration
parameters with the mi_get_serverenv() function.

Server-Environment Information How It Is Established

Environment variables The environment variables set for the server-
initialization process

File-access permissions The file-access permissions of the server-
initialization process

Configuration parameters The ONCONFIG file that is current for the database
server

Working directory The working directory of the server-initialization
process

GLS
Writing a User-Defined Routine 12-93

13
Chapter
Managing Memory
In This Chapter . 13-3

Understanding Shared Memory 13-4
Accessing Shared Memory 13-4
Choosing the Memory Duration 13-7

Public Memory Durations 13-10
Advanced Memory Durations 13-22
Memory-Duration Considerations 13-27

Managing Shared Memory 13-31
Managing User Memory 13-32

Allocating User Memory 13-34
Managing the Memory Duration 13-34
Deallocating User Memory 13-38

Managing Named Memory 13-39
Allocating Named Memory 13-42
Obtaining a Block of Allocated Named Memory 13-43
Handling Concurrency Issues 13-45
Deallocating Named Memory 13-52

Monitoring Shared Memory 13-54

Managing Stack Space. 13-57
Managing Stack Usage 13-58
Increasing Stack Space 13-59

13-2 IBM
 Informix DataBlade API Programmer’s Guide

In This Chapter
A C user-defined routine (UDR) has access to the following types of memory:

� Shared memory for dynamic allocations

� Stack memory for routine arguments (including the MI_FPARAM
structure), local stack variables, return values

The DataBlade API provides functions to manage these types of memory.

This chapter describes each of these kinds of memory management in detail.

Memory-Allocation Task

DataBlade API Function

Allocation Deallocation Other

Shared memory

User memory mi_alloc(),
mi_dalloc(),
mi_realloc()),
mi_zalloc()

mi_free() mi_switch_mem_duration()

Named memory mi_named_alloc(),
mi_named_zalloc()

mi_named_free() mi_named_get(),
mi_lock_memory(),
mi_try_lock_memory(),
mi_unlock_memory()

Stack memory for routine
arguments

mi_call() None None
Managing Memory 13-3

Understanding Shared Memory
Understanding Shared Memory
When a C UDR executes in a virtual processor (VP), it allocates memory from
the shared memory of the database server. To perform this allocation, the
UDR takes the following steps:

1. Ensures that dynamic memory allocations come from the shared
memory of the database server

All virtual processors can access database server shared memory.

2. Chooses a memory duration to associate with this memory

The database server automatically reclaims its shared memory
through an associated memory duration.

Accessing Shared Memory
A C UDR executes in a virtual processor, which is associated with an
operating-system process. While a C UDR executes on a VP (VP #1), it can
access memory that is associated with that virtual processor. This memory
space includes the stack, heap, and data segments of the VP. Figure 13-1
shows a schematic representation of what a virtual processor that has loaded
a shared-object file looks like internally.

Figure 13-1
VP Memory Space

for a C UDR

Client app

Client 1 IDS database server

IDS Shared memory

Virtual processor

CPU VP stack

CPU VP #1

.

.

.
CPU VP heap

Shared-object data
Shared-object code

CPU VP data
CPU VP text
13-4 IBM Informix DataBlade API Programmer’s Guide

Accessing Shared Memory
If the UDR needs to perform some noncomputational task (such as I/O), the
database server migrates its thread to the appropriate VP class. When this
noncomputational task is complete, the database server migrates the thread
back to a computational VP (such as the CPU VP). Once the UDR migrates
from VP #1 to another VP (VP #2), it no longer has access to any information
in the memory space of VP #1. It can now only access the memory space of
the new VP. The only memory that the UDR can access from both VP #1 and
VP #2 is the database server shared memory. This restriction leads to the
following guidelines for the dynamic memory allocation in a C UDR:

� The C UDR must be threadsafe.

The UDR must not assume that it can always access information that
is stored in the VP memory space. This guideline is part of the
requirements for a well-behaved UDR. For more information, see
“Creating a Well-Behaved Routine” on page 12-28.

� The C UDR must use the DataBlade API memory-management
functions to allocate memory dynamically.

The DataBlade API memory-management functions in Figure 13-12
on page 13-31 allocate memory from the shared memory of the data-
base server, not from the memory space of a virtual processor, as
Figure 13-2 shows.
Managing Memory 13-5

Accessing Shared Memory
The DataBlade API memory-management functions allocate memory from
shared memory, which remains accessible if a thread migrates to another
virtual processor. All VPs can access information in memory that these
memory-management functions allocate because all VPs can access the
shared memory of the database server.

The system memory-management functions (such as malloc() and calloc())
allocate memory in the heap space of the VP. If a UDR migrates to another VP,
it no longer has access to the heap space of the previous VP. Therefore, the
address to dynamic memory in some variable is not valid once the UDR
executes in the new VP.

Figure 13-2
Location of

Dynamically
Allocated Memory

for a C UDR
Shared memory

Virtual processor

CPU VP stack

CPU VP #1

CPU VP heap

Shared-object data

CPU VP data
CPU VP text

Virtual processor

CPU VP #2

CPU VP stack

CPU VP heap

Shared-object data

CPU VP data
CPU VP text

System memory-management
(malloc()) memory

DataBlade API memory-management
(mi_alloc(), mi_named_alloc())

memory

Shared-object code Shared-object code
13-6 IBM Informix DataBlade API Programmer’s Guide

Choosing the Memory Duration
Important: A C UDR must dynamically allocate memory from the shared memory of
the database server, not from the memory of the VP that runs the UDR. Therefore, a
C UDR must use the DataBlade API memory-management functions for all dynamic
memory allocation.

To ensure that a C UDR does not retain unnecessary amounts of shared
memory, it must use the following guidelines for the dynamic memory
allocation:

� The C UDR must ensure that it can access both the memory and its
address when it needs to.

Both the memory and the memory address must have a memory
duration sufficient for all UDRs that need to access the information.
For more information, see “Memory-Duration Considerations” on
page 13-27.

� The C UDR must use the DataBlade API memory-management
functions to dynamically allocate memory that has an associated
memory duration.

The DataBlade API memory-management functions allocate mem-
ory from the memory-duration memory pools of the database server
shared memory. Therefore, the database server can automatically
reclaim this memory, reducing the chance of memory leaks. For more
information, see “Managing Shared Memory” on page 13-31.

Choosing the Memory Duration
Because a C UDR executes in the memory space of the database server, its
dynamic memory allocations can increase the memory usage of the database
server. For this reason, it is very important that a UDR release its dynamically
allocated memory as soon as it no longer needs to access this memory.

To help ensure that unneeded memory is freed, the database server associates
a memory duration with memory allocation made from its shared memory.
The portion of shared memory that the database server provides for dynamic
allocation by C UDRs is organized into several memory pools. Each memory
pool is associated with a memory duration, which specifies the lifetime of the
memory allocated from the pool. Keeping related memory allocations in one
pool helps to reduce memory fragmentation.
Managing Memory 13-7

Choosing the Memory Duration
Figure 13-3 shows a schematic representation of the shared memory of the
database server, including the memory-duration memory pools.

Tip: For more information about the use and structure of database server memory
pools, see your Administrator’s Guide. For more information on how to monitor the
amount of shared memory that exists in each of the memory pools, see “Monitoring
Shared Memory” on page 13-54.

When the database server calls a UDR, it creates a memory context. This context
records all of the allocations that the UDR makes before the routine returns.
The UDR might run for some time, calling other UDRs or DataBlade API
functions. The database server automatically reclaims shared memory based
on its memory duration. When a particular memory duration expires, the
database server marks the associated memory pool for deallocation.

Figure 13-3
Memory-Duration
Memory Pools in
Database Server
Shared Memory

PER_ROUTINE
memory pool

PER_TRANSACTION
memory pool

PER_SYSTEM
memory pool

PER_STMT_EXEC
memory pool

PER_SESSION
memory pool

PER_COMMAND
memory pool

Other server
memory pools

Database server shared memory

PER_STMT_PREP
memory pool
13-8 IBM Informix DataBlade API Programmer’s Guide

Choosing the Memory Duration
The DataBlade API provides the following regular and advanced groups of
memory durations for dynamically allocated memory in C UDRs:

� Use the following public memory durations in all UDRs.

Most memory allocations can be allocated with a regular memory
duration.

� Use the following advanced memory durations only in specialized
cases.

These memory durations are quite long and therefore increase the
chance of memory leaks.

Warning: The advanced memory durations can adversely affect your UDR if you use
them incorrectly. Use them only when no regular DataBlade API memory duration
can perform the task you need.

Available Memory Durations
Memory-Duration
Constant

Current memory duration PER_ROUTINE
(by default)

For the duration of one iteration of the UDR PER_ROUTINE,
PER_FUNCTION

For the duration of the current SQL command PER_COMMAND

For the duration of the current SQL statement PER_STATEMENT
(Deprecated)

For the duration of the execution of the current
SQL statement

PER_STMT_EXEC

For the duration of the current prepared SQL
statement

PER_STMT_PREP

Available Memory Durations
Memory-Duration
Constant

For the duration of the current transaction PER_TRANSACTION

For the duration of the current session PER_SESSION

For the duration of the database server
execution

PER_SYSTEM
Managing Memory 13-9

Choosing the Memory Duration
Public Memory Durations

The DataBlade API memory-management functions support several public
memory durations. A UDR can use a public memory duration for most
dynamic allocations of memory. The DataBlade API provides the public
memory durations that Figure 13-4 shows.

Figure 13-4
Public Memory Durations

The PER_ROUTINE and PER_COMMAND memory durations are the most
common for C UDRs. The memory-duration constants in Figure 13-4 are of
type MI_MEMORY_DURATION, which the memdur.h header file defines. All
memory-duration constants in Figure 13-4 are also declared in the memdur.h
header file.

Public Memory Duration
Memory-Duration
Constant Description

For the duration of one
iteration of the UDR

PER_ROUTINE,
PER_FUNCTION

The database server frees the
memory after the UDR returns.

For the duration of the
current SQL subquery

PER_COMMAND The database server frees memory
when an SQL command
terminates.

For the duration of the
current SQL statement

PER_STATEMENT
(Deprecated)

The database server frees memory
when an SQL statement
terminates.

For the duration of the
execution of the current
SQL statement

PER_STMT_EXEC The database server frees memory
when the execution of an SQL
statement is complete.

For the duration of the
current prepared SQL
statement

PER_STMT_PREP The database server frees memory
when a prepared SQL statement
terminates.
13-10 IBM Informix DataBlade API Programmer’s Guide

Choosing the Memory Duration
PER_ROUTINE Memory Duration

A PER_ROUTINE memory pool is associated with each UDR invocation. A
routine invocation is one single execution of a UDR within a routine instance.

Tip: The two memory-duration constants PER_ROUTINE and PER_FUNCTION are
synonyms for the same memory duration. PER_ROUTINE is the more current name.

When a C UDR allocates PER_ROUTINE memory, this memory is available to
code within that single routine invocation of that UDR. The database server
reclaims any PER_ROUTINE memory in the memory context when a single
invocation of a UDR completes. This memory is actually freed on entry to the
next routine invocation. The database server does not reclaim any memory in
the memory context with a higher duration than PER_ROUTINE.

In a C UDR, the PER_ROUTINE memory duration is useful for information
required for a single UDR invocation. A UDR cannot allocate memory, save a
pointer to this memory in static space, and expect the pointer to be valid for
the next routine invocation. To save information across invocations, use the
user-state pointer of the MI_FPARAM structure. For more information, see
“Saving a User State” on page 9-14.

Several DataBlade API constructor functions allocate their DataBlade API
data type structure with a PER_ROUTINE memory duration. Figure 13-5
shows the DataBlade API data type structures that have a memory duration
of PER_ROUTINE.

Figure 13-5
DataBlade API Data Type Structures with a PER_ROUTINE Memory Duration

DataBlade API Data Type
Structure DataBlade API Constructor Function

DataBlade API
Destructor Function

UDR arguments that are
passed by reference

Routine manager
(when it invokes a UDR)

Routine manager
(when it exits a UDR)

UDR return value that is
passed by value

UDR with its declaration of its return
value

Routine manager
(when it exits a UDR)

UDR return value that is
passed by reference

UDR with call to mi_alloc(),
mi_dalloc(), or mi_zalloc()

Routine manager
(when it exits a UDR)
Managing Memory 13-11

Choosing the Memory Duration
The current memory duration is initialized to this default memory duration.
The default memory duration is PER_ROUTINE. For more information, see
“Managing the Memory Duration” on page 13-34.

PER_COMMAND Memory Duration

A PER_COMMAND memory pool is associated with each SQL command. An
SQL command is a subquery, which is a separate SQL statement initiated as
part of the current SQL statement. The most common kind of subquery is a
SELECT statement in the WHERE clause of a SELECT.

When a C UDR allocates PER_COMMAND memory, this memory is available
to all routine instances that execute in the same SQL command. For example,
the following SELECT statement contains two SQL commands:

SELECT a_func(x) FROM table1
WHERE i <=

(SELECT y FROM table2 WHERE a_func(x) <= 17);

The SELECT operation on table1 is the main query and is one SQL command.
The SELECT operation on table2 is a subquery of the main query and is
therefore a separate SQL command. All invocations of the a_func() function
in the main query can share any PER_COMMAND memory that this instance
of a_func() allocates; however, the invocations of a_func() in the subquery
have their own PER_COMMAND memory pool. These invocations would not
share their memory pool with the invocations of a_func() in the main query.

Other examples of subqueries follow:

� A SELECT statement after an IN, EXISTS, ALL, ANY, or SOME keyword
in a WHERE clause:

SELECT stock_num, manu_code FROM stock
WHERE NOT EXISTS

(SELECT stock_num, manu_code FROM items
WHERE stock.stock_num = items.stock_num

AND stock.manu_code = items.manu_code);

� A SELECT statement after the table name in an INSERT statement:
INSERT INTO table1 (int_col)

SELECT another_int_col FROM table2
WHERE a_func(x) <= 17);

A separate SQL command is not created for simple WHERE clauses. For
example, the following query contains only one SQL command:

SELECT a_func(x) FROM table1 WHERE a_func(y) > 6;
13-12 IBM Informix DataBlade API Programmer’s Guide

Choosing the Memory Duration
Both instances of a_func() use the same PER_COMMAND memory pool for
their PER_COMMAND allocations. Therefore, any PER_COMMAND memory
that the a_func() function allocates can be shared by all invocations of the
a_func() function in the select list as well as the invocations of a_func() in the
WHERE clause. If an SQL statement does not contain any subqueries,
PER_COMMAND memory lasts for the duration of the SQL statement; that is,
the PER_COMMAND and PER_STMT_EXEC memory durations are the same.

Tip: You can obtain the name of the SQL command that invoked the current UDR
with the mi_current_command_name() function.

The database server reclaims any PER_COMMAND memory in the memory
context as follows:

� For an SQL statement with no subqueries, the database server deallo-
cates PER_COMMAND memory when the SQL statement completes.

� For an SQL statement with one subquery, the database server deallo-
cates PER_COMMAND memory as follows:

❑ For the main query, the database server frees PER_COMMAND
memory after this main query completes.

❑ For a subquery, the database server frees PER_COMMAND
memory each time the subquery finishes execution for one outer
row of the main query, and after the main query completes.

The only exception to this rule is if this SQL statement is a cursor statement
(DECLARE, OPEN, FETCH, UPDATE...WHERE CURRENT OF or
DELETE...WHERE CURRENT OF, CLOSE), in which case the database server
frees the PER_COMMAND memory when the cursor closes.

The PER_COMMAND memory duration is useful for accumulating calcula-
tions, in iterator functions, and for initialization of expensive resources. The
most common way for UDR invocations within a routine instance to share
information is to store this information in the user state of its MI_FPARAM
structure. The routine manager allocates an MI_FPARAM structure for each
C UDR instance. This MI_FPARAM structure has a PER_COMMAND memory
duration. Therefore, to retain user state across a routine instance, a UDR can
allocate PER_COMMAND memory and store its address in the MI_FPARAM
structure. The UDR does not need to take special steps to preserve the address
of this user-state memory. Each UDR invocation can use the
mi_fp_funcstate() function to obtain the address from the MI_FPARAM
structure.
Managing Memory 13-13

Choosing the Memory Duration
For example, if a UDR calculates a total, PER_ROUTINE memory would not be
adequate to hold this total because the memory would be freed after a single
routine invocation. PER_COMMAND memory would be available for the
entire routine instance, regardless of the number of invocations involved. For
more information on the user state in MI_FPARAM, see “Saving a User State”
on page 9-14.

Several DataBlade API constructor functions allocate their DataBlade API
data type structure with a PER_COMMAND memory duration. Figure 13-6
shows the DataBlade API data type structures that have a memory duration
of PER_COMMAND.

Figure 13-6
DataBlade API Data Type Structures with a PER_COMMAND Memory Duration

Switching the current memory duration before one of the constructor
functions in Figure 13-6 does not change the PER_COMMAND memory
duration of the allocated DataBlade API data type structure. These data type
structures are freed by their destructor function or when the current SQL
command completes. To retain access to some of these DataBlade API data
type structures after the command completes, you must save them at the per-
session level.

Tip: The DataBlade API supports the ability to save information at a per-session
level. This ability, however, is an advanced feature of the DataBlade API. For more
information, see “Obtaining a Session-Duration Connection Descriptor” on
page 7-23.

DataBlade API Data
Type Structure

DataBlade API
Constructor Function

DataBlade API
Destructor Function

Function descriptor
(MI_FUNC_DESC)

mi_cast_get(),
mi_func_desc_by_typeid(),
mi_routine_get(),
mi_routine_get_by_typeid(),
mi_td_cast_get()

mi_routine_end()

MI_FPARAM structure Routine manager
(when it invokes a UDR)

Routine manager
(when it exits a UDR)

MI_FPARAM structure
(user-defined)

mi_fparam_allocate(),
mi_fparam_copy()

mi_fparam_free()
13-14 IBM Informix DataBlade API Programmer’s Guide

Choosing the Memory Duration
PER_STATEMENT Memory Duration

A PER_STATEMENT memory pool can be associated with each SQL statement,
until execution of the statement is complete and for a prepared statement,
until the statement terminates. The statement includes any SQL commands
that the SQL statement initiates.

Important: The PER_STATEMENT memory duration is supported for compatibility
with existing UDRs. In new code, you should use either the PER_STMT_EXEC or
PER_STMT_PREP memory duration. These more precise memory durations replace
PER_STATEMENT, which is deprecated.

When a C UDR allocates memory with the PER_STATEMENT memory
duration, this memory is available to all routine instances that execute in the
same SQL statement.

PER_STMT_EXEC Memory Duration

A PER_STMT_EXEC memory pool is associated with the execution of each SQL
statement. A statement is the entire SQL statement plus any SQL commands
that the SQL statement initiates, as follows:

� An SQL statement that the client application invokes

� An SQL statement that an SPL routine invokes

� An SQL statement that one of the following DataBlade API statement-
execution functions executes:

❑ mi_exec()

❑ mi_exec_prepared_statement()

❑ mi_open_prepared_statement()

When a C UDR allocates memory with the PER_STMT_EXEC memory
duration, this memory is available to all routine instances that execute in the
same SQL statement. For example, suppose that the following SELECT
statement invokes the a_func2() user-defined function:

SELECT a_func2(x) FROM table1 WHERE y > 7;
Managing Memory 13-15

Choosing the Memory Duration
Suppose also that the a_func2() function calls mi_exec() to execute a SELECT
that also invokes a_func2(), as follows:

mi_integer a_func2(arg)
mi_integer arg;

{
...
mi_exec(

"select a_func2(y) from table2 where b_func(y) > 7;", ...)

The SELECT query in the call to mi_exec() is a separate SQL command from
the main SELECT query. All invocations of the a_func2() function in the
mi_exec() SELECT statement can share any PER_STMT_EXEC memory that
this instance of a_func2() allocates. They can also share any PER_STMT_EXEC
memory that the b_func() function (in the WHERE clause) allocates.

The invocations of a_func2() in the SELECT on table1 have their own
PER_STMT_EXEC memory pool. They would not share it with invocations of
a_func2() in the mi_exec() call.

The database server reclaims any PER_STMT_EXEC memory in the current
memory context as follows:

� If the SQL statement does not contain any subqueries, the statement
consists of a single SQL command. The database server deallocates
PER_STMT_EXEC and PER_COMMAND memory at the same time.

� If the SQL statement contains one or more subqueries, the statement
consists of several SQL commands, one for the main query and one
for each subquery. The PER_STMT_EXEC memory remains allocated
until all SQL commands and UDRs complete.
13-16 IBM Informix DataBlade API Programmer’s Guide

Choosing the Memory Duration
At the completion of execution of a statement, the database server does not
reclaim any memory in the memory context with a duration higher than
PER_STMT_EXEC. The database server reclaims any PER_STMT_EXEC
memory when the SQL statement completes execution, as follows:

� For a noncursor statement, the database server deallocates
PER_STMT_EXEC memory as soon as the statement status is returned
to the client application.

This memory is actually freed on entry to the next execution of an
SQL statement. After the last (or only) execution of the SQL state-
ment, the database server deallocates the PER_STMT_EXEC memory
after sending the status of the SQL statement to the client application.
If a statement completes before the status is returned, the database
server schedules the memory for release but does not free it until the
return value is sent to the client application.

� For a cursor statement, the database server deallocates
PER_STMT_EXEC memory as soon as the statement status of close
cursor is returned to the client application.

This memory is actually freed on entry to the next open of the cursor.
After the last (or only) open of the cursor, the database server deallo-
cates the memory after sending the status of the closed cursor to the
client application.
Managing Memory 13-17

Choosing the Memory Duration
Examples of Using PER_STMT_EXEC Memory Duration

For example, suppose the a_func() user-defined function allocates
PER_STMT_EXEC memory. The code fragment in Figure 13-7 shows a UDR
that calls a_func() in a noncursor statement that executes twice.

PER_STMT_EXEC memory that a_func() allocates in the first call to
mi_exec_prepared_statement() is released just before the second execution of
the prepared INSERT statement begins. Any code after the first
mi_exec_prepared_statement() call that needs to access this memory can do
so. The PER_STMT_EXEC memory that a_func() allocates in the second call to
mi_exec_prepared_statement() remains allocated until the database server
returns to the client application the status of the SQL statement that has called
the udr_with_prepared_stmt() UDR.

mi_integer udr_with_prepared_stmt()
{

...
stmt3 = mi_prepare(conn,

"insert into tab3 values (a_func(87));", NULL);

/* 1st execution of prepared INSERT */
mi_exec_prepared_statement(stmt3, ...);

/* Code that needs to access PER_STMT_EXEC memory is here */
...

/* 2nd execution of prepared INSERT */
mi_exec_prepared_statement(stmt3, ...);
...
return stat;

}

Figure 13-7
PER_STMT_EXEC

Memory in a
Noncursor
Statement
13-18 IBM Informix DataBlade API Programmer’s Guide

Choosing the Memory Duration
The code fragment in Figure 13-8 shows use of a_func() in a cursor
statement.

Figure 13-8
PER_STMT_EXEC Memory in a Cursor Statement

mi_integer get_orders(start_with_cust, end_with_cust)
mi_integer start_with_cust;
mi_integer end_with_cust;

{
mi_string *cmd =

"select order_num, a_func(order_num) from orders \
 where customer_num = ?;";

MI_STATEMENT *stmt;
mi_integer i;

...
if ((stmt = mi_prepare(conn, cmd, NULL)) == NULL)

mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_prepare() failed");

if (start_with_cust > end_with_cust)
mi_db_error_raise(NULL, MI_EXCEPTION,

"Arguments invalid.");

for (i = start_with_cust; i <= end_with_cust; i++)
{
values[0] = i;
types[0] = "integer";
lengths[0] = 0;
nulls[0] = MI_FALSE;

/* Open the read-only cursor to hold the query rows */
if (mi_open_prepared_statement(stmt, MI_SEND_READ,

MI_TRUE, 1, values, lengths, nulls, types,
"cust_select", retlen, rettypes)
!= MI_OK)

mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_open_prepared_statement() failed");

/* Fetch the retrieved rows into the cursor */
if (mi_fetch_statement(stmt, MI_CURSOR_NEXT, 0, 3)

!= MI_OK)
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_fetch_statement() failed");

if (mi_get_result(conn) != MI_ROWS)
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_get_result() failed or found non-query statement");

/* Retrieve the query rows from the cursor */
if (!(get_data(conn)))

mi_db_error_raise(NULL, MI_EXCEPTION,
"get_data() failed");
Managing Memory 13-19

Choosing the Memory Duration
/* Close the cursor */
if (mi_close_statement(stmt) == MI_ERROR)

mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_close_statement() failed");

/* Code that needs to access PER_STMT_EXEC memory is here. */
...

} /* end for */

/* Release resources */
if (mi_drop_prepared_statement(stmt) == MI_ERROR)

mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_drop_prepared_statement() failed");

if (mi_close(conn) == MI_ERROR)
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_close() failed");
}

PER_STMT_EXEC memory that a_func() allocated is released just before the
cursor is reopened. Therefore, any code after the mi_close_statement()
function that needs to access this memory can do so. However, once the
cursor is reopened, code can no longer access this same PER_STMT_EXEC
memory. The PER_STMT_EXEC memory that a_func() allocates in the previous
(or only) open of the cursor remains allocated until the database server
returns to the client application the status of the SQL statement that has called
the get_orders() UDR.

Uses of PER_STMT_EXEC Memory Duration

The PER_STMT_EXEC memory duration is useful for communications
between UDRs, parallel execution, user-defined aggregates, and named
memory, and for memory allocations within an end-of-statement callback (if
you have information to pass to the callback).

Important: Any memory with a duration higher than PER_COMMAND could have
multiple threads access it. Consider whether you need to handle concurrency issues
for any PER_STMT_EXEC memory you allocate. For more information, see
“Handling Concurrency Issues” on page 13-45.

Several DataBlade API constructor functions allocate their DataBlade API
data type structure with a PER_STMT_EXEC memory duration. Figure 13-9
lists DataBlade API data type structures that have a memory duration of
PER_STMT_EXEC.
13-20 IBM Informix DataBlade API Programmer’s Guide

Choosing the Memory Duration
Figure 13-9
DataBlade API Data Type Structures with a PER_STMT_EXEC Memory Duration

Switching the current memory duration before one of the constructor
functions in Figure 13-9 does not change the PER_STMT_EXEC memory
duration of the allocated DataBlade API structure. These data type structures
are freed by their destructor function or when execution of the current SQL
statement completes. To retain access to some of these DataBlade API data
type structures after the statement completes, you must save them at the per-
session level.

Tip: The DataBlade API supports the ability to save information at a per-session
level. This ability, however, is an advanced feature of the DataBlade API. For more
information, see “Obtaining a Session-Duration Connection Descriptor” on
page 7-23.

PER_STMT_PREP Memory Duration

A PER_STMT_PREP memory pool is associated with each prepared SQL
statement. A prepared statement is an SQL statement that is parsed and ready
for execution. The following table summarizes ways to create and drop a
prepared statement.

DataBlade API Data
Type Structure

DataBlade API
Constructor Function

DataBlade API
Destructor Function

Connection descriptor
(MI_CONNECTION)

mi_open() mi_close()

Save-set structure
(MI_SAVE_SET)

mi_save_set_create() mi_save_set_destroy()

Method
To Create a Prepared
Statement To Drop a Prepared Statement

Client application
(SQL)

PREPARE FREE

C UDR
(DataBlade API)

mi_prepare() mi_drop_prepared_statement()
Managing Memory 13-21

Choosing the Memory Duration
When a C UDR allocates PER_STMT_PREP memory, this memory is available
to all routine instances that execute before the current prepared statement is
dropped. Unlike PER_STMT_EXEC memory, PER_STMT_PREP memory does
not get freed upon re-execution of the prepared statement; that is, it remains
allocated if the cursor is closed and reopened. For example, in Figure 13-8 on
page 13-19, any PER_STMT_PREP memory that a_func() allocated is not
released when the cursor is reopened. Therefore, any code that needs to
access this memory once the cursor is reopened can do so. The
PER_STMT_PREP memory that a_func() allocates remains allocated until the
mi_drop_prepared_statement() drops the stmt prepared statement.

When the prepared SQL statement is dropped, the database server reclaims
any PER_STMT_PREP memory in the memory context. It does not reclaim any
memory in the memory context with a duration higher than PER_STMT_PREP.

No DataBlade API constructor function allocates its data type structure with
a memory duration of PER_STMT_PREP.

Advanced Memory Durations

The DataBlade API memory-management functions also support several
advanced memory durations, which Figure 13-10 shows.

Figure 13-10
Advanced Memory Durations

Warning: The memory durations in Figure 13-10 are advanced and can adversely
affect your UDR if you use them incorrectly. Use them only when no regular
DataBlade API memory duration can perform the task you need.

Advanced Memory Duration
Memory-Duration
Constant Description

For the duration of the current
transaction

PER_TRANSACTION The database server frees the memory after the
current transaction ends (commit or rollback).

For the duration of the current
session

PER_SESSION The database server frees memory at the end of
the current session.

For the duration of the
database server execution

PER_SYSTEM The database server frees memory when it is
brought down.
13-22 IBM Informix DataBlade API Programmer’s Guide

Choosing the Memory Duration
As with the public memory-duration constants, the advanced memory-
duration constants in Figure 13-10 are of type MI_MEMORY_DURATION.
However, these constants are declared in the minmdur.h header file, not the
memdur.h header file. The minmmem.h header file automatically includes
the minmdur.h header file. The mi.h header file, however, does not automat-
ically include minmmem.h. To access advanced memory durations, you
must include minmmem.h in any DataBlade API routine that uses these
memory durations.

Important: Any memory with a duration higher than PER_COMMAND could have
multiple threads access it. Therefore, consider whether you need to handle concur-
rency issues for any PER_TRANSACTION, PER_SESSION, or PER_SYSTEM memory
you allocate. For more information, see “Handling Concurrency Issues” on
page 13-45.

PER_TRANSACTION Memory Duration

A PER_TRANSACTION memory pool can be associated with either of the
following:

� Each client transaction

If the UDR makes a PER_TRANSACTION allocation during a client
transaction, the database server uses memory from the
PER_TRANSACTION memory pool. The way that a transaction begins
and ends depends on whether the database is ANSI-compliant and
whether it uses logging. (For more information, see “Transaction
Management” on page 11-11.)

� A cursor started in a transaction

Statements within a cursor are considered a type of transaction. If the
UDR makes a PER_TRANSACTION allocation within a cursor, the
database server allocates memory from a special PER_CURSOR mem-
ory pool, which lasts from the open to the close of the cursor.

The PER_CURSOR memory duration is for internal use only. However,
you might see information about the PER_CURSOR memory pool in
the output of onstat -g mem. The database server creates a
PER_CURSOR memory pool for each cursor in a transaction.
Managing Memory 13-23

Choosing the Memory Duration
When a C UDR allocates PER_TRANSACTION memory, this memory is
available to all routine instances that execute before the current transaction
closes. The database server reclaims any PER_TRANSACTION shared memory
in the memory context in either of the following situations:

� When the current transaction ends (with commit or rollback)

❑ If SQL statements execute in an explicit transaction,
PER_TRANSACTION memory remains allocated until all state-
ments in the transaction complete.

❑ If each SQL statement is a separate transaction, the database
server deallocates PER_TRANSACTION and PER_STMT_EXEC
memory at the same time.

If a hold cursor is open when the transaction ends, the database
server does not deallocate PER_TRANSACTION memory. However, it
does deallocate PER_TRANSACTION memory whenever a hold cur-
sor closes.

� When the cursor closes

If the UDR allocated PER_TRANSACTION memory within a cursor,
the database server reclaims this memory when the cursor closes.

Tip: An EXECUTE PROCEDURE statement does not create an implicit transaction.
If EXECUTE PROCEDURE is not already part of an explicit transaction, the UDR
that it calls can use a BEGIN WORK and COMMIT WORK (or ROLLBACK WORK) to
specify a transaction. For more information, see “Transaction Management” on
page 11-11.

At this time, the database server does not reclaim any memory in the memory
context with a duration higher than PER_TRANSACTION.

The PER_TRANSACTION memory duration is useful for the following tasks:

� Cooperating UDRs in user-defined access methods (created with the
IBM Informix VTI and VII interfaces)

� Committing and rolling back external resources (such as files and
smart large objects)

� Allocating memory within an end-of-transaction callback (if you
have information to pass to the callback)

� Allocating data type structures that need to persist during an
implicit or explicit transaction
13-24 IBM Informix DataBlade API Programmer’s Guide

Choosing the Memory Duration
Allocate PER_TRANSACTION memory as named memory because this
memory requires locking. To access it, a C UDR must know the name of the
memory and it must be within the scope of the transaction. Such a UDR can
explicitly free this memory with the mi_named_free() function. However,
consider PER_TRANSACTION memory as permanent to the current trans-
action. For more information, see “Managing Named Memory” on
page 13-39.

No DataBlade API constructor function allocates its data type structure with
a memory duration of PER_TRANSACTION.

PER_SESSION Memory Duration

A PER_SESSION memory pool is associated with each session. A session
begins when a client connects to the database server, and it ends when the
connection terminates. When a C UDR allocates PER_SESSION memory, this
memory is available to all routine instances that execute before the current
session ends. When the current session ends, the database server reclaims
any PER_SESSION shared memory in the memory context. It does not reclaim
any memory in the memory context with a duration higher than
PER_SESSION.

The PER_SESSION memory duration is useful for the following tasks:

� External-resource management

� Session initialization

� Allocating memory within an end-of-session callback (if you have
information to pass to the callback)

� Using cursors defined as hold cursors (hold cursors can span
transactions)

� Caching expensive information between transactions for the life of
the session or information that pertains to the session connection

Allocate PER_SESSION memory as named memory because this memory
requires locking. To access it, a C UDR must know the name of the memory
and it must be within the scope of the session. Such a UDR can explicitly free
this memory with the mi_named_free() function. However, consider
PER_SESSION memory as permanent to the session. For more information,
see “Managing Named Memory” on page 13-39.
Managing Memory 13-25

Choosing the Memory Duration
Several DataBlade API constructor functions allocate their DataBlade API
data type structures with a PER_SESSION memory duration. Figure 13-11
shows the DataBlade API data type structures that have a memory duration
of PER_SESSION.

Figure 13-11
DataBlade API Data Type Structures with a PER_SESSION Memory Duration

Switching the current memory duration before one of the constructor
functions in Figure 13-11 does not change the PER_SESSION memory duration
of the allocated DataBlade API structure. These data type structures are freed
by their destructor function or when the current session ends.

DataBlade API Data
Type Structure

DataBlade API
Constructor Function

DataBlade API
Destructor Function

Session-duration
connection descriptor
(MI_CONNECTION)

mi_get_session_connection() End of session

Session-duration
function descriptor
(MI_FUNC_DESC)

mi_cast_get(),
mi_func_desc_by_typeid(),
mi_routine_get(),
mi_routine_get_by_typeid(),
mi_td_cast_get()

(when these functions receive a session-duration
connection descriptor as an argument)

End of session

File descriptor mi_file_open() mi_file_close()

Transient smart large
object

mi_lo_copy(),
mi_lo_create(),
mi_lo_expand(),
mi_lo_from_file(),
mi_lo_from_string()

(but do not insert the LO handle into a column of
the database)

mi_lo_release(),
mi_lo_delete_immediate()
13-26 IBM Informix DataBlade API Programmer’s Guide

Choosing the Memory Duration
PER_SYSTEM Memory Duration

A PER_SYSTEM memory pool is associated with the database server instance.
A database server instance begins when the oninit utility (or its equivalent)
initializes the database server, and it ends when the database server is
brought down. When a C UDR allocates PER_SYSTEM memory, this memory
is available to all routine instances that execute before the database server
instance is shut down. As the database server shuts down, it frees any
PER_SYSTEM shared memory.

The PER_SYSTEM memory duration is useful for system-wide caching and
resource initialization. Allocate PER_SYSTEM memory as named memory
because this memory requires locking. To access it, a C UDR must know the
name of the memory. The UDR can explicitly free this memory with the
mi_named_free() function. However, consider PER_SYSTEM memory as
permanent to the database server. For more information, see “Managing
Named Memory” on page 13-39.

Warning: The PER_SYSTEM memory duration takes up memory that the database
server might use for other tasks. Restrict your use of memory with the PER_SYSTEM
memory duration. For most uses, memory can be successfully allocated with shorter
memory durations.

No DataBlade API constructor function allocates its data type structure with
a memory duration of PER_SYSTEM.

Memory-Duration Considerations

When a UDR needs to allocate memory dynamically, it must take the
following actions:

� Choose an appropriate memory duration for which to allocate the
memory

� Save the address of the memory so that all UDRs that need to use the
memory can access it
Managing Memory 13-27

Choosing the Memory Duration
Choosing Memory Duration

When the UDR allocates memory, it must ensure that this memory has a
appropriate memory duration. Choose a memory duration on the basis of
which UDR instances need to share the information stored in the memory.
Make sure you choose a memory duration that is appropriate to the use of the
allocated memory. An inappropriate memory duration can cause the
following problems:

� If you allocate memory with a duration that is too small, expect to see
assertion failures in the message log file.

For example, if you allocate PER_ROUTINE memory and store its
address in the MI_FPARAM structure (which has a PER_COMMAND
duration), the memory is freed after one invocation of the UDR, caus-
ing the address in the MI_FPARAM to be no longer valid.

� If you allocate memory with a duration that is too large, you might
see memory leaks as your UDR executes.

Memory leakage can occur when you allocate memory that has a
higher duration than the structure that holds its address. For more
information, see “Monitoring Shared Memory” on page 13-54.

Whenever possible, use the following public memory-management features
of the DataBlade API:

� Public memory-management functions

These public functions are appropriate for a UDR that executes in the
context of just one SQL statement. The current memory duration,
which these functions use, is a useful way to ensure that all alloca-
tions occur with the same duration. For more information, see
“Managing the Memory Duration” on page 13-34.

mi_alloc()
mi_dalloc()

mi_zalloc(
mi_free()

mi_switch_mem_duration()
mi_realloc()
13-28 IBM Informix DataBlade API Programmer’s Guide

Choosing the Memory Duration
� Public memory durations

For more information, see “Public Memory Durations” on
page 13-10. Advanced memory durations are necessary only in cer-
tain situations.

Warning: Keep track of the scope and memory duration of the memory that you
allocate with the DataBlade API memory-management functions. Incorrect memory
duration can create serious memory corruption.

Saving the Memory Address

In addition to ensuring that the allocated memory has an appropriate
memory duration, you must ensure that the UDR can obtain the address of
this memory when it needs to access the information within the memory. For
example, if you allocate PER_COMMAND memory within a UDR but only
store its address in a local variable, this address is deallocated when the UDR
completes.

Important: The deallocation of the memory address but not the associated memory is
one of the most common causes of memory leaks. Make sure that the duration of the
memory address is compatible with that of its memory.

PER_ROUTINE
PER_COMMAND

PER_STMT_EXEC
PER_STMT_PREP
Managing Memory 13-29

Choosing the Memory Duration
The following table summarizes common ways to save a memory address.

Memory Duration Where To Store Memory Address Scope of Address

PER_ROUTINE Does not need to be handled
because the memory and its
address are only valid within a
single routine invocation.

Current invocation of
UDR

PER_COMMAND Store the memory address in the
user state of the MI_FPARAM
structure.

You can take special steps (such
as named memory) to store the
memory address so that it can be
accessed by other UDRs:

� Named memory

� Session-duration connection

All invocations of the
UDR within the current
SQL command

All UDRs that know the
name of the named-
memory block

All UDRs that have
access to the session-
duration connection
descriptor

PER_STMT_EXEC If the SQL statement does not
contain any subqueries, you can
store the memory address in the
user state of the MI_FPARAM
structure.

If the SQL statement contains
subqueries, you must take
special steps (such as named
memory) to store the memory
address so that it can be accessed
by other instances of the same
UDR or by other UDRs.

All invocations of the
UDR within the current
SQL statement
13-30 IBM Informix DataBlade API Programmer’s Guide

Managing Shared Memory
Managing Shared Memory
The following kinds of C functions can make allocations from the database
server shared memory:

� C UDRs

A C UDR has access to the following types of shared memory for
dynamic allocations: user memory and named memory.

� DataBlade API constructor functions

A constructor function allocates its DataBlade API data type struc-
ture in user memory. The constructor can allocate a particular data
type structure with a specified memory duration (Figure 13-5
through Figure 13-9) or the current memory duration (Figure 13-11
on page 13-26).

The DataBlade API provides the memory-management functions in
Figure 13-12 for the dynamic allocation of database server shared memory.

Figure 13-12
Memory-Management Functions of the DataBlade API

Important: Named memory is an advanced feature that can adversely affect your
UDR if you use it incorrectly. Use it only when no regular DataBlade API feature can
perform the task you need done.

Type of Shared
Memory Description DataBlade API Functions

User memory Memory that is accessible by its
address only. User memory can
be allocated in the current
memory duration or have a
specified memory duration.

mi_alloc(), mi_dalloc(),
mi_realloc(), mi_zalloc(),
mi_switch_mem_duration(),
mi_free()

Named memory Memory that has a name
assigned and is accessible by its
address or its name. Named
memory has a specified memory
duration.

mi_named_alloc(),
mi_named_zalloc(),
mi_named_get(),
mi_named_free()

mi_lock_memory(),
mi_try_lock_memory(),
mi_unlock_memory()
Managing Memory 13-31

Managing User Memory
Tip: A client LIBMI application can also use DataBlade API memory-management
functions to perform dynamic allocations. However, these memory-management
functions allocate memory from the client process, not from the shared memory of the
database server. Therefore, memory that these functions allocate from within a client
LIBMI application does not have a memory duration associated with it. For more
information, see “Managing Memory in Client LIBMI Applications” on page A-2.

These DataBlade API memory-management functions in Figure 13-12 on
page 13-31 work correctly with the transaction management and memory
reclamation of the database server. In particular, they provide the following
advantages:

� These functions allocate the memory from shared memory so that all
VPs can access it.

� The database server automatically reclaims memory allocated with
these functions.

These functions establish a memory duration for the memory they
allocate. When this memory duration expires, the database server
automatically marks the memory for reclamation. For more informa-
tion, see “Choosing the Memory Duration” on page 13-7.

Managing User Memory
A C UDR allocates user memory from the database server shared memory. It is
accessed by address. The DataBlade API provides memory-management
functions to allocate user memory dynamically. These functions return a
pointer to the address of the allocated memory and subsequent operations
are performed on that pointer. Figure 13-13 shows the memory-management
functions that the DataBlade API provides for memory operations on user
memory.
13-32 IBM Informix DataBlade API Programmer’s Guide

Managing User Memory
Figure 13-13
DataBlade API User-Memory-Management Functions

Tip: The DataBlade API memory-management functions execute in client LIBMI
applications as well as C UDRs. For DataBlade API modules that you design to run
in both client LIBMI applications and UDRs, use these memory-management
functions. For information on the behavior of these memory-management functions
in a client LIBMI application, see Appendix A, “Writing a Client LIBMI
Application.”

The following table summarizes the memory operations for user memory.

User-Memory Task DataBlade API Function

Allocating user memory mi_alloc(), mi_dalloc(), mi_realloc(),
mi_zalloc()

Changing the size of an existing
memory block

mi_realloc()

Changing current memory duration mi_switch_mem_duration()

Deallocating user memory mi_free()

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_alloc(), mi_dalloc(),
mi_zalloc()

Destructor mi_free()
Managing Memory 13-33

Managing User Memory
Allocating User Memory

To handle dynamic memory allocation of user memory, use one of the
following DataBlade API memory-management functions.

These user-memory-allocation functions allocate memory from the shared
memory of the database server at a particular memory duration.

Tip: The DataBlade API library also provides memory-management functions to
manage named memory. These named-memory-management functions are advanced
functions. Use them only when user-memory-management functions cannot perform
the task you need done. For more information, see “Managing Named Memory” on
page 13-39.

Managing the Memory Duration

The current memory duration is the memory duration that applies when the
mi_alloc() or mi_zalloc() function allocates memory. These functions do not
specify a memory duration for their allocation. Instead, they use the current
memory duration for the memory they allocate. By default, the current
memory duration is the default memory duration. The default memory
duration is PER_ROUTINE; that is, the database server marks the memory for
reclamation when the UDR completes. Therefore, the mi_alloc() and
mi_zalloc() functions allocate memory with a duration of PER_ROUTINE by
default.

Subsequent sections provide the following information:

� The DataBlade API structures allocated in the current memory
duration

� How to change the current memory duration

Memory-Allocation Task
DataBlade API
Function

To allocate user memory with the current memory duration mi_alloc()

To allocate user memory with a specified memory duration mi_dalloc()

To allocate user memory with the current memory duration that is
initialized with zeros

mi_zalloc()

Server
13-34 IBM Informix DataBlade API Programmer’s Guide

Managing User Memory
Using the Current Memory Duration

Many of the DataBlade API constructor functions assign the current memory
duration to the DataBlade API data type structures that they allocate.
Figure 13-14 shows the DataBlade API data type structures that are allocated
with the current memory duration.

Figure 13-14
DataBlade API Data Type Structures with the Current Memory Duration

DataBlade API Data Type Structure DataBlade API Constructor Function
DataBlade API
Destructor Function

Collection descriptor
(MI_COLL_DESC)

mi_collection_open(),
mi_collection_open_with_options()

mi_collection_close()

Collection (MI_COLLECTION) mi_collection_copy(),
mi_collection_create(),
mi_streamread_collection()

mi_collection_free()

Error descriptor
(MI_ERROR_DESC)

mi_error_desc_copy() mi_error_desc_destroy()

LO handle (MI_LO_HANDLE) mi_get_lo_handle(), mi_lo_copy(),
mi_lo_create(), mi_lo_expand(),
mi_lo_from_file(),
mi_lo_from_string()

mi_lo_delete_immediate(),
mi_lo_release()

LO-specification structure
(MI_LO_SPEC)

mi_lo_spec_init() mi_lo_spec_free()

LO-status structure
(MI_LO_STAT)

mi_lo_stat() mi_lo_stat_free()

MI_LO_LIST mi_lo_lolist_create() None

Row descriptor
(MI_ROW_DESC)

mi_row_desc_create() mi_row_desc_free()

Row structure (MI_ROW) mi_row_create(),
mi_streamread_row()

mi_row_free()

(1 of 2)
Managing Memory 13-35

Managing User Memory
To change the memory duration of a DataBlade API data type structure, call
the mi_switch_mem_duration() function with the desired duration before
the DataBlade API function call that allocates the object. For more infor-
mation, see “Changing the Memory Duration” on page 13-36.

Important: All the DataBlade API functions in Figure 13-14 allocate structures with
the current memory duration. If you switch the current memory duration, you affect
not only explicit allocations you make with mi_alloc() or mi_zalloc() but the
memory allocations that all these DataBlade API constructor functions do as well.

Changing the Memory Duration

The PER_ROUTINE memory duration is the default protection on a region of
user memory. You can change the memory duration of user memory to
another duration in either of the following ways:

� Use mi_dalloc() instead of mi_alloc() to allocate memory.

The mi_dalloc() function works in the same way as mi_alloc() but
provides the option of specifying the memory duration of the mem-
ory to allocate. This function does not switch the current memory
duration.

� Call mi_switch_mem_duration() before you call mi_alloc().

The mi_switch_mem_duration() function switches the current
memory duration. All user-memory allocations by subsequent calls
to mi_alloc() or mi_zalloc() have the new current memory
duration.

Stream descriptor (MI_STREAM) mi_stream_init(),
mi_stream_open_fio(),
mi_stream_open_mi_lvarchar(),
mi_stream_open_str()

mi_stream_close()

User memory mi_alloc(), mi_zalloc() mi_free()

Varying-length structure
(mi_lvarchar, mi_sendrecv,
mi_impexp, mi_impexpbin)

mi_new_var(),
mi_streamread_lvarchar(),
mi_string_to_lvarchar(),
mi_var_copy()

mi_var_free()

DataBlade API Data Type Structure DataBlade API Constructor Function
DataBlade API
Destructor Function

(2 of 2)
13-36 IBM Informix DataBlade API Programmer’s Guide

Managing User Memory
You can use regular or advanced memory durations for user memory. For
most memory allocations in a C UDR, use one of the regular memory-
duration constants (PER_ROUTINE, PER_COMMAND, PER_STMT_EXEC, or
PER_STMT_PREP).

Important: Use an advanced memory duration for user memory only if a regular
memory duration cannot safely perform the task you need done. These advanced
memory durations have long duration times and can increase the possibility of
memory leakage.

Changing the current memory duration with mi_switch_mem_duration()
has an effect on the memory durations of all DataBlade API data type struc-
tures that Figure 13-14 on page 13-35 lists. It does not have an effect on the
memory duration of DataBlade API data type structures allocated at the
PER_COMMAND (Figure 13-6 on page 13-14) and PER_STMT_EXEC
(Figure 13-9 on page 13-21) durations or at the advanced memory durations
(Figure 13-11 on page 13-26).

The mi_switch_mem_duration() function returns the previous memory
duration. You can use this return value to restore memory duration after
performing some allocations at a different duration. The following code
fragment temporarily changes the current memory duration from
PER_ROUTINE (the default) to PER_COMMAND:

/* Switch current memory duration to PER_COMMAND and save
* old current memory duration in 'old_mem_dur'
*/

old_mem_dur = mi_switch_mem_duration(PER_COMMAND);

/* Perform allocations for a new current memory duration */
buffer = (char *)mi_alloc(BUFF_SIZE);
new_lvarch = mi_new_var(BUFF_SIZE-1);
save_set = mi_save_set_create(conn);

/* Restore old current memory duration */
(void)mi_switch_mem_duration(old_mem_dur);
Managing Memory 13-37

Managing User Memory
In the preceding code fragment, the PER_COMMAND memory duration is in
effect for the allocation of user memory that the call to mi_alloc() makes.
Because the mi_new_var() function allocates a new varying-length structure
in the current memory duration, this call to mi_new_var() allocates the
varying-length structure with a PER_COMMAND duration. However, the
mi_save_set_create() function does not allocate its save-set structure at the
current memory duration. Therefore, the call to mi_save_set_create() still
allocates its save-set structure with the PER_STMT_EXEC duration. The
second call to mi_switch_mem_duration() restores the current memory
duration to PER_ROUTINE.

Deallocating User Memory

The database server automatically reclaims the user memory that mi_alloc(),
mi_dalloc(), and mi_zalloc() allocate. The memory duration of the user
memory determines when the database server marks the memory for
deallocation.

Tip: If a DataBlade API function allocates memory to hold its return result, the
database server automatically frees this memory when its duration expires unless
otherwise noted in its description in function descriptions.

User memory remains valid until one of the following events occurs:

� The mi_free() function frees the memory.

� The memory duration expires.

� The mi_close() function closes the current connection (except
memory with a PER_SYSTEM duration).

� A database server exception is raised.

A C UDR is not allowed to cache information from the database across trans-
action boundaries. Because the state of the database might change entirely
when the current transaction commits, any cached information might be
invalid. Therefore, UDRs must reinitialize any database state that they require
when the next transaction begins. To enforce the policy of no caching across
transactions, the database server automatically reclaims memory marked for
deallocation at transaction boundaries. In addition, the database server
reclaims memory when specified memory durations expire, usually when a
UDR allocates and returns a value.
13-38 IBM Informix DataBlade API Programmer’s Guide

Managing Named Memory
To conserve resources, use the mi_free() function to explicitly deallocate the
user memory once your DataBlade API module no longer needs it. The
mi_free() function is the destructor function for user memory.

Keep the following restrictions in mind about memory deallocation:

� Do not free user memory that you allocate for the return value of a
UDR.

� Do not free memory until you are finished accessing the memory.

� Do not use mi_free() to deallocate memory that you have not
explicitly allocated.

� Do not use mi_free() for data type structures that other DataBlade
API constructor functions allocate.

� Do not attempt to free user memory after its memory duration has
expired.

� Reuse memory whenever possible. Do not repeat calls to allocation
functions if you can reuse the memory for another task.

Managing Named Memory
Named memory is memory allocated from the database server shared memory,
just as user memory. You can, however, assign a name to a block of named
memory and then access this memory block by name and memory duration.
The database server stores the name and its corresponding address inter-
nally. By contrast, user memory is always accessed by its address.

The disadvantage of user memory is that the database server deallocates
PER_COMMAND, PER_STMT_EXEC, PER_STMT_PREP, and PER_STATEMENT
memory after the command or statement completes. Because a UDR might
execute many times for a particular SQL statement (once for each row
processed), you might want to retain the memory pointer across all calls to
the same UDR.

Tip: The DataBlade API named-memory-management functions execute only in C
UDRs. Do not use these memory-management functions in client LIBMI applica-
tions. For DataBlade API modules that you design to run in both client LIBMI
applications and UDRs, use the user-memory-management functions. For infor-
mation on memory management in a client LIBMI application, see Appendix A,
“Writing a Client LIBMI Application.”
Managing Memory 13-39

Managing Named Memory
To save memory across invocations of a UDR, you can perform one of the
following tasks:

� You can save the memory pointer as part of the user state in the
MI_FPARAM structure that is associated with the UDR.

For more information, see “Saving a User State” on page 9-14.

� You can allocate named memory with an appropriate memory
duration.

The advantage of named memory is that it is global within the mem-
ory duration it was allocated. Therefore, it can be accessed by many
UDRs that execute in the context of many queries, or even by more
than one session. Named memory is useful as global memory for
caching data across UDRs or for sharing memory between UDRs exe-
cuting in the context of many SQL statements.

Possible uses for named memory follow:

� Semi-static lookup information that can be shared among UDRs or
sessions

� Caching function descriptors at the session level for repeated calls to
mi_routine_exec()

� Index methods that need to store global information for an index
scan across a fragmented index

The DataBlade API provides the memory-management functions to dynami-
cally allocate named memory in a C UDR. These functions return a name of
the named-memory block and subsequent operations are performed on that
name and memory duration. Figure 13-15 shows the memory-management
functions that the DataBlade API provides for memory operations on named
memory.
13-40 IBM Informix DataBlade API Programmer’s Guide

Managing Named Memory
Figure 13-15
DataBlade API Named-Memory-Management Functions

Warning: These advanced memory-management functions can adversely affect your
UDR if you use them incorrectly. Use them only when the regular DataBlade API
user-memory-management functions cannot perform the task you need done.

The minmprot.h header file defines the functions and data type structures of
the named-memory-management functions. The minmmem.h header file
automatically includes the minmprot.h header file. However, the mi.h
header file does not automatically includes minmmem.h. To access the
named-memory-management functions, you must include minmmem.h in
any DataBlade API routine that calls these functions.

Tip: Each of the named-memory functions in Figure 13-15 have tracepoints in them
that generate output when the trace level is greater than zero (0). The output consists
of the function name and the arguments passed to it. For more information on trace-
points, see “Using Tracing” on page 11-46.

The following table summarizes the memory operations for named memory.

Named-Memory Task DataBlade API Functions

Allocating named memory mi_named_alloc(),
mi_named_zalloc()

Obtaining an allocated named-memory block mi_named_get()

Controlling concurrency mi_lock_memory(),
mi_try_lock_memory(),
mi_unlock_memory()

Deallocating named memory mi_named_free()

Memory Duration Memory Operation Function Name

Specified memory duration Constructor mi_named_alloc(),
mi_named_zalloc()

Destructor mi_named_free()
Managing Memory 13-41

Managing Named Memory
Allocating Named Memory

To handle dynamic memory allocation of named memory, use one of the
following DataBlade API memory-management functions.

These named-memory-allocation functions allocate a block of named
memory of a specified size and a specified memory duration. You can use
both regular and advanced memory durations for named memory. Usually,
named-memory allocations are at memory durations longer than
PER_COMMAND. With PER_ROUTINE and PER_COMMAND memory
durations, you can use the MI_FPARAM structure to store information. You
must ensure that the memory duration is sufficiently long that all UDRs that
need to access it can access it.

Tip: These named-memory-management functions do not use the current memory
duration.

If the allocation of the named-memory block is successful, these functions
store a pointer to the allocated block in their mem_ptr argument. The UDR that
allocated the named-memory block can access this named memory through
this address. However, this address is deallocated when the routine
invocation completes. Other UDRs must use the block name to access the
named-memory block. For more information, see “Obtaining a Block of
Allocated Named Memory” on page 13-43.

These DataBlade API memory-management functions work correctly with
the transaction management and memory reclamation of the database server.
They provide the same advantages as the user-memory-management
functions (see “Allocating User Memory” on page 13-34). In addition, they
provide the advantage that the named-memory block can be accessed by a
name, which facilitates access to the memory across UDRs.

Memory-Allocation Task
DataBlade API
Function

To allocate named memory with a specified memory
duration

 mi_named_alloc()

To allocate named memory with a specified memory
duration that is initialized with zeros

mi_named_zalloc()
13-42 IBM Informix DataBlade API Programmer’s Guide

Managing Named Memory
Obtaining a Block of Allocated Named Memory

The benefit of named memory is that several UDRs can access it. Therefore,
UDRs can cache data for sharing between UDRs executing in different
contexts. To use named memory, UDRs that need to access it must take the
following steps:

� One UDR needs to allocate the named-memory block with
mi_named_alloc() or mi_named_zalloc().

This named-memory block must have a name that will be known to
all UDRs that need to access the block. It must also have a memory
duration that is sufficient for the required lifetime of the cached data.
The UDR that allocates the named memory can access the data from
the address that mi_named_alloc() or mi_named_zalloc() returns.
However, once this UDR completes, the local copy of this address is
deallocated.

� Any UDR that needs to access the data in the named-memory block
can specify the name and memory duration of the memory block to
mi_named_get().

The mi_named_get() function returns the address of the named-
memory block. The UDR can use this address to access the desired
data within the named memory.

For example, suppose a UDR named initialize() allocates a named-memory
block named cache_blk with the following mi_named_alloc() call:

mi_integer *blk_ptr;
mi_integer status;
...
status = mi_named_alloc(sizeof(mi_integer), "cache_blk",

PER_STMT_EXEC, &blk_ptr);

switch(status)
{

case MI_ERROR:
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_named_alloc for cache_blk failed.");
break;

case MI_NAME_ALREADY_EXISTS:
break;
Managing Memory 13-43

Managing Named Memory
case MI_OK:
*blk_ptr = 0;
break;

default:
mi_db_error_raise(NULL, MI_EXCEPTION,

"Invalid mi_named_alloc status for cache_blk");
}

If another UDR, for example, some_task(), needs to access the integer in
cache_blk, it can use the mi_named_get() function, as the following code
fragment shows:

mi_integer *blk_ptr;
mi_integer status;
...
status = mi_named_get("cache_blk", PER_STMT_EXEC, &blk_ptr);

switch(status)
{

case MI_ERROR:
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_named_get for cache_blk failed.");
break;

case MI_NO_SUCH_NAME:
/* maybe need to call mi_named_alloc() here */
...
break;

case MI_OK:
if (*blk_ptr > 0)

*blk_ptr++;
break;

default:
mi_db_error_raise(NULL, MI_EXCEPTION,

"Invalid mi_named_alloc status for cache_blk");
}

If some_task() successfully obtains the address of the cache_blk named-
memory block (status is MI_OK), it increments the cached integer.

Important: The preceding code fragment does not handle concurrency issues that
result from multiple UDRs trying to access the cache_blk named memory at the
same time. For more information, see “Handling Concurrency Issues” on
page 13-45.
13-44 IBM Informix DataBlade API Programmer’s Guide

Managing Named Memory
Handling Concurrency Issues

By default, the database server runs UDRs concurrently. A UDR that uses data
it shares with other UDRs or with multiple instances of the same routine must
implement concurrency control on its data. When the named-memory
functions mi_named_alloc(), mi_named_zalloc(), and mi_named_get()
return the address of a named-memory block, they do not request a lock on
this named memory. It is the responsibility of your UDRs or DataBlade to
manage concurrency issues on the named-memory block.

The greater the memory duration that is associated with the named memory,
the more likely that you must manage concurrency of that memory. If the
named memory is never updated (it is read-only), there are no concurrency
problems. However, if any UDR updates the named memory that has a
duration of PER_COMMAND or greater, there are concurrency issues just like
there are for any global variable that gets updated.

For example, suppose the function myfunc() allocates a named-memory
block named named_mem1. The memory duration of named_mem1 deter-
mines possible concurrency issues when myfunc() is called in the following
query:

SELECT * FROM my_table
WHERE myfunc(column1) = 1

OR myfunc(column2) = 2
Managing Memory 13-45

Managing Named Memory
The following table shows possible concurrency issues of named_mem1.

To handle concurrency problems, use the following DataBlade API memory-
locking functions in UDRs that update named memory.

Named-Memory Allocation Concurrency Issues?

mi_named_alloc(2048, "named_mem1",
PER_COMMAND, nmem1_ptr)

Yes

Each invocation of myfunc() in the query gets it own private
instance of named_mem1, which expires when the UDR
completes, but there might be multiple threads running in
a subquery that share the same PER_COMMAND pool.
If PER_COMMAND memory is cached in the MI_FPARAM
user data, however, there are no concurrency issues because
each thread has its own MI_FPARAM structure. Unless you
need memory to be shared between threads, this is the
preferable alternative for PER_COMMAND.

mi_named_alloc(2048, "named_mem1",
PER_SESSION, nmem1_ptr)

Yes

Each invocation of myfunc() in the same query accesses the
same named_mem1. This memory does not get deallocated
until the session closes.

mi_named_alloc(2048, "named_mem1",
PER_SYSTEM, nmem1_ptr)

Yes

Every invocation of myfunc() in every SQL statement accesses
the same named_mem1. This memory does not get deallocated
until the database server shuts down.

Memory-Locking Task
DataBlade API
Memory-Locking Function

Request a lock on the specified named-memory block
and wait for the lock to be obtained.

mi_lock_memory()

Request a lock on the specified named-memory block
and do not wait for the lock to be obtained.

mi_try_lock_memory()

Unlock the specified named-memory block. mi_unlock_memory()
13-46 IBM Informix DataBlade API Programmer’s Guide

Managing Named Memory
The following guidelines are recommended for handling concurrency
problems:

� The safest approach, even for threads that only read named memory,
is to lock the named-memory block.

After the named-memory block is locked, you can guarantee that all
accesses will obtain a consistent read.

� Keep the time that you lock a named-memory block as short as
possible.

The DataBlade API locking interface is intended to be used in a
tightly coupled, fast section of code that protects a critical region dur-
ing modification. Code should follow these steps:

❑ Lock the named memory with mi_lock_memory() or
mi_try_lock_memory().

❑ Perform the modification or consistent read.

❑ Immediately unlock the memory with mi_unlock_memory().

� If you need to hold locks for a long time, do it with SQL in a client
application.

Tip: Locking of named memory (with mi_lock_memory() and
mi_try_lock_memory()) uses its own locking mechanism to keep track of named-
memory locks. It does not consume database locks.

Suppose you have a user-defined structure named MyInfo with the
following declaration:

typedef struct
{

mi_integer is_initialized;
... other members here....

} MyInfo;
Managing Memory 13-47

Managing Named Memory
The following sample code allocates a named-memory block named
MyInfo_memory for the MyInfo structure. It then locks a critical section of
code before updating the is_initialized integer in this named-memory block.

MyInfo *GetMyInfo()
{

mi_string *memname="MyInfo_memory",
msgbuf[80];

mi_integer status;
MyInfo *my_info = NULL;

/* Allocate the named-memory block. If it has already been
* allocated, obtain a pointer to this block.
*/
status = mi_named_zalloc(sizeof(MyInfo),

memname, PER_SESSION, (void **)&myinfo);
if(status == MI_NAME_ALREADY_EXISTS)

status = mi_named_get(memname, PER_SESSION,
(void **)&my_info);

switch(status)
{

case MI_ERROR:
mi_db_error_raise(NULL, MI_EXCEPTION,

"GetMyInfo: mi_named_get or mi_named_zalloc failed.");
return (MyInfo *)NULL;
break;

/* Have a pointer to the named_memory block. */
case MI_OK:

break;

case MI_NO_SUCH_NAME:
mi_db_error_raise(NULL, MI_EXCEPTION,

"GetMyInfo: no name after good get");
return (MyInfo *)NULL;
break;

default:
sprintf(msgbuf,
"GetMyInfo: mi_named memory case %d.", status);
mi_db_error_raise(NULL, MI_EXCEPTION, msgbuf);
return (MyInfo *)NULL;
break;

}

13-48 IBM Informix DataBlade API Programmer’s Guide

Managing Named Memory
/*
* BEGIN CRITICAL SECTION.
*
* All access to the my_info structure is done
* inside this lock-protected section of code.
*
* If two threads try to initialize information
* at the same time, the second one blocks on
* the mi_lock_memory call.
*
* A reader also blocks so that it gets a
* consistent read if another thread is updating
* that memory.
*/

status = mi_lock_memory(memname, PER_SESSION);
switch(status)
{

case MI_ERROR:
mi_db_error_raise(NULL, MI_EXCEPTION,

"GetMyInfo: mi_lock_memory call failed.");
return (MyInfo *)NULL;
break;

case MI_OK:
break;

case MI_NO_SUCH_NAME:
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_lock_memory got MI_NO_SUCH_NAME.");
return (MyInfo *)NULL;
break;

default:
sprintf(msgbuf,

"GetMyInfo: mi_lock_memory case %d.",
status);

mi_db_error_raise(NULL, MI_EXCEPTION, msgbuf);
return (MyInfo *)NULL;
break;

}

Managing Memory 13-49

Managing Named Memory
/* The lock on the named-memory block has been
* obtained.
*/

/* The mi_named_zalloc() call above zeroed out
* the structure, like calloc(). So if the is_initialized
* flag is set to zero, named memory has not been
* initialized yet.
*/

if (my_info->is_initialized == 0)
{

/* In this block we populate the named-memory
* structure. After initialization succeeds, set the
* is_initialized flag.
*
* If any operation fails, MUST release the lock
* before calling mi_db_error_raise():
*
* if (whatever != MI_OK)
* {
* mi_unlock_memory(memname, PER_SESSION);
* mi_db_error_raise(NULL, MI_EXCEPTION,
* "operation X failed!");
* return (MyInfo *)NULL;
* }
*
*/

my_info->is_initialized = 1;

} /* endif: MyInfo structure not initialized */
else
{

/* Update or get a consistent read here. Again,
* before any exception is raised with
* mi_db_error_raise(), the lock MUST be released.
*/

}

/*
* END CRITICAL SECTION.
*/

mi_unlock_memory (memname, PER_SESSION);

return my_info;
}

13-50 IBM Informix DataBlade API Programmer’s Guide

Managing Named Memory
The preceding code fragment uses the mi_lock_memory() function to obtain
the lock on the named memory. The following code fragment uses
mi_try_lock_memory() to try to get a lock on a named-memory block 10
times before it gives up:

for (lockstat=MI_LOCK_IS_BUSY, i=0;
lockstat == MI_LOCK_IS_BUSY && i < 10;
i++)

{
lockstat = mi_try_lock_memory(mem_name, PER_STMT_EXEC);
switch(lockstat)
{

case MI_OK:
break;

case MI_LOCK_IS_BUSY:
mi_yield(); /* Yield the processor. */
break;

case MI_NO_SUCH_NAME:
mi_db_error_raise(NULL, MI_EXCEPTION,

"Invalid name of memory after good get");
return MI_ERROR;
break;

case MI_ERROR:
mi_db_error_raise(NULL, MI_EXCEPTION,

"Lock request failed.");
return MI_ERROR;
break;

default:
mi_db_error_raise(NULL, MI_EXCEPTION,

"Invalid status from mi_try_lock_memory()");
return MI_ERROR;
break;

}
}
/* Check the status after coming out of the loop. */
if(lockstat == MI_LOCK_IS_BUSY)

{
mi_db_error_raise(NULL, MI_EXCEPTION,

 "Could not get lock on named memory.");
return MI_ERROR;

}

/* Now have a locked named-memory block. Can perform a
* read or update on the memory.
*/

...
mi_unlock_memory(mem_name, PER_STMT_EXEC);
Managing Memory 13-51

Managing Named Memory
Usually, the mi_try_lock_memory() function is a better choice than
mi_lock_memory() for lock requests because mi_try_lock_memory() does
not hang if the lock is busy.

The database server does not release any locks you acquire on named
memory. You must ensure that your code uses the mi_unlock_memory()
function to release locks in the following cases:

� Immediately after you are done accessing the named memory

� Before you raise an exception with mi_db_error_raise()

� Before you call another DataBlade API function that raises an
exception internally (For more information, see “Handling Errors
from DataBlade API Functions” on page 10-42.)

� Before the session ends

� Before the memory duration of the named memory expires

� Before you attempt to free the named memory

Warning: After you obtain a lock on a named-memory block, you must explicitly
release it with the mi_unlock_memory() function. Failure to release a lock before
one of the previous conditions occurs can severely impact the operation of the
database server.

Deallocating Named Memory

The database server automatically reclaims the named memory that
mi_named_alloc() and mi_named_zalloc() allocate. The memory duration
of the named memory determines when the database server marks the
memory for deallocation. Named memory remains valid until either of the
following events occurs:

� The mi_named_free() function frees the memory.

� The memory duration expires.

To conserve resources, use the mi_named_free() function to explicitly
deallocate the named memory once your DataBlade API module no longer
needs it. The mi_named_free() function is the destructor function for named
memory.
13-52 IBM Informix DataBlade API Programmer’s Guide

Managing Named Memory
Keep the following restrictions in mind about memory deallocation of named
memory:

� Do not free memory until you are finished accessing the memory.

� Do not free memory that is still locked.

� Do not use mi_named_free() to deallocate memory that you have
not explicitly allocated with mi_named_alloc() or
mi_named_zalloc().

� Do not attempt to free named memory after its memory duration has
expired.

� Reuse memory whenever possible. Do not repeat calls to allocation
functions if you can reuse the memory for another task.

The mi_named_free() function cannot free a named-memory block that is
currently locked by another owner. If a UDR with another owner has a lock
on the requested memory block, mi_named_free() marks the block as
“deallocation pending” but does not actually free the memory. A subsequent
call to mi_named_get() would return the MI_NO_SUCH_NAME return value
for this named-memory block. Once the UDR with another owner has
explicitly unlocked the memory block with mi_unlock_memory(), a
“deallocation pending” memory block is automatically freed. A subsequent
call to mi_named_get() from this other UDR would return the
MI_NO_SUCH_NAME return value for this named-memory block.
Managing Memory 13-53

Monitoring Shared Memory
Monitoring Shared Memory
You can monitor use of memory that your UDR allocates (explicitly or
implicitly) with the following options of the onstat utility:

� The -g ses option outputs session information.

You can specify a particular session identifier after the ses keyword.
If you do not include a session identifier, onstat -g ses outputs a one-
line summary for each active session. Look for any session whose
memory allocation or usage steadily increases.

� The -g mem option outputs statistics for a memory pool.

Internally, the database server organizes memory allocations into
memory pools by duration. You can specify a particular pool name
after the mem keyword. If you do not include a pool name,
onstat -g mem outputs a one-line summary for each memory pool.
To detect memory leakage, look for any pool whose memory alloca-
tion or usage steadily increases.

Tip: You can use the -r option of onstat in conjunction with either of the preceding
options to have onstat repeat the command every specified number of seconds.

Monitoring memory is useful for tracking down memory leakage. Memory
leakage occurs when memory remains allocated after the structure that holds
its address was deallocated. There is no way to access the memory once its
address is gone. Therefore, the memory remains with no way to remove it.

Suppose that the onstat -g ses command produces the following sample
output:

session #RSAM total used
id user tty pid hostname threads memory memory
24 informix- 0 - 0 8192 5880
23 informix- 13453 bison 1 6701056 6608512
8 informix- 0 - 0 8192 5880
7 informix- 0 - 0 16384 14344
6 informix- 0 - 0 8192 5880
4 informix- 0 - 0 16384 14344
3 informix- 0 - 0 8192 5880
2 informix- 0 - 0 8192 5880
ps auxw | grep 13453

Suppose also that your DB-Access session is hooked to session 23 (the itali-
cized line in the preceding sample output).
13-54 IBM Informix DataBlade API Programmer’s Guide

Monitoring Shared Memory
You can determine the session identifier of the DB-Access session on UNIX or
Linux with the following command:

ps auxw | grep 13453

♦

You can now obtain information about memory-pool usage with the
-g mem option of onstat:

onstat -g mem

Suppose that the preceding onstat command generated the following sample
output (some output lines are omitted for brevity):

Pool Summary:
name class addr
resident R a002018
res-buff R a118018
global V a18a018
mt V a18e018
smartblobV a192018
...
23 V a3e0018
24 V a3e2018
23.RTN.SAPIV a40c018
23.CMD.SAPIV a3ee018
...

Figure 13-16 shows the lines of the onstat -g mem output that indicate user
memory allocations.

Figure 13-16
Memory Pools in

onstat -g mem
Output

UNIX/Linux

23.RTN.SAPIVa40c018
23.CMD.SAPIVa3ee018

Session identifier

Memory-pool name

Abbreviation indicating that memory
is DataBlade API user memory
Managing Memory 13-55

Monitoring Shared Memory
Each memory duration has a separate memory pool. The three letters before
“SAPI” identify each memory pool. The following table shows the memory-
pool names for regular and advanced memory durations.

After you determine a specific session identifier or memory-pool name that
exhibits a problem, you can find out which specific kind of memory is
affected with the -g ufr option of onstat. The -g ufr option of onstat shows
memory fragments by usage. For example, the following onstat command
captures a snapshot every 30 seconds of memory pools that session 23 uses:

onstat -g ufr 23 -r 30

Memory-Pool Name Associated Memory Pool

RTN PER_ROUTINE

CMD PER_COMMAND

STM PER_STATEMENT (deprecated duration)

EXE PER_STMT_EXEC

PRP PER_STMT_PREP

TRX PER_TRANSACTION (advanced duration)

UNK PER_CURSOR (advanced duration)

SES PER_SESSION (advanced duration)

SYS PER_SYSTEM (advanced duration)
13-56 IBM Informix DataBlade API Programmer’s Guide

Managing Stack Space
Sample output for the preceding command follows:

Memory usage for pool name 23:
size memid
2152 log
2016 ostcb
2600 sqtcb
8472 gentcb
1664 osenv
6392648 sqscb
792 filetable
112 rdahead
120 overhead
96 scb
416 sapi
3296 fragman
18808 opentable
280 hashfiletab
10056 temprec
592 GenPg
224 ru
56 sort
94848 ralloc

In the preceding sample output, the main memory consumer is sqscb.

Any memory leakage from a DataBlade API function would show up in the
memid column entry labelled sapi. For more information on the onstat
command, see the Administrator’s Reference.

Managing Stack Space
Session threads execute C UDRs and their thread-stack space is allocated
from a common region in shared memory. The thread stack stores nonshared
data for the UDRs and system routines that the thread executes. This stack
contains everything that would normally be on the execution stack,
including the following:

� Routine arguments, including the MI_FPARAM structure

� Local (stack) variables

� Function return values
Managing Memory 13-57

Managing Stack Usage
Like all memory that UDRs use, stack segments can be overrun. The database
server can only check for stack violations when the UDR yields. Therefore,
you must ensure that you perform the following tasks within a UDR:

� Efficiently manage stack space usage in your UDR

Limit usage of stack space in your UDR and ensure sufficient stack-
space allocation when you register the UDR.

� Use the mi_call() function for UDRs that potentially use unlimited
recursion.

Managing Stack Usage
To avoid stack overflow, follow these design restrictions in your UDR:

� Do not use large automatic arrays.

� Avoid excessively deep calling sequences.

� Use mi_call() within a UDR to manage recursive calls.

By default, when a thread of a virtual processor executes a UDR, the database
server uses a thread-stack size that the STACKSIZE configuration parameter
specifies (32 kilobytes, if STACKSIZE is not set). To determine how much stack
space a UDR requires, monitor the UDR from the system prompt with the
following onstat command:

onstat -g sts

The -g sts option prints the maximum and current stack usage per thread. For
more information on the onstat utility and its -g sts option, see the Adminis-
trator’s Reference.

You must ensure that your UDR has sufficient stack space for its execution.
That is, the UDR must have enough stack space to hold all local variables of
the routine. If you see errors in the message log file of the following format
when you try to allocate a large block of memory, your stack space is being
overrun:

Assert Failed: Condition Failed (Bad pool pointer 0xe2fe018),
in (mt_shm_free)

Assert Failed: Memory block header corruption detected in
mt_shm_free
13-58 IBM Informix DataBlade API Programmer’s Guide

Increasing Stack Space
To determine if there is enough stack space for your UDR, use the
mi_stack_limit() function. This function checks if the space available on the
stack exceeds the sum of the stack margin and the specified stack size.

To override the stack size for a particular UDR, use the STACK routine
modifier of the CREATE FUNCTION or CREATE PROCEDURE statement when
you register your UDR. For example, the following CREATE FUNCTION
statement specifies a stack size of 64 kilobytes for the func1() UDR:

CREATE FUNCTION func1(INTEGER)
RETURNS INTEGER
WITH (STACK=65536)
EXTERNAL NAME '/usr/srv_routs/funcs.so'
LANGUAGE C;

When the UDR completes, the database server allocates thread stacks for
subsequent UDRs based on the STACKSIZE parameter (unless these subse-
quent UDRs have also specified the STACK routine modifier).

Increasing Stack Space
The DataBlade API provides the mi_call() function to dynamically manage
stack space. This function performs the following tasks:

� It checks the amount of unused stack space and allocates additional
stack segments if necessary.

� It executes the specified UDR.

Use the mi_call() function to increase stack space for recursive UDRs.

Keep in mind that mi_call() does not know the size of the routine arguments.
When mi_call() creates a new stack and copies an argument onto this new
stack, the function uses the size of the MI_DATUM data type for the
argument. If the data type of the routine argument is larger than MI_DATUM,
mi_call() does not copy all the argument bytes.

For example, consider a UDR that includes an mi_double argument.

On UNIX or Linux, an mi_double_precision argument takes the space of two
long int values. Therefore, the mi_call() function pushes only half of the
argument onto the new stack. Any arguments after the mi_double_precision
might get garbled, and the last one might be truncated. ♦

UNIX/Linux
Managing Memory 13-59

Increasing Stack Space
When you design UDRs that require the use of mi_call(), make sure you use
the correct passing mechanism for the argument data type. Pass all data types
larger than MI_DATUM by reference. Examples of large data types are
floating-point types (such as mi_real and mi_double_precision) and data
type structures.

The following example illustrates stack-space allocation with mi_call():

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "mi.h"

mi_integer factorial(mi_integer value)
{

mi_integer callstatus=0,
retval=0;

if (value < 0)
return -1;

else if (value == 1 || value == 0)
return 1;

else if (value > 30)
mi_db_error_raise(NULL, MI_EXCEPTION,

"factorial: input value too big for result.");

callstatus = mi_call(&retval, factorial, 1, value-1);
switch(callstatus)

{
case MI_TOOMANY:

mi_db_error_raise(NULL, MI_EXCEPTION,
"factorial: too many parameters.");

case MI_CONTINUE:
return (value * factorial(value-1));

case MI_NOMEM:
mi_db_error_raise(NULL, MI_EXCEPTION,

"factorial: not enough memory");

case MI_DONE:
/* At the end of the factorial recursion, the
* function still needs to calculate:
* value * factorial(value-1)
*/

retval *= value;
break;

}

return retval;
}

13-60 IBM Informix DataBlade API Programmer’s Guide

Increasing Stack Space
This code sample implements a factorial function. If the mi_call() function
determines that there is sufficient stack space, the code recursively calls the
handle_row() function to process the row value. The return value of the
mi_call() function indicates whether mi_call() has allocated additional
thread-stack memory, as follows.

The other mi_call() return values (MI_NOMEM and MI_TOOMANY) indicate
error conditions. For these return values, the function uses the
mi_db_error_raise() function to raise a database server exception and
provide an error message.

The following CREATE FUNCTION registers the factorial() function:

CREATE FUNCTION factorial (INTEGER)
RETURNS INTEGER
EXTERNAL NAME

"$INFORMIXDIR/extend/misc/fact_ius.bld"
LANGUAGE C;

The following EXECUTE FUNCTION invokes the factorial() function:

EXECUTE FUNCTION factorial(5);

mi_call() Return Value Description Action

MI_CONTINUE The thread stack
currently has room for
another invocation
of factorial().

The mi_call() function does not need to allocate a new
thread stack.

The code fragment explicitly calls factorial() on the
value-1 value.

MI_DONE The thread stack
currently does not have
room for
another invocation of
factorial().

The mi_call() function allocates a new thread stack,
copies the arguments onto this stack, and invokes the
factorial() function on the value-1 value, returning
its value in callstatus.

The code fragment does not need to explicitly call
factorial() on the value-1 value. The mi_call()
function did the work of invoking the routine;
however, mi_call() completed only the following
portion of the calculation:

factorial(value-1)

To complete the factorial, the function needs to
complete the following calculation:

value * factorial(value-1)
Managing Memory 13-61

14
Chapter
Creating Special-Purpose UDRs
In This Chapter . 14-3

Writing an End-User Routine 14-3

Writing a Cast Function 14-4

Writing an Iterator Function. 14-5
Initializing the Iterations 14-11
Returning One Active-Set Item 14-13
Releasing Iteration Resources 14-14
Calling an Iterator Function from an SQL Statement 14-15

Registering the Iterator Function 14-15
Executing the Iterator Function 14-16

Writing an Aggregate Function. 14-18
Extending a Built-In Aggregate 14-19

Choosing the Operator Function 14-20
Writing the Operator Function 14-20
Registering the Overloaded Operator Function 14-23
Using the Extended Aggregate 14-24

Creating a User-Defined Aggregate 14-25
Determining the Aggregate State 14-26
Writing the Aggregate Support Functions 14-28
Defining the User-Defined Aggregate 14-36
Using the User-Defined Aggregate. 14-38
Determining Required Aggregate Support Functions 14-39
Sample User-Defined Aggregates 14-57

Providing UDR-Optimization Functions 14-80
Writing Selectivity and Cost Functions. 14-81

Query Selectivity 14-82
Query Cost 14-83

14-2 IBM
MI_FUNCARG Data Type 14-85
Obtaining Information About Constant Arguments 14-89
Obtaining Information About Column Arguments 14-90

Creating Negator Functions 14-91
Creating Commutator Functions 14-92
Creating Parallelizable UDRs 14-94

Writing the Parallelizable UDR 14-95
Registering the Parallelizable UDR 14-97
Executing the Parallelizable UDR 14-97
Debugging the Parallelizable UDR 14-99
 Informix DataBlade API Programmer’s Guide

In This Chapter
This chapter describes how to write C user-defined routines (UDRs) with the
following purposes.

Writing an End-User Routine
A C UDR can implement an end-user routine. An end-user routine provides
some additional functionality to the SQL end user. It is an SQL-invoked
routine; that is, it is called directly from an SQL statement. An end-user
routine can provide any task that is useful to SQL users. This user might be a
database administrator or an SQL end user.

For more information on possible tasks of an end-user routine, see the
IBM Informix User-Defined Routines and Data Types Developer’s Guide.

Type of UDR More Information

Cast function page 14-4

Cost function page 14-81

End-user routine page 14-3

Iterator function page 14-5

Negator function page 14-91

Parallelizable UDR page 14-94

Selectivity function page 14-81

User-defined aggregates page 14-18
Creating Special-Purpose UDRs 14-3

Writing a Cast Function
Writing a Cast Function
A cast function is a user-defined function that converts one data type (the
source data type), to another data type (the target data type). A cast can be
one of the following types:

� An implicit cast is a cast that the database server can invoke automat-
ically when it encounters data types that cannot be compared with
the system-defined casts.

� An explicit cast is a cast that you must specifically invoke, with either
the CAST AS keywords or with the cast operator (::).

Tip: This section describes how to create a cast function that is written in C. For
general information on how to create user-defined functions and casts, see the
“IBM Informix User-Defined Routines and Data Types Developer’s Guide.”

To register a C UDR as a cast function

1. Use the CREATE FUNCTION statement to register the C function as a
C UDR.

For more information, see “Registering a C UDR” on page 11-23.

2. Use the CREATE CAST statement to register the cast in the database.

Casts are stored in the syscasts system catalog table. For more infor-
mation on the syntax of the CREATE CAST statement, see the
IBM Informix Guide to SQL: Syntax

The following lines register the C function, a_to_b(), as an implicit cast from
the a to b data type:

CREATE FUNCTION a_to_b(source a)
RETURNS b
EXTERNAL NAME '/usr/udrs/casts.so(a_to_b)'
LANGUAGE C;

CREATE CAST (a AS b WITH a_to_b);
14-4 IBM Informix DataBlade API Programmer’s Guide

Writing an Iterator Function
These SQL statements assume that a and b are already registered as user-
defined types. These statements only provide the ability to convert from type
a to type b. To provide the ability to cast from the b to the a data type, you
must create a second cast, as the following sample lines show:

CREATE FUNCTION b_to_a(source b)
RETURNS a
EXTERNAL NAME '/usr/udrs/casts.so(b_to_a)'
LANGUAGE C;

CREATE CAST (b AS a WITH b_to_a);

The following lines declare the C function, a_to_b(), which accepts the a
fixed-length opaque type as an argument and returns the b fixed-length
opaque type:

b_t *a_to_b(source_type)
a_t *source_type;

{
b_t *target;

target = (b_t *)mi_alloc(sizeof(b_t));

/* Perform necessary conversions from a to b */

return (target);
}

Writing an Iterator Function
An iterator function is a user-defined function that returns to its calling SQL
statement several times, each time returning a value. The database server
gathers these returned values together in an active set. To access a value in the
active set, you must obtain it from a database cursor. Therefore, an iterator
function is a cursor function because it must be associated with a cursor when
it is executed.

Tip: This section describes how to create an iterator function that is written in C. For
general information on how to create user-defined functions, see the “IBM Informix
User-Defined Routines and Data Types Developer’s Guide.”
Creating Special-Purpose UDRs 14-5

Writing an Iterator Function
The database server might execute an iterator function many times. It groups
these iterations into the iterator-status values and puts the iterator status for a
given iteration in the MI_FPARAM structure. Within an iterator function, you
examine the MI_FPARAM structure for an iterator status to determine which
actions the iterator function must take.

Tip: The IBM Informix BladeSmith development tool, which is part of the DataBlade
Developer’s Kit, automatically generates C source code for an iterator function as
well as the SQL statements to register the iterator function. For more information, see
the “DataBlade Developer’s Kit User’s Guide.”

To specify the different points at which the database server calls an iterator
function, the iterator-status flag (of type MI_SETREQUEST) supports the
constants in Figure 14-1.

Figure 14-1
Iterator-Status Constants for Calls to an Iterator Function

When Is the Iterator Function
Called?

What Does the Iterator
Function Do?

Iterator-Status
Constant in
MI_FPARAM

The first time that the iterator
function is called

Initializes the iterations SET_INIT

Once for each item in the active
set

Returns one item of the
active set

SET_RETONE

After the last item of the active
set is returned

Releases iteration resources SET_END
14-6 IBM Informix DataBlade API Programmer’s Guide

Writing an Iterator Function
To implement an iterator function with a C user-defined function

1. Declare the iterator function so that its return value has a data type
that is compatible with one of the items in the active set.

For example, to return an active set of integer values, declare the iter-
ator function to return the mi_integer data type.

2. Include an MI_FPARAM structure as the last parameter of the C
declaration of the iterator function.

The MI_FPARAM structure holds the iterator status, the iterator-com-
pletion flag, and the user-state pointer.

3. Within the iterator function, obtain the iterator status from the
MI_FPARAM structure with the mi_fp_request() function.

This function returns the iterator-status constant (SET_INIT,
SET_RETONE, or SET_END) that the database server has set for the
distinct groups of iterations of the iterator function.

4. For each of the iterator-status values, take the appropriate actions
within the iterator function.

5. Register the iterator function as a user-defined function with the
ITERATOR routine modifier in the CREATE FUNCTION statement.

Omit the MI_FPARAM parameter from the parameter list when you
register the iterator function. For more information, see “Registering
a C UDR” on page 11-23.

The Fibonacci series is a list of numbers for which each value is the sum of
the previous two. For example, the Fibonacci series up to a stop value of 20
is as follows:

0, 1, 1, 2, 3, 5, 8, 13

Iterator-Status Value More Information

SET_INIT “Initializing the Iterations” on page 14-11

SET_RETONE “Returning One Active-Set Item” on page 14-13

SET_END “Releasing Iteration Resources” on page 14-14
Creating Special-Purpose UDRs 14-7

Writing an Iterator Function
Figure 14-2 is an implementation of an iterator function named fibGen().
This function builds an active set that contains a Fibonacci series of numbers
up to a specified stop value.

typedef struct fibState1 /* function-state structure */
{

mi_integer fib_prec1; /* second most recent number in series */
mi_integer fib_prec2; /* most recent number in series */
mi_integer fib_ncomputed; /* number computed */
mi_integer fib_endval; /* stop value */

}fibState;

/* fibGen(): an iterator function to return the Fibonacci series.
* This function takes a stop value as a parameter and returns the
* Fibonacci series up to this stop value.
*
* Three states of iterator status:
* SET_INIT : Allocate the defined user-state structure.
* SET_RETONE : Compute the next number in the series.
* SET_END : Free the user-allocated user-state structure.
*/
mi_integer fibgen(stop_val,fparam)

mi_integer stop_val;
MI_FPARAM *fparam;

{
mi_integer next;
fibState *fibstate = NULL;

switch(mi_fp_request(fparam))
{
case SET_INIT:

next = fibGen_init(stop_val, fparam);
break;

case SET_RETONE:
next = fibGen_retone(fparam);
fibstate = (fibState *)mi_fp_funcstate(fparam);
if (next > fibstate->fib_endval)

{
mi_fp_setisdone(fparam, 1);
next = 0; /* return value ignored */
}

break;

case SET_END:
next = fibGen_end(fparam);
break;

}
return (next);

}

Figure 14-2
The fibGen()

Iterator Function
14-8 IBM Informix DataBlade API Programmer’s Guide

Writing an Iterator Function
The database server calls this fibGen() iterator function at the following
execution points:

� Once, to initialize the calculation of the Fibonacci series of numbers

At this point, the database server has set the iterator status to
SET_INIT and fibGen() calls the fibGen_init() function (see
Figure 14-3 on page 14-12).

� Repeatedly, to calculate each number in the series until a number
exceeds the stop value

As long as the number is less than the stop value, the database server
sets the iterator status to SET_RETONE and fibGen() calls the
fibGen_retone() function (see Figure 14-4 on page 14-13).

� Once, to deallocate resources that the iterator function uses

At this point, the database server has set the iterator status to
SET_END and fibGen() calls the fibGen_end() function (see
Figure 14-5 on page 14-15).

Tip: For end users to be able to use an iterator function within an SQL statement,
you must register the iterator function with the ITERATOR routine modifier of the
CREATE FUNCTION statement. For more information, see “Calling an Iterator
Function from an SQL Statement” on page 14-15.

When the iterator function reaches the last item, call the mi_fp_setisdone()
function to set the iterator-completion flag of the MI_FPARAM structure to
one (1). This flag indicates to the database server that it has reached the end
condition for the iterator function. The database server no longer needs to
continue calling the iterator function with the SET_RETONE iterator-status
value. Instead, it calls the iterator function one more time, with the SET_END
status value.

Important: Make sure that you include a call to the mi_fp_setisdone() function
within your iterator function that sets the iterator-completion flag to one (1).
Without this call, the database server never reaches an end condition for the iteration,
which causes it to iterate the function in an infinite loop.
Creating Special-Purpose UDRs 14-9

Writing an Iterator Function
In Figure 14-2 on page 14-8, the fibGen() iterator function determines if it
has reached an end condition after it calls fibGen_retone(). It makes this
determination as follows:

� If this number is greater than the user-specified stop value (in the
fib_endval field of the user-state information), the end condition was
reached.

The fibGen() function calls the mi_fp_setisdone() function to set
the iterator-completion flag to 1. The function then exits with a
return value of zero (0). However, this last return value of 0 is not
returned as part of the active set. The database server calls the next
iteration of fibGen() with an iterator-status value of SET_END.

� If the next Fibonacci number is less than or equal to the stop value,
the end condition was not reached.

The function returns this next number in the Fibonacci series to the
active set. The database server calls the next iteration of fibGen()
with an iterator-status value of SET_RETONE.
14-10 IBM Informix DataBlade API Programmer’s Guide

Initializing the Iterations
Initializing the Iterations
The first time that the database server calls the iterator function, the database
server passes it an MI_FPARAM structure with the iterator status set to
SET_INIT and the user-state pointer set to NULL. When the iterator function
obtains this iterator-status value, it can perform the following initialization
tasks for the iterator function:

� Allocate memory for the structure in which you save the user-state
information with a DataBlade API memory-management function
such as mi_dalloc()

Make sure that this memory has a memory duration of
PER_COMMAND so that the user state remains for the duration of all
iterations of the iterator function. If the memory has the default
PER_ROUTINE memory duration, the database server automatically
deallocates it after only one iteration of the iterator function. For more
information, see “Choosing the Memory Duration” on page 13-7.

� Save the user-state pointer in the MI_FPARAM structure with the
mi_fp_funcstate() function

Each subsequent call to the iterator function uses the same
MI_FPARAM structure, so each iteration can reuse the cached user-
state memory. The iterator function must save enough information to
return values one at a time on demand. For more information, see
“Saving a User State” on page 9-14.

You can perform these initialization tasks directly in the iterator function or
you can declare a separate iterator-initialization function, which the iterator
function calls when it receives the SET_INIT iterator-status value. Declare the
iterator-initialization function to return the same data type as the main
iterator function. However, the database server ignores the return value of
this function; it does not put this return value in the active set.

Figure 14-3 implements an iterator-initialization function, call fibGen_init(),
which the fibGen() iterator function (Figure 14-2 on page 14-8) calls when it
obtains the SET_INIT iterator-status value.
Creating Special-Purpose UDRs 14-11

Initializing the Iterations
The fibGen_init() function returns an mi_integer value (0) because the main
iterator function, fibGen(), returns an active set of mi_integer values.
However, the database server does not return this value as part of the active
set. Once fibGen_init() completes, the database server calls the next iteration
of fibGen() with an iterator-status value of SET_RETONE to return the first
item of the active set.

mi_integer fibGen_init(stop_val, fparam)
mi_integer stop_val;
MI_FPARAM *fparam;

{
fibState *fibstate;

/* Allocate the user-state structure, fibState. This user-state
* structure is allocated with PER_COMMAND duration to hold the memory
* until the end of all iterations of the iterator function.
*/

fibstate = (fibState *)mi_dalloc(sizeof(fibState), PER_COMMAND);

/* Save a pointer to the user-state structure in the MI_FPARAM structure.
*/

mi_fp_setfuncstate(fparam, (void *)fibstate);

/* Set return value of function to NULL for either of the following:
* - no argument passed into function (MI_FPARAM has a NULL argument)
* - stop value is < 0
*/

if (mi_fp_argisnull(fparam, 0) || stop_val < 0)
{
mi_fp_setreturnisnull(fparam,0,1);
return;
}

/* Set the first two numbers of the series: 0 and 1. Set the stop value
* field in the user-state structure (stop_val) to the stop value passed
* to the function.
*/

if (stop_val < 1)
{
fibstate->fib_prec1 = 0;
fibstate->fib_prec2 = 1;
fibstate->fib_ncomputed = 1;
fibstate->fib_endval = stop_val;
}

else
{
fibstate->fib_prec1 = 0;
fibstate->fib_prec2 = 1;
fibstate->fib_ncomputed = 0;
fibstate->fib_endval = stop_val;
}

return (0); /* return value is ignored */
}

Figure 14-3
The fibGen_init()

Initialization
Function
14-12 IBM Informix DataBlade API Programmer’s Guide

Returning One Active-Set Item
Returning One Active-Set Item
When the iterator status is SET_RETONE, the iterator function can return one
item of the active set. When the iterator function obtains this iterator-status
value, it can perform the iteration tasks needed to generate one item of the
active set.

You can perform these iterator tasks directly in the iterator function or you
can declare a separate iterator-value-return function, which the iterator
function calls when it receives the SET_RETONE iterator-status value. Declare
the iterator-value-return function to return the same data type as the main
iterator function. The database server puts the return value of this function in
the active set.

Figure 14-4 implements an iterator-value-return function, named
fibGen_retone(), that the fibGen() iterator function (Figure 14-2 on
page 14-8) calls each time it obtains the SET_RETONE iterator status.

/* fibGen_retone():
* Generates the next number in the series. Compares it with the stop
* value to check if the end condition is met. Then performs following
* calculations:
* num1 = num2;
* num2 = next number in the series.
*/
mi_integer fibGen_retone(fparam)

MI_FPARAM *fparam;
{

fibState *fibstate;
mi_integer next;

fibstate = (fibState *)mi_fp_funcstate(fparam);

/* Generate next Fibonacci number */
if (fibstate->fib_ncomputed < 2)

return((fibstate->fib_ncomputed++ == 0) ? 0 : 1);

/* Update user state for next iteration */
next = fibstate->fib_prec1 + fibstate->fib_prec2;

if (next == 0)
{
fibstate->fib_prec1 = 0;
fibstate->fib_prec2 = 1;
}

else
{
fibstate->fib_prec1 = fibstate->fib_prec2;
fibstate->fib_prec2 = next;
}

return (next);

Figure 14-4
The

fibGen_retone()
Value-Return

Function
Creating Special-Purpose UDRs 14-13

Releasing Iteration Resources
Each item in the active set that the fibGen() function generates is one call to
the fibGen_retone() function. The fibGen_retone() function returns one
number of the Fibonacci series. It uses the mi_fp_funcstate() function to
obtain the user-state pointer from the MI_FPARAM structure. This user-state
pointer points to a fibstate structure (which the fibGen_init() function in
Figure 14-3 on page 14-12 allocated).

From the information in the fibstate structure, the fibGen_retone() function
determines the next Fibonacci number and stores it in the next variable. The
function then updates the fibstate structure for the next iteration of fibGen().
Finally, the function returns one item of the active set: the value of next.

Releasing Iteration Resources
Once the mi_fp_setisdone() function sets the iterator-completion flag to 1,
the database server calls the iterator function one last time with the iterator-
status value in the MI_FPARAM structure set to SET_END. When the iterator
function obtains this iterator-status value, it can perform any tasks needed to
deallocate resources that the iterator function has allocated.

Important: Free only resources that you have allocated. Do not attempt to free
resources that the database server has allocated (such as the MI_FPARAM structure).

You can perform these deallocation tasks directly in the iterator function or
you can declare a separate iterator-end function, which the iterator function
calls when it receives the SET_END iterator-status value. Declare the iterator-
end function to return the same data type as the main iterator function.
However, the database server ignores the return value of this function; it does
not put this return value in the active set.

Figure 14-5 implements an iterator-end function, named fibGen_end(), that
the fibGen() iterator function (see Figure 14-2 on page 14-8) calls when it
obtains the SET_END iterator-status value.
14-14 IBM Informix DataBlade API Programmer’s Guide

Calling an Iterator Function from an SQL Statement
The fibGen_end() function uses the mi_fp_funcstate() function to obtain
the user-state pointer from the MI_FPARAM structure. It then calls the
mi_free() function to free the resources in the fibstate state structure, which
the fibGen_init() function (see Figure 14-3 on page 14-12) has allocated. The
fibGen_end() function returns an mi_integer value (0) because the main
iterator function, fibGen(), returns an active set of mi_integer values.

Calling an Iterator Function from an SQL Statement
For end users to be able to use an iterator function within an SQL statement,
take the following actions:

� Register the iterator function with the ITERATOR routine modifier.

� Associate the iterator function with a cursor to execute the function.

Registering the Iterator Function

Register the iterator function with the CREATE FUNCTION statement. The
CREATE FUNCTION must include the ITERATOR routine modifier to tell the
database server that it must call the function until the iterator-completion
flag is set to 1.

Tip: If your iterator function calls other functions (such as an iteration-initialization
function, iterator-value-return function, or iterator-end function) to implement its
iterations, you do not have to register these other functions with the CREATE
FUNCTION statement.

mi_integer fibGen_end(fparam)
MI_FPARAM *fparam;

{
fibState *fibstate;

fibstate = (fibState *)mi_fp_funcstate(fparam);
mi_free(fibstate);

return (0); /* return value is ignored */
}

Figure 14-5
The fibGen_end()

Iterator-End
Function
Creating Special-Purpose UDRs 14-15

Calling an Iterator Function from an SQL Statement
The following CREATE FUNCTION statement registers the fibGen() iterator
function, which Figure 14-2 on page 14-8 defines, in the database:

CREATE FUNCTION fibgen(arg INTEGER)
RETURNING INTEGER
WITH (ITERATOR)
EXTERNAL NAME "$USERFUNCDIR/fib.so"
LANGUAGE C;

This statement assumes that the object code for the fibGen() function resides
in the UNIX or Linux fib.so shared-object file in the directory that the
USERFUNCDIR environment variable specifies. It also assumes that
USERFUNCDIR was set in the server environment.

For more information on how to register a user-defined function, see “Regis-
tering a C UDR” on page 11-23.

Executing the Iterator Function

After you register an iterator function (and assign it the appropriate privi-
leges), users who have the Execute privilege can execute it. However, because
an iterator function returns an active set of items, you must associate the
function with a cursor. The cursor holds the active set, which the application
can then access one at a time.

Each iteration of the iterator function returns one item of the active set. To
execute an iterator function, you must associate it with a cursor. This
EXECUTE FUNCTION statement generates an active set that contains the
following Fibonacci values:

0, 1, 1, 2, 3, 5, 8

To obtain these values from within an application, you must associate the
EXECUTE FUNCTION statement with a cursor to execute the function.

Once you register the fibGen() function, you can execute the following SQL
statement from an interactive database utility (such as DB-Access):

EXECUTE FUNCTION fibgen(10);
14-16 IBM Informix DataBlade API Programmer’s Guide

Calling an Iterator Function from an SQL Statement
From within a DataBlade API module, execute fibGen() with the
mi_exec_prepared_statement() function, as follows:

MI_CONNECTION *conn;
mi_string *cmd = "EXECUTE FUNCTION fibgen(10);";
MI_STATEMENT *stmt;
mi_integer error, col_val;
MI_ROW *row;
...
/* Prepare the EXECUTE FUNCTION to execute fibGen() */
stmt = mi_prepare(conn, cmd, NULL);

/* Open the cursor to allocate the active set */
if (mi_open_prepared_statement(stmt, MI_SEND_READ, 1, 0,

NULL, NULL, NULL, NULL, NULL, 0, NULL) == MI_OK)

/* Initialize the fetch direction */
if (mi_fetch_statement(stmt, MI_CURSOR_NEXT, 0, 0)

== MI_OK)

if (mi_get_result(conn) == MI_ROWS)
{
/* Fetch the items of the active set.
* Process each item of active set until
* last item is found
*/

while ((row = mi_next_row(conn, &error)) != NULL)
{
colval = NULL;

/* Obtain one number of Fibonacci series */
mi_value(row, 0, (mi_integer)&col_val,

sizeof(mi_integer));

/* Process current Fibonacci number */
...

} /* end while */
} /* end if mi_get_result */

/* Close the cursor to deallocate active set */
mi_close_statement(stmt);

/* Release statement descriptor */
mi_drop_prepared_statement(stmt);

For more information on how to use mi_exec_prepared_statement(), see
“Executing Prepared SQL Statements” on page 8-18.
Creating Special-Purpose UDRs 14-17

Writing an Aggregate Function
Writing an Aggregate Function
An aggregate is a function that returns one value for a group of queried rows.
The aggregate function performs one iteration for each of the queried rows.
For each row, an aggregate iteration receives one column value (called the
aggregate argument). The value that the aggregate returns to the SQL statement
is called the aggregate result. For example, the following query calls the built-
in SUM aggregate to determine the total cost of item numbers in order 1002:

SELECT SUM(total_price) FROM items
WHERE order_num = 1002;

For this invocation of the SUM aggregate, each value of the total_price
column that is passed into SUM is one aggregate argument. The total sum of
all total_price values, which SUM returns to the SELECT, is the aggregate
result.

The database server supports extensions of aggregates in the following ways:

� Extensions of built-in aggregates

� User-defined aggregates

You can write C user-defined functions to implement these aggregate exten-
sions. For an overview of how to create aggregate functions and how to write
them in an SPL routine, see the chapter on this topic in the IBM Informix User-
Defined Routines and Data Types Developer’s Guide. The following sections
provide information specific to the creation of aggregate functions as C user-
defined functions.

Tip: The IBM Informix BladeSmith development tool automatically generates C
source code for a user-defined aggregate as well as the SQL statements to register the
aggregate function. For more information, see the “DataBlade Developer’s Kit User’s
Guide.”
14-18 IBM Informix DataBlade API Programmer’s Guide

Extending a Built-In Aggregate
Extending a Built-In Aggregate
This section explains how to extend a built-in aggregate by overloading an
operator function.

To extend a built-in aggregate function with a C user-defined function

1. Determine the appropriate operator function that you must overload
to implement the desired built-in aggregate function.

For a list of built-in aggregate functions and the associated operator
functions to overload, see the chapter on aggregate functions in the
IBM Informix User-Defined Routines and Data Types Developer’s Guide.

2. Write the C UDR that implements the required operator function for
the data type that you want the aggregate to handle.

To extend built-in aggregates so that they handle user-defined data
types, write an operator function that accepts the user-defined data
type as an argument. Compile the C UDR and link it into a shared-
object file.

3. Register the overloaded operator function with the CREATE
FUNCTION statement.

4. Use the newly extended aggregate on the data.

Suppose you want to use the SUM aggregate on complex numbers, which are
stored in the following user-defined data type: a named row type named
complexnum_t. Figure 14-6 shows the CREATE ROW TYPE statement that
registers the complexnum_t named row type.

The following sections show how to extend the SUM aggregate on the
complexnum_t named row type.

CREATE ROW TYPE complexnum_t
(real_part SMALLFLOAT,
imaginary_part SMALLFLOAT);

Figure 14-6
A Named Row Type

to Hold a
Complex Number
Creating Special-Purpose UDRs 14-19

Extending a Built-In Aggregate
Choosing the Operator Function

The SUM built-in aggregate function uses the plus operator (+), which the
plus() user-defined function implements. The database server provides
implementations of the plus() function over the built-in data types.
Therefore, the SUM aggregate function works over built-in data types. To
have the SUM aggregate operate on the complexnum_t row type, you
implement a plus() function that handles this named row type; that is, it
adds the two parts of the complex number and returns a complex number
with the summed parts.

The following C function, complex_plus(), defines such a plus() function:

MI_ROW *complex_plus(arg1, arg2)
MI_ROW *arg1;
MI_ROW *arg2;

Writing the Operator Function

The code segment shows the implementation of the complex_plus()
function, which implements a plus() function for the complexnum_t data
type:

MI_ROW *complex_plus(arg1, arg2, fparam)
MI_ROW *arg1;
MI_ROW *arg2;
MI_FPARAM *fparam;

{
mi_real real_zero, imag_zero = 0.0;
mi_real *real_value1, *real_value2;
mi_integer real_len1, real_len2;
mi_real *imag_value1, *imag_value2;
mi_integer imag_len1, imag_len2;

mi_real sum_real, sum_imag;

MI_CONNECTION *conn;
MI_TYPEID *type_id;
MI_ROW_DESC *row_desc;

mi_integer i;
MI_ROW *ret_row;
MI_DATUM values[2];
mi_boolean nulls[2] = {MI_FALSE, MI_FALSE};
14-20 IBM Informix DataBlade API Programmer’s Guide

Extending a Built-In Aggregate
for (i=0; i<=1; i++)
{
if (mi_fp_argisnull(fparam, i) == MI_TRUE)

{
/* Put initialized complex number into 'values'
* array
*/

values[0] = (MI_DATUM)&real_zero;
values[1] = (MI_DATUM)&imag_zero;

/* Generate initialized row type for arg1 */
conn = mi_open(NULL, NULL, NULL);
type_id = mi_typestring_to_id(conn,

"complexnum_t");
row_desc = mi_row_desc_create(type_id);

ret_row = mi_row_create(conn, row_desc, values,
nulls);

if (i == 0)
arg1 = ret_row;

else
arg2 = ret_row;

}
}

/* Extract values from arg1 row type */
mi_value_by_name(arg1, "real_part",

(MI_DATUM *)&real_value1, &real_len1);
mi_value_by_name(arg1, "imaginary_part",

(MI_DATUM *)&imag_value1, &imag_len1);

/* Extract values from arg2 row type */
mi_value_by_name(arg2, "real_part",

(MI_DATUM *)&real_value2, &real_len2);
mi_value_by_name(arg2, "imaginary_part",

(MI_DATUM *)&imag_value2, &imag_len2);

/* Sum the complex numbers */
sum_real = *real_value1 + *real_value2;
sum_imag = *imag_value1 + *imag_value2;

/* Put sum into ’values' array */
values[0] = (MI_DATUM)&sum_real;
values[1] = (MI_DATUM)&sum_imag;

/* Generate return row type */
conn = mi_open(NULL, NULL, NULL);
type_id = mi_typestring_to_id(conn, "complexnum_t");
row_desc = mi_row_desc_create(type_id);
ret_row = mi_row_create(conn, row_desc, values, nulls);

return (ret_row);
}

Creating Special-Purpose UDRs 14-21

Extending a Built-In Aggregate
This version of the plus() function performs the following tasks:

� Checks for a NULL-valued state (which indicates the first invocation
of the ITER function) to initialize the state

� Checks for a NULL-valued aggregate argument to initialize a NULL
the argument

� Accepts the two complexnum_t arguments as row-type pointers
(MI_ROW *) and uses the mi_value_by_name() function to extract
the individual fields of the row type from the arguments

� Calculates the sum of the complex numbers by adding the real
values together and the imaginary values together

� Creates an MI_ROW type to hold the complexnum_t value with the
final sum: the mi_row_desc_create() function creates a row
descriptor for the complexnum_t data type and the
mi_row_create() function populates the associated row structure
with the final sum values

� Returns a pointer to the MI_ROW structure (because a row type must
be returned by reference, not by value)

Once the complex_plus() function is written, you compile it and put it into
a shared-object file. Suppose that complex_plus() is compiled and linked
into a shared-object module named sqsum.

On UNIX or Linux, the executable code for the complex_plus() operator
function would be in a shared library named sqsum.so. ♦

For more information, see “Compiling a C UDR” on page 11-19.

To extend a built-in aggregate over a user-defined data type, you overload
the appropriate operator function to handle the user-defined type. However,
operator functions can also be used as part of an expression that does not
involve aggregates. Therefore, aggregate support functions for built-in
aggregates on user-defined data types (opaque types, distinct types, and
named row types) must allocate a new state when they need to modify the
state.

For example, the following SUM aggregate uses the overloaded plus()
operator to calculate the sum of values in the col1 column:

SELECT SUM(col1) FROM tab2 WHERE;

UNIX/Linux
14-22 IBM Informix DataBlade API Programmer’s Guide

Extending a Built-In Aggregate
For each aggregate argument, the SUM aggregate invokes the plus() operator
to add the aggregate argument (agg_arg) into the sum of the previous values
in the aggregate state (agg_state), as follows:

plus(agg_state, agg_arg)

When you modify the aggregate state in-place, the value of the agg_state
argument to plus() changes. When plus() exits, the agg_state argument
holds the new sum of the aggregate arguments, which includes the agg_arg
value.

However, the plus() function is also valid in expressions that do not involve
aggregates, as in the following query:

SELECT col1 FROM tab2 WHERE col1 + 4 > 17;

In this WHERE clause, the database server invokes the plus() operator to add
4 to the col1 value, as follows:

plus(col1, 4)

If the plus() operator modifies the aggregate state in-place, the value of its
first argument changes to hold the sum of col1 and 4. It is not safe to modify
arguments in place because the values of arguments (col1 and 4) must not
change. Therefore, when you modify the aggregate state in an operator
function of a built-in aggregate, you must be careful not to use the “in-place”
modification method.

Registering the Overloaded Operator Function

With the operator function written, compiled, and linked into a shared-object
file, you can register this function in the database with the CREATE
FUNCTION statement. You must have the appropriate privileges for this
registration to be successful. For more information, see the chapter on user-
defined aggregates in the IBM Informix User-Defined Routines and Data Types
Developer’s Guide.
Creating Special-Purpose UDRs 14-23

Extending a Built-In Aggregate
Figure 14-7 shows the CREATE FUNCTION statement that overloads the
plus() function with a new version that handles the complexnum_t named
row type.

Tip: Because SUM is a built-in aggregate, you do not have to use the CREATE
AGGREGATE statement to define the SUM aggregate.

Using the Extended Aggregate

Once you execute the CREATE FUNCTION statement in Figure 14-7 on
page 14-24, you can use the SUM aggregate on complexnum_t columns. For
example, suppose you create the tab1 table as Figure 14-8 shows.

The following query uses the SUM aggregate function on the complexnum_t
column, col2:

SELECT SUM(col2) FROM tab1;

CREATE FUNCTION plus(arg1 complexnum_t, arg2 complexnum_t)
RETURNS complexnum_t
EXTERNAL NAME '/usr/udrs/aggs/sums/sqsum.so(complex_plus)'
LANGUAGE C;

Figure 14-7
Registering the

Overloaded plus()
Function

CREATE TABLE tab1
(col1 INTEGER,
col2 complexnum_t,
col3 INTEGER);

INSERT INTO tab1
VALUES (1, row(1.5, 3.7)::complexnum_t, 24);

INSERT INTO tab1
VALUES (2, row(6.9, 2.3)::complexnum_t, 13);

INSERT INTO tab1
VALUES (3, row(4.2, 9.4)::complexnum_t, 9);

INSERT INTO tab1
VALUES (4, row(7.0, 8.5)::complexnum_t, 5);

INSERT INTO tab1
VALUES (5, row(5.1, 6.2)::complexnum_t, 31);

INSERT INTO tab1
VALUES (6, row(3.9, 4.6)::complexnum_t, 19);

Figure 14-8
A Table with a

complexnum_t
Column
14-24 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
With the rows that Figure 14-8 has inserted, the preceding query yields a
complexnum_t value of:

ROW(28.6, 34.7)

As a side effect of the new plus() function, you can also add two
complexnum_t columns in an SQL expression, as follows:

SELECT complex_num1 + complex_num2 FROM complex_nums
WHERE id > 6;

Creating a User-Defined Aggregate
The built-in aggregates provide basic aggregations. However, if your data
requires some special aggregation, you can create a custom aggregate
function, called a user-defined aggregate. To implement your custom aggre-
gation, you design an aggregate algorithm, which consists of the following
parts:

� The aggregate state, which contains the information that needs to be
passed between iterations of the aggregate

� The aggregation tasks, which are implemented as special-purpose
user-defined functions called aggregate support functions

To implement a user-defined aggregate function with C user-defined functions

1. Determine the content and data type of the aggregate state.

2. Write the C UDRs that implement the required aggregate support
functions for the data type on which you want to implement the
user-defined aggregate.

3. Define the user-defined aggregate in the database with the CREATE
AGGREGATE and CREATE FUNCTION statements.

After you complete these steps, you can use the aggregate in an SQL
statement.
Creating Special-Purpose UDRs 14-25

Creating a User-Defined Aggregate
The following sections describe each of these development steps in more
detail and use the SQSUM1 user-defined aggregate (which Figure 14-9
describes) as an example.

Figure 14-9
A Sample User-Defined Aggregate

Determining the Aggregate State

An aggregate is a series of iterations. Each iteration processes one aggregate
argument (which contains one column value) and performs the necessary
computations to merge it into a partial result. The partial result is a snapshot
of the aggregate arguments that the aggregate has merged so far. Once the
aggregate has received all column values, it returns a value to the calling
statement, based on the final partial result.

Each iteration of the aggregate is a separate invocation of a user-defined
function. If user-allocated memory has the default PER_ROUTINE memory
duration, the database server automatically deallocates it after only one
iteration of the iteration function. (For more information, see “Choosing the
Memory Duration” on page 13-7.) Therefore, while an iteration executes, it
can access only the following information:

� Its own local variables, which are deallocated at the end of each
iteration and therefore unavailable to other iterations

� The aggregate argument, which contains a new column value for
each iteration

� The aggregate state, which contains any nonlocal information that the
iteration needs to perform its merge, including the partial result and
any other external information (such as an operating-system file)
that an iteration might need to access

User-Defined Aggregate Description Definition

SQSUM1 Sums all values and calculates the
square of this sum

(x1 + x2 + x3 + ...)2
14-26 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
During its invocation, each aggregate iteration merges the aggregate
argument into the aggregate state and returns the updated state. The
database server preserves the updated aggregate state and passes it into the
next iteration of the aggregate. When you create a user-defined aggregate,
you must determine what nonlocal information each iteration needs and
then define an aggregate state to contain this information. Otherwise, the
aggregate iterations cannot obtain the information they need to perform their
computations.

Important: Design the aggregate state so that each aggregate support function can
obtain all the state information that it needs.

As a starting point, try using the data type of the aggregate argument for the
aggregate state. Such a state is called a simple state. For more information, see
“Aggregate Support Functions for the Aggregate State” on page 14-43.

For example, to determine the state for the SQSUM1 user-defined aggregate
(which Figure 14-9 on page 14-26 describes), assess what tasks need to be
performed in each iteration of SQSUM1. For each aggregate argument,
SQSUM1 needs to add together the following values:

� The aggregate argument, which is passed to each iteration of the
aggregate

� The partial sum of previous argument values, which must exist in the
aggregate state

The data type that you choose for the aggregate state affects how the state
must be managed. When the SQSUM1 aggregate receives INTEGER values as
its aggregate arguments, the sum of these values is also an INTEGER value.
Therefore, the SQSUM1 aggregate has an integer state, which holds the partial
sum.
Creating Special-Purpose UDRs 14-27

Creating a User-Defined Aggregate
Writing the Aggregate Support Functions

An aggregate support function is a special-purpose user-defined function that
implements some task in the aggregate algorithm. You write aggregate
support functions to initialize, calculate, and return the aggregate result to
the calling code. An aggregate algorithm can include the following kinds of
aggregate support functions.

The following sections summarize each of the aggregate support functions.

INIT Function

The INIT aggregate support function performs the initialization for the user-
defined aggregate. Figure 14-10 summarizes possible initialization tasks.

Aggregate Support
Function Algorithm Step

INIT Possible initialization tasks that must be performed before the
iterations can begin

ITER An iteration step, which is performed on each aggregate
argument and merges this argument into a partial result

COMBINE Merging one partial result with another partial result, thus
allowing parallel execution of the user-defined aggregate

FINAL Post-iteration tasks that must be performed after all aggregate
arguments were merged into a partial result
14-28 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
Figure 14-10
Initializations Tasks for the INIT Aggregate Support Function

The INIT support function is an optional aggregate support function. If your
aggregate algorithm does not require any of the tasks in Figure 14-10, you do
not need to define an INIT function. When you omit the INIT function from
your user-defined aggregate, the database server performs the state
management for the aggregate state. For more information, see “Handling a
Simple State” on page 14-44.

To declare an INIT support function as a C function, use the following syntax:

agg_state init_func(dummy_arg, set_up_arg)
agg_arg_type dummy_arg;
set_up_type set_up_arg; /* optional */

Initialization Task More Information

Set-up for any additional resources outside
the state that the aggregation might need

“Aggregate Support Functions That
the Algorithm Requires” on
page 14-41

Initial calculations that the user-defined
aggregate might need

“Aggregate Support Functions That
the Algorithm Requires” on
page 14-41

Allocation and initialization of the
aggregate state that the rest of the aggre-
gation computation might need

“Aggregate Support Functions for
the Aggregate State” on page 14-43

Handling of an optional set-up argument “Implementing a Set-Up Argument”
on page 14-53

agg_state is the data type of the aggregate state.

dummy_arg is a dummy parameter that has the same data type as the
aggregate argument that this aggregate support function is to
handle for the user-defined aggregate.

init_func is the name of the INIT aggregate support function.

set_up_arg is an optional parameter for the set-up argument. For more
information, see “Implementing a Set-Up Argument” on
page 14-53.
Creating Special-Purpose UDRs 14-29

Creating a User-Defined Aggregate
In the execution of a UDA, the database server calls the INIT function before it
begins the actual aggregation computation. It passes in any optional set-up
argument (set_up_arg) from the user-defined aggregate and copies any
initialized aggregate state that INIT returns into the state buffer. For more
information on the state buffer, see “Aggregate Support Functions for the
Aggregate State” on page 14-43.

The first argument of the INIT function serves only to identify the data type
of the aggregate argument that the user-defined aggregate handles. The
routine manager uses this argument in routine resolution to determine the
correct version of the overloaded INIT function. At the time of invocation, the
routine manager just passes in a NULL value for the first argument of the INIT
function, as the following syntax shows:

agg_state init_func(NULL, optional set-up argument)

Tip: For more information on how the routine manager resolves the overloaded
aggregate support functions, see the chapter on aggregates in the “IBM Informix
User-Defined Routines and Data Types Developer’s Guide.”

Figure 14-11 shows the INIT aggregate support function that handles an
INTEGER argument for the SQSUM1 user-defined aggregate (which
Figure 14-9 on page 14-26 describes).

For other aggregate support functions of SQSUM1, see Figure 14-12 on
page 14-32, Figure 14-13 on page 14-34, and Figure 14-15 on page 14-36.

/* SQSUM1 INIT support function on INTEGER */
mi_integer init_sqsum1(dummy_arg)

mi_integer dummy_arg;
{

return (0);
}

Figure 14-11
INIT Aggregate

Support Function
for SQSUM1 on

INTEGER
14-30 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
ITER Function

The ITER aggregate support function performs the sequential aggregation or
iteration for the user-defined aggregation. It merges a single aggregate
argument into the partial result, which the aggregate state contains. The ITER
function is a required aggregate support function; that is, you must define an
ITER function for every user-defined aggregate. If you do not define an ITER
function for your user-defined aggregate, the database server generates an
error.

Tip: If the UDA does not have an INIT support function, the ITER support function
can initialize the aggregate state. For more information, see “Handling a Simple
State” on page 14-44.

If the UDA was registered with the HANDLESNULLS modifier in the CREATE
AGGREGATE statement, the database server calls the ITER support function
once for each aggregate argument that passed to the user-defined aggregate.
Each aggregate argument is one column value. If you omit the
HANDLESNULLS modifier from CREATE AGGREGATE, the database server
does not call ITER for any NULL-valued aggregate arguments. Therefore,
NULL-valued aggregate arguments do not contribute to the aggregate result.

For example, suppose you execute the SQSUM1 user-defined aggregate
(which Figure 14-9 on page 14-26 describes) in the following query:

SELECT SQSUM1(col3) FROM tab1;

The tab1 table (which Figure 14-8 on page 14-24 defines) contains 6 rows.
Therefore, the preceding query (which contains no WHERE clause) causes 6
invocations of the SQSUM1 ITER function. Each invocation of this ITER
function processes one value from the col3 column.

To declare an ITER function as a C function, use the following syntax:

agg_state iter_func(current_state, agg_argument)
agg_state current_state;
agg_arg_type agg_argument;

agg_state is the data type of the current and updated aggregate state.
After the ITER function merges the agg_argument into the
current_state state, it returns a pointer to the updated state.
Creating Special-Purpose UDRs 14-31

Creating a User-Defined Aggregate
Important: Make sure that the ITER support function obtains all state information
that it needs from its “current_state” argument. The INIT function cannot maintain
additional state information as user data in its MI_FPARAM structure because
MI_FPARAM is not shared among the other aggregate support functions. However,
the ITER function can store user data in MI_FPARAM that is not part of the
aggregate result.

Figure 14-12 shows the ITER aggregate support function that handles an
INTEGER argument for the SQSUM1 user-defined aggregate (which
Figure 14-9 on page 14-26 describes).

For other aggregate support functions of SQSUM1, see Figure 14-11 on
page 14-30, Figure 14-13 on page 14-34, and Figure 14-15 on page 14-36.

agg_arg_type is the data type of the agg_argument, which is the data type
that the aggregate support function handles for the user-
defined aggregate.

agg_argument is a single aggregate argument, usually a column value,
which the ITER function merges into the partial result in the
current_state aggregate state.

current_state is the current aggregate state, which previous calls to the
ITER function and to the INIT function have generated.

iter_func is the name of the ITER aggregate support function.

/* SQSUM1 ITER support function on INTEGER */
mi_integer iter_sqsum1(state, value)

mi_integer state;
mi_integer value;

{
/* add 'state' and 'value' together */

return (state + value);
}

Figure 14-12
ITER Aggregate

Support Function
for SQSUM1 on

INTEGER
14-32 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
COMBINE Function

The COMBINE aggregate support function allows your user-defined
aggregate to execute in a parallel query. When a query that contains a user-
defined aggregate is processed in parallel, each parallel thread operates on a
one subset of selected rows. The COMBINE function merges the partial results
from two such subsets. This aggregate support function ensures that the
result of aggregating over a group of rows sequentially is the same as aggre-
gating over two subsets of the rows in parallel and then combining the
results.

The COMBINE function is required for parallel execution. When a query
includes a user-defined aggregate, the database server uses parallel
execution when the query includes only aggregates. However, the COMBINE
function might be used even when a query is not parallelized. For example,
when a query contains both distinct and non-distinct aggregates, the
database server can decompose the computation of the non-distinct
aggregate into sub-aggregates based on the distinct column values.
Therefore, you must provide a COMBINE function for every user-defined
aggregate.

If you do not define an COMBINE function for your user-defined aggregate,
the database server generates an error. However, if your user-defined
aggregate uses a simple state, the COMBINE function can be the same as the
ITER function. For more information, see “Handling a Simple State” on
page 14-44.

To declare a COMBINE function as a C function, use the following syntax:

agg_state combine_func(agg_state1, agg_state2)
agg_state agg_state1, agg_state2;

agg_state is the data type of the two partial aggregate states (agg_state1
and agg_state2) as well as the updated aggregate state, which
the COMBINE function returns.

agg_state1 is the aggregate state from one parallel thread.

agg_state2 is the aggregate state from the second parallel thread.

combine_func is the name of the COMBINE aggregate support function.
Creating Special-Purpose UDRs 14-33

Creating a User-Defined Aggregate
In the execution of a UDA, the database server calls the COMBINE once for
each pair of threads (agg_state1 and agg_state2) that execute a parallel query
that contains the user-defined aggregate. When the COMBINE function
combines two partial results, it might also need to release resources
associated with one of the partial results.

Figure 14-13 shows the COMBINE aggregate support function that handles an
INTEGER argument for the SQSUM user-defined aggregate (which Figure 14-9
on page 14-26 describes).

For other aggregate support functions of SQSUM1, see Figure 14-11 on
page 14-30, Figure 14-12 on page 14-32, and Figure 14-15 on page 14-36. For
more information on parallel execution of a UDA, see “Executing a User-
Defined Aggregate in Parallel Queries” on page 14-55.

FINAL Function

The FINAL aggregate support function performs the post-iteration tasks for
the user-defined aggregate. Figure 14-14 summarizes possible post-iteration
tasks.

/* SQSUM1 COMBINE support function on INTEGER */
mi_integer combine_sqsum1(state1, state2)
 mi_integer state1, state2;
{

/* Return the new partial sum from two parallel partial
* sums
*/

state1 += state2;
return (state1);

}

Figure 14-13
COMBINE

Aggregate Support
Function for
SQSUM1 on

INTEGER
14-34 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
Figure 14-14
Post-Iteration Tasks for the FINAL Aggregate Support Function

The FINAL function is an optional aggregate support function. If your user-
defined aggregate does not require one of the tasks in Figure 14-14, you do
not need to define a FINAL function. When you omit the FINAL function from
your user-defined aggregate, the database server returns the final aggregate
state as the return value of the user-defined aggregate. If this state does not
match the expected data type of the aggregate return value, the database
server generates a data type mismatch error.

Important: In general, the FINAL support function must not deallocate the aggregate
state. Only for a pointer-valued state (in which the aggregate support functions must
handle all state management) does the FINAL support function need to deallocate the
state. For more information, see “Managing a Pointer-Valued State” on page 14-50.

To declare a FINAL function as a C function, use the following syntax:

agg_type final_func(final_state)
agg_state final_state;

In the execution of a UDA, the database server calls the FINAL function after
all iterations of the ITER function are complete.

Post-Iteration Task More Information

Type conversion of the final state into the
return type of the user-defined aggregate

“Returning an Aggregate Result
Different from the Aggregate State”
on page 14-54

Post-iteration calculations that the user-
defined aggregate might need

“Aggregate Support Functions That
the Algorithm Requires” on
page 14-41

Deallocation of memory that the INIT
aggregate support function has allocated

“Managing a Pointer-Valued State”
on page 14-50

agg_type is the data type of the aggregate result, which is what the user-
defined aggregate returns to the SQL statement in which it was
invoked.

final_state is the final aggregate state, as previous calls to the INIT and ITER
functions have generated.

final_func is the name of the FINAL aggregate support function.
Creating Special-Purpose UDRs 14-35

Creating a User-Defined Aggregate
Figure 14-15 shows the aggregate support functions that handle an INTEGER
argument for the SQSUM user-defined aggregate (which Figure 14-9 on
page 14-26 describes).

For other aggregate support functions of SQSUM1, see Figure 14-11 on
page 14-30, Figure 14-12 on page 14-32, and Figure 14-13 on page 14-34.

Defining the User-Defined Aggregate

You can define the user-defined aggregate before you create the C implemen-
tation of the aggregate support functions. However, you must ensure that the
names of the C functions match the names in the CREATE FUNCTION state-
ments that register them.

To define a user-defined aggregate in a database with SQL

1. Register the user-defined aggregate in the database with the CREATE
AGGREGATE statement

2. Register the aggregate support functions in the database with the
CREATE FUNCTION statement

The development steps for a UDA list the definition of the UDA after the
aggregate support functions are written. However, the CREATE AGGREGATE
statement does not verify that the aggregate support functions it lists were
registered nor does the CREATE FUNCTION statement verify that the
executable C code exists.

/* SQSUM1 FINAL support function on INTEGER */
mi_integer final_sqsum1(state)
 mi_integer state;
{
 /* Calculate square of sum */
 state *= state;

 return (state);
}

Figure 14-15
FINAL Aggregate
Support Function

for SQSUM1 on
INTEGER
14-36 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
Figure 14-16 shows the CREATE AGGREGATE statement that defines the
SQSUM1 user-defined aggregate (which Figure 14-9 on page 14-26 describes)
in the database.

Suppose that the INIT, ITER, COMBINE, and FINAL aggregate support
functions for the SQSUM1 aggregate are compiled and linked into a shared-
object module named sqsum.

On UNIX or Linux, the executable code for the SQSUM1 aggregate support
functions would be in a shared library named sqsum.so. ♦

Figure 14-17 shows the CREATE FUNCTION statements that register the
aggregate support functions for the SQSUM1 user-defined aggregate to
handle the INTEGER data type.

CREATE AGGREGATE sqsum1
WITH (INIT = init_sqsum1,

ITER = iter_sqsum1,
COMBINE = combine_sqsum1,
FINAL = final_sqsum1);

Figure 14-16
Registering the

SQSUM1
User-Defined

Aggregate

UNIX/Linux

CREATE FUNCTION init_sqsum1(dummy_arg INTEGER)
RETURNS INTEGER
WITH (HANDLESNULLS)
EXTERNAL NAME '/usr/udrs/aggs/sums/sqsum.so'
LANGUAGE C;

CREATE FUNCTION iter_sqsum1(state INTEGER,
one_value INTEGER)

RETURNS INTEGER
EXTERNAL NAME '/usr/udrs/aggs/sums/sqsum.so'
LANGUAGE C;

CREATE FUNCTION combine_sqsum1(state1 INTEGER,
state2 INTEGER)

RETURNS INTEGER
EXTERNAL NAME '/usr/udrs/aggs/sums/sqsum.so'
LANGUAGE C;

CREATE FUNCTION final_sqsum1(state INTEGER)
RETURNS INTEGER
EXTERNAL NAME '/usr/udrs/aggs/sums/sqsum.so'
LANGUAGE C;

Figure 14-17
Registering the

Aggregate Support
Functions for

SQSUM1
to Handle INTEGER
Creating Special-Purpose UDRs 14-37

Creating a User-Defined Aggregate
The registered names of the aggregate support functions must match the
names that the CREATE AGGREGATE statement lists. For example, in
Figure 14-17, a CREATE FUNCTION statement registers the INIT support
function as init_sqsum1, which is the same name that the INIT option lists in
the CREATE AGGREGATE statement (see Figure 14-16 on page 14-37).

In addition, the CREATE FUNCTION for the INIT support function must
include the HANDLESNULLS routine modifier so that the database server can
pass the INIT function the dummy NULL-valued argument.

For more information on the use of the CREATE AGGREGATE and CREATE
FUNCTION statements to define user-defined aggregates, see the chapter on
aggregates in the IBM Informix User-Defined Routines and Data Types
Developer’s Guide. For the syntax of these statements, see the IBM Informix
Guide to SQL: Syntax.

Using the User-Defined Aggregate

After you complete the aggregate-development steps, the end user can use
the user-defined aggregate on the defined data type in SQL statements.
However, use of the user-defined aggregate does assume the appropriate
privileges.

For the tab1 table, which Figure 14-8 on page 14-24 defines, the following
query uses the new SQSUM1 aggregate function on the INTEGER column,
col3:

SELECT SQSUM1(col3) FROM tab1;

With the rows that Figure 14-8 has inserted, the preceding query yields an
INTEGER value of 10201.

To be able to use SQSUM1 on other data types, you need to ensure that the
appropriate aggregate support functions exist for this data type. For
example, “SQSUM2 User-Defined Aggregate” on page 14-60 shows the
definition of a version of the SQSUM aggregate on both an INTEGER and a
named row type.
14-38 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
Determining Required Aggregate Support Functions

Figure 14-18 shows the execution sequence of aggregate support functions
for a user-defined aggregate that is not executed in a parallel query.

Tip: For information about how to execute a user-defined aggregate in parallel
queries, see “Executing a User-Defined Aggregate in Parallel Queries” on
page 14-55.

Figure 14-18
Execution of a

Nonparallel User-
Defined Aggregate

INIT

initialized
aggregate

state

ITER

Another
aggregate
argument

?

YES

NO

updated
aggregate

state

final
aggregate

state

FINAL

aggregate
result
Creating Special-Purpose UDRs 14-39

Creating a User-Defined Aggregate
These aggregate support functions use the aggregate state to pass shared
information between themselves.

As you design your aggregate algorithm, you must determine which of the
support functions the algorithm requires. As a minimum, the user-defined
aggregate must have an ITER function. It is the ITER function that performs a
single iteration of the aggregate on one aggregate argument. Although
Figure 14-18 on page 14-39 shows the execution of both the INIT and FINAL
support functions, these functions are optional for a user-defined aggregate.
In addition, the COMBINE function, though required, often does not require
separate code; it can simply call the ITER function.

Writing aggregate support functions that your user-defined aggregate does
not require means unnecessary coding and execution time. Therefore, it is
important to assess your aggregate for required functions. The following
table shows the design decisions in the determination of required aggregate
support functions.

Design Decision
Aggregate Support
Functions Involved More Information

Does the algorithm require
initialization or clean-up
tasks?

INIT and FINAL “Aggregate Support
Functions That the Algorithm
Requires” on page 14-41

Does the aggregate have a
simple aggregate state?

INIT, COMBINE,
and FINAL

Yes: “Handling a Simple
State” on page 14-44

No: “Handling a Nonsimple
State” on page 14-46

Does the aggregate have a
set-up argument?

INIT “Implementing a Set-Up
Argument” on page 14-53

Does the aggregate return a
value whose data type is
different from the aggregate
state?

FINAL “Returning an Aggregate
Result Different from the
Aggregate State” on
page 14-54

Does the aggregate have
special needs to run in a
parallel query?

COMBINE “Executing a User-Defined
Aggregate in Parallel Queries”
on page 14-55
14-40 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
You can overload the aggregate support functions to provide support for
different data types. Any overloaded version of the UDA, however, cannot
omit any of the aggregate support functions that the CREATE AGGREGATE
statement has listed or use any support function that CREATE AGGREGATE
has not specified.

When the database server executes a UDA (regardless of the data type of the
aggregate argument), the database expects to find all the aggregate support
functions that the CREATE AGGREGATE statement has registered. Therefore,
if you omit a support function for one of the reasons in the preceding table,
all versions of the aggregate for all data types must be able to execute using
only the aggregate support functions that CREATE AGGREGATE specifies.

Aggregate Support Functions That the Algorithm Requires

To implement a user-defined aggregate, you must develop an algorithm that
calculates an aggregate return value based on the aggregate-argument
values. You need to break this algorithm into the following steps.

Algorithm Step
Aggregate Support
Function

Calculations or initializations that must be done before the itera-
tions can begin

INIT

Calculations that must be done on each aggregate argument to
merge this argument into a partial result

ITER

Post-iteration tasks must be performed after all aggregate
arguments were merged into a partial result

FINAL
Creating Special-Purpose UDRs 14-41

Creating a User-Defined Aggregate
All aggregate algorithms must include an ITER function to handle each
aggregate argument. However, the INIT and FINAL support functions are
optional. To determine whether your algorithm requires an INIT or FINAL
function, make the following design assessments:

� Are there calculations or initializations that must be done before the
iterations can begin?

If the algorithm requires additional resources to perform its task
(such as operating-system files or smart large objects), use the INIT
function to set up these resources. The INIT function can also initial-
ize the partial result.

� Are there post-iteration tasks that must be performed after all
aggregate arguments were merged into a partial result?

If the INIT function has set up resources to perform the aggregation,
the FINAL function can deallocate or close resources so that they are
free for other users. In addition, if the aggregation requires calcula-
tions that must be performed on the final partial result, use the FINAL
function to perform these calculations.

For example, the following algorithm defines the SQSUM1 aggregate (which
Figure 14-9 on page 14-26 describes):

(x1 + x2 + ...)
2

where each xi is one column value; that is, one aggregate argument. The ITER
function for SQSUM1 takes a single aggregate argument and adds it to a
partial sum (see Figure 14-12 on page 14-32). The algorithm does not require
initialization of additional resources. Therefore, no INIT function is required
for this task. However, the INIT function can initialize the partial result (see
Figure 14-11 on page 14-30).

The SQSUM1 user-defined aggregate does require post-iteration calculations.
When the last iteration is reached, the partial sum needs to be squared to
obtain the aggregate return value. This final calculation is performed in a
FINAL function and returned as the return value for the SQSUM1 aggregate
(see Figure 14-15 on page 14-36).

The SUMSQ user-defined aggregate (described on page 14-58) is an example
of a user-defined aggregate that requires neither initialization nor post-
iteration tasks. Therefore, it does not require the INIT and FINAL support
functions.
14-42 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
Aggregate Support Functions for the Aggregate State

The aggregate support functions pass information about the aggregate
among themselves in the aggregate state.

Tip: For an explanation of the aggregate state, see “Determining the Aggregate
State” on page 14-26.

The database server invokes all aggregate support functions as regular UDRs.
Therefore, each support function has a default memory duration of
PER_ROUTINE, which means that the database server frees any memory that
the support function allocates when that function terminates. However, the
aggregate state must be valid across all invocations of all aggregate support
functions, including possible multiple iterations of the ITER function.
Therefore, a special state buffer (with a PER_COMMAND memory duration)
must exist so that the aggregate state is available to all aggregate support
functions. The database server then passes this state buffer to each invocation
of an aggregate support function.

The purpose of the INIT support function is to return a pointer to the
initialized aggregate state. To determine whether your aggregate state
requires an INIT support function for state management, assess the data type
of this state. The aggregate-state data type determines whether the INIT
function must handle state management, as follows:

� If the data type of the aggregate state is the same as the aggregate
argument, the aggregate has a simple state.

If your user-defined aggregate uses a simple state, the database
server can perform the state management. It can automatically allo-
cate the state buffer for the aggregate state. Therefore, the INIT
support function does not need to handle this allocation.

� If the data type of the aggregate state is different from the aggregate
argument, the aggregate has a nonsimple state.

There are several types of non-simple states possible. The database
server cannot perform state management for these non-simple states.
Instead, the INIT support functions must perform the state-manage-
ment tasks to handle non-simple states.

Once the user-defined aggregate has an aggregate state, the database server
passes a pointer to this state buffer to each invocation of the ITER function and
to the FINAL function.
Creating Special-Purpose UDRs 14-43

Creating a User-Defined Aggregate
Handling a Simple State

A simple state is an aggregate state whose data type is the same as the
aggregate argument. At any point in the iteration, a simple state contains only
the partial result of the aggregation. For example, the SUM built-in aggregate
uses a simple state because its state contains only the partial result: the
running total of the aggregate arguments. When the SUM aggregate operates
on INTEGER aggregate arguments, it creates an integer partial sum for these
arguments. Therefore, the data type of its aggregate argument and aggregate
state is the same.

However, the AVG built-in aggregate does not use a simple state. Because it
must divide the total by the number of values processed, its state requires
two values: the running total and the number of arguments processed. When
the AVG aggregate operates on INTEGER aggregate arguments, it creates an
integer partial sum and an integer count for these arguments. Therefore, the
data type of its aggregate argument (INTEGER) cannot be not the same as its
aggregate state (two INTEGER values).

When a user-defined aggregate has a simple state, the following items apply:

� The INIT aggregate support function does not need to allocate the
aggregate state.

In this case, the database server automatically performs the state
management. If a UDA with a simple state does not include any other
tasks that require an INIT support function (see Figure 14-10 on
page 14-29), you can omit the INIT function from the definition of the
UDA. The only possible state-management task you might want to
perform in the INIT function is state initialization. For more informa-
tion, see “When to Allocate and Deallocate a State” on page 14-52.

� The COMBINE aggregate support function can just call the ITER
support function.

In this case, you do not have to create special code in the COMBINE
function for the handling of parallel execution. Instead, the ITER
function can perform the merge of two partial results. For more
information, see “Executing a User-Defined Aggregate in Parallel
Queries” on page 14-55.
14-44 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
� The FINAL function is not required if the data type of the simple state
is the same as the aggregate result.

In this case, the aggregate argument, aggregate state, and aggregate
result have the same data type. Such a user-defined aggregate is
called a simple binary operator. If a UDA is a simple binary operator
and does not include any other tasks that require a FINAL support
function (see Figure 14-14 on page 14-35), you can omit the FINAL
function from the definition of the UDA. For more information, see
“Returning an Aggregate Result Different from the Aggregate State”
on page 14-54.

When a UDA does not include an INIT function, the database server takes the
following state-management steps:

� Allocates the PER_COMMAND state buffer to hold the aggregate state

The database server can determine the size of the state buffer from
the data type of the aggregate argument, which is passed into the
user-defined aggregate.

� Initializes this aggregate state to an SQL NULL value whose data type
is the same as the aggregate argument

� Passes the NULL-valued aggregate state to the first invocation of the
ITER support function

The ITER support function can just use the system-allocated state
buffer to hold the state information. If you have some minor initial-
ization tasks that you need to perform, the ITER function can check
for a NULL-valued aggregate state on its first iteration. If the state is
NULL, ITER can initialize the state to its appropriate value. In this
way, you can perform minor state initialization without the overhead
of a separate invocation of the INIT function.

When a UDA does not include a FINAL function, the database server passes
the final state as the aggregate result of the user-defined aggregate.

The implementation on the SQSUM1 aggregate includes an INIT support
function that initializes the aggregate state (see Figure 14-11 on page 14-30).
However, because SQSUM1 has a simple state, this INIT function is not
required. Instead, an ITER function can check for a NULL-valued state and
perform the state initialization. The ITER support function of the SQSUM2
aggregate (see Figure 14-22 on page 14-61) shows this type of
implementation.
Creating Special-Purpose UDRs 14-45

Creating a User-Defined Aggregate
The SUMSQ user-defined aggregate (described on page 14-58) also has a
simple state and therefore does not require an INIT support function for state
management.

Handling a Nonsimple State

When the data type of the aggregate argument is not adequate for the state
information, you must use a nonsimple state for your UDA. A nonsimple state
is an aggregate state whose data type is not the same as the aggregate
argument. Possible uses for a nonsimple state include an aggregate state that
contains:

� An aggregate state that contains more information than the
aggregate-argument data type can hold

� An aggregate state that contains information of a data type different
than that of the aggregate argument

When the aggregate-argument data type is not adequate for the state infor-
mation, you must determine the appropriate data structure to hold the state
information. This data structure depends upon the size of the aggregate state
that you need to maintain, as the following table shows.

If your user-defined aggregate uses a single-valued or opaque-type state, the
database server can still perform the state management. However, it cannot
provide all necessary state management for a pointer-valued state.

Nonsimple State Description More Information

Single-valued state Consists of information that
can be stored in an Informix
built-in data type

“Managing a Single-Valued
State” on page 14-47

Opaque-type state Consists of several values,
but these values do not
exceed the maximum size of
an opaque data type

“Managing an Opaque-Type
State” on page 14-48.

Pointer-valued state Consists of values whose size
does exceed the maximum
size of an opaque data type

“Managing a Pointer-Valued
State” on page 14-50.
14-46 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
Managing a Single-Valued State

A single-valued state uses a built-in SQL data type to hold the aggregate state.
Use a single-valued state for an aggregate state that can fit into a built-in data
type but whose data type does not match that of the aggregate argument.

Tip: Built-in SQL data types are provided data types. For more information, see the
chapter on data types in the “IBM Informix Guide to SQL: Reference.”

To use a single-valued state for a UDA

1. Write the appropriate aggregate support functions so that they
handle a single-valued state.

Declare the state parameters and return values of the aggregate sup-
port functions to use the DataBlade API data type that corresponds
to the built-in SQL data type that your state requires. For a list of
these data type correspondences, see Figure 1-1 on page 1-14. Infor-
mation on how to handle state management for a single-valued state
is provided below.

2. Register the aggregate support functions with the CREATE
FUNCTION statement.

Specify the built-in SQL data type as the data type of the state param-
eters and return values in the function signatures of the aggregate
support functions.

The database server can perform memory management for a single-valued
state because it can determine the size of a built-in data type. Therefore, you
do not need to allocate memory for a single-valued state in the INIT support
function.

In the ITER function, you can initialize or update a single-valued state in
either of the following ways:

� In-place state update

To modify the state, change the value (or values) of the DataBlade
API variable that the database server has passed into the ITER func-
tion as the state argument.

� Allocate a new state

To modify the state, declare a local variable or allocate PER_ROUTINE
memory for a new variable and put the new values into this variable.
Creating Special-Purpose UDRs 14-47

Creating a User-Defined Aggregate
For more information, see “When to Allocate and Deallocate a State” on
page 14-52.

For a single-valued state, the FINAL support function does not need to
perform any state-management tasks. However, it must convert to the data
type of the final aggregate state to that of the aggregate result. For more infor-
mation, see “Returning an Aggregate Result Different from the Aggregate
State” on page 14-54.

Managing an Opaque-Type State

An opaque-type state uses an opaque data type to hold the aggregate state. A
possible use for an opaque-type state is to include an aggregate state that
contains more information than the aggregate-argument data type or a built-
in data type can hold. The size of an aggregate state that can be implemented
as an opaque-type state is limited by the maximum size of an opaque type.

Important: The maximum size of an opaque type is system dependent. On many
systems, this limit is 32 kilobytes. Consult your machine notes for the limit on your
system. If your aggregate state might contain more data than the opaque-type limit,
you must use a pointer-valued state instead. For more information, see “Managing
a Pointer-Valued State” on page 14-50.

To use an opaque-type state for a UDA, write the appropriate aggregate
support functions so that they handle an opaque-type state.

Declare the state parameters and return values of the aggregate support
functions to use the internal format of the opaque type. This internal format
is usually a C struct structure. For more information, see “Determining
Internal Representation” on page 15-5.

Handling State Management for an Opaque-Type State

Register the opaque data type in the database with the CREATE OPAQUE TYPE
statement.

After you register the opaque data type, the database server can obtain infor-
mation about the data type of the state value when the CREATE FUNCTION
statement registers the function signatures of the aggregate support
functions.
14-48 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
You need to write the opaque-type support functions only if you need such
functionality in the aggregate support functions. For example, the input and
output support functions might be useful when you debug your UDA. If you
do write opaque-type support functions, you must compile and link them
into a shared-object module, as “Compiling a C UDR” on page 11-19
describes.

Register the aggregate support functions with the CREATE FUNCTION
statement.

Specify the registered opaque type as the data type of the state parameters
and return values in the function signatures of the aggregate support
functions.

The database server can perform memory management for an opaque-type
state because it can determine the size of the opaque data type. The CREATE
OPAQUE TYPE statement registers the opaque type, including its size, in the
system catalog tables of the database. From the system catalog tables, the
database server can determine the size of the aggregate state to allocate.
Therefore, you do not need to allocate the opaque-type state in the INIT
support function.

In the ITER function, you can initialize or update an opaque-type state in
either of the following ways:

� In-place state update

To modify the state, change the values in the internal opaque-type
structure that the database server has passed into the ITER function
as an argument.

� Allocate a new state

To modify the state, allocate PER_ROUTINE memory for a new inter-
nal opaque-type structure and put the new values into this structure.

If you need to initialize the internal structure of the opaque type, the
INIT or ITER function can allocate PER_ROUTINE memory for the
structure perform the appropriate initializations. When the support
function exits, the database server copies the contents of this
PER_ROUTINE structure into the PER_COMMAND system-allocated
state buffer.
Creating Special-Purpose UDRs 14-49

Creating a User-Defined Aggregate
For more information, see “When to Allocate and Deallocate a State” on
page 14-52. For an example of a user-defined aggregate that uses an opaque-
type state, see the description of the PERCENT_GTR aggregate on page 14-66.

Managing a Pointer-Valued State

A pointer-valued state uses the POINTER data type as the aggregate state. The
mi_pointer data type is the DataBlade API type that represents the SQL data
type, POINTER. (For more information, see “Pointer Data Types” on
page 2-48.) Use a pointer-valued state when an aggregate state might contain
more information than can fit into the maximum opaque-type size.

Important: The maximum size of an opaque type is system dependent. On many
systems, this limit is 32 kilobytes. Consult your machine notes for the limit on your
system. If your aggregate state contains less data than the opaque-type limit, use an
opaque-type state instead. For more information, see “Managing an Opaque-Type
State” on page 14-48.

To use a pointer-valued state for a UDA

1. Write the appropriate aggregate support functions so that they
handle a pointer-valued state.

Declare the state parameters and return values of the aggregate sup-
port functions to use the mi_pointer data type. Information on how
to handle state management of a pointer-valued state follows.

2. Register the aggregate support functions with the CREATE
FUNCTION statement.

Specify the POINTER data type for the state parameters and return
values in the function signatures of the aggregate support functions.

The database server cannot perform state management for a pointer-valued
state because it cannot determine the size of the state. The DataBlade API data
type mi_pointer is a typedef for the following C data type:

void *
14-50 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
Because this data type is only a pointer, the database server cannot determine
how large the aggregate state is. Therefore, it cannot allocate the
PER_COMMAND system-allocated state buffer. In this case, the INIT and
FINAL aggregate support functions are not optional. They must perform state
management of the nonsimple aggregate state, as follows:

� The INIT function can allocate and initialize the aggregate state.

The INIT function must also allocate any related resources that the
aggregate state might need. Keep in mind that the database server
does not interpret the contents of the pointer-valued state. It cannot
manage any objects that the state type might reference. Therefore,
use states with embedded pointers with caution.

� The ITER function must perform an in-place update to initialize or
modify a pointer-valued state.

Once you allocate the pointer-valued state, the database server
passes a pointer to this state to the other aggregate support functions.
Initialize or update the pointer-valued state only with an in-place
update. For more information, see “When to Allocate and Deallocate
a State” on page 14-52.

� The FINAL function can handle deallocation of resources that the
INIT function has set up.

For a pointer-valued state, the FINAL function must always deallo-
cate the aggregate state. If your INIT support function has allocated
related resources that the aggregate state uses, make sure that the
FINAL function deallocates these resources.

Important: Make sure that you use a memory duration that extends for the life of the
user-defined aggregate. A PER_ROUTINE memory duration (the default) expires
after one invocation of the ITER function completes. Therefore, you must use a
memory duration of at least PER_COMMAND for memory associated with the state.
Creating Special-Purpose UDRs 14-51

Creating a User-Defined Aggregate
When to Allocate and Deallocate a State

To each invocation of the ITER support function, the database server automat-
ically passes a pointer to the state buffer. When you need to initialize or
update the state information, the ITER function can handle the modification
in either of two ways, as the following table describes.

The new state method can be slower than the in-place method because the
databed that you design your ITER support function to use the in-place
method whenever possible. When the database server can skip the copy
operation, you can improve performance of your UDA.

Changing the State State Memory Duration Results

Merge the aggregate
argument into the
existing state in-place
and return the existing
state.

The existing state has a PER_COMMAND
memory duration:

� For single-valued and opaque-type states,
this state is the system-allocated state
buffer.

� For a pointer-valued state, this state is a
user-allocated state buffer.

The new state value is at the
address that the database server
has passed into the ITER
function. The ITER function then
returns this address as the
updated state. Because the state
memory has a PER_COMMAND
memory duration, the database
server can re-use the same state
for subsequent invocations of
ITER.

Allocate fresh memory
for a new state, merge
the existing state with
the new aggregate
argument into this
state, and return this
new state.

The new state has a PER_ROUTINE
memory duration:

� For a single-valued state, this state can be
either a declared local variable or user-
allocated PER_ROUTINE memory.

� For an opaque-type state, the new state
must be user-allocated PER_ROUTINE
memory.

� For a pointer-valued state, this state is
user-allocated memory with either a
PER_ROUTINE or PER_COMMAND
memory duration. However, for
PER_COMMAND memory, you must
also handle deallocation of the old state.
For more information, see “Managing a
Pointer-Valued State” on page 14-50.

The new state value is at the
address of the new state. The
ITER function then returns the
address of the new state as the
updated state. Because this
memory has a PER_ROUTINE
memory duration, the database
server must copy the returned
state back into the
PER_COMMAND buffer.
14-52 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
To determine which of these methods was used in the ITER support function,
the database server compares the state value that ITER returns and the state
value that was passed into ITER. If these two pointers identify the same
memory location, the ITER function has modified the state in-place.
Therefore, the database server does not need to perform the copy operation.
If these two pointers identify different memory locations, the database server
proceeds with the copy operation.

Aggregate support functions have the following restrictions on the deallo-
cation of an aggregate state:

� For any state other than a pointer-valued state, no aggregate support
function must deallocate the state memory.

� No aggregate support function can return a NULL-valued pointer as
the state.

Implementing a Set-Up Argument

You can define a UDA so that the end user can supply a set-up argument to the
aggregate. The set-up argument can customize the aggregate for a particular
invocation. For example, the PERCENT_GTR user-defined aggregate (see
page 14-66) determines the percentage of numbers greater than a particular
value. The UDA could have been implemented so that the value to compare
against is hardcoded into the UDA. However, this would mean a separate
user-defined aggregate that checks for values greater than 10, another that
checks for values greater than 15, and so on.

Instead, the PERCENT_GTR aggregate accepts the value to compare against as
a set-up argument. In this way, the end user can determine what values are
needed, as follows:

SELECT PERCENT_GTR(col1, 10) FROM tab1; -- values > 10;
SELECT PERCENT_GTR(col1, 15) FROM tab1; -- values > 15;

The database server passes in the set-up argument as the second argument to
the INIT function. Therefore, the INIT support function must handle the set-
up argument. Usually, this handling involves performing any initial
processing required for the value and then saving this value in the aggregate
state. It might also check for a possible SQL NULL value as a set-up argument.
Creating Special-Purpose UDRs 14-53

Creating a User-Defined Aggregate
This set-up argument is optional, in the sense that you can define a UDA with
one or without one. However, if you define your UDA to include a set-up
argument, the end user must provide a value for this argument. When the
UDA is invoked with two arguments (aggregate argument and set-up
argument), the database server looks for an INIT function with two
arguments. If you omit the set-up argument when you invoke the UDA, the
database server looks for an INIT function with just one argument.

To indicate no set-up argument, the end user can provide the SQL NULL value
as a set-up value. However, if you really want to make the set-up argument
truly optional for the end user, you must create and register two INIT
functions:

� One that takes two arguments

� One that takes only one argument

In this case, you could assign the set-up argument some known
default value.

As the writer of the UDA, you need to decide whether this feature is useful.

Returning an Aggregate Result Different from the Aggregate State

The aggregate result is the value that the user-defined aggregate returns to
the calling SQL statement. If the user-defined aggregate does not include a
FINAL support function, the database server returns the final aggregate state;
that is, it returns the value of the aggregate state after the last aggregate
iteration. However, if your UDA needs to return a value whose data type is
different from the aggregate state, use a FINAL support function to convert
the final aggregate state to the data type that you want to return from the
aggregate.

For example, the PERCENT_GTR user-defined aggregate (see page 14-66)
returns the percentage of values greater than some value as a percentage; that
is, as a fixed-point number in the range 0.00 to 100.00. To handle integer
values, the user-defined aggregate would require an aggregate state that
holds the following values:

� The total number of aggregate arguments greater than 10

� The total number of aggregate arguments

� The value to compare against
14-54 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
However, the aggregate result of PERCENT_GTR is a fixed-point number.
Therefore, you would not want the aggregate to return the final state to the
calling SQL statement. Instead, the FINAL support function needs to perform
the following steps:

1. Divide the total number of arguments by the total that are greater
than 10.

2. Return the fixed-point quotient, which is the percentage of values
greater than 10.

For the complete example of the PERCENT_GTR user-defined aggregate, see
page 14-66.

Executing a User-Defined Aggregate in Parallel Queries

The database server can break up the aggregation computation into several
pieces and compute them in parallel. Each piece is computed sequentially as
follows:

1. The INIT support function initializes execution in the parallel thread.

2. For each aggregate argument in the subset, the ITER support function
merges the aggregate argument into a partial result.

The database server then calls the COMBINE support function to merge the
partial states, two at a time, into a final state. For example, for the AVG built-
in aggregate, the COMBINE function would add the two partial sums and
adds the two partial counts. Finally, the database server calls the FINAL
support function on the final state to generate the aggregate result.
Creating Special-Purpose UDRs 14-55

Creating a User-Defined Aggregate
Figure 14-19 shows the execution sequence of aggregate support functions
for a user-defined aggregate that is executed in two parallel threads.

Figure 14-19
Parallel

Execution of a
UDA

INIT

initialized
aggregate

state

ITER

Another
aggregate
argument

?

YES

NO

updated
aggregate

state

final
aggregate

state

FINAL

aggregate
result

INIT

initialized
aggregate

state

ITER

Another
aggregate
argument

?

YES

NO

COMBINE

aggregate
state for
thread 1

aggregate
state for
thread 2
14-56 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
Figure 14-19 shows how the COMBINE function is used to execute a user-
defined aggregate with two parallel threads. For more than two parallel
threads, the database server calls COMBINE on two thread states to obtain
one, combines this state with another thread state, and so on until it has
processed all parallel threads. The database server makes the decision
whether to parallelize execution of a user-defined aggregate and the degree
of such parallelism. However, these decisions are invisible to the end user.

Parallel aggregation must give the same results as an aggregate that is not
computed in parallel. Therefore, you must write the COMBINE function so
that the result of aggregating over the entire group of selected rows is the
same as aggregating over two partitions of the group separately and then
combining the results.

For an example of COMBINE functions in user-defined aggregates, see
“Sample User-Defined Aggregates.”

Sample User-Defined Aggregates

This section provides the sample user-defined aggregates that the following
table describes.

Each description includes the aggregate support functions written in C and
the SQL statements to define the user-defined aggregate in the database.

User-Defined
Aggregate Description

SUMSQ Squares each value and calculates the sum of these squared
values

SQSUM2 Sums all values and calculates the square of this sum

PERCENT_GTR Determines the percentage of values greater than a user-
specified value

X_PERCENTILE Determines the value in a group of values that is the x-percentile,
where x is a percent that the end user specifies.
Creating Special-Purpose UDRs 14-57

Creating a User-Defined Aggregate
SUMSQ User-Defined Aggregate

The SUMSQ user-defined aggregate squares each value and calculates the
sum of these squared values. It has the following algorithm:

x1
2 + x2

2 + ...

where each xi is one column value; that is, one aggregate argument.

To determine the aggregate state for SUMSQ, examine what information
needs to be available for each iteration of the aggregate. To perform one
iteration of SUMSQ, the ITER function must:

1. Square the aggregate argument.

The ITER function has access to the aggregate argument because the
database server passes it in. Therefore, ITER does not require addi-
tional information to perform this step.

2. Add the squared argument to the partial sum of previous squared
values.

To add in the squared argument, the aggregate must keep a partial
sum of the previous squared values. For the ITER function to have
access to the partial sum from the previous iterations, the aggregate
state must contain it.

The SUMSQ has a simple state because the data type of the partial sum is the
same as that of the aggregate argument. For example, when the SUMSQ
aggregate receives INTEGER values, this partial sum is also an INTEGER
value. Therefore, SUMSQ can allow the database server to manage this state,
which has the following effect on the design of the aggregate support
functions:

� The INIT support function does not need to perform state
management.

An aggregate with a simple state does not need to explicitly handle
the allocation and deallocation of the aggregate state. Instead, the
database server automatically allocates the aggregate state and ini-
tializes it to NULL. Therefore, the INIT function does not require other
INIT-function tasks (see Figure 14-10 on page 14-29). Therefore, this
support function can safely be omitted from the aggregate definition.
14-58 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
� The COMBINE support function can be the same as its ITER function.

No special processing is required to merge two partial states. The
ITER function can adequately perform this merge.

Before the iterations begin, the partial sum needs to be initialized to zero (0).
However, because the INIT function is not required for state management,
this aggregate initializes the state in the first invocation of its ITER function.
The ITER function then calculates the square of a single aggregate argument,
and adds this value to a partial sum. When the last iteration is reached, the
final partial sum is the value that the SUMSQ aggregate returns. Therefore, the
SUMSQ algorithm does not require a FINAL function for post-iteration tasks.

Figure 14-20 shows the required aggregate support functions that handle an
INTEGER argument for the SUMSQ user-defined aggregate.

The following SQL statement registers the SUMSQ user-defined aggregate in
the database:

CREATE AGGREGATE sumsq
WITH (ITER = iter_sumsq,

COMBINE = combine_sumsq);

/* SUMSQ ITER support function on INTEGER */
mi_integer iter_sumsq(state, value, fparam)

mi_integer state;
mi_integer value;
MI_FPARAM *fparam;

{
/* If 'state' is NULL, this is the first invocation.
* Just return square of 'value'.
*/

if (mi_fp_argisnull(fparam, 0))
return (value * value);

else /* add 'state' and square of 'value' together */
return (state + (value * value));

}

/* SUMSQ COMBINE support function on INTEGER */
mi_integer combine_sumsq(state1, state2)

mi_integer state1, state2;
{

/* Return the new partial sum from two parallel partial
* sums
*/

return (iter_sumsq(state1, state2));
}

Figure 14-20
Aggregate Support

Functions for
SUMSQ on

INTEGER
Creating Special-Purpose UDRs 14-59

Creating a User-Defined Aggregate
This CREATE AGGREGATE statement lists only the aggregate support
functions that are required to implement SUMSQ: ITER and COMBINE.

Suppose that the ITER and COMBINE aggregate support functions for the
SUMSQ aggregate are compiled and linked into a shared-object module
named sumsq.

On UNIX or Linux, the executable code for the SUMSQ aggregate support
functions would be in a shared library named sumsq.so. ♦

Figure 14-21 shows the CREATE FUNCTION statements that register the
aggregate support functions for SUMSQ to handle INTEGER aggregate
arguments.

For the tab1 table, which Figure 14-8 on page 14-24 defines, the following
query uses the new SUMSQ aggregate function on the INTEGER column, col3:

SELECT SUMSQ(col3) FROM tab1;

With the rows that Figure 14-8 has inserted, the preceding query yields an
INTEGER value of 2173. To be able to use SUMSQ on other data types, you
need to ensure that the appropriate aggregate support functions exist for this
data type.

SQSUM2 User-Defined Aggregate

The SQSUM2 user-defined aggregate is another version of the SQSUM1
aggregate, which Figure 14-9 on page 14-26 describes. Its algorithm is the
same as SQSUM1:

(x1 + x2 + ...)
2

where each xi is one column value; that is, one aggregate argument.

UNIX/Linux

CREATE FUNCTION iter_sumsq(state INTEGER, one_value INTEGER)
RETURNS INTEGER
WITH (HANDLESNULLS)
EXTERNAL NAME '/usr/udrs/aggs/sums/sumsq.so'
LANGUAGE C;

CREATE FUNCTION combine_sumsq(state1 INTEGER, state2 INTEGER)
RETURNS INTEGER
EXTERNAL NAME '/usr/udrs/aggs/sums/sumsq.so'
LANGUAGE C;

Figure 14-21
Registering the

SUMSQ
Aggregate Support

Functions for
INTEGER
14-60 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
However, the SQSUM2 aggregate takes advantage of the fact that this
aggregate has a simple state. Because the database server automatically
handles state management, the SQSUM2 aggregate can safely omit the INIT
function.

Figure 14-22 shows the aggregate support functions that handle an INTEGER
argument for the SQSUM2 user-defined aggregate.

/* SQSUM2 ITER support function on INTEGER */
mi_integer iter_sqsum2(state, value, fparam)

mi_integer state;
mi_integer value;
MI_FPARAM *fparam;

{
/* If 'state' is NULL, this is the first invocation.
* Just return 'value'.
*/

if (mi_fp_argisnull(fparam, 0))
return (value);

else /* add 'state' and 'value' together */
return (state + value);

}

/* SQSUM2 COMBINE support function on INTEGER */
mi_integer combine_sqsum2(state1, state2)
 mi_integer state1, state2;
{

/* Return the new partial sum from two parallel partial
* sums
*/

return (iter_sqsum2(state1, state2));
}

/* SQSUM2 FINAL support function on INTEGER */
mi_integer final_sqsum2(state)
 mi_integer state;
{
 /* Calculate square of sum */
 state *= state;

 return (state);
}

Figure 14-22
Aggregate Support

Functions for
SQSUM2 on

INTEGER
Creating Special-Purpose UDRs 14-61

Creating a User-Defined Aggregate
In its first invocation, the ITER function performs the state initialization. It
then takes a single aggregate argument and adds it to a partial sum. For
aggregates with a simple state, the COMBINE function can be the same as the
ITER function. Therefore, this COMBINE function just calls iter_sumsq2() to
perform the merge of two partial states.

Tip: The ITER function in Figure 14-22 could use the binary operator plus() to
perform the addition. This operator is already defined on the INTEGER data type and
therefore would not need to be written or registered. To use plus() in ITER, you
would need to ensure that it is defined for the data type on which the SQSUM2
aggregate is defined.

The data type of the aggregate result is also the same as the aggregate state.
Therefore, SQSUM2 is a simple binary operator and the FINAL support
function is not needed to convert the data type of the final state. However, the
SQSUM2 aggregate still does require a FINAL support function. The SQSUM2
algorithm involves a post-iteration calculation: it must square the final sum
to obtain the aggregate return value. The FINAL function performs this final
calculation and returns it as the aggregate result for the SQSUM2 aggregate.

Suppose that the ITER, COMBINE, and FINAL aggregate support functions for
the SQSUM2 aggregate are compiled and linked into a shared-object module
named sqsum.

On UNIX or Linux, the executable code for the SQSUM2 aggregate support
functions would be in a shared library named sqsum.so. ♦

Once you have successfully compiled and linked the aggregate support
functions, you can define the SQSUM2 aggregate in the database. Figure 14-23
shows the CREATE AGGREGATE statement that registers the SQSUM2 user-
defined aggregate. This statement specifies the registered SQL names of the
required aggregate support functions.

Figure 14-24 shows the CREATE FUNCTION statements that register the
SQSUM2 aggregate support functions for the aggregate argument of the
INTEGER data type.

CREATE AGGREGATE sqsum2
WITH (ITER = iter_sqsum2,

COMBINE = combine_sqsum2,
FINAL = final_sqsum2);

Figure 14-23
Registering the
SQSUM2 User-

Defined Aggregate

UNIX/Linux
14-62 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
In Figure 14-24, the CREATE FUNCTION statement that registers the ITER
support function requires the HANDLESNULLS routine modifier because the
aggregate does not have an INIT support function.

For the tab1 table, which Figure 14-8 on page 14-24 defines, the following
query uses the new SQSUM2 aggregate function on the INTEGER column,
col3:

SELECT SQSUM2(col3) FROM tab1;

With the rows that Figure 14-8 has inserted, the preceding query yields an
INTEGER value of 10201, which is the same value that the SQSUM1 aggregate
returned for these same rows.

Now, suppose that you want to define the SQSUM2 user-defined aggregate on
the complexnum_t named row type, which Figure 14-6 on page 14-19
defines. This version of SQSUM2 must have the same aggregate support
functions as the version that handles INTEGER (see Figure 14-23 on
page 14-62).

CREATE FUNCTION iter_sqsum2(state INTEGER, one_value INTEGER)
RETURNS INTEGER
WITH (HANDLESNULLS)
EXTERNAL NAME '/usr/udrs/aggs/sums/sqsum.so'
LANGUAGE C;

CREATE FUNCTION combine_sqsum2(state1 INTEGER, state2 INTEGER)
RETURNS INTEGER
EXTERNAL NAME '/usr/udrs/aggs/sums/sqsum.so'
LANGUAGE C;

CREATE FUNCTION final_sqsum2(state INTEGER)
RETURNS INTEGER
EXTERNAL NAME '/usr/udrs/aggs/sums/sqsum.so'
LANGUAGE C;

Figure 14-24
Registering the

SQSUM2
Aggregate Support

Functions for
INTEGER

Aggregate Support
Function SQL Function Name C Function Name

ITER iter_sqsum2() iter_sqsum2_complexnum()

COMBINE combine_sqsum2() combine_sqsum2_complexnum()

FINAL final_sqsum2() final_sqsum2_complexnum()
Creating Special-Purpose UDRs 14-63

Creating a User-Defined Aggregate
The following code shows the aggregate support functions that handle a
complexnum_t named row type as an argument for the SQSUM2 user-
defined aggregate:

/* SQSUM2 ITER support function for complexnum_t */
MI_ROW *iter_sqsum2_complexnum(state, value, fparam)

MI_ROW *state;
MI_ROW *value;
MI_FPARAM *fparam;

{
/* Compute the new partial sum using the complex_plus()
* function. Put the sum in a new MI_ROW, which
* complex_plus() allocates (and returns a pointer to)
*/

return (complex_plus(state, value, fparam));
}

/* SQSUM2 COMBINE support function for complexnum_t */
MI_ROW *combine_sqsum2_complexnum(state1, state2, fparam)

MI_ROW *state1, *state2;
MI_FPARAM *fparam;

{
MI_ROW *ret_state;

ret_state =
iter2_sqsum2_complexnum(state1, state2, fparam);

mi_free(state1);
mi_free(state2);

return (ret_state);
}

/* SQSUM2 FINAL support function for complexnum_t */
MI_ROW *final_sqsum2_complexnum(state)

MI_ROW *state;
{

MI_CONNECTION *conn;
MI_TYPEID *type_id;
MI_ROW_DESC *row_desc;

MI_ROW *ret_row;
MI_DATUM values[2];
mi_boolean nulls[2] = {MI_FALSE, MI_FALSE};

mi_real *real_value, *imag_value;
mi_integer real_len, imag_len;
mi_real sqsum_real, sqsum_imag;
14-64 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
/* Extract complex values from state row structure */
mi_value_by_name(state, "real_part",

(MI_DATUM *)&real_value, &real_len);
mi_value_by_name(state, "imaginary_part",

(MI_DATUM *)&imag_value, &imag_len);

/* Calculate square of sum */
sqsum_real = (*real_value) * (*real_value);
sqsum_imag = (*imag_value) * (*imag_value);

/* Put final result into 'values' array */
values[0] = (MI_DATUM)&sqsum_real;
values[1] = (MI_DATUM)&sqsum_imag;

/* Generate return row type */
conn = mi_open(NULL, NULL, NULL);
type_id = mi_typestring_to_id(conn, "complexnum_t");
row_desc = mi_row_desc_create(type_id);
ret_row = mi_row_create(conn, row_desc, values, nulls);

return (ret_row);
}

Figure 14-25 shows the CREATE FUNCTION statements that register the
SQSUM2 aggregate support functions for an aggregate argument of the
complexnum_t data type.

CREATE FUNCTION iter_sqsum2(state complexnum_t,
one_value complexnum_t)

RETURNS complexnum_t
WITH (HANDLESNULLS)
EXTERNAL NAME

'/usr/udrs/aggs/sums/sqsum.so(iter_sqsum2_complexnum)'
LANGUAGE C;

CREATE FUNCTION combine_sqsum2(state1 complexnum_t,
state2 complexnum_t)

RETURNS complexnum_t
EXTERNAL NAME

'/usr/udrs/aggs/sums/sqsum.so(combine_sqsum2_complexnum)'
LANGUAGE C;

CREATE FUNCTION final_sqsum2(state complexnum_t)
RETURNS complexnum_t
EXTERNAL NAME

'/usr/udrs/aggs/sums/sqsum.so(final_sqsum2_complexnum)'
LANGUAGE C;

Figure 14-25
Registering the

SQSUM2
Aggregate Support

Functions for the
complexnum_t

Named Row Type
Creating Special-Purpose UDRs 14-65

Creating a User-Defined Aggregate
The following query uses the SQSUM2 aggregate function on the
complexnum_t column, col2:

SELECT SQSUM2(col2) FROM tab1;

With the rows that Figure 14-8 on page 14-24 has inserted, the preceding
query yields a complexnum_t value of:

ROW(817.96, 1204.09)

PERCENT_GTR User-Defined Aggregate

Suppose you want to create a user-defined aggregate that determines the
percentage of values greater than some user-specified value and returns this
percentage as a fixed-point number in the range 0 to 100. The implementation
of this UDA uses the following aggregate features:

� Uses a set-up argument to allow the end user to specify the value to
compare against

� Uses an opaque-type state to hold the state information and initialize
the state in the INIT support function

� Uses a COMBINE function that must do more than just call the ITER
support function

� Returns an aggregate result whose data type is different from that of
the aggregate argument

� Handles NULL values as aggregate arguments

The PERCENT_GTR user-defined aggregate needs the following state
information:

� The user-specified set-up argument

� The current number of values greater than the set-up argument

� The current number of values processed

Therefore, it uses the following C structure, named percent_state_t, to hold
the aggregate state:

typedef struct percent_state
{
mi_integer gtr_than;
mi_integer total_gtr;
mi_integer total;
} percent_state_t;
14-66 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
Because the size of the percent_state_t structure never exceeds the maximum
opaque-type size, PERCENT_GTR can use an opaque-type state to hold its
aggregate state. The following code shows the INIT aggregate support
function that handles an INTEGER argument for the PERCENT_GTR
aggregate:

/* PERCENT_GTR INIT support function for INTEGER */
percent_state_t *init_percentgtr(dummy_arg, gtr_than, fparam)

mi_integer dummy_arg;
mi_integer gtr_than;
MI_FPARAM *fparam;

{
percent_state_t *state;

/* Allocate PER_ROUTINE memory for state and initialize it */
state = mi_alloc(sizeof(percent_state_t));

/* Check for a NULL-valued set-up argument */
if (mi_fp_argisnull(fparam, 1))

state->gtr_than = 0;
else

state->gtr_than = gtr_than;
state->total_gtr = 0;
state->total = 0;

return (state);
}

This INIT function performs the following tasks:

� Handles a set-up argument

This set-up argument is the value that the end user specifies so that
the aggregate knows which value to compare the aggregate argu-
ments against. If the end user provides a NULL value for the set-up
argument, PERCENT_GTR checks for values greater than zero (0).

� Allocates PER_ROUTINE memory for the opaque-type state

The INIT function does not need to allocate memory for an opaque-
type state because the database server can perform the state manage-
ment. However, because PERCENT_GTR already requires an INIT
function to handle the set-up argument, INIT allocates a
PER_ROUTINE percent_state_t structure so that it can initialize the
opaque-type state.
Creating Special-Purpose UDRs 14-67

Creating a User-Defined Aggregate
The following code implements the ITER aggregate support function that
handles an INTEGER argument for the PERCENT_GTR aggregate:

/* PERCENT_GTR ITER support function for INTEGER */
percent_state_t *iter_percentgtr(curr_state, agg_arg, fparam)

percent_state_t *curr_state;
mi_integer agg_arg;
MI_FPARAM *fparam;

{
if (mi_fp_argisnull(fparam, 1) == MI_TRUE)

agg_arg = 0;

if (agg_arg > curr_state->gtr_than)
curr_state->total_gtr += 1;

curr_state->total += 1;

return (curr_state);
}

The PERCENT_GTR aggregate is defined to handle NULL values (see
Figure 14-26 on page 14-70). This ITER function must check for a possible
NULL aggregate argument. The function converts any NULL value to a zero
(0) so that the numeric comparison can occur.

The following COMBINE aggregate support function handles an INTEGER
argument for the PERCENT_GTR aggregate:

/* PERCENT_GTR COMBINE support function for INTEGER */
percent_state_t *combine_percentgtr(state1, state2)

percent_state_t *state1;
percent_state_t *state2;

{
state1->total += state2->total;
state1->total_gtr += state2->total_gtr;

mi_free(state2);

return(state1);
}

Because PERCENT_GTR does not have a simple state, its COMBINE function
must explicitly perform the merging of two parallel threads, as follows:

� It adds the two partial sums (total and total_gtr).

� It deallocates the PER_COMMAND memory for the second parallel
thread (merging of the two states was done “in-place” in state1).
14-68 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
The following code shows the FINAL aggregate support function that
handles an INTEGER argument for the PERCENT_GTR aggregate:

/* PERCENT_GTR FINAL support function for INTEGER */
mi_decimal *final_percentgtr(final_state)

percent_state_t *final_state;
{

mi_double_precision quotient;
mi_decimal return_val;
mi_integer ret;

quotient =
((mi_double_precision)(final_state->total_gtr)) /
((mi_double_precision)(final_state->total)) * 100;

if ((ret = deccvdbl(quotient, &return_val)) < 0)
ret = deccvasc("0.00", 4, &return_val);

return (&return_val);
}

The PERCENT_GTR aggregate returns a data type different from the aggregate
state. The FINAL function must convert the final state from the aggregate-
state data type (percent_state_t) to the aggregate-result data type
(DECIMAL).

Once you have successfully compiled and linked the aggregate support
functions, you can define the PERCENT_GTR aggregate in the database. For a
user-defined aggregate that uses an opaque-type state, this definition
includes the following steps:

1. Use CREATE OPAQUE TYPE to register the opaque type that holds the
opaque-type state.

2. Use CREATE AGGREGATE to register the aggregate.

3. Use CREATE FUNCTION to register the aggregate support functions.

The PERCENT_GTR aggregate uses a fixed-length opaque type,
percent_state_t, to hold its opaque-type state. The following CREATE
OPAQUE TYPE statement registers this opaque type:

CREATE OPAQUE TYPE percent_state_t (INTERNALLENGTH = 12);

The INTERNALLENGTH modifier specifies the size of the fixed-length C data
structure, percent_state_t, that holds the opaque-type state.
Creating Special-Purpose UDRs 14-69

Creating a User-Defined Aggregate
Figure 14-26 shows the CREATE AGGREGATE statement that defines the
PERCENT_GTR user-defined aggregate. This statement specifies the regis-
tered SQL names of the required aggregate support functions. It also includes
the HANDLESNULLS modifier to indicate that the PERCENT_GTR aggregate
does process NULL values as aggregate arguments. By default, the database
server does not pass a NULL value to an aggregate.

Suppose that the INIT, ITER, COMBINE, and FINAL aggregate support
functions for the PERCENT_GTR aggregate are compiled and linked into a
shared-object module named percent.

On UNIX or Linux, the executable code for the PERCENT_GTR aggregate
support functions would be in a shared library named percent.so. ♦

The following CREATE FUNCTION statements register the PERCENT_GTR
aggregate support functions for an aggregate argument of the INTEGER data
type:

CREATE FUNCTION init_percent_gtr(dummy INTEGER, gtr_val INTEGER)
RETURNING percent_state_t
WITH (HANDLESNULLS)
EXTERNAL NAME '/usr/udrs/aggs/percent/percent.so(init_percentgtr)'
LANGUAGE C;

CREATE FUNCTION iter_percent_gtr(state percent_state_t, one_value
INTEGER)
RETURNS percent_state_t
WITH (HANDLESNULLS)
EXTERNAL NAME '/usr/udrs/aggs/percent/percent.so(iter_percentgtr)'
LANGUAGE C;

CREATE FUNCTION combine_percent_gtr(state1 percent_state_t,
state2 percent_state_t)

RETURNS percent_state_t
WITH (HANDLESNULLS)
EXTERNAL NAME
'/usr/udrs/aggs/percent/percent.so(combine_percentgtr)'
LANGUAGE C;

CREATE AGGREGATE percent_gtr
 WITH (INIT = init_percent_gtr,

ITER = iter_percent_gtr,
COMBINE = combine_percent_gtr,
FINAL = final_percent_gtr,
HANDLESNULLS);

Figure 14-26
Registering the
PERCENT_GTR

User-Defined
Aggregate

UNIX/Linux
14-70 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
CREATE FUNCTION final_percent_gtr (state percent_state_t)
RETURNS DECIMAL(5,2)
WITH (HANDLESNULLS)
EXTERNAL NAME
'/usr/udrs/aggs/percent/percent.so(final_percentgtr)'
LANGUAGE C;

These CREATE FUNCTION statements register an SQL name for each of the
aggregate support functions that you have written in C. They must all
include the HANDLESNULLS routine modifier because the PERCENT_GTR
aggregate handles NULL values.

The following query uses the PERCENT_GTR aggregate function on the
INTEGER column, col3, to determine the percentage of values greater than 25:

SELECT PERCENT_GTR(col3, 20) FROM tab1;

With the rows that Figure 14-8 on page 14-24 has inserted, the preceding
query yields a DECIMAL(5,2) value of 33.33 percent: 2 of the 6 values are
greater than 20 (24 and 31).

X_PERCENTILE User-Defined Aggregate

Suppose you want to create a user-defined aggregate that calculates the
x-percentile for a group of values. The x-percentile is the number within the
group of values that separates x percent of the values below and (100-x)
percent above. The median is a special case of the x-percentile. It represents
the 50th-percentile:

X_PERCENTILE(y, 50)

That is, the above aggregate returns the value within a sample of y values that
has an equal number of values (50 percent) above and below it in the sample.

The implementation of this UDA uses the following aggregate features:

� Uses a set-up argument to enable the end user to specify the
x-percentile to obtain

� Uses a pointer-valued state to hold the state information, and
allocates and initializes the state in the INIT support function

� Uses a COMBINE function that must do more than just call the ITER
support function

� Handles NULL values as aggregate arguments, including returning
an SQL NULL value if the aggregate argument to return was NULL
Creating Special-Purpose UDRs 14-71

Creating a User-Defined Aggregate
The X_PERCENTILE user-defined aggregate needs the following state
information:

� The user-specified set-up argument

� The current number of values processed

� The current list of values processed

� The current list of whether the values processed are NULL.

Therefore, X_PERCENTILE uses a C structure named percentile_state_t to
hold the aggregate state:

#define MAX_N 1000

typedef struct percentile_state
{
mi_integer percentile;
mi_integer count;
mi_integer value_array[MAX_N];
mi_integer value_is_null[MAX_N];
} percentile_state_t;

Important: The percentile_state_t structure stores the values processes in an in-
memory array within the state. You could also choose to store these values elsewhere,
such as in an operating-system file or in a separate location in memory. Each of these
locations has advantages and disadvantages. Choose the structure that best fits your
application needs.

The size of the percentile_state_t structure depends on the number of
aggregate arguments stored in the value_array array; that is, values less then
or equal to the MAX_N constant. On a system with four-byte mi_integer
values, the size of this structure is:

8 + 4(MAX_N)

If X_PERCENTILE used an opaque-type state, this structure must be less than
the maximum opaque-type size. For systems that have a 32 kilobyte
maximum opaque-type size, the X_PERCENTILE aggregate could use an
opaque-type state as long as it is called in a query that finds 8190 or fewer
rows. If the query finds more than 8190 rows, the state would not fit into an
opaque type. To avoid this restriction, X_PERCENTILE implements the
aggregate state as a pointer-valued state.
14-72 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
The following code shows the INIT aggregate support function that handles
an INTEGER argument for the X_PERCENTILE aggregate:

/* X_PERCENTILE INIT support function on INTEGER */
mi_pointer init_xprcnt(dummy, prcntile, fparam)

mi_integer dummy;
mi_integer prcntile;
MI_FPARAM *fparam;

{
percentile_state_t *state;

/* Allocate memory for the state from the PER_COMMAND
* pool
*/

state = (percentile_state_t *)
mi_dalloc(sizeof(percentile_state_t), PER_COMMAND);

/* Initialize the aggregate state */
if (mi_fp_argisnull(fparam, 1))

state->percentile = 50; /* median */
else

state->percentile = prcntile;
state->count = 0;

return ((mi_pointer)state);
}

This INIT support function performs the following tasks:

� Handles a set-up argument

This set-up argument is the value that the end user specifies so that
the aggregate can determine the value that has x percent values
below and (100-x) percent above. If the end user provides an SQL
NULL for the set-up argument, X_PERCENTILE assumes a value of 50
and therefore calculates the median.

� Allocates PER_COMMAND memory for the pointer-valued state

The database server does not perform state management for pointer-
valued states. Therefore, the INIT function must allocate the memory
for the state. It also assigns the appropriate values to the
percentile_state_t structure to initialize the state.
Creating Special-Purpose UDRs 14-73

Creating a User-Defined Aggregate
The following code implements the ITER aggregate support function that
handles an INTEGER argument for the X_PERCENTILE aggregate:

/* X_PERCENTILE ITER support function on INTEGER */
mi_pointer iter_xprcnt(state_ptr, value, fparam)

mi_pointer state_ptr;
mi_integer value;
MI_FPARAM *fparam;

{
mi_integer i, j;
mi_integer is_null = 0;
percentile_state_t *state =

(percentile_state_t *)state_ptr;

/* Check for NULL-valued 'value' */
if (mi_fp_argisnull(fparam, 1))

{
value = 0;
is_null = 1;
}

/* Find position of 'value' in ordered 'value_array' */
for (i=0; i < state->count; i++)

{
if (state->value_array[i] > value)

break;
}

/* Increment number of values (count) */
++state->count;

/* Put value into ordered list of existing values */
for (j=state->count - 1; j > i; j--)

{
state->value_array[j] = state->value_array[j-1];
state->value_is_null[j] = state->value_is_null[j-1];
}

state->value_array[i] = value;
state->value_is_null[i] = is_null;

return ((mi_pointer)state);
}

The ITER support function updates the aggregate state in-place with the
following information:

� Increments the number of aggregate arguments processed (count)

� Stores the new aggregate argument in increasing sorted order in the
value_array array

� Stores the is-NULL flag that corresponds to each aggregate argument
in its corresponding position in the value_is_null array
14-74 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
The ITER function also handles a possible NULL-valued aggregate argument.
Because the X_PERCENTILE aggregate is defined to handle NULL values (see
Figure 14-27 on page 14-77), the database server calls ITER for NULL-valued
aggregate arguments.

The following COMBINE aggregate support function handles an INTEGER
argument for the X_PERCENTILE aggregate:

/* X_PERCENTILE COMBINE support function on INTEGER */
mi_pointer combine_xprcnt(state1_ptr, state2_ptr)
 mi_pointer state1_ptr, state2_ptr;
{

mi_integer i;
percentile_state_t *state1 =

(percentile_state_t *)state1_ptr;
percentile_state_t *state2 =

(percentile_state_t *)state2_ptr;

/* Merge the two ordered value arrays */
for (i=0; i < state2->count; i++)

(void) iter_xprcnt(state1_ptr,
state2->value_array[i]);

/* Free the PER_COMMAND memory allocated to the state of
* the 2nd parallel thread (state2). The memory
* allocated to the state of the 1st parallel thread
* (state1) holds the updated state. It is in the FINAL
* support function.
*/

mi_free(state2);

return (state1_ptr);
}

This COMBINE support function merges two aggregate states, as follows:

� Two ordered lists are merged into a single ordered list.

� Two counts are added together.

� Memory for one of the partial states is freed.

� A pointer to the merged aggregate state is returned.
Creating Special-Purpose UDRs 14-75

Creating a User-Defined Aggregate
The following FINAL aggregate support function handles an INTEGER
argument for the X_PERCENTILE aggregate:

/* X_PERCENTILE FINAL support function on INTEGER */
mi_integer final_xprcnt(state_ptr, fparam)

mi_pointer state_ptr;
MI_FPARAM *fparam;

{
mi_integer index, trunc_int;
mi_integer x_prcntile;
percentile_state_t *state =

(percentile_state_t *)state_ptr;

/* Obtain index position of x-percentile value */
trunc_int = (state->count) * (state->percentile);
index = trunc_int/100;
if ((trunc_int % 100) >= 50)

index++;

/* Obtain x-percentile value from sorted 'value_array' */
x_prcntile = state->value_array[index];

/* Check for NULL value so it can be returned as such */
if (state->value_is_null[index])

mi_fp_setreturnisnull(fparam, 0, MI_TRUE);

/* Free the PER_COMMAND memory allocated to the state */
 mi_free(state);

/* Return retrieved x-percentile value */
return (x_prcntile);

}

This FINAL support function performs the following tasks:

� Calculates the x-percentile for the values in the sorted array

The FINAL function must obtain the index position for the value that
represents the x-percentile, where x is the percentage that the end
user has passed in as a set-up argument.

� Deallocates PER_COMMAND memory for the pointer-valued state

The database server does not perform any state management for
pointer-valued states. Therefore, the FINAL function must deallocate
the PER_COMMAND state memory that the INIT function has
allocated.
14-76 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
After you successfully compile and link the aggregate support functions, you
can define the PERCENT_GTR aggregate in the database. Figure 14-27 shows
the CREATE AGGREGATE statement that defines the X_PERCENTILE user-
defined aggregate. This statement specifies the registered SQL names of the
required aggregate support functions. It also includes the HANDLESNULLS
modifier to indicate that the PERCENT_GTR aggregate does process NULL
values as aggregate arguments. By default, the database server does not pass
a NULL value to an aggregate.

Suppose that the INIT, ITER, COMBINE, and FINAL aggregate support
functions for the X_PERCENTILE aggregate are compiled and linked into a
shared-object module named percent.

On UNIX or Linux, the executable code for the X_PERCENTILE aggregate
support functions would be in a shared library named percent.so. ♦

The following CREATE FUNCTION statements register the X_PERCENTILE
aggregate support functions for an aggregate argument of the INTEGER data
type:

CREATE FUNCTION init_x_prcntile(dummy INTEGER, x_percent INTEGER)
RETURNING POINTER
WITH (HANDLESNULLS)
EXTERNAL NAME

'/usr/udrs/aggs/percent/percent.so(init_xprcnt)'
LANGUAGE C;

CREATE FUNCTION iter_x_prcntile(agg_state POINTER,
one_value INTEGER)

RETURNS POINTER
WITH (HANDLESNULLS)
EXTERNAL NAME

'/usr/udrs/aggs/percent/percent.so(iter_xprcnt)'
LANGUAGE C;

CREATE AGGREGATE x_percentile
 WITH (INIT = init_x_prcntile,

ITER = iter_x_prcntile,
COMBINE = combine_x_prcntile,
FINAL = final_x_prcntile,
HANDLESNULLS);

Figure 14-27
Registering the
X_PERCENTILE

User-Defined
Aggregate

UNIX/Linux
Creating Special-Purpose UDRs 14-77

Creating a User-Defined Aggregate
CREATE FUNCTION combine_x_prcntile(agg_state1 POINTER,
agg_state2 POINTER)

RETURNS POINTER
WITH (HANDLESNULLS)
EXTERNAL NAME
'/usr/udrs/aggs/percent/percent.so(combine_xprcnt)'
LANGUAGE C;

CREATE FUNCTION final_x_prcntile(agg_state POINTER)
RETURNS INTEGER
WITH (HANDLESNULLS)
EXTERNAL NAME

'/usr/udrs/aggs/percent/percent.so(final_xprcnt)'
LANGUAGE C;

These CREATE FUNCTION statements use the SQL data type, POINTER, to
indicate that the aggregate support functions accept a generic C pointer and
perform their own memory management. They must all include the
HANDLESNULLS routine modifier because the X_PERCENTILE aggregate
handles NULL values.

The following query uses the X_PERCENTILE aggregate function on the
INTEGER column, col3, to determine the quartile (the 25th percentile) for the
values in col3:

SELECT X_PERCENTILE(col3, 25) FROM tab1;

For the tab1 rows that Figure 14-8 on page 14-24 has inserted, X_PERCENTILE
creates the following sorted list for the col3 values:

5, 9, 13, 19, 24, 31

Because 25 percent of 6 values is 1.5, X_PERCENTILE obtains the list item that
has 2 values (1.5 rounded up to the nearest integer) below it. The preceding
query returns 13 as the quartile for col3.

Suppose you add the following row to the tab1 table:

INSERT INTO tab1 (7, NULL:complexnum_t, NULL);
14-78 IBM Informix DataBlade API Programmer’s Guide

Creating a User-Defined Aggregate
This INSERT statement adds a NULL value to the col3 column. Because
X_PERCENTILE handles NULLs, the database server calls the X_PERCENTILE
aggregate on this new row as well. After this seventh row is inserted,
X_PERCENTILE would generate the following sorted list for col3:

(NULL), 5, 9, 13, 19, 24, 31

Twenty-five percent of 7 values is 1.75, so X_PERCENTILE obtains the list item
that has 2 (1.75 truncated to the nearest integer) values below it. Now the
quartile for col3 would be 9. If X_PERCENTILE was not registered with the
HANDLESNULLS modifier, however, the database server would not call
X_PERCENTILE for this newest row and the quartile for col3 would have been
13 (the quartile for 6 rows, even though col3 actually has 7 rows).

If you called the X_PERCENTILE aggregate with an x-percentile that would
return the first value in the list (the NULL value), the FINAL support function
uses the DataBlade API function mi_fp_setreturnisnull() to set the aggregate
result to NULL. For example, suppose you execute the following query on the
col3:

SELECT X_PERCENTILE(col3, 5) FROM tab1;

This query asks for the 5th percentile for the seven values in col3. Because 5
percent of 7 values is 0.35, X_PERCENTILE obtains the list item that has zero
values (0.35 truncated to the nearest integer) below it. The preceding query
returns NULL as the quartile for col3. The ITER function has stored NULL
values as zeros in the sorted value_array. For the FINAL support function to
determine when a value of zero indicates a NULL and when it indicates zero,
it checks the value_is_null array. If the zero indicates a NULL value, FINAL
calls the DataBlade API function mi_fp_setreturnisnull() to set the
aggregate result to NULL.
Creating Special-Purpose UDRs 14-79

Providing UDR-Optimization Functions
Providing UDR-Optimization Functions
The DataBlade API provides support for you to create the following kinds of
special-purpose UDRs to optimize UDR performance:

� Tasks that optimize execution of UDRs

When you write a UDR, you can provide the query optimizer with
the following information to help it determine the best query path
for queries that contain the UDR.

� UDRs that optimize query filters

If your UDR returns a BOOLEAN value (mi_boolean), it is called a Boolean
function. Figure 14-28 shows the kinds of Boolean functions that are useful as
filters in a query.

Figure 14-28
Boolean Functions Useful as Query Filters

Filter Optimization More Information

Parallel Execution “Creating Parallelizable UDRs” on page 14-94

Cost-of-execution “Query Cost” on page 14-83

Comparison Condition Operator Symbol Associated User-Defined Function

Relational operator =, !=. <>

<, <=

>, >=

equal(), notequal()

lessthan(), lessthanorequal()

greaterthan(), greaterthanorequal()

LIKE, MATCHES None like(), matches()

Boolean function None Name of a user-defined function that
returns a BOOLEAN value
14-80 IBM Informix DataBlade API Programmer’s Guide

Writing Selectivity and Cost Functions
When you write one of the Boolean functions in Figure 14-28, you can also
provide the query optimizer with information about how to best evaluate a
filter that consists of the Boolean function. You can define the following UDR-
optimization functions for Boolean functions.

Writing Selectivity and Cost Functions
The query optimizer uses the selectivity and cost of a query to help select the
best query plan. To help the optimizer select the best query plan, you can
provide the query optimizer with information about the selectivity and cost
of your UDR.

This information is extremely useful for an expensive UDR, a UDR that requires
a lot of execution time or resources to execute. When the query optimizer can
obtain the selectivity and cost for an expensive UDR, it can better determine
when to execute the UDR in the query plan.

When you write an expensive UDR, you can indicate the following perfor-
mance-related characteristics of the UDR to assist the query optimizer in
developing a query plan:

� The cost of the UDR is a measurement of how expensive the UDR is to
run.

� The selectivity of the UDR is a percentage of the number of rows that
you expect it to return.

This section describes how to create selectivity and cost functions for an
expensive UDR. For a general description of how the query optimizer uses
cost and selectivity for UDRs, see the IBM Informix User-Defined Routines and
Data Types Developer’s Guide.

Tip: The IBM Informix BladeSmith development tool automatically generates C
source code for selectivity and cost functions as well as the SQL statements to register
the these functions. For more information, see the “DataBlade Developer’s Kit User’s
Guide.”

Filter Optimization More Information

Negator function “Creating Negator Functions” on page 14-91

Selectivity “Query Selectivity” on page 14-82
Creating Special-Purpose UDRs 14-81

Writing Selectivity and Cost Functions
Query Selectivity

If your UDR is a Boolean function, it can be used as a filter in a query. (For a list
of Boolean functions that are useful as query filters, see Figure 14-28 on
page 14-80.) The query optimizer uses the selectivity of a query to estimate
the number of rows that the query will return. The selectivity is a floating-
point value between zero (0) and one (1) that represents the percentage of
rows for which the query (and each filter in the query) is expected to return
a true value.

For a Boolean function likely to be used as a query filter, you can use the
following routine modifiers to specify a selectivity for the function.

When the query optimizer needs to determine the selectivity of the Boolean
function, it either uses the constant selectivity value or calls the selectivity
function, depending whether the Boolean function was registered with the
SELCONST or SELFUNC routine modifier.

If you need to calculate the selectivity for a Boolean function at runtime,
create a selectivity function.

Selectivity Routine Modifier

Selectivity is constant for every
invocation of the Boolean function.

SELCONST = selectivity_value

selectivity_value is a floating-point value
between 0 and 1.

Selectivity varies according to some
execution conditions.

SELFUNC = selectivity_func

selectivity_func is the name of a selectivity
function that returns a floating-point value
between 0 and 1 to indicate the selectivity of
the Boolean function.
14-82 IBM Informix DataBlade API Programmer’s Guide

Writing Selectivity and Cost Functions
To create a selectivity function

1. Write a C user-defined function to implement the selectivity
function.

The selectivity function has the following coding requirements:

� The selectivity function must take the same number of
arguments as its companion Boolean function.

� Each argument of the selectivity function must be declared of
type MI_FUNCARG.

� The selectivity function must return the selectivity as a floating-
point value (mi_real or mi_double_precision) that is between
zero and one.

2. Register the selectivity function with the CREATE FUNCTION
statement.

The SQL selectivity function has the following registration
requirements:

� The selectivity function must take the same number of
arguments as its companion Boolean function.

� Each argument of the selectivity function must be declared of
type SELFUNCARG.

� The selectivity function must return the selectivity as a FLOAT
value.

3. Associate the selectivity function with its companion UDR with the
SELFUNC routine modifier when you register the companion UDR.

Query Cost

If your UDR requires a lot of system resources (such as a large number of disk
accesses or network accesses), you can define a cost-of-execution for the UDR.
The query optimizer uses the cost value to determine the total cost of
executing a query.

Tip: You can define a cost for either a user-defined procedure or a user-defined
function. However, user-defined functions can appear in queries because they return
a value. Because user-defined procedures do not appear in queries, the query
optimizer is not usually concerned with their cost.
Creating Special-Purpose UDRs 14-83

Writing Selectivity and Cost Functions
When you register a UDR, you can specify its cost with one of the following
routine modifiers.

When the query optimizer needs to determine the cost of the UDR, it either
uses the constant cost value or calls the cost function, depending whether the
UDR was registered with the PERCALL_COST or COSTFUNC routine modifier.

If you need to calculate the cost for a UDR at runtime, create a cost function.

To create a cost function

1. Write a C user-defined function to implement the cost function.

The cost function has the following coding requirements:

� The cost function must take the same number of arguments as its
companion UDR.

� Each argument of the cost function must be declared of type
MI_FUNCARG.

For more information, see “MI_FUNCARG Data Type” on
page 14-85.

� The cost function must return the cost as an integer value
(mi_integer or mi_smallint).

Cost Routine Modifier

Cost is constant for every
invocation of the UDR.

PERCALL_COST = cost_value

cost_value is a floating-point value between 0 and 1.

Cost varies according to some
execution conditions.

COSTFUNC = cost_func

cost_func is the name of a cost UDR that returns a
floating-point value between 0 and 1 to indicate the
selectivity of the UDR.
14-84 IBM Informix DataBlade API Programmer’s Guide

Writing Selectivity and Cost Functions
2. Register the cost function with the CREATE FUNCTION statement.

The SQL cost function has the following registration requirements:

� The cost function must take the same number of arguments as its
companion UDR.

� Each argument of the cost function must be declared of type
SELFUNCARG.

� The cost function must return the selectivity as an INTEGER or
SMALLINT value.

3. Associate the cost function with its companion UDR with the
COSTFUNC routine modifier when you register the companion UDR.

MI_FUNCARG Data Type

The MI_FUNCARG data type is an Informix-defined opaque type that
contains information about the companion UDR of a selectivity or cost
function. Selectivity and cost functions both have the same number of
arguments as their companion UDRs. To calculate selectivity or cost effec-
tively, however, your user-defined function might need to know additional
information about the context in which the UDR was called. The DataBlade
API provides this contextual information in the MI_FUNCARG structure.

Each argument of a cost or selectivity function is of type MI_FUNCARG. The
DataBlade API provides accessor functions for the MI_FUNCARG structure.
You can use any of these functions to extract information about the
companion-UDR arguments from the selectivity or cost function. Figure 14-29
lists the DataBlade API accessor functions that obtain information from the
MI_FUNCARG structure.
Creating Special-Purpose UDRs 14-85

Writing Selectivity and Cost Functions
Figure 14-29
Argument Information in the MI_FUNCARG Structure

MI_FUNCARG Information DataBlade API Function

Information about the companion UDR:

The identifier of the companion UDR mi_funcarg_get_routine_id()

The name of the companion UDR mi_funcarg_get_routine_name()

General expensive-UDR argument information:

Whether the expensive-UDR argument is a column, constant, or
parameter

mi_funcarg_get_argtype()

The data type of expensive-UDR argument mi_funcarg_get_datatype()

The length of the expensive-UDR argument mi_funcarg_get_datalen()

Constant argument (MI_FUNCARG_CONSTANT):

The constant value of the expensive-UDR argument mi_funcarg_get_constant()

Whether the value of the expensive-UDR argument is the SQL
NULL value

mi_funcarg_isnull()

Column-value argument (MI_FUNCARG_COLUMN):

The column number of the column associated with the
expensive-UDR argument

mi_funcarg_get_colno()

The table identifier of the table that contains the column
associated with the expensive-UDR argument

mi_funcarg_get_tabid()

The distribution information for the column associated with the
expensive-UDR argument

mi_funcarg_get_distrib()
14-86 IBM Informix DataBlade API Programmer’s Guide

Writing Selectivity and Cost Functions
Figure 14-30 lists the DataBlade API accessor functions that obtain general
information about a companion UDR from the MI_FUNCARG structure.

Figure 14-30
General Companion-UDR Information in the MI_FUNCARG Structure

Important: To a DataBlade API module, the MI_FUNCARG data type is an opaque
data type. Do not access its internal fields directly. The internal structure of this
opaque data type may change in future releases. Therefore, to create portable code,
always use the accessor functions in Figure 14-29 to obtain values in this data type.

The MI_FUNCARG structure categorizes each argument of the companion
UDR arguments. The MI_FUNCARG data type identifies the following kinds
of arguments in the companion UDR.

MI_FUNCARG Information DataBlade API Function

Information about the companion UDR:

The identifier of the companion UDR mi_funcarg_get_routine_id()

The name of the companion UDR mi_funcarg_get_routine_name()

General companion-UDR argument information:

Whether the companion-UDR argument is a column, constant,
or parameter

mi_funcarg_get_argtype()

The data type of companion-UDR argument mi_funcarg_get_datatype()

The length of the expensive-UDR argument mi_funcarg_get_datalen()

Companion-UDR Argument Type Argument-Type Constant

Argument is a constant value MI_FUNCARG_CONSTANT

Argument is a column value MI_FUNCARG_COLUMN

Argument is a parameter MI_FUNCARG_PARAM
Creating Special-Purpose UDRs 14-87

Writing Selectivity and Cost Functions
In addition to the general companion-UDR information that the functions in
Figure 14-30 obtain, you can also obtain information about the arguments
themselves. The information that you can obtain depends on the particular
category of the companion-UDR argument. Figure 14-31 lists the DataBlade
API accessor functions that obtain argument information from the
MI_FUNCARG structure.

Figure 14-31
Argument Information in the MI_FUNCARG Structure

For example, you can write the following query:

SELECT * FROM tab1 WHERE meets_cost(tab1.int_col, 20) ...;

Suppose you register the meets_cost() function with a selectivity function
named meets_cost_selfunc(), as follows:

CREATE FUNCTION meets_cost(col INTEGER, value INTEGER)
RETURNS BOOLEAN
WITH (....SELFUNC=meets_cost_selfunc....)
EXTERNAL NAME '......'
LANGUAGE C;

MI_FUNCARG Information DataBlade API Function

Constant argument (MI_FUNCARG_CONSTANT):

The constant value of the companion-UDR argument mi_funcarg_get_constant()

Determines if the value of the expensive-UDR argument is the SQL
NULL value

mi_funcarg_isnull()

Column-value argument (MI_FUNCARG_COLUMN):

The column number of the column associated with the expensive-UDR
argument

mi_funcarg_get_colno()

The table identifier of the table that contains the column associated with
the expensive-UDR argument

mi_funcarg_get_tabid()

The distribution information for the column associated with the
expensive-UDR argument

mi_funcarg_get_distrib()
14-88 IBM Informix DataBlade API Programmer’s Guide

Writing Selectivity and Cost Functions
Because the meets_cost() function returns a BOOLEAN value, you can write
a selectivity function for the function. You write meets_cost_selfunc() so
that it expects two arguments of the data type MI_FUNCARG. The following
table shows what different MI_FUNCARG accessor functions return when
you invoke them for each of the arguments of the meets_cost() function.

Obtaining Information About Constant Arguments

When the companion UDR receives an argument that is a constant, you can
obtain the following information about this constant from within the cost or
selectivity function.

DataBlade API Function Argument 1 Argument 2

mi_funcarg_get_argtype() MI_FUNCARG_COLUMN MI_FUNCARG_CONSTANT

mi_funcarg_get_datatype() Type identifier for data type of
tab1.int_col

Type identifier for INTEGER data type

mi_funcarg_get_datalen() Length of tab1.int_col Length of INTEGER

mi_funcarg_get_tabid() Table identifier of tab1 Undefined

mi_funcarg_get_colno() Column number of int_col Undefined

mi_funcarg_isnull() FALSE FALSE

mi_funcarg_get_constant() Undefined An MI_DATUM structure that holds the
value of 20

MI_FUNCARG Information DataBlade API Function

The constant value of the companion-UDR
argument

mi_funcarg_get_constant()

Determines if the value of the companion-
UDR argument is the SQL NULL value

mi_funcarg_isnull()
Creating Special-Purpose UDRs 14-89

Writing Selectivity and Cost Functions
Obtaining Information About Column Arguments

When the companion UDR receives an argument that is a column, you can
obtain the following information about this column from the associated
MI_FUNCARG argument of the cost or selectivity function.

The column number and table identifier are useful in a selectivity or cost
function to obtain additional information about the column argument from
the syscolumns or systables system catalog tables. The data distribution is
useful if the determination of selectivity or cost depends on how the column
values are distributed; that is, how many values in each range of values. Data
distributions only make sense for data types that can be ordered.

The mi_funcarg_get_distrib() function obtains the contents of the encdat
column of the sysdistrib system catalog table. The encdat column stores the
data distribution for the column associated with the companion-UDR
argument, as follows:

� For columns of built-in data types, the data distribution is stored as
an ASCII histogram, with a predetermined number of ordered bins
that hold the sorted column values.

� For columns of user-defined data types, this data distribution is in a
user-defined statistics structure.

The mi_funcarg_get_distrib() function returns the data distribution in an
mi_bitvarying structure as an mi_statret structure. The mi_statret structure
can store the data distribution either directly in the structure (in the
statdata.buffer field) or in a smart large object (in the statdata.mr field).

MI_FUNCARG Information DataBlade API Function

The column number of the column
associated with the companion-UDR
argument

mi_funcarg_get_colno()

The table identifier of the table that contains
the column associated with the companion-
UDR argument

mi_funcarg_get_tabid()

The data-distribution information for the
column associated with the companion-UDR
argument

mi_funcarg_get_distrib()
14-90 IBM Informix DataBlade API Programmer’s Guide

Creating Negator Functions
For more information about user-defined statistics, see “Providing Statistics
Data for a Column” on page 15-66.

Creating Negator Functions
A negator function is a special UDR that is associated with a Boolean user-
defined function. It evaluates the Boolean NOT condition for its associated
user-defined function. For example, if an expression in a WHERE clause
invokes a Boolean user-defined function (UDR-Boolfunc), the SQL optimizer
can decide whether it is more efficient to replace occurrences of the
expression

NOT (UDR-Boolfunc)

with a call to the negator function (UDR-func-negator).

To implement a negator function with a C user-defined function

1. Declare the negator function so that its parameters are exactly the
same as its associated user-defined function and its return value is
BOOLEAN (mi_boolean).

2. Within the negator function, perform the tasks to evaluate the NOT
condition of the associated Boolean user-defined function.

3. Register the negator function as a user-defined function with the
CREATE FUNCTION statement.

4. Associate the Boolean user-defined function and its negator function
when you register the user-defined function.

Specify the name of the negator function with the NEGATOR routine
modifier in the CREATE FUNCTION statement that registers the user-
defined function.

For more information about Boolean user-defined functions and negator
functions, see the IBM Informix User-Defined Routines and Data Types
Developer’s Guide. For information on how to determine if a user-defined
function has a negator function, see “Checking for a Negator Function” on
page 9-39.
Creating Special-Purpose UDRs 14-91

Creating Commutator Functions
Creating Commutator Functions
A commutator function is a special UDR that is associated with a user-defined
function. A UDR is commutator of another user-defined function if either of
the following statements is true:

� The UDR takes the same arguments as its associated user-defined
function but in opposite order.

� The UDR returns the same result as the associated user-defined
function.

For example, the lessthan() and greaterthanorequal() functions are commu-
tators of one another because the following two expressions yield the same
result:

a < b
b >= a

In the following SELECT statement, the optimizer can choose whether it is
more cost effective to execute lessthan(a, b) or greaterthanorequal(b, a) in
the WHERE clause:

SELECT * FROM tab1 WHERE lessthan(a, b);

The optimizer can choose to invoke the function greaterthanorequal(b, a) if
there is no index on lessthan() and there exists an index on
greaterthanorequal().

To implement a commutator function with a C user-defined function

1. Declare the commutator function so that its parameters are in the
reverse order as its associated user-defined function and its return
value is the same as its user-defined function.

2. Within the commutator function, perform the tasks to evaluate the
commutable operation of the associated Boolean user-defined
function.

3. Register the commutator function as a user-defined function with the
CREATE FUNCTION statement.
14-92 IBM Informix DataBlade API Programmer’s Guide

Creating Commutator Functions
4. Associate the user-defined function and its commutator function
when you register the user-defined function.

Specify the name of the commutator function with the COMMUTA-
TOR routine modifier in the CREATE FUNCTION statement that
registers the user-defined function.

The following CREATE FUNCTION statements register the commute_func1()
and func1() user-defined functions:

CREATE FUNCTION commute_func1(b CHAR(20), a INTEGER)
RETURNS INTEGER
EXTERNAL NAME '/usr/local/lib/udrs/udrs.so'
LANGUAGE C;

CREATE FUNCTION func1(a INTEGER, b CHAR(20))
RETURNS INTEGER
WITH (COMMUTATOR = commute_func1)
EXTERNAL NAME '/usr/local/lib/udrs/udrs.so'
LANGUAGE C;

Important: The generic B-tree secondary-access method does not check for commu-
tator functions registered with the COMMUTATOR routine modifier. Instead, it
performs its own internal optimization for commutable operations. However,
commutator functions registered with COMMUTATOR are used by the R-tree
secondary-access method and when UDRs occur in fragmentation expressions.

For more information about commutator functions, see the IBM Informix User-
Defined Routines and Data Types Developer’s Guide. For information on how to
determine if a user-defined function has a commutator function, see
“Checking for a Commutator Function” on page 9-39.
Creating Special-Purpose UDRs 14-93

Creating Parallelizable UDRs
Creating Parallelizable UDRs
The Parallel Database Query (PDQ) feature allows the database server to run
a single SQL statement in parallel. When you send a query to the database
server, it breaks your request into a set of discrete subqueries, each of which
can be assigned to a different CPU virtual processor. A parallelizable query is a
query that can be executed in parallel. PDQ is especially effective when your
tables are fragmented and your server computer has more than one CPU.

A parallelizable UDR is a C UDR that can be executed in parallel when it is
invoked within a parallelizable query. If you write your C UDR to be parallel-
izable, it can be executed in parallel when the query that invokes it is
executed in parallel. That is, the C UDR can execute on subsets of table data
just as the query itself can. A query that invokes a nonparallelizable UDR can
still run in parallel. However, the calls to the UDR do not run in parallel.
Similarly, prepared queries that invoke a parallelizable query do not run the
UDR in parallel.

To create a parallelizable C UDR

1. Write the C UDR so that it does not call any DataBlade API functions
that are non-PDQ-threadsafe.

2. Register the C UDR with the PARALLELIZABLE routine modifier.

3. Execute the parallelized C UDR, once in each scan thread of the paral-
lelized query.

4. Debug the parallelized C UDR.

The following subsections describe these steps in detail.
14-94 IBM Informix DataBlade API Programmer’s Guide

Creating Parallelizable UDRs
Writing the Parallelizable UDR

To write a parallelizable C UDR, you must ensure that the UDR does not
include any calls to the non-PDQ-threadsafe DataBlade API functions that
Figure 14-32 lists.

Figure 14-32
Non-PDQ-Threadsafe DataBlade API Functions

Category of Non-PDQ-Threadsafe Function DataBlade API Function

Statement processing:

Statement execution

A parallelizable UDR cannot parse an SQL
statement.

mi_exec(), mi_prepare()

Current-statement processing

No current statement exists in a parallelizable
UDR. Therefore, these functions are not useful.

mi_binary_query(),
mi_command_is_finished(), mi_get_result(),
mi_get_row_desc_without_row(),
mi_next_row(), mi_query_finish(),
mi_query_interrupt(),
mi_result_command_name(),
mi_result_row_count(), mi_value(),
mi_value_by_name()

Prepared statements

No prepared statement exists because you cannot
prepare one in a parallelizable UDR. Therefore,
these functions are not useful.

mi_close_statement(),
mi_drop_prepared_statement(),
mi_exec_prepared_statement(),
mi_fetch_statement(),
mi_get_statement_row_desc(),
mi_open_prepared_statement(),
mi_statement_command_name()

All input-parameter accessor functions:
mi_parameter_*
(see Figure 8-9 on page 8-24)

Transfer of data

Even though these type-transfer functions are
PDQ-threadsafe, they are usually called within the
send and receive support functions of an opaque
type and are likely to be called during statement
processing.

All type-transfer functions: mi_get_*, mi_put_*
(see Figure 15-21 on page 15-35)

Other mi_current_command_name()

(1 of 2)
Creating Special-Purpose UDRs 14-95

Creating Parallelizable UDRs
A parallelizable C UDR cannot call (either explicitly or implicitly) any of the
DataBlade API functions in Figure 14-32. If you attempt to run a UDR that
contains a non-PDQ-threadsafe function in parallel, the database server
generates an error. If your UDR must call one of the functions in Figure 14-32,
it cannot be parallelizable.

Save-set handling All save-set functions: mi_save_set_*
(see Figure 8-21 on page 8-95)

Complex-type (collections and row types) handling:

Collection processing All collection functions: mi_collection_*
(see “Collections” on page 5-4)

Row-type processing mi_get_row_desc(),
mi_get_row_desc_from_type_desc(),
mi_get_row_desc_without_row(),
mi_get_statement_row_desc()

mi_row_create(), mi_row_free(),
mi_row_desc_create(), mi_row_desc_free()

Complex-type processing Type-descriptor accessor functions if they access
a complex type: mi_type_*
(see Figure 2-1 on page 2-6)

Column functions if they access a complex type:
mi_column_*
(see Figure 5-11 on page 5-46)

Operating-system file access All file-access functions: mi_file_*
(see Figure 12-22 on page 12-83)

Tracing:

Even though the files listed here are not PDQ-
threadsafe, you can include most statements that
generate trace output in a parallelizable UDR.

mi_tracefile_set(), mi_tracelevel_set()

GL_DPRINTF

Miscellaneous mi_get_connection_option(),
mi_get_database_info(),
mi_get_session_connection(),
mi_get_type_source_type()

Category of Non-PDQ-Threadsafe Function DataBlade API Function

(2 of 2)
14-96 IBM Informix DataBlade API Programmer’s Guide

Creating Parallelizable UDRs
Keep in mind the following considerations when you write a UDR to be
parallelizable:

� For a UDR that operates on an opaque type to be parallelizable, all
support functions of the opaque type must be parallelizable.

� A UDR that operates on complex data types cannot be parallelizable.

� A UDR can be parallelizable whether it runs in the CPU VP or a user-
defined VP.

� A UDR that acts as a functional index cannot be parallelizable.

� A UDR that is parallelizable cannot call a UDR that is not parallel-
izable (either explicitly or with the Fastpath interface).

Registering the Parallelizable UDR

When you register a UDR with the PARALLELIZABLE routine modifier, you
tell the database server that the UDR was written according to the guidelines
in “Writing the Parallelizable UDR” on page 14-95. That is, the UDR does not
call any DataBlade API functions that are non-PDQ-threadsafe. However,
registering the UDR with the PARALLELIZABLE modifier does not guarantee
that every invocation of the UDR executes in parallel. The decision whether
to parallelize a query and any accompanying UDRs is made when the query
is parsed and optimized.

Executing the Parallelizable UDR

When a query with a parallelizable UDR executes in parallel, each routine
instance might have more than one routine sequence. For a parallelized UDR,
the routine manager creates a routine sequence for each scan thread of the
query.

For example, suppose you have the following query:

SELECT a_func(x)
FROM table1
WHERE a_func(y) > 7;
Creating Special-Purpose UDRs 14-97

Creating Parallelizable UDRs
Suppose also that the table1 table in the preceding query is fragmented into
four fragments and the a_func() user-defined function was registered with
the PARALLELIZABLE routine modifier. When this query executes in serial, it
contains two routine instances (one in the select list and one in the WHERE
clause) and two routine sequences. However, when this query executes in
parallel over table1, it still contains two routine instances but it now has six
routine sequences:

� One routine sequence for the primary thread to execute a_func() in
the select list.

� Five routine sequences for a_func() in the WHERE clause:

❑ One routine sequence for the primary thread

❑ Four routine sequences for secondary PDQ threads, one for each
fragment in the table

The MI_FPARAM structure holds the information of the routine sequence.
Therefore, the routine manager allocates an MI_FPARAM structure for each
scan thread of the parallelized query. All invocations of the UDR that execute
in the scan thread can share the information in an MI_FPARAM structure.
However, UDRs in different scan threads cannot share MI_FPARAM infor-
mation across scan threads.

Tip: The DataBlade API also supports memory locking for a parallelizable UDR that
shares data with other UDRs or with multiple instances of the same routine. Memory
locking allows the UDR to implement concurrency control on its data; however, the
memory-locking feature is an advanced feature of the DataBlade API. For more infor-
mation on the memory-locking feature, see “Handling Concurrency Issues” on
page 13-45.

For more information about how the routine manager creates a routine
sequence, see “Creating the Routine Sequence” on page 11-34.
14-98 IBM Informix DataBlade API Programmer’s Guide

Creating Parallelizable UDRs
Debugging the Parallelizable UDR

You can use the SQL statement SET EXPLAIN to determine whether a parallel-
izable query is actually being executed in parallel. The SET EXPLAIN
statement executes when the database server optimizes a statement. It creates
a file that contains:

� A copy of the SQL statement

� The plan of execution that the optimizer has chosen

� An estimate of the amount of work

For more information on SET EXPLAIN, see its description in the IBM Informix
Guide to SQL: Syntax and your Performance Guide.

The following onstat options are useful to track execution of parallel
activities:

� The -g ath option shows the session thread and any additional scan
threads for each fragment that is scanned for a statement that is
running in parallel. You can use the -g ses option to help find the
relationship between the threads.

� The -g stk option dumps the stack of a specified thread. This option
can be helpful in tracing exactly what the thread is doing.

For more information on the onstat utility, see the Administrator’s Reference.
Creating Special-Purpose UDRs 14-99

15
Chapter
Extending Data Types
In This Chapter . 15-3

Creating an Opaque Data Type. 15-3
Designing an Opaque Data Type 15-4

Determining External Representation 15-4
Determining Internal Representation 15-5

Writing Opaque-Type Support Functions 15-14
Support Functions as Casts 15-15
Stream Support Functions. 15-56
Disk-Storage Support Functions 15-62
Handling Locale-Specific Opaque-Type Data 15-64

Registering an Opaque Data Type 15-65
Registering an Opaque Type in a Database 15-65
Registering Opaque-Type Support Functions 15-65
Registering the Opaque-Type Casts 15-66

Providing Statistics Data for a Column 15-66
Collecting Statistics Data 15-67

Designing the User-Defined Statistics 15-68
Defining the Statistics-Collection Function 15-69
Collecting the Statistics 15-70
Registering the statcollect() Function 15-76
Executing the UPDATE STATISTICS Statement 15-77

Using User-Defined Statistics 15-78
Displaying Statistics Data 15-78
Using User-Defined Statistics in a Query. 15-80

Optimizing Queries 15-82
Query Plans . 15-83
Selectivity Functions 15-84

15-2 IBM
 Informix DataBlade API Programmer’s Guide

In This Chapter
This chapter describes the following ways to extend data types with C user-
defined routines (UDRs):

� Create an opaque data type with the C language

� Create a distinct data type

� Write operator-class support functions

� Write optimization functions, including selectivity functions, cost
functions, negator functions, and user-defined statistics functions

Tip: For general information about the creation of an opaque type and its support
routines, see the “IBM Informix User-Defined Routines and Data Types Developer’s
Guide.”

Creating an Opaque Data Type
This section describes how to design and write an opaque data type.

To create an opaque data type

1. Design the opaque data type, including its external and internal
representations.

2. Write the opaque-type support functions.

3. Take special measures if the opaque type is for multirepresentational
data.

Tip: The IBM Informix BladeSmith development tool, which is part of the DataBlade
Developer’s Kit, automatically generates C source code for the support routines of an
opaque type as well as the SQL statements to register the opaque type. For more infor-
mation, see the “DataBlade Developer’s Kit User’s Guide.”
Extending Data Types 15-3

Designing an Opaque Data Type
Designing an Opaque Data Type
As with most data types, an opaque data type can have two representations
for its data:

� The external representation, which is a text or binary representation
of the opaque-type data

� The internal representation, which is the internal structure stored on
disk

To design an opaque data type, you must determine these representations for
the opaque-type data.

Determining External Representation

The external representation of an opaque data type is a character string. This
string is the literal value for the opaque-type data. A literal value can appear
in SQL statements most anywhere that the binary value can appear. For your
opaque-type data to be valid as a literal value in SQL statements, you must
define its external representation. It is important that the external represen-
tation be reasonably intuitive and easy to enter.

Tip: The external representation of an opaque data type is its ASCII representation.

Suppose you need to create an opaque type that holds information about a
circle. You could create the external representation that Figure 15-1 shows for
this circle.

With the external representation in Figure 15-1, an INSERT statement can
specify a literal value for a column of type circle with the following format:

INSERT INTO tab1 (id_col, circle_col) VALUES (1, "(2, 3, 9)");

Figure 15-1
External

Representation of
the circle Opaque

Data Type

(x , y , z)

(x,y) coordinates
for the center
of the circle

Radius of the
circle
15-4 IBM Informix DataBlade API Programmer’s Guide

Designing an Opaque Data Type
Similarly, when an opaque type has an external representation, a client appli-
cation such as DB-Access (which displays results as character data) can
display a retrieved opaque-type value as part of the output of the following
query:

SELECT circle_col FROM tab1 WHERE id_col = 1;

In DB-Access, the results of this query would display as follows:

(2, 3, 9)

Tip: The external representation of an opaque data type is handled by its input and
output support functions. For more information, see “Input and Output Support
Functions” on page 15-19.

Determining Internal Representation

The internal representation of an opaque data type is a C data structure that
holds the information that the opaque type needs. The internal represen-
tation of an opaque type that is stored in a database is called its server internal
representation. Inside this internal C structure, use the platform-independent
DataBlade API data types (such as mi_integer and mi_real) to improve the
portability of the opaque data type.

Tip: The internal representation of an opaque data type is a binary format that might
not match the external binary format surfaced to the client.

For example, Figure 15-2 shows the circle_t data structure, which holds the
values for the circle opaque data type.

typedef struct
{
mi_double_precision x;
mi_double_precision y;
} point_t;

typedef struct
{
point_t center;
mi_double_precision radius;
} circle_t;

Figure 15-2
Internal

Representation of
the circle Opaque

Data Type
Extending Data Types 15-5

Designing an Opaque Data Type
The CREATE OPAQUE TYPE statement uniquely names the opaque data type.
It is recommended that you develop a unique prefix for the name of an
opaque data type. If your DataBlade module uses a prefix, such as USR, you
could begin the names of opaque types with this prefix. For example, you
might use the prefix USR on all database objects that your DataBlade module
creates. The preceding circle_t opaque type could be named USR_circle_t to
ensure that it does not conflict with opaque types that other DataBlade
modules might create.

You register the opaque data type with the CREATE OPAQUE TYPE statement,
which stores information about the opaque type in the sysxtdtypes system
catalog table. When you register an opaque data type, you provide the
following information about the internal representation of an opaque type:

� The final size of the new opaque data type

� How the opaque data type should be aligned in memory

� How the opaque data type should be passed in an MI_DATUM
structure

Determining the Size of an Opaque Type

To save space in the database, you should lay out the internal representation
of the opaque type as compactly as possible. The database server stores
values in its internal representation, so any C-language structure with
padding between entries consumes unnecessary space. You must also decide
whether your opaque data type is to be of fixed length or varying length. The
following sections briefly describe each of these kinds of opaque types.

Fixed-Length Opaque Data Type

If the C structure that holds your opaque type is always the same size,
regardless of the data it holds, you can declare the opaque type as a fixed-
length opaque type. You tell the database server that an opaque type is fixed
length when you register the opaque type. In the CREATE OPAQUE TYPE
statement, you must include the INTERNALLENGTH modifier to specify the
fixed size of the C structure. The database server stores the value of the
INTERNALLENGTH modifier in the length column of the sysxtdtypes system
catalog table.
15-6 IBM Informix DataBlade API Programmer’s Guide

Designing an Opaque Data Type
The circle_t C structure (which Figure 15-2 on page 15-5 defines) is a fixed-
length structure because all of its member fields have a constant size.
Therefore, the following CREATE OPAQUE TYPE statement registers a fixed-
length opaque type named circle for the circle_t structure:

CREATE OPAQUE TYPE circle (INTERNALLENGTH = 24);

The size of a fixed-length opaque data type must match the value that the
C-language sizeof directive returns for the C structure. On most compilers,
the sizeof() directive performs cast promotion to the nearest four-byte size
to ensure that the pointer match on arrays of structures works correctly.
However, you do not need to round up for the size of a fixed-length opaque
data type. Instead you can specify alignment for the opaque data type with
the ALIGNMENT modifier. For more information, see “Specifying the
Memory Alignment of an Opaque Type” on page 15-10.

Important: The routine manager does perform cast promotion on argument values
smaller than the size of the MI_DATUM data type when it pushes routine arguments
onto the stack. On some platforms, small values can create problems with pointer
matching. For more information, see “Pushing Arguments Onto the Stack” on
page 11-35.

The size of the fixed-length opaque type determines the passing mechanism
for the opaque type. For more information, see “Determining the Passing
Mechanism for an Opaque Type” on page 15-12.

You can obtain information about support functions for the circle fixed-
length opaque type in “Writing Opaque-Type Support Functions” on
page 15-14. The following table lists the circle support functions that this
section declares.

Support Function for
circle Opaque Type Where to Find Declaration

Input Figure 15-9 on page 15-21

Output Figure 15-12 on page 15-23

Receive Figure 15-15 on page 15-29

Send Figure 15-18 on page 15-32

Import Figure 15-22 on page 15-40

(1 of 2)
Extending Data Types 15-7

Designing an Opaque Data Type
Varying-Length Opaque Data Type

If the C structure that holds your opaque type can vary in size depending on
the data it holds, you must declare the opaque type as a varying-length opaque
type. The opaque type can contain character strings. Each instance of the
opaque type can contain a character string with a different size. When you
define the internal representation of a varying-length opaque, make sure that
only the last member of the C structure is of varying size.

Figure 15-3 shows the internal representation for a varying-length opaque
data type named image.

You tell the database server that an opaque type is varying length when you
register the opaque type. In the CREATE OPAQUE TYPE statement, you must
include the INTERNALLENGTH modifier with the VARIABLE keyword.

Export Figure 15-25 on page 15-44

Importbin Figure 15-28 on page 15-50

Exportbin Figure 15-31 on page 15-53

typedef struct
{
mi_integer img_id;
mi_integer img_thresh_trck;
mi_integer img_thresh;
mi_date img_date;
mi_integer img_flags;
mi_lvarchar img_data;
} image_t;

Figure 15-3
Internal

Representation for
the image Opaque

Data Type

Support Function for
circle Opaque Type Where to Find Declaration

(2 of 2)
15-8 IBM Informix DataBlade API Programmer’s Guide

Designing an Opaque Data Type
The CREATE OPAQUE TYPE statement in Figure 15-4 registers the image
opaque type (which Figure 15-3 on page 15-8 defines) as a varying-length
opaque type.

The database server stores the value of the INTERNALLENGTH modifier in
the length column of the sysxtdtypes system catalog table. For varying-
length opaque types, this column holds a value of zero (0).

You can obtain information about support functions for the image varying-
length opaque type in “Writing Opaque-Type Support Functions” on
page 15-14. The following table lists the image support functions that this
section declares.

CREATE OPAQUE TYPE image
(INTERNALLENGTH = VARIABLE);

Figure 15-4
Registration of

the image Opaque
Data Type

Support Function for
image Opaque Type Where to Find Declaration

Input Figure 15-11 on page 15-21

Output Figure 15-14 on page 15-24

Receive Figure 15-17 on page 15-30

Send Figure 15-20 on page 15-33

Import Figure 15-24 on page 15-41

Export Figure 15-27 on page 15-45

Importbin Figure 15-30 on page 15-51

Exportbin Figure 15-33 on page 15-54
Extending Data Types 15-9

Designing an Opaque Data Type
The database server requires you to store the C data structure for a varying-
length opaque type in an mi_lvarchar structure. To store varying-length data
in the mi_lvarchar structure, you need to code support functions. The size
limitations of a varying-length structure apply to a varying-length opaque
type as follows:

� By default, the maximum size for a varying-length opaque type is
two kilobytes.

� You specify a different maximum size for a varying-length opaque
type when you register the opaque type.

In the CREATE OPAQUE TYPE statement, use the MAXLEN modifier.
You can specify a maximum length of up to 32 kilobytes. The data-
base server stores the value of the MAXLEN modifier in the maxlen
column of the sysxtdtypes system catalog table.

For example, the following CREATE OPAQUE TYPE statement defines a
varying-length opaque type named var_type whose maximum size is four
kilobytes:

CREATE OPAQUE TYPE var_type
(INTERNALLENGTH=VARIABLE, MAXLEN=4096);

Because the database server uses mi_lvarchar to transfer varying-length
data, the passing mechanism for a varying-length opaque type is always by
reference. For more information, see “Determining the Passing Mechanism
for an Opaque Type” on page 15-12.

Specifying the Memory Alignment of an Opaque Type

When the database server passes an opaque data type to a UDR, it aligns the
data on a certain byte boundary. By default, the database server uses a
four-byte alignment for the internal representation of an opaque type. Four
bytes is the standard alignment for 32-bit platforms.

On 64-bit platforms, alignment should usually be eight bytes. ♦

You can specify a different memory-alignment requirement for your opaque
type with the ALIGNMENT modifier of the CREATE OPAQUE TYPE statement.
The database server stores the value of the ALIGNMENT modifier in the align
column of the sysxtdtypes system catalog table.

64-Bit
15-10 IBM Informix DataBlade API Programmer’s Guide

Designing an Opaque Data Type
Actual alignment requirements depend on the C definition of the opaque
type and on the system (hardware and compiler) on which the opaque data
type is compiled. The following table summarizes valid alignment values for
some C data types.

Arrays of a data type must follow the same alignment restrictions as the data
type itself. However, structures that begin with single-byte characters (such
as mi_boolean or mi_char) can be aligned anywhere.

When you obtain aligned data for an opaque data type from a varying-length
structure, use the mi_get_vardata_align() function. Make sure that the align
argument of mi_get_vardata_align() matches the value of the align column
in the sysxtdtypes system catalog table for the opaque type. For example, the
mi_double_precision data type is aligned on an eight-byte boundary. If an
opaque type contains an array of mi_double_precision values, use
mi_get_vardata_align() with an align value of 8 to access the data portion of
the mi_double_precision array.

The following call to mi_get_vardata_align() obtains data that is aligned on
eight-byte boundaries from the var_struc varying-length structure:

opaque_type_t *buff;
mi_lvarchar *var_struc;
...
buff = (opaque_type_t *)mi_get_vardata_align(var_struc, 8);

Value for
ALIGNMENT
Modifier Meaning Purpose

1 Align structure on one-byte
boundary

Structures that begin with one-
byte quantities

2 Align structure on two-byte
boundary

Structures that begin with two-
byte quantities, such as
mi_unsigned_smallint

4 (default) Align structure on four-byte
boundary

Structures that begin with four-
byte quantities, such as mi_real
or mi_unsigned_integer

8 Align structure on eight-byte
boundary

Structures that contain members
of the mi_double_precision data
type
Extending Data Types 15-11

Designing an Opaque Data Type
Determining the Passing Mechanism for an Opaque Type

The way that the DataBlade API passes the internal representation of an
opaque type in an MI_DATUM structure depends on the kind of opaque type,
as follows:

� For fixed-length opaque types, the contents of the MI_DATUM
structure depends on the size of the internal representation for the
opaque type:

❑ Most fixed-length opaque types have an internal representation
that cannot fit into an MI_DATUM structure. These fixed-length
opaque types must be passed by reference. The MI_DATUM
structure contains a pointer to the internal C structure of the
opaque type.

❑ If your fixed-length opaque type is always smaller than the size of
the MI_DATUM data type, the opaque type can be passed by
value. The MI_DATUM structure contains the actual internal
representing of the opaque type.

For such fixed-length opaque types, you must include the
PASSEDBYVALUE modifier in the CREATE OPAQUE TYPE state-
ment when you register the opaque type. The database server
stores the value of the PASSEDBYVALUE modifier in the byvalue
column of the sysxtdtypes system catalog table.

� For varying-length opaque types, the MI_DATUM structure always
contains a pointer to an mi_lvarchar structure.

Varying-length opaque types must be passed by reference. The actual
varying-length data is in the data portion of this mi_lvarchar
structure.

Important: Only a fixed-length opaque value of a data type that can always fit into
an MI_DATUM structure can be passed by value.
15-12 IBM Informix DataBlade API Programmer’s Guide

Designing an Opaque Data Type
If the internal representation of a fixed-length opaque type can fit into an
MI_DATUM structure, the routine manager can pass the internal represen-
tation by value. Suppose you have the declaration in Figure 15-5 for a fixed-
length opaque type named two_bytes.

The following CREATE OPAQUE TYPE statement specifies that the two_bytes
fixed-length opaque type can be passed by value:

CREATE OPAQUE TYPE two_bytes (INTERNALLENGTH=2,
ALIGNMENT=2, PASSEDBYVALUE);

Figure 15-13 on page 15-24 declares the output support function for the
two_bytes fixed-length opaque type. The intrnl_format parameter in this
declaration is passed by value. In contrast, the circle fixed-length opaque type
(which Figure 15-2 on page 15-5 declares) cannot fit into an MI_DATUM
structure. Therefore, its output support function must declare its
intrnl_format parameter as passed by reference, as Figure 15-12 on
page 15-23 shows.

When the routine manager receives data from a varying-length opaque type,
it passes the data to the C UDR in an mi_lvarchar varying-length structure
that the UDR allocates. The routine manager also passes a pointer to this
mi_lvarchar structure as the MI_DATUM structure for the UDR argument.
Therefore, a C UDR must have its parameter declared as a pointer to an
mi_lvarchar structure when the parameter accepts data from varying-length
opaque types. Figure 15-14 on page 15-24 shows the declaration of the output
support function for the image varying-length opaque type.

typedef two_bytes_t mi_smallint;
Figure 15-5

Internal Representation
for the two_bytes
Opaque Data Type
Extending Data Types 15-13

Writing Opaque-Type Support Functions
Writing Opaque-Type Support Functions
The database server does not know the internal representation of an opaque
type. To handle the internal representation, you write opaque-type support
functions. These support functions tell the database server how to interact
with the opaque type. The following table summarizes the opaque-type
support functions.

Tip: The IBM Informix BladeSmith development tool, which is part of the DataBlade
Developer’s Kit, automatically generates some of the C source code for the support
routines of an opaque type. For more information, see the “DataBlade Developer’s Kit
User’s Guide.”

The following sections provide information specific to the development of
the opaque-type support functions as C UDRs. For a general discussion of
opaque-type support functions, see the IBM Informix User-Defined Routines
and Data Types Developer’s Guide.

Category of
Support Function

Opaque-Type
Support Functions More Information

Support functions
as casts

input, output
receive, send
import, export
importbin, exportbin

“Support Functions as Casts” on
page 15-15

Stream support
functions

streamwrite(),
streamread()

“Stream Support Functions” on
page 15-56

Disk-storage
support functions

assign(),
destroy()

“Disk-Storage Support Functions”
on page 15-62

Other support
functions

compare(),
deepcopy(),
update()

The IBM Informix User-Defined
Routines and Data Types Developer’s
Guide
15-14 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
Support Functions as Casts

The internal (binary) representation of an opaque type is a C structure that
encapsulates the opaque-type information. The database server does not
know about the structure of this internal representation. To be able to transfer
opaque-type data to various locations, the database server assumes that cast
functions exist between the internal representation of the opaque type (which
the database server does not know) and some known representation of the
opaque-type data.

Many of the opaque-type support functions serve as casts between some
known representation of opaque-type data and the internal representation of
the opaque type. Each known representation of an opaque type has an
associated SQL data type, which you use when you register the support
function. Each of these SQL data types has a corresponding DataBlade API
data type, which you use when you declare the C function that implements
the support function. Figure 15-6 shows the opaque-type representations and
the corresponding SQL and DataBlade API data types that implement them.

Figure 15-6
SQL and DataBlade API Data Types for Opaque-Type Representations

When the database server receives some known representation of the opaque
type, it receives it in one of the SQL data types that Figure 15-6 lists. To locate
the appropriate opaque-type support function, the database server looks in
the syscasts system catalog table for a cast function that performs a cast from
one of these SQL data types to the opaque type. Figure 15-7 shows the
opaque-type support functions cast from each of the SQL data types in
Figure 15-6 to the internal representation of the opaque type.

Opaque-Type Representation SQL Data Type
DataBlade API
Data Type

Opaque-Type
Support Functions

External (text)
representation

LVARCHAR mi_lvarchar input, output

External binary represen-
tation on the client

SENDRECV mi_sendrecv receive, send

Text load file representation IMPEXP mi_impexp import, export

Binary load file
representation

IMPEXPBIN mi_impexpbin importbin,
exportbin
Extending Data Types 15-15

Writing Opaque-Type Support Functions
Figure 15-7
Opaque-Type Support Functions That Cast from SQL to Opaque Data Types

For example, when the database server receives from a client application an
LVARCHAR value for a column of type circle, it looks for a cast function that
casts this value to the internal representation of the circle opaque type. This
cast function is the input support function for circle, which takes as an
argument an mi_lvarchar value and returns the circle_t structure (which
contains the internal representation of circle):

circle_t *circle_input(external_rep)
mi_lvarchar *external_rep;

The database server then saves the return value of the circle_input() support
function in the column whose data type is circle. In this way, the database
server does not need to know about the internal representation of circle. The
circle_input() support function handles the details of filling the C structure.

Tip: All of the opaque-type support functions in Figure 15-7 must be registered as
implicit casts in the database. For more information, see “Registering an Opaque
Data Type” on page 15-65.

Similarly, when the database server sends some known representation of the
opaque type, it sends it in one of the SQL data types that Figure 15-6 on
page 15-15 lists. To locate the appropriate opaque-type support function, the
database server looks for a cast function that performs a cast from the opaque
type to one of these SQL data types. Figure 15-8 shows the opaque-type
support functions that cast from the internal representation of the opaque
type to each of the SQL data types in Figure 15-6.

Cast
Opaque-Type
Support FunctionFrom To

LVARCHAR opaque data type input

SENDRECV opaque data type receive

IMPEXP opaque data type import

IMPEXPBIN opaque data type importbinary
15-16 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
Figure 15-8
Opaque-Type Support Functions That Cast from Opaque to SQL Data Types

All the opaque-type support functions in Figure 15-8 must be registered as
explicit casts in the database. For more information, see “Registering an
Opaque Data Type” on page 15-65.

Important: For the database server to locate one of the opaque-type support functions
in Figure 15-6, you must register these support functions as cast functions with the
CREATE CAST statement. Otherwise, the database server will not find the function
to perform the cast when it checks the syscasts system catalog table. For more infor-
mation, see the description of how to create casts for support functions in the
“IBM Informix User-Defined Routines and Data Types Developer’s Guide.”

The DataBlade API data types in Figure 15-6 on page 15-15 are all imple-
mented as varying-length structures. Therefore, all these data types have the
same internal format. Any DataBlade API function that is declared to handle
the mi_lvarchar data type can also handle these other varying-length data
types. However, you might need to cast between these types to avoid compi-
lation warnings. If you are using a varying-length data type other than
mi_lvarchar, you can cast between the varying-length type you are using and
mi_lvarchar.

For example, the mi_string_to_lvarchar() function converts a null-termi-
nated string to an mi_lvarchar varying-length data type. You can use casting
to have this function convert a null-terminated string to an mi_impexp
varying-length data type, as follows:

mi_impexp *new_impexp;
...
new_impexp = (mi_impexp *)mi_string_to_lvarchar(strng);

Cast
Opaque-Type
Support FunctionFrom To

opaque data type LVARCHAR output

opaque data type SENDRECV send

opaque data type IMPEXP export

opaque data type IMPEXPBIN exportbin
Extending Data Types 15-17

Writing Opaque-Type Support Functions
This casting is not strictly required, but many compilers recommend it and it
does improve clarity of purpose.

Any size of data can fit into a varying-length structure. When a varying-
length data type holds a value for an opaque-type column, this two-kilobyte
size restriction for LVARCHAR columns does not apply. You can write the
appropriate support functions of the opaque data type to handle more than
two kilobytes. For more information on how to manage these varying-length
structures, see “Varying-Length Data Type Structures” on page 2-21.

Subsequent sections describe each of the opaque-type support functions,
grouped by the opaque-type representation that they handle, as the
following table shows.

Opaque-Type
Support Functions Description More Information

input, output � Convert the opaque-type data between
its external and internal
representation.

� Serve as casts between the LVARCHAR
and opaque data types.

“Input and Output
Support Functions”
on page 15-19

send, receive � Convert the opaque-type data between
its internal representations on the
client and server computers.

� Serve as casts between the SENDRECV
and opaque data types.

“Send and Receive
Support Functions”
on page 15-27

import, export � Convert the opaque-type data between
its external unload representation and
its server internal representation.

� Serve as casts between the IMPEXP
and opaque data types.

“External Unload
Representation” on
page 15-37

importbin,
exportbin

� Convert the opaque-type data between
its internal unload representation and
its server internal representation.

� Serve as casts between the IMPEXPBIN
and opaque data types.

“Internal Unload
Representation” on
page 15-48
15-18 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
Input and Output Support Functions

To handle opaque-type data in its external text representation, the database
server calls the input and output support functions for the opaque type. The
external representation is the text version of the opaque-type data. (For more
information, see “Determining External Representation” on page 15-4.) The
external representation is often what end users enter for the opaque-type
value. When a client application sends or receives opaque-type data in its
external representation, the database server must find a support function to
handle the conversion of this data between its server internal representation
(in the database) and the external representation. The input and output
support functions are the cast functions for an opaque type between its
external (text) representation and its internal (binary) representation (on the
server computer). The server internal representation is the C structure that
holds the opaque-type data in the database. For more information, see
“Determining Internal Representation” on page 15-5.

The database server stores the external representation of an opaque type in
an mi_lvarchar structure. The mi_lvarchar structure is a varying-length
structure that encapsulates the external representation of the opaque type.
The mi_lvarchar structure is always passed by reference. Therefore, the input
and output support routines cast the data as follows.

There is no limitation on the size of an mi_lvarchar structure. The DataBlade
API can transport mi_lvarchar data to and from the database server.
However, to conform to the storage limit of a database table (32 kilobytes for
a table, two kilobytes for an LVARCHAR column), the input support function
might need to handle extra data and the output support function might need
to generate the extra data.

Opaque-Type
Support Function Cast From Cast To

Input mi_lvarchar * Server internal representation
of the opaque data type

Output Server internal representation
of the opaque data type

mi_lvarchar *
Extending Data Types 15-19

Writing Opaque-Type Support Functions
The two-kilobyte restriction does not apply to an mi_lvarchar structure that
holds the external representation of an opaque-type column. If the input and
output support functions of the opaque data type can handle more than two
kilobytes, the mi_lvarchar structure can hold more than two kilobytes. For
more information, see “The mi_lvarchar Data Type” on page 2-14.

For your opaque data type to accept an external representation in non-default
locales, you must internationalize the input and output support functions.
For more information, see “Internationalization of DataBlade API Modules”
on page 1-32. ♦

Input Support Function

When an application performs some operation that passes the external repre-
sentation of an opaque type to the database server (such as INSERT or
UPDATE with an opaque-type value as a literal string), the database server
calls the input support function. The input support function accepts the
external representation of the opaque type, which is encapsulated in an
mi_lvarchar structure, and returns the appropriate server internal represen-
tation for that type, as the following signature shows:

srvr_internal_rep input(external_rep)
mi_lvarchar *external_rep;

external_rep is a pointer to an mi_lvarchar structure that holds the
external representation of the opaque type.

An mi_lvarchar is always passed by reference. Therefore,
the external_rep argument must always be a pointer to the
mi_lvarchar data type. For information on how to obtain
information from this varying-length structure, see
“Information About Varying-Length Data” on page 2-37.

input is the name of the C-language function that implements
the input support function for the opaque type. It is rec-
ommended that you include the name of the opaque type
in its input function.

srvr_internal_rep is the appropriate format for the server internal represen-
tation of the opaque data type. The passing mechanism
of this return value depends on the kind of opaque type,
as Figures 15-9 through 15-21 show. Most opaque types
are passed by reference.

GLS
15-20 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
Figure 15-9 declares a sample input support function for a fixed-length
opaque type named circle (which Figure 15-2 on page 15-5 declares).

The circle_input() function is a cast function from the mi_lvarchar data type
(which contains the external representation for the circle opaque type) to the
circle_t internal representation (on the server computer). The database server
executes circle_input() when it needs a cast function to convert from the SQL
data type LVARCHAR to the server internal representation of the circle
opaque type. For more information, see “Support Functions as Casts” on
page 15-15.

The circle_input() function returns a pointer to the circle_t data type.
Because circle cannot fit into an MI_DATUM structure, it must be passed by
reference. If your fixed-length opaque type can fit into an MI_DATUM
structure, the input support function can return the internal representation
by value. Figure 15-10 declares a sample input function for a fixed-length
opaque type named two_bytes (which Figure 15-5 on page 15-13 declares).

The two_bytes opaque type must be registered as PASSEDBYVALUE to tell the
database server that it can be passed by value.

Figure 15-11 declares a sample input support function for a varying-length
opaque type named image (which Figure 15-3 on page 15-8 declares).

/* Input support function: circle */
circle_t *circle_input(extrnl_rep)

mi_lvarchar *extrnl_rep;

Figure 15-9
Input Support

Function for circle
Opaque Type

/* Input support function: two_bytes */
two_bytes_t two_bytes_input(extrnl_rep)

mi_lvarchar *extrnl_rep;

Figure 15-10
Input Support

Function for
two_bytes Opaque

Type

/* Input support function: image */
mi_lvarchar *image_input(extrnl_rep)

mi_lvarchar *extrnl_rep;

Figure 15-11
Input Support

Function for image
Opaque Type
Extending Data Types 15-21

Writing Opaque-Type Support Functions
The image opaque type stores its data inside an mi_lvarchar structure, which
must be passed by reference. The image_input() function is a cast function
from the external representation of image to the server internal represen-
tation of image.

The input support function performs the following tasks:

� Accepts as an argument a pointer to the external representation of
the opaque type

The external representation is in the data portion of an mi_lvarchar
structure, which is passed by reference.

� Allocates enough space to hold the server internal representation of
the opaque type

The input function can use the mi_alloc() DataBlade API function to
allocate the space for the internal representation, or the
mi_new_var() function if the opaque type is varying length. For
more information on memory management, see “Managing User
Memory” on page 13-32.

� Parses the input string of the external representation

The input function must obtain the individual members from the
input string and store them into the appropriate fields of the server
internal representation. The DataBlade API provides functions to
convert various DataBlade API data types from their external to
internal representations. For example, to convert a date string in an
external representation to its internal representation (the mi_date
value in the image_t structure), the image_input() function can call
the mi_string_to_date() function. For a list of these DataBlade API
functions, see “Conversion of Opaque-Type Data Between Text and
Binary Representations” on page 15-26.

� Returns the appropriate server internal representation for the
opaque type

If the opaque data type is passed by reference, the input function
returns a pointer to the server internal representation. If the opaque
data type is passed by value, the input function returns the actual
value of the server internal representation instead of a pointer to this
representation. For more information, see “Determining the Passing
Mechanism for an Opaque Type” on page 15-12.
15-22 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
Output Support Function

When an application performs some operation that requests the external
representation of an opaque type (such as a SELECT operation that requests
data in its text representation), the database server calls the output support
function. The output support function accepts the appropriate server internal
representation of the opaque type and returns the external representation of
that type, which is encapsulated in an mi_lvarchar structure, as the following
signature shows:

mi_lvarchar *output(srvr_internal_rep)

An mi_lvarchar value is always passed by reference. Therefore, the return
value of the output support function must always be a pointer to the
mi_lvarchar data type. For information on how to obtain information from
this varying-length structure, see “Information About Varying-Length Data”
on page 2-37.

Figure 15-12 declares a sample output support function for a fixed-length
opaque type named circle (which Figure 15-2 on page 15-5 declares).

output is the name of the C-language function that implements
the output support function for the opaque type. It is rec-
ommended that you include the name of the opaque type
in the name of its output function. For example, if the
UDT name is image, the name of the output function
would be image_output().

srvr_internal_rep is the appropriate format for the server internal represen-
tation of the opaque data type. The passing mechanism
of this argument value depends on the kind of opaque
type, as Figures 15-12 through 15-14 show. Most opaque
types are passed by reference.

/* Output support function: circle */
mi_lvarchar *circle_output(srvr_intrnl_rep)

circle_t *srvr_intrnl_rep;

Figure 15-12
Output Support

Function for circle
Opaque Type
Extending Data Types 15-23

Writing Opaque-Type Support Functions
The circle_output() function is a cast function from the circle_t internal
representation (on the server computer) to the mi_lvarchar data type (which
contains the external representation for circle). The database server executes
circle_output() when it needs a cast function to convert from the server
internal representation of the circle opaque type to the SQL data type
LVARCHAR. For more information, see “Support Functions as Casts” on
page 15-15.

The circle_output() function accepts as an argument a pointer to the circle_t
data type. Because circle cannot fit into an MI_DATUM structure, it must be
passed by reference. If your fixed-length opaque type can fit into an
MI_DATUM structure, the output support function can pass the server
internal representation by value. Figure 15-13 declares a sample output
function for a fixed-length opaque type named two_bytes (which Figure 15-5
on page 15-13 declares).

The two_bytes opaque type must be registered as PASSEDBYVALUE to tell the
database server that it can be passed by value.

Figure 15-14 declares a sample output support function for a varying-length
opaque type named image (which Figure 15-3 on page 15-8 declares).

The image opaque type stores its data inside an mi_lvarchar structure, which
must be passed by reference. The image_output() function is a cast function
from the internal representation of image to the external representation of
image.

/* Output support function: two_bytes */
mi_lvarchar *two_bytes_output(srvr_intrnl_rep)

two_bytes_t srvr_intrnl_rep;

Figure 15-13
Output Support

Function for
two_bytes Opaque

Type

/* Output support function: image */
mi_lvarchar *image_output(srvr_intrnl_rep)

mi_lvarchar *srvr_intrnl_rep;

Figure 15-14
Output Support

Function for image
Opaque Type
15-24 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
The output support function performs the following tasks:

� Accepts as an argument a pointer to the appropriate server internal
representation of the opaque type

If the opaque data type is passed by reference, the output support
function accepts a pointer to the server internal representation. If the
opaque data type is passed by value, the output function returns the
actual value of the internal representation instead of a pointer to this
representation. For more information, see “Determining the Passing
Mechanism for an Opaque Type” on page 15-12.

� Allocates enough space to hold the external representation of the
opaque type

The output function can use the mi_alloc() DataBlade API function
to allocate the space for the character string. For more information on
memory management, see “Managing User Memory” on page 13-32.

� Creates the output string of the external representation from the
individual members of the server internal representation

The DataBlade API provides functions to convert various DataBlade
API data types from their internal to external representations. For
example, to convert the mi_date value in the image_t structure to its
appropriate external representation, the image_output() function
can call the mi_date_to_string() function. For a list of these Dat-
aBlade API functions, see “Conversion of Opaque-Type Data
Between Text and Binary Representations” on page 15-26.

� Copies the external representation into an mi_lvarchar structure

You must use the mi_new_var() function to create a new
mi_lvarchar structure. You can use mi_set_vardata() to copy data
into the mi_lvarchar structure or mi_set_varptr() to store a pointer
to storage allocated by mi_alloc().

� Returns a pointer to the external representation for the opaque type

This character string must reside in the data portion of an
mi_lvarchar structure. Therefore, the output support function
returns a pointer to this mi_lvarchar structure.
Extending Data Types 15-25

Writing Opaque-Type Support Functions
Conversion of Opaque-Type Data Between Text and Binary Representations

The input and output support functions can call the following DataBlade API
functions to convert the atomic C data types within the server internal repre-
sentation of the opaque data type between their external (text) and internal
(binary) representations.

Type of Data

DataBlade API Function

In Input Support Function In Output Support Function

Date and Date/time data

DATE data mi_string_to_date() mi_date_to_string()

DATETIME data mi_string_to_datetime() mi_datetime_to_string()

INTERVAL data mi_string_to_interval() mi_interval_to_string()

Integer data

SMALLINT data
(two-byte integers)

rstoi(), atoi()

INTEGER data
(four-byte integers)

rstol(), atol()

INT8 data
(eight-byte integers)

ifx_int8cvasc() ifx_int8toasc()

Fixed-point and Floating-point data

DECIMAL data
(fixed-point and
floating-point)

mi_string_to_decimal() mi_decimal_to_string()

MONEY data mi_string_to_money() mi_money_to_string()

SMALLFLOAT data atof()

FLOAT data rstod()

(1 of 2)
15-26 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
Most DataBlade API functions that convert between text and binary represen-
tations recognize the end-user formats for data in a locale-specific format. For
more information about how to internationalize a C UDR, see “International-
ization of DataBlade API Modules” on page 1-32. ♦

Send and Receive Support Functions

To handle opaque-type data in its external binary representation, the
database server calls the send and receive support functions for the opaque
type. When a client application sends or receives opaque-type data in its
internal representation, the database server must find a support function to
handle the possibility that the client computer uses a different byte ordering
than the server computer. The send and receive support functions are the cast
functions for an opaque type between its internal representation on a client
computer and its internal representation on the server computer.

Other data

Character data,
Varying-length data

mi_string_to_lvarchar() mi_lvarchar_to_string()

LO handle
(smart large objects)

mi_lo_from_string() mi_lo_to_string()

Type of Data

DataBlade API Function

In Input Support Function In Output Support Function

(2 of 2)

GLS
Extending Data Types 15-27

Writing Opaque-Type Support Functions
The database server stores the client internal representation of an opaque
type in an mi_sendrecv structure. The mi_sendrecv structure is a varying-
length structure that encapsulates the client internal representation. Its
ability to store varying-length data enables it to handle any possible changes
in the size of the opaque-type data when it is converted between these two
internal representations. For example, the client and server computers might
have different packing rules for structures. Because the mi_sendrecv data
type is a varying-length structure (like mi_lvarchar), it is always passed by
reference. Therefore, the send and receive support routines cast the data as
follows.

The database server receives a description of the client computer when the
client application establishes a connection. The DataBlade API provides
several functions that access this information for use in send and receive
functions. For more information, see “Conversion of Opaque-Type Data with
Computer-Specific Data Types” on page 15-34.

Receive Support Function

When an application executes a query, such as INSERT or UPDATE, and
specifies binary transfer of data, the database server calls the receive support
function. The way to specify binary transfer (for fetch or send) depends on
the client API:

� ODBC uses an SQLBindCol() call.

� The DataBlade API mi_exec_prepared_statement() call takes a
PARAMS_ARE_BINARY flag.

� ESQL/C uses the host-variable data type to specify if the transfer is
binary or text.

Opaque-Type
Support Function Cast From Cast To

Send Server internal representation
of the opaque data type

mi_sendrecv *

Receive mi_sendrecv * Server internal representation
of the opaque data type
15-28 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
The receive support function accepts the client internal representation of the
opaque type, which is encapsulated in an mi_sendrecv structure, and returns
the appropriate server internal representation of that type, as the following
signature shows:

srvr_internal_rep receive(client_internal_rep)
mi_sendrecv *client_internal_rep;

Figure 15-15 declares a sample receive support function for a fixed-length
opaque type named circle (which Figure 15-2 on page 15-5 declares).

client_internal_rep is a pointer to an mi_sendrecv structure that holds the
client internal representation of the opaque type.

An mi_sendrecv is always passed by reference. There-
fore, the client_internal_rep argument must always be a
pointer to the mi_sendrecv data type. For more infor-
mation, see “Information About Varying-Length Data”
on page 2-37.

receive is the name of the C-language function that implements
the receive support function for the opaque type. It is
recommended that you include the name of the opaque
type in its receive function.

srvr_internal_rep is the appropriate format for the server internal repre-
sentation of the opaque data type. The passing mecha-
nism of this return value depends on the kind of opaque
type, as Figures 15-15 through 15-17 show. Most opaque
types are passed by reference.

/* Receive support function: circle */
circle_t *circle_recv(client_intrnl_rep)

mi_sendrecv *client_intrnl_rep;

Figure 15-15
Receive Support

Function for circle
Opaque Type
Extending Data Types 15-29

Writing Opaque-Type Support Functions
The circle_recv() function is a cast function from the mi_sendrecv data type
(which contains the client internal representation for the circle opaque type)
to the circle_t internal representation (on the server computer). The database
server executes circle_recv() when it needs a cast function to convert from
the SQL data type SENDRECV to the server internal representation of the
circle opaque type. For more information, see “Support Functions as Casts”
on page 15-15.

The circle_recv() function returns a pointer to the circle_t data type. Because
circle cannot fit into an MI_DATUM structure, it must be passed by reference.
If your fixed-length opaque type can fit into an MI_DATUM structure, the
receive support function can return the server internal representation by
value. Figure 15-16 declares a sample receive function for a fixed-length
opaque type named two_bytes (which Figure 15-5 on page 15-13 declares).

The two_bytes opaque type must be registered as PASSEDBYVALUE to tell the
database server that it can be passed by value.

Figure 15-17 declares a sample receive support function for a varying-length
opaque type named image (which Figure 15-3 on page 15-8 declares).

The image opaque type stores its data inside an mi_lvarchar structure, which
must be passed by reference. The image_recv() function is a cast function
from the mi_sendrecv data type (which contains the client internal represen-
tation of image) to the mi_lvarchar data type (which contains the server
internal representation of image).

/* Receive support function: two_bytes */
two_bytes_t two_bytes_recv(client_intrnl_rep)

mi_sendrecv *client_intrnl_rep;

Figure 15-16
Receive Support

Function for
two_bytes Opaque

Type

/* Receive support function: image */
mi_lvarchar *image_recv(client_intrnl_rep)

mi_sendrecv *client_intrnl_rep;

Figure 15-17
Receive Support

Function for image
Opaque Type
15-30 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
The receive support function performs the following tasks:

� Accepts as an argument a pointer to the client internal representation
of the opaque type

The client internal representation is in the data portion of an
mi_sendrecv structure, which is passed by reference.

� Allocates enough space to hold the server internal representation of
the opaque type

The receive function can use the mi_alloc() DataBlade API function
to allocate the space for the internal representation, or the
mi_new_var() function if the opaque type is varying length. For
more information on memory management, see “Managing User
Memory” on page 13-32.

� Creates the server internal representation from the individual
members of the client internal representation

The DataBlade API provides functions to convert simple C data types
from their client to server binary representations. For example, to
convert the double-precision values in the circle_t structure to their
binary representation on the server computer, the circle_recv() func-
tion can call the mi_get_double_precision() function. For a list of
these DataBlade API functions, see “Conversion of Opaque-Type
Data with Computer-Specific Data Types” on page 15-34.

� Returns the appropriate server internal representation for the
opaque type

If the opaque data type is passed by reference, the receive function
returns a pointer to the server internal representation. If the opaque
data type is passed by value, the receive function returns the actual
value of the internal representation instead of a pointer to this repre-
sentation. For more information, see “Determining the Passing
Mechanism for an Opaque Type” on page 15-12.
Extending Data Types 15-31

Writing Opaque-Type Support Functions
Send Support Function

When an application performs some operation that requests the binary repre-
sentation of an opaque type (such as a SELECT that requests data in its binary
representation), the database server calls the send support function. The send
support function takes the appropriate server internal representation of the
opaque data type and returns the client internal representation of that type,
encapsulated in an mi_sendrecv structure, as the following signature shows:

mi_sendrecv *send(srvr_internal_rep)

An mi_sendrecv is always passed by reference. Therefore, the return value of
the send support function must always be a pointer to the mi_sendrecv data
type. For information on how to obtain information from this varying-length
structure, see “Information About Varying-Length Data” on page 2-37.

Figure 15-18 declares a sample send support function for a fixed-length
opaque type named circle (which Figure 15-2 on page 15-5 declares).

The circle_send() function is a cast function from the circle_t internal repre-
sentation (on the server computer) to the mi_sendrecv data type (which
contains the client internal representation for circle). The database server
executes circle_send() when it needs a cast function to convert from the
internal representation of the circle opaque type to the SQL data type
SENDRECV. For more information, see “Support Functions as Casts” on
page 15-15.

send is the name of the C-language function that implements
the send support function for the opaque type. It is rec-
ommended that you include the name of the opaque type
in its send function.

srvr_internal_rep is the appropriate format for the server internal represen-
tation of the opaque data type. The passing mechanism
of this argument value depends on the kind of opaque
type, as Figures 15-18 through 15-20 show. Most opaque
types are passed by reference.

/* Send support function: circle */
mi_sendrecv *circle_send(srvr_intrnl_rep)

circle_t *srvr_intrnl_rep;

Figure 15-18
Send Support

Function for circle
Opaque Type
15-32 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
The circle_send() function accepts as an argument a pointer to the circle_t
data type. Because circle cannot fit into an MI_DATUM structure, it must be
passed by reference. If your fixed-length opaque type can fit into an
MI_DATUM structure, the send support function can pass the server internal
representation by value. Figure 15-19 declares a sample send function for a
fixed-length opaque type named two_bytes (which Figure 15-5 on
page 15-13 declares).

The two_bytes opaque type must be registered as PASSEDBYVALUE to tell the
database server that it can be passed by value.

Figure 15-20 declares a sample send support function for a varying-length
opaque type named image (which Figure 15-3 on page 15-8 declares).

The image opaque type stores its data inside an mi_lvarchar structure, which
must be passed by reference. The image_send() function is a cast function
from the mi_lvarchar data type (which contains the server internal represen-
tation of image) to the mi_sendrecv data type (which contains the client
internal representation of image).

The send support function performs the following tasks:

� Accepts as an argument a pointer to the appropriate server internal
representation of the opaque type

If the opaque data type is passed by reference, the send function
accepts a pointer to the server internal representation. If the opaque
data type is passed by value, the send function accepts the actual
value of the internal representation instead of a pointer to this repre-
sentation. For more information, see “Determining the Passing
Mechanism for an Opaque Type” on page 15-12.

/* Send support function: two_bytes */
mi_sendrecv *two_bytes_send(srvr_intrnl_rep)

two_bytes_t srvr_intrnl_rep;

Figure 15-19
Send Support

Function for
two_bytes Opaque

Type

/* Send support function: image */
mi_sendrecv *image_send(srvr_intrnl_rep)

mi_lvarchar *srvr_intrnl_rep;

Figure 15-20
Send Support

Function for image
Opaque Type
Extending Data Types 15-33

Writing Opaque-Type Support Functions
� Allocates enough space to hold the client internal representation

The send function can use the mi_alloc() DataBlade API function to
allocate the space for the internal representation. For more informa-
tion on memory management, see “Managing User Memory” on
page 13-32.

� Creates the client internal representation from the individual
members of the server internal representation

The DataBlade API provides functions to convert simple C data types
from server to client binary representations. For example, to convert
the double-precision values in the circle_t structure to their binary
representation on the client computer, the circle_send() function can
call the mi_put_double_precision() function. For a list of these
DataBlade API functions, see “Conversion of Opaque-Type Data
with Computer-Specific Data Types” on page 15-34.

� Copies the client internal representation into an mi_sendrecv
structure

You must use the mi_new_var() function to create a new
mi_sendrecv structure. You can use mi_set_vardata() to copy the
data into the mi_sendrecv structure or mi_set_varptr() to store the
pointer to storage allocated by mi_alloc().

� Returns a pointer to the client internal representation for the opaque
type

This client internal representation must reside in the data portion of
an mi_sendrecv structure. Therefore, the send support function
returns a pointer to this mi_sendrecv structure.

Conversion of Opaque-Type Data with Computer-Specific Data Types

The send and receive support functions can call DataBlade API functions to
convert data of the atomic C data types within the internal (binary) represen-
tation of an opaque data type. Figure 15-21 shows the DataBlade API
functions that can convert a difference in alignment or byte order between the
client computer and the server computer.
15-34 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
Figure 15-21
Type-Transfer Functions of the DataBlade API

Type of Data

DataBlade API Function

In Send Support Function In Receive Support Function

Byte data mi_put_bytes() mi_get_bytes()

Date and Date/time data

DATE data mi_put_date() mi_get_date()

DATETIME data mi_put_datetime() mi_get_datetime()

INTERVAL data mi_put_interval() mi_get_interval()

Integer data

SMALLINT data
(two-byte integers)

mi_put_smallint(),
mi_fix_smallint()

mi_get_smallint(),
mi_fix_smallint()

INTEGER data
(four-byte
integers)

mi_put_integer(),
mi_fix_integer()

mi_get_integer(),
mi_fix_integer()

INT8 data
(eight-byte
integers)

mi_put_int8() mi_get_int8()

Fixed-point and Floating-point data

DECIMAL data
(fixed-point and
floating-point)

mi_put_decimal() mi_get_decimal()

MONEY data mi_put_money() mi_get_money()

SMALLFLOAT
data

mi_put_real() mi_get_real()

FLOAT data mi_put_double_precision() mi_get_double_precision()

(1 of 2)
Extending Data Types 15-35

Writing Opaque-Type Support Functions
Characters have the same binary representation on all architectures, so they
do not need to be converted. However, if the code sets of the server-
processing locale (in which the UDR executes) and the client locale differ, the
mi_get_string() and mi_put_string() functions automatically perform the
appropriate code-set conversion (provided that the two code sets are
compatible). For more information about how to internationalize a C UDR,
see “Internationalization of DataBlade API Modules” on page 1-32. ♦

Bulk-Copy Support Functions

The database server can copy data in and out of a database with a bulk copy
operation. In a bulk copy, the database server reads or sends large numbers
of column values in a copy file, rather than handling each column value
individually. IBM Informix utilities such as DB-Access, the dbimport and
dbexport utilities, and the High Performance Loader (HPL) can perform bulk
copies.

Other data

Character data mi_put_string() mi_get_string()

LO handle
(smart large
objects)

mi_put_lo_handle() mi_get_lo_handle()

Type of Data

DataBlade API Function

In Send Support Function In Receive Support Function

(2 of 2)

GLS
15-36 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
The format of the opaque-type data in the copy file is called its unload repre-
sentation. This unload representation might be different from the server
internal representation of the opaque-type data (which is stored in the
database). You can create the following opaque-type support functions to
handle the unload representations of the opaque-type data.

External Unload Representation

To handle opaque-type data in its external unload representation, the
database server calls the import and export support functions of the opaque
type. The external unload representation is the text version of the opaque-
type data when it resides in a copy file. Usually, the external unload and
external representations of an opaque type are the same. When a bulk-copy
utility sends or receives opaque-type data in its external unload represen-
tation, the database server must find a support function to handle any
conversion between this text in the copy file and the individual field values
of the server internal representation. The import and export support
functions are the cast functions for an opaque type between its external
unload representation (its text format in a copy file) and its server internal
(binary) representation.

Important: An opaque data type only requires import and export support functions
if its external unload representation is different from its external representation
(which the input and output support functions handle). For most opaque data types,
the database server can use the input and output support functions for import and
export, respectively, to handle bulk copies of the opaque-type columns to and from
their text representation.

Unload
Representation Description

Opaque-Type
Support Functions

External unload
representation

The text format of the opaque type,
as it resides in a copy file

import, export

Internal unload
representation

The binary format of the opaque
type, as it resides in a copy file

importbin, exportbin
Extending Data Types 15-37

Writing Opaque-Type Support Functions
The database server stores the external unload representation of an opaque
type in an mi_impexp structure. The mi_impexp structure is a varying-
length structure that encapsulates the external unload representation. Its
ability to store varying-length data enables it to handle any possible changes
in the size of the opaque-type data when it is converted between its server
internal and its external unload representations. For example, opaque data
types that contain smart large objects might have a filename in their external
unload representation rather than storing all the smart-large-object data in
the copy file.

Because the mi_impexp data type is a varying-length structure (like
mi_lvarchar), it is always passed by reference. Therefore, the import and
export support routines have the following basic signatures.

For your opaque data type to accept an external representation in nondefault
locales, you must internationalize the import and export support functions.
For more information, see “Internationalization of DataBlade API Modules”
on page 1-32. ♦

Opaque-Type
Support Function Cast From Cast To

Import mi_impexp * Server internal representation
of the opaque data type

Export Server internal representation
of the opaque data type

mi_impexp *

GLS
15-38 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
For most opaque types, the import support function can be the same as the
input support function because the external representation and the external
unload representation are usually the same. For such opaque types, you can
handle the import support function in either of the following ways:

� Call the input function inside the import function.

The import functions for the circle opaque type (Figure 15-22 on
page 15-40) and the two_bytes opaque type (Figure 15-23 on
page 15-41) use this method.

� Omit the import function from the definition of the opaque type.

You must still create the implicit cast from the IMPBIN data type to
the opaque data type with the CREATE CAST statement. However,
instead of listing an import support function as the cast function, list
the input support function. The database server would then auto-
matically call the appropriate input support function to load the
opaque type when it is in its external unload representation.

Import Support Function

When a bulk-copy utility performs a load of opaque-type data in its external
unload representation, the database server calls the import support function.
For example, when DB-Access performs a bulk load of an opaque-type
column with the LOAD statement, the database server calls the import
support function for the opaque type.
Extending Data Types 15-39

Writing Opaque-Type Support Functions
The import support function takes the external unload representation of the
opaque type, which is encapsulated in an mi_impexp structure, and returns
the appropriate server internal representation of that type, as the following
signature shows:

srvr_internal_rep import(external_unload_rep)
mi_impexp *external_unload_rep;

Figure 15-22 declares a sample import support function for a fixed-length
opaque type named circle (which Figure 15-2 on page 15-5 declares).

external_unload_rep is a pointer to an mi_impexp structure that holds the
external unload representation of the opaque type.

An mi_impexp is always passed by reference. There-
fore, the external_unload_rep argument must always be
a pointer to the mi_impexp data type. For information
on how to obtain information from this varying-
length structure, see “Information About Varying-
Length Data” on page 2-37.

import is the name of the C-language function that imple-
ments the import support function for the opaque
type. It is recommended that you include the name of
the opaque type in its import function.

srvr_internal_rep is the appropriate format for the server internal repre-
sentation of the opaque data type. The passing mech-
anism of this return value depends on the kind of
opaque type, as Figures 15-22 through 15-24 show.
Most opaque types are passed by reference.

/* Import support function: circle */
circle_t *circle_imp(extrnl_unload_rep)

mi_impexp *extrnl_unload_rep;
{

return (circle_input((mi_lvarchar *)extrnl_unload_rep));
}

Figure 15-22
Import Support

Function for circle
Opaque Type
15-40 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
The circle_imp() function is a cast function from the mi_impexp data type
(which contains the external unload representation for the circle opaque
type) to the circle_t internal representation (on the server computer). The
database server executes circle_imp() when it needs a cast function to
convert from the SQL data type IMPEXP to the server internal representation
of the circle opaque type. For more information, see “Support Functions as
Casts” on page 15-15.

The circle_imp() function returns a pointer to the circle_t data type. Because
circle cannot fit into an MI_DATUM structure, it must be passed by reference.
If your fixed-length opaque type can fit into an MI_DATUM structure, the
import support function can return the server internal representation by
value. Figure 15-23 declares a sample import function for a fixed-length
opaque type named two_bytes (which Figure 15-5 on page 15-13 declares).

The two_bytes opaque type must be registered as PASSEDBYVALUE to tell the
database server that it can be passed by value.

Figure 15-24 declares a sample import support function for a varying-length
opaque type named image (which Figure 15-3 on page 15-8 declares).

The image opaque type stores its data inside an mi_lvarchar structure, which
must be passed by reference. The image_imp() function is a cast function
from the mi_impexp data type (which contains the external unload represen-
tation of image) to the mi_lvarchar data type (which contains the server
internal representation of image).

/* Import support function: two_bytes */
two_bytes_t two_bytes_imp(extrnl_unload_rep)

mi_impexp *extrnl_unload_rep;
{

return (two_bytes_input((mi_lvarchar *)extrnl_unload_rep));
}

Figure 15-23
Import Support

Function for
two_bytes Opaque

Type

/* Import support function: image */
mi_lvarchar *image_imp(extrnl_unload_rep)

mi_impexp *extrnl_unload_rep;

Figure 15-24
Import Support

Function for image
Opaque Type
Extending Data Types 15-41

Writing Opaque-Type Support Functions
Typically, only opaque data types that contain smart large objects have
import and export functions defined. The external unload representation can
include a client filename (which contains the smart-large-object data), a
length, and an offset. The import support function can use the
mi_lo_from_file() function (with the MI_O_CLIENT_FILE file-mode constant)
to:

� Open the specified client file.

� Load from the client file into a new smart large object, the smart-
large-object data that the length specified, starting at the specified
offset, for the amount of data that the length specifies.

Finally, the import function must save the LO handle for the new smart large
object in the server internal representation of the opaque type.

Tip: For opaque types with smart large objects, you can choose whether to provide
support for an external representation (a client filename, length, and offset) in the
input and output support functions or the import and export support functions.
When you define the input and output support functions to handle this external
representation, applications can use this representation as a literal value for opaque-
type data.

For an opaque type that does require an import support function, the import
function performs the following tasks:

� Accepts as an argument a pointer to the external unload represen-
tation of the opaque type

The external unload representation is in the data portion of an
mi_impbin structure, which is passed by reference.

� Allocates enough space to hold the server internal representation of
the opaque type

The import function can use the mi_alloc() DataBlade API function
to allocate the space for the internal representation. For more infor-
mation on memory management, see “Managing User Memory” on
page 13-32.
15-42 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
� Parses the input string of the external unload representation

Obtain the individual members from the input string and store them
into the appropriate fields of the server internal representation. The
DataBlade API provides functions to convert various DataBlade API
data types from their external to internal representations. For exam-
ple, to convert a date string in an external unload representation to
its internal representation (the mi_date value in the image_t struc-
ture), the image_imp() function can call the mi_string_to_date()
function. For a list of these DataBlade API functions, see “Conversion
of Opaque-Type Data Between Text and Binary Representations” on
page 15-26.

� Returns the appropriate server internal representation for the
opaque type

If the opaque data type is passed by reference, the import function
returns a pointer to the server internal representation. If the opaque
data type is passed by value, the import function returns the actual
value of the internal representation instead of a pointer to this repre-
sentation. For more information, see “Determining the Passing
Mechanism for an Opaque Type” on page 15-12.

Because the image opaque type contains a smart large object, it would
require an import function. From the external unload representation that is
read from the copy file, the import function could obtain the name of the
client file that contains the smart-large-object data.

Export Support Function

When a bulk-copy utility performs an unload of opaque-type data to its
external unload representation, the database server calls the export support
function. For example, when DB-Access performs a bulk unload of an
opaque-type column with the UNLOAD statement, the database server calls
the export support function for the opaque type.
Extending Data Types 15-43

Writing Opaque-Type Support Functions
The export support function takes the appropriate server internal represen-
tation of the opaque data type and returns the external unload representation
of that type, encapsulated in an mi_impexp structure, as the following
signature shows:

mi_impexp *export(srvr_internal_rep)

An mi_impexp is always passed by reference. Therefore, the return value of
the export support function must always be a pointer to the mi_impexp data
type. For information on how to obtain information from this varying-length
structure, see “Information About Varying-Length Data” on page 2-37.

Figure 15-25 declares a sample export support function for a fixed-length
opaque type named circle (which Figure 15-2 on page 15-5 declares).

The circle_exp() function is a cast function from the circle_t internal repre-
sentation (on the server computer) to the mi_impexp data type (which
contains the external unload representation for circle). The database server
executes circle_exp() when it needs a cast function to convert from the server
internal representation of the circle opaque type to the SQL data type IMPEXP.
For more information, see “Support Functions as Casts” on page 15-15.

export is the name of the C-language function that implements
the export support function for the opaque type. It is rec-
ommended that you include the name of the opaque type
in its export function.

srvr_internal_rep is the appropriate format for the server internal represen-
tation of the opaque data type. The passing mechanism
of this argument value depends on the kind of opaque
type, as Figures 15-18 through 15-20 show. Most opaque
types are passed by reference.

/* Export support function: circle */
mi_impexp *circle_exp(srvr_intrnl_rep)

circle_t *srvr_intrnl_rep;
{

return ((mi_impexp *)circle_output(srvr_intrnl_rep));
}

Figure 15-25
Export Support

Function for circle
Opaque Type
15-44 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
The circle_exp() function accepts as an argument a pointer to the circle_t
data type. Because circle cannot fit into an MI_DATUM structure, it must be
passed by reference. If your fixed-length opaque type can fit into an
MI_DATUM structure, the export support function can pass the server
internal representation by value. Figure 15-26 declares a sample export
function for a fixed-length opaque type named two_bytes (which Figure 15-5
on page 15-13 declares).

The two_bytes opaque type must be registered as PASSEDBYVALUE to tell the
database server that it can be passed by value.

Figure 15-27 declares a sample export support function for a varying-length
opaque type named image (which Figure 15-3 on page 15-8 declares).

The image opaque type stores its data inside an mi_lvarchar structure, which
must be passed by reference. The image_exp() function is a cast function
from the mi_lvarchar data type (which contains the server internal represen-
tation of image) to the mi_impexp data type (which contains the external
unload representation of image).

/* Export support function: two_bytes */
mi_impexp *two_bytes_exp(srvr_intrnl_rep)

two_bytes_t srvr_intrnl_rep;
{

return ((mi_impexp *)two_bytes_output(srvr_intrnl_rep));
}

Figure 15-26
Export Support

Function for
two_bytes Opaque

Type

/* Export support function: image */
mi_impexp *image_exp(srvr_intrnl_rep)

mi_lvarchar *srvr_intrnl_rep;

Figure 15-27
Export Support

Function for image
Opaque Type
Extending Data Types 15-45

Writing Opaque-Type Support Functions
In most cases, the export support function can be the same as the output
support function, because the external representation and the external
unload representation are usually the same. For such opaque types, you can
handle the export functions in either of the following ways:

� Call the output function inside the export function.

The export functions for the circle opaque type (Figure 15-25 on
page 15-44) and the two_bytes opaque type (Figure 15-26 on
page 15-45) use this method.

� Omit the export function from the definition of the opaque type.

You must still create the explicit cast from the opaque data type to the
IMPBIN data type with the CREATE CAST statement. However,
instead of listing an export support function as the cast function, list
the output support function. The database server would then auto-
matically call the appropriate output support function to unload the
opaque type to its external unload representation.

Typically, only opaque data types that contain smart large objects have
import and export functions defined. The external unload representation can
include a client filename (which contains the smart-large-object data), a
length, and an offset. The export support function can obtain the LO handle
of the smart large object from the server internal representation of the opaque
type. With this LO handle, export can use the mi_lo_to_file() function (with
the MI_O_CLIENT_FILE file-mode constant) to:

� Create the specified file on the client computer.

� Write the smart-large-object data into this file at the specified offset
and for the number of bytes that the length specifies.

Finally, the export function can put the client filename, length of data, and
starting offset into the external unload representation that is to be written to
the copy file.

Tip: For opaque types with smart large objects, you can choose whether to provide
support for an external representation (a client filename, length, and offset) in the
input and output support functions or the import and export support functions.
When you define the input and output support functions to handle this external
representation, applications can use this representation as a literal value for opaque-
type data.
15-46 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
For an opaque type that does require an export support function, the export
function performs the following tasks:

� Accepts as an argument a pointer to the appropriate server internal
representation of the opaque type

If the opaque data type is passed by reference, the export function
accepts a pointer to the server internal representation. If the opaque
data type is passed by value, the export function accepts the actual
value of the internal representation instead of a pointer to this repre-
sentation. For more information, see “Determining the Passing
Mechanism for an Opaque Type” on page 15-12.

� Allocates enough space to hold the external unload representation of
the opaque type

The export function can use the mi_alloc() DataBlade API function
to allocate the space for the character string. For more information on
memory management, see “Managing User Memory” on page 13-32.

� Creates the external unload representation from the individual
members of the server internal representation

The DataBlade API provides functions to convert various DataBlade
API data types from their internal to external representations. For
example, to convert the mi_date value in the image_t structure to its
appropriate external representation, the image_exp() function can
call the mi_date_to_string() function. For a list of these DataBlade
API functions, see “Conversion of Opaque-Type Data Between Text
and Binary Representations” on page 15-26.

� Copies the external unload representation into an mi_impexp
structure

You can use the mi_new_var() function to create a new mi_impexp
structure and the mi_get_vardata() or mi_get_vardata_align()
function to obtain a pointer to the data portion of this structure.

� Returns a pointer to the external unload representation for the
opaque type

This character string must reside in the data portion of an
mi_impexp structure. Therefore, the export support function returns
a pointer to this mi_impexp structure.
Extending Data Types 15-47

Writing Opaque-Type Support Functions
Because the image opaque type contains a smart large object, it would
require an export function, which could save in the external unload represen-
tation that is written to the copy file the name of the client file that contains
the smart-large-object data.

Internal Unload Representation

To handle opaque-type data in its internal unload representation, the
database server calls the importbin and exportbin support functions of the
opaque type. The internal unload representation is the binary version of the
opaque-type data when it resides in a copy file. Usually, the internal unload
and server internal representations of an opaque type are the same. When a
bulk-copy utility sends or receives opaque-type data in its internal unload
representation, the database server must find a support function to handle
the possibility that the client computer uses a different byte ordering than the
server computer. The importbin and exportbin support functions are the cast
functions for an opaque type between its internal (binary) unload represen-
tation (its binary format in a copy file) and its server internal (binary)
representation.

Important: An opaque data type only requires importbin and exportbin support
functions if its internal unload representation is different from its server internal
representation (which the send and receive support functions handle). For most
opaque data types, the database server can use the send and receive support functions
for importbin and exportbin, respectively, to handle bulk copies of the opaque-type
columns to and from their binary representation.

The database server stores the internal unload representation of an opaque
type in an mi_impexpbin structure, which is a varying-length structure. Its
ability to store varying-length data enables it to handle any possible changes
in the size of the opaque-type data when it is converted between these two
internal representations. For example, the client and server computers might
have different packing rules for structures.
15-48 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
Because the mi_impexpbin data type is a varying-length structure (like
mi_lvarchar), it is always passed by reference. Therefore, the importbin and
exportbin support routines have the following basic signatures.

Importbin Support Function

When a bulk-copy utility performs a load of opaque-type data in its internal
unload representation, the database server calls the importbin support
function. The importbin support function takes the internal unload represen-
tation of the opaque type, which is encapsulated in an mi_impexpbin
structure, and returns the appropriate server internal representation of that
type, as the following signature shows:

srvr_internal_rep importbin(internal_unload_rep)
mi_impexpbin *internal_unload_rep;

Opaque-Type
Support Function Cast From Cast To

Importbin mi_impexpbin * Server internal representation
of the opaque data type

Exportbin Server internal representation
of the opaque data type

mi_impexpbin *

importbin is the name of the C-language function that imple-
ments the importbin support function for the opaque
type. It is recommended that you include the name of
the opaque type in its importbin function.

internal_unload_rep is a pointer to an mi_impexpbin structure that holds
the internal unload representation of the opaque type.

An mi_impexpbin is always passed by reference.
Therefore, the internal_unload_rep argument must
always be a pointer to the mi_impexpbin data type.
For information on how to obtain information from
this varying-length structure, see “Information About
Varying-Length Data” on page 2-37.
Extending Data Types 15-49

Writing Opaque-Type Support Functions
Figure 15-28 declares a sample importbin support function for a fixed-length
opaque type named circle (which Figure 15-2 on page 15-5 declares).

The circle_impbin() function is a cast function from the mi_impexpbin data
type (which contains the internal unload representation for the circle opaque
type) to the circle_t internal representation (on the server computer). The
database server executes circle_impbin() when it needs a cast function to
convert from the SQL data type IMPEXPBIN to the server internal represen-
tation of the circle opaque type. For more information, see “Support
Functions as Casts” on page 15-15.

The circle_impbin() function returns a pointer to the circle_t data type.
Because circle cannot fit into an MI_DATUM structure, it must be passed by
reference. If your fixed-length opaque type can fit into an MI_DATUM
structure, the importbin support function can return the server internal
representation by value. Figure 15-29 declares a sample importbin function
for a fixed-length opaque type named two_bytes (which Figure 15-5 on
page 15-13 declares).

srvr_internal_rep is the appropriate format for the server internal repre-
sentation of the opaque data type. The passing mecha-
nism of this return value depends on the kind of
opaque type, as Figures 15-28 through 15-30 show.
Most opaque types are passed by reference.

/* Importbin support function: circle */
circle_t *circle_impbin(intrnl_unload_rep)

mi_impexpbin *intrnl_unload_rep;
{

return (circle_recv((mi_sendrecv *)intrnl_unload_rep));
}

Figure 15-28
Importbin Support
Function for circle

Opaque Type

/* Importbin support function: two_bytes */
two_bytes_t two_bytes_impbin(intrnl_unload_rep)

mi_impexpbin *intrnl_unload_rep;
{

return (two_bytes_recv((mi_sendrecv *)intrnl_unload_rep));
}

Figure 15-29
Importbin Support

Function for
two_bytes Opaque

Type
15-50 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
The two_bytes opaque type must be registered as PASSEDBYVALUE to tell the
database server that it can be passed by value.

Figure 15-30 declares a sample importbin support function for a varying-
length opaque type named image (which Figure 15-3 on page 15-8 declares).

The image opaque type stores its data inside an mi_lvarchar structure, which
must be passed by reference. The image_impbin() function is a cast function
from the mi_impexpbin data type (which contains the internal unload repre-
sentation of image) to the mi_lvarchar data type (which contains the server
internal representation of image).

For most opaque types, the importbin support function can be the same as
the receive support function, because the client internal representation and
the internal unload representation are the same. For such opaque types, you
can handle the importbin function in either of the following ways:

� Call the receive function inside the importbin function

The importbin functions for the circle opaque type (Figure 15-28 on
page 15-50), the two_bytes opaque type (Figure 15-29 on
page 15-50), and the image opaque type (Figure 15-30 on page 15-51)
use this method.

� Omit the importbin function from the definition of the opaque type

You must still create the implicit cast from the IMPBINBIN data type
to the opaque data type with the CREATE CAST statement. However,
instead of listing an importbin support function as the cast function,
list the receive support function. The database server would then
automatically call the appropriate receive support function to load
the opaque type when it is in its internal unload representation.

/* Importbin support function: image */
mi_lvarchar *image_impbin(intrnl_unload_rep)

mi_impexpbin *intrnl_unload_rep;
{

return (image_recv((mi_sendrecv *)intrnl_unload_rep));
}

Figure 15-30
Importbin Support
Function for image

Opaque Type
Extending Data Types 15-51

Writing Opaque-Type Support Functions
For an opaque type that does require an importbin support function, the
importbin function performs the following tasks:

� Accepts as an argument a pointer to the internal unload represen-
tation of the opaque type

The internal unload representation is in the data portion of an
mi_impexpbin structure, which is passed by reference.

� Allocates enough space to hold the server internal representation of
the opaque type

The importbin function can use the mi_alloc() DataBlade API func-
tion to allocate the space for the internal representation. For more
information on memory management, see “Managing User Mem-
ory” on page 13-32.

� Creates the server internal representation from the individual
members of the internal unload representation

The DataBlade API provides functions to convert simple C data types
from their client to server binary representations. For example, to
convert the double-precision values in the circle_t structure to their
binary representation on the server computer, the circle_impbin()
function can call the mi_get_double_precision() function. For a list
of these DataBlade API functions, see “Conversion of Opaque-Type
Data with Computer-Specific Data Types” on page 15-34.

� Returns the appropriate server internal representation for the
opaque type

If the opaque data type is passed by reference, the importbin func-
tion returns a pointer to the server internal representation. If the
opaque data type is passed by value, the importbin function returns
the actual value of the internal representation instead of a pointer to
this representation. For more information, see “Determining the
Passing Mechanism for an Opaque Type” on page 15-12.
15-52 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
Exportbin Support Function

When a bulk-copy utility performs an unload of opaque-type data to its
internal unload representation, the database server calls the exportbin
support function. The exportbin support function takes the appropriate
server internal representation of the opaque data type and returns the
internal unload representation of that type, encapsulated in an
mi_impexpbin structure, as the following signature shows:

mi_impexpbin *exportbin(srvr_internal_rep)

An mi_impexpbin is always passed by reference. Therefore, the return value
of the exportbin support function must always be a pointer to the
mi_impexpbin data type. For information on how to obtain information
from this varying-length structure, see “Information About Varying-Length
Data” on page 2-37.

Figure 15-31 declares a sample exportbin support function for a fixed-length
opaque type named circle (which Figure 15-2 on page 15-5 declares).

exportbin is the name of the C-language function that implements
the exportbin support function for the opaque type. It is
recommended that you include the name of the opaque
type in its exportbin function.

srvr_internal_rep is the appropriate format for the server internal represen-
tation of the opaque data type. The passing mechanism
of this argument value depends on the kind of opaque
type, as Figures 15-31 through 15-33 show. Most opaque
types are passed by reference.

/* Exportbin support function: circle */
mi_impexpbin *circle_expbin(srvr_intrnl_rep)

circle_t *srvr_intrnl_rep;
{

return ((mi_impexpbin *)circle_send(srvr_intrnl_rep));
}

Figure 15-31
Exportbin Support
Function for circle

Opaque Type
Extending Data Types 15-53

Writing Opaque-Type Support Functions
The circle_expbin() function is a cast function from the circle_t internal
representation (on the server computer) to the mi_impexpbin data type
(which contains the internal unload representation for circle). The database
server executes circle_expbin() when it needs a cast function to convert from
the server internal representation of the circle opaque type to the SQL data
type IMPEXPBIN. For more information, see “Support Functions as Casts” on
page 15-15.

The circle_expbin() function accepts as an argument a pointer to the circle_t
data type. Because circle cannot fit into an MI_DATUM structure, it must be
passed by reference. If your fixed-length opaque type can fit into an
MI_DATUM structure, the exportbin support function can pass the server
internal representation by value. Figure 15-32 declares a sample exportbin
function for a fixed-length opaque type named two_bytes (which Figure 15-5
on page 15-13 declares).

The two_bytes opaque type must be registered as PASSEDBYVALUE to tell the
database server that it can be passed by value.

Figure 15-33 declares a sample exportbin support function for a varying-
length opaque type named image (which Figure 15-3 on page 15-8 declares).

The image opaque type stores its data inside an mi_lvarchar structure, which
must be passed by reference. The image_expbin() function is a cast function
from the mi_lvarchar data type (which contains the server internal represen-
tation of image) to the mi_impexpbin data type (which contains the internal
unload representation of image).

/* Exportbin support function: two_bytes */
mi_impexpbin *two_bytes_expbin(srvr_intrnl_rep)

two_bytes_t srvr_intrnl_rep;
{

return ((mi_impexpbin *)two_bytes_send(srvr_intrnl_rep));
}

Figure 15-32
Exportbin Support

Function for
two_bytes Opaque

Type

/* Exportbin support function: image */
mi_impexpbin *image_expbin(srvr_intrnl_rep)

mi_lvarchar *srvr_intrnl_rep;
{

return ((mi_impexpbin *)image_send(srvr_intrnl_rep));
}

Figure 15-33
Exportbin Support
Function for image

Opaque Type
15-54 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
For most opaque types, the exportbin function can be the same as the send
support function, because the client internal representation and the internal
unload representation are the same. For such opaque types, you can handle
the exportbin support function in either of the following ways:

� Call the send function inside the exportbin function.

The circle opaque type (Figure 15-31 on page 15-53), the two_bytes
opaque type (Figure 15-32 on page 15-54), and the image opaque
type (Figure 15-33 on page 15-54) use this method.

� Omit the exportbin function from the definition of the opaque type.

You must still create the explicit cast from the opaque data type to the
IMPEXPBIN data type with the CREATE CAST statement. However,
instead of listing an exportbin support function as the cast function,
list the send support function. The database server would then auto-
matically call the appropriate send support function to unload the
opaque type to its internal unload representation.

For an opaque type that does require an exportbin support function, the
exportbin function performs the following tasks:

� Accepts as an argument a pointer to the appropriate server internal
representation of the opaque type

If the opaque data type is passed by reference, the exportbin function
accepts a pointer to the server internal representation. If the opaque
data type is passed by value, the exportbin function returns the
actual value of the internal representation instead of a pointer to this
representation. For more information, see “Determining the Passing
Mechanism for an Opaque Type” on page 15-12.

� Allocates enough space to hold the internal unload representation of
the opaque type

The exportbin function can use the mi_alloc() DataBlade API func-
tion to allocate the space for the internal representation. For more
information on memory management, see “Managing User Mem-
ory” on page 13-32.
Extending Data Types 15-55

Writing Opaque-Type Support Functions
� Creates the internal unload representation from the individual
members of the server internal representation

The DataBlade API provides functions to convert simple C data types
from server to client binary representations. For example, to convert
the double-precision values in the circle_t structure to their binary
representation on the client computer, the circle_expbin() function
can call the mi_put_double_precision() function. For a list of these
DataBlade API functions, see “Conversion of Opaque-Type Data
with Computer-Specific Data Types” on page 15-34.

� Copies the internal unload representation into an mi_impexpbin
structure

You can use the mi_new_var() function to create a new
mi_impexpbin structure and the mi_get_vardata() or
mi_get_vardata_align() function to obtain a pointer to the data por-
tion of this structure.

� Returns a pointer to the internal unload representation for the
opaque type

This internal unload representation must reside in the data portion
of an mi_impexpbin structure. Therefore, the exportbin support
function returns a pointer to this mi_impexpbin structure.

Stream Support Functions

The following support functions convert a UDT to or from a stream represen-
tation while reading the UDT from a stream or writing the UDT to a stream.

The stream representation is self-contained and includes enough information
to enable the streamread() function to re-create the UDT instance.

Important: If the UDT includes out-of-row data, the stream representation should
normally include that data.

Support Function Purpose

streamwrite() Conversion of opaque-type data from its binary representation
to its stream representation

streamread() Conversion of opaque-type data from its stream representation
to its binary representation
15-56 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
Enterprise Replication invokes the streamwrite() and streamread() support
functions when replicating UDT columns. The streams it passes to these
functions are Enterprise Replication streams, a write-only stream for stream-
write() and a read-only stream for streamread(). You cannot open or close an
Enterprise Replication stream or use the mi_stream_setpos() or
mi_stream_seek() function on it. For more information about Enterprise
Replication, see the IBM Informix Dynamic Server Enterprise Replication Guide.

Important: If a column that includes out-of-row data is to be replicated, avoid
placing a NOT NULL constraint on the column. Enterprise Replication collects out-
of-row data for transmission after the user transaction has committed. Due to
activity on the replicated row, the data might not exist at the time Enterprise Repli-
cation collects it for replication. In such cases, Enterprise Replication normally
applies a NULL on the target system.

The streamwrite() Support Function

On a destination database server, the streamwrite() support function
converts opaque-type data from its binary representation to its stream repre-
sentation. The streamwrite() support function accepts a stream descriptor
and the address of opaque-type data to write, as the following signature
shows:

mi_integer streamwrite(strm_desc, binary_rep)
MI_STREAM *strm_desc;
my_opq_type *binary_rep;

strm_desc is a pointer to a stream descriptor for an open stream. For more
information, see “Access to a Stream” on page 12-67.

binary_rep is a pointer to the binary representation of the opaque-type
data, which is written to the stream.

The binary representation is the appropriate format for the
opaque-type data. The passing mechanism for this data
depends on the kind of opaque type, as Figures 15-9 through
15-11 show. Most opaque-type values are passed by reference to
the streamwrite() function as single pointers.
Extending Data Types 15-57

Writing Opaque-Type Support Functions
The streamwrite() function returns the number of bytes written to the stream
or MI_ERROR. This function can also return the errors that
mi_stream_write() returns. To convert the individual fields of the opaque-
type internal representation to their stream representation, streamwrite()
can call the stream-write functions of the DataBlade API (see Figure 15-34 on
page 15-60).

A sample SQL declaration for the streamwrite() function follows:

CREATE FUNCTION streamwrite(STREAM, MyUdt)
RETURNS INTEGER
EXTERNAL NAME '/usr/local/udrs/stream/myudt.so(MyUdtStreamWrite)'
LANGUAGE C;

Tip: Unlike most opaque-type support functions, the streamwrite() function for an
opaque type must have the explicit name “streamwrite” when you register it with
the CREATE FUNCTION statement. It is recommended that you include the name of
the opaque type in the C-language version of its streamwrite() function.

The streamread() Support Function

On a target database server, the streamread() support function converts
opaque-type data from its stream representation to its binary representation,
which is stored in the target database. The streamread() support function
accepts a stream descriptor and the address of a buffer into which to read the
opaque-type data, as the following signature shows:

mi_integer streamread(strm_desc, binary_rep)
MI_STREAM *strm_desc;
my_opq_type **binary_rep;

strm_desc is a pointer to a stream descriptor for an open stream. For more
information, see “Access to a Stream” on page 12-67.

binary_rep is a pointer to the buffer into which the function is to copy the
binary representation of the opaque-type data.

The stream buffer is declared with the appropriate format for
the binary representation of the opaque-type data. The passing
mechanism for this buffer depends on the kind of opaque type,
as Figures 15-9 through 15-11 show. Most buffers for opaque-
type data are passed by reference to streamread() as double
pointers.
15-58 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
The streamread() function returns the number of bytes read from the stream
or MI_ERROR. This function can also return the errors that mi_stream_read()
returns. To convert the individual fields of the opaque-type internal represen-
tation to their binary representation, streamwrite() can call the stream-read
functions of the DataBlade API (see Figure 15-34).

A sample SQL declaration for the streamread() function follows:

CREATE FUNCTION streamread(STREAM, OUT MyUdt)
RETURNS INTEGER
EXTERNAL NAME '/usr/local/udrs/stream/myudt.so(MyUdtStreamRead)'
LANGUAGE C;

Tip: Unlike most opaque-type support functions, the streamread() function for an
opaque type must have the explicit name “streamread” when you register it with
the CREATE FUNCTION statement. It is recommended that you include the name of
the opaque type in the C-language version of its streamread() function.

Converting Opaque-Type Data Between Stream and Binary Representations

The DataBlade API provides several functions to convert built-in data types
between binary and stream representations. The streamwrite() and
streamread() support functions can use these DataBlade API functions to
convert a UDT between its binary representation and its stream
representation.

Important: Writing a collection or row to a stream opened for Enterprise Replication
is not supported. Likewise, reading a collection or row from a stream opened for
Enterprise Replication is not supported.

Figure 15-34 shows the DataBlade API stream-conversion functions.
Extending Data Types 15-59

Writing Opaque-Type Support Functions
Figure 15-34
Stream-Conversion Functions of the DataBlade API

Type of Data

DataBlade API Function

The streamwrite()
Support Function

The streamread()
Support Function

Byte data mi_stream_write() mi_stream_read()

Date and Date/time data

DATE data mi_streamwrite_date() mi_streamread_date()

DATETIME
data

mi_streamwrite_datetime() mi_streamread_datetime()

INTERVAL
data

mi_streamwrite_interval() mi_streamread_interval()

Integer data

SMALLINT
data
(two-byte
integers)

mi_streamwrite_smallint() mi_streamread_smallint()

INTEGER data
(four-byte
integers)

mi_streamwrite_integer() mi_streamread_integer()

INT8 data
(eight-byte
integers)

mi_streamwrite_int8() mi_streamread_int8()

(1 of 2)
15-60 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
The DataBlade API function converts the corresponding data type to a
machine-independent stream representation.

Important: The mistrmutil.h header file declares the stream-conversion functions of
the DataBlade API; however, the mi.h header file does not include mistrmutil.h. You
must explicitly include mistrmutil.h in files that use these stream-conversion
functions.

Fixed-point and Floating-point data

DECIMAL
data
(fixed- and
floating-point)

mi_streamwrite_decimal() mi_streamread_decimal()

MONEY data mi_streamwrite_money() mi_streamread_money()

SMALL-
FLOAT data

mi_streamwrite_real() mi_streamread_real()

FLOAT data mi_streamwrite_double() mi_streamread_double()

Other data

Character data mi_streamwrite_string() mi_streamread_string()

Smart large
objects

mi_streamwrite_lo() mi_streamread_lo()
mi_streamread_lo_by_lofd()

Boolean data mi_streamwrite_boolean() mi_streamread_boolean()

Collection
structures

mi_streamwrite_collection() mi_streamread_collection()

Row structures mi_streamwrite_row() mi_streamread_row()

Varying-length
structures

mi_streamwrite_lvarchar() mi_streamread_lvarchar()

Type of Data

DataBlade API Function

The streamwrite()
Support Function

The streamread()
Support Function

(2 of 2)
Extending Data Types 15-61

Writing Opaque-Type Support Functions
Disk-Storage Support Functions

To provide the ability to perform special processing on the internal represen-
tation of an opaque type that it is stored on disk, you can define the following
disk-storage support functions for an opaque type.

The disk internal representation is the contents of the C structure that is
actually written to disk for the opaque-type column. The assign() and
destroy() support functions are useful for opaque types that contain smart
large objects. For such data types, assign() and destroy() can provide
management of the associated smart large object as well as any necessary
modification of the internal representation.

Important: An opaque data type requires assign() and destroy() support functions
only if its disk internal representation is different from its server internal represen-
tation. For most opaque types, these two representations are the same.

Support Function Purpose

assign() Special processing required just before a row that contains
the opaque-type column is inserted into the table (written to
disk)

destroy() Special processing required just before a row that contains
the opaque-type column is deleted from a table (removed
from disk)
15-62 IBM Informix DataBlade API Programmer’s Guide

Writing Opaque-Type Support Functions
The assign() Support Function

The database server calls the assign() support function for an opaque type
when a value is ready to be inserted into an opaque-type column (INSERT,
UPDATE, or LOAD). The assign() support function accepts the server internal
representation of the opaque type and returns the appropriate disk internal
representation for that type, as the following signature shows:

disk_internal_rep assign(internal_rep);

Tip: Unlike most opaque-type support functions, the assign() function for an
opaque type must have the explicit name “assign” when you register it with the
CREATE FUNCTION statement. No implicit casting occurs when the database server
resolves this function. However, it is recommended that you include the name of the
opaque type in the C-language version of its assign() function.

disk_internal_rep is the appropriate format for the disk internal representa-
tion of the opaque data type. The passing mechanism of
this return value depends on the kind of opaque type. For
more information, see “Determining the Passing Mecha-
nism for an Opaque Type” on page 15-12. The disk inter-
nal representation is the internal format as modified by
the assign() support function. This format is what the
database server writes to the database table.

internal_rep is the appropriate format for the server internal represen-
tation of the opaque data type. The passing mechanism of
this return value depends on the kind of opaque type. For
more information, see “Determining the Passing Mecha-
nism for an Opaque Type” on page 15-12. The server
internal representation is the representation that the
input support function returns.
Extending Data Types 15-63

Writing Opaque-Type Support Functions
The destroy() Support Function

The database server calls the destroy() support function for an opaque type
when a value is ready to be deleted from an opaque-type column (DELETE or
DROP TABLE). The destroy() support function accepts the disk internal repre-
sentation of the opaque data type and does not return a value, as the
following signature shows:

void destroy(disk_internal_rep);

Tip: Unlike most opaque-type support functions, the destroy() function for an
opaque type must have the explicit name “destroy” when you register it with the
CREATE FUNCTION statement. No implicit casting occurs when the database server
resolves this function. However, it is recommended that you include the name of the
opaque type in the C-language version of its destroy() function.

Handling Locale-Specific Opaque-Type Data

To internationalize your opaque type, you must ensure that the following
support functions handle data in a nondefault locale:

� The input and output support functions provide the ability to
transfer the external representation of the opaque type.

� The send and receive support functions provide the ability to
transfer the binary representation of the opaque type.

For a description of the internationalization support that the DataBlade API
provides, see “Internationalization of DataBlade API Modules” on page 1-32.
For general information on internationalized support that the opaque-type
can provide, see the chapter on support functions in the IBM Informix User-
Defined Routines and Data Types Developer’s Guide.

disk_internal_rep is the appropriate format for the disk internal representa-
tion of the opaque data type. The passing mechanism of
this return value depends on the kind of opaque type. For
more information, see “Determining the Passing Mecha-
nism for an Opaque Type” on page 15-12.

GLS
15-64 IBM Informix DataBlade API Programmer’s Guide

Registering an Opaque Data Type
Registering an Opaque Data Type
This section explains how to register an opaque data type.

To register an opaque type in a database

1. Register the opaque type as an extended data type.

2. Register the opaque-type support functions.

3. Register the opaque-type casts.

For more information on how to register an opaque type and grant the
associated privileges, see the IBM Informix User-Defined Routines and Data
Types Developer’s Guide.

Registering an Opaque Type in a Database

Use the CREATE OPAQUE TYPE statement to register an opaque data type in
a database. For more information, see “Determining Internal Represen-
tation” on page 15-5. You can assign privileges to the opaque type with the
GRANT USAGE ON TYPE statement. Type privileges for user-defined types
(including opaque types) are stored in the sysxtdtypeauth system catalog
table. By default, Usage privilege is granted to the person who registered the
user-defined type. For more information on the syntax of the GRANT
statement, see the IBM Informix Guide to SQL: Syntax.

Registering Opaque-Type Support Functions

To have the database server able to locate the opaque-type support functions,
you must register them with the following actions:

� Use the CREATE FUNCTION statement to register the opaque-type
support functions as C UDRs.

For more information, see “Registering a C UDR” on page 11-23.

� Use the GRANT EXECUTE ON statement to grant the Execute
privilege to the opaque-type support functions.

For more information, see “Privileges for the UDR” on page 11-28.

� Use the GRANT USAGE ON LANGUAGE statement to ensure that
users have the Usage privilege in the C language for UDRs.

For more information, see “The UDR Language” on page 11-25.
Extending Data Types 15-65

Providing Statistics Data for a Column
Registering the Opaque-Type Casts

Use the CREATE CAST statement to register the input, output, receive, send,
import, export, importbin, and exportbin support functions as cast functions
in the syscasts system catalog table. The input, receive, import, and
importbin support functions must be registered as implicit casts. The output,
send, export, and exportbin support functions must be registered as explicit
casts. For more information, see “Support Functions as Casts” on page 15-15.

Providing Statistics Data for a Column
The database server can provide statistics data for the columns of a table. This
statistics data describes the distribution of the values within a column. The
query optimizer uses this statistics data to determine the best path for an SQL
statement. With this information, the optimizer can estimate the effect of a
WHERE clause by examining, for each column included in the WHERE clause,
the proportionate occurrence of data values contained in the column. (For
more information about statistics data and the optimizer, see your Perfor-
mance Guide.)

The database server provides the following support for column statistics
data:

� The UPDATE STATISTICS statement collects statistics data for the
columns of a table.

� The dbschema -hd command displays statistics data for columns in
a table.

However, the database server can only provide this support for columns with
built-in data types. For the database server to support statistics data for a
column with a user-defined data type, you must write special UDRs that
collect and print the statistics data.
15-66 IBM Informix DataBlade API Programmer’s Guide

Collecting Statistics Data
BladeSmith can automatically generate user-defined statistics for an opaque
data type in a statistics.c file. This file contains the following user-defined
functions.

These functions are not complete. You must add code to handle the statistics
data to these functions for them to compile and execute. ♦

Collecting Statistics Data
The UPDATE STATISTICS statement collects statistics about the tables in your
database. It automatically collects statistics for all columns with built-in data
types (except TEXT and BYTE). However, it cannot automatically collect
statistics for columns with user-defined data types because it does not know
the structure of these data types.

For UPDATE STATISTICS to collect statistics for a column with a user-defined
data type, you must write a user-defined function named statcollect() that
collects statistics data for your user-defined data type. The UPDATE
STATISTICS statement takes the following steps for columns of user-defined
data types:

� Calls the statcollect() function that handles the user-defined data
type

This statcollect() function gathers the statistics data for the column
and stores it as the stat opaque data type.

Statistics Function Purpose

OpaqueStatCollect() The statcollect() function for the Opaque data type

OpaqueStatPrint() The statprint() function for the Opaque data type

DBDK
Extending Data Types 15-67

Collecting Statistics Data
� Stores this stat data type in the sysdistrib system catalog table,
where the statistics data can be accessed by the query optimizer

UPDATE STATISTICS stores the following information in the row of
the sysdistrib table that corresponds to the user-defined-type
column:

❑ In the encdat column of the sysdistrib row: the stat data type
that statcollect() returns

❑ In the type column of the sysdistrib row: an 'S' to indicate that
the encdat column contains user-defined statistics

To have the UPDATE STATISTICS statement collect statistics for your user-
defined data type, you must:

� Design the statistics information that is appropriate for your user-
defined data type.

� Define a C statistics-collection function to implement the statistics
collection.

� Collect the statistics for the column within this statistics-collection
function.

� Register this C function as a statcollect() user-defined function.

If a statcollect() function does not exist for your user-defined data type,
UPDATE STATISTICS does not collect statistics data for any column of that
type.

Designing the User-Defined Statistics

Before you begin to code a statcollect() function for a particular user-defined
data type, you need to decide what it means to collect statistics on this data
type. For example, consider the following issues:

� Do the values of the user-defined type have some ordering?

To be able to group the values into bins of related values, the data
must have some kind of implied sequence. A common use of statis-
tics information is within a selectivity function for a query filter such
as “less than” or “greater than”. If the values of the user-defined data
type do not have ordering, they would not logically be used in such
filters. For more info, see “Query Selectivity” on page 14-82.
15-68 IBM Informix DataBlade API Programmer’s Guide

Collecting Statistics Data
� How does the distribution handle SQL NULL values?

For example, the distribution can ignore NULL values or it could
aggregate them. However, the handling of the NULL values should
make sense to the user-defined data type.

Defining the Statistics-Collection Function

When you declare your statistics-collection function, it must have the
following C signature:

mi_statret *statcollect(udt_arg, num_rows, resolution,
fparam_ptr)

udt_type *udt_arg;
mi_double_precision *num_rows;
mi_double_precision *resolution;
MI_FPARAM *fparam_ptr;

Tip: The statistics-collection function can have any name. It does not have to be
named statcollect(). It is recommended that you include the name of your user-
defined data type in the name of the statistics-collection function to help distinguish
the function from the statistics-collection functions of other user-defined data type.

udt_arg is a pointer to the internal structure of the user-defined data
type. The database server uses this argument to resolve the
function and to pass in column values.

num_rows is a pointer to a floating-point value that indicates the number
of rows that the database server must scan to gather the statis-
tics.

resolution is a pointer to a floating-point value that is the resolution spec-
ified by the UPDATE STATISTICS statement. The resolution value
specifies the bucket size for the distribution. However, you
might choose to ignore this parameter if it does not make sense
for your user-defined data type.

fparam_ptr is a pointer to the MI_FPARAM structure that holds the iterator-
status constant for each iteration of the statcollect() function.
Extending Data Types 15-69

Collecting Statistics Data
Figure 15-35 shows a C declaration of the statistics-collection function for the
longlong opaque type.

BladeSmith automatically generates an OpaqueStatCollect() function (in
which Opaque is the name of your opaque data type) with the following
declaration:

mi_lvarchar *OpaqueStatCollect(Gen_pColValue,
Gen_Resolution, Gen_RowCount, Gen_fparam)

Opaque *Gen_pColValue;
mi_double_precision *Gen_Resolution;
mi_double_precision *Gen_RowCount;
MI_FPARAM *Gen_fparam;

If this declaration is not appropriate for your opaque type, you must
customize the OpaqueStatCollect() function. ♦

Collecting the Statistics

The statcollect() user-defined function is an iterator function; that is, the
database server calls statcollect() for each of the rows on whose column of a
user-defined data type UPDATE STATISTICS is collecting statistics. As with
other iterator functions, the database server uses an iterator-status constant
to indicate when the statistics-collection function is called.

Important: The database server passes the value of the iterator-status constant
within the MI_FPARAM structure. Therefore, your statistics-collection function
must declare an MI_FPARAM structure as its last parameter. Otherwise, it cannot
access the value of the iterator-status constant with the mi_fp_request() function.

Figure 15-35
Sample Declaration of a Statistics-Collection Function

mi_statret *statcollect_ll(ll_arg, num_rows, resolution, fparam_ptr)
longlong_t *ll_arg;
mi_double_precision *num_rows;
mi_double_precision *resolution;
MI_FPARAM *fparam_ptr;

DBDK
15-70 IBM Informix DataBlade API Programmer’s Guide

Collecting Statistics Data
The following table summarizes the values of the iterator-status constant for
the statcollect() function.

To obtain the iterator-status constant in each iteration, your statcollect()
function can use a switch statement on the return value of the
mi_fp_request() function, as follows:

switch (mi_fp_request(fparam_ptr))
{

case SET_INIT:
...

case SET_RETONE:
...

case SET_END:
...

}

If statcollect() raises an error, UPDATE STATISTICS terminates the statistics
collection for that column.

The following sections summarize the steps that statcollect() must take for
each of these iterator-status constants. For general information about iterator-
status constants, see Figure 14-1 on page 14-6.

When Is the statcollect()
Function Called? What Does statcollect() Need To Do?

Iterator-Status
Constant in
MI_FPARAM

The first time that
statcollect() is called

Perform any initialization operations,
such as allocating memory for a
statistics-collection structure and
initializing values

First argument (udt_arg) is a NULL
value.

SET_INIT

Once for each row for
which statistics are
being collected

Return one item of the active set

Read the column value from the first
argument (udt_arg) and place it in your
statistics-collection structure.

SET_RETONE

After all rows have
been processed

Release iteration resources

Put the statistics in the stat data type
and perform any memory deallocation

SET_END
Extending Data Types 15-71

Collecting Statistics Data
SET_INIT in statcollect()

When the iterator-status constant is SET_INIT, the database server has
invoked the initial call to statcollect(). Usually, in this initial call, your
statcollect() function allocates and initializes an internal C structure, called
a statistics-collection structure. The statistics-collection structure is a holding
area for the statistics data that statcollect() gathers on a row-by-row basis.

BladeSmith generates the OpaqueStatCollect() function (in which Opaque is
the name of your opaque data type), which allocates a statistics-collection
structure Opaque_stat_t (declared in a file with the .h extension). This
structure contains the following information.

BladeSmith generates statistics code under the assumption that the
minimum, maximum, and distribution of values are appropriate for your
opaque data type. The SET_INIT case in the OpaqueStatCollect() function
calls the Opaque_SetMaxValue() and Opaque_SetMaxValue() functions
(which you must implement) to initialize maximum and minimum values,
respectively. It initializes the current row count and the elements of the distri-
bution array to zero (0).

If this statistics data is not appropriate for your opaque type, take the
following actions:

� Define your own statistics-collection structure to hold statistics data.

� Allocate and initialize this statistics-collection structure within the
SET_INIT case of your statcollect() function. ♦

Element of Statistics-
Collection Structure Description Data Type

count Current number of
rows

mi_integer

max Maximum value mi_integer

min Minimum value mi_integer

distribution[] An array to hold the
“in-progress”
statistics data

An array of mi_integer values
whose size is the number of
elements that can fit into the text
distribution area (usually 256 bytes)

DBDK
15-72 IBM Informix DataBlade API Programmer’s Guide

Collecting Statistics Data
Your statcollect() function can use the MI_FPARAM structure to store this
statistics-collection structure (and any other state information) between itera-
tions of statcollect(). Allocate any memory used across multiple iterations of
statcollect() from the PER_COMMAND pool and free it as soon as possible.
Allocate any memory not used across multiple invocations of statcollect()
from the PER_ROUTINE memory pool.

Use the mi_fp_setfuncstate() function to save a pointer to the user-state
memory in the MI_FPARAM structure of your statcollect() function. For
more information, see “Saving a User State” on page 9-14.

SET_RETONE in statcollect()

For each row of a table, the statcollect() function collects the statistics data
for the column that has the user-defined data type. When the iterator-status
constant is SET_RETONE, the database server has invoked the statcollect()
function on a single row of the table on which statistics is being gathered. At
this point, statcollect() reads the column value from the first argument and
places it into the statistics-collection structure.

The statcollect() function processes the statistics on a row-by-row basis; that
is, for each iterator status of SET_RETONE, statcollect() merges the current
column value into the statistics data in the internal statistics-collection
structure. Therefore, the statcollect() function must perform the following
tasks:

� Obtain the address of the statistics-collection structure from the user
state of the MI_FPARAM structure with the mi_fp_funcstate()
function.

� Compare the current column value with the current maximum and
minimum values (if maximum and minimum are desired).

� Merge the current column value into the distribution data in the
statistics-collection structure.

� Handle a NULL column value as appropriate for your distribution.
Extending Data Types 15-73

Collecting Statistics Data
The SET_RETONE case in the OpaqueStatCollect() function (where Opaque is
the name of your opaque data type) that BladeSmith generates automatically
calls the Opaque_SetMinValue() and Opaque_SetMinValue() functions to
compare the current column value with the existing minimum and
maximum. It then calls the Opaque_Histogram() function to merge the
column value into the distribution array of the Opaque_stat_t statistics-
collection structure. However, you must provide this code within the
Opaque_SetMinValue() and Opaque_Histogram() functions to perform the
actual comparisons and distribution for your Opaque data type. ♦

SET_END in statcollect()

After all rows are processed, statcollect() must transfer the statistics data
from its statistics-collection structure into the predefined opaque type, stat. It
is stat data that the UPDATE STATISTICS statement stores in the encdat
column of the sysdistrib system catalog table.

The stat data type is a multirepresentational opaque data type; that is, it holds
statistics data within its internal structure until the data reaches a predefined
threshold. If the statistics data exceeds this threshold, the stat data type stores
the data in a smart large object. In support of the multirepresentational data,
the stat data type provides the following functions:

� An assign() support function, which is responsible for determining
whether or not the statistics data is to be stored in a smart large object

If the data exceeds the predefined threshold, this assign() function
creates the smart large object and increments its reference count. The
database server calls this assign() function just before it inserts the
mi_statret structure into the encdat column of the sysdistrib table.

� A destroy() support function, which is responsible for deleting any
smart large object that might exist to hold the statistics data

The database server calls this destroy() function just before it deletes
a row from the sysdistrib system catalog table in response to the
DROP DISTRIBUTION clause of the UPDATE STATISTICS statement.

For UPDATE STATISTICS to be able to store the distribution data in the encdat
column, the statcollect() function must copy its statistics-collection structure
into the stat data type.

DBDK
15-74 IBM Informix DataBlade API Programmer’s Guide

Collecting Statistics Data
The internal structure of the stat opaque type is a C language structure
named mi_statret. The stat support functions handle most of the interaction
with the mi_statret structure; however, your statcollect() function must fill
in the mi_statret multirepresentational fields.

For an exact declaration of mi_statret, see the milo.h header file. This header
file also provides the following useful declarations.

The assign() and destroy() support functions of the stat opaque type
determine whether to store the distribution data directly in the encdat
column or in a smart large object. In the latter case, the encdat column stores
the LO handle of the smart large object. Your statcollect() function can use
the MI_STATMAXLEN constant to determine whether it needs to handle
multirepresentational data.

The MI_STATMAXLEN constant is the maximum size that the encdat column
of sysdistrib can hold. Therefore, it is the maximum size of the
statdata.buffer array. If your distribution data has a size less than
MI_STATMAXLEN, you can take the following actions:

� Copy the data from the statistics-collection structure directly into the
statdata.buffer field.

� Set the statdata.szind field to MI_MULTIREP_SMALL to indicate that
the multirepresentational data is not stored in a smart large object
but is in the mi_statret structure.

The assign() and destroy() support functions of the stat opaque type take
care of determining whether to store the distribution data directly in the
encdat column or in a smart large object whose LO handle is stored in the
encdat column.

Declaration Purpose

mi_stat_buf #define for the statdata.buffer field

mi_stat_mr #define for the statdata.mr field

MI_STATMAXLEN Constant for the size of the statdata.buffer field

mi_stat_hdrsize Size of the information in the mi_statret structure that is not
holding the statistics data (size of all fields except the
statdata field)
Extending Data Types 15-75

Collecting Statistics Data
If your distribution data exceeds MI_STATMAXLEN, your statcollect()
function must handle the multirepresentational data itself, with the
following steps:

1. Create a new smart large object.

2. Copy the data from the statistics-collection structure into the new
smart large object.

3. Copy the LO handle of this smart large object into the
statdata.mr.mr_lo_struct.mr_s_lo field.

4. Set the statdata.szind field to MI_MULTIREP_LARGE to indicate that
the multirepresentational data is stored in a smart large object.

Registering the statcollect() Function

As with any user-defined function, you register the statistics-collection
function with the CREATE FUNCTION statement. The registration of this
function has the following requirements:

� You must name this user-defined function statcollect.

The database server handles routine resolution based on the data
type of the first argument to statcollect(). If the name of your C sta-
tistics-collection function is not statcollect(), specify the C function
name in the EXTERNAL NAME clause.

� You must declare the statcollect() function with HANDLESNULLS
routine modifier.

Your statistics-collection function can choose whether to include the
NULL value in the statistics data that it generates.

� The data types of the parameters must be as follows.

� Do not include the declaration of the MI_FPARAM structure in the
SQL registration.

� The function must return a value of type stat.

Parameter Number Parameter Data Type

1 SQL name for the user-defined data type

2 FLOAT

3 FLOAT
15-76 IBM Informix DataBlade API Programmer’s Guide

Collecting Statistics Data
The following CREATE FUNCTION statement registers the statistics-collection
function that Figure 15-35 on page 15-70 declares:

CREATE FUNCTION statcollect(ll_arg longlong, num_rows FLOAT,
resolution FLOAT)

RETURNING stat
WITH (HANDLESNULLS)
EXTERNAL NAME '/usr/udrs/bin/longlong.so(stat_collect_ll)'
LANGUAGE C;

After you register the statcollect() function, make sure those with the DBA
privilege or the table owner has the Execute privilege on the function.

Executing the UPDATE STATISTICS Statement

To collect user-defined statistics, run the UPDATE STATISTICS statement in
HIGH or MEDIUM mode. The syntax of UPDATE STATISTICS is the same for
user-defined data types as for built-in data types. However, when UPDATE
STATISTICS collects statistics for a user-defined type, it does not automatically
determine the minimum and maximum column values (stored in the colmin
and colmax columns of the syscolumns system catalog table). Your
statcollect() function can explicitly calculate these values if desired.

The statcollect() function executes once for every row that the database
server scans during UPDATE STATISTICS. Therefore, a database table must
contain more than one row before the database server calls any statcollect()
functions.

The number of rows that the database server scans depends on the mode and
the confidence level. Executing UPDATE STATISTICS in HIGH mode causes the
database server to scan all rows in the table. In MEDIUM mode the database
server chooses the number of rows to scan based on the confidence level. The
higher the confidence level, the higher the number of rows that the database
server scans. For general information about UPDATE STATISTICS, see the
IBM Informix Guide to SQL: Syntax.

For example, if the mytable table contains a column of type Box, the
following UPDATE STATISTICS statement collects user-defined statistics for all
columns of mytable, including any columns with user-defined statistics
defined:

UPDATE STATISTICS HIGH FOR TABLE mytable;
Extending Data Types 15-77

Using User-Defined Statistics
If the mytable column contains columns with any data types that require
user-defined statistics and you do not define this statistics collection, the
UPDATE STATISTICS statement does not collect statistics for the column.

Important: The statistics that the database server collects might require a smart large
object for storage. For the database server to use user-defined statistics, the configu-
ration parameter SYSSBSPACENAME must be set in the ONCONFIG file before the
database server is initialized. This configuration parameter must specify the name of
an existing sbspace. If SBSSPACENAME is not set, the database server might not be
able to collect the specified statistics.

Using User-Defined Statistics
The user-defined statistics information in sysdistrib system catalog table is
used in the following ways:

� The dbschema utility with its -hd option uses these statistics to
display statistics data for tables.

� The query optimizer uses statistics to obtain a best guess for queries
on the user-defined data type column.

Displaying Statistics Data

The dbschema utility with its -hd option displays statistics data for tables in
your database. It can automatically display statistics for all columns with
built-in data types (except TEXT and BYTE). It cannot automatically collect
statistics for columns with user-defined data types because it does not know
the structure of these data types.

For dbschema -hd to display statistics for a column with a user-defined data
type, you must write a user-defined function named statprint() that
generates text output of the statistics collected for your user-defined data
type. The dbschema -hd command obtains the user-defined statistics from
the encdat column of the sysdistrib system catalog table. The encdat column
stores the statistics data in the stat opaque type. Therefore, dbschema must
call the statprint() function for your user-defined data type to convert the
statistics data from the stat data type to an LVARCHAR value that can be
displayed.
15-78 IBM Informix DataBlade API Programmer’s Guide

Using User-Defined Statistics
To provide display statistics for your user-defined data type, you must:

� Define a C statistics-display function to implement the statistics
display.

� Convert the user-defined statistics for the column to text output
within statistics-display function.

� Register this C function as a statprint() user-defined function.

Defining a Statistics-Display Function

When you declare your statistics-display function, it must have the following
signature:

mi_lvarchar *statprint(udt_arg, stat_arg)
udt_type *udt_arg;
mi_statret *stat_arg;

BladeSmith automatically generates an OpaqueStatPrint() function (in
which Opaque is the name of your opaque data type) with the following
declaration:

mi_lvarchar *OpaqueStatCollect(Gen_dummy, Gen_bvin)
void *Gen_dummy;
mi_lvarchar *Gen_bvin;

If this declaration is not appropriate for your opaque type, you must
customize the OpaqueStatPrint() function. ♦

Creating the ASCII Histogram

The statprint() function converts the statistics data stored in the stat data
type to an LVARCHAR value that the database server can use to display infor-
mation. The stat data type is a multirepresentational data type that the
database server uses to store statistics data in the encdat column of the
sysdistrib system catalog table.

udt_arg is a pointer to a dummy argument. The database server uses this
argument to resolve the function and to pass in column values.

stat_arg is a pointer to the mi_statret structure that contains the statistics
information for the user-defined data type.

DBDK
Extending Data Types 15-79

Using User-Defined Statistics
Registering the statprint() Function

As with any user-defined function, you register the statistics-display
function with the CREATE FUNCTION statement. The registration of this
function has the following requirements:

� You must name this user-defined function statprint.

The database server handles routine resolution based on the data
type of the first argument to statprint(). If the name of your C statis-
tics-collection function is not statprint(), specify the C function
name in the EXTERNAL NAME clause.

� The data types of the parameters must be as follows.

� The function must return a value of type LVARCHAR.

The following CREATE FUNCTION statement registers a statistics-collection
function:

CREATE FUNCTION statprint(ll_arg longlong, num_rows stat)
RETURNING LVARCHAR
EXTERNAL NAME '/usr/udrs/bin/longlong.so(stat_print_ll)'
LANGUAGE C;

After you register the statprint() function, make sure those with the DBA
privilege and the table owner have the Execute privilege for the function.

Using User-Defined Statistics in a Query

For SQL statements that use user-defined data types, the optimizer can call
custom selectivity and cost functions. Selectivity and cost functions might
need to use statistics about the nature of the data in a column. When you
create the statcollect() function that collects statistics for a UDT, the database
server executes this function automatically when a user runs the UPDATE
STATISTICS statement with the MEDIUM or HIGH keyword.

Parameter Number Parameter Data Type

1 SQL name for the user-defined data type

2 stat
15-80 IBM Informix DataBlade API Programmer’s Guide

Using User-Defined Statistics
The statistics that the database server collects might require a smart large
object for storage. The configuration parameter SBSSPACENAME specifies an
sbspace for storing this information. If SBSSPACENAME is not set, the
database server might not be able to collect the specified statistics.

The query optimizer can use data distributions when it assesses the selec-
tivity of a query filter. The selectivity is the number of rows that the filter will
return. For queries that involve columns with built-in data types, the
database server uses data distributions to automatically determine selectivity
for the following kinds of filters:

� Relational-operator functions (lessthan(), ...)

� Boolean built-in operator functions: like(), matches()

Important: The query optimizer can only use data distributions if the UPDATE
STATISTICS statement has collected these distributions in the sysdistrib system
catalog table.

However, if the query involves columns with user-defined data types, you
must provide the following information for the query optimizer to be able to
determine the filter selectivity:

1. Write a user-defined function to implement the appropriate operator
function.

For user-defined types, these built-in operator functions do not auto-
matically exist. You must write versions of these functions that
handle your user-defined type.

2. Write a selectivity function for the operator function to provide the
optimizer with a selectivity value.

Selectivity and cost functions might need to use statistics about the
nature of the data in a column. If you want these selectivity functions
to use data distributions, take the following actions:

� Provide user-defined statistics so that the UPDATE STATISTICS
statement saves the data distributions in the sysdistrib system
catalog table.

� Access the sysdistrib table from within the selectivity function to
obtain the data distributions for the column.

For more information on how to write and register selectivity func-
tions, see “Writing Selectivity and Cost Functions” on page 14-81.
Extending Data Types 15-81

Optimizing Queries
Optimizing Queries
The WHERE clause of the SELECT statement controls the amount of infor-
mation that the query evaluates. This clause can consist of a comparison
condition, which evaluates to a BOOLEAN value. Therefore, a comparison
condition can contain a Boolean function; that is, it can contain a user-defined
function that returns a BOOLEAN value. Boolean functions can act as filters in
queries, as Figure 15-36 shows.

Figure 15-36
Boolean Functions Valid in a Comparison Condition

The Boolean functions in Figure 15-36 can act as filters in queries. To optimize
queries that use these functions as filters, you can define the following UDR-
optimization functions.

Tip: A WHERE clause can also consist of a condition with a subquery. However,
conditions with subqueries do not evaluate to a Boolean function. Therefore, they do
not require UDR-optimization functions. For more information on conditions with
subqueries, see your “Performance Guide” and the Condition segment of the
“IBM Informix Guide to SQL: Syntax.”

Comparison Condition Operator Symbol Associated User-Defined Function

Relational operator =, !=, <>

<, <=

>, >=

equal(), notequal(), notequal()

lessthan(), lessthanorequal()

greaterthan(), greaterthanorequal()

LIKE, MATCHES None like(), matches()

Boolean function None Name of a user-defined function that
returns a BOOLEAN value

Type of Optimization Description

Negator function Calculate the NOT condition of the Boolean
expression

Selectivity and cost functions Provide an estimate of the number of rows that the
filter will return
15-82 IBM Informix DataBlade API Programmer’s Guide

Query Plans
Query Plans
The optimizer uses the cost and selectivity information to help determine the
best query plan for a query. In particular, the optimizer uses this information
to obtain the following query and cost estimates:

� Number of rows to retrieve from a table

This estimated number of rows is based on the selectivity of each filter
within the WHERE clause of the query.

� Amount of resources that the query requires

The cost is an estimate of the total cost of resource usage for executing
the query filter.

The following kinds of user-defined functions are Boolean expressions:

� Built-in operator functions:

❑ relational-operator functions, such as lessthan()

❑ Boolean built-in operator functions, such as like() and
matches()

� End-user functions that return a BOOLEAN value

Because these user-defined functions are Boolean expressions, they can act as
filters in queries. You can optimize these Boolean-expression functions as
follows.

Both the cost and selectivity of a UDR can dramatically affect the performance
of a particular query plan. For example, in a join between tables, it is often
advantageous to have the tables with the most selective filters as the outer
tables to reduce the number of rows that flow through the intermediate parts
of the query plan.

Type of Optimization Description

Negator function Calculate the NOT condition of the Boolean expression

Selectivity and cost
functions

Provide an estimate of the number of rows that the filter
will return
Extending Data Types 15-83

Selectivity Functions
Selectivity Functions
The optimizer bases query-cost estimates on the number of rows to be
retrieved from each table. In turn, the estimated number of rows is based on
the selectivity of each conditional expression that is used within the WHERE
clause. A conditional expression that is used to select rows is termed a filter.

The optimizer can use data distributions to calculate selectivities for the
filters in a query. However, in the absence of data distributions, the database
server calculates selectivities for filters of different types based on table
indexes. The following table lists some of the selectivities that the optimizer
assigns to filters of different types.

Selectivities calculated using data distributions are even more accurate than
the ones that the preceding table shows, as follows:

� Your Performance Guide describes the filter expressions that can
appear in WHERE clauses with their selectivities when no data distri-
butions exist for a column (any-col). These selectivities are those that
the database server calculates by default.

� The UPDATE STATISTICS statement can generate statistics (data
distributions) for columns of built-in data types. However, it cannot
generate data distributions for columns of user-defined data types.

� Columns of user-defined types require implementation of user-
defined statistics for UPDATE STATISTICS to generate statistics (for
example, for it to store data distributions in sysdistrib).

Filter Expression Selectivity (F)

any-col IS NULL F = 1/10

any-col = any-expression F = 1/10

any-col > any-expression F = 1/3

any-col < any-expression F = 1/3

any-col MATCHES any-expression F = 1/5

any-col LIKE any-expression F = 1/5

...
15-84 IBM Informix DataBlade API Programmer’s Guide

Selectivity Functions
Query filters can include user-defined functions. You can improve selectivity
of filters that include user-defined functions with the following features:

� Functional indexes

You can create a functional index on the resulting values of a user-
defined function on one or more columns. The function can be a
built-in function or a user-defined function. When you create a func-
tional index, the database server computes the return values of the
function and stores them in the index. The database server can locate
the return value of the function in an appropriate index without exe-
cuting the function for each qualifying column.

� User-defined selectivity functions

You can write a user-defined selectivity function that calculates the
expected fraction of rows that qualify for a particular user-defined
function that acts as a filter.

� An end-user function

For queries that use an end-user function as a filter, you can improve
performance by writing a selectivity function for this end-user
function.

� An operator function

For queries that use relational operators (<,>, ...) as filters, you can
improve performance by writing a selectivity function for the associ-
ated operator function (lessthan(), greaterthan(), ...). For built-in
types, the relational-operator functions are built-in functions. They
have selectivity functions that can use data distributions, which the
UPDATE STATISTICS statement can automatically generate.

For user-defined types, relational-operator functions do not automati-
cally exist. You must write versions of these functions that handle
your user-defined type. In addition, you must write any selectivity
functions. If you want these selectivity functions to use data distribu-
tions, you must take the following actions:

❑ Provide user-defined statistics so that UPDATE STATISTICS saves
the data distributions in the sysdistrib system catalog table.

❑ Access the sysdistrib system catalog table from within the selec-
tivity function to obtain the data distributions for the column.
Extending Data Types 15-85

A
Appendix
Writing a Client LIBMI
Application
This appendix outlines the following implementation issues for
writing a client LIBMI application:

� How to manage memory with DataBlade API memory-
management functions

� How to access operating-system files

This appendix covers topics specific to the creation of a client
LIBMI application. This material does not necessarily apply to
the creation of C user-defined routines (UDRs). For information
specific to the creation of C UDRs, see Chapter 12, “Writing a
User-Defined Routine.” ♦

Server

Managing Memory in Client LIBMI Applications
Managing Memory in Client LIBMI Applications
When a DataBlade API module needs to perform dynamic memory
allocation, it must do so from user memory. The following table shows the
memory-management functions that the DataBlade API provides for
memory operations for user memory.

A client LIBMI application allocates user memory from the process of the
client LIBMI application. In a client LIBMI application, the DataBlade API
memory-management functions perform the same type of allocation as
operating-system memory functions such as malloc() and free(). Therefore,
use of the DataBlade API memory-management functions is optional in a
client LIBMI application. However, use of the DataBlade API memory-
management functions to ensure consistency and portability of code between
client and server DataBlade API modules is recommended.

Tip: To use these DataBlade API memory-management functions, be sure to include
the mi.h header file in the appropriate source files of your client LIBMI application.

Memory Duration Memory Operation Function Name

Not applicable Constructor mi_alloc(),
mi_dalloc(),
mi_realloc(),
mi_zalloc()

Destructor mi_free()
A-2 IBM Informix DataBlade API Programmer’s Guide

Allocating User Memory
Allocating User Memory
To handle dynamic memory allocation of user memory, use one of the
following DataBlade API memory-management functions.

In client LIBMI applications, mi_dalloc() works exactly like malloc(): storage
is allocated on the heap of the client process. However, this memory has no
memory duration associated with it; that is, the database server does not
automatically free this memory. Therefore, the client LIBMI application must
use mi_free to free explicitly all allocations that mi_dalloc() makes.

The mi_alloc() and mi_zalloc() functions return a pointer to the newly
allocated memory. Cast this pointer to match the structure of the user-defined
buffer or structure that you allocate. For example, the following call to
mi_dalloc() casts the pointer to the allocated memory as a pointer to a
structure named func_info and uses this pointer to access the count_fld of
the func_info structure:

#include mitypes.h
...
struct func_info *fi_ptr;
mi_integer count;
...
fi_ptr = (func_info *)mi_dalloc(sizeof(func_info),

PER_COMMAND);
fi_ptr->count_fld = 3;

The mi_realloc() function accepts a pointer to existing memory and a
parameter specifying the number of bytes reallocate to that memory. The
function returns a pointer to the reallocated memory. If the pointer to existing
memory is NULL, then mi_realloc() allocates new memory in the same way
as mi_alloc().

Memory-Allocation Task DataBlade API Function

To allocate user memory mi_alloc()

To allocate user memory with a specified memory
duration (memory duration is ignored)

mi_dalloc()

To allocate user memory that is filled with zeros mi_zalloc()

To change the size of existing memory or allocate
new user memory

mi_realloc(),
Writing a Client LIBMI Application A-3

Deallocating User Memory
The mi_switch_mem_duration() function has no effect when it is invoked in
a client LIBMI application. Client LIBMI applications ignore memory
duration.

Deallocating User Memory
The database server does not perform any automatic reclamation of user
memory in a client LIBMI application. Therefore, the client LIBMI application
must use mi_free to explicitly free all allocations that mi_alloc() makes.

User memory remains valid until whichever of the following events occurs
first:

� The mi_free() function frees the memory.

� The mi_close() function closes the current connection.

� The client LIBMI application ends.

To conserve resources, use the mi_free() function to explicitly deallocate the
user memory once your DataBlade API module no longer needs it. The
mi_free() function is the destructor function for user memory.

Important: Use mi_free() only for user memory that you have explicitly allocated
with mi_alloc(), mi_dalloc(), or mi_zalloc(). Do not use this function to free
structures that other DataBlade API functions allocate.

Keep the following restrictions in mind about memory deallocation:

� Do not free user memory that you allocate for the return value of a
UDR.

� Do not free memory until you are finished accessing the memory.

� Do not use mi_free() to deallocate memory that you have not
explicitly allocated.

� Do not use mi_free() for data type structures that other DataBlade
API constructor functions allocate.

� Do not attempt to free user memory after its memory duration
expires.

� Reuse memory whenever possible. Do not repeat calls to allocation
functions if you can reuse the memory for another task.
A-4 IBM Informix DataBlade API Programmer’s Guide

Accessing Operating-System Files in Client LIBMI Applications
Accessing Operating-System Files in Client LIBMI
Applications
In a client LIBMI application, the DataBlade API file-access functions perform
the same type of task as operating-system file-management functions such as
open() and close(). Figure 12-22 on page 12-83 shows the basic file opera-
tions with the DataBlade API file-access functions that perform them and the
analogous operating-system calls for these file operations.

Use of the DataBlade API file-access functions is optional in a client LIBMI
application. However, use of the DataBlade API file-access functions to
ensure consistency and portability of code between client and server
DataBlade API modules is recommended.

Tip: To use these DataBlade API file-access functions, be sure to include the mi.h
header file in the appropriate source files of your client LIBMI application.

For DataBlade API modules that you design to run in both client LIBMI appli-
cations and UDRs, use the DataBlade API file-access functions. The behavior
of these functions in client LIBMI applications is basically the same as in C
UDRs. For a description of these files, see “Access to Operating-System Files”
on page 12-83.

The main difference in behavior of the DataBlade API file-access functions is
that the mi_open() function opens files on the client computer, not the server
computer. The filename that you specify to mi_open() is relative to the client
computer.
Writing a Client LIBMI Application A-5

Handling Transactions
Handling Transactions
For databases that use logging, a client LIBMI application specifies the start
and end of each transaction. For these databases, an SQL statement is always
part of a transaction. The type of transaction that the SQL statement is part of
is based on the type of database and whether it uses transaction logging, as
Figure 11-1 on page 11-12 shows.
A-6 IBM Informix DataBlade API Programmer’s Guide

B
Appendix
Notices
IBM may not offer the products, services, or features discussed
in this document in all countries. Consult your local IBM repre-
sentative for information on the products and services currently
available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and
verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equiv-
alent agreement between us.
B-2 IBM Informix DataBlade API Programmer’s Guide

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for
the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs. © Copyright IBM Corp. (enter the
year or years). All rights reserved.

If you are viewing this information softcopy, the photographs and color illus-
trations may not appear.
Notices B-3

Trademarks
Trademarks
AIX; DB2; DB2 Universal Database; Distributed Relational Database
Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix;
C-ISAM; Foundation.2000TM; IBM Informix 4GL; IBM Informix

DataBlade Module; Client SDKTM; CloudscapeTM; CloudsyncTM;
IBM Informix Connect; IBM Informix Driver for JDBC; Dynamic
ConnectTM; IBM Informix Dynamic Scalable ArchitectureTM (DSA);
IBM Informix Dynamic ServerTM; IBM Informix Enterprise Gateway
Manager (Enterprise Gateway Manager); IBM Informix Extended Parallel
ServerTM; i.Financial ServicesTM; J/FoundationTM; MaxConnectTM; Object
TranslatorTM; Red Brick Decision ServerTM; IBM Informix SE;
IBM Informix SQL; InformiXMLTM; RedBack; SystemBuilderTM; U2TM;
UniData; UniVerse; wintegrate are trademarks or registered trademarks
of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Windows, Windows NT, and Excel are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.
B-4 IBM Informix DataBlade API Programmer’s Guide

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
A
accept() system call 12-33
Account name. See User account.
Aggregate algorithm 14-25
Aggregate function

built-in 14-19
creating 14-18
overloaded 14-19
user-defined 14-25
See also Built-in aggregate

function; User-defined
aggregate.

Aggregate state
allocating a new 14-52
deallocating 14-52
definition of 14-25, 14-26
determining 14-26
nonsimple 14-43, 14-46
opaque-type 14-48
simple 14-43, 14-44
single-valued 14-47
See also User-defined aggregate.

Aggregate support function
definition of 14-25, 14-28
determining required 14-39
summary of 14-28
writing 14-28

AIO VP. See Asynchronous I/O
virtual-processor (AIO VP)
class.

alarm() system call 12-43
ALIGNMENT opaque-type

modifier 15-10
Alignment. See Type alignment.
All-events callback 10-40, 10-85
Allocation extent size 6-61

ALTER FUNCTION
statement 11-57

ALTER PROCEDURE
statement 11-57

ALTER ROUTINE statement 11-57
ALTER TABLE statement 6-88,

8-56
Ampersand (&) symbol 3-33
ANSI compliance

icon Intro-10
level Intro-14

ANSI SQL standards
ANSI-compliant database 8-37
date and/or time-string

format 4-22
interval-string format 4-22
runtime-error values 10-37
SQLSTATE class values 10-36
warning values 10-37

Arithmetic operations
date and/or time values 4-25
decimal values 3-25
fixed-point values 2-20
INT8 values 3-13
See also Nonarithmetic operations.

assign() support function
description of 15-62, 15-63
incrementing the reference

count 6-74, 6-98
Asterisk (*) symbol, as formatting

character 3-33
Asynchronous I/O virtual-

processor (AIO VP) class 12-26,
12-30, 12-31, 12-34

Availability 12-28

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
B
BEGIN WORK statement 6-22,

11-12, 11-13, 13-24
Binary operator 14-45, 14-62
Binary representation

Boolean data 2-47, 8-16
character data 2-15, 2-18, 8-15
collection 5-5, 8-16, 8-85
column values in 8-72, 8-79, 8-80,

8-83
date and/or time data 4-12, 4-13,

4-22, 8-15
date data 4-5, 4-7, 8-15
decimal data 3-16, 3-18, 3-23, 8-15
definition of 8-14
distinct data type 8-16
fixed-length opaque type 8-16
fixed-point data 3-16
floating-point data 3-28, 8-16
input parameters 8-46
INT8 (mi_int8) 3-10, 3-11, 3-12,

8-15
integer data 3-5, 8-15
INTEGER (mi_integer) 3-8, 8-15
interval data 4-14, 4-22, 8-15
LO handle 6-8, 6-103, 8-16, 8-77
mi_exec() results 8-17
mi_exec_prepared_statement()

results 8-50
mi_open_prepared_statement()

results 8-50
monetary data 3-17, 3-18, 3-23,

8-15
opaque type 15-5, 15-19, 15-26,

15-27, 15-34, 15-37, 15-48, 15-59
row type 5-44, 8-16
SMALLINT (mi_smallint) 3-6,

8-15
varying-length opaque type 8-16

bind() system call 12-33
BITVARYING data type 1-16, 2-43

corresponding DataBlade API
data type 2-22

.bld file extension 11-19
BLOB data type

column-level storage
characteristics 6-57

corresponding DataBlade API
data type 1-17, 2-43

definition of 2-45, 6-24
deleting 6-95, 6-97
format of 6-24, 8-16
inserting 6-27, 6-74, 6-97
obtaining column value for 8-71
reference count of 6-97
selecting 6-26, 6-81, 8-77
updating 6-27, 6-74, 6-87
See also Smart-large-object data

type.
Blocking I/O call 12-29, 12-33,

12-50
Boldface type Intro-8
Boolean data

binary representation 2-47, 8-16
in opaque type 15-61
support for 2-47
text representation 2-47, 8-16

BOOLEAN data type 1-17
corresponding DataBlade API

data type 2-48
format of 2-47, 8-16
obtaining column value for 8-71
returned from a user-defined

function 14-91
valid values 2-47
See also mi_boolean data type.

Boolean function
definition of 14-80, 14-82
selectivity of 14-82
uses for 14-80, 14-82

Boolean string 2-47
BOOLEAN value, passing

mechanism for 2-52
Buffered I/O 6-18, 6-65
Built-in aggregate function 14-19
Built-in data type 2-4, 8-71
Bulk copy 15-36
bycmpr() function 2-45
bycopy() function 2-45
byfill() function 2-45
byleng() function 2-45
Byte data

byte order 2-46
copying 2-46
data conversion of 2-46
data types for 2-43

ESQL/C functions for 1-29, 2-45
in opaque type 15-35, 15-60
manipulating 2-45
operations on 2-45
portability of 2-46
processing 2-45
receiving from client 2-46
sending to client 2-46
transferring between

computers 2-46
type alignment 2-46

BYTE data type 2-49
See also Simple large object.

Byte order
byte data 2-46
converting 15-34
LO handle 6-104
mi_date values 4-6
mi_datetime values 4-21
mi_decimal values 3-22, 3-31
mi_double_precision values 3-31
mi_int8 values 3-12
mi_integer values 3-9
mi_interval values 4-21
mi_money values 3-22
mi_real values 3-31
mi_smallint values 3-7
on client computer 7-7

Byte-range lock. See Smart-large-
object lock, byte-range.

C
C compiler 11-19, 11-37, 11-41
C data type

char 1-14, 1-17, 2-12
character conversion 2-19
DECIMAL conversions 3-24
double 1-15, 2-19, 3-30, 3-33
float 1-15, 3-30
INT8 conversions 3-12
signed eight-byte integer 1-15,

3-9
signed four-byte integer 1-15,

2-19, 3-7
signed one-byte integer 1-15, 3-5
signed two-byte integer 1-15,

2-19, 3-6
2 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
unsigned eight-byte integer 1-15,
3-9

unsigned four-byte integer 1-15,
3-7

unsigned one-byte integer 1-15,
3-5

unsigned two-byte integer 1-15,
3-6

void * 1-16, 2-49, 2-50
C function. See User-defined

routine (UDR).
C UDR. See User-defined routine

(UDR).
Callback function

all-events 10-40, 10-85
arguments 10-25
client LIBMI 10-9, 10-85
clntexcpt_callback() 10-56
continuing exception handling

after 10-48
creating 10-20
definition of 10-5, 10-6, 10-20
deleting 10-12
disabling 7-16, 10-13
enabling 7-16, 10-13
end-of-session 10-9
end-of-statement 10-9
end-of-transaction 10-9
endxact_callback() 10-81
exception 10-9, 10-40, 10-43, 10-46
excpt_callback2() 10-54
excpt_callback3() 10-60
excpt_callback() 10-47
handle 10-12
initializing 10-25
invoking 10-6
memory management in 10-79
MI_PROC_CALLBACK

modifier 10-23
obtaining event information

in 10-27
parameters 10-24
pointer to 10-11
providing all exception

handling 10-46
providing arguments to 10-25
registering 10-6, 10-7, 10-26, 10-80
restrictions on content 10-26
retrieving 10-13

return value 10-21
returning information 10-51
sample 10-10, 10-81
sample declaration 10-20
state-change 10-9, 10-77
state-transition 10-9, 10-77
system-default 10-19
types of 10-9
unregistering 7-31, 10-12
user data in 10-8, 10-24, 10-51
where registration is stored 7-7
writing 10-26

Callback handle 10-12, 10-13
Callback-function pointer 10-11,

10-13
calloc() system call 12-35, 13-6
Cast

explicit 9-31, 9-32, 14-4, 15-17,
15-66

implicit 9-31, 9-32, 14-4, 15-16,
15-66

opaque-type support function
as 15-15

registering 14-4
system-defined 9-31, 9-32
types of 14-4
ways to call 9-31

Cast function
creating 14-4
definition of 11-6, 14-4
executing with Fastpath 9-40
looking up with Fastpath 9-30
opaque-type support functions

as 15-15
char (C) data type

corresponding DataBlade API
data type 1-14, 1-17, 2-12

mi_date conversion 4-8
mi_datetime conversion 4-23
mi_decimal conversion 3-24
mi_int8 conversion 3-12, 3-13
mi_interval conversion 4-24
See also Character data; mi_char

data type; mi_char1 data type;
mi_string data type.

CHAR data type
as return value 12-20
as routine argument 12-9

corresponding DataBlade API
data type 1-14, 1-16, 2-12, 2-13,
12-9

DataBlade API functions for 2-17,
2-18

ESQL/C functions for 2-19, 2-20
functions for 2-16
obtaining column value for 8-71
operations 2-20
precision of 2-20
See also Character data; mi_char

data type; mi_lvarchar data
type; mi_string data type.

CHAR value, passing mechanism
for 2-52

Character data
binary representation 2-15, 2-18,

8-15
converting from varying-length

structure 2-18
converting to varying-length

structure 2-18
copying 2-17
data conversion of 2-17, 2-18
data types for 2-12
date value. See Date string.
date/time value. See Date/time

string.
decimal value. See Decimal string.
in opaque type 2-18, 15-27, 15-36,

15-61
interval value. See Interval string.
length of 12-73, 12-74
monetary value. See Monetary

string.
multibyte 1-30, 2-13, 2-16
obtaining type information 2-20
operations 2-20
portability of 2-17
processing 1-29, 1-30, 2-16
receiving from client 2-17
routine argument as 12-9
routine return-value as 12-20
sending to client 2-17
text representation 2-18, 8-15
transferring 2-17
type alignment 2-17, 15-11
varying-length 2-12
Index 3

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
See also char (C) data type;
mi_char data type; mi_char1
data type; mi_lvarchar data
type; mi_string data type.

circle sample opaque type
export function 15-44
exportbin function 15-53
external representation 15-4
import function 15-40
importbin function 15-50
input function 15-21
internal representation 15-5
output function 15-23
receive function 15-29
registering 15-7
send function 15-32
support functions 15-7

CLASS routine modifier 11-27,
11-38, 12-55, 12-57, 12-60

Client application
as calling module 10-18, 10-42
converting date and/or time

data 4-22
converting date data 4-7
converting fixed-point data 3-23
converting LO handles 6-104
converting mi_lvarchar

values 2-18
end-user formats 3-4, 3-15, 3-16,

3-27, 4-4, 4-12
session thread 12-27
transferring byte data 2-46
transferring character data 2-17
transferring date data 4-6
transferring date/time data 4-21
transferring fixed-point data 3-22
transferring floating-point

data 3-31
transferring integer data 3-7, 3-9,

3-12
transferring LO handle 6-105
See also Client LIBMI application.

Client connection 7-5, 7-6, 7-25,
7-32

See also Connection.
Client LIBMI application

aborting statement in 10-19
callback return value 10-23
client LIBMI errors 10-84

column values in 8-76
connection descriptor in

registration 10-11
description of 1-6
event handling in 10-5, 10-19
exception handling in 10-19,

10-49
file management A-5
handling events. See Event

handling; Exception handling.
heap space 7-16, A-3
mi_dalloc() and A-3
passing mechanism 2-54
session management in 7-5, 7-32
state-transition event 10-19,

10-76, 10-84
transaction management

in 10-76, A-6
user-memory management A-2
using Fastpath 9-24
See also Client application;

DataBlade API module.
Client LIBMI callback 10-9, 10-85
Client LIBMI error, description

of 10-84
Client LIBMI event, error

levels 10-84
Client locale 10-68, 12-93, 15-36
Client session. See Session.
CLIENT_LOCALE environment

variable 10-74, 12-93
CLOB data type

column-level storage
characteristics 6-57

corresponding DataBlade API
data type 1-17, 2-12

definition of 2-16, 6-24
deleting 6-95, 6-97
format of 6-24, 8-16
inserting 6-27, 6-74, 6-97
obtaining column value for 8-71
reference count of 6-97
selecting 6-26, 6-81, 8-77
updating 6-27, 6-74, 6-87
See also Smart large-object data

type.
CLOSE DATABASE

statement 11-11
close() system call 6-36, 12-84

Code-set conversion
functions for 1-33
opaque data types 15-36

Collection
accessing elements of 5-11
binary representation 5-5, 8-16,

8-85
cardinality of 5-24
checking type identifier for 2-4
closing 5-25
collection subquery 5-10, 8-84
creating 5-7
data structures for 5-5
deleting element from 5-23
description of 5-4
element 5-4
element type of 2-6
fetching element from 5-16
inserting element into 5-14
kinds of 5-5
MI_DATUM element 2-56, 5-14,

5-20, 5-22
obtaining column value for 8-84
open mode 5-8
opening 5-8
parallelizable UDR and 14-96
releasing resources 5-25
text representation 5-4, 8-16, 8-84
updating 5-22

Collection cursor
characteristics of 5-10
closing 5-25
cursor position 5-8, 5-11
default 5-9
definition of 5-8
deleting element from 5-23
freeing 5-25
inserting element into 5-14
open mode 5-8
opening 5-8
retrieving element from 5-16
scope of 5-25
updating element in 5-22
where stored 5-6
See also Collection descriptor;

Cursor.
Collection descriptor

constructor for 5-6, 5-8, 13-35
description of 1-20, 5-6
4 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
destructor for 5-6, 5-25, 13-35
freeing 5-25
memory duration of 5-6, 13-35

Collection string 5-4
Collection structure

constructor for 5-6, 5-7, 13-35
corresponding SQL data

type 1-16
description of 1-20, 5-6
destructor for 5-6, 5-26
format of 8-16
freeing 5-25, 5-26
in opaque type 15-61
memory duration of 5-6, 13-35
scope of 5-25

Collection subquery 5-10, 8-84
Column

accessor functions 5-46, 14-96
constraint. See Constraints.
data distribution of 14-90
distribution information 14-86,

14-88
functions for 5-46, 8-68
handling NULL value 5-52
identifier for. See Column

identifier; Column number.
name of 5-46, 8-68, 10-34
NOT NULL constraint 5-46, 5-47,

8-24, 8-25
NULL value in 2-57
number of 5-46
obtaining information about 8-66
precision of 2-21, 3-26, 3-32, 4-26,

4-28, 5-46, 5-47
scale of 2-21, 3-26, 3-32, 4-26, 4-28,

5-46, 5-47
type descriptor for 2-9
type descriptor of 5-46, 5-47
type identifier of 5-46, 5-47
value of. See Column value.

Column identifier
column number and 5-47
definition of 5-47
for column information 5-47
for column value 8-68
obtaining 5-46

Column number 5-47, 14-86, 14-88,
14-90

Column type descriptor 2-9

Column value
binary representation of 8-72,

8-79, 8-80, 8-83
collection 8-83
MI_DATUM data type 2-56, 8-69,

8-70, 8-72, 8-79, 8-80, 8-82
normal 8-71
obtaining 8-68, 11-17
providing 5-52
row type 8-79
SQL NULL value 8-79
text representation of 8-72, 8-79,

8-80, 8-83
value buffer for 8-70

COMBINE aggregate support
function 14-28, 14-33, 14-44,
14-55

Comma (,) symbol 3-4, 3-14, 3-15,
3-27, 3-34

Command. See SQL command.
Comment icons Intro-9
COMMIT WORK statement 6-22,

11-12, 11-13, 13-24
Commutator function 9-39, 14-92
COMMUTATOR routine

modifier 9-40, 14-93
Companion UDR

argument data type 14-87
argument length 14-87
argument type 14-87
column number 14-90
column-argument

information 14-90
constant argument value 14-88,

14-89
constant-argument

information 14-89
data-distribution

information 14-90
determining if argument is

NULL 14-88, 14-89
information about 14-85
routine identifier 14-86, 14-87
routine name 14-86, 14-87
table identifier 14-90

Complex data type 2-4, 5-3
Compliance

icons Intro-10
with industry standards Intro-14

Concurrency 12-30, 13-45
Configuration parameter

as part of server
environment 12-93

MSGPATH 11-43
obtaining value of 12-93
SINGLE_CPU_CP 12-55
STACKSIZE 13-58
SYSSBSPACENAME 15-78
VPCLASS 12-55

Connection
account password 7-26
client 7-5, 7-25, 7-32
closing 7-31
connection parameters for 7-8
current 10-63
database name 7-12, 7-14, 7-26,

11-11, 12-92
database parameters for 7-12
database server name 7-9, 7-10,

12-92
default 7-25
definition of 7-4
descriptor for. See Connection

descriptor.
establishing 7-5, 7-20
initializing 7-5, 7-8
obtaining connection

information 12-92
parent 10-62
raising exceptions on 10-62
server port 7-9, 7-10, 12-92
session context 7-5, 7-6, 7-31,

11-10
UDR 7-6, 7-21, 11-10
user data associated with 7-7,

7-28, 7-31
user-account name 7-12, 7-14,

7-26, 12-92
user-account password 7-12,

7-14, 12-92
See also Session management.

Connection descriptor
caching 7-22, 9-45, 10-45
constructor for 7-20, 7-21, 7-25,

13-21
definition of 7-25
description of 1-20, 7-6
Index 5

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
destructor for 7-21, 7-25, 7-31,
13-21

for a client LIBMI
application 7-25

for a UDR 7-21
freeing 7-31
information in 7-7
invalid 10-33
memory duration of 7-21, 7-25,

7-31, 13-21, 13-26
NULL-valued 6-106, 7-22, 10-10,

10-62
obtaining 7-21, 7-23
raising an exception 10-62
registering a callback 10-9
user data in 7-7, 7-28, 7-31
See also Session-duration

connection descriptor.
Connection parameter

current 7-12
default 7-10
obtaining 7-11, 7-12, 12-92
setting 7-11
system-default 7-10
user-defined 7-11
using 7-8

Connection-information descriptor
description of 7-8
fields of 7-9
mi_server_connect() usage 7-27
populating 7-11, 7-12
purpose 1-20
setting 7-11

Constant
access-method 6-65
access-mode 6-65
argument-type 14-87
buffering-mode 6-65
cursor-action 8-40
date, time, or date and time

qualifier 4-16, 4-27
file-mode 6-101
for smart large objects 6-63, 6-65
iterator-status 14-6, 15-71
lock-mode 6-65
NULL 2-57
open-mode 6-65
statement-status 8-55

Constraint
checking 11-11
NOT NULL 5-46, 5-47, 8-24, 8-25
restrictions in UDR 11-11

Constructor
collection descriptor 5-6, 5-8,

13-35
collection structure 5-6, 5-7, 13-35
connection descriptor 7-20, 7-21,

7-25, 13-21
current memory duration 13-35
definition of 1-23
error descriptor 10-28, 13-35
file descriptor 12-84, 12-85, 13-26
function descriptor 9-26, 13-14
LO file descriptor 6-32
LO handle 6-31, 13-26, 13-35
LO-specification structure 6-30,

6-45, 13-35
LO-status structure 6-33, 6-91,

13-35
memory allocation in 13-31
MI_FPARAM 9-3, 9-54, 13-14
MI_LO_LIST 13-35
named memory 13-41
PER_COMMAND

duration 13-14
PER_ROUTINE duration 13-11
PER_SESSION duration 13-26
PER_STMT_EXEC

duration 13-21
PER_STMT_PREP duration 13-22
PER_SYSTEM duration 13-27
PER_TRANSACTION

duration 13-25
routine argument 13-11
routine return value 13-11
row descriptor 5-45, 5-50, 13-35
row structure 5-49, 5-50, 13-35
save-set structure 8-95, 8-96,

13-21
session-duration connection

descriptor 7-23, 13-26
session-duration function

descriptor 9-49, 13-26
statement descriptor 8-13, 8-22,

8-23
stream descriptor 12-68, 13-36
user memory 13-33, 13-36, A-2

varying-length structure 2-23,
13-36

Contact information Intro-14
Control mode

binary representation 8-14
determining 8-17
for basic SQL statement 8-17
for prepared statement 8-50
text representation 8-14
types of 8-14

Conventions,
documentation Intro-8

Copy file 15-36
Cost function

argument functions for 14-85
argument information 14-85
definition of 11-6, 14-84

COSTFUNC routine
modifier 11-26, 14-84

CPU virtual-processor (CPU VP)
class

adding VPs 12-58
availability of 12-28
blocking 12-31
concurrency of 12-30
definition of 12-26, 12-27
dropping VPs 12-58
monitoring 12-58, 12-59
parallelizable UDR and 14-97
PDQ and 14-94
thread yielding 12-30
using 11-18, 11-38, 12-28, 12-60
yielding 12-31
See also Virtual-processor (VP)

class.
CPU VP. See CPU virtual-processor

(CPU VP) class.
CREATE AGGREGATE

statement 14-31, 14-36
CREATE CAST statement 8-56,

14-4, 15-17, 15-39, 15-46, 15-51,
15-55, 15-66

CREATE DISTINCT TYPE
statement 8-56

CREATE FUNCTION statement
commutator functions 9-40, 14-93
EXTERNAL NAME clause 11-21,

11-24
handling multiple rows 14-7
6 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
handling NULL values 9-8, 9-37
iterator functions 14-9, 14-15
LANGUAGE clause 11-25
negator functions 9-39, 14-91
OUT parameter 12-24
parallelizable functions 9-16
registering aggregate support

functions 14-36
RETURNS clause 11-27
routine arguments 11-27
routine modifiers. See Routine

modifier.
routine return value 11-27
specifying VP class 12-55, 12-57
stack size 13-59
use 11-23, 15-65
variant functions 8-4, 9-38
WITH clause 11-26
with Fastpath interface 9-24
See also CREATE PROCEDURE

statement; Routine modifier.
CREATE OPAQUE TYPE statement

ALIGNMENT modifier 15-10
INTERNALLENGTH

modifier 15-6, 15-8
MAXLEN modifier 15-10
opaque-type modifiers. See

Opaque-type modifier.
PASSEDBYVALUE

modifier 2-52, 15-12
use 15-6, 15-65

CREATE PROCEDURE statement
EXTERNAL NAME clause 11-21,

11-24
handling NULL values 9-8, 9-37
LANGUAGE clause 11-25
routine arguments 11-27
routine modifiers. See Routine

modifier.
routine return value 11-27
specifying VP class 12-55, 12-57
stack size 13-59
use 11-23
variant procedures 9-38
WITH clause 11-26
with Fastpath interface 9-24
See also CREATE FUNCTION

statement; Routine modifier.

CREATE TABLE statement 5-44,
6-57, 6-59, 11-11

Currency symbol 3-15
Current processing locale 10-68
Current statement

control mode of 8-17
current row 8-69
cursor for 8-14, 8-66, 8-69
data structures for row 7-7, 8-64
DDL statement as 8-55, 8-56
definition of 8-13, 8-54
determining if completed 8-90
DML statement as 8-55, 8-57
error in 8-55, 8-56, 8-91
finishing execution of 8-90, 8-92
freeing 7-31
generating 8-13, 8-28
implicit statement descriptor

for 8-13, 8-91
interrupting 8-92, 8-93
name of SQL statement 8-13, 8-56,

8-58, 8-62
no more results 8-55, 8-61
number of rows affected by 8-58,

8-62
parallelizable UDR and 14-95
processing complete 8-61
query 8-55, 8-61
releasing resources for 8-91, 8-93
results of 8-58
row descriptor for 8-13, 8-65, 8-91
row structure for 8-91
status of 8-13, 8-18, 8-28, 8-54,

8-55
Cursor

characteristics of 8-9, 8-35
closing 5-25, 8-51, 8-91, 13-13,

13-17, 13-24
collection. See Collection cursor.
definition of 8-8
explicit. See Explicit cursor.
fetch absolute 8-40
fetch first 8-40
fetch last 8-40
fetch next 8-40
fetch previous 8-40
fetch relative 8-40
fetching rows into 8-38
freeing 7-31

hold 8-38, 13-24, 13-25
implicit. See Implicit cursor.
iterator function with 14-16
lifespan of 8-9, 8-38
memory duration for 13-17, 13-23
mode of 8-9, 8-36
name 8-21, 8-34
opening 13-17
read-only 5-10, 8-9, 8-36, 8-37,

8-38, 8-39
retrieving row from 8-66
routine invocation and 11-10
row 8-8
scope of 11-10
scroll 5-9, 8-36, 8-37, 8-38
sequential 5-10, 8-9, 8-36, 8-37,

8-38
session and 11-10
SQL statements for 13-13, 13-17,

13-19
transaction and 8-38, 11-12
types of 8-9, 8-36
update 5-9, 8-21, 8-34, 8-36, 8-37,

8-38, 8-39
where stored 7-7, 8-14
with hold. See Cursor, hold.

Cursor function 14-5
Cursor mode 8-9, 8-36

D
Data alignment. See Type

alignment.
Data and/or time data

binary representation 4-22
obtaining type information 4-26

Data conversion
byte order 2-46, 3-7, 3-9, 3-12,

3-22, 3-31, 4-6, 4-21, 6-104
ESQL/C library functions

for 1-29
functions for 2-18, 3-12, 3-23, 4-7,

4-22, 6-103
LO handles 6-103
mi_char values 2-18
mi_date to mi_datetime 4-24
mi_date values 4-7
mi_datetime extension 4-18
Index 7

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
mi_datetime to mi_date 4-24
mi_datetime values 4-22
mi_decimal values 3-23
mi_int8 values 3-12
mi_interval extension 4-18, 4-19
mi_interval values 4-22
mi_money values 3-23
mi_string values 2-18
portability and 11-7
type alignment 2-17, 2-46, 3-7,

3-9, 3-12, 3-22, 3-31, 4-6, 4-21,
6-104

Data integrity 6-13
Data pointer. See Varying-length

structure, data pointer.
Data portion. See Varying-length

structure, data portion.
Data type descriptor 2-9
Data type. See DataBlade API data

type; SQL data type.
Database

determining if ANSI
compliant 12-92

dropping 11-57
obtaining name of 7-12, 7-14,

12-92
opening in exclusive mode 12-92
options 12-92
restrictions in UDR 11-11
smart large objects in 6-24
specifying for connection 7-12,

7-14, 7-26
using transactions 12-92

Database locale 7-9, 7-10, 11-53,
12-93

Database parameter
current 7-15
default 7-13
obtaining 7-15, 12-92
setting 7-14
system-default 7-13
user-defined 7-14
using 7-12

Database server
connecting to. See Connection.
default 7-9
environment of. See Server

environment.
initializing 12-93

instance of. See Database server
instance.

obtaining name of 7-9, 7-10, 12-92
port name 7-10, 12-92
remote 11-11
shared memory of 13-31
specifying 7-9
virtual-processor classes 12-26
See also DATABASE statement.

Database server exception
callback for 10-40
description of 10-32
exception levels 10-34
handling 10-32
in callbacks 10-26
memory duration and 13-38
raising 10-61
runtime errors 10-33
status variables for 10-35
tracing 11-48
warnings 10-33
See also Runtime error; Exception

handling; MI_Exception event;
Warning.

Database server instance
definition of 12-93, 13-27
memory duration for 13-27
server environment. See Server

environment.
Database server session. See

Session.
DATABASE statement 12-92
Database utility

dbexport 15-36
dbimport 15-36
dbschema 15-78

Database-information descriptor
description of 1-21, 7-12
fields of 7-12
populating 7-15
setting 7-14

DataBlade API
advanced features 1-31
client-side 1-6
data types 1-13
definition of 1-3
description of 1-7
for client LIBMI applications 1-6
for UDRs 1-4

functions 1-24
header files 1-7, 1-8
IBM Informix GLS functions 1-12
initializing 7-29, 10-33
library errors 10-42
portability of 1-4, 5-20, 5-52, 8-72
server-side 1-4
types of programs 1-3
uses of 1-3

DataBlade API data structure
current memory duration 13-35
list of 1-20
MI_COLLECTION 1-20, 5-6
MI_COLL_DESC 1-20, 5-6
MI_CONNECTION 1-20, 7-6
MI_CONNECTION_INFO 1-20,

7-8
MI_DATABASE_INFO 1-21, 7-12
MI_ERROR_DESC 1-21, 10-28
MI_FPARAM 1-21, 9-3
MI_FUNCARG 1-21, 14-85
MI_FUNC_DESC 1-21, 9-26
MI_LO_FD 1-21
MI_LO_HANDLE 1-21, 2-12
MI_LO_SPEC 1-21, 6-29
MI_LO_STAT 1-21, 6-29, 6-33
MI_PARAMETER_INFO 1-22,

7-16
MI_ROW 1-22, 5-49
MI_ROW_DESC 1-22, 5-45, 8-65
MI_SAVE_SET 1-22, 8-95
MI_STATEMENT 1-22, 8-22
mi_statret 1-22
MI_STREAM 1-22, 12-68
mi_stream 12-80
MI_TRANSITION_DESC 1-23,

10-30
MI_TYPEID 1-23, 2-4
MI_TYPE_DESC 1-23, 2-6
PER_COMMAND memory

duration 13-14
PER_ROUTINE memory

duration 13-11
PER_SESSION memory

duration 13-26
PER_STMT_EXEC memory

duration 13-21
PER_SYSTEM memory

duration 13-27
8 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
PER_TRANSACTION memory
duration 13-22, 13-25

stream-operations 12-76
See also DataBlade API data type;

Structure.
DataBlade API data type

alignment of 2-6
byte data types 2-43
C data type correspondence 1-13
character data types 2-12
data structures 1-20
eight-byte integer 3-9
fixed-point 3-16
floating-point 3-26
four-byte integer 3-7
generic 2-50
header file for 2-3
integer 3-5
length of 2-6
list of 1-13
locale-specific 1-12, 1-30, 1-31,

1-32, 2-13, 12-10, 12-20
maximum length of 2-6
mi_bitvarying 1-16, 2-22, 2-43
mi_boolean 1-17, 2-47
mi_char 1-14, 2-12
mi_char1 1-14, 2-12
MI_COLLECTION 1-16, 5-5
mi_date 1-16, 4-3, 4-5
mi_datetime 1-16, 4-3, 4-12, 4-13
MI_DATUM 1-21, 2-50
mi_decimal 1-15, 3-16, 3-28
mi_double_precision 1-15, 3-28,

3-30
mi_impexp 1-16, 2-22, 15-15,

15-38
mi_impexpbin 1-16, 2-22, 15-15,

15-48
mi_int1 1-15, 3-5
mi_int8 1-15, 3-5, 3-9
mi_integer 1-15, 3-5, 3-7, 15-5
mi_interval 1-16, 4-3, 4-12, 4-14
mi_lvarchar 1-14, 1-16, 2-12, 2-22
mi_money 1-15, 3-16, 3-17
mi_numeric 1-15, 3-16
mi_pointer 1-17, 2-48, 14-50
mi_real 1-15, 3-28, 3-29, 15-5
MI_ROW 1-16, 5-44, 5-49

mi_sendrecv 1-16, 2-22, 15-15,
15-28

mi_sint1 1-15, 3-5
mi_smallint 1-15, 3-5, 3-6
mi_string 1-14, 2-12
mi_unsigned_char1 1-14, 2-12,

3-5
mi_unsigned_int8 1-15, 3-5, 3-9
mi_unsigned_integer 1-15, 3-5,

3-7, 15-11
mi_unsigned_smallint 1-15, 3-5,

3-6, 15-11
mi_wchar 1-14
name of 2-6
NULL-valued pointer 2-58
obtaining information about 2-4
one-byte integer 3-5
owner of 2-6
passing by reference. See Pass-by-

reference passing mechanism.
passing by value. See Pass-by-

value passing mechanism.
passing mechanism. See Passing

mechanism.
portability of 1-17, 2-12, 3-6, 3-8,

3-30, 11-7
precision of 2-6, 2-21, 3-26, 3-32,

4-26, 4-28
public 1-13
qualifier of 2-6, 4-27
scale of 2-6
smart-large-object 1-17, 6-29
SQL data type

correspondence 1-13
support 1-19
transferring between

computers 2-17, 2-46, 3-12,
3-22, 3-31, 4-6, 4-21, 6-104,
15-26, 15-34, 15-59

two-byte integer 3-6
type descriptor. See Type

descriptor.
type identifier. See Type identifier.
See also DataBlade API data

structure.
See also SQL data type; DataBlade

API data structure.
DataBlade API function library

byte functions 2-46

callback-function functions 10-6,
10-12

categories of functions 1-24
character-transfer functions 2-17
code-set-conversion

functions 1-33
collection functions 14-96
column-information

functions 5-46, 14-96
column-value functions 8-68
connection functions 7-20
connection-parameter

functions 7-9
connection-user-data

functions 7-29
database-parameter

functions 7-13
data-conversion functions 2-18,

3-23, 4-7, 4-22, 6-104
date- and/or time-conversion

functions 4-22
date-conversion functions 4-7
decimal-conversion

functions 3-23
error-descriptor functions 10-29,

10-30, 10-59
exception handling for 10-32,

10-42, 10-49
executable-statement

functions 8-12
Fastpath-interface functions 9-24
file-access functions 12-31, 12-33,

12-49, 12-50, 12-83, 14-96, A-5
freeing memory 13-38
function-descriptor

functions 9-35
indicating default values 2-58
indicating errors 1-29, 2-58, 10-33,

10-42
initialization functions 7-30
input-parameter functions 8-24,

14-95
LO-handle functions 6-37
LO-specification functions 6-39,

6-60, 6-63, 6-67
memory duration and 13-38
memory management for 13-31
Index 9

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
memory-management
functions 12-36, 13-32, 13-34,
13-40, 13-41, 13-42, A-2, A-3

MI_FPARAM accessor
functions 9-5, 9-10, 9-14, 9-18

MI_FPARAM allocation
functions 9-53

MI_FUNCARG accessor
functions 14-85, 14-87, 14-88

non-PDQ-threadsafe
functions 14-95

NULL-value functions 2-58
prepared-statement

functions 8-18, 8-29, 8-33
result-information functions 8-58
return values 10-42, 10-49
row-structure functions 5-49
save-set functions 8-95, 14-96
serial functions 8-94
session-parameter functions 7-17
smart-large-object creation

functions 6-35, 6-69
smart-large-object file-conversion

functions 6-42
smart-large-object I/O

functions 6-72, 6-83, 6-84
smart-large-object status

functions 6-41, 6-93
state-change function 10-31
statement-execution

functions 8-4, 8-5, 13-15
statement-information

functions 8-13, 8-23
stream I/O functions 12-69, 12-70
stream-transfer functions 15-59
string-conversion functions 2-18
thread-management

functions 12-44
thread-yielding functions 12-31
tracing functions 11-49, 11-53,

11-54
type-descriptor accessor

functions 2-6, 14-96
type-identifier accessor

functions 2-4
type-transfer functions 2-17, 2-46,

3-7, 3-9, 3-12, 3-22, 3-31, 4-6,
4-21, 6-104, 14-95, 15-34

VP-environment functions 12-61

See also ESQL/C function library;
Informix GLS library; and
individual function names.

DataBlade API module
calling UDRs within 9-20
definition of 1-3
event handling 10-5
including minmmem.h 1-10
including mi.h 1-9, 1-10, 11-19
internationalization of 1-32
See also Client LIBMI application;

User-defined routine (UDR).
DataBlade API support data type

list of 1-19
MI_CALLBACK_STATUS 1-19,

10-21
MI_CURSOR_ACTION 1-19,

5-11, 8-40
MI_EVENT_TYPE 1-19, 10-3
MI_FUNCARG 1-19, 14-87
mi_funcid 1-19, 11-31
MI_ID 1-19
MI_MEMORY_DURATION 1-9,

13-10, 13-23
MI_SETREQUEST 1-20, 14-6
MI_TRANSITION_TYPE 1-20,

10-31
MI_UDR_TYPE 1-20

DataBlade module
creating 9-24
definition of 11-4
extending 9-24
UDRs with 9-22, 11-3

DataBlade UDR. See User-defined
routine (UDR).

Date and/or time data
arithmetic operations on 4-25
binary representation 4-12, 4-13,

8-15
byte order 4-21
data conversion of 4-20, 4-21
in opaque type 4-21, 4-22, 15-26,

15-35, 15-60
macros for 4-16, 4-27
support for 4-10
text representation 4-11, 4-22,

8-15
transferring 4-21
type alignment 4-21

Date and/or time string
converting from

mi_datetime 4-22, 4-23
converting to mi_datetime 4-22,

4-23
data conversion of 4-22
definition of 4-12
end-user format 4-12
format of 4-11

Date data
binary representation 4-5, 4-7,

8-15
byte order 4-6
data conversion of 4-6, 4-7
end-user format for 4-4
in opaque type 4-6, 4-7, 15-26,

15-35, 15-60
operations on 4-9
support for 4-4
text representation 4-4, 4-7, 8-15
transferring 4-6
type alignment 4-6
See also DATE data type.

DATE data type
corresponding DataBlade API

data type 1-16, 4-3, 4-5
data conversion of 4-7
DataBlade API functions for 4-6,

4-7
ESQL/C functions for 1-29, 4-8,

4-9
format of 4-5, 8-15
functions for 4-5, 4-6, 4-7
GLS library functions for 1-30
operations on 4-9
See also mi_date data type.

date data type (ESQL/C). See
mi_date data type.

Date string
converting from mi_date 4-7, 4-8
converting to mi_date 4-7, 4-8
data conversion of 4-7
definition of 4-4
format of 4-4

DATE value, passing mechanism
for 2-51

Date-formatting string 4-8
10 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
DATETIME data type
ANSI SQL standards format 4-20,

4-22, 4-23
arithmetic operations on 4-25
corresponding DataBlade API

data type 1-16, 4-3, 4-12
data conversion of 4-18, 4-20, 4-22
DataBlade API functions for 4-22
ESQL/C functions for 1-30, 4-23
extending 4-18
format of 4-13, 8-15
functions for 4-14, 4-21, 4-22
GLS library functions for 1-30
inserting 4-18, 4-20
macros 4-16
precision of 4-28
qualifiers 2-6, 4-13, 4-16, 4-27
role of datetime.h 1-11
scale of 4-28
selecting 4-18, 4-20
See also mi_datetime data type.

datetime data type (ESQL/C). See
mi_datetime data type.

datetime.h header file 1-8, 1-11,
4-16

Date/time data
data conversion of 4-22
See also DATETIME data type;

INTERVAL data type.
Date/time string

ANSI SQL standards format 4-22
converting from

mi_datetime 4-23
converting to mi_datetime 4-23

Datum 2-50
See also MI_DATUM data type.

DB-Access utility Intro-5
DBDATE environment

variable 4-4, 4-8, 4-9
dbexport utility 15-36
dbimport utility 15-36
DBMONEY environment

variable 3-15, 3-34
dbschema utility 15-78
DBTIME environment

variable 4-23, 4-25
DB_LOCALE environment

variable 7-9, 7-10, 10-74, 12-93

Debugger
hints for 11-43
running session of 11-43
setting breakpoints 11-43
starting 11-40
using 11-40

decadd() function 3-25
deccmp() function 3-25
deccopy() function 3-25
deccvasc() function 3-24
deccvdbl() function 3-24
deccvint() function 3-24
deccvlong() function 3-24
decdiv() function 3-25
dececvt() function 3-24
decfvct() function 3-24
Decimal data

arithmetic operations on 3-25
binary representation 3-16, 3-18,

3-23, 8-15
end-user format for 3-15
in opaque type 3-22, 3-23, 15-26,

15-35, 15-61
text representation 3-14, 3-23,

3-27, 8-15
DECIMAL data type

arithmetic operations on 3-25
corresponding DataBlade API

data type 1-15, 3-16, 3-28
data conversion of 3-23
DataBlade API functions for 3-22,

3-23, 3-31
declaring variables for 3-28
ESQL/C functions for 1-29, 3-21,

3-24
format of 3-17, 3-18, 8-15
formatting 3-33
functions for 3-21, 3-22, 3-23, 3-31
getting column value for 8-71
GLS library functions for 1-30
macros 3-21
precision of 3-16, 3-26, 3-28, 3-32
role of decimal.h 1-11, 3-18
scale of 3-16, 3-26
See also mi_decimal data type;

Precision; Scale.
decimal data type (ESQL/C). See

mi_decimal data type.
Decimal separator 3-14, 3-15, 3-27

Decimal string
converting from mi_decimal 3-23
converting to mi_decimal 3-23
creating formatted 3-33
data conversion of 3-23
definition of 3-15
format of 3-14

decimal.h header file 1-8, 1-11, 3-18
DECLEN decimal macro 3-21
decmul() function 3-25
DECPREC decimal macro 3-21
decround() function 3-25
decsub() function 3-25
dectoasc() function 3-24
dectodbl() function 3-24
dectoint() function 3-24
dectolong() function 3-24
dectrunc() function 3-25
dec_t structure 3-18, 8-15
Default connection 7-25
Default locale Intro-4
DELETE statement

calling a UDR 11-13, 11-29, 11-38
obtaining results of 8-60
opaque types 15-64
sending to database server 8-57
smart large object and 6-95
WHERE CURRENT OF

clause 8-21, 8-34, 13-13
Dependencies, software Intro-4
destroy() support function

decrementing the reference
count 6-98

deleting a smart large object 6-95
description of 15-62, 15-64

Destructor
collection descriptor 5-6, 5-25,

13-35
collection structure 5-6, 5-26
connection descriptor 7-21, 7-25,

7-31, 13-21
current memory duration 13-35
definition of 1-23
error descriptor 10-28, 13-35
file descriptor 12-84, 13-26
function descriptor 9-26, 9-57,

13-14
LO file descriptor 6-32
LO handle 6-31, 13-26, 13-35
Index 11

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
LO-specification structure 6-30,
6-75, 13-35

LO-status structure 6-33, 6-95,
13-35

MI_FPARAM 9-3, 9-56, 13-14
named memory 13-41, 13-52
PER_COMMAND

duration 13-14
PER_ROUTINE duration 13-11
PER_SESSION duration 13-26
PER_STMT_EXEC

duration 13-21
routine argument 13-11
routine return value 13-11
row descriptor 5-45, 5-58, 13-35
row structure 5-49, 5-57, 13-35
save-set structure 8-95, 8-101,

13-21
session-duration connection

descriptor 7-23, 13-26
session-duration function

descriptor 9-49, 13-26
statement descriptor 8-13, 8-22,

8-52, 8-92
stream descriptor 12-68, 12-83,

13-36
user memory 13-33, 13-36, 13-39,

A-2, A-4
varying-length structure 2-23,

2-26, 13-36
Directory. See Working directory.
Distinct data type

binary representation 8-16
checking type identifier for 2-4
obtaining column value for 8-71
obtaining source type 2-7
text representation 8-16

dlclose() system call 12-43
dlerror() system call 12-43
DLL (dynamic link library) 11-20,

12-42
See also Shared-object file.

.dll file extension 11-20
dlopen() system call 12-43
dlsym() system call 12-43
Documentation notes Intro-12,

Intro-13
Documentation, types of

documentation notes Intro-12,
Intro-13

machine notes Intro-12
related reading Intro-13
release notes Intro-12, Intro-13

Dollar sign ($) 3-15, 3-34
double (C) data type

character conversion 3-33
corresponding DataBlade API

data type 1-15, 3-30
mi_decimal conversion 3-24
mi_int8 conversion 3-12, 3-13
See also mi_double_precision data

type.
DOUBLE PRECISION data type.

See FLOAT data type.
DPRINTF tracing function 11-49
DROP DATABASE

statement 11-57, 11-58, 12-67
DROP FUNCTION

statement 11-57, 11-58, 12-67
DROP PROCEDURE

statement 11-57, 11-58, 12-67
DROP ROUTINE statement 11-57,

11-58, 12-67
DROP TABLE statement 8-56,

15-64
.dsw file extension 11-19
dtaddinv() function 4-25
dtcurrent() function 4-25
dtcvasc() function 4-23, 4-24
dtcvfmtasc() function 4-23
dtextend() function 4-18, 4-23, 4-24
dtime_t structure 4-13, 4-16, 4-18
dtime_t typedef 8-15
dtsubinv() function 4-25
dtsub() function 4-25
dttoasc() function 4-23, 4-24
dttofmtasc() function 4-23
Dynamic link library. See DLL

(dynamic link library).

E
End-of-session callback 10-9, 10-10,

10-12, 10-30, 10-78, 13-25
PER_SESSION memory

and 10-79

See also
MI_EVENT_END_SESSION
event type.

End-of-statement callback 10-9,
10-10, 10-12, 10-26, 10-30, 10-78,
10-80

PER_STMT_EXEC memory
and 10-79, 13-20

See also MI_EVENT_END_STMT
event type.

End-of-transaction callback 10-9,
10-10, 10-12, 10-26, 10-30, 10-78,
10-80, 10-81, 13-24

PER_TRANSACTION memory
and 10-79

See also MI_EVENT_END_XACT
event type.

End-user format
date 4-4
date and/or time 4-12
monetary 3-16
numeric 3-4, 3-15, 3-27

End-user routine 1-4, 11-6, 14-3
Environment variable

as part of server
environment 12-93

CLIENT_LOCALE 12-93
DBDATE 4-4, 4-8, 4-9
DBMONEY 3-15, 3-34
DBTIME 4-23, 4-25
DB_LOCALE 7-9, 7-10, 12-93
GL_DATE 4-4, 4-8, 4-9, 4-12
in file pathname 6-102, 12-85
in UDR pathname 11-25
INFORMIXDIR 11-19
INFORMIXSERVER 7-9, 7-10,

7-25
obtaining value of 12-93
SERVER_LOCALE 7-9, 7-10,

12-93
typographic convention Intro-8

en_us.8859-1 locale Intro-4
errno system variable 12-72
Error

client LIBMI 10-84
See also Exception; Runtime error.

Error descriptor
accessing 10-29
constructor for 10-28, 13-35
12 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
copying 10-30
description of 1-21, 10-28
destructor for 10-28, 13-35
error level 10-29
exception level 10-29
functions for 10-29, 10-30, 10-59
information in 10-29
memory duration of 10-28, 13-35
message text 10-29
SQLCODE status value 10-29
SQLSTATE status value 10-29
types of errors 10-28
types of events 10-28

Error handling (client) 10-19, 10-84
See also Event handling; Warning.

Error level 10-84
Error message,

internationalizing 10-74
ESQL/C function library

byte functions 1-29, 2-45
categories of functions 1-29
character-type functions 1-29,

2-19, 2-20
data-conversion functions 2-19,

3-24, 4-8, 4-23
date- and/or time-conversion

functions 4-23
date- and/or time-operation

functions 4-25
date-conversion functions 4-8
date-operation functions 4-9
DATETIME-type functions 1-30,

4-17, 4-23, 4-25
DATE-type functions 1-29, 4-8,

4-9
decimal-conversion

functions 3-24
decimal-operation functions 3-25
DECIMAL-type functions 1-29,

3-21, 3-24, 3-25
INT8-conversion functions 3-12
INT8-type functions 1-30, 3-11
INTERVAL-type functions 1-30,

4-24, 4-25
MONEY-type functions. See

ESQL/C function library,
DECIMAL-type functions.

numeric-formatting
functions 3-33

string-conversion functions 2-19
See also DataBlade API function

library; Informix GLS library;
and individual function
names.

ESQL/C header files 1-11
Event

catching 10-5
client LIBMI error 10-84
database server exception 10-32
definition of 10-3
handling of. See Event handling.
information about 10-27
state-transition event 10-75
structures for 10-27
throwing 10-5
types of. See Event type.
See also Client LIBMI error;

Database server exception;
State-transition event.

Event handling
default behavior 10-18
description of 10-5
in C UDRs 10-5, 10-18, 11-18
in client LIBMI applications 10-5,

10-19
invoking a callback 10-6
See also Error handling (client);

Exception handling.
Event type

groups of 10-5
list of 10-4
MI_All_Events deprecated 10-4
MI_Client_Library_Error 10-4,

10-84
MI_EVENT_COMMIT_ABORT 1

0-4, 10-5, 10-9, 10-10, 10-12,
10-28, 10-30, 10-76, 10-78, 10-80

MI_EVENT_END_SESSION 10-4
, 10-10, 10-12, 10-28, 10-30,
10-76, 10-78

MI_EVENT_END_STMT 10-4,
10-10, 10-12, 10-28, 10-30,
10-76, 10-78, 10-80

MI_EVENT_END_XACT 10-4,
10-10, 10-12, 10-28, 10-30,
10-76, 10-78, 10-80

MI_EVENT_POST_XACT 10-4,
10-5, 10-9, 10-10, 10-12, 10-28,
10-30, 10-76, 10-78

MI_EVENT_SAVEPOINT 10-4,
10-5, 10-9, 10-10, 10-12, 10-28,
10-30, 10-76, 10-78, 10-80

MI_Exception 10-4, 10-33
MI_Xact_State_Change 10-4

EVP. See User-defined virtual
processor.

Exception callback 10-9, 10-40,
10-43, 10-46

Exception handling
continuing with 10-48
determining how exception is

processed 10-46
handling in a callback 10-46
in C UDRs 10-18, 10-41
in client LIBMI

applications 10-19, 10-49
in DataBlade API functions 10-32,

10-42, 10-49
multiple 10-59
NOT FOUND condition 8-61,

10-38, 10-40
providing 10-40
raising an exception 10-61
returning error information 10-51
runtime errors 10-38, 10-39
status variables for 10-35
user-defined error

structure 10-51
using 10-32
warning conditions 10-38, 10-39
with SQLCODE 10-38
with SQLSTATE 10-35
See also Event handling; NOT

FOUND condition; Runtime
errors; Warning.

Exception level 10-34
See also MI_EXCEPTION

exception level;
MI_MESSAGE exception
level.

Exception message
adding 10-74
custom 10-66, 10-68
internationalized 1-33
literal 10-65
Index 13

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
parameters in 10-71
specifying 10-65

Exception. See Database server
exception; Error; Warning.

EXECUTE FUNCTION statement
associated with a cursor 8-6
calling a UDR 11-13, 11-29, 11-38
obtaining results of 8-60
sending to database server 8-57,

8-61, 9-20
See also Cursor; Query; User-

defined function.
EXECUTE PROCEDURE

statement 8-57, 11-13, 11-29,
11-38

See also User-defined procedure.
exec() system call 12-43, 12-65
exit() system call 12-43
EXP VP. See User-defined virtual

processor.
Expensive UDR

argument data type 14-86, 14-87
argument length 14-86
argument type 14-86
column number 14-86, 14-88
constant value 14-86
cost 14-83
definition of 14-81
determining if argument is

NULL 14-86
distribution information 14-86,

14-88
table identifier 14-86, 14-88

Explicit cast 9-31, 9-32, 14-4, 15-17,
15-66

Explicit cursor
characteristics of 8-9, 8-35
closing 8-52
defining 8-34, 8-35
fetching rows into 8-38
freeing 7-31, 8-52
opening 8-33
where stored 7-7
See also Cursor; Implicit cursor.

Explicit transaction 11-12, 13-24
Export support function

as cast function 15-17
description of 15-37, 15-43
internationalizing 15-38

Exportbin support function
as cast function 15-17
description of 15-48, 15-53

Extension VP. See User-defined
virtual processor.

External function. See User-defined
function.

External procedure. See User-
defined procedure.

External routine 1-4
See also User-defined routine

(UDR).
External-library routines

avoidance of 12-44
unsafe use of 12-44

F
Failure. See Error; Runtime error.
Fastpath interface

checking for commutator
function 9-39

checking for negator
function 9-39

checking for NULL
arguments 9-41

checking for variant function 9-38
determining if UDR handles

NULLs 9-36
executing cast functions 9-40
executing UDRs 9-40
functions of 9-24
looking up cast functions 9-30
looking up UDRs 9-27
look-up functions 9-26, 9-27, 9-31,

9-45, 9-48, 9-53
obtaining a function

descriptor 9-26
obtaining MI_FPARAM 9-35
obtaining routine identifier 9-36
releasing resources 9-57
user-allocated MI_FPARAM 9-53
uses of 9-22, 11-29
using 9-22

fcntl.h header file 12-86
Feature icons Intro-9
Features of this product,

new Intro-6

File
copy 15-36
makefile 11-19
message log. See Message log file.
online.log. See Message log file.
operating-system A-5

See also Operating-system file.
shared-object. See Shared-object

file.
trace-output 11-54

File descriptor
constructor for 12-84, 12-85, 13-26
description of 12-84
destructor for 12-84, 13-26
freeing 12-88
memory duration of 12-84, 12-88,

13-26
See also LO file descriptor;

Operating-system file.
File extension

.bld 11-19

.c 11-19

.dll 11-20

.dsw 11-19

.mak 11-19

.o 11-19, 11-21

.so 11-20

.trc 11-54
File management

file-access functions 12-83
filenames 12-85
in C UDRs 9-38, 12-33, 12-83
parallelizable UDR and 14-96
sharing files 12-88
smart large objects and 6-42,

6-101
See also Operating-system file.

File seek position
obtaining 12-72, 12-83
setting 12-71, 12-72, 12-83

File stream
closing 12-72
data length 12-72
description of 12-71
getting seek position of 12-72
opening 12-71
reading from 12-71
setting seek position of 12-71,

12-72
14 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
stream I/O functions for 12-71
writing to 12-72

FINAL aggregate support
function 14-28, 14-34, 14-41,
14-45

finderr utility Intro-13
fixchar data type (ESQL/C). See

mi_string data type.
Fixed-length data. See DECIMAL

data type; MONEY data type.
Fixed-length opaque data type

as routine argument 12-13
as routine return value 12-21
binary representation 8-16
defining 15-6
passing mechanism 15-12
registering 15-6
text representation 8-16
See also Opaque data type;

Varying-length opaque data
type.

Fixed-point data
binary representation 3-16
byte order 3-22
data conversion of 3-22, 3-23
decimal data 3-16
formatting 3-33
in opaque type 3-22, 15-35, 15-61
macros for 3-21
monetary data 3-17
obtaining type information 3-26
portability of 3-22
support for 3-14
text representation 3-14
transferring 3-22
type alignment 3-22

float (C) data type
corresponding DataBlade API

data type 1-15, 3-30
mi_int8 conversion 3-12, 3-13
See also mi_real data type.

FLOAT data type
corresponding DataBlade API

data type 1-15, 3-28
DataBlade API functions for 3-31
declaring variables for 3-30
format of 8-16
functions for 3-31
obtaining column value for 8-71

See also mi_double_precision data
type.

Floating-point data
binary representation 3-28, 8-16
byte order 3-31
data conversion of 3-31, 3-32
formatting 3-33
in opaque type 3-31, 15-35, 15-61
obtaining type information 3-32
portability of 3-31
support for 3-26
text representation 3-27, 8-16
transferring 3-31
type alignment 3-31
See also DECIMAL data type;

FLOAT data type;
SMALLFLOAT data type.

fopen() system call 12-33
fork() system call 12-43, 12-65
Formatting string 3-33, 4-8
free() system call 12-35, 12-37
Function descriptor

accessor functions 9-35
caching 9-45
constructor for 9-26, 13-14
description of 1-21, 9-26
destructor for 9-26, 9-57, 13-14
determining commutator

function 9-39
determining negator

function 9-39
determining variant

function 9-38
executing a UDR 9-40
for cast function 9-32
for UDR 9-27
freeing 7-31, 9-57
memory duration of 9-26, 9-45,

9-48, 9-57, 13-14, 13-26
MI_FPARAM structure 9-28,

9-32, 9-35
obtaining 9-26
obtaining information in 9-35
releasing resources for 9-57
reusing 9-45
routine identifier 9-36
routine NULL arguments 9-36
routine sequence and 9-26, 9-28,

9-32

session-duration. See Session-
duration function descriptor.

where stored 7-7, 9-26
Function identifier. See Routine

identifier.
Function return value. See Routine

return value.
Function syntax, conventions

for Intro-11
Function-parameter structure. See

MI_FPARAM structure.

G
getmsg() system call 12-33
Global Language Support

(GLS) Intro-4
character data types for routine

arguments 12-10
character data types for

variables 2-13, 12-20
code-set conversion for opaque

types 15-27
custom messages 10-68, 10-74
session environment and 12-92
wide-character support 1-14
See also Code-set conversion;

Locale.
Global variable 9-15, 12-38, 12-51,

12-53
GLS. See Global Language Support.
GL_DATE environment

variable 4-4, 4-8, 4-9, 4-12
GL_DPRINTF tracing

function 1-33, 11-49
gl_tprintf() tracing function 1-33,

11-52
GRANT statement 8-56, 11-26,

15-65

H
HANDLESNULLS routine

modifier 9-8, 9-37, 11-27, 11-38,
12-12

statcollect() function 15-76
Header file

advanced 1-10
Index 15

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
datetime.h 1-11, 4-16
decimal.h 1-11, 3-18
ESQL/C 1-11, 11-19
fcntl.h 12-86
int8.h 1-11, 3-10
list of 1-8
location of 1-10
memdur.h 1-9, 13-10
miconv.h 1-9
milib.h 1-8
milo.h 1-8, 6-28
minmdur.h 1-10, 13-23
minmmem.h 1-10, 7-23, 13-23,

13-41
minmprot.h 1-10, 7-23, 13-41
mistream.h 1-8, 12-72, 12-77,

12-80, 12-81
mistrmtype.h 1-9, 12-70
mistrmutil.h 1-9, 15-61
mitrace.h 1-9, 1-24, 11-46
mitypes.h 11-7
mi.h 1-8, A-2
mytypes.h 1-8
private 1-12
sqlca.h 1-11
sqlda.h 1-11
sqlhdr.h 1-11
sqlstype.h 1-11
sqltypes.h 1-11
sqlxtype.h 1-11
stddef.h 2-58
varchar.h 1-11
See also individual header

filenames.
Heap space 7-16, 12-35, 13-4, 13-6,

A-3
Help Intro-11
Hyphen, as formatting

character 3-34

I
IBM Informix GLS library 1-12,

1-30
Icons

compliance Intro-10
feature Intro-9
Important Intro-9

platform Intro-9
product Intro-9
Tip Intro-9
Warning Intro-9

ifx_dececvt() function 12-46
ifx_decfcvt() function 12-46
ifx_int8add() function 3-13
ifx_int8cmp() function 3-13
ifx_int8copy() function 3-13
ifx_int8cvasc() function 3-12
ifx_int8cvdbl() function 3-12
ifx_int8cvdec() function 3-12
ifx_int8cvflt() function 3-12
ifx_int8cvint() function 3-12
ifx_int8cvlong() function 3-13
ifx_int8div() function 3-13
ifx_int8mul() function 3-13
ifx_int8sub() function 3-13
ifx_int8toasc() function 3-13
ifx_int8todbl() function 3-13
ifx_int8todec() function 3-13
ifx_int8toflt() function 3-13
ifx_int8toint() function 3-13
ifx_int8tolong() function 3-13
ifx_int8_t structure 3-11, 8-15
ifx_replace_module() SQL

function 11-59
ifx_unload_module() SQL

procedure 11-58
Ill-behaved routine 11-27, 12-27,

12-29
See also Well-behaved routine.

image sample opaque type
export function 15-45, 15-54
import function 15-41
importbin function 15-51
input function 15-21
internal representation 15-8
output function 15-24
receive function 15-30
registering 15-9
send function 15-33
support functions 15-9

IMPEXP data type
casting from 15-16
casting from opaque type 15-17
corresponding DataBlade API

data type 1-16
description of 2-22, 15-15

See also mi_impexp data type.
IMPEXPBIN data type

casting from 15-16
casting from opaque type 15-17
corresponding DataBlade API

data type 1-16
description of 2-22, 15-15
See also mi_impexpbin data type.

Implicit cast 9-31, 9-32, 14-4, 15-16,
15-66

Implicit cursor
characteristics of 8-9
closing 8-52, 8-91
description of 8-14
freeing 7-31, 8-52
opening 8-29
processing results of 8-91
where stored 7-7
See also Cursor; Explicit cursor.

Implicit transaction 11-13
Import support function

as cast function 15-16
description of 15-37, 15-39
internationalizing 15-38

Important paragraphs, icon
for Intro-9

Importbin support function
description of 15-48, 15-49

Importbinary support function
as cast function 15-16

incvasc() function 4-24
incvfmtasc() function 4-24
Industry standards, compliance

with Intro-14
informix user account 11-21, 11-26
INFORMIXDIR environment

variable 11-19
INFORMIXDIR/bin

directory Intro-5
Informix-ESQL/C. See ESQL/C.
INFORMIXSERVER environment

variable 7-9, 7-10, 7-25
INIT aggregate support

function 14-28, 14-41, 14-43,
14-44, 14-53

Input parameter
accessor functions 8-24
assigning value to 8-20, 8-44,

11-16
16 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
control mode 8-46
data type of value 8-50
description of 8-7
handling NULL value 8-49
length of value 8-49
MI_DATUM value 2-56, 8-46
NOT NULL constraint 5-47, 8-24,

8-25
number of 8-24
obtaining information for 8-24
parameter identifier 8-25
precision of 2-21, 3-26, 3-32, 4-26,

4-28, 8-24, 8-25
restrictions on use 8-20
scale of 2-21, 3-26, 3-32, 4-26, 4-28,

8-24, 8-25
specifying in SQL statement 8-20
type identifier of 8-24, 8-25
type name of 8-24, 8-25
value of 8-46

Input support function
as cast function 15-16
conversion functions in 15-26
description of 15-19, 15-20
external format in 2-16
handling character data 2-18,

15-27
handling date and/or time

data 4-22, 15-26
handling date data 4-7, 15-26
handling decimal data 3-23, 15-26
handling smart large object 6-104,

15-27
internationalizing 15-20

INSERT statement
calling a UDR 11-13, 11-29
obtaining results of 8-60
opaque types 15-20, 15-28, 15-63
parameter information for 8-25
sending to database server 8-57,

8-93
smart large object 6-27, 6-74

Instance. See Routine instance.
int (C) data type 3-6, 3-8, 3-33

See also mi_integer data type.
int (four-byte) data type

corresponding DataBlade API
data type 1-15, 3-8

mi_decimal conversion 3-24

mi_int8 conversion 3-13
int (two-byte) data type

corresponding DataBlade API
data type 1-15, 3-6

mi_decimal conversion 3-24
mi_int8 conversion 3-12, 3-13

INT8 data type
arithmetic operations on 3-13
corresponding DataBlade API

data type 1-15, 3-5, 3-10
data conversion of 3-12
ESQL/C functions for 1-30, 3-11
format of 3-10, 3-11, 8-15
functions for 3-11, 3-12, 3-13
obtaining column value for 8-71
role of int8.h 1-11, 3-10
See also mi_int8 data type;

SERIAL8 data type.
int8 data type (ESQL/C). See

mi_int8 data type.
int8.h header file 1-8, 1-11, 3-10
Integer data

arithmetic operations on 3-13
binary representation 3-5, 3-12,

8-15
byte order 3-7, 3-9, 3-12
data conversion of 3-7, 3-9, 3-12
eight-byte 3-9
end-user format for 3-4
four-byte 3-7, 15-11
in opaque type 3-7, 3-9, 3-12,

15-26, 15-35, 15-60
one-byte 3-5
portability of 3-7, 3-9, 3-12
support for 3-4
text representation 3-4, 8-15
transferring 3-7, 3-9, 3-12
two-byte 3-6, 15-11
type alignment 3-7, 3-9, 3-12

INTEGER data type
corresponding DataBlade API

data type 1-15, 3-5, 3-8
format of 3-8, 8-15
obtaining column value for 8-71
See also mi_integer data type;

SERIAL data type.
Integer string 3-4
INTEGER value, passing

mechanism for 2-51

Internal format. See Binary
representation.

INTERNAL routine modifier 11-27
INTERNALLENGTH opaque-type

modifier 15-6, 15-8
Internationalization

DataBlade API modules and 1-32
IBM Informix GLS library 1-12,

1-30
of error messages 10-74

Interval data
binary representation 4-14, 4-22,

8-15
byte order 4-21
data conversion of 4-21, 4-22
in opaque type 4-21, 4-22, 15-26,

15-35, 15-60
support for 4-10
text representation 4-22, 8-15
transferring 4-21
type alignment 4-21

INTERVAL data type
ANSI SQL standards format 4-20,

4-22, 4-25
arithmetic operations on 4-25
classes of 4-19, 4-25
corresponding DataBlade API

data type 1-16, 4-3, 4-12
data conversion of 4-18, 4-20, 4-22
DataBlade API functions for 4-22
ESQL/C functions for 1-30, 4-24
extending 4-19
format of 4-14, 8-15
functions for 4-15, 4-21, 4-22
inserting 4-19, 4-20
macros 4-16
precision of 4-28
qualifiers 2-6, 4-16, 4-27
role of datetime.h 1-11
scale of 4-28
selecting 4-19, 4-20
See also mi_ interval data type.

interval data type (ESQL/C). See
mi_interval data type.

Interval string
ANSI SQL standards format 4-22
converting from mi_interval 4-22,

4-24
Index 17

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
converting to mi_interval 4-22,
4-24

data conversion of 4-22
end-user format 4-12
format of 4-11

intoasc() function 4-24
intofmtasc() function 4-24
intrvl_t structure 4-14, 4-16, 4-19
intrvl_t typedef 8-15
invdivdbl() function 4-25
invdivinv() function 4-25
invextend() function 4-19, 4-24
invmuldbl() function 4-25
Invocation. See Routine invocation.
ISAM error code 10-59
ISO 8859-1 code set Intro-4
ITER aggregate support

function 14-28, 14-31, 14-41
Iterator function

calling 14-15
changing global

information 12-53
creating 14-5
definition of 11-6, 11-26, 14-5
end condition 14-9
executing 11-38, 14-16
initializing 14-11
invocations 11-30
iterator status 9-18, 14-6, 14-7
iterator-completion flag 9-19,

14-9, 14-14
limitations 9-22
registering 14-15
releasing resources 14-14
restriction with Fastpath 9-40
returning one item 14-13
routine-state information 9-15
statcollect() as 15-70

ITERATOR routine modifier 11-26,
14-7, 14-9, 14-15

Iterator status 9-18, 14-6, 14-7, 15-70
Iterator-completion flag 9-19, 14-9,

14-14, 14-15

J
Jagged rows 8-64, 8-65, 8-79, 8-81

L
Large object. See Simple large

object; Smart large object.
ldchar() function 2-20
Less than (<) sign 3-33
Lightweight I/O 6-18, 6-65
Linux operating system, safe

system calls 12-42, 12-43
LIST data type

checking type identifier for 2-4
corresponding DataBlade API

data type 1-16
format of 8-16
obtaining column value for 8-84
See also Collection data type

(SQL).
Literal value. See Text

representation.
LO file descriptor

constructor for 6-32
declaring 6-32
description of 1-21, 6-29, 6-32
destructor for 6-32
freeing 6-85, 6-100
functions for 6-35
memory duration of. See LO file

descriptor, scope of.
obtaining 6-69, 6-72, 6-90
scope of 6-32, 6-33

LO handle
allocating 6-71
binary representation 6-103, 8-77
byte order 6-104
character conversion 6-103
constructor for 6-31, 13-26, 13-35
copying 6-104
creating 6-35
declaring 6-31
deleting from a database 6-95,

6-96, 6-97
description of 1-17, 1-21, 6-8, 6-29,

6-30
destructor for 6-31, 13-26, 13-35
format of 6-8, 8-16, 8-77
freeing 6-75
functions for 6-37
in BLOB column 2-43, 2-45, 6-24
in CLOB column 2-12, 2-16, 6-24

in INSERT 6-27, 6-74
in opaque data type 6-25
in UPDATE 6-27, 6-74, 6-87
invalidating 6-95
memory duration of 6-31, 6-71,

6-75, 6-100, 13-35
obtaining 6-69, 6-70
portability of 6-104
receiving from client 6-104
reference count and 6-23, 6-96
representations of 6-82, 6-103
selecting from a database 6-26,

6-81, 8-77
sending to client 6-104
storing in a database 6-27, 6-74,

6-87, 6-97
text representation 6-103, 8-16,

8-77
transferring between

computers 6-104
type alignment 6-104
valid 6-82
validating 6-82

LO seek position
definition of 6-32
initial 6-32
obtaining 6-72, 6-84
read operations and 6-68, 6-84
setting 6-72, 6-84
write operations and 6-68, 6-72

LOAD statement 15-39, 15-63
LoadLibrary() system call 12-43
Local variable 12-18, 12-40, 13-57,

13-58
Locale Intro-4

client 10-68, 12-93
current processing 10-68
database 7-9, 7-10, 12-93
in custom messages 10-68
name of 10-69
server 7-9, 7-10, 12-92, 12-93
server-processing 7-5, 10-68,

12-92, 12-93
Lock

row 6-20
smart large object. See Smart-

large-object lock.
table 11-15
18 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Lock-all lock. See Smart-large-object
lock, lock-all.

lock() system call 6-36
Login name. See User account

name.
lohandles() support function 6-98
LO-specification structure

accessor functions 6-39, 6-60,
6-63, 6-67

allocating 6-45
allocation extent size 6-61
attributes flag 6-62
constructor for 6-30, 6-45, 13-35
contents of 6-29
creating 6-45
declaring 6-30, 6-34
default-open-mode flag 6-64
description of 1-21, 6-29
destructor for 6-30, 6-75, 13-35
disk-storage information 6-60
estimated size 6-60
freeing 6-75
initializing 6-45, 6-46
maximum size 6-60
memory duration of 6-30, 6-45,

6-75, 13-35
obtaining 6-44
sbspace name 6-61
storage characteristics 6-49

LO-status structure
accessor functions 6-41, 6-93
allocating 6-91
constructor for 6-33, 6-91, 13-35
contents of 6-33
creating 6-91
description of 1-21, 6-29, 6-33
destructor for 6-33, 6-95, 13-35
freeing 6-95
initializing 6-91, 6-92, 6-94
last-access time 6-93
last-change time 6-93
last-modification time 6-93
memory duration of 6-33, 6-91,

6-95, 13-35
obtaining 6-91
reference count 6-93
size 6-93
storage characteristics 6-93

LVARCHAR data type
as return value 12-20
as routine argument 12-9
casting from 15-16
casting from opaque type 15-17
corresponding DataBlade API

data type 1-14, 1-16, 2-12, 2-14,
2-22, 12-9

data conversion of 2-18
size restriction 2-14, 2-44, 15-18
with opaque types 15-15
See also Character data;

mi_lvarchar data type.
lvarchar data type (ESQL/C). See

mi_lvarchar data type.

M
Machine notes Intro-12
Macro

for date and/or time
qualifiers 4-16, 4-27

for fixed-length data 3-21
for fixed-point data 3-21
for tracing 11-49

.mak file extension 11-19
Makefile 11-19
malloc() system call 12-35, 12-37,

12-44, 13-6
memdur.h header file 1-9, 13-10
Memory context 13-8, 13-11, 13-13,

13-16, 13-22, 13-24, 13-25
Memory duration

advanced 13-9, 13-22
changing 13-36
choosing 13-7, 13-28
collection descriptor 5-6, 13-35
collection structure 5-6, 13-35
connection descriptor 7-21, 7-25,

7-31, 13-21, 13-26
constants for 13-10, 13-23
current 13-12, 13-34, 13-36, 13-42
deallocation and 13-38, 13-52
default 12-37, 13-12, 13-34
definition of 12-36, 13-7
error descriptor 10-28, 13-35
file descriptor 12-84, 12-88, 13-26

function descriptor 9-26, 9-45,
9-48, 9-57, 13-14, 13-26

groups of 13-9
LO file descriptor. See LO file

descriptor, scope of.
LO handle 6-31, 6-71, 6-75, 6-100,

13-35
LO-specification structure 6-30,

6-45, 6-75, 13-35
LO-status structure 6-33, 6-91,

6-95, 13-35
memory pools for 13-7, 13-56
MI_FPARAM structure 9-3, 9-16,

9-56, 11-35, 13-14, 14-98
MI_LO_LIST structure 13-35
named memory 13-41
PER_COMMAND 13-9, 13-10,

13-12
PER_CURSOR 13-23
PER_ROUTINE 12-37, 13-9,

13-10, 13-11
PER_SESSION 13-9, 13-22, 13-25
PER_STATEMENT,

deprecated 13-9, 13-10, 13-15
PER_STMT_EXEC 13-9, 13-10,

13-15
PER_STMT_PREP 13-9, 13-10,

13-21
PER_SYSTEM 13-9, 13-22, 13-27
PER_TRANSACTION 13-9,

13-22, 13-23
public 13-9, 13-10, 13-29
restoring 13-37
routine argument 11-36, 13-11
routine return value 11-39
row descriptor 5-45, 5-58, 13-35
row structure 5-49, 5-57, 13-35
save-set structure 8-95, 8-101,

13-21
session-duration connection

descriptor 7-23, 7-32, 13-26
session-duration function

descriptor 9-49, 13-26
specifying 13-36, 13-42
statement descriptor. See

Statement descriptor, scope of.
stream descriptor 12-68, 12-79,

12-82, 13-36
switching 13-36
Index 19

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
too large 13-28
too small 13-28
type descriptor 2-3
type identifier 2-3
user memory 13-33, 13-34, 13-36,

A-2
user-defined error

structure 10-52, 10-54
varying-length structure 2-23,

2-26, 13-36
See also individual memory

durations.
Memory management

accessing shared memory 13-4
caching memory 14-11
choosing memory duration 13-7,

13-28
constructors. See Constructor.
DataBlade API data

structures 1-23
destructors. See Destructor.
heap space 7-16, 12-35, 13-4, 13-6,

A-3
in C UDRs 13-3, 13-31
in callback functions 10-79
in client LIBMI applications A-2
in DataBlade API functions 13-31
memory context 13-8, 13-11,

13-13, 13-16, 13-22, 13-24, 13-25
memory duration. See Memory

duration.
memory leaks 12-36, 13-9, 13-28,

13-54
memory pools 12-36, 13-7, 13-54
named memory 13-39
possible errors 11-44
saving memory address 13-29
shared memory 13-4, 13-31
smart large objects 6-75
stack space 13-57
user memory 12-35, 13-32
varying-length structures 2-23
See also Named memory; Thread

stack; User memory.
Memory pool. See Memory

management, memory pools.
Message file for error

messages Intro-13

Message log file 10-19, 11-34, 11-43,
11-59, 13-28, 13-58

miconv.h header file 1-9
milib.h header file 1-8
milo.h header file

access-method constants 6-65
access-mode constants 6-65
buffering-mode constants 6-65
create-time constants 6-63, 6-66
description of 1-8, 6-28
LO file descriptor 6-33
LO handle 6-31
lock-mode constants 6-65
LO-specification structure 6-30
LO-status structure 6-34

minmdur.h header file 1-10, 13-23
minmmem.h header file 1-10, 7-23,

13-23, 13-41
minmprot.h header file 1-10, 7-23,

13-41
mistream.h header file 1-8, 12-72,

12-77, 12-80, 12-81
mistrmtype.h header file 1-9, 12-70
mistrmutil.h header file 1-9, 15-61
mitrace.h header file 1-9, 1-24,

11-46
mitypes.h header file 1-8, 11-7
mi.h header file

advanced memory-management
functions 13-23, 13-41

client LIBMI applications
and A-2

DataBlade API data types 2-3
DataBlade API functions 1-24
description of 1-8
IBM Informix GLS library

and 1-30
including in modules 1-9, 1-10,

11-19
tracing 11-46
with restricted session-duration

connections 7-23
with smart large objects 6-28

MI_ABORT_END transition
type 10-75, 10-78, 10-80

mi_alloc() function 10-43, 13-3,
13-31, 13-33, 13-34, 13-42, A-2,
A-3

MI_All_Events event type,
deprecated 10-4

MI_BEGIN transition type 10-75
MI_BINARY control-flag

constant 8-50
mi_binary_query() function 8-17,

14-95
mi_bitvarying data type

as routine argument 12-14
as routine return value 12-21
corresponding SQL data

type 1-16, 2-22, 2-43
description of 2-43
passing mechanism for 2-22
varying-length opaque type

and 12-14, 12-21
See also Byte data; Varying-length

structure.
mi_boolean data type

corresponding SQL data
type 1-17, 2-48

format of 2-48, 8-16
passing mechanism for 2-48, 2-52
portability of 1-17
type alignment 15-11
See also BOOLEAN data type.

MI_CALLBACK_FUNC data
type 10-11

MI_CALLBACK_HANDLE data
type 10-12

MI_CALLBACK_STATUS data
type 1-19, 10-21

mi_call() function 13-59
mi_call_on_vp() function 12-64
mi_cast_get() function 2-5, 9-26,

9-31, 9-49
MI_CB_CONTINUE callback-

return constant 10-22, 10-48
MI_CB_EXC_HANDLED callback-

return constant 10-22, 10-46
mi_char data type

corresponding SQL data
type 1-14, 2-12

description of 2-13
functions for 2-16
portability of 2-17
transferring between

computers 2-17
type alignment 2-17
20 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
See also Character data.
mi_char1 data type 1-14, 2-12, 2-13,

2-52
See also Character data.

mi_class_id() function 12-63
mi_class_maxvps() function 12-64
mi_class_name() function 12-64
mi_class_numvp() function 12-64
mi_client() function 1-4, 1-7
MI_Client_Library_Error event

type
callback type for 10-9
connection descriptor for 10-11
default handling in client

LIBMI 10-19
definition of 10-4, 10-84
in error descriptor 10-28

mi_client_locale() function 1-33,
7-30

mi_close() function
as destructor function 7-21, 7-25
callback and 10-26
connection descriptor and 7-24,

7-31
current statement and 8-92
cursor and 5-25, 8-52
function descriptor and 9-57
row descriptor and 5-58
row structure and 5-57
save set and 8-101
statement descriptor and 8-22,

8-52
user memory and 13-38, A-4

mi_close_statement()
function 8-33, 8-51, 14-95

MI_COLLECTION structure. See
Collection structure.

mi_collection_card() function 5-24
mi_collection_close() function 5-6,

5-25
mi_collection_copy() function 5-6,

5-11
mi_collection_create()

function 2-5, 5-6, 5-7
mi_collection_delete()

function 5-11, 5-23
mi_collection_fetch()

function 2-56, 5-11, 5-16

mi_collection_free() function 5-6,
5-25

mi_collection_insert()
function 2-56, 5-11, 5-14

mi_collection_open() function 5-6,
5-8, 5-9

mi_collection_open_with_options
() function 5-6, 5-8, 5-10

mi_collection_update()
function 5-11, 5-22

MI_COLLECTION_VALUE value
constant 5-6, 8-83

MI_COLL_DESC structure. See
Collection descriptor.

mi_column_count() function 5-48,
8-66, 8-88

mi_column_id() function 5-46
mi_column_name() function 5-46,

8-88
mi_column_nullable()

function 2-58, 5-46
mi_column_precision()

function 2-21, 3-26, 3-32, 4-26,
5-46

mi_column_scale() function 3-26,
4-26, 5-46

mi_column_typedesc()
function 2-7, 2-21, 5-46

mi_column_type_id()
function 2-5, 2-21, 5-46

mi_command_is_finished()
function 8-90, 14-95

MI_CONNECTION structure. See
Connection descriptor.

MI_CONNECTION_INFO
structure. See Connection-
information descriptor.

MI_CONTINUE return
constant 13-61

mi_current_command_name()
function 11-29, 13-13, 14-95

MI_CURSOR_ABSOLUTE cursor-
action constant 5-12, 8-40

MI_CURSOR_ACTION data
type 1-19, 5-11, 8-40

MI_CURSOR_CURRENT cursor-
action constant 5-12

MI_CURSOR_FIRST cursor-action
constant 5-12, 8-40

MI_CURSOR_LAST cursor-action
constant 5-12, 8-40

MI_CURSOR_NEXT cursor-action
constant 5-12, 8-40

MI_CURSOR_PRIOR cursor-action
constant 5-12, 8-40

MI_CURSOR_RELATIVE cursor-
action constant 5-12, 8-40

mi_dalloc() function 10-43, 13-3,
13-31, 13-33, 13-34, 13-36, 14-11,
A-2, A-3

MI_DATABASE_INFO structure.
See Database-information
descriptor.

mi_date data type
byte order 4-6
character conversion 4-7
copying 4-6
corresponding SQL data

type 1-16, 4-3, 4-5
data conversion of 4-7
format of 4-5, 8-15
functions for 4-5, 4-6, 4-7
operations on 4-9
passing mechanism for 2-51, 4-5
portability of 4-6
receiving from client 4-6
sending to client 4-6
transferring between

computers 4-6
type alignment 4-6
See also DATE data type.

mi_datetime data type
arithmetic operations on 4-25
byte order 4-21
character conversion 4-22
copying 4-21
corresponding SQL data

type 1-16, 4-3, 4-12
data conversion of 4-20, 4-22
extending 4-18
format of 4-13, 8-15
functions for 4-21, 4-22
inserting from 4-18, 4-20
macros 4-16
passing mechanism for 4-13
portability of 4-21
qualifiers 2-6, 4-16
receiving from client 4-21
Index 21

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
selecting into 4-18, 4-20
sending to client 4-21
transferring between

computers 4-21
type alignment 4-21
See also DATETIME data type;

dtime_t typedef.
mi_datetime_to_string()

function 4-22
mi_date_to_string() function 1-33,

4-7
MI_DATUM data type

collection element as 2-56
column value as 2-56
description of 1-21, 2-50
input-parameter value as 2-56,

8-46
mi_call() and 13-59
opaque-type value in 15-12
OUT parameter as 2-55, 12-23
promotion of 2-52, 11-37
routine argument as 2-55, 9-41,

11-35, 12-4
routine return value as 2-55, 9-41,

9-43, 9-45, 11-39, 12-17
size of 2-50

MI_DATUM structure
Boolean values in 2-48, 2-52
characters in 2-13, 2-22, 2-52
contents of 2-51
date and time values in 4-13
date values in 2-51, 4-5
decimal values in 3-17, 3-18, 3-29
eight-byte integers in 3-10
floating-point values in 3-29, 3-30
four-byte integers in 2-51
holding generic data value 2-50
interval values in 4-15
one-byte integers in 3-6
opaque-type value in 2-52
pointer values in 2-49, 2-52
two-byte integers in 2-51
uses of 2-55
varying-length structures in 2-22

MI_DATUM value
calculations with 2-54
collection element as 5-14, 5-20,

5-22

column value as 5-52, 8-69, 8-70,
8-72, 8-79, 8-80, 8-82

LO handle as 6-82, 8-77
passed by reference 2-51
passed by value 2-51

mi_db_error_raise() function
connection descriptor and 10-62
exception message and 10-65
internationalization and 1-33,

10-69
named-memory locks and 13-52
purpose of 10-32, 10-61

MI_DDL statement-status
constant 8-55

mi_decimal data type
arithmetic operations on 3-25
byte order 3-22, 3-31
character conversion 3-23, 3-24,

3-33
copying 3-22, 3-31
corresponding SQL data

type 1-15, 3-16, 3-28
data conversion of 3-23
declaring 3-28
double (C) conversion 3-24
format of 3-17, 3-18, 3-20, 8-15
formatting 3-33
functions for 3-21, 3-22, 3-23, 3-31
integer (2-byte) conversion 3-24
integer (4-byte) conversion 3-24
integer (four-byte)

conversion 3-24
integer (two-byte)

conversion 3-24
macros 3-21
mi_int8 conversion 3-12, 3-13
passing mechanism for 3-17
portability of 3-22, 3-31
receiving from client 3-22, 3-31
role of decimal.h 3-18
sending to client 3-22, 3-31
transferring between

computers 3-22, 3-31
type alignment 3-22, 3-31
See also DECIMAL data type;

MONEY data type; dec_t
typedef.

mi_decimal_to_string()
function 1-33, 3-23

mi_default_callback()
function 10-19

mi_disable_callback()
function 10-13

MI_DML statement-status
constant 8-42, 8-55, 8-57

MI_DONE return constant 13-61
mi_double_precision data type

byte order 3-31
copying 3-31
corresponding SQL data

type 1-15, 3-28
declaring 3-30
format of 8-16
functions for 3-31
mi_call() and 13-59
passing mechanism for 3-30
portability of 1-17, 3-31
receiving from client 3-31
sending to client 3-31
transferring between

computers 3-31
type alignment 3-31, 15-11

mi_drop_prepared_statement()
function

purpose of 8-18, 8-22, 8-29, 8-33
releasing resources 8-51, 8-52,

13-21
restrictions on use 14-95

mi_enable_callback()
function 10-13

mi_errmsg() function 10-29, 10-40,
10-86

MI_ERROR return code 1-29,
10-43, 10-50

MI_ERROR_DESC structure. See
Error descriptor.

mi_error_desc_copy()
function 10-28, 10-30

mi_error_desc_destroy()
function 10-28, 10-30

mi_error_desc_finish()
function 10-59

mi_error_desc_is_copy()
function 10-30

mi_error_desc_next()
function 10-59

mi_error_level() function 10-29,
10-34, 10-40, 10-86
22 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
mi_error_sqlcode() function 10-29,
10-40, 10-86

mi_error_sql_state()
function 10-29, 10-40, 10-86

MI_EVENT_COMMIT_ABORT
event type 10-10, 10-12, 10-30,
10-78, 10-80

definition of 10-4, 10-5, 10-9,
10-28, 10-76

MI_EVENT_END_SESSION event
type 10-10, 10-12, 10-30, 10-78

as state transition 10-76
callback type for 10-9
definition of 10-4, 10-28, 10-76,

10-77, 11-18
event-type structure for 10-30
See also End-of-session callback.

MI_EVENT_END_STMT event
type 10-10, 10-12, 10-30, 10-78,
10-80

as state transition 10-76
callback type for 10-9
definition of 10-4, 10-28, 10-76,

11-18
event-type structure for 10-30
See also End-of-statement callback.

MI_EVENT_END_XACT event
type 10-10, 10-12, 10-30, 10-78,
10-80

as state transition 10-76
callback type for 10-9
definition of 10-4, 10-28, 10-76,

11-18
event-type structure for 10-30
See also End-of-transaction

callback.
MI_EVENT_POST_XACT event

type 10-10, 10-12, 10-30, 10-78
definition of 10-4, 10-5, 10-9,

10-28, 10-76
MI_EVENT_SAVEPOINT event

type 10-10, 10-12, 10-30, 10-78,
10-80

definition of 10-4, 10-5, 10-9,
10-28, 10-76

MI_EVENT_TYPE data type 1-19,
10-3, 10-8, 10-13, 10-24, 10-34

MI_Exception event type
callback type for 10-9, 10-40

connection descriptor for 10-10,
10-11

default handling in client
LIBMI 10-19

default handling in UDR 10-18
definition of 10-4, 10-33, 11-18
in error descriptor 10-28

MI_EXCEPTION exception
level 10-18, 10-19, 10-34, 10-38,
10-39, 10-63, 10-65, 10-67

mi_exec() function
as an SQL command 11-29, 13-15
as constructor 8-13
as parent connection 10-62
control mode and 8-17
database server exceptions

and 10-32
purpose of 8-10, 8-12
restrictions on use 14-95
smart large object and 6-74, 6-82
when to use 8-5

mi_exec_prepared_statement()
function

as an SQL command 11-29, 13-15
as parent connection 10-62
control mode and 8-50
database server exceptions

and 10-32
executing iterator function 14-17
input parameter and 2-56
input parameters and 8-45
purpose of 8-18, 8-29
restrictions on use 14-95
smart large object and 6-74, 6-82
when to use 8-5

mi_fetch_statement()
function 8-33, 14-95

mi_file_allocate() function 10-43
mi_file_close() function 10-43,

12-84, 12-88
mi_file_errno() function 10-43,

12-84
mi_file_open() function 10-43,

12-31, 12-83, 12-84, 12-85
mi_file_read() function 10-43,

12-31, 12-84
mi_file_seek() function 10-43,

12-83

mi_file_sync() function 10-43,
12-84

mi_file_tell() function 10-43, 12-83
mi_file_to_file() function 6-42,

10-43, 12-85, 12-89
mi_file_unlink() function 10-43,

12-84
mi_file_write() function 10-43,

12-31, 12-84
mi_fix_integer() function 3-9
mi_fix_smallint() function 3-7
MI_FPARAM structure

absence of 9-21, 12-7
accessor functions 9-5, 9-10, 9-14,

9-18
allocating 9-41, 9-53, 11-35, 13-57,

14-98
argument length 9-5, 9-6
argument precision 2-21, 3-26,

3-32, 4-26, 4-28, 9-5, 9-6
argument scale 4-28, 9-5, 9-6
argument type identifier 9-5, 9-6
caching a connection descriptor

in 7-22, 9-45, 10-45
caching a function descriptor

in 9-45
checking arguments in 9-5
checking return-value data types

in 9-10
constructor for 9-3, 9-54, 13-14
copying 9-53
creating 9-3, 9-54, 11-35
declaring 9-4, 12-7
definition of 9-3, 12-40
description of 1-21
destructor for 9-3, 9-56, 13-14
determining who allocated 9-53
freeing 9-53, 9-56, 11-40
from function descriptor 9-35
handling NULL arguments 9-5,

9-8, 9-9
handling NULL return

value 9-10, 9-13
in function descriptor 9-28, 9-32
iterator status 9-18, 14-6
iterator-completion flag 9-19,

14-9, 14-14
memory duration of 9-3, 9-16,

9-56, 11-35, 13-14, 14-98
Index 23

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
number of arguments 9-5
number of return values 9-10
obtaining pointer to 12-8
return-value length 9-10, 9-11
return-value precision 2-21, 3-26,

3-32, 4-26, 4-28, 9-10, 9-12
return-value scale 4-28, 9-10, 9-12
return-value type identifier 9-10,

9-11
routine identifier 9-19
routine invocation and 9-55
routine name 9-18
routine sequence and 9-16
user-allocated 9-11, 9-41, 9-53,

9-55
user-state pointer 9-14
using 9-3, 11-17, 11-35

mi_fparam_allocate() function 9-3,
9-53, 9-54

mi_fparam_copy() function 9-3,
9-53, 9-54

mi_fparam_free() function 9-3,
9-53, 9-56

mi_fparam_get() function 9-29,
9-35, 9-38

mi_fparam_get_current()
function 9-19, 12-8

mi_fp_argisnull() function 2-58,
9-5, 9-8, 12-12

mi_fp_arglen() function 9-5
mi_fp_argprec() function 2-21,

3-26, 3-32, 4-26, 9-5
mi_fp_argscale() function 3-26,

4-26, 9-5
mi_fp_argtype() function 2-5, 2-21,

9-5
mi_fp_funcname() function 9-18
mi_fp_funcstate() function 9-14,

9-15, 9-16, 14-11, 14-15, 15-73
mi_fp_getcolid() function 9-19
mi_fp_getfuncid() function 9-19
mi_fp_getrow() function 9-19
mi_fp_nargs() function 9-5, 9-8
mi_fp_nrets() function 9-10, 9-29
mi_fp_request() function 9-18,

14-7, 15-70
mi_fp_retlen() function 9-10
mi_fp_retprec() function 2-21,

3-26, 3-32, 4-26, 9-10

mi_fp_retscale() function 3-26,
4-26, 9-10

mi_fp_rettype() function 2-5, 2-21,
9-10

mi_fp_returnisnull()
function 2-58, 9-10, 9-13

mi_fp_setargisnull() function 2-58,
9-5, 9-8, 9-38, 12-24

mi_fp_setarglen() function 9-5
mi_fp_setargprec() function 2-21,

3-26, 3-32, 4-26
mi_fp_setargscale() function 3-26,

4-26, 9-5
mi_fp_setargtype() function 2-5,

2-21, 9-5
mi_fp_setcolid() function 9-19
mi_fp_setfuncid() function 9-19
mi_fp_setfuncstate()function 9-14,

9-16, 15-73
mi_fp_setisdone() function 9-19,

14-9
mi_fp_setnargs() function 9-5, 9-8
mi_fp_setnrets() function 9-10
mi_fp_setretlen() function 9-10
mi_fp_setretprec() function 2-21,

3-26, 3-32, 4-26, 9-10
mi_fp_setretscale() function 3-26,

4-26, 9-10
mi_fp_setrettype() function 2-5,

2-21, 9-10
mi_fp_setreturnisnull()

function 2-58, 9-10, 9-13, 12-19
mi_fp_setrow() function 9-19
mi_fp_usr_fparam() function 9-53
mi_free() function

as destructor function 13-31,
13-33, 13-39

callback and 10-26
LO handle and 6-76
user memory and 13-38, 14-15,

A-2, A-4
MI_FUNCARG data type 1-19,

14-87
MI_FUNCARG structure

accessor functions 14-85, 14-87,
14-88

argument data type 14-86, 14-87
argument length 14-86, 14-87
argument type 14-86, 14-87

column number 14-86, 14-88,
14-90

description of 1-21, 14-85
determining NULL

argument 14-86, 14-88, 14-89
routine identifier 14-86, 14-87
routine name 14-86, 14-87
table identifier 14-86, 14-88, 14-90

MI_FUNCARG_COLUMN
argument-type constant 14-87

MI_FUNCARG_CONSTANT
argument-type constant 14-87,
14-88

mi_funcarg_get_argtype()
function 14-86, 14-87

mi_funcarg_get_colno()
function 14-86, 14-88, 14-90

mi_funcarg_get_constant()
function 14-86, 14-88, 14-89

mi_funcarg_get_datalen()
function 14-86, 14-87

mi_funcarg_get_datatype()
function 14-86, 14-87

mi_funcarg_get_distrib()
function 14-86, 14-88, 14-90

mi_funcarg_get_routine_id()
function 14-86, 14-87

mi_funcarg_get_routine_name()
function 14-86, 14-87

mi_funcarg_get_tabid()
function 14-86, 14-88, 14-90

mi_funcarg_isnull() function 2-58,
14-86, 14-88, 14-89

MI_FUNCARG_PARAM
argument-type constant 14-87

mi_funcid data type 1-19, 11-31
mi_func_commutator()

function 9-35, 9-40
MI_FUNC_DESC structure. See

Function descriptor.
mi_func_desc_by_typeid()

function 9-26, 9-27, 9-49
mi_func_handlesnulls()

function 2-58, 9-35, 9-37
mi_func_isvariant() function 9-35,

9-38
mi_func_negator() function 9-35,

9-39
mi_get_bytes() function 2-46
24 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
mi_get_connection_info()
function 1-33, 7-9, 7-12, 12-92

mi_get_connection_option()
function 12-92, 14-96

mi_get_connection_user_data()
function 7-29, 10-57

mi_get_database_info()
function 7-13, 7-15, 12-92, 14-96

mi_get_datetime() function 4-21
mi_get_date() function 4-6
mi_get_db_locale() function 12-93
mi_get_decimal() function 3-22,

3-31
mi_get_default_connection_info()

function 7-9, 7-11, 7-30, 12-92
mi_get_default_database_info()

function 7-13, 7-15, 7-30, 12-92
mi_get_double_precision()

function 3-31
mi_get_id() function 8-23, 12-92
mi_get_int8() function 3-12
mi_get_integer() function 3-9
mi_get_interval() function 4-21
mi_get_lo_handle() function 6-31,

6-37, 6-104
mi_get_money() function 3-22
mi_get_next_sysname()

function 7-30
mi_get_parameter_info()

function 7-17, 7-30
mi_get_real() function 3-31
mi_get_result() function 8-14, 8-30,

8-38, 8-39, 8-42, 8-53, 8-55, 8-62,
8-97, 14-95

mi_get_row_desc() function 8-65,
8-83, 14-96

mi_get_row_desc_from_type_desc
() function 2-7, 8-65, 14-96

mi_get_row_desc_without_row()
function 8-13, 8-65, 8-88, 8-91,
14-95, 14-96

mi_get_serverenv() function 12-93
mi_get_session_connection()

function 7-23, 9-49
restrictions on use 14-96

mi_get_smallint() function 3-7
mi_get_statement_row_desc()

function 8-18, 8-23, 8-29, 8-33,
8-65, 14-95, 14-96

mi_get_string() function 1-33, 2-17
mi_get_type_source_type()

function 2-7, 14-96
mi_get_vardata() function 2-27,

2-31, 2-37
mi_get_vardata_align()

function 2-27, 2-31, 2-37, 15-11
mi_get_varlen() function 2-27,

2-28, 2-37
MI_ID data type 1-19
mi_impexp data type

contents of 15-38
corresponding SQL data

type 1-16, 2-22
description of 15-15
passing mechanism for 2-22
See also IMPEXP data type;

Varying-length structure.
mi_impexpbin data type

contents of 15-48
corresponding SQL data

type 1-16, 2-22
description of 15-15
passing mechanism for 2-22
See also IMPEXPBIN data type;

Varying-length structure.
mi_init_library() function 7-30
mi_int1 data type 1-15, 3-5
mi_int8 data type

arithmetic operations on 3-13
byte order 3-12
character conversion 3-12, 3-13
copying 3-12
corresponding SQL data

type 1-15, 3-5, 3-10
data conversion of 3-12
double (C) conversion 3-12, 3-13
float (C) conversion 3-12, 3-13
format of 3-9, 3-11, 8-15
functions for 3-11, 3-12, 3-13
integer (2-byte) conversion 3-13
integer (4-byte) conversion 3-13
integer (four-byte)

conversion 3-13
integer (two-byte)

conversion 3-12
mi_decimal conversion 3-12, 3-13
passing mechanism for 3-10
portability of 3-12

receiving from client 3-12
role of int8.h 3-10
sending to client 3-12
transferring between

computers 3-12
type alignment 3-12
See also INT8 data type; SERIAL8

data type.
mi_integer data type

byte order 3-9
copying 3-9
corresponding SQL data

type 1-15, 3-5, 3-8
format of 3-7, 8-15
passing mechanism for 2-51, 3-8
portability of 1-17, 3-8, 3-9
receiving from client 3-9
sending to client 3-9
transferring between

computers 3-9
type alignment 3-9
See also INTEGER data type;

SERIAL data type.
mi_interval data type

arithmetic operations on 4-25
byte order 4-21
character conversion 4-22
copying 4-21
corresponding SQL data

type 1-16, 4-3, 4-12
data conversion of 4-20, 4-22
extending 4-19
format of 4-15, 8-15
functions for 4-21, 4-22
inserting from 4-19, 4-20
macros 4-16
passing mechanism for 4-15
portability of 4-21
qualifiers 2-6, 4-16
receiving from client 4-21
selecting into 4-19, 4-20
sending to client 4-21
transferring between

computers 4-21
type alignment 4-21
See also INTERVAL data type;

intrvl_t typedef.
mi_interval_to_string()

function 1-33, 4-22
Index 25

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
mi_last_serial8() function 8-94
mi_last_serial() function 8-94
MI_LIB_BADARG client-library

error 10-84
MI_LIB_BADSERV client-library

error 10-84
MI_LIB_DROPCONNclient-library

error 10-85
MI_LIB_INTERR client-library

error 10-85
MI_LIB_NOIMP client-library

error 10-85
MI_LIB_USAGE client-library

error 10-85
mi_lock_memory() function 13-31,

13-46
mi_lo_alter() function 6-37, 6-39,

6-88, 6-107
MI_LO_APPEND access-mode

constant 6-65, 6-68
MI_LO_ATTR_HIGH_INTEG

create-time constant 6-62
MI_LO_ATTR_KEEP_

LASTACCESS_TIME create-
time constant 6-62, 6-93

MI_LO_ATTR_LOG create-time
constant 6-62

MI_LO_ATTR_MODERATE_
INTEG create-time
constant 6-62

MI_LO_ATTR_NOKEEP_
LASTACCESS_TIME create-
time constant 6-62

MI_LO_ATTR_NO_LOG create-
time constant 6-62

MI_LO_BUFFER buffering-mode
constant 6-65, 6-69

mi_lo_close() function 6-32, 6-36,
6-85, 6-100, 6-107

mi_lo_colinfo_by_ids()
function 6-39, 6-58, 6-107

mi_lo_colinfo_by_name()
function 6-39, 6-58, 6-107

mi_lo_copy() function 6-31, 6-32,
6-35, 6-37, 6-39, 6-51, 6-83, 6-99,
6-107

mi_lo_create() function 6-31, 6-32,
6-35, 6-37, 6-39, 6-51, 6-83, 6-99,
6-107

mi_lo_decrefcount() function 6-37,
6-98, 6-107

mi_lo_delete_immediate()
function 6-31, 6-76, 6-95, 6-99,
6-107

MI_LO_DIRTY_READ access-
mode constant 6-65

mi_lo_expand() function 6-31,
6-32, 6-35, 6-37, 6-39, 6-51, 6-83,
6-99, 6-107

MI_LO_FD data type. See LO file
descriptor.

mi_lo_filename() function 6-37,
6-101, 6-107

MI_LO_FORWARD access
constant 6-65

mi_lo_from_buffer()function 6-31,
6-37, 6-102, 6-107

mi_lo_from_file() function 6-32,
6-35, 6-37, 6-39, 6-42, 6-51, 6-83,
6-99, 6-101, 6-107, 15-42

mi_lo_from_file_by_lofd()
function 6-42, 6-101, 6-107

mi_lo_from_string() function 6-31,
6-33, 6-37, 6-82, 6-104

MI_LO_HANDLE data type. See LO
handle.

mi_lo_increfcount() function 6-37,
6-98, 6-107

mi_lo_invalidate() function 6-37,
6-82, 6-95, 6-107

MI_LO_LIST structure 13-35
MI_LO_LOCKALL lock-mode

constant 6-65, 6-69
MI_LO_LOCKRANGE lock-mode

constant 6-65
mi_lo_lock() function 6-36, 6-106,

6-107
mi_lo_lolist_create() function 6-37,

6-107
MI_LO_NOBUFFER buffering-

mode constant 6-65
mi_lo_open() function 6-32, 6-36,

6-37, 6-83, 6-107, 12-31
mi_lo_ptr_cmp() function 6-38,

6-107
MI_LO_RANDOM access-method

constant 6-65, 6-69

MI_LO_RDONLY access-mode
constant 6-65, 6-68, 6-69

MI_LO_RDWR access-mode
constant 6-65, 6-68

mi_lo_readwithseek()
function 6-36, 6-84, 6-107

mi_lo_read() function 6-36, 6-84,
6-107, 12-31

mi_lo_release() function 6-31, 6-38,
6-76, 6-99, 6-107

MI_LO_REVERSE access
constant 6-65

mi_lo_seek() function 6-36, 6-72,
6-84, 6-107

MI_LO_SEQUENTIAL access-
method constant 6-65

MI_LO_SIZE constant 6-103
MI_LO_SPEC structure. See LO-

specification structure.
mi_lo_specget_def_open_flags()

function 6-39, 6-67
mi_lo_specget_estbytes()

function 6-39, 6-60
mi_lo_specget_extsz()

function 6-40, 6-61
mi_lo_specget_flags()

function 6-40, 6-63
mi_lo_specget_maxbytes()

function 6-40, 6-60
mi_lo_specget_sbspace()

function 6-40, 6-61
mi_lo_specset_def_open_flags()

function 6-40, 6-67
mi_lo_specset_estbytes()

function 6-40, 6-60
mi_lo_specset_extsz()

function 6-40, 6-61
mi_lo_specset_flags()

function 6-40, 6-63
mi_lo_specset_maxbytes()

function 6-40, 6-60
mi_lo_specset_sbspace()

function 6-40, 6-61
mi_lo_spec_free() function 6-30,

6-39, 6-75, 6-107, 10-26
mi_lo_spec_init() function 6-30,

6-39, 6-45, 6-46, 6-50, 6-107
MI_LO_STAT structure. See LO-

status structure.
26 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
mi_lo_stat() function 6-33, 6-36,
6-41, 6-91, 6-94, 6-107

mi_lo_stat_atime() function 6-41,
6-93

mi_lo_stat_cspec() function 6-40,
6-41, 6-47, 6-93

mi_lo_stat_ctime() function 6-41,
6-93

mi_lo_stat_free() function 6-33,
6-41, 6-95, 6-107

mi_lo_stat_mtime_sec()
function 6-41, 6-93

mi_lo_stat_mtime_usec()
function 6-41, 6-93

mi_lo_stat_refcnt() function 6-41,
6-93, 6-96

mi_lo_stat_size() function 6-41,
6-93

mi_lo_tell() function 6-36, 6-72,
6-84, 6-107

mi_lo_to_buffer() function 6-38,
6-102, 6-107

mi_lo_to_file() function 6-38, 6-42,
6-101, 6-102, 6-107, 15-46

mi_lo_to_string() function 6-38,
6-104

MI_LO_TRUNC access-mode
constant 6-65

mi_lo_truncate() function 6-36,
6-107

mi_lo_unlock() function 6-36,
6-106, 6-107

mi_lo_utimes() function 6-107
mi_lo_validate() function 6-38,

6-82, 6-107
mi_lo_writewithseek()

function 6-36, 6-72, 6-107
mi_lo_write() function 6-36, 6-72,

6-107, 12-31
MI_LO_WRONLY access-mode

constant 6-65, 6-68
mi_lvarchar data type

as internal format for character
data 2-15

as opaque-type storage 2-16,
15-15, 15-19

as routine argument 2-15, 12-9,
15-13

character conversion 2-18

contents of 2-14
converting between stream and

internal 2-24
corresponding SQL data

type 1-14, 1-16, 2-12, 2-22
data conversion of 2-18
declaring 2-14
description of 2-14
passing mechanism for 2-22
reading from stream 2-24
uses of 2-14
varying-length opaque type

and 15-10
See also LVARCHAR data type;

Varying-length structure.
mi_lvarchar_to_string()

function 2-18, 2-37, 2-38
MI_MEMORY_DURATION data

type 1-9, 13-10, 13-23
MI_MESSAGE exception

level 10-18, 10-19, 10-34, 10-38,
10-39, 10-63, 10-65, 10-67

mi_module_lock() function 12-65,
12-66

mi_money data type
arithmetic operations on 3-25
byte order 3-22
character conversion 3-23
copying 3-22
corresponding SQL data

type 1-15, 3-16
data conversion of 3-23
format of 3-17, 3-18, 3-20, 8-15
functions for 3-21, 3-22, 3-23
macros 3-21
passing mechanism for 3-18
portability of 3-22
receiving from client 3-22
role of decimal.h 3-18
sending to client 3-22
transferring between

computers 3-22
type alignment 3-22
See also mi_decimal data type;

MONEY data type.
mi_money_to_string()

function 1-33, 3-23
mi_named_alloc() function 9-49,

13-31, 13-41

mi_named_free() function
as destructor function 13-41,

13-52
PER_SESSION memory

and 13-25
PER_SYSTEM memory and 13-27
PER_TRANSACTION memory

and 13-25
purpose of 13-31, 13-52
session-duration function

descriptors and 9-52
mi_named_get() function 13-31,

13-43
mi_named_zalloc() function 9-49,

13-31, 13-41
mi_new_var() function 2-23, 2-24
mi_next_row() function 5-54,

14-95
in a loop 8-89, 8-97
overwriting buffer 8-70
purpose of 8-14, 8-30, 8-41, 8-66
releasing resources 8-91

MI_NOMEM return constant 13-61
MI_NORMAL_END transition

type 10-75, 10-78, 10-80
MI_NORMAL_VALUE value

constant 8-71
MI_NO_MORE_RESULTS

statement-status constant 8-38,
8-55, 8-57, 8-60, 8-61, 8-90, 10-38,
10-40

MI_NO_SUCH_NAME return
constant 13-53

MI_NULL_VALUE value
constant 8-79

mi_numeric data type. See
mi_decimal data type.

mi_open() function 7-21, 7-24,
7-25, 7-30, 10-44

mi_open_prepared_statement()
function 8-33, 13-15

as an SQL command 11-29
control mode and 8-50
cursor name in 8-22
input parameter and 2-56
input parameters and 8-45
purpose of 8-18, 8-33
restrictions on use 14-95
when to use 8-5
Index 27

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
MI_O_APPEND file-mode
constant 6-101

MI_O_CLIENT_FILE file-mode
constant 6-102

MI_O_EXCL file-mode
constant 6-101

MI_O_RDONLY file-mode
constant 6-102

MI_O_RDWR file-mode
constant 6-101

MI_O_SERVER_FILE file-mode
constant 6-102

MI_O_TEXT file-mode
constant 6-102

MI_O_TRUNC file-mode
constant 6-101

MI_O_WRONLY file-mode
constant 6-102

mi_parameter_count()
function 8-24, 8-26

MI_PARAMETER_INFO structure.
See Parameter-information
descriptor.

mi_parameter_nullable()
function 2-58, 8-24

mi_parameter_precision()
function 2-21, 3-26, 3-32, 4-26,
8-24

mi_parameter_scale()
function 3-26, 4-26, 8-24

mi_parameter_type_id()
function 2-5, 2-21, 8-24

mi_parameter_type_name()
function 2-21, 8-24

mi_pointer data type 1-17, 2-48,
2-52, 14-50

See also POINTER data type.
mi_prepare() function 13-21, 14-95

as constructor 8-22
assembling statement for 8-19
assigning a name 8-20
purpose of 8-18, 8-29, 8-33
usage 8-19

mi_process_exec() function 12-64,
12-65

MI_PROC_CALLBACK
constant 10-23

mi_put_bytes() function 2-46
mi_put_datetime() function 4-21

mi_put_date() function 4-6
mi_put_decimal() function 3-22,

3-31
mi_put_double_precision()

function 3-31
mi_put_int8() function 3-12
mi_put_integer() function 3-9
mi_put_interval() function 4-21
mi_put_lo_handle() function 6-38,

6-104
mi_put_money() function 3-22
mi_put_real() function 3-31
mi_put_smallint() function 3-7
mi_put_string() function 1-33, 2-17
mi_query_finish() function 8-12,

8-13, 8-90, 8-92, 8-93, 14-95
mi_query_interrupt()

function 8-12, 8-90, 8-92, 14-95
mi_real data type

byte order 3-31
copying 3-31
corresponding SQL data

type 1-15, 3-28
declaring 3-29
format of 8-16
functions for 3-31
portability of 1-17, 3-30, 3-31
receiving from client 3-31
sending to client 3-31
transferring between

computers 3-31
type alignment 3-31, 15-11
See also SMALLFLOAT data type.

mi_realloc() function 10-43, 13-3,
13-31, 13-33, A-2, A-3

mi_register_callback()
function 7-30, 10-7

mi_result_command_name()
function 8-13, 8-56, 8-58, 8-62,
14-95

mi_result_row_count()
function 8-42, 8-58, 8-62, 14-95

mi_retrieve_callback()
function 10-13

mi_routine_end() function 9-26,
9-49, 9-52, 9-57

mi_routine_exec() function 2-55,
9-40, 10-32, 10-62

mi_routine_get() function 9-26,
9-27, 9-43, 9-49

mi_routine_get_by_typeid()
function 2-5, 9-26, 9-27, 9-49

mi_routine_id_get() function 9-35,
9-36

MI_ROW structure. See Row
structure.

MI_ROWS statement-status
constant 8-14, 8-30, 8-39, 8-55,
8-57, 8-61, 8-64

mi_row_create() function 2-56,
5-49, 8-70, 14-96

MI_ROW_DESC structure. See Row
descriptor.

mi_row_desc_create()
function 5-45, 5-50, 14-96

mi_row_desc_free() function 5-45,
5-58, 8-70, 14-96

mi_row_free() function 5-49, 5-57,
8-70, 14-96

MI_ROW_VALUE value
constant 5-50, 8-79

MI_SAVE_SET structure. See Save
set; Save-set structure.

mi_save_set_count() function 8-95
mi_save_set_create()

function 8-95, 8-96, 8-97
mi_save_set_delete() function 8-95
mi_save_set_destroy()

function 8-95, 8-101
mi_save_set_get_first()

function 8-95, 8-98
mi_save_set_get_last()

function 8-95
mi_save_set_get_next()

function 8-95, 8-98
mi_save_set_get_previous()

function 8-96, 8-98
mi_save_set_insert()

function 8-96, 8-97
mi_save_set_member()

function 8-96
mi_sendrecv data type

contents of 15-28
corresponding SQL data

type 1-16, 2-22
description of 15-15
passing mechanism for 2-22
28 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
See also SENDRECV data type;
Varying-length structure.

MI_SEND_HOLD control-flag
constant 8-38

MI_SEND_READ control-flag
constant 8-37

MI_SEND_SCROLL control-flag
constant 8-37

mi_server_connect() function 7-25,
7-27, 7-30

MI_SETREQUEST data type 1-20,
14-6

mi_set_connection_user_data()
function 7-29, 10-57

mi_set_default_connection_info()
function 7-9, 7-11, 7-30

mi_set_default_database_info()
function 7-13, 7-14, 7-30

mi_set_parameter_info()
function 7-17, 7-30

mi_set_vardata() function 2-27,
2-29, 2-40

mi_set_vardata_align()
function 2-27, 2-29, 2-31, 2-40

mi_set_varlen() function 2-27, 2-36
mi_set_varptr() function 2-27, 2-34
mi_sint1 data type 1-15, 3-5
mi_smallint data type

byte order 3-7
copying 3-7
corresponding SQL data

type 1-15, 3-5, 3-6
format of 3-6, 8-15
passing mechanism for 2-51, 3-7
portability of 1-17, 3-6, 3-7
receiving from client 3-7
sending to client 3-7
transferring between

computers 3-7
type alignment 3-7

MI_SQL message-type
constant 10-66

mi_stack_limit(› function 13-59
MI_STATEMENT structure. See

Statement descriptor.
mi_statement_command_name()

function 8-18, 8-23, 8-29, 8-33,
14-95

mi_statret data type 1-22

mi_streamread_boolean()
function 15-61

mi_streamread_collection()
function 5-6, 15-61

mi_streamread_lo() function 6-31,
15-61

mi_streamread_lo_by_lofd()
function 15-61

mi_streamread_lvarchar()
function 2-23, 2-24, 15-61

mi_streamread_row()
function 5-49, 15-61

mi_streamread_string()
function 15-61

mi_streamwrite_boolean()
function 15-61

mi_streamwrite_collection()
function 15-61

mi_streamwrite_lo()
function 15-61

mi_streamwrite_lvarchar()
function 15-61

mi_streamwrite_row()
function 15-61

mi_streamwrite_string()
function 15-61

mi_stream_close(function 12-72
mi_stream_close() function 12-68,

12-69, 12-73, 12-74, 12-82
mi_stream_eof() function 12-69
mi_stream_getpos()

function 12-69, 12-72, 12-73,
12-74

mi_stream_get_error()
function 12-69

mi_stream_init() function 12-70,
12-76

mi_stream_length()
function 12-69, 12-72, 12-73,
12-74

mi_stream_open_fio()
function 12-68, 12-70, 12-71

mi_stream_open_mi_lvarchar()
function 12-68, 12-70, 12-74

mi_stream_open_str()
function 12-68, 12-70, 12-73

mi_stream_read() function 12-69,
12-71, 12-73, 12-74

mi_stream_seek() function 12-69,
12-71, 12-73, 12-74

mi_stream_setpos()
function 12-69, 12-72, 12-73,
12-74

mi_stream_set_error()
function 12-69

mi_stream_tell() function 12-69,
12-72, 12-73, 12-74

mi_stream_write() function 12-69,
12-72, 12-73, 12-74

mi_string data type
corresponding SQL data

type 1-14, 2-12
description of 2-13
functions for 2-16
mi_date conversion 4-7
mi_datetime conversion 4-22
mi_decimal conversion 3-23
mi_interval conversion 4-22
mi_lvarchar conversion 2-18
mi_money conversion 3-23
portability of 2-17
transferring between

computers 2-17
type alignment 2-17
See also Character data.

mi_string_to_datetime()
function 4-22

mi_string_to_date() function 1-33,
4-7

mi_string_to_decimal()
function 1-33, 3-23

mi_string_to_interval()
function 1-33, 4-22

mi_string_to_lvarchar()
function 2-18, 2-23, 2-24, 2-31,
2-32, 15-17

mi_string_to_money()
function 1-33, 3-23

mi_switch_mem_duration()
function 12-79, 13-31, 13-33,
13-36

mi_sysname() function 7-30
mi_td_cast_get() function 2-7, 2-8,

9-26, 9-31, 9-49
MI_TOOMANY return

constant 13-61
Index 29

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
mi_tracefile_set() function 11-54,
14-96

mi_tracelevel_set() function 11-47,
11-53, 14-96

MI_TRANSITION_DESC structure
See Transition descriptor.

MI_TRANSITION_TYPE data
type 1-20, 10-31, 10-75

mi_transition_type()
function 10-31, 10-78

mi_try_lock_memory()
function 13-31, 13-46

mi_typedesc_to_id() function 2-8
mi_typedesc_typeid() function 2-6
MI_TYPEID data type. See Type

identifier.
mi_typeid_equals() function 2-4
mi_typeid_is_builtin()

function 2-4
mi_typeid_is_collection()

function 2-4
mi_typeid_is_complex()

function 2-4
mi_typeid_is_distinct()

function 2-4
mi_typeid_is_list() function 2-4
mi_typeid_is_multiset()

function 2-4
mi_typeid_is_row() function 2-4
mi_typeid_is_set() function 2-4
mi_typename_to_id() function 2-8
mi_typename_to_typedesc()

function 2-8
mi_typestring_to_id() function 2-8
mi_typestring_to_typedesc()

function 2-8
mi_type_align() function 2-6
mi_type_byvalue() function 2-6,

2-53, 8-76, 11-36, 11-39
MI_TYPE_DESC structure. See

Type descriptor.
mi_type_element_typedesc()

function 2-6, 5-46
mi_type_full_name() function 2-6
mi_type_length() function 2-6
mi_type_maxlength() function 2-6
mi_type_owner() function 2-6
mi_type_precision() function 2-6,

2-11, 2-21, 3-26, 3-32, 4-26, 4-28

mi_type_qualifier() function 2-6,
2-10, 4-26, 4-27

mi_type_scale() function 2-6, 2-11,
3-26, 4-26, 4-28

mi_type_typedesc() function 2-8,
2-21

mi_type_typename() function 2-6,
2-10, 2-21, 8-50

mi_udr_lock() function 12-65,
12-66

MI_UDR_TYPE data type 1-20
mi_unlock_memory()

function 13-31, 13-46, 13-52
mi_unregister_callback()

function 10-12
mi_unsigned_char1 data type 1-14,

2-12, 2-13, 2-52, 3-5
mi_unsigned_int8 data type 1-15,

3-5, 3-9
mi_unsigned_integer data

type 1-15, 2-51, 3-5, 3-7, 15-11
mi_unsigned_smallint data

type 1-15, 2-51, 3-5, 3-6, 15-11
mi_value() function 2-56, 5-6, 5-50,

5-54, 6-81, 8-68, 8-89, 14-95
mi_value_by_name()

function 2-56, 5-6, 5-50, 5-54,
6-81, 8-68, 14-95

mi_var_copy() function 2-23, 2-24,
2-37, 2-39

mi_var_free() function 2-23, 2-26
mi_var_to_buffer() function 2-37,

2-38
mi_vpinfo_classid() function 12-63
mi_vpinfo_isnoyield()

function 12-63
mi_wchar data type 1-14
MI_Xact_State_Change event type

as state transition 10-76
callback type for 10-9, 10-77
connection descriptor for 10-11
default handling in client

LIBMI 10-19
default handling in UDR 10-18
definition of 10-4
event-type structure for 10-28,

10-30
See also State-change callback.

mi_yield() function 12-32, 12-50

mi_zalloc() function 10-43, 13-3,
13-31, 13-33, 13-34, 13-42, A-2,
A-3

mmap() system call 12-35
Module. See DataBlade API

module.
Monetary data

binary representation 3-17, 3-18,
3-23, 8-15

end-user format for 3-16
text representation 3-15, 3-23,

8-15
Monetary string

converting from mi_money 3-23
converting to mi_money 3-23
data conversion of 3-23
definition of 3-15
format of 3-15

MONEY data type
arithmetic operations on 3-25
corresponding DataBlade API

data type 1-15, 3-16
data conversion of 3-23
DataBlade API functions for 3-22,

3-23
ESQL/C functions for 1-29, 3-21,

3-24
format of 3-17, 3-18, 8-15
functions for 3-21, 3-22, 3-23
GLS library functions for 1-30
international money formats 3-17
macros 3-21
obtaining column value for 8-71
precision of 3-26
role of decimal.h 1-11, 3-18
scale of 3-26
See also mi_decimal data type;

mi_money data type;
Precision; Scale.

msgget() system call 12-33
MSGPATH configuration

parameter 11-43
MULTISET data type

checking type identifier for 2-4
corresponding DataBlade API

data type 1-16
format of 8-16
obtaining column value for 8-84
30 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
See also Collection data type
(SQL).

__myErrors__ trace class 11-47

N
Named memory

advantages 13-32, 13-40
allocating 13-42
caching a function descriptor

in 9-49
concurrency issues 13-45
constructor for 13-41
deallocating 13-52
definition of 13-39
description of 13-31
destructor for 13-41, 13-52
locking 13-46
managing 13-39
memory duration of 13-41
monitoring use of 13-54
obtaining address of 13-43
PER_SESSION memory duration

and 13-25
PER_SYSTEM duration 13-27
unlocking 13-52

Named row type 1-16, 5-43, 8-16
See also Row type (SQL);

Unnamed row type.
Named VP. See User-defined virtual

processor.
NCHAR data type

as return value 12-20
as routine argument 12-9, 12-20
corresponding DataBlade API

data type 1-14, 2-12, 2-13, 12-9,
12-20

corresponding ESQL/C data
type 12-20

functions for 2-16
GLS library functions for 1-30
obtaining column value for 8-71
See also CHAR data type;

Character data; Global
Language Support (GLS).

Negator function 9-39, 11-6, 11-26,
14-91

NEGATOR routine modifier 9-39,
11-26, 14-91

New features of this
product Intro-6

Nonarithmetic operations
byte data 2-45
date data 4-9
See also Arithmetic operations.

Nonsimple state. See Aggregate
state, nonsimple.

Nonstack memory. See User
memory.

Nonvariant function 9-38
Nonyielding user-defined VP

class 12-50, 12-51, 12-52
NOT condition 9-39, 14-91
NOT FOUND condition 8-61,

10-38, 10-40
NOT VARIANT routine

modifier 8-4, 9-38
NULL constant 2-57
Null termination 2-28
NULL-valued pointer 2-58, 6-106,

10-43, 10-50
See also SQL NULL value.

NUMERIC data type. See
DECIMAL data type.

Numeric expressions 3-33
NVARCHAR data type

as return value 12-20
as routine argument 12-9, 12-20
corresponding DataBlade API

data type 1-14, 2-12, 2-13, 12-9,
12-20

corresponding ESQL/C data
type 12-20

functions for 2-16
GLS library functions for 1-30
obtaining column value for 8-71
See also Character data; Global

Language Support (GLS);
VARCHAR data type.

O
.o file extension 11-21
ONCONFIG file. See Configuration

parameter.

oninit utility 12-55, 12-62, 12-93,
13-27

Online help Intro-11
Online manuals Intro-11
online.log file. See Message log file.
onmode utility 12-58
onspaces utility 6-55
onstat utility

-g ath 14-99
-g dll 11-34, 11-59
-g glo 11-42, 12-59, 12-62
-g mem 13-23, 13-54, 13-55
-g rea 12-59
-g sch 11-42, 12-59
-g ses 13-54, 14-99
-g stk 14-99
-g sts 13-58
-g ufr 13-56
-r 13-54

Opaque data type
as parameter 15-12
binary load file

representation 15-15
binary representation. See Opaque

data type, internal
representation.

bulk copy of 15-36
casting to IMPEXP 15-17
casting to IMPEXPBIN 15-17
casting to LVARCHAR 15-17
casting to SENDRECV 15-17
client external binary

representation 15-15
client internal

representation 15-27
code-set conversion of 15-36
contents of 6-25
corresponding DataBlade API

data type 1-16
creating 15-3
definition of 6-25
designing 15-4
determining size of 15-6
external representation 2-16,

15-4, 15-15, 15-19, 15-26
external unload

representation 15-37
fixed-length 15-6
granting Usage privilege 15-65
Index 31

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
inserting 6-27
internal representation 15-5,

15-19, 15-27, 15-34
internal unload

representation 15-37, 15-48
memory alignment of 15-10
naming 15-6
obtaining column value for 8-71
pass by reference 15-10, 15-12,

15-22, 15-25, 15-31, 15-33,
15-43, 15-47, 15-52, 15-55

pass by value 15-12, 15-22, 15-25,
15-31, 15-33, 15-43, 15-47,
15-52, 15-55

passing mechanism for 15-12
portability of 15-5
predefined 2-16, 2-43, 2-45, 2-48,

2-49
providing statistics for 15-66
registering 15-6, 15-65
representations of 15-4, 15-15
routine argument as 12-12
routine return value as 12-21
selecting 6-26
server internal

representation 15-5, 15-19,
15-26, 15-27, 15-37, 15-48, 15-59

smart large object in 6-25, 6-95,
15-42, 15-46

smart large objects and 6-98
stat 15-67, 15-74
stream 12-82
stream representation 15-59
support functions. See Opaque-

type support function.
text load file representation 15-15
text representation. See Opaque

data type, external
representation.

transferring 15-15
unload representation 15-37
updating 6-27
varying-length 15-8
varying-length data types 15-17
See also Fixed-length opaque data

type; Varying-length opaque
data type.

Opaque-type modifier
ALIGNMENT 15-10

INTERNALLENGTH 15-6, 15-8
PASSEDBYVALUE 2-52, 15-12

Opaque-type support function
as cast function 15-15
assign() 15-62, 15-63
definition of 11-6, 15-14
destroy() 15-62, 15-64
disk-storage processing 15-62
export 15-37, 15-43
exportbin 15-48, 15-53
exporting binary

representation 15-48
for bulk copies 15-36
for external representation 15-19
for external unload

representation 15-37
for internal representations 15-27
for internal unload

representation 15-48
import 15-37, 15-39
importbin 15-48, 15-49
importing binary

representation 15-48
input 2-16, 15-19, 15-20
lohandles() 6-98
output 2-16, 15-19, 15-23
receive 15-27, 15-28
registering 15-65
send 15-27, 15-32
stream processing 15-56
streamread() 15-56, 15-58
streamwrite() 15-56, 15-57
writing 15-14

Opaque-type value, passing
mechanism for 2-52

_open(Windows) system call 12-86
open() system call 6-36, 12-33,

12-83, 12-86
Operating-system call. See System

call.
Operating-system file

access functions A-5
accessing 12-83, A-5
closing 12-88
copying 12-89
copying from smart large

object 6-101
copying to smart large

object 6-101

file modes for 6-101
filename of 12-85
length of 12-72
location of 12-87
open flags of 12-86
opening 12-85
ownership of 12-87
restrictions in UDR 9-38, 12-33,

12-83
scope of 7-32, 12-84, 12-88, 13-26
seek position in. See File seek

position.
sharing 12-88
See also File descriptor; File

management.
Operations. See Arithmetic

operations; Nonarithmetic
operations.

Operator function 1-4, 14-19
Operator-class function 11-6
OUT parameter 2-55, 11-36, 12-16,

12-22
Output support function

as cast function 15-17
conversion functions in 15-26
description of 15-19, 15-23
external format in 2-16
handling character data 2-18,

15-27
handling date and/or time

data 4-22, 15-26
handling date data 4-7, 15-26
handling decimal data 3-23, 15-26
handling smart large object 6-104,

15-27
internationalizing 15-20

Overloaded routine. See Routine
overloading.

P
Parallel Database Query

(PDQ) 14-94
PARALLELIZABLE routine

modifier 9-16, 11-26, 11-35,
14-97, 14-98

Parallelizable UDR
creating 14-94
32 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
definition of 11-6, 14-94
executing 14-97
non-PDQ-safe functions 14-95
registering 11-26, 14-97
routine sequence of 9-16, 11-35,

14-97
user-defined VPs and 12-54
writing 14-95

Parameter identifier 8-25
Parameter marker 10-71
Parameter-information descriptor

description of 1-22, 7-16
fields of 7-16
pointer_checks_enabled

field 10-34
populating 7-18
setting 7-18

Parameter. See Input parameter;
Parameter marker; Routine
parameter.

Parent connection 10-62
Parenthesis symbol 3-34
Pass-by-reference mechanism

column value 5-14, 5-20, 5-22,
8-72, 8-73, 11-16, 11-17

definition of 2-51
opaque type 15-12, 15-22, 15-31,

15-43, 15-52
routine argument 9-41, 11-36,

12-5
routine return value 9-41, 11-39,

12-18
with Fastpath interface 9-41
See also Passing mechanism.

Pass-by-value mechanism
column value 8-73, 11-16, 11-17
definition of 2-51
opaque type 15-12
promoting type 11-37
routine argument 9-41, 11-36,

12-6
routine return value 9-41, 11-39,

12-18
with Fastpath interface 9-41
See also Passing mechanism.

PASSEDBYVALUE opaque-type
modifier 2-52, 15-12

Passing mechanism
C UDRs 2-51

column value 5-14, 5-20, 5-22,
8-72

determining 2-6, 11-36, 11-39
Fastpath arguments 9-41
Fastpath return value 9-41
for client LIBMI applications 2-54
input-parameter values 5-52, 8-47
mi_boolean 2-48, 2-52
mi_call() and 13-60
mi_char 2-13
mi_char1 2-13, 2-52
mi_date 2-51, 4-5
mi_datetime 4-13
mi_decimal 3-17, 3-29
mi_double_precision 3-30
mi_impexp 2-22
mi_impexpbin 2-22
mi_int1 3-6
mi_int8 3-10
mi_integer 2-51, 3-8
mi_interval 4-15
mi_lvarchar 2-22
mi_money 3-18, 3-29
mi_pointer 2-49, 2-52
mi_sendrecv 2-22
mi_sint1 3-6
mi_smallint 2-51, 3-7
mi_string 2-13
mi_unsigned_char1 2-13, 2-52
mi_unsigned_int8 3-10
mi_unsigned_integer 2-51, 3-8
mi_unsigned_smallint 2-51, 3-7
opaque types 15-12
opaque-type value 2-52
pass by reference. See Pass-by-

reference mechanism.
pass by value. See Pass-by-value

mechanism.
routine argument 9-41, 11-36,

12-4
routine return value 9-41, 11-39,

12-17
See also Pass-by-reference

mechanism; Pass-by-value
mechanism.

pause() system call 12-33
PERCALL_COST routine

modifier 11-26, 14-84

Period (.) symbol 3-14, 3-15, 3-27,
3-34

PER_COMMAND memory
duration

description of 13-9, 13-10, 13-12
iterator functions with 14-11
memory pool for 13-12, 13-56
saving address of 13-30
scope of 13-12
user-state information with 9-15
uses of 13-13

PER_CURSOR memory duration
memory pool for 13-56

PER_FUNCTION memory
duration. See PER_ROUTINE
memory duration.

PER_ROUTINE memory duration
changing 13-36
default memory duration 12-37,

13-12, 13-34
description of 13-9, 13-10, 13-11
memory pool for 13-11, 13-56
saving address of 13-30
scope of 13-11
uses of 13-11
with Fastpath 9-54

PER_SESSION memory duration
description of 13-9, 13-22, 13-25
end-of-session callback and 10-79
memory pool for 13-25, 13-56
scope of 13-25
uses of 13-25

PER_STATEMENT memory
duration

deprecated 13-9
description of 13-10, 13-15
memory pool for 13-15, 13-56
scope of 13-15

PER_STMT_EXEC memory
duration

description of 13-9, 13-10, 13-15
end-of-statement callback

and 10-79
memory pool for 13-15, 13-56
saving address of 13-30
scope of 13-15
uses of 13-18, 13-20
Index 33

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
PER_STMT_PREP memory
duration

description of 13-9, 13-10, 13-21
memory pool for 13-21, 13-56
scope of 13-22

PER_SYSTEM memory duration
description of 13-9, 13-22, 13-27
memory pool for 13-27, 13-56
scope of 13-27
uses of 13-27

PER_TRANSACTION memory
duration

description of 13-9, 13-22, 13-23
end-of-transaction callback

and 10-79
memory pool for 13-23, 13-56
scope of 13-24
uses of 13-24

Platform icons Intro-9
Plus (+) sign 3-34
POINTER data type

corresponding DataBlade API
data type 1-17

description of 2-48
in UDR registration 11-28
with user-defined

aggregates 14-50
See also mi_pointer data type.

POINTER value, passing
mechanism for 2-52

poll() system call 12-33
popen() system call 12-43
Portability

byte data 2-46
character data 2-17
data conversion and 11-7
DataBlade API 1-4, 5-20, 5-52,

8-72
DataBlade API data types 11-7
LO handle 6-104
mi_boolean data type 1-17
mi_char1 data type 2-12
mi_date data type 4-6
mi_datetime data type 4-21
mi_decimal data type 3-22, 3-31
mi_double_precision data

type 1-17, 3-31
mi_int8 data type 3-12
mi_integer data type 1-17, 3-8, 3-9

mi_interval data type 4-21
mi_money data type 3-22
mi_real data type 1-17, 3-30, 3-31
mi_smallint data type 1-17, 3-6,

3-7
opaque type 15-5

Pound (#) sign 3-33
PRECDEC decimal macro 3-21
Precision

for column 5-47
for input parameter 8-25
for routine argument 9-6
for routine return value 9-12
from MI_FPARAM 2-21, 3-26,

3-32, 4-26, 4-28, 9-5, 9-10
from row descriptor 2-21, 3-26,

3-32, 4-26, 4-28, 5-46
from statement descriptor 2-21,

3-26, 3-32, 4-26, 4-28, 8-24
from type descriptor 2-6, 2-21,

3-26, 3-32, 4-26, 4-28
obtaining 3-21
of character value 2-20
of DATETIME value 4-28
of DECIMAL value 3-16, 3-26,

3-28, 3-32
of fixed-point value 3-14
of INTERVAL value 4-28
of MONEY value 3-17, 3-26

PRECMAKE decimal macro 3-21
PRECTOT decimal macro 3-21
Prepared statement

assembling the statement
string 8-19

closing 8-51
control mode 8-50
creating 8-19
definition of 8-18, 13-21
description of 8-7
dropping 7-31, 8-52
functions for 8-12, 8-18, 8-29, 8-33
input parameters in 8-19, 8-24
memory duration for 13-21
name of 8-22
name of SQL statement 8-23
number of input parameters

in 8-24
obtaining input-parameter

information 8-23

parallelizable UDR and 14-95
reasons for 8-8
releasing resources 8-51
row descriptor for 8-23, 8-65
sending to database server 8-27
statement identifier 8-23
where stored 7-7
See also Statement descriptor.

Process
forking 12-65
global resources 12-38, 12-41,

12-66
local resources 12-42
server-initialization 12-93
single-instance 12-53
state information of 12-41
static resources 12-38
suspending 12-42
virtual processor as 11-42, 12-42,

12-59, 13-4
Product icons Intro-9
Program group

Documentation notes Intro-13
Release notes Intro-13

Public connection descriptor. See
Connection descriptor.

putmsg() system call 12-33

Q
Qualifier 2-6, 4-13, 4-16, 4-26, 4-27
Query

control mode 2-15, 8-14, 8-50
current statement as 8-61
cursor for. See Cursor.
cursors used 8-8
definition of 8-6
executing 8-12, 8-14, 8-29, 8-33
finishing 8-91
interrupting 8-93
memory duration and 13-13,

13-16
obtaining query row 8-66
parallelizable 14-94
retrieving data from 8-64
selectivity of 14-82
SQL statements for 8-6
subquery of 13-12, 13-13, 13-16
34 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
See also EXECUTE FUNCTION
statement; SELECT statement.

Query optimizer 9-22, 11-30, 11-38,
14-81, 14-82

Query parser 9-20, 11-30
Question mark (?)

input-parameter indicator 8-20

R
rdatestr() function 4-8
rdayofweek() function 4-9
rdefmtdate() function 4-8, 4-24
rdownshift() function 2-20
read() system call 6-36, 12-33,

12-84
REAL data type. See SMALLFLOAT

data type.
realloc() system call 12-35
Receive support function

as cast function 15-16
conversion functions in 15-34
description of 15-27, 15-28
handling byte data 2-46, 15-35
handling character data 2-17,

15-36
handling date and/or time

data 4-21, 15-35
handling date data 4-6, 15-35
handling decimal data 3-22, 15-35
handling floating-point data 3-31,

15-35
handling integer data 3-7, 3-9,

3-12, 15-35
handling smart large

objects 6-105, 15-36
Reference count

decrementing 6-96, 6-98
definition of 6-23, 6-96
for BLOB column 6-97
for CLOB column 6-97
for opaque-type column 6-98
for temporary smart large

object 6-99
incrementing 6-74, 6-98
managing 6-96
obtaining 6-93
storage location of 6-96

Related reading Intro-13
Release notes Intro-12, Intro-13
Return value. See Routine return

value.
rfmtdate() function 4-8, 4-24
rfmtdec() function 3-33
rfmtdouble() function 3-33
rfmtlong() function 3-33
rjuldmy() function 4-9
rleapyear() function 4-9
rmdyjul() function 4-9
ROLLBACK WORK

statement 6-22, 11-12, 11-13
Routine argument

checking 9-5
constructor for 13-11
data type 9-5
declaring 12-4
default value 9-41
destructor for 13-11
determining if NULL 9-8, 9-36,

12-12
determining number of 9-5
for companion UDR 14-87
for expensive UDR 14-86
handling character data 2-14,

2-15, 12-9
handling NULL 9-5, 9-6, 9-36,

9-41
handling opaque-type data 2-44,

12-12
in routine signature 11-31
length of 9-5, 9-6
memory duration of 11-36, 12-5,

13-11
memory for 13-57
mi_call() and 13-59
MI_FPARAM structure 9-3, 12-7
modifying 12-16
obtaining value of 12-9
omitting 12-4, 12-8
OUT parameter 12-22
passing 2-55
passing by reference 12-5, 12-22,

13-60
passing by value 11-37, 12-6
passing mechanism for 11-36,

12-4
passing to Fastpath 9-41

precision of 2-21, 3-26, 3-32, 4-26,
4-28, 9-5, 9-6

promoting type 11-37
pushing onto stack 11-35
scale of 2-21, 3-26, 3-32, 4-26, 4-28,

9-5, 9-6
setting number of 9-5
setting to NULL 9-8
specifying at registration 11-27
type identifier of 9-5, 9-6
See also Routine parameter.

Routine identifier
data type for 11-31
definition of 11-31
for companion UDR 14-86, 14-87
for current UDR 9-19
for Fastpath UDR 9-36
in function descriptor 9-36
in MI_FPARAM 9-19
in MI_FUNCARG 14-86, 14-87
in routine sequence 11-35
obtaining function descriptor

by 9-27
Routine instance

concurrency and 12-52
connection descriptor and 7-22
definition of 11-30
end of 11-40
execution of 11-31
explicit 11-29
global resources and 12-41, 12-52
implicit 11-29, 11-32, 11-34
in nonyielding VP class 12-52
locking to a VP 12-66
of parallel UDR 14-97
PER_COMMAND memory

and 13-12, 13-13
PER_ROUTINE memory

and 13-11
PER_SESSION memory

and 13-25
PER_STATEMENT memory

and 13-15
PER_STMT memory and 13-15
PER_STMT_PREP memory

and 13-22
PER_SYSTEM memory and 13-27
PER_TRANSACTION memory

and 13-24
Index 35

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
routine sequence and 11-34
session context and 7-6
single-instance VP class

and 12-53
Routine invocation

concurrency and 12-52
connection descriptor and 7-21,

7-22
cursors and 11-10
definition of 11-30, 13-11
execution of 11-31
global resources and 12-39, 12-41,

12-52
in nonyielding VP class 12-51
memory duration for 13-11, 13-13
MI_FPARAM and 9-14, 9-55,

14-98
routine sequence and 9-14
session context and 7-6

Routine manager
calling conventions 11-37
creating routine sequence 11-34
description of 11-31
Fastpath execution and 9-40
handling programming

errors 10-19
loading a shared-object file 11-32,

11-41, 12-38
managing UDR execution 11-38,

12-60
passing a return value 2-55, 9-11
passing an OUT parameter 2-55
passing routine argument 2-55,

11-35, 11-36, 12-4, 12-16, 13-11
providing routine-state

information 9-3, 11-17, 11-35,
12-7

providing user-state
information 9-14

pushing arguments onto
stack 11-35

returning a value 11-39, 12-17,
13-11

unloading a shared-object
file 11-57, 12-66

Routine modifier
CLASS 11-27, 11-38, 12-55, 12-57,

12-60
COMMUTATOR 9-40, 14-93

COSTFUNC 11-26, 14-84
HANDLESNULLS 9-8, 9-37,

11-27, 11-38, 12-12
INTERNAL 11-27
ITERATOR 11-26, 14-7, 14-9,

14-15
NEGATOR 9-39, 11-26, 14-91
NOT VARIANT 8-4, 9-38
PARALLELIZABLE 9-16, 11-26,

11-35, 14-97, 14-98
PERCALL_COST 11-26, 14-84
SELCONST 11-26, 14-82
SELFUNC 11-26, 14-82
STACK 11-27, 13-59
VARIANT 8-4, 9-38

Routine name
different from C-function

name 11-25
for companion UDR 14-86, 14-87
for UDR 9-18
in MI_FUNCARG 14-86, 14-87
in routine signature 11-31
overloading 11-30
uniqueness of 11-20, 11-21
See also Routine signature.

Routine overloading 9-21, 11-30
See also Routine resolution.

Routine parameter 12-4
See also Routine argument.

Routine resolution 9-20, 9-27, 11-30
See also Routine overloading.

Routine return value
constructor for 13-11
data type 9-11
declaring 12-17
defining 12-17
destructor for 13-11
determining if NULL 9-13
determining number of 9-10
handling character data 2-15,

12-20
handling NULL 9-12
handling opaque-type data 2-44,

12-21
length 9-11
memory duration of 11-39
memory for 13-57
multiple 12-22
OUT parameter 12-22

passing 2-55
passing back 11-39
passing by reference 12-18, 12-19
passing by value 12-18, 12-19
passing mechanism for 11-39,

12-17
precision of 2-21, 3-26, 3-32, 4-26,

4-28, 9-10, 9-12
receiving from Fastpath 9-41
scale of 2-21, 3-26, 3-32, 4-26, 4-28,

9-12
setting number of 9-10
setting to NULL 9-13, 12-19
setting value of 12-19
specifying at registration 11-27
type identifier 9-11
variant 9-38

Routine sequence
creating 11-34
definition of 11-34
function descriptor and 9-26,

9-28, 9-32
MI_FPARAM and 9-14, 9-16
of parallel UDR 9-16, 14-97
releasing 11-31, 11-40
routine instance and 11-34

Routine signature 9-27, 11-31
Routine. See DataBlade API

function; User-defined routine
(UDR).

Row
current 8-66, 8-67, 8-69
fetching 8-39
jagged 8-64, 8-65, 8-79, 8-81
obtaining column values 8-68,

11-17
obtaining information about 8-65
parts of 8-64
processing remaining 8-91
releasing resources for 5-57
retrieving 8-66
row descriptor for 8-65
See also Row structure; Row type

(SQL).
Row cursor. See Cursor.
ROW data type (SQL). See

Unnamed row type.
Row descriptor

accessor functions 5-46, 14-96
36 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
column identifier 5-46, 5-47, 8-68
column name 5-46
column NULL constraints 5-46
column precision 2-21, 3-26, 3-32,

4-26, 4-28, 5-46, 5-47
column scale 4-28, 5-46, 5-47
column type descriptor 5-46, 5-47
column type identifier 5-46, 5-47
constructor for 5-45, 5-50, 13-35
creating 5-50
definition of 8-64
description of 1-22, 5-45, 8-65
destructor for 5-45, 5-58, 13-35
determining column NULL

constraints 5-47
for current statement 8-65
for prepared statement 8-65
for row structure 8-65
for type descriptor 8-65
freeing 5-57, 5-58, 7-31, 8-91
functions for 5-46
invalid 10-33
jagged rows with 8-64
memory duration of 5-45, 5-58,

13-35
number of columns in 5-46
obtaining 8-65

Row structure
checking pointers to 7-16
column values in 8-68
constructor for 5-49, 5-50, 13-35
copying 5-55
corresponding SQL data

type 1-16
creating 5-50
definition of 8-64
description of 1-22, 5-49, 8-67
destructor for 5-49, 5-57, 13-35
format of 5-49, 8-16, 8-67
freeing 5-57, 5-58, 7-31, 8-91
from a query 8-67
functions for 5-49, 5-50
in opaque type 15-61
invalid 10-33
memory duration of 5-49, 5-57,

13-35
obtaining 8-66
row descriptor for 8-65
scope of 5-57

See also Row; Row type (SQL).
Row type (SQL)

accessing 5-54
as column value 8-79
binary representation 5-44, 8-16
checking type identifier for 2-4
column identifier 5-46
copying 5-55
creating 5-50
data structures for 5-44
description of 5-43
field 5-43
field information 5-46
field name 5-46
field NOT NULL constraint 5-46
field precision 5-46
field scale 5-46
field-type descriptor 5-46
field-type identifier 5-46
kinds of 5-44
number of fields in 5-46
obtaining column value for 8-80
parallelizable UDR and 14-96
releasing resources for 5-57
retrieving field values from 5-50
text representation 5-43, 8-16
See also Row; Row structure.

Row-type string 5-43
rstod() function 2-19
rstoi() function 2-19
rstol() function 2-19
rstrdate() function 4-8
rtoday() function 4-9
Runtime error

ANSI errors 10-37
custom 10-37, 10-66, 10-72
definition of 10-33
exception level for 10-34
Informix-specific 10-35, 10-37
ISAM 10-59
literal 10-37, 10-65
obtaining text of 10-29
raising 10-65, 10-67
SQLCODE values 10-39
SQLSTATE values 10-37, 10-38,

10-39
tracing 11-48
X/Open errors 10-37

See also Database server exception;
Error handling; Warning.

rupshift() function 2-20

S
Save set

building 8-97
creating 8-96
description of 1-22
destroying 7-31
freeing 7-31, 8-101
getting next row 8-98
inserting row into 8-96
invalid 10-34
obtaining first row 8-98
obtaining previous row 8-98
obtaining rows from 8-98
parallelizable UDR and 14-96
using 8-95
where stored 7-7

Save-set structure
constructor for 8-95, 8-96, 13-21
definition of 8-95
description of 1-22
destructor for 8-95, 8-101, 13-21
memory duration of 8-95, 8-101,

13-21
obtaining 8-96

Sbspace
definition of 6-7
metadata area 6-7, 6-8, 6-12, 6-23
name of 6-10, 6-53, 6-61
status information 6-22
storage characteristics for 6-56
temporary 6-99
user-data area 6-7, 6-12

SBSPACENAME configuration
parameter 6-53, 6-57

Scale
for column 5-47
for data type 4-28
for input parameter 8-25
for routine argument 9-6
for routine return value 9-12
from MI_FPARAM 4-28, 9-5
from row descriptor 4-28, 5-46
Index 37

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
from statement descriptor 4-28,
8-24

from type descriptor 2-6
obtaining 3-21
of DATETIME value 4-28
of DECIMAL value 3-16, 3-26
of fixed-point value 3-14
of INTERVAL value 4-28
of MONEY value 3-17, 3-26

seek() system call 6-36, 12-83
SELCONST routine modifier 11-26,

14-82
SELECT statement

associated with a cursor 8-6
calling a UDR 11-13, 11-29, 11-38
DATETIME data 4-18
FOR READ ONLY clause 8-36
FOR UPDATE clause 8-36
INTERVAL data 4-19
obtaining results of 8-60
opaque types in 15-23, 15-32
sending to database server 8-57,

8-61
smart large object 6-26, 6-81, 8-77
WHERE clause 11-38
See also Cursor; Query.

Selectivity function
argument functions for 14-85
argument information 14-85
definition of 11-6, 14-82

select() system call 12-33
SELFUNC routine modifier 11-26,

14-82
Semicolon (;) symbol 8-12, 8-53
semop() system call 12-33
Send support function

as cast function 15-17
conversion functions in 15-34
description of 15-27, 15-32
handling byte data 2-46, 15-35
handling character data 2-17,

15-36
handling date and/or time

data 4-21, 15-35
handling date data 4-6, 15-35
handling decimal data 3-22, 15-35
handling floating-point data 3-31,

15-35

handling integer data 3-7, 3-9,
3-12, 15-35

handling smart large
objects 6-105, 15-36

SENDRECV data type
casting from 15-16
casting from opaque type 15-17
corresponding DataBlade API

data type 1-16
description of 2-22, 15-15
See also mi_sendrecv data type.

SERIAL data type
corresponding DataBlade API

data type 1-15, 3-5, 3-8
obtaining last value 8-94
See also INTEGER data type;

mi_integer data type.
SERIAL8 data type

corresponding DataBlade API
data type 1-15, 3-5, 3-10

getting last value 8-94
See also INT8 data type; mi_int8

data type.
Server environment

accessing 12-93
configuration parameters 12-93
environment variables 6-102,

11-25, 12-85, 14-16
file-access permissions 12-93
information in 12-93
working directory 12-93

Server exception. See Database
server exception.

Server locale 7-9, 7-10, 12-92, 12-93
Server-initialization process 12-93
Server-processing locale 7-5, 10-68,

12-92, 12-93, 15-36
SERVER_LOCALE environment

variable 7-9, 7-10, 12-93
Session

beginning 7-5, 7-6, 7-25
callback for 13-25
context of. See Session context.
definition of 7-4, 10-77, 13-25
ending 7-32, 10-77, 12-88, 13-52
environment of. See Session

environment.
function descriptors and 9-48
identifier for 12-92, 13-54

memory duration for 13-25
restrictions in UDR 11-10
See also Connection; Session

management.
Session context 7-5, 7-6, 7-31, 11-10
Session control block 7-5
Session environment 12-91
Session identifier 12-92
Session management

caching function descriptors 9-48
cursors and 11-10
description of 7-4
in C UDRs 7-6, 11-10
in client LIBMI applications 7-5,

7-32
MI_EVENT_END_SESSION

event and 10-77
session-duration connection

descriptor and 7-23, 9-49
session-duration function

descriptor and 9-49
smart large objects and 6-85, 6-95,

6-99, 6-100
See also Connection; Session.

Session parameter
obtaining 7-17
setting 7-17
system-default 7-17
user-defined 7-17
using 7-16

Session thread 7-5, 12-27, 13-57
Session-duration connection

descriptor
constructor for 7-23, 13-26
definition of 7-23
destructor for 7-23, 13-26
memory duration of 7-23, 7-32,

13-26
obtaining 7-23
restrictions on 7-24
uses for 7-24, 9-48
See also Connection descriptor.

Session-duration function
descriptor

caching 9-49
constructor for 9-49, 13-26
creating 9-49
description of 7-24, 9-48
destructor for 9-49, 13-26
38 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
freeing 9-52, 9-57
memory duration of 9-49, 13-26
obtaining 9-50
releasing resources for 9-52
reusing 9-51
See also Function descriptor.

SET CONSTRAINTS
statement 8-56, 11-11

SET data type
checking type identifier for 2-4
corresponding DataBlade API

data type 1-16
format of 8-16
obtaining column value for 8-84
 See also Collection data type

(SQL).
SET EXPLAIN statement 14-99
setegid() system call 12-43
seteuid() system call 12-43
setgid() system call 12-43
setrgid() system call 12-43
setruid() system call 12-43
setuid() system call 12-43
SET_END iterator-status

constant 9-18, 14-6, 14-14, 15-71
SET_INIT iterator-status

constant 9-18, 14-6, 14-11, 15-71
SET_RETONE iterator-status

constant 9-18, 14-6, 14-13, 15-71
Shared library 12-42

See also Shared-object file.
Shared memory

accessing 13-4
advantages of 13-4
allocating 13-34, 13-42
deallocating 13-38, 13-52
managing 13-31
monitoring use of 13-54
types of 13-31
understanding 13-4
See also Memory management;

Named memory; User
memory.

Shared-memory virtual-processor
(SHM VP) class 12-26

Shared-object file
creating 11-20
executing UDRs in 9-21

loading 9-20, 9-23, 11-21, 11-24,
11-32, 11-41, 12-38

locking in memory 12-66
monitoring 11-34, 11-59
permissions of 11-21
symbols in 11-45
unloading 11-34, 11-57, 12-66
unused 11-58
variables in 12-38
See also DLL (dynamic link

library); Shared library.
SHM VP. See Shared-memory

virtual processor (SHM VP).
shmat() system call 12-35, 12-43
Signal 12-43, 12-44
signal() system call 12-43
Simple binary operator 14-45, 14-62
Simple large object 2-49
Simple state. See Aggregate state,

simple.
Simple-large-object data type. See

BYTE data type; Simple large
object; TEXT data type.

Single-instance VP class 12-41,
12-52, 12-66

Single-statement transaction 11-12
SINGLE_CPU_VP configuration

parameter 12-55
sleep() system call 12-43
SLV. See Statement local variable

(SLV).
SMALLFLOAT data type

corresponding DataBlade API
data type 1-15, 3-28

DataBlade API functions for 3-31
declaring variables for 3-29
format of 8-16
functions for 3-31
obtaining column value for 8-71
See also mi_real data type.

SMALLINT data type
corresponding DataBlade API

data type 1-15, 3-5, 3-6
format of 3-6, 8-15
obtaining column value for 8-71
See also mi_smallint data type.

SMALLINT value, passing
mechanism for 2-51

Smart large object
access method 6-17, 6-65
access mode 6-15, 6-21, 6-65
accessing 6-26, 6-80
altering 6-88
attributes 6-11, 6-62
binary representation 8-16
buffered I/O 6-18, 6-65
buffering mode 6-18, 6-54, 6-65
buffering recommendation 6-19
buffers and 6-102
byte data in 2-45, 6-24
character data in 2-16, 6-24
closing 6-21, 6-33, 6-85, 6-100
converting 6-101
creating 6-35, 6-43
creation functions 6-35, 6-69
data conversion of 6-103
data integrity 6-13, 6-62
definition of 6-6
deleting 6-95
estimated size 6-53, 6-60
extent size 6-10, 6-53, 6-61, 6-88
files and 6-42, 6-101
in a database 6-24
in opaque data type 6-25, 6-104,

6-105, 15-27, 15-36, 15-61
in operating-system file 6-101
information about 6-8
inserting 6-27, 6-74
interface. See Smart-large-object

interface.
I/O functions 6-72, 6-83, 6-84
last-access time 6-13, 6-22, 6-54,

6-62, 6-88, 6-93
last-change time 6-22, 6-93
last-modification time 6-23, 6-93
length of. See Smart large object,

size of.
lightweight I/O 6-18, 6-65
LO file descriptor. See LO file

descriptor.
LO handle. See LO handle.
location of. See Smart large object,

sbspace.
locking 6-20, 6-54, 6-65, 6-105
logging of 6-11, 6-54, 6-62, 6-88
LO-specification structure. See

LO-specification structure.
Index 39

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
LO-status structure. See LO-status
structure.

maximum I/O block size 6-53
maximum size 6-60
metadata 6-12, 6-13, 6-22
minimum extent size 6-53
modifying 6-87
next-extent size 6-10, 6-53
obtaining column value for 8-71
obtaining status of 6-89
open mode 6-14, 6-32, 6-64, 6-83
opening 6-83
optimizer 6-9
permanent 6-96, 6-100
reading from 6-84
reference count 6-23, 6-93
sample program 6-77, 6-85
sbspace 6-7, 6-10, 6-53, 6-61
scope of 6-33, 6-85, 7-32, 13-26
seek position in. See LO seek

position.
selecting 6-26, 6-81, 8-77
size of 6-10, 6-23, 6-53, 6-93
status information 6-22
storage characteristics. See Storage

characteristics.
storing 6-27, 6-74
text representation 8-16
transactions with 6-11, 6-21, 6-97,

6-98
transferring 6-104
transient 6-74, 6-76, 6-95, 6-99,

6-100, 13-26
unlocking 6-21, 6-22
updating 6-27, 6-74, 6-87
user data 6-13, 6-22, 6-23
valid data types 6-24
writing to 6-72
See also BLOB data type; CLOB

data type; Smart-large-object
interface.

Smart-large-object data type. See
BLOB data type; CLOB data
type; Smart large object.

Smart-large-object interface
data structures 6-29
description of 6-26, 6-28
functions in 6-34
NULL connections and 6-106

using 6-28
Smart-large-object lock

byte-range 6-21, 6-65, 6-105
exclusive 6-21, 6-85, 6-105
lock mode 6-20
lock-all 6-21, 6-65
releasing 6-22, 6-85
share-mode 6-21, 6-85
update 6-21
update mode 6-21, 6-85

Smart-large-object optimizer 6-9
SMI table, sysvpprof 12-60
.so file extension 11-20
Software dependencies Intro-4
Source data type. See Distinct data

type.
Special-purpose function

aggregate function 14-18
cast function 14-4
end-user routine 14-3
iteration function 14-5

SPL routine
multiple return values 9-29, 12-22
OUT parameter 12-22
restriction with Fastpath 9-40

SQL client application. See Client
application.

SQL command
definition of 13-12
function descriptors and 9-45
memory duration for 13-12
SQL statement and 13-12, 13-13,

13-15, 13-16
See also SQL statement.

SQL data type
alignment of 2-6
BITVARYING 1-16, 1-17, 2-22,

2-43
BLOB 1-17, 2-43, 6-24
BOOLEAN 1-17, 2-47
BYTE 1-17, 2-49
CHAR 1-14, 1-16, 1-17, 2-12
CLOB 1-17, 1-18, 2-12, 6-24
collections 1-16, 5-4, 5-5
complex 5-3
DataBlade API representation

of 2-3
DATE 1-16, 1-18, 4-3, 4-5

DATETIME 1-16, 1-18, 4-3, 4-12,
4-13

DECIMAL 1-15, 1-18, 3-16, 3-28
distinct 1-18
fixed-point 3-16
FLOAT 1-15, 1-18, 3-28, 3-30
floating-point 3-26
generic 2-50
IMPEXP 1-16, 2-22, 15-15
IMPEXPBIN 1-16, 2-22, 15-15
in registration 11-27
INT8 1-15, 1-18, 3-5, 3-10
INTEGER 1-15, 1-18, 3-5, 3-8
integer 3-5
INTERVAL 1-16, 1-18, 4-3, 4-12,

4-14
length of 2-6
LIST 1-16, 1-18, 5-5
literal value 8-14
locale-specific 1-12, 1-30, 1-31,

1-32, 2-13, 12-10, 12-20
LVARCHAR 1-14, 1-16, 1-18,

2-12, 2-22, 15-15
maximum length of 2-6
MONEY 1-15, 1-18, 3-16, 3-17
MULTISET 1-16, 1-18, 5-5
name of 2-6
named row type 1-16, 5-44
NCHAR 1-14, 1-18, 2-12, 2-13,

12-20
NULL value 2-57
NVARCHAR 1-14, 1-18, 2-12,

2-13, 12-20
obtaining information about 2-4
opaque 1-16, 1-18, 6-25
owner of 2-6
passing by reference. See Pass-by-

reference mechanism.
passing by value. See Pass-by-

value mechanism.
passing mechanism. See Passing

mechanism.
POINTER 1-17, 1-18, 2-48, 11-28,

14-50
precision of 2-6, 2-21, 3-26, 3-32,

4-26, 4-28
predefined opaque 2-16, 2-43,

2-45, 2-48, 2-49
qualifier of 2-6, 4-27
40 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
ROW 1-16, 1-18, 5-44
row types 1-16, 5-43, 5-44
scale of 2-6
SENDRECV 1-16, 2-22, 15-15
SERIAL 1-15, 1-18, 3-5, 3-8
SERIAL8 1-15, 1-18, 3-5, 3-10
SET 1-16, 1-18, 5-5
SMALLFLOAT 1-15, 1-18, 3-28,

3-29
SMALLINT 1-15, 1-19, 3-5, 3-6
support for 1-14, 2-3, 4-3
TEXT 1-14, 1-16, 1-19, 2-49
transferring between

computers 2-17, 2-46, 3-12,
3-22, 3-31, 4-6, 4-21, 6-104,
15-26, 15-34, 15-59

transporting 2-51
type descriptor. See Type

descriptor.
type identifier. See Type identifier.
unnamed row type 1-16, 5-44
VARCHAR 1-14, 1-16, 1-19, 2-12
varying-length 2-22
See also individual data type

names.
SQL identifier 8-20

See also Delimited identifier.
SQL NULL value

as argument value 9-8, 9-36, 9-37,
9-41, 12-12

as column value 5-46, 5-52, 8-79
as companion-UDR argument

value 14-88, 14-89
as expensive-UDR argument

value 14-86
as input-parameter value 8-24,

8-49
as return value 9-13, 9-42, 12-19
description of 2-57
distinct from NULL pointer 2-57
functions for 2-58
in data distribution 15-69
in statcollect() function 15-71,

15-76
See also NULL-valued pointer.

SQL request 12-26, 12-27
SQL routine 9-22
SQL statement

ALTER FUNCTION 11-57

ALTER PROCEDURE 11-57
ALTER ROUTINE 11-57
basic 8-10, 8-12
callback for 10-79, 13-20
calling iterator function 14-15
CREATE FUNCTION. See

CREATE FUNCTION.
CREATE PROCEDURE. See

CREATE PROCEDURE.
current. See Current statement.
cursor 13-13, 13-17, 13-19
DDL 8-6, 8-55, 8-56
definition of 13-15
DELETE. See DELETE statement.
DML 8-6, 8-57
ending 10-77
EXECUTE FUNCTION. See

EXECUTE FUNCTION
statement.

EXECUTE PROCEDURE 11-13,
11-29

executing. See Statement
execution.

identifier for. See Statement
identifier.

INSERT. See INSERT statement.
interrupting 8-93
invoking a UDR 9-20
memory duration for 13-12,

13-15, 13-21, 13-24
multiple errors 10-59
parameterized 8-7, 8-20
parsing 8-7
prepared. See Prepared statement.
processing results from 8-54
releasing resources for 8-51, 8-91
routine instance and 11-30
runtime errors in 10-33
SELECT. See SELECT statement.
sending to the database

server 8-12, 8-27
statement string 8-11, 8-19, 8-53,

8-93
transaction and 11-12, 11-13,

13-24
type of 8-6
unparameterized 8-19
unsuccessful 8-56

UPDATE. See UPDATE
statement.

warnings in 10-33
where invalid in a UDR 9-38
See also SQL command; Statement

execution.
SQL status condition. See Status

condition.
sqlca.h header file 1-11
SQLCODE status value

after DML statement 8-56
definition of 10-38
obtaining 10-29
runtime errors 10-39
status conditions in 10-39
using 10-38
warning values 10-39
See also ISAM error code;

SQLSTATE status value.
sqlda.h header file 1-11
sqlhdr.h header file 1-11
SQL-invoked routine 14-3
SQLSTATE status value

after DML statement 8-56
choosing custom codes 10-73
class and subclass codes 10-35
definition of 10-35
in syserrors table 10-66
obtaining 10-29
runtime errors 10-37, 10-38
status conditions in 10-37
using 10-35
warning values 10-37, 10-38
See also SQLCODE status value.

sqlstype.h header file 1-11
sqltypes.h header file 1-11
sqlxtype.h header file 1-11
Stack pointer 12-34
STACK routine modifier 11-27,

13-59
STACKSIZE configuration

parameter 13-58
Stack. See Thread stack.
stat opaque data type 15-67, 15-74,

15-76
statcollect() statistics function

defining 15-69
definition of 15-70
registering 15-76
Index 41

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
SET_END in 15-74
SET_INIT in 15-72
SET_RETONE in 15-73

statcollect() support
function 15-67, 15-78

State-change callback 10-9, 10-77
See also MI_Xact_State_Change

event type.
Statement descriptor

accessor functions 8-13, 8-22,
8-23, 8-24

constructor for 8-13, 8-22, 8-23
creating 8-22
description of 1-22, 8-22
destructor for 8-13, 8-22, 8-52,

8-92
determining input-parameter

NULL constraints 8-25
explicit 7-31, 8-22
freeing 7-31, 8-13, 8-22, 8-52
implicit 7-31, 8-13, 8-91
input-parameter

information 8-23, 8-24
input-parameter NULL

constraints 8-24
input-parameter precision 2-21,

3-26, 3-32, 4-26, 4-28, 8-24, 8-25
input-parameter scale 4-28, 8-24,

8-25
input-parameter type

identifier 8-24, 8-25
input-parameter type name 8-24,

8-25
memory duration of. See

Statement descriptor, scope of.
number of input parameters

in 8-24
parameter identifier 8-25
row descriptor 8-13, 8-23, 8-65
scope of 8-13, 8-22, 8-52
statement identifier 8-23
statement name 8-13, 8-23
where stored 7-7
See also Prepared statement.

Statement execution
basic SQL statements 8-10
C UDRs and 8-47, 8-73, 11-16
client LIBMI applications

and 8-47, 8-76

column-value loop 8-69
completing 8-90
control modes 8-14, 8-50
DataBlade API functions for 8-4,

8-5
DDL statements 8-56
description of 8-4
DML statements 8-57
handling query rows 8-61
in callbacks 10-26
interpreting column-value

status 8-71
interpreting statement status 8-55
mi_get_result() loop 8-55
mi_next_row() loop 8-67
multiple statements 8-53
obtaining column values 8-68,

11-17
parallelizable UDR and 14-95
performing 8-3
prepared statements 8-18
processing complete 8-61
processing results 8-54
retrieving data 8-64
sending statement 8-12, 8-27
unsuccessful 8-56
with mi_exec() 8-12
with mi_exec_prepared_

statement() 8-29
with mi_open_prepared_

statement() 8-33
Statement identifier 8-23
Statement local variable

(SLV) 12-24
Statement string 8-11, 8-19, 8-53
Statement. See SQL statement.
State-transition callback 10-9, 10-77

See also End-of-session callback;
End-of-statement callback;
End-of-transaction callback;
State-change callback.

State-transition event
beginning a transaction 10-76
callback for 10-77
description of 10-75
ending a session 10-77
ending a statement 10-77
handling 10-75
transition types 10-75

State-transition handling
in client LIBMI application 10-19,

10-84
in UDR 10-78
providing 10-78
using 10-75

Static variable 9-15, 12-38, 12-51,
12-53

Statistics-return structure. See
mi_statret structure.

statprint() statistics function
ASCII histogram for 15-79
defining 15-79
registering 15-80

Status condition 10-33, 10-34, 10-37,
10-39

Status information
data structure for 6-29, 6-33
definition of 6-22
last-access time 6-22, 6-93
last-change time 6-22, 6-93
last-modification time 6-23, 6-93
obtaining 6-93
reference count 6-23, 6-93
size 6-23, 6-93
storage characteristics 6-22, 6-93
storage location of 6-8
See also Storage characteristics.

stat() system call 6-36
stcat() function 2-20
stchar() function 2-20
stcmpr() function 2-20
stcopy() function 2-20
stddef.h header file 2-58
stleng() function 2-20
Storage characteristics

altering 6-88
attribute information 6-11, 6-62
choosing 6-49
column-level 6-53, 6-54, 6-55, 6-57
data structure for 6-29
default-open information 6-64
definition of 6-9
disk-storage information 6-9, 6-60
hierarchy of 6-52
obtaining from LO-specification

structure 6-59
obtaining from LO-status

structure 6-22, 6-93
42 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
open-mode information 6-14
specifying 6-59
storage location of 6-8
system default 6-53, 6-54, 6-55
system-specified 6-46, 6-53, 6-54,

6-55
user-specified 6-53, 6-54, 6-55,

6-59
See also Status information.

stores_demo database Intro-5
Stream

accessing 12-67
closing 12-69
data length 12-69, 12-80
data of 12-78, 12-83
definition of 12-67
end-of-stream condition 12-69
Enterprise Replication 15-56
error status on 12-69
initializing 12-79
mode of 12-80
opening 12-68, 12-70, 12-76
providing access to 12-80
reading from 12-69
registering UDR that

accesses 12-82
releasing resources for 12-82
stream-operations

structure 12-76
user-defined 12-75
writing to 12-69

Stream descriptor
allocating 12-79
constructor for 12-68, 13-36
deallocating 12-81, 12-82
definition of 12-68, 12-79, 12-80
description of 1-22, 12-79
destructor for 12-68, 12-83, 13-36
format of 12-80
initializing 12-79
memory duration of 12-68, 12-79,

12-82, 13-36
opaque type for 12-82
scope of 12-82

stream opaque data type 12-82
Stream seek position

at end-of-stream 12-69
definition of 12-67, 12-80
initial 12-67

obtaining 12-69
read operations and 12-68
setting 12-69
write operations and 12-68

Stream-operations structure 12-76
streamread() support function

conversion functions in 15-59
description of 15-56, 15-58
handling boolean data 15-61
handling byte data 15-60
handling character data 15-61
handling collection

structures 15-61
handling date and/or time

data 15-60
handling date data 15-60
handling decimal data 15-61
handling floating-point

data 15-61
handling integer data 15-60
handling row structures 15-61
handling smart large

objects 15-61
handling varying-length

structures 15-61
streamwrite() support function

conversion functions in 15-59
description of 15-56, 15-57
handling boolean data 15-61
handling byte data 15-60
handling character data 15-61
handling collection

structures 15-61
handling date and/or time

data 15-60
handling date data 15-60
handling decimal data 15-61
handling floating-point

data 15-61
handling integer data 15-60
handling row structures 15-61
handling smart large

objects 15-61
handling varying-length

structures 15-61
string data type (ESQL/C). See

mi_string data type.
String stream

closing 12-73

data length 12-73
description of 12-73
getting seek position of 12-73
opening 12-73
reading from 12-73
setting seek position of 12-73
stream I/O functions for 12-73
writing to 12-73

String. See Character data.
Structure

dec_t 3-18, 8-15
dtime_t 4-13, 8-15
event-type 10-24, 10-27
ifx_int8_t 3-11, 8-15
intrvl_t 4-14, 8-15
varying-length 2-22
See also DataBlade API data

structure.
Subquery 13-12, 13-13, 13-16
superstores_demo database Intro-5
Supertable 8-81
Support function

aggregate. See Aggregate support
function.

opaque-type. See Opaque-type
support function.

sync() system call 12-84
Syntax conventions, in function

syntax Intro-11
syscasts system catalog table 9-32,

14-4, 15-15
syscolattribs system catalog

table 6-57
syscolumns system catalog

table 2-6, 4-27
sysdistrib system catalog

table 15-68, 15-74, 15-78, 15-79
syserrors system catalog

table 10-66, 10-73
syslangauth system catalog

table 11-26
sysprocauth system catalog

table 11-28
sysprocedures system catalog table

commutator column 9-40
contents of 11-23
externalname column 11-21,

11-24, 11-32
Fastpath look-up 9-27, 9-32
Index 43

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
handlesnulls column 9-37
langid column 11-25
negator column 9-39
routine identifier 9-36, 11-31
structure for 9-26
variant column 9-38

sysroutinelangs system catalog
table 11-25

SYSSBSPACENAME configuration
parameter 15-78

System call
accept() 12-33
alarm() 12-43
bind() 12-33
blocking-I/O 12-29, 12-33
calloc() 12-35, 13-6
close() 6-36, 12-84
dlclose() 12-43
dlerror() 12-43
dlopen() 12-43
dlsym() 12-43
exec() 12-43, 12-65
exit() 12-43
file-management routines 12-83
fopen() 12-33
fork() 12-43, 12-65
free() 12-35, 12-37
getmsg() 12-33
LoadLibrary() 12-43
lock() 6-36
malloc() 12-35, 12-37, 12-44, 13-6
memory-management

routines 12-35, 13-6
mmap() 12-35
msgget() 12-33
open() 6-36, 12-33, 12-83, 12-86
pause() 12-33
poll() 12-33
popen() 12-43
putmsg() 12-33
read() 6-36, 12-33, 12-84
realloc() 12-35
safe 12-45
seek() 6-36, 12-83
select() 12-33
semop() 12-33
setegid() 12-43
seteuid() 12-43
setgid() 12-43

setrgid() 12-43
setruid() 12-43
setuid() 12-43
shmat() 12-35, 12-43
signal() 12-43
sleep() 12-43
stat() 6-36
sync() 12-84
system() 12-43
tell() 6-36, 12-83
truncate() 6-36
unlink() 12-84
unlock() 6-36
unsafe 12-42
valloc() 12-35
wait() 12-33
write() 6-36, 12-33, 12-84

System catalog table
syscasts 9-32, 14-4, 15-15
syscolattribs 6-57
syscolumns 2-6, 4-27
sysdistrib 15-68, 15-74, 15-78,

15-79
syserrors 10-66
syslangauth 11-26
sysprocauth 11-28
sysprocedures 11-23
sysroutinelangs 11-25
systraceclasses 11-48, 11-50
sysxtdtypeauth 15-65
sysxtdtypes 15-6
See also Individual table names.

System requirements
database Intro-4
software Intro-4

System-defined cast 9-31, 9-32
System-specified storage

characteristics 6-55
system() system call 12-43
systraceclasses system catalog

table 11-48, 11-50
sysvpprof SMI table 12-60
sysxtdtypeauth system catalog

table 15-65
sysxtdtypes system catalog table

accessing 2-6
align column 15-10, 15-11
byvalue column 15-12
initialized by 15-6

length column 15-6, 15-9
maxlen column 15-10

T
Table

identifier 14-86, 14-88, 14-90
inserting into 11-8
locks on 11-15
restrictions in UDR 11-11
temporary 8-36, 11-11
updating 11-8
violation temporary 11-11

Target data type. See Distinct data
type.

TCB. See Thread-control block
(TCB).

tell() system call 6-36, 12-83
Temporary table 11-11
TEXT data type

as return value 12-20
as routine argument 12-10
corresponding DataBlade API

data type 1-14, 1-16, 2-49,
12-10

See also Character data; Simple
large object.

Text data. See Character data.
Text representation

Boolean data 2-47, 8-16
character data 2-18, 8-15
collection 5-4, 8-84
column values in 8-72, 8-79, 8-80,

8-83
date and/or time data 4-11, 4-22,

8-15
date data 4-4, 4-7, 8-15
decimal data 3-14, 3-23, 3-27, 8-15
definition of 8-14
distinct data type 8-16
fixed-length opaque type 8-16
fixed-point data 3-14
floating-point data 3-27, 8-16
input parameters 8-46
INT8 (mi_int8) 8-15
integer data 3-4, 8-15
INTEGER (mi_integer) 8-15
interval data 4-22, 8-15
44 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
LO handle 6-103, 8-16, 8-77
mi_exec() results 8-17
mi_exec_prepared_statement()

results 8-50
mi_open_prepared_statement()

8-50
monetary data 3-15, 3-23, 8-15
opaque type 2-16, 15-4, 15-19,

15-26
row type 5-43
SMALLINT (mi_smallint) 8-15
varying-length opaque type 8-16

tf() tracing function 11-51
Thousands separator 3-4, 3-14,

3-15, 3-27
Thread

definition of 11-32, 12-26
migration of 12-30, 12-32, 12-66
program counter 12-34
session 7-5, 12-27, 13-57
stack. See Thread stack.
state information 12-34
switching VP of 12-64
system registers 12-34
threadsafe UDRs 12-35
yielding 12-30, 12-31

Thread migration 12-30, 12-32,
12-66

Thread stack
avoiding overflow of 13-58
default size 13-58
definition of 13-57
dynamically managing 13-59
location of 13-4
managing usage of 13-58
monitoring 13-58
pushing arguments onto 11-35,

11-37
stack pointer 12-34

Thread-control block (TCB) 7-5,
12-34

Threshold. See
Multirepresentational
threshold; Tracepoint threshold.

Tip icons Intro-9
tprintf() tracing function 11-52
Trace block 11-51
Trace class

built-in 11-47

choosing 11-47
creating 11-48
definition of 11-46, 11-47
identifier 11-48, 11-49
setting trace level of 11-53
specifying in tracepoint 11-49
__myErrors__ 11-47

Trace level 11-53
Trace message 11-46, 11-49, 11-50
Trace-class identifier 11-48, 11-49
Trace-output file 11-54
Tracepoint

adding 11-47
definition of 11-46
threshold 11-50
user-defined 11-47

Tracepoint threshold 11-46, 11-49
Tracing

description of 11-46
DPRINTF macro 11-49
functions for 11-53, 11-54
GL_DPRINTF macro 11-49
gl_tprintf() macro 11-52
internationalized 11-53
output 11-56
parallelizable UDR and 14-96
specifying trace-output file 11-54
trace blocks 11-51
trace-output file 11-54
tracepoint threshold 11-50
turning off 11-53
turning on 11-53
using a trace class 11-47

Tracing function
DPRINTF 11-49
GL_DPRINTF 1-33, 11-49
gl_tprintf() 1-33, 11-52
tflev() 11-52
tf() 11-51
time stamps with 11-56
tprintf() 11-52

Transaction
aborting. See Transaction, rolling

back.
beginning 6-22, 10-75, 10-76,

10-84, 11-13, 13-24
callback for 13-24
client LIBMI application and A-6

committing 6-22, 10-75, 10-80,
11-13, 11-15, 13-24

ending 8-38, 10-84, 13-24
explicit 11-12, 13-24
implicit 11-13
memory duration for 13-23
rolling back 6-22, 10-22, 10-75,

11-13, 11-15
single-statement 11-12
statements within a UDR 11-15
types of 11-12

Transaction management
constraint checking and 11-11
cursors and 8-38, 11-12
determining type of 11-12, 12-92
external objects and 10-79
in C UDRs 7-6, 10-77, 10-79, 11-11,

13-38
shared-object file and 11-57, 12-67
smart large objects and 6-11, 6-21,

6-97, 6-98
See also Transaction.

Transition descriptor
accessing 10-31
description of 1-23, 10-30
transition types 10-75
types of transition events 10-28,

10-30
where defined 10-31

Transition type
MI_ABORT_END 10-75, 10-78,

10-80
MI_BEGIN 10-75
MI_NORMAL_END 10-75,10-78,

10-80
where defined 10-75

.trc file extension 11-54
truncate() system call 6-36
TU_DAY qualifier constant 4-16
TU_DTENCODE qualifier

macro 2-10, 4-17, 4-24
TU_ENCODE qualifier macro 4-17
TU_END qualifier macro 4-16, 4-27
TU_FLEN qualifier macro 4-16
TU_Fn qualifier constant 4-16
TU_FRAC qualifier constant 4-16
TU_HOUR qualifier constant 4-16
TU_IENCODE qualifier

macro 4-17
Index 45

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
TU_LEN qualifier macro 4-16
TU_MINUTE qualifier

constant 4-16
TU_MONTH qualifier

constant 4-16
TU_SECOND qualifier

constant 4-16, 4-28
TU_START qualifier macro 4-16,

4-27
TU_YEAR qualifier constant 4-16,

4-27
two_bytes sample opaque type

export function 15-45
exportbin function 15-54
import function 15-41
importbin function 15-50
input function 15-21
internal representation 15-13
output function 15-24
receive function 15-30
registering 15-13
send function 15-33

Type alignment
arrays and 15-11
byte data 2-46
character data 2-17
converting 15-34
determining 2-6
LO handle 6-104
mi_date values 4-6
mi_datetime values 4-21
mi_decimal values 3-22, 3-31
mi_double_precision values 3-31
mi_int8 values 3-12
mi_integer values 3-9
mi_interval values 4-21
mi_money values 3-22
mi_real values 3-31
mi_smallint values 3-7
specifying 15-10
varying-length data 2-31, 2-42

Type descriptor
accessor functions 2-6, 2-9, 14-96
collection element type 2-6
converting 2-8
description of 1-23, 2-6
for column 2-9, 5-46, 5-47
for data type 2-9
for source of distinct type 2-7

from LVARCHAR type name 2-8
from string type name 2-8
from type identifier 2-8
maximum type length 2-6
memory duration of 2-3
row descriptor for 8-65
short type name 2-6
specifying source and target data

types 9-31
type alignment 2-6
type full name 2-6
type identifier 2-6, 2-8
type length 2-6
type name 2-6
type owner 2-6
type passing mechanism 2-6
type precision 2-6, 2-21, 3-26,

3-32, 4-26, 4-28
type qualifier 2-6, 4-27
type scale 2-6
See also Type identifier.

Type hierarchy 9-5, 9-11, 9-55
Type identifier

checking for built-in type 2-4
checking for collection type 2-4
checking for complex type 2-4
checking for distinct type 2-4
checking for LIST 2-4
checking for MULTISET 2-4
checking for row type 2-4
checking for SET 2-4
converting 2-8
description of 1-23, 2-4
for column 2-5, 5-46, 5-47
for input parameter 2-5, 8-24, 8-25
for routine argument 2-5, 9-5, 9-6
for routine return value 2-5, 9-10,

9-11
from LVARCHAR type name 2-8
from row descriptor 2-5
from string type name 2-8
from type descriptor 2-6, 2-8
memory duration of 2-3
specifying source and target data

types 9-31
to type descriptor 2-8
See also Type descriptor.

typedef
dec_t 3-18

ifx_int8_t 3-11

U
UDR connection 7-6, 7-21, 11-10

See also Connection.
UDR. See User-defined routine

(UDR).
UNIX operating system, safe

system calls 12-42, 12-43
unlink() system call 12-84
UNLOAD statement 15-43
unlock() system call 6-36
Unnamed memory. See User

memory.
Unnamed row type 1-16, 5-43, 8-16

See also Named row type; Row
type (SQL).

UPDATE statement
calling a UDR 11-13, 11-29, 11-38
obtaining results of 8-60
opaque types 15-20, 15-28, 15-63
parameter information for 8-25
sending to database server 8-57
smart large object 6-27, 6-74, 6-87
WHERE CURRENT OF

clause 8-21, 8-25, 8-34, 13-13
UPDATE STATISTICS

statement 15-67, 15-74
User account

account name 7-12, 7-14, 7-26,
12-92

account password 7-26
current 7-14
informix 11-21, 11-26
password 7-12, 7-14, 12-92

User data
callback. See Callback function,

user data in.
connection. See Connection

descriptor, user data in.
User informix. See informix user

account.
User memory

advantages 13-32
allocating 13-34, A-3
changing duration of 13-36
constructor for 13-33, 13-36, A-2
46 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
current memory duration 13-34
deallocating 13-38, A-4
description of 13-31
destructor for 13-33, 13-36, 13-39,

A-2, A-4
disadvantage 13-39
in a C UDR 13-4, 13-32
in a client LIBMI

application 13-33, A-2
managing 13-32
memory duration of 13-33, 13-34,

13-36, A-2
monitoring use of 13-54
well-behaved routines 12-35,

12-40
User state 9-14, 11-35
User-defined aggregate

aggregate algorithm 14-25
aggregate state 14-26
changing global

information 12-53
defining 14-36
definition of 11-6, 14-25
registering 14-36
sample 14-57
set-up argument 14-53
support functions. See Aggregate

support function.
See also Aggregate state;

Aggregate support function.
User-defined error structure

allocating 10-52
defining 10-51
definition of 10-51
memory duration of 10-52, 10-54
sample 10-51

User-defined function
Boolean 14-80, 14-91
cast function. See Cast function.
commutator 14-92
cost 14-81
defining a return value 12-17
definition of 1-5
handling NULL return

value 12-19
iterator function. See Iterator

function.
multiple return values 12-22
negator 14-91

nonvariant 9-38
obtaining return-value data 9-11
registering 11-23, 12-24
return value. See Routine return

value.
routine identifier. See Routine

identifier.
selectivity 14-81
variant 8-4, 9-38
See also Noncursor function;

Routine return value; Special-
purpose function; User-
defined routine (UDR).

User-defined procedure 1-5, 11-23,
12-22

See also User-defined routine
(UDR).

User-defined routine (UDR)
aborting 10-18, 10-22, 10-42,

10-48, 10-66
altering 11-57
argument. See Routine argument.
as calling module 10-18, 10-42
benefits 1-5
callback return value 10-21
calling 9-22
calling directly 9-21, 11-29, 13-59
calling implicitly 11-29, 11-32
calling sequence of 10-22, 10-46,

10-48
changing 11-57
character data handling 2-15,

12-9, 12-20
choosing a virtual-processor

class 11-38, 12-26, 12-60
coding considerations 11-9, 12-3
column values in 8-73
commutator 14-92
compiling 11-19, 11-41
connection descriptor in

registration 10-10
cost 14-81
current VP 12-63
debugging 11-40, 14-99
defining a return value 12-17
description of 1-4
determining stack space of 13-58
developing 1-7
development process 11-3

development tools 11-4
dropping 11-57
entry point in shared-object

file 11-25
event handling in 10-5, 10-18,

11-18
exception handling in 10-18,

10-41
executing 11-29, 11-38, 12-27,

13-59, 14-97
executing with Fastpath 9-22,

9-40
expensive. See Expensive UDR.
file management in 9-38, 12-33,

12-83
foreign 9-22, 9-24
function descriptor for 9-26
generic 9-55
global variable 12-38
granting Execute privilege 11-28,

15-65
granting language

privilege 11-26, 15-65
handling events. See Event

handling; Exception handling.
handling NULL argument 9-8,

9-36, 9-41, 11-38, 12-12
handling NULL return

value 9-13, 12-19
identifier for. See Routine

identifier.
ill-behaved 12-27, 12-29
information about 9-18
instance. See Routine instance.
invocation. See Routine

invocation.
invoking through SQL 9-20
iterator function. See Iterator

function.
local variable 13-57, 13-58
locking 12-65
locking in memory 12-66
locking to VP 12-66
looking up with Fastpath 9-27
memory context 13-8
memory management in 13-3,

13-31, 13-38
migrating to another VP 13-5
multiple return values 12-22
Index 47

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
name of. See Routine name.
negator 14-91
nonvariant 9-38
obtaining argument data type 9-5
obtaining argument values 12-9
obtaining return-value data

type 9-11
opaque-type data handling 2-44,

12-12, 12-21
optimizing 14-80
OUT parameters with 12-22
overloaded routine. See Routine

overloading.
parallelizable 9-16, 14-94
passing mechanisms for. See

Passing mechanism.
programming rules 12-49, 12-51
recursive 13-59
reexecuting 9-45
registering 11-23, 14-97, 15-65
resource-intensive 12-32
return value. See Routine return

value.
routine argument. See Routine

argument.
routine identifier. See Routine

identifier.
routine modifiers 11-26
routine name. See Routine name.
routine resolution 11-30
routine return value. See Routine

return value.
routine signature 11-31
routine state 9-3, 11-17, 11-35,

12-7
runtime errors 10-37
safe-code requirements 12-28
saving user state 9-14
selectivity 14-81
server environment. See Server

environment.
session environment 12-91
session management in 7-6, 11-10
shared-object entry point 11-21,

11-24
specifying language of 11-25
specifying location of 11-21, 11-24
SQL-invoked 14-3
stack-space allocation 13-57

state-transition events 10-76,
10-78

static variable 12-38
threadsafe 12-28, 12-34, 12-35
tracing in 11-46
transaction management in 7-6,

10-77, 10-79, 11-11, 13-38
type of 11-31
unregistering. See User-defined

routine (UDR), dropping.
use of signals 12-43, 12-44
user state 11-35
user-memory allocation 13-4,

13-32
uses of 11-6, 11-26
variables. See Variable.
variant 8-4, 9-38
VP environment 12-60
VP of. See User-defined routine

(UDR), current VP.
warning messages 10-37, 10-73
well-behaved 11-18, 12-27, 12-28
with no arguments 12-8
yielding 13-58
See also DataBlade API module;

Routine argument; Routine
identifier; Routine return
value; User-defined function;
User-defined procedure.

User-defined statistics
collecting 15-67, 15-70
designing 15-68
displaying 15-78
statcollect() function 15-67
using 15-78

User-defined tracepoint 11-47
User-defined virtual-processor (VP)

class
adding VPs 12-58
choosing 12-48
choosing type of 12-48, 12-55
definition of 12-26, 12-27
dropping VPs 12-58
monitoring 12-58, 12-59
naming 12-55
nonyielding 12-33, 12-41, 12-50,

12-56, 12-63
parallelizable UDR and 14-97
single-instance 12-41, 12-52, 12-57

using 11-18, 11-38
VP-class identifier 12-63
yielding 12-33, 12-49, 12-56
See also Virtual-processor (VP)

class.
Users, types of Intro-4

V
valloc() system call 12-35
VARCHAR data type

as return value 12-20
as routine argument 12-10
corresponding DataBlade API

data type 1-14, 1-16, 2-12, 2-13,
12-10

DataBlade API functions for 2-17,
2-18

ESQL/C functions for 2-19, 2-20
functions for 2-16
obtaining column value for 8-71
operations 2-20
precision of 2-20
role of varchar.h 1-11
See also Character data;

mi_lvarchar data type.
varchar data type (ESQL/C). See

mi_lvarchar data type.
varchar.h header file 1-11
Variable

data types 1-13
declaring 2-3, 11-9
global 12-38, 12-51, 12-53
local 12-18, 12-40, 13-57, 13-58
stack. See Variable, local.
statement-local (SLV) 12-24
static 12-38, 12-51, 12-53

Variant function 8-4, 9-38
VARIANT routine modifier 8-4,

9-38
Varying-length descriptor. See

Varying-length structure,
descriptor.

Varying-length opaque data type
as routine argument 12-14
as routine return value 12-21
binary representation 8-16
defining 15-8
48 IBM Informix DataBlade API Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
maximum size 15-10
passing mechanism 15-12
registering 15-8
text representation 8-16
See also Fixed-length opaque data

type; Opaque data type.
Varying-length structure

accessing 2-27
accessor functions 2-27
constructor for 2-23, 13-36
converting between stream and

internal 2-24
converting from string 2-18
converting to string 2-18
creating 2-23
data length 2-24, 2-27, 2-37, 12-74
data pointer 2-24, 2-27, 2-34, 2-37,

2-40
data portion 2-24, 2-26, 2-37
description of 2-21
descriptor 2-24, 2-25, 2-26
destructor for 2-23, 2-26, 13-36
empty 2-34, 2-35
freeing 2-26
in opaque type 15-61
managing memory 2-23
memory duration of 2-23, 2-25,

2-26, 13-36
null termination and 2-28
obtaining data from 2-37
opaque types and 15-17
parts of 2-24, 2-26
reading from stream 2-24
storing data in 2-29
type alignment 2-31, 2-42
using 2-22
See also mi_impexp data type;

mi_impexpbin data type;
mi_lvarchar data type;
mi_sendrecv data type.

Varying-length-data stream
closing 12-74
data length 12-74
description of 12-74
getting seek position of 12-74
opening 12-74
reading from 12-74
setting seek position of 12-74
stream I/O functions for 12-74

writing to 12-74
Virtual processor (VP)

active 12-60, 12-62, 12-64
adding 12-58
current 12-60, 12-62
dropping 12-58
environment of. See VP

environment.
heap space 12-35, 13-4, 13-6
identifier for. See VP identifier.
identifying 12-62
locking UDR instance to 12-66
memory space of 13-4, 13-5
monitoring 12-59
schematic representation

of 11-33, 13-4, 13-5
stack space 13-4, 13-57
switching 12-64
VP identifier 12-62, 12-63

Virtual-processor (VP) class
AIO 12-26, 12-30, 12-31, 12-34
availability 12-28
choosing 11-38, 12-26, 12-60
concurrency 12-30
CPU 11-18, 12-26, 12-27, 12-28
definition of 11-32, 12-26
global process state 12-41
identifier for. See VP-class

identifier.
identifying 12-63
maximum number of VPs

in 12-64
migrating among VPs in 13-5,

13-6
migrating to 9-15, 12-39, 12-66
monitoring 12-58, 12-59
name of 12-55, 12-64
number of active VPs in 12-64
routine executed with

Fastpath 9-40
SHM 12-26
system 12-26, 12-63
system registers 12-34
user-defined 12-26, 12-27
VP-class identifier 12-63
See also CPU virtual-processor

(CPU VP) class; User-defined
virtual-processor (VP) class.

void * (C) data type 1-16, 2-49, 2-50

VP environment
changing 12-64
controlling 12-60
definition of 12-60
functions for 12-61
obtaining information

about 12-62
VP identifier 12-62, 12-63
VPCLASS configuration parameter

naming a VP class 12-55
nonyielding user-defined

VP 12-56, 12-57
noyield option 12-56
num option 12-55, 12-56, 12-57
purpose of 12-55, 12-63
yielding user-defined VP 12-56

VP-class identifier 12-63
VP. See Virtual-processor (VP) class.

W
wait() system call 12-33
Warning

ANSI messages 10-37
custom 10-37, 10-66, 10-72
definition of 10-33
exception level for 10-34
icons Intro-9
Informix-specific 10-37
literal 10-37, 10-65
obtaining text of 10-29
raising 10-65, 10-67
SQLCODE values 10-39
SQLSTATE values 10-37, 10-38
tracing 11-48
X/Open messages 10-37
See also Database server exception;

Error handling; Exception
handling.

Well-behaved routine 12-28
avoiding blocking I/O 12-29,

12-33
avoiding global and static

variables 12-29, 12-38
avoiding process-state

changes 12-29, 12-41
avoiding unsafe system

calls 12-42
Index 49

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
being process safe 12-29
being threadsafe 12-34
creating 11-18, 12-28
definition of 12-27, 12-28
not changing the working

directory 12-29
omitting unsafe system

calls 12-29
preserving concurrency 12-29,

12-30
restricting dynamic

allocation 12-29, 12-35
safe-code requirements 12-29
yielding the CPU VP 12-29, 12-31
See also Ill-behaved routine.

Windows operating system
safe actions in UDR 12-48
safe system calls 12-42, 12-43

Working directory 12-93
write() system call 6-36, 12-33,

12-84

X
X/Open compliance level Intro-14
X/Open standards

runtime-error values 10-37
SQLSTATE class values 10-36
warning values 10-37

Y
Yielding user-defined VP

class 12-49, 12-50
50 IBM Informix DataBlade API Programmer’s Guide

	IBM Informix Online Documentation
	Table of Contents
	Introduction
	In This Introduction
	About This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Databases

	New Features
	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Feature, Product, and Platform Icons
	Compliance Icon

	Function Syntax Conventions
	DataBlade API Module Code Conventions

	Additional Documentation
	Related Reading
	Compliance with Industry Standards
	IBM Welcomes Your Comments

	Using the DataBlade API
	In This Chapter
	DataBlade API Module
	User-Defined Routine
	Types of UDRs
	Benefits of UDRs
	Using UDRs

	Client LIBMI Application
	Compatibility of Client and Server DataBlade API Modules

	DataBlade API Components
	Header Files
	DataBlade API Header Files
	ESQL/C Header Files
	IBM Informix GLS Header File
	Private Header Files

	Public Data Types
	DataBlade API Data Types
	DataBlade API Support Data Types
	DataBlade API Data Type Structures

	Regular Public Functions
	DataBlade API Functions
	IBM Informix ESQL/C Functions
	IBM Informix GLS Functions

	Advanced Features

	Internationalization of DataBlade API Modules

	Accessing SQL Data Types
	In This Chapter
	Type Identifiers
	Type Descriptors
	Type-Structure Conversion
	Data Type Descriptors and Column Type Descriptors

	Character Data Types
	The mi_char1 and mi_unsigned_char1 Data Types
	The mi_char and mi_string Data Types
	The mi_lvarchar Data Type
	The SQL LVARCHAR Data Type
	Character Data in Binary Mode of a Query
	Character Data in C UDRs
	External Representation of an Opaque Data Type

	Character Data in a Smart Large Object
	Character Processing
	Transferring Character Data
	Converting Character Data
	Operations on Character Values
	Character Type Information

	Varying-Length Data Type Structures
	Using a Varying-Length Structure
	Managing Memory for a Varying-Length Structure
	Creating a Varying-Length Structure
	Deallocating a Varying-Length Structure

	Accessing a Varying-Length Structure
	Varying-Length Data and Null Termination
	Storage of Varying-Length Data
	Information About Varying-Length Data

	Byte Data Types
	The mi_bitvarying Data Type
	Byte Data in a Smart Large Object
	Byte Processing
	Manipulating Byte Data
	Transferring Byte Data

	Boolean Data Types
	Boolean Text Representation
	Boolean Binary Representation
	Pointer Data Types

	Simple Large Objects
	The MI_DATUM Data Type
	Contents of an MI_DATUM Structure
	MI_DATUM in a C UDR
	MI_DATUM in a Client LIBMI Application

	Address Calculations with MI_DATUM Values
	Uses of MI_DATUM Structures

	The NULL Constant
	SQL NULL Value
	NULL-Valued Pointer

	Using Numeric Data Types
	In This Chapter
	Integer Data
	Integer Text Representation
	Integer Binary Representations
	One-Byte Integers
	Two-Byte Integers
	Four-Byte Integers
	Eight-Byte Integers

	Fixed-Point Data
	Fixed-Point Text Representations
	Decimal Text Representation
	Monetary Text Representation

	Fixed-Point Binary Representations
	DECIMAL Data Type: Fixed-Point Data
	MONEY Data Type
	The decimal.h Header File

	Transferring Fixed-Point Data
	Converting Decimal Data
	DataBlade API Functions for Decimal Conversion
	ESQL/C Functions for Decimal Conversion

	Performing Operations on Decimal Data
	Obtaining Fixed-Point Type Information

	Floating-Point Data
	Floating-Point Text Representation
	Floating-Point Binary Representations
	DECIMAL Data Type: Floating-Point Data
	SMALLFLOAT Data Type
	The FLOAT Data Type

	Transferring Floating-Point Data
	Converting Floating-Point Decimal Data
	Obtaining Floating-Point Type Information

	Formatting Numeric Strings

	Using Date and Time Data Types
	In This Chapter
	Date Data
	Date Text Representation
	Date Binary Representation
	Transfers of Date Data
	Conversion of Date Representations
	DataBlade API Functions for Date Conversion
	ESQL/C Functions for Date Conversion

	Operations on Date Data

	Date-Time or Interval Data
	Date-Time or Interval Text Representation
	Date-Time or Interval Binary Representation
	The DATETIME Data Type
	The INTERVAL Data Type

	The datetime.h Header File
	Retrieval and Insertion of DATETIME and INTERVAL Values
	Fetch or Insert into an mi_datetime Variable
	Fetch or Insert into an mi_interval Variable
	Implicit Data Conversion

	Transfers of Date-Time or Interval Data
	Conversion of Date-Time or Interval Representations
	DataBlade API Functions for Date-Time or Interval Conversion
	ESQL/C Functions for Date, Time, and Interval Conversion

	Operations on Date and Time Data
	Functions to Obtain Information on Date and Time Data
	Qualifier of a Date-Time or Interval Data Type
	Precision of a Date-Time or Interval Data Type
	Scale of a Date-Time or Interval Data Type

	Using Complex Data Types
	In This Chapter
	Collections
	Collection Text Representation
	Collection Binary Representation
	Using a Collection Structure
	Using a Collection Descriptor

	Creating a Collection
	Opening a Collection
	Using mi_collection_open(�)
	Using mi_collection_open_with_options(�)

	Accessing Elements of a Collection
	Positioning the Cursor
	Inserting an Element
	Fetching an Element
	Updating a Collection
	Deleting an Element
	Determining the Cardinality of a Collection

	Releasing Collection Resources
	Closing a Collection
	Freeing the Collection Structure

	The listpos(�) UDR
	SQL Statements
	C-Language Implementation
	Sample listpos(�) Trace Output

	Row Types
	Row-Type Text Representation
	Row-Type Binary Representation
	Using a Row Descriptor
	Using a Row Structure

	Creating a Row Type
	Creating the Row Descriptor
	Assigning the Field Values
	Example: Creating a Row Type

	Accessing a Row Type
	Copying a Row Structure
	Releasing Row Resources
	Freeing a Row Structure
	Freeing a Row Descriptor

	Using Smart Large Objects
	In This Chapter
	Understanding Smart Large Objects
	Parts of a Smart Large Object
	The Sbspace
	The LO Handle

	Information About a Smart Large Object
	Storage Characteristics
	Status Information

	Storing a Smart Large Object in a Database
	Valid Data Types
	CLOB and BLOB Data Types
	Opaque Data Type

	Access to a Smart Large Object
	Selecting a Smart Large Object
	Storing a Smart Large Object

	Using the Smart-Large-Object Interface
	Smart-Large-Object Data Type Structures
	LO-Specification Structure
	LO Handle
	LO File Descriptor
	LO-Status Structure

	Smart-Large-Object Functions
	Functions That Create a Smart Large Object
	Functions That Perform Input and Output on a Smart Large Object
	Functions That Manipulate an LO Handle
	Functions That Access an LO-Specification Structure
	Functions That Access an LO-Status Structure
	Functions That Move Smart Large Objects to and from Operating- System Files

	Creating a Smart Large Object
	Obtaining the LO-Specification Structure
	Specifying New Storage Characteristics
	Copying Storage Characteristics from an Existing Smart Large Object

	Choosing Storage Characteristics
	Obtaining Storage Characteristics
	Using the Storage-Characteristics Hierarchy

	Initializing an LO Handle and an LO File Descriptor
	Obtaining an LO Handle
	Obtaining an LO File Descriptor

	Writing Data to a Smart Large Object
	Storing an LO Handle
	Freeing Resources
	Freeing an LO-Specification Structure
	Freeing an LO Handle

	Sample Code to Create a New Smart Large Object

	Accessing a Smart Large Object
	Selecting the LO Handle
	Validating an LO Handle

	Opening a Smart Large Object
	Reading Data from a Smart Large Object
	Freeing a Smart Large Object
	Sample Code to Select an Existing Smart Large Object

	Modifying a Smart Large Object
	Updating a Smart Large Object
	Altering Storage Characteristics

	Obtaining Status Information for a Smart Large Object
	Obtaining a Valid LO File Descriptor
	Initializing an LO-Status Structure
	Obtaining a Valid LO-Status Structure
	Filling the LO-Status Structure

	Obtaining Status Information
	Freeing an LO-Status Structure

	Deleting a Smart Large Object
	Managing the Reference Count
	Reference Counts for CLOB and BLOB Columns
	Reference Counts for Opaque-Type Columns
	Reference Counts for Transient Smart Large Objects

	Freeing LO File Descriptors

	Converting a Smart Large Object to a File or Buffer
	Using Operating-System Files
	Using User-Defined Buffers

	Converting an LO Handle Between Binary and Text
	Binary and Text Representations of an LO Handle
	DataBlade API Functions for LO-Handle Conversion

	Transferring an LO Handle Between Computers
	Using Byte-Range Locking
	Passing a NULL Connection

	Handling Connections
	In This Chapter
	Understanding Session Management
	Client Connection
	UDR Connection
	Connection Descriptor

	Initializing a Client Connection
	Using Connection Parameters
	Establishing Default Connection Parameters
	Obtaining Current Connection Parameters

	Using Database Parameters
	Establishing Default Database Parameters
	Obtaining Current Database Parameters

	Using Session Parameters
	Using System-Default Session Parameters
	Using User-Defined Session Parameters

	Setting Connection Parameters for a Client Connection

	Establishing a Connection
	Establishing a UDR Connection
	Obtaining a Connection Descriptor
	Obtaining a Session-Duration Connection Descriptor

	Establishing a Client Connection
	Connections with mi_open(�)
	Connections with mi_server_connect(�)

	Associating User Data with a Connection
	Initializing the DataBlade API
	Closing a Connection

	Executing SQL Statements
	In This Chapter
	Executing SQL Statements
	Choosing a DataBlade API Function
	Type of Statement
	Prepared Statements and Input Parameters
	Queries and Implicit Cursors

	Executing Basic SQL Statements
	Assembling a Statement String
	Sending an SQL Statement

	Executing Prepared SQL Statements
	Preparing an SQL Statement
	Obtaining Input-Parameter Information
	Sending the Prepared Statement
	Releasing Prepared-Statement Resources

	Executing Multiple SQL Statements

	Processing Statement Results
	Executing the mi_get_result(�) Loop
	Handling Unsuccessful Statements
	Handling a DDL Statement
	Handling a DML Statement
	Handling Query Rows
	Handling “No More Data”

	Example: The get_results(�) Function

	Retrieving Query Data
	Obtaining Row Information
	Obtaining Column Information
	Retrieving Rows
	Accessing the Current Row
	Executing the mi_next_row(�) Loop

	Obtaining Column Values
	Executing the Column-Value Loop
	Accessing the Columns
	Obtaining Normal Values
	Obtaining NULL Values
	Obtaining Row Values
	Obtaining Collection Values
	Example: The get_data(�) Function

	Completing Execution
	Finishing Execution
	Processing Remaining Rows
	Releasing Statement Resources

	Interrupting Execution

	Inserting Data into the Database
	Assembling an Insert String
	Sending the Insert Statement
	Processing Insert Results

	Using Save Sets
	Creating a Save Set
	Inserting Rows into a Save Set
	Building a Save Set
	Freeing a Save Set

	Executing User-Defined Routines
	In This Chapter
	Accessing MI_FPARAM Routine-State Information
	Checking Routine Arguments
	Determining the Data Type of UDR Arguments
	Handling NULL Arguments with MI_FPARAM

	Accessing Return-Value Information
	Determining the Data Type of UDR Return Values
	Returning a NULL Value

	Saving a User State
	Obtaining Other Routine Information

	Calling UDRs Within a DataBlade API Module
	Invoking a UDR Through an SQL Statement
	Calling a UDR Directly

	Calling UDRs with the Fastpath Interface
	Obtaining a Function Descriptor
	Looking Up UDRs
	Looking Up Cast Functions

	Obtaining Information from a Function Descriptor
	Obtaining the MI_FPARAM Structure
	Obtaining a Routine Identifier
	Determining If a UDR Handles NULL Arguments
	Checking for a Variant Function
	Checking for a Negator Function
	Checking for a Commutator Function

	Executing the Routine
	Passing in Argument Values
	Receiving the Return Value
	Sample mi_routine_exec(�) Calls
	Reusing a Function Descriptor

	Using a User-Allocated MI_FPARAM Structure
	Creating a User-Allocated MI_FPARAM Structure
	Using a User-Allocated MI_FPARAM Structure
	Passing a User-Allocated MI_FPARAM Structure
	Freeing a User-Allocated MI_FPARAM

	Releasing Routine Resources

	Handling Exceptions and Events
	In This Chapter
	DataBlade API Event Types
	Event-Handling Mechanisms
	Invoking a Callback
	Registering a Callback
	Enabling and Disabling a Callback
	Retrieving a Callback Function

	Using Default Behavior
	Default Behavior in a C UDR
	Default Behavior in Client LIBMI Applications

	Callback Functions
	Declaring a Callback Function
	Return Value of a Callback Function
	MI_PROC_CALLBACK Modifier
	Callback-Function Parameters

	Writing a Callback Function
	Restrictions on Content
	Event Information

	Database Server Exceptions
	Understanding Database Server Exceptions
	Warnings and Errors
	Status Variables

	Providing Exception Handling
	Exceptions in a C UDR
	Exceptions in a Client LIBMI Application

	Returning Error Information to the Caller
	Defining a User-Defined Error Structure
	Implementing the Callback

	Handling Multiple Exceptions
	Raising an Exception
	Specifying the Connection
	Specifying the Message

	State-Transition Events
	Understanding State-Transition Events
	Beginning a Transaction
	Ending a Session

	Providing State-Transition Handling
	State Transitions in a C UDR
	State Transitions in a Client LIBMI Application

	Client LIBMI Errors

	Developing a User-Defined Routine
	In This Chapter
	Designing a UDR
	Development Tools
	Uses of a C UDR
	Portability
	DataBlade API Data Types
	Data Conversion

	Insert and Update Operations

	Creating UDR Code
	Variable Declaration
	Session Management
	Session Restrictions
	Transaction Management

	SQL Statement Execution
	Setting Input Parameters
	Retrieving Column Values

	Routine-State Information
	Event Handling
	Well-Behaved Routines

	Compiling a C UDR
	Compiling Options
	Creating a Shared-Object File

	Registering a C UDR
	The External Name
	Specifying the Entry Point
	Using Environment Variables

	The UDR Language
	Routine Modifiers
	Parameters and Return Values
	Privileges for the UDR

	Executing a UDR
	Routine Resolution
	The Routine Manager
	Loading a Shared-Object File
	Creating the Routine Sequence
	Pushing Arguments Onto the Stack
	Managing UDR Execution
	Returning the Value
	Releasing the Routine Sequence

	Debugging a UDR
	Using a Debugger
	Creating a Debugging Version
	Connecting to the Database Server from a Client
	Loading the Shared-Object File for Debugging
	Identifying the VP Process

	Running a Debugging Session
	Breakpoints
	Debugging Hints
	Possible Memory Errors
	Symbols in Shared-Object Files

	Using Tracing
	Adding a Tracepoint in Code
	Using Tracing at Runtime
	Understanding Tracing Output

	Changing a UDR
	Altering a Routine
	Unloading a Shared-Object File

	Writing a User-Defined Routine
	In This Chapter
	Coding a C UDR
	Defining Routine Parameters
	Routines with No Arguments
	MI_DATUM Arguments
	MI_FPARAM Argument

	Obtaining Argument Values
	Handling Character Arguments
	Handling NULL Arguments
	Handling Opaque-Type Arguments
	Modifying Argument Values

	Defining a Return Value
	Returning a Value
	Returning Multiple Values

	Coding the Routine Body

	Using Virtual Processors
	Creating a Well-Behaved Routine
	Preserving Availability of the CPU VP
	Writing Threadsafe Code
	Avoiding Restricted System Calls
	Choosing the User-Defined VP Class
	Defining a User-Defined VP
	Assigning a C UDR to a User-Defined VP Class

	Managing Virtual Processors
	Initializing a VP Class
	Adding and Dropping VPs
	Monitoring Virtual Processors

	Controlling the VP Environment
	Obtaining VP-Environment Information
	Identifying the Current VP
	Identifying a VP Class

	Changing the VP Environment
	Executing on Another VP
	Forking and Executing a Process

	Locking a UDR
	Locking a Routine Instance to a VP
	Locking a Shared-Object File in Memory

	Performing Input and Output
	Access to a Stream
	Using Predefined Stream Classes
	Creating a User-Defined Stream Class
	Registering a UDR That Accesses a Stream
	Releasing Stream Resources

	Access to Operating-System Files
	Opening a File
	Closing a File
	Copying a File

	Sample File-Access UDR

	Accessing the UDR Execution Environment
	Accessing the Session Environment
	Accessing the Server Environment

	Managing Memory
	In This Chapter
	Understanding Shared Memory
	Accessing Shared Memory
	Choosing the Memory Duration
	Public Memory Durations
	Advanced Memory Durations
	Memory-Duration Considerations

	Managing Shared Memory
	Managing User Memory
	Allocating User Memory
	Managing the Memory Duration
	Deallocating User Memory

	Managing Named Memory
	Allocating Named Memory
	Obtaining a Block of Allocated Named Memory
	Handling Concurrency Issues
	Deallocating Named Memory

	Monitoring Shared Memory

	Managing Stack Space
	Managing Stack Usage
	Increasing Stack Space

	Creating Special-Purpose UDRs
	In This Chapter
	Writing an End-User Routine
	Writing a Cast Function
	Writing an Iterator Function
	Initializing the Iterations
	Returning One Active-Set Item
	Releasing Iteration Resources
	Calling an Iterator Function from an SQL Statement
	Registering the Iterator Function
	Executing the Iterator Function

	Writing an Aggregate Function
	Extending a Built-In Aggregate
	Choosing the Operator Function
	Writing the Operator Function
	Registering the Overloaded Operator Function
	Using the Extended Aggregate

	Creating a User-Defined Aggregate
	Determining the Aggregate State
	Writing the Aggregate Support Functions
	Defining the User-Defined Aggregate
	Using the User-Defined Aggregate
	Determining Required Aggregate Support Functions
	Sample User-Defined Aggregates

	Providing UDR-Optimization Functions
	Writing Selectivity and Cost Functions
	Query Selectivity
	Query Cost
	MI_FUNCARG Data Type
	Obtaining Information About Constant Arguments
	Obtaining Information About Column Arguments

	Creating Negator Functions
	Creating Commutator Functions
	Creating Parallelizable UDRs
	Writing the Parallelizable UDR
	Registering the Parallelizable UDR
	Executing the Parallelizable UDR
	Debugging the Parallelizable UDR

	Extending Data Types
	In This Chapter
	Creating an Opaque Data Type
	Designing an Opaque Data Type
	Determining External Representation
	Determining Internal Representation

	Writing Opaque-Type Support Functions
	Support Functions as Casts
	Stream Support Functions
	Disk-Storage Support Functions
	Handling Locale-Specific Opaque-Type Data

	Registering an Opaque Data Type
	Registering an Opaque Type in a Database
	Registering Opaque-Type Support Functions
	Registering the Opaque-Type Casts

	Providing Statistics Data for a Column
	Collecting Statistics Data
	Designing the User-Defined Statistics
	Defining the Statistics-Collection Function
	Collecting the Statistics
	Registering the statcollect(�) Function
	Executing the UPDATE STATISTICS Statement

	Using User-Defined Statistics
	Displaying Statistics Data
	Using User-Defined Statistics in a Query

	Optimizing Queries
	Query Plans
	Selectivity Functions

	Writing a Client LIBMI Application
	Notices
	Index

