
IBM Informix
DataBlade Developer’s
Kit
User’s Guide
Version 4.0A
March 2003
Part No. CT1V3NA

ii IBM Informix DataBla
This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2003. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Note:
Before using this information and the product it supports, read the information in the
appendix entitled “Notices.”
de Developer’s Kit User’s Guide

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Manual 3

Organization of This Manual 3
Types of Users 5
Software Dependencies 5

Documentation Conventions 6
Typographical Conventions 6
Icon Conventions 7
Routine Syntax Conventions 8

Additional Documentation 8
Related Reading 8
The IBM Informix Developer Zone 9
Online Documentation 9

IBM Welcomes Your Comments 12

Chapter 1 Getting Started with DataBlade Module Development
In This Chapter 1-3
What Is a DataBlade Module? 1-3
DataBlade Developers Kit Tools 1-4
Preparing to Develop DataBlade Modules 1-5

Becoming Familiar with IBM Informix Software and
Documentation 1-5

Designing Your DataBlade Module 1-7
Developing Your DataBlade Module 1-10

Editing and Compiling DataBlade Module Code 1-12
Debugging Your DataBlade Module 1-13
Packaging Your DataBlade Module 1-14

iv IBM In
Chapter 2 Designing DataBlade Modules
In This Chapter 2-3
Data Model . 2-3
Data Type Design 2-6

Object Accessibility 2-6
Handling Large Objects 2-7

Query Language Interface 2-10
SQL Query Structure 2-10
The Target List 2-11
The Qualification 2-13

Query Processing 2-14
Predicate Evaluation 2-15
Grouping 2-21
Casts . 2-21
Access Path Selection 2-23
Planning for Transaction Semantics 2-25

Interoperability 2-26
Orthogonality 2-26
Simple, Clean Interfaces 2-27

Chapter 3 Programming Guidelines
In This Chapter 3-3
Programming Language Options 3-3

Options for Opaque Data Types. 3-4
Options for Routines 3-11
Multilanguage DataBlade Module Issues 3-12

C Programming Guidelines 3-13
C++ Programming Guidelines 3-14
Java Programming Guidelines 3-15
DataBlade API Programming Tips 3-16
formix DataBlade Developer’s Kit User’s Guide

Chapter 4 Creating DataBlade Objects Using BladeSmith
In This Chapter 4-5
Prerequisite Tasks 4-6
BladeSmith Task Overview 4-6
BladeSmith Windows 4-7
Creating a New Project 4-8

DataBlade Module Project Name 4-10
New Object Prefix 4-10
Server Compatibility 4-11
Description Locale 4-12
Project Version Numbers 4-12
Vendor Information 4-13

Importing Interfaces from Another DataBlade Module 4-13
Creating DataBlade Module Objects 4-14

Database Object Name Lengths 4-15
Creating Aggregates 4-16
Creating Casts 4-21
Defining Errors 4-23
Defining Interfaces 4-25
Creating Routines 4-26
Creating Data Types 4-37

Adding Functional Test Data 4-60
Test Data for Opaque Type Support Routines 4-61
Test Data for User-Defined Routines 4-61
Test Data for Cast Support Routines. 4-62

Adding SQL Files 4-62
Importing SQL Text from a File 4-64
Object Dependencies 4-64

Adding Client Files 4-65
Generating Files 4-66

Setting Generated File Properties. 4-68
Generating All Files 4-70
Generating SQL Scripts 4-71
Generating Source Files 4-72
Generating Test Files 4-73
Generating Installation Package Files 4-73
Regenerating Files 4-74
Opening the Project File in Visual C++ 4-76
Table of Contents v

vi IBM In
Chapter 5 Programming DataBlade Module Routines in C
In This Chapter 5-5
Prerequisite Tasks 5-5
C Programming Task Overview 5-6
Source Files Generated by BladeSmith 5-7

C Header File 5-8
C Source Code Files 5-8
Microsoft Visual C++ Files 5-9
Warning File 5-9

Using Generated Code 5-10
Identifying the Source of Generated Code 5-10
Comments in Generated Code 5-11
MI_FPARAM Function Argument 5-12
Server Connection Handle 5-12
Tracing and Error Handling 5-13
Utility Functions Generated by BladeSmith. 5-23

Editing Opaque Type Support Routines in opaque.c 5-25
Text Input and Output Functions 5-26
Binary Send and Receive Functions 5-30
Text File Import and Export Functions 5-32
Binary File Import and Export Functions 5-34
The Assign and Destroy Routines 5-35
LOhandles() Function 5-37
Comparison Functions 5-38
Mathematic Functions 5-42
Concat() Function 5-43
Hash() Function 5-43

Editing Statistics Routines in statistics.c 5-44
The Statistics Collection Function 5-44
The Statistics Print Function 5-45
The Statistics Minimum, Maximum, and Distribution Functions 5-45

Editing Routines in udr.c 5-46
Most User-Defined Routines 5-47
Cast Support Functions 5-48
Aggregate Functions 5-49
Selectivity Functions 5-51
Iterator Functions 5-53
formix DataBlade Developer’s Kit User’s Guide

Compiling DataBlade Module Code 5-54
Compiling with Tracing Support 5-55
Compiling on UNIX 5-55
Compiling on Windows 5-57

Chapter 6 Creating ActiveX Value Objects
In This Chapter 6-3
Prerequisite Tasks 6-3
ActiveX Programming Task Overview 6-4
Source Files Generated by BladeSmith 6-5
Implementing ActiveX Value Objects 6-5

The Generated Code 6-6
Adding Project-Specific Logic to the Source Code 6-7
Files to Edit 6-8
ActiveX Properties. 6-9
Accessing Properties Using Visual Basic 6-10

Compiling Client and Server Projects 6-10
Compiling a Windows Server Project 6-11
Compiling a Client Project 6-12

Support Methods Reference 6-13
Internal Object Methods 6-13
C++ Support Library 6-14

Chapter 7 Using ActiveX Value Objects
In This Chapter 7-3
Installing and Using ActiveX Value Objects 7-3

Installing ActiveX Value Objects 7-3
Using ActiveX Value Objects 7-4

IRawObjectAccess Custom Interface 7-5
ITDkValue Custom Interface 7-6
ActiveX Custom Methods 7-8
Table of Contents vii

viii IBM
Chapter 8 Programming DataBlade Modules in Java
In This Chapter 8-3
Prerequisite Tasks 8-3
Java Programming Task Overview 8-4
Source Files Generated by BladeSmith 8-5

Java Source Code Files 8-6
SQLData Interface Method Support Code 8-7
Warning File 8-7

Using the Generated Code 8-8
Comments in Generated Code 8-8
Logging and Error Handling 8-8
BladeSmith Utility Classes 8-9

Editing Methods 8-10
Most User-Defined Methods 8-10
Iterators . 8-11
Aggregates 8-12
Cast Support Methods 8-14

Compiling Java DataBlade Module Code 8-14
Debugging and Testing DataBlade Modules Written in Java . . . 8-16

Preparing Your Environment. 8-16
Debugging a DataBlade Module 8-17
Performing Functional Tests 8-19

Chapter 9 Debugging and Testing DataBlade Modules on UNIX
In This Chapter 9-3
Prerequisite Tasks 9-4
Preparing Your Environment 9-4
Using the Shared Object File 9-5

Replacing a Shared Object File 9-5
Shared Object File Ownership and Permissions 9-6
Symbols in Shared Object Files 9-6

Installing and Registering DataBlade Modules 9-7
Installing a DataBlade Module 9-7
Registering a DataBlade Module 9-8

Debugging a DataBlade Module 9-8
Loading the DataBlade Module 9-9
Identifying the Server Process 9-10
Running the Solaris Debugger 9-11
Setting Breakpoints 9-12

Debugging a UNIX DataBlade Module with Windows 9-12
 Informix DataBlade Developer’s Kit User’s Guide

Performing Functional Tests 9-12
Functional Test Overview 9-14
Executing Functional Tests 9-17

Chapter 10 Debugging and Testing DataBlade Modules on Windows
In This Chapter 10-3
Prerequisite Tasks 10-3
Preparing Your Environment 10-4
DBDK Visual C++ Add-In and IfxQuery 10-5

The Debug DataBlade Module Command 10-6
Other Add-In Commands 10-7

Debugging a DataBlade Module 10-8
Manually Loading the Add-In. 10-9
Specifying Properties for a Project 10-10
Setting Breakpoints 10-10
Editing Unit Test Files 10-11

Performing Functional Tests on DataBlade Modules 10-12

Chapter 11 Using BladePack
In This Chapter 11-3
Prerequisite Tasks 11-3
BladePack Overview 11-4

BladePack Projects 11-5
BladePack Online Help 11-6
BladePack Windows 11-6
Registry Keys for Windows. 11-10

Packaging for UNIX Installations 11-11
Establishing Content 11-12
Managing Components 11-14
Customizing the Installation 11-17
Building the Installation 11-19
Creating Distribution Media 11-20

Packaging for InstallShield 3.1 Installations 11-21
Establishing Content 11-22
Managing Components 11-26
Customizing the Installation 11-29
Building the Installation 11-31
Creating Distribution Media 11-33
Table of Contents ix

x IBM In
Packaging for InstallShield 5.1 Installations 11-34
Establishing Content 11-35
Managing Components 11-38
Customizing the Installation 11-41
Building the Installation 11-41
Creating Distribution Media 11-44

Appendix A Source Files Generated for DataBlade Modules

Appendix B Completing BladeSmith-Generated Code

Appendix C Testing for an Sbspace

Appendix D Notices

Glossary

Index
formix DataBlade Developer’s Kit User’s Guide

Introduction
Introduction
In This Introduction 3

About This Manual 3
Organization of This Manual 3
Types of Users 5
Software Dependencies 5

Documentation Conventions 6
Typographical Conventions 6
Icon Conventions 7
Routine Syntax Conventions 8

Additional Documentation 8
Related Reading 8
The IBM Informix Developer Zone 9
Online Documentation 9

Online Help 9
The DataBlade Developer’s Kit InfoShelf 10
Online Manuals 11
Release Notes and Documentation Notes 11

IBM Welcomes Your Comments 12

2 IBM In
formix DataBlade Developer’s Kit User’s Guide

In This Introduction
This introduction provides an overview of the information this manual
provides and the conventions it uses.

About This Manual
The IBM Informix DataBlade Developer’s Kit User’s Guide describes how to use
DataBlade Developer’s Kit tools to develop and package DataBlade modules.
A DataBlade module extends the functionality of IBM Informix Dynamic
Server to handle data with user-defined routines or to handle nontraditional
kinds of data, such as full text, images, video, spatial, and time series data.

This section discusses the organization of the manual, the intended audience,
and the associated software products that you must have to develop and use
the DataBlade module.

Organization of This Manual
The IBM Informix DataBlade Developer’s Kit User’s Guide includes the following
chapters:

� Chapter 1, “Getting Started with DataBlade Module Development,”
provides an overview process for developing a DataBlade module
and describes the resources and tools the Informix database server
provides to facilitate development.

� Chapter 2, “Designing DataBlade Modules,” discusses DataBlade
module design issues. This chapter helps you to design DataBlade
modules that perform well, cooperate with other DataBlade
modules, and are robust and maintainable.
Introduction 3

Organization of This Manual
� Chapter 3, “Programming Guidelines,” describes the programming
language options you have for developing DataBlade modules. It
provides guidelines for writing DataBlade module code in C, C++,
and Java.

� Chapter 4, “Creating DataBlade Objects Using BladeSmith,”
explains how to use BladeSmith to define the objects in your
DataBlade module and to generate code, scripts, and installation files
for it.

� Chapter 5, “Programming DataBlade Module Routines in C,”
describes the C code that BladeSmith generates and tells you how to
compile the DataBlade module.

� Chapter 6, “Creating ActiveX Value Objects,” describes the ActiveX
value object code that BladeSmith generates and tells you how to
compile the DataBlade module.

� Chapter 7, “Using ActiveX Value Objects,” provides information for
client application developers who are using ActiveX value objects.

� Chapter 8, “Programming DataBlade Modules in Java,” describes
the Java code that BladeSmith generates and tells you how to
compile the DataBlade module.

� Chapter 9, “Debugging and Testing DataBlade Modules on UNIX,”
describes how to debug your DataBlade module in a UNIX
environment. It also describes how to execute the functional tests
generated with BladeSmith.

� Chapter 10, “Debugging and Testing DataBlade Modules on
Windows,” describes how to debug your DataBlade module in a
Windows environment.

� Chapter 11, “Using BladePack,” describes how to use BladePack to
package your DataBlade module components to create installation
media that you can distribute to your customers.

� Appendix A, “Source Files Generated for DataBlade Modules,” lists
the source code files BladeSmith generates.

� Appendix B, “Completing BladeSmith-Generated Code,” provides
tables that list the types of objects BladeSmith generates, indicate
whether BladeSmith generates complete code or template code you
must complete, and provide a reference to the instructions in this
guide for completing the code.
4 IBM Informix DataBlade Developer’s Kit User’s Guide

Types of Users
� Appendix C, “Testing for an Sbspace,” describes how to add custom
SQL statements to test for the existence of a required sbspace when a
DataBlade module is registered.

� A Notices appendix describes IBM products, features, and services.

� A glossary of relevant terms follows the chapters, and an index
directs you to areas of particular interest.

Types of Users
This guide is for experienced C, C++, or Java programmers who are
comfortable writing libraries to support applications. You will use this guide
to develop DataBlade modules that extend your Informix database server.

If you are unfamiliar with DataBlade modules, read IBM Informix DataBlade
Module Development Overview before you read this manual.

Software Dependencies
This version of the DataBlade Developer’s Kit is compatible with the
following IBM Informix software:

� IBM Informix Dynamic Server, Version 9.2 or later

� IBM Informix Client Software Developer’s Kit, Version 2.3 or later

To use DBDK to develop your DataBlade module in a Windows development
environment, you need to install the following software:

� Microsoft Visual C++ 6.0

� Netscape Navigator 4.0 (or later) or Microsoft Internet Explorer 4.0
(or later)

To use BladePack to package your DataBlade module with an interactive
installation for Windows, you need an InstallShield professional license.

To use the DataBlade Developer’s Kit InfoShelf, you need one of the
following browsers:

� Netscape Navigator 4.0 or later

� Microsoft Internet Explorer 4.0 or later
Introduction 5

Documentation Conventions
For system requirements and installation instructions, see the Read Me First
sheet for the DataBlade Developer’s Kit.

Documentation Conventions
This section describes the conventions that this manual uses. These conven-
tions make it easier to gather information from this and other volumes in the
documentation set. The following conventions are discussed:

� Typographical conventions

� Icon conventions

� Routine syntax conventions

Typographical Conventions
This manual uses the following conventions to introduce new terms, describe
command syntax, and so forth.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you are
to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

(1 of 2)
6 IBM Informix DataBlade Developer’s Kit User’s Guide

Icon Conventions
Tip: When you are instructed to “enter” characters or to “execute” a command,
press RETURN immediately after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Icon Conventions
Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.

♦ This symbol indicates the end of product- or platform-specific
information.

� This symbol indicates a menu item. For example, “Choose
Tools�Options” means choose the Options item from the
Tools menu.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information

Important: Identifies paragraphs that contain significant
information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described

Convention Meaning

(2 of 2)
Introduction 7

Routine Syntax Conventions
Routine Syntax Conventions
This guide uses the following conventions to specify routine syntax:

� Square brackets ([]) surround optional items.

� Curly brackets ({ }) surround items that can be repeated zero or
more times.

� A vertical line (|) separates alternatives.

� Comma-separated lists of values are indicated by a parameter value
with a “_commalist” suffix. For example, colorlist=color_commalist
might indicate “colorlist=red, blue, green.”

� Routine parameters are italicized; arguments that must be specified
as shown are not italicized.

These routine syntax conventions used in context look like this:

myfunction([optionalarg], {repeatablearg}, set | noset,
myparam=my_commalist)

Additional Documentation
This section lists resources that contain information that is supplemental to
this guide.

Related Reading
The IBM Informix DataBlade Module Development Overview provides a topic-to-
title and title-to-topic reference for the following related IBM Informix
documentation:

� IBM Informix User-Defined Routines and Data Types Developer’s Guide

� IBM Informix Guide to SQL: Reference

� IBM Informix DataBlade API Programmer’s Guide

� IBM Informix DataBlade API Function Reference

� IBM Informix ESQL/C Programmer’s Manual

� IBM Informix Dynamic Server Administrator’s Guide
8 IBM Informix DataBlade Developer’s Kit User’s Guide

The IBM Informix Developer Zone
� IBM Informix DataBlade Module Installation and Registration Guide

� J/Foundation Developer’s Guide

� IBM Informix JDBC Driver Programmer’s Guide

For information on ActiveX and COM, consider the following books:

� ActiveX Controls Inside Out, Second Edition, by Adam Denning
(Microsoft Press, 1997)

� Essential COM, by Don Box (Addison-Wesley, 1998)

� Inside COM, by Dale Rogerson (Microsoft Press, 1997)

The IBM Informix Developer Zone
The IBM Informix Developer Zone, which can be found at
www.ibm.com/software/data/developer/informix, contains numerous
white papers, code examples, and tips for creating DataBlade modules.

Online Documentation
The DataBlade Developer’s Kit includes:

� Online help

� The DataBlade Developer’s Kit InfoShelf

� Online manuals

� Release notes and documentation notes.

Online Help

The BladeSmith, BladePack, and BladeManager graphical user interfaces
include context-sensitive help that provides overview and detailed reference
information for these programs.
Introduction 9

Online Documentation
The DataBlade Developer’s Kit InfoShelf

The DataBlade Developer’s Kit InfoShelf provides this manual and the
following information in HTML format:

� The DataBlade Developer’s Kit Tutorial

� A document that describes the example DataBlade modules
included with the DataBlade Developer’s Kit

� A reference library that contains the following manuals:

❑ IBM Informix DataBlade Module Development Overview

❑ IBM Informix DataBlade Module Installation and Registration Guide

❑ IBM Informix DataBlade API Programmer’s Guide

❑ IBM Informix DataBlade API Function Reference

❑ IBM Informix DataBlade Developer’s Kit User’s Guide

❑ IBM Informix User-Defined Routines and Data Types Developer’s
Guide

❑ IBM Informix Guide to SQL: Reference

❑ IBM Informix Guide to SQL: Syntax

❑ IBM Informix Guide to SQL: Tutorial

❑ J/Foundation Developer’s Guide

❑ IBM Informix JDBC Driver Programmer’s Guide

❑ IBM Informix GLS Programmer’s Manual

❑ IBM Informix GLS User’s Guide

❑ IBM Informix ESQL/C Programmer’s Manual

� A master index that contains the merged index entries of all the
books listed here

The index entries provide links into the HTML versions of the manu-
als included in the InfoShelf.

DataBlade Developer’s Kit InfoShelf can be launched from the BladeSmith
Help menu or started independently from the Informix program group.
10 IBM Informix DataBlade Developer’s Kit User’s Guide

Online Documentation
Online Manuals

The DataBlade Developer’s Kit manuals are also available on the IBM
Informix Online Documentation site at
http://www.ibm.com/software/data/informix/pubs/library/.

Release Notes and Documentation Notes

The following online release notes and documentation notes, which you can
access by clicking their icons in the Informix program group, supplement the
information provided in this manual.

These files are located in the %INFORMIXDIR%\release directory under the
subdirectory for your locale. Please examine these files because they contain
vital information about application and performance issues.

Online File Purpose

dbdkrel.txt Describes feature differences from earlier versions of
IBM Informix products and how these differences might affect
current products. This file also contains information about any
known problems and their workarounds.

dbdkdoc.txt Describes features that are not covered in the manuals or that
have been modified since publication.
Introduction 11

IBM Welcomes Your Comments
IBM Welcomes Your Comments
To help us with future versions of our manuals, let us know about any correc-
tions or clarifications that you would find useful. Include the following
information:

� The name and version of your manual

� Any comments that you have about the manual

� Your name, address, and phone number

Send electronic mail to us at the following address:

docinf@us.ibm.com

This address is reserved for reporting errors and omissions in our documen-
tation. For immediate help with a technical problem, contact Customer
Services.
12 IBM Informix DataBlade Developer’s Kit User’s Guide

1
Chapter
Getting Started with DataBlade
Module Development
In This Chapter . 1-3

What Is a DataBlade Module? 1-3

DataBlade Developers Kit Tools 1-4

Preparing to Develop DataBlade Modules 1-5
Becoming Familiar with IBM Informix Software

and Documentation 1-5
Installing IBM Informix Software 1-6
DataBlade Developers Kit Tutorial 1-6
Creating a Practice DataBlade Module 1-7

Designing Your DataBlade Module 1-7
Writing a Functional Specification 1-8
Programming Resources 1-8
Writing a Design Specification 1-9
Creating an Iterative Development Plan 1-9

Developing Your DataBlade Module 1-10
Editing and Compiling DataBlade Module Code 1-12
Debugging Your DataBlade Module 1-13
Packaging Your DataBlade Module 1-14

1-2 IBM
 Informix DataBlade Developer’s Kit User’s Guide

In This Chapter
This chapter provides an overview of DataBlade module development and
describes the resources and tools the Informix database server provides to
facilitate development. It contains the following sections:

� “What Is a DataBlade Module?,” next

� “DataBlade Developers Kit Tools” on page 1-4

� “Preparing to Develop DataBlade Modules” on page 1-5

� “Developing Your DataBlade Module” on page 1-10

What Is a DataBlade Module?
A DataBlade module is a software package that extends the functionality of
your Informix database server. The package includes SQL statements and
supporting code written in an external language or Informix SPL. DataBlade
modules can also contain client components. A DataBlade module enables
your Informix database server to provide the same level of support for new
data types as it provides for built-in data types.

Users access DataBlade module services in the same way they access
database server services: through SQL, SPL, and client programs linked with
any of the Informix client APIs. DataBlade modules can also use the
DataBlade API or SQL queries to access data types and routines in other
DataBlade modules.

The DataBlade Developers Kit aids you in developing DataBlade modules. It
provides graphical user interfaces to complete tasks, and it generates much
of the code you need for your DataBlade module.
Getting Started with DataBlade Module Development 1-3

DataBlade Developers Kit Tools
DataBlade Developers Kit Tools
The DataBlade Developers Kit provides the following graphical user inter-
faces for creating and working with DataBlade modules:

� BladeSmith. A tool for organizing a DataBlade module devel-
opment project. You use BladeSmith to create a project and then
define the objects (such as data types and routines) that belong to the
DataBlade module. BladeSmith generates source files, header files,
makefiles, functional test files, SQL scripts, messages, and packaging
files. Chapter 4, “Creating DataBlade Objects Using BladeSmith,”
describes how to use this tool.

� DBDK Visual C++ Add-In and IfxQuery. Tools for debugging a
DataBlade module using Microsoft Visual C++ on Windows. The
add-in automates many of the debugging tasks and calls the
IfxQuery tool to run unit tests for DataBlade module routines.
Chapter 10, “Debugging and Testing DataBlade Modules on
Windows,” describes how to use these tools.

� BladePack. A tool for creating a DataBlade module package.
BladePack can create a simple directory tree containing files to be
installed or an installation that includes an interactive user interface.
Chapter 11, “Using BladePack,” describes how to use this tool.

� BladeManager. A utility for registering and unregistering DataBlade
modules in Informix databases. The IBM Informix DataBlade Module
Installation and Registration Guide describes how to use this tool.
1-4 IBM Informix DataBlade Developer’s Kit User’s Guide

Preparing to Develop DataBlade Modules
Preparing to Develop DataBlade Modules
This section suggests how to prepare for developing DataBlade modules.
This overview is intended to act as a map for information resources.

To prepare for DataBlade module development, complete these general
processes:

1. If necessary, familiarize yourself with IBM Informix software and
documentation (see “Becoming Familiar with IBM Informix
Software and Documentation,” next).

2. Design your DataBlade module (see “Designing Your DataBlade
Module” on page 1-7).

After you finish your preparations, you can develop your DataBlade module
and then have it certified (see “Developing Your DataBlade Module” on
page 1-10).

Becoming Familiar with IBM Informix Software and
Documentation
Familiarizing yourself with IBM Informix software and documentation is
critical for first-time DataBlade developers. However, it is important for
experienced DataBlade developers too, because IBM Informix software and
documentation are enhanced in each release.

To familiarize yourself with IBM Informix products and documentation

1. Read IBM Informix DataBlade Module Development Overview.

This manual briefly describes the database objects you can include in
your DataBlade module and other options you have when you create
a DataBlade module.

2. Install the necessary IBM Informix software.

See “Installing IBM Informix Software” on page 1-6 for more
information.

3. Learn to use IBM Informix software: at the very least, your database
server, the Setnet32 utility (client connectivity), and the DB-Access or
SQL Editor utilities (SQL querying).
Getting Started with DataBlade Module Development 1-5

Becoming Familiar with IBM Informix Software and Documentation
4. Complete the DataBlade Developers Kit Tutorial.

See “DataBlade Developers Kit Tutorial” on page 1-6 for more
information.

5. Create your own practice DataBlade module.

See “Creating a Practice DataBlade Module” on page 1-7 for more
information.

Some of these steps are described in the following sections.

Installing IBM Informix Software

Install and become familiar with the following IBM Informix software
products:

� Your database server

� IBM Informix Client Software Developer’s Kit

� DataBlade Developer’s Kit

In addition, if you plan to develop a DataBlade module in Java, you should
become familiar with IBM Informix Dynamic Server with J/Foundation and
the Java Development Kit (JDK). For information on the correct version and
the source of the JDK, see the release notes for your database server.

Install the latest version of the IBM Informix software for your development
environment. Although the DataBlade Developer’s Kit is only available on
Windows, it can generate DataBlade modules for UNIX as well as Windows.

For information on currently available IBM Informix software releases, see
the IBM Informix Developer Zone site at
www.ibm.com/software/data/developer/informix.

DataBlade Developers Kit Tutorial

The DataBlade Developers Kit Tutorial offers several exercises, each focusing
on a single aspect of DataBlade module development.

To access the exercises, start the tutorial from the DataBlade Developers Kit
InfoShelf home page. You can launch the InfoShelf from the BladeSmith Help
menu or start it independently by choosing
Start�Programs�Informix�DBDK InfoShelf.
1-6 IBM Informix DataBlade Developer’s Kit User’s Guide

Designing Your DataBlade Module
Creating a Practice DataBlade Module

To familiarize yourself with the entire development process, create a simple
practice DataBlade module containing an easily implemented object, such as
a user-defined routine that takes built-in data types as arguments. Be sure to
write the code, test it, and debug it. Completing a simple DataBlade module
helps you create a realistic estimate of the length of your development cycle.

Designing Your DataBlade Module
DataBlade modules can contain complex operations. A good design is critical
to your success.

To design your DataBlade module

1. Read about DataBlade module SQL design concepts.

For DataBlade module SQL design issues, see Chapter 2, “Designing
DataBlade Modules.”

For general information about the options you have when you
extend the server, see IBM Informix User-Defined Routines and Data
Types Developer’s Guide.

2. Write a functional specification.

See “Writing a Functional Specification” on page 1-8 for more
information.

3. Read Informix coding guidelines.

See “Programming Resources” on page 1-8 for more information.

4. Write a design specification.

See “Writing a Design Specification” on page 1-9 for more
information.

5. Create an iterative development strategy.

See “Creating an Iterative Development Plan” on page 1-9 for more
information.

Some of these steps are described in the following sections.
Getting Started with DataBlade Module Development 1-7

Designing Your DataBlade Module
Writing a Functional Specification

A functional specification describes the scope and functionality of your
DataBlade module, without documenting implementation details. It also
documents other issues for development, such as phases of functionality,
compatibility, performance, and platform. A good functional specification
shows how your DataBlade module solves the problem you designed it to
solve.

For a sample functional specification, see the IBM Informix Developer Zone
site at www.ibm.com/software/data/developer/informix.

Programming Resources

For specific language options and guidelines, see Chapter 3, “Programming
Guidelines.”

The following table lists the programming language options you have when
writing DataBlade module code and refers you to sources of information
about them.

For further tips on coding DataBlade modules, see the IBM Informix
Developer Zone at www.ibm.com/software/data/developer/informix.

Language Information Sources

C Chapter 5, “Programming DataBlade Module Routines in C”

IBM Informix DataBlade API Programmer’s Guide

ActiveX/C++
(client-side
programming and
Windows server
projects only)

Chapter 6, “Creating ActiveX Value Objects”

Chapter 7, “Using ActiveX Value Objects”

IBM Informix DataBlade API Programmer’s Guide

Java Chapter 8, “Programming DataBlade Modules in Java”

J/Foundation Developer’s Guide

IBM Informix JDBC Driver Programmer’s Guide

Stored Procedure
Language (SPL)

IBM Informix Guide to SQL: Tutorial
1-8 IBM Informix DataBlade Developer’s Kit User’s Guide

Designing Your DataBlade Module
Writing a Design Specification

A design specification describes the overall functionality of your DataBlade
module and documents the specific routines available to the user, the
supporting database tables used to implement the routines, error messages,
and the environment used to build the DataBlade module. A design specifi-
cation also documents implementation details that the DataBlade module
customer does not need to know, such as internal support routines.

For a sample design specification, see the IBM Informix Developer Zone at
www.ibm.com/software/data/developer/informix.

Creating an Iterative Development Plan

Keep the following guidelines in mind when you create an iterative devel-
opment plan:

� Plan the order in which to create objects.

Some objects can depend on others; you must create new data types
before you create the routines that operate on them. Create simple
data types and routines before complex ones. Create objects in the
smallest independently testable groups. For example, you can test
opaque data type support routines without any other objects.

� Add unit and functional test data for opaque data type support
routines, user-defined routines, and cast support routines as you
create them.

Unit tests are SQL files you use to test boundary conditions while
debugging your DataBlade module on Windows. After you generate
unit tests for all your routines with BladeSmith, you add test data to
them. If you later regenerate unit tests, the changes you made are
merged into the new unit test files.

Functional tests are scripts you execute to validate your DataBlade
module on UNIX after you finish debugging it. You can also run func-
tional tests on Windows if you use a UNIX emulator, such as MKS
Toolkit. Before you generate functional tests in BladeSmith, you must
enter functional test data for all your routines. You can add custom
scripts, but if you alter existing scripts and then regenerate them,
changes you made are overwritten. See “Adding Functional Test
Data” on page 4-60 for more information.
Getting Started with DataBlade Module Development 1-9

Developing Your DataBlade Module
� Include tracing when you generate code.

If you enable tracing when you generate code in BladeSmith, Blade-
Smith includes enter and exit tracing for every routine. You can also
add more tracing. See “Generating Files” on page 4-66 for informa-
tion on how to generate code with tracing and “Tracing and Error
Handling” on page 5-13 for information on the generated tracing.

� Add custom error messages.

Anticipate how your customers will use your DataBlade module and
create error messages that sensibly report problems to your users.
See “Defining Errors” on page 4-23 for information on how to define
error messages and “Tracing and Error Handling” on page 5-13 for
information on how to add custom error handling to your DataBlade
code.

Tip: Although you can use BladeSmith to define all of the objects in a DataBlade
project before you edit and test the code, you might find it helpful to develop a
modular plan to define and test objects one by one before you test the project as a
whole.

Developing Your DataBlade Module
Developing your DataBlade module is an iterative process that involves
creating objects in BladeSmith, generating code, editing and compiling code,
and testing and debugging code. When you identify errors, you must repeat
the process to correct errors. DataBlade development can be iterative in
another way: you can create objects in BladeSmith one by one, coding and
testing each one before creating the next. When you are finished developing
your DataBlade module, you package it for distribution.

To create your DataBlade module

1. Create a project in BladeSmith.

See “Creating a New Project” on page 4-8 for more information.

2. Define the contents of your DataBlade module in BladeSmith.

See “Creating DataBlade Module Objects” on page 4-14 for more
information.
1-10 IBM Informix DataBlade Developer’s Kit User’s Guide

Developing Your DataBlade Module
3. Generate DataBlade module code in BladeSmith.

See “Generating Files” on page 4-66 for more information.

4. Edit and compile DataBlade module code.

See “Editing and Compiling DataBlade Module Code” on page 1-12
for more information.

5. Debug your DataBlade module code.

See “Debugging Your DataBlade Module” on page 1-13 for more
information.

6. Repeat steps 2 through 5 until your DataBlade module is complete
and the code functions properly.

7. Test your DataBlade module code.

Run generated functional test scripts on UNIX or on Windows with a
UNIX emulation program. For instructions for UNIX, see “Perform-
ing Functional Tests” on page 9-12. For instructions for Windows, see
“Performing Functional Tests on DataBlade Modules” on page 10-12.

8. If necessary, repeat steps 4 through 7 until your DataBlade module is
complete and the code functions properly.

9. Package your DataBlade module with BladePack.
Getting Started with DataBlade Module Development 1-11

Editing and Compiling DataBlade Module Code
The following diagram illustrates the basic steps in DataBlade module devel-
opment and lists the tools you use for Windows, UNIX, and Java.

Editing and Compiling DataBlade Module Code
If you are developing a DataBlade module in C or C++, you use Microsoft
Visual C++ 6.0 to edit and compile your source code on Windows. ♦

If you are developing a DataBlade module in C, you can use any standard
UNIX development tool and compiler to edit and compile your source
code. ♦

Figure 1-1
DataBlade Module Development Cycle

BladeSmith

Visual C++

Visual C++
Add-In

IfxQuery
Server

MKS Toolkit
Server

BladePack

Development Tool
Compiler

DB-Access
Debugger

BladeManager
Server

Server

Tasks Windows Tools UNIX Tools

Create and generate
DataBlade module
(Steps 1 through 3)

Edit and compile
source code
(Step 4)

Debug source code:
install, register, start
the server and
debugger, and run
SQL
(Steps 5 and 6)

Perform functional
tests
(Steps 7 and 8)

Package for
distribution
(Step 9)

Development Tool
JDK 1.1 Compiler

BladeManager
SQL Query Tool

Server with
J/Foundation
Java Log File

Java Tools
(all platforms)

Windows

WIN NTUNIX
1-12 IBM Informix DataBlade Developer’s Kit User’s Guide

Debugging Your DataBlade Module
If you are developing a DataBlade module in Java, you can use any standard
UNIX or Windows development tool to edit your source code. Use the JDK
1.1.x compiler to compile it.

For more information about programming and compiling, see the following
chapters:

� Chapter 5, “Programming DataBlade Module Routines in C”

� Chapter 6, “Creating ActiveX Value Objects”

� Chapter 8, “Programming DataBlade Modules in Java”

Debugging Your DataBlade Module
Debugging a C or C++ DataBlade module consists of the following general
steps:

1. Install the DataBlade module on the database server.

2. Set breakpoints in your source code file.

3. Start and attach the debugger to the database server process.

4. Register the DataBlade module in your test database.

5. Run SQL queries (unit tests) to test the source code marked with
breakpoints.

If you are debugging C or C++ DataBlade module source code on Windows,
you use Microsoft Visual C++, the DBDK Visual C++ Add-In, and the
IfxQuery tool. The Debug DataBlade Module command of the add-in
installs the DataBlade module on the local database server, starts the
debugger and database server, and calls IfxQuery to register the DataBlade
module and run the unit tests that halt at breakpoints in the source code. The
Debug DataBlade Module command functions only if the database server is
installed on the same computer on which you are debugging.

For more information on debugging C and C++ code on Windows, see
Chapter 10, “Debugging and Testing DataBlade Modules on Windows.” ♦

If you are debugging a DataBlade module on UNIX, you must install the
DataBlade module, start the database server and debugger, register the
DataBlade module with BladeManager, and use DB-Access to execute SQL
statements that halt at breakpoints in the source code.

Windows

WIN NTUNIX
Getting Started with DataBlade Module Development 1-13

Packaging Your DataBlade Module
For more information on debugging C code on UNIX, see Chapter 9,
“Debugging and Testing DataBlade Modules on UNIX.” ♦

Debugging a DataBlade module written in Java consists of the following
general steps:

1. Install the DataBlade module.

2. Start the database server process.

3. Register the DataBlade module in your test database.

4. Run SQL queries (unit tests) to test the source code marked with
breakpoints.

5. Examine the Java log file for errors.

For more information on debugging Java code, see “Debugging and Testing
DataBlade Modules Written in Java” on page 8-16. ♦

Packaging Your DataBlade Module
With BladePack, you can create an interactive installation program for the
following environments:

� UNIX

� Windows with InstallShield 3.1

� Windows with InstallShield 5.1

You must include the generated SQL scripts and all the shared library files
you produced when you compiled your DataBlade module source code.
However, consider also including:

� Custom installation extensions

� Documentation for your DataBlade module

� Examples for your DataBlade module

WIN NTJava
1-14 IBM Informix DataBlade Developer’s Kit User’s Guide

2
Chapter
Designing DataBlade Modules
In This Chapter . 2-3

Data Model . 2-3

Data Type Design 2-6
Object Accessibility 2-6
Handling Large Objects 2-7

Query Language Interface 2-10
SQL Query Structure 2-10
The Target List 2-11
The Qualification 2-13

Query Processing 2-14
Predicate Evaluation 2-15

Expensive Routines 2-15
User-Defined Statistics 2-16
Aggregates 2-19
Sorting Results 2-20

Grouping . 2-21
Casts . 2-21
Access Path Selection. 2-23

Unordered Row Processing 2-23
Secondary Access Methods 2-24

Planning for Transaction Semantics 2-25

Interoperability . 2-26
Orthogonality 2-26
Simple, Clean Interfaces 2-27

Naming Routines. 2-27
Taking Advantage of Polymorphism 2-28

2-2 IBM
Limiting the Number of Arguments 2-28
Avoiding Modal Routines 2-28
 Informix DataBlade Developer’s Kit User’s Guide

In This Chapter
This chapter describes DataBlade module SQL design issues. For language-
specific design issues, see Chapter 3, “Programming Guidelines.”

The chapter covers the following topics:

� “Data Model,” next, provides a high-level definition of the objects
and services a DataBlade module provides.

� “Data Type Design” on page 2-6, presents issues in determining
which data types to use in your DataBlade module.

� “Query Language Interface” on page 2-10, describes how database
users use the DataBlade module’s features.

� “Query Processing” on page 2-14, describes how DataBlade module
operations execute inside the Informix server.

� “Interoperability” on page 2-26, describes how new DataBlade
modules work with other DataBlade modules.

Data Model
A data model is a high-level definition of a DataBlade module: what objects it
represents and what operations on those objects it provides. Here are some
issues to keep in mind when you design a data model:

� Consider the data model independently from the applications that
use it and the user interfaces required by those applications.

� Concentrate on designing a service, rather than an application.

� Build a data model that is reusable by multiple client applications,
rather than creating one tailored to a particular client application.
Designing DataBlade Modules 2-3

Data Model
For example, consider the fictitious SimpleMap DataBlade module, which
stores, manipulates, and displays maps. The data model for this DataBlade
module might specify:

� Spatial data types, such as polygons to represent counties and cities
and line segments to represent roads and rivers

� Operations performed on the spatial data types, such as search and
comparison routines that determine whether a particular city lies
within a particular county or whether two roads intersect

This data model allows you to make requests such as, “Find all the polygons
in the map that fall inside the currently visible region, where the currently
visible region is a given polygon.” The query scans the database and returns
only the polygons that meet the request criteria.

However, the display logic for the data types does not belong in this data
model; the rendering of polygons is a user-interface issue. After the desired
polygons have been retrieved from the database, the client application
displays them.

The data model for a DataBlade module must be simple to understand, and
the DataBlade module must provide a rich set of services using a minimal set
of routines. This fundamental software design concept applies to DataBlade
modules in particular, because DataBlade modules are intended for use by
other developers.

For example, in the SimpleMap DataBlade module, assume that users want
to find overlapping regions on a map. The DataBlade module can provide a
number of different interfaces to support the query. Two examples are as
follows:

Overlaps(Polygon, Polygon)
Contains(Polygon, Polygon)

The Overlaps() routine returns TRUE if any parts of the two polygons overlap,
while the Contains() routine returns TRUE if the first polygon completely
contains the second. These two routines are simple to understand and easy
to remember.
2-4 IBM Informix DataBlade Developer’s Kit User’s Guide

Data Model
However, if the semantics of two routines are too similar, users may have
difficulty remembering which routine computes which value. For example,
assume the SimpleMap DataBlade module also provides the following
Intersects() routine:

Intersects(Polygon, Polygon)

This routine returns TRUE if the boundaries of the two polygons intersect.
Intersects(a, b) is equivalent to the following statement:

Overlaps(a, b) and not (Contains(a, b) or Contains(b, a))

Intersects() and Overlaps() are confusing when both are supplied. Because
Overlaps() and Contains() together can compute intersections, it is probably
best to leave Intersects() undefined.

When you design a data model, separate the routines used by a single appli-
cation from the more general service routines. For example, perhaps you
want to provide a routine that takes a polygon as an argument and returns
another polygon with a border exactly one pixel outside the original. To
display the new polygon, the two polygons are used together to create the
appearance of a polygon with a thick border.

Such a routine is probably useful only for a particular application that
displays thick-bordered polygons; it is not useful to other applications that
operate on spatial data. Thus, it is a poor candidate for inclusion in a
DataBlade module.

In summary, these are the issues to consider when you design the data model
for a DataBlade module:

� Separate the user interface from the abstract operations on data.

� Think about data types and routines that operate on them.

� Keep the design simple.

� If you are building a production DataBlade module, do not add
server routines intended to support a single application.
Designing DataBlade Modules 2-5

Data Type Design
Data Type Design
After you have designed a data model for your DataBlade module, you can
design its specifics, such as data types to best represent your DataBlade
module objects.

Your Informix database server supports a rich set of data types, known as
built-in data types. (For information on the built-in types, see the IBM Informix
Guide to SQL: Reference.) It is recommended that you use built-in types
wherever possible; however, even with built-in types, consider the following
design issues:

� How accessible must the elements of each object be?

� How large is each object?

This section provides some guidelines for making these design decisions.

Object Accessibility
Users are likely to query the data of two extended types: row data types and
opaque data types. To decide which data type to use, consider how accessible
the elements of each DataBlade module object should be:

� Use row data types for any object that is a container and whose
elements users always want to access.

� Use opaque data types for indivisible objects or for objects whose
representation you want to hide from your users.

For example, say the users of the SimpleMap DataBlade module want to see
and operate directly on the street number and name, country, and postal
code. You might decide to provide the Address data type.

If you create Address as an opaque type, each member of the underlying C
structure can store a different element of the address. However, this means
you must also define accessor routines for each element.
2-6 IBM Informix DataBlade Developer’s Kit User’s Guide

Handling Large Objects
If you create Address as a row type, your Informix database server automat-
ically provides direct access to each of the fields, as follows:

CREATE ROW TYPE Address
(street_number real, street_name varchar(40),
 city varchar(100), country varchar(40),
 postal_code varchar(20));

This allows users to write queries like the following example:

SELECT * FROM employees WHERE address.city = 'Vienna';

In contrast, because users seldom need to examine the individual points of a
polygon, you can create the Polygon type as an opaque data type. An opaque
data type provides an efficient representation that you can operate on easily
with C code. The query language interface remains simple.

When you design data types, ask yourself the following questions:

� Is the data type just a container for a collection of values that users
can access directly? If so, use a row data type.

� Is the type naturally indivisible, or do you want to hide its represen-
tation from users? If so, use an opaque data type.

� How can you represent your data to make it easy to use in SQL and
to make end-user queries simple?

Handling Large Objects
When you decide on the specific data type to represent a DataBlade module
object—or its elements—keep in mind that the maximum row size for a
database table is 32 KB. (Row size is the sum of the sizes of the columns in that
row.)

Your Informix database server provides the LVARCHAR data type, which can
hold up to 2 KB of text data. Larger objects and binary objects are called smart
large objects, and your Informix database server provides facilities for high-
performance access to smart large objects.

A smart large object is an object that is logically stored in a table column of type
BLOB (binary large object, for binary data) or CLOB (character large object, for
text data) but is physically stored in an sbspace.
Designing DataBlade Modules 2-7

Handling Large Objects
An sbspace is a logical storage area that contains one or more chunks that store
only BLOB and CLOB data. Sbspaces must be created before you can create
any smart large objects; after sbspaces are created, they are managed by your
Informix database server.

Tip: If your DataBlade module makes use of smart large objects, you can test for the
existence of a particular sbspace when your DataBlade module is being registered in
a database using BladeManager. For information, see Appendix C, “Testing for an
Sbspace.”

Smart large objects are “smart” because they provide the following features:

� They provide random access to their data, using an operating-
system-style interface (seek, read, write, and so on).

� They are recoverable in the event of a system crash (if the sbspace
was created with logging enabled), and they obey transaction
isolation modes.

� They have no maximum size.

� You can create and store indexes in them.

� You can access and manipulate them using SQL, ESQL/C, or the
DataBlade API.

Within SQL, the only comparison operator you can use for data of types BLOB
and CLOB is Equal() (=); however, you can perform additional operations
using IBM Informix ESQL/C or the DataBlade API from your client
application.

You can also use the IBM Informix Large Object Locator DataBlade module to
handle large objects. This DataBlade module enables you to store large object
data on the client computer. The IBM Informix Large Object Locator
DataBlade module is included with your Informix database server. You must
register the module’s routines and data types in each database in which you
plan to use the module.
2-8 IBM Informix DataBlade Developer’s Kit User’s Guide

Handling Large Objects
When you design data types, ask yourself the following questions:

� Is the object represented by 2 KB or less of text data? If so, use the
built-in LVARCHAR data type.

� Is the object represented by more than 2 KB of text data, or by binary
data? If so, use the smart large object facilities provided by your
Informix database server.

� Does it make sense to store the large object on the client computer? If
so, use the IBM Informix Large Object Locator DataBlade module.

The following table lists large object topics and where you can find more
information on them.

Most of these manuals are accessible through the InfoShelf.

For information on... See...

Using smart large objects, including
examples

www.ibm.com/software/data/deve
loper/informix

Overview of smart large objects IBM Informix Guide to SQL: Tutorial

Creating sbspaces IBM Informix Dynamic Server Adminis-
trator’s Guide

Testing for the existence of a particular
sbspace during DataBlade module
registration

Appendix C, “Testing for an
Sbspace”

BLOB and CLOB data types IBM Informix Guide to SQL: Reference

SQL smart large object functions IBM Informix Guide to SQL: Syntax

IBM Informix ESQL/C smart large object
features

IBM Informix ESQL/C Programmer’s
Manual

IBM Informix DataBlade API smart large
object features

IBM Informix DataBlade API
Programmer’s Guide

IBM Informix Large Object Locator
DataBlade module

IBM Informix Large Object Locator
DataBlade Module User’s Guide
Designing DataBlade Modules 2-9

Query Language Interface
Query Language Interface
The next component in DataBlade module design is the query language
interface. Because your Informix database server is object-relational, you
access it by formulating queries in SQL. DataBlade modules extend SQL by
defining new types and new routines that are available to queries. Consider
the syntax that users must master to use a DataBlade module.

SQL Query Structure
SQL includes Data Definition Language (DDL) statements and Data Manipu-
lation Language (DML) statements.

DDL statements, such as CREATE, ALTER, and DROP, modify the schema of a
database. DML statements, such as SELECT, INSERT, UPDATE, and DELETE,
manipulate data in tables.

Most SQL queries use DML statements. When you design a DataBlade
module, consider DML statements in the abstract. DML statements can be in
either of the following two forms:

SELECT something FROM some table
WHERE some conditions are satisfied

UPDATE some table SET something
WHERE some conditions are satisfied

The italicized components serve different purposes in the DML query. The
some table part is called “the from list” and is not important to consider when
you design a DataBlade module. The something part is called “the target list”
and identifies the columns for retrieval or update. The target list is the target
on which the query is operating. The some conditions are satisfied part of the
query is called “a qualification” because it identifies the rows that qualify to
participate in the operation.

When you develop a DataBlade module, consider where you expect a
particular routine to be used. In the following two sections, the DataBlade
module routines that typically appear in the target list and qualification are
addressed.
2-10 IBM Informix DataBlade Developer’s Kit User’s Guide

The Target List
The Target List
The target list is where simple computation occurs. Consider providing
DataBlade module routines for common computations on opaque data types.
You can perform the computation in the DataBlade module to eliminate the
need to implement the routine in the client application. You can use
DataBlade module routines in the target list to reduce the amount of data
transferred from the server to the client and thereby improve performance.

Consider the following sample query from the SimpleMap DataBlade
module discussed earlier in this chapter:

CREATE TABLE cities (name text, population integer,
boundary Polygon);

Polygon is a data type supplied by the SimpleMap DataBlade module.

To retrieve a list of all cities, their populations, and population densities, you
can submit the following query:

SELECT name, population, population / Area(boundary)
AS density FROM cities;

In this example, the Area() routine is supplied by the SimpleMap DataBlade
module. Area() returns a floating-point number that is the area of the
supplied polygon. You can invoke the built-in division operator to compute
density from population and area. This query does a simple computation in
the target list, using a mixture of DataBlade module and built-in routines.

This computation can also be done on the client. However, the client must
implement the Area() routine for polygons, and the server must ship all of
the polygons to the client. This operation is more expensive than shipping the
results of the division across the network because polygons can be quite
large. Generally, any computation that appears in the target list can also be
done by the client. Thus, place target-list routines in the DataBlade module
server routines only if there is an advantage to be gained by doing so.
Designing DataBlade Modules 2-11

The Target List
If there is no advantage to running the routine on the server, leave the routine
out of the DataBlade module and allow the client application developers to
implement it in the client. If the server routine provides any of the following
advantages, include it in the DataBlade module:

� It reduces the volume of data transferred to the client.

� It simplifies application development by sharing code among clients
more effectively.

� It benefits from the parallelism and scalability enabled by your
Informix database server.

A simple DataBlade module that integrates well with existing data types is
always better than a complicated one with many predefined routines that
cannot be used in conjunction with built-in or other DataBlade module
routines.

The division operator that appears in the query calls a division routine built
into your Informix database server. Built-in routines and DataBlade module
routines can be combined in queries, as shown in the previous example using
division with Area(). Routines from different DataBlade modules can be
mixed to provide additional services.

When you design a data model, consider using built-in types and types
provided by other DataBlade modules. In the previous example, you might
define a new data type, called AreaType, to represent the area of geographic
objects. However, then you must implement all the math on AreaType values
yourself. By using real numbers to represent areas, you can leverage existing
math and computational support in the database server and allow users to
mix SimpleMap DataBlade module routines with other routines.

You might define a routine that computes population density inside the
SimpleMap DataBlade module. The routine takes two parameters—a
polygon and an integer—and does the division itself. However, no real
semantic power is derived from this design. Leave special-purpose routines
out of the DataBlade module to keep the interface simple and to let devel-
opers define their own expressions or routines to compute specific values.
2-12 IBM Informix DataBlade Developer’s Kit User’s Guide

The Qualification
The Qualification
The SQL qualification restricts the set of rows returned to the user. The qualifi-
cation filters out records that are not interesting. Only the records that pass
the qualification are evaluated in the target list. Thus, a qualification is a more
powerful tool than the target list.

A single expression in a qualification is called a predicate. A qualification can
contain multiple predicates joined by the Boolean operators AND and OR.

If a DataBlade module routine is used in a qualification, it filters the records
returned to the client. Your database server can filter by the contents of new
data types. (This capability is not available in conventional relational
databases.)

Consider whether the routines you define are more likely to be used in the
target list or the qualification. Routines more commonly used in the qualifi-
cation make better use of the extensibility of your database server because
they support searches that cannot be done efficiently on conventional
relational servers.

The following example shows a DataBlade module routine used in a
qualification:

SELECT name, boundary FROM cities WHERE
Overlaps(boundary, '(1,1), (5,5), (7,7), (8,9)');

In this example, the Overlaps() routine is provided by the SimpleMap
DataBlade module and takes two polygon arguments: the first argument
specifies the polygon you are checking; the second specifies the polygon with
which the first is compared. Overlaps() returns TRUE if the two polygons
overlap and FALSE otherwise. This query searches the cities table for those
cities that overlap the region of interest.

The separation between routines used in the target list and those used in the
qualification is not absolute. For example, the following query finds the
names and populations of large cities:

SELECT name, population FROM cities
WHERE Area(boundary) > 500;

In this example, the Area() routine appears in the qualification. In the section
“The Target List” on page 2-11, the Area() routine appeared in the target list.
Designing DataBlade Modules 2-13

Query Processing
Some routines are better suited to the qualification than the target list. A good
example of this distinction is the Overlaps() routine. This routine is more
powerful in the qualification. While it is possible to formulate a query like the
following example, it is not very common:

SELECT Overlaps(boundary, '(1,1), (5,5), (7,7), (8,9)')
FROM cities;

This query returns a list of yes-or-no answers for each city in the table that
overlaps the supplied constant polygon. It is more common to use the
Overlaps() routine to filter rows than to compute values returned to the user.
However, important and useful exceptions to this rule exist, as follows:

SELECT a.name, Overlaps(a.boundary, b.boundary)
FROM cities a, cities b
WHERE b.name = 'Los Angeles' AND
a.name = b.name;

This query returns a list of all cities in the table and whether they overlap Los
Angeles.

To help decide which routines to include in the DataBlade module, consider
the following questions:

� What questions do users want to ask about the contents of the new
data types in the DataBlade module?

� What routines allow them to ask those content-based questions?
These routines are used in the qualification.

Query Processing
To develop a DataBlade module, you need a general understanding of query
processing and Informix SQL. You must also understand the execution
environment inside your Informix database server—the multithreading
model, the collection of processes in which DataBlade module routines can
execute, and concurrent access to database objects, transactions, and so on.
This section describes query processing.
2-14 IBM Informix DataBlade Developer’s Kit User’s Guide

Predicate Evaluation
Predicate Evaluation
An expression in the qualification of a query is a predicate. The WHERE clause
in the following query is a predicate:

SELECT name, boundary from cities
WHERE Overlaps(boundary, '(1,1), (5,5), (7,7), (8,9)');

The database server evaluates the predicate for every row in the table and
returns the rows that satisfy the predicate to the client. Each predicate in a
qualification eliminates rows from the candidate set. After the server deter-
mines that a row does not satisfy a predicate, it moves on to the next
candidate row.

Most predicate evaluation is straightforward—values of interest are
extracted from a candidate row and evaluated against the predicate.
However, there are some cases where predicates in the qualification behave
in a unique way. These cases are described in the following sections:

� “Expensive Routines,” next

� “User-Defined Statistics” on page 2-16

� “Aggregates” on page 2-19

� “Sorting Results” on page 2-20

Expensive Routines

Expensive routines are routines that either take a long time or require a great
deal of disk space to run. Conventional relational database systems do not
account for expensive routines; any predicate that appears in a query is
assumed to be as expensive as any other. For example, comparing two
floating-point numbers is not more difficult than comparing two integers. For
relational databases, this is the right approach.

However, an object-relational database system must evaluate relative
function costs. Some routines are very difficult to compute or require a great
deal of intermediate space. For example, it can take many thousands of
machine instructions to determine whether two polygons overlap.
Designing DataBlade Modules 2-15

Predicate Evaluation
Because an object-relational database stops evaluating predicates as soon as
it determines that a row does not satisfy the criteria, the database server
chooses an optimum order to evaluate the predicates in a query. If it evaluates
all the expensive predicates first, the query runs slower than if it considers
the inexpensive predicates first.

The strategy for choosing the best order to evaluate predicates is complex
and beyond the scope of this discussion. However, the database server must
evaluate the cost of invoking user-defined routines to run queries efficiently.

Most DataBlade module routines are at least as complex as a routine that
compares floating-point numbers. For DataBlade module routines that are
more expensive, you must describe the relative expense to the Informix
server.

A good formula for estimating the expense of a routine is as follows:

<lines of code> + (<number of I/Os> * 100)

For example, if a routine has 100 lines of code and performs 5 disk I/Os or
SQL queries, the cost is 100 + (5 * 100), or 600. You can enter the cost in the
BladeSmith Routine wizard (see “Cost of Routine” on page 4-35).

When you estimate the cost of executing a routine, consider the following
questions:

� Which DataBlade module routines take a long time to run?

� Which DataBlade module routines consume large amounts of
memory or disk space?

� How expensive are the DataBlade module routines relative to one
another?

� How expensive are the DataBlade module routines relative to
expensive routines defined by other DataBlade modules?

User-Defined Statistics

User-defined statistics provide a way to improve performance when you
compare opaque data type values. User-defined statistics compile infor-
mation about the values in an opaque data type column that the optimizer
can use when it creates a query plan when it needs to execute routines that
compare opaque data type values.
2-16 IBM Informix DataBlade Developer’s Kit User’s Guide

Predicate Evaluation
Statistics typically consist of the following types of information about the
specified column; however, you can collect more information if it is appro-
priate for your opaque data type:

� Minimum value

� Maximum value

� Distribution of values

When your statistics-gathering function calculates the distribution of column
values, it can assign each value to a “bin.” Each bin contains a range of values.
For example, suppose the column values range from 1 through 10. You could
have five bins: the first bin would hold values from 1 through 2, the second
bin would hold values from over 2 through 4, and so on. The database server
generates statistics by calling your statistics-gathering function when you
run the UPDATE STATISTICS statement in medium or high mode (see the
IBM Informix Guide to SQL: Syntax).

Important: You must understand your data and how users will query it to create
meaningful statistics.

The minimum, maximum, and distribution of values can be used to compute
the selectivity of a value. The optimizer can then use the selectivity of values
when it determines query cost estimates. For example, suppose you want to
join two tables. Normally, a join compares all values in one table to all values
in the other table. However, if the optimizer knows that one of the tables has
low selectivity, it can efficiently order the joins.

Selectivity is an estimate of the percentage of rows that will be returned by a
filter in a query. Selectivity values range from 0.0 to 1.0, where 0.0 indicates a
very selective filter that passes very few rows and 1.0 indicates a filter that
passes almost all rows. The optimizer uses selectivity information to reorder
expressions in the query predicate so that filters that are expensive to call
given the values of their arguments are evaluated after filters that are
inexpensive to call. Thus the optimizer reduces the number of comparisons
and improves performance. To determine the selectivity of a routine, the
database server calls the associated selectivity routine.
Designing DataBlade Modules 2-17

Predicate Evaluation
For example, suppose you have an opaque data type that represents a circle
and you have created a distribution for the circle type based on the radius.
Assume that the values of the radius range from 5 to 15. If you query for all
circles with a radius of less than 4, the selectivity of the LessThan() function
that handles the circle data type is 0 because no values qualify. Consequently,
the optimizer would not execute the LessThan() function. Alternatively, if
you query for all circles with a radius of greater than 4, the selectivity of the
GreaterThan() function that handles the circle data type is 1.0 because all
values qualify. Consequently, the optimizer would execute the Great-
erThan() function after all other operations in the query predicate.

You can define selectivity routines for user-defined functions with the
following characteristics:

� Functions that compare two opaque data types

� Functions that return a Boolean value

� Functions that act as filters (called in the WHERE clause of a SELECT
statement)

For example, you can define selectivity functions for the Equal(), LessThan(),
and GreaterThan() functions that are overloaded for an opaque data type.
You can also define a selectivity function for a function like Contains() that
compares two opaque data types.

To implement user-defined statistics, you must supply the following
routines:

� Statistics support functions that collect statistics for opaque data
types (see “Statistics Support” on page 4-56)

� User-defined selectivity routines that use statistics to estimate the
selectivity of a routine that compares opaque data type values (see
“Selectivity Functions” on page 4-36)

After you define the routines in BladeSmith, you must add code to them to
provide the required functionality. See “Editing Statistics Routines in
statistics.c” on page 5-44 and “Selectivity Functions” on page 5-51 for
instructions.
2-18 IBM Informix DataBlade Developer’s Kit User’s Guide

Predicate Evaluation
To determine whether your opaque data type needs user-defined statistics,
consider the following questions:

� Do you know enough about the data and how users will access it to
write routines that compile meaningful statistics?

� Do the routines that compare your opaque data type consume large
amounts of memory or disk space?

Aggregates

Most DataBlade module functions operate on single values and return one
result for each time they are called. Aggregates, however, are functions that
are called repeatedly, with different values, and collect their results until no
more arguments are supplied.

An example of an aggregate is the built-in AVG aggregate. This aggregate
computes the average value of all its arguments. For example, an SQL user
could issue the following query:

SELECT AVG(population) FROM cities;

The query processing engine calls the supporting function for AVG
repeatedly with population values from the cities table. After all the popula-
tions have been passed to AVG one at a time, it returns the average
population. You can extend the aggregates that are built into the database
server by overloading their operator functions for an extended data type. For
more information, see the IBM Informix DataBlade API Programmer’s Guide.

You can define new aggregates that implement user-defined functions. For
example, one common spatial operation is to compute a minimum bounding
rectangle that contains a collection of other rectangles. A user might write the
following query using a user-defined aggregate called BOUNDING:

SELECT BOUNDING(boundary) FROM cities;

The BOUNDING aggregate takes all the polygons, one at a time, from the
cities table and returns the smallest rectangle that contains them all. The
query processing engine supplies records to the aggregate for computation;
the aggregate only collects information over the arguments it is passed. For
more information, see “Creating Aggregates” on page 4-16.
Designing DataBlade Modules 2-19

Predicate Evaluation
Like ordinary functions, aggregates may appear anywhere in the query,
including in the target list and the qualification. Aggregates in the qualifi-
cation are most useful in queries that also do grouping. See “Grouping” on
page 2-21 for more information on how aggregates work in grouping queries.

If you have a data type over which summary or statistical analyses are
valuable, consider defining an aggregate.

When you design a DataBlade module, ask yourself the following question:
Is it useful to compute a summary over values that the DataBlade module
supports?

Sorting Results

SQL allows you to sort result rows when you express your queries. Sorted
results are useful when you need to see records in some particular order.

The following query sorts a list of cities and their populations in descending
order by population:

SELECT name, population FROM cities ORDER BY population desc;

If a DataBlade module defines a data type that can be sorted in a meaningful
way, you must supply a comparison routine for the type. This routine allows
the user to sort query results on that type.

In addition, you can use the results of routines that appear in the target list to
sort the results of a query. For example, the following query returns a list of
cities in descending order by population density:

SELECT name, population,
population / Area(boundary) AS density
FROM cities
ORDER BY density desc;

The density expression, on which the query results are sorted, is a complex
calculation. The expression includes a DataBlade module routine and a
division operation. Because your Informix database server allows sorting by
floating-point numbers, the preceding query requires no special sorting
support from the DataBlade module.

To determine whether to provide sorted results, ask the following questions:

� Can my DataBlade module data types be sorted?

� Will users want to sort this data type?
2-20 IBM Informix DataBlade Developer’s Kit User’s Guide

Grouping
Grouping
SQL allows you to write queries that group results. Grouping is a powerful
facility for summarizing data, particularly in combination with aggregates
such as COUNT or SUM. The following query uses grouping and aggregates:

SELECT COUNT(name), population FROM cities GROUP BY population;

This query returns the number of cities that have the same population for
each distinct population value that appears in the table. The GROUP BY clause
breaks the set of result rows into groups with equal populations; then the
target list is evaluated for each group separately. The COUNT aggregate
counts the number of city names in the group.

Consider whether any of the types you define are candidates for grouping. In
the SimpleMap DataBlade module, for example, polygons are a poor
candidate; users seldom want to group geographic data that contains
identical polygons.

You can group results using complex expressions. For example, the following
query divides cities into groups that are within 10 units of the same area and
then adds the population for the group:

SELECT Area(boundary) / 10 AS dimensions, SUM(population)
FROM cities GROUP BY dimensions;

To determine whether your DataBlade module requires support routines for
grouping, ask the following questions:

� For each type in the DataBlade module, can the values sensibly be
broken into groups that are equivalent?

� What is the meaning of each of these groups?

� Do users want to group values in that way?

Casts
If your DataBlade module defines types that are similar or comparable,
consider defining casts between the types. You can also define casts from
DataBlade module types to built-in types, and from data types in one
DataBlade module to data types in another DataBlade module.
Designing DataBlade Modules 2-21

Casts
Casting values allows the query processing engine, implicitly or explicitly, to
change the type of a value and use it as an argument to routines that require
the destination type.

In an inheritance hierarchy, casting can provide another mechanism for type
conversion. In general, subclasses can be implicitly cast to superclass types.
However, downward casts (that is, from supertype to subtype) are not
automatically supported because subclasses typically add instance variables
not present in the supertype.

Similarly, distinct types can often be cast to their source type. For example, a
distinct type called LIRA (representing the currency unit of Italy), based on
the MONEY data type, might allow casting to MONEY to allow simple math
operations on it. However, you probably do not want to cast MONEY to LIRA;
if LIRA has only the properties of MONEY, it is not a required type.

Casts can be confusing if overused. Implicit casts hide an important fact from
users—that data can be lost during type conversion. Explicit casts, which
users must specify in queries, do not have this problem.

Use casts only where necessary. Be sparing in the casts you supply to users,
and be sure you understand the circumstances under which you expect casts
to be used.

To determine whether to provide casts, ask the following questions:

� Are any of the types in the DataBlade module comparable? Do they
really need to be different types? If so, is there a need to support
explicit or implicit casts between those types?

� Will users want to convert between values of one type and some
other type, either an Informix built-in type or one defined by the
DataBlade module?

� Which direction should the conversion go (in the example earlier in
this section, from LIRA to MONEY, or from MONEY to LIRA)? In
general, casts should only go one way, unless you intend them to be
explicit.
2-22 IBM Informix DataBlade Developer’s Kit User’s Guide

Access Path Selection
Access Path Selection
During query processing, your database server takes a nonprocedural query
and produces a procedural plan for satisfying it; this process is called making
an access path selection. Queries are nonprocedural because they describe only
the records of interest and what operations to perform on them. They do not
prescribe an algorithm (procedure) for locating records on disk or the order
in which to process them.

Your database server evaluates a collection of possible query plans that can
execute the query correctly. The server estimates the cost of running each
plan and chooses the one with the smallest cost estimate. Cost estimates are
a combination of the number of expected disk I/Os, the expected number of
records that must be processed, and the cost of invoking each of the routines
in the query on each candidate row.

Unordered Row Processing

When you design a DataBlade module, you cannot control how queries are
executed. There is no guarantee that the routines in a query are called in any
particular order. DataBlade module routines are called during query
processing to compute answers to queries. Do not hard-code query execution
strategies. For example, an attempt to force an index scan or a sequential table
scan reduces the number of choices available to the query optimizer and
results in poor performance.

To ensure that your DataBlade module does not conflict with the query
processing engine, ask the following questions:

� Do any routines require values to be delivered in some particular
order? If so, the routines break a fundamental rule of relational
database systems and must be changed.

� Is it important for routines in a query to execute in some particular
sequence? Again, the routines must be changed.
Designing DataBlade Modules 2-23

Access Path Selection
Secondary Access Methods

A secondary access method is an index that allows queries to be evaluated more
efficiently. When you create a table in SQL, you can choose to create a B-tree
index on one or more columns in the table. The query processing engine can
choose to use the index. For example, if there is an index on the population
column of the cities table, the query processing engine has at least two
choices for evaluating the following query:

SELECT name FROM cities WHERE population > 1000000;

The query processing engine can scan the cities table sequentially, examining
each record in turn and comparing the population to one million, or it can use
the B-tree index to quickly find only those records with populations of more
than one million. When it chooses to use the B-tree index, the engine does not
consider records with smaller populations and does not read them from the
disk.

The B-tree index stores the key value (for example, the population) and a
pointer to the record in the base table. The base table is the primary store, and
the index is a secondary access method.

You can define many types of indexes. For example, most text search engines
use a textual index to run searches quickly, while spatial data can be indexed
in a number of ways, including grid files and R-trees.

You can allow the creation of other indexes on your data types. For example,
a DataBlade module that defines a new type that can be sorted can allow
users to create B-tree indexes on that type. To do so, you create an operator
class for the type. An operator class is a collection of routines that allows the
type to be used in a given access method. For example, the operator class for
B-trees includes the routines LessThan(), LessThanOrEqual(), Equal(),
GreaterThanOrEqual(), and GreaterThan(). When you define those routines
on a new data type, users can create B-tree indexes on the type.
2-24 IBM Informix DataBlade Developer’s Kit User’s Guide

Planning for Transaction Semantics
Planning for Transaction Semantics
DataBlade module code runs in SQL transactions. A transaction is a single,
atomic, independent sequence of client/server interactions. For example,
inside a transaction, a user can search a table for all the cities that overlap Los
Angeles. In a separate transaction, some other user can change the bound-
aries of Los Angeles, as outlying areas are incorporated into the city. The two
operations are independent of one another. Each user is isolated from the
changes made by the other until the next transaction begins.

You must define DataBlade module code to be stateless and not based on the
assumption that any particular value persists across user transactions. For
example, a DataBlade module that does text matching might provide two
services: one to find all documents that contain a particular set of keywords
and another to highlight the matching keywords in the documents.

If a user first runs a query to find matching documents and then runs a
separate query to highlight the matches, the second operation cannot rely on
any cached results from the first. This is because some document contents
might have changed. In addition, because your database server is a multiuser
system, different users can run the same routines at the same time. There is
no way to guarantee that “saved” results belong to a particular query.

To ensure that you design systems that operate correctly in this environment,
ask the following questions:

� Are any of the routines based on an assumption that results from
previous user actions are still valid?

� Do I try to cache results for reuse?

� What happens if two users run the same routine on the same table
simultaneously?
Designing DataBlade Modules 2-25

Interoperability
Interoperability
The interoperability of a DataBlade module refers to how well that module
works with your Informix database server and with other DataBlade
modules.

This section discusses the following interoperability issues:

� Orthogonality

� Simple, clean interfaces

Orthogonality
In an orthogonal system, such as an object-relational database, the various
parts work together in a natural, semantically logical way. For example, an
orthogonal DataBlade module provides solutions only for the problems it is
intended to solve, and it relies on the Informix server or other DataBlade
modules to solve problems outside of its domain. Similarly, an orthogonal
DataBlade module allows other DataBlade modules to use its facilities in a
natural, semantically logical way.

The SimpleMap DataBlade module, for example, does not implement full-
text search. It is more effective if developers who are experts in text search
facilities create DataBlade modules that satisfy this requirement. The
SimpleMap DataBlade module can then supply just geospatial functionality;
it does not need to define routines over types that it does not create.

A simple guideline for ensuring orthogonality in DataBlade module devel-
opment is, “It does a small number of things well.”
2-26 IBM Informix DataBlade Developer’s Kit User’s Guide

Simple, Clean Interfaces
Simple, Clean Interfaces
Provide the users of your DataBlade module with a simple, clean interface by
following these guidelines where possible:

� Give your routines meaningful, “self-documenting” names.

� Take advantage of polymorphism.

� Limit the number of arguments each routine takes.

� Avoid creating modal routines.

This section discusses each of these guidelines.

Naming Routines

Whenever possible, use generally accepted names for routines using your
new data types. For example, the Overlaps() routine in the SimpleMap
DataBlade module does precisely what its name indicates. Users know what
to expect when they call it.

Because your database server supports polymorphism (see “Taking
Advantage of Polymorphism” on page 2-28), it is possible that another
routine of the same name already exists in the system. If you are concerned
that your routine provides a different service or has the same signature as
another, similarly named routine from another DataBlade module (that is,
none of the arguments of your routine are of a data type defined in your
DataBlade module), consider renaming the routine or qualifying its name
with a three-character DataBlade module prefix such as “USR”. Doing so
helps avoid conflicts in the system and confusion among your users.

Assume, for example, that you are creating the OtherMap DataBlade module
with a routine named Overlaps() that provides a different service than the
Overlaps() routine supplied by the SimpleMap DataBlade module. In
addition, your Overlaps() routine takes polygon data types not defined in the
OtherMap DataBlade module. If the three-character prefix of your DataBlade
module is OTH, then you might define your routine as follows:

OthOverlaps(Polygon, Polygon)

However, if your Overlaps() routine takes arguments of data types defined
in the OtherMap DataBlade module, you might define Overlaps() as follows:

Overlaps(OthPolygon, OthPolygon)
Designing DataBlade Modules 2-27

Simple, Clean Interfaces
Taking Advantage of Polymorphism

Your database server supports polymorphism; thus, you can have multiple
routines with the same name that take different argument types. For
example, a C programmer might be tempted to create distinct names for the
following routines that return the larger of their arguments:

bigger_int(integer, integer)

bigger_real(real, real)

However, in SQL it is better to define the routines with the same name, as
follows:

bigger(integer, integer)

bigger(real, real)

Limiting the Number of Arguments

To help your users remember how to use your DataBlade module routines,
limit the number of arguments they take. Reevaluate any routines that take
more than three arguments; such routines can become unwieldy or can
inadvertently become modal (defined in the next section).

Avoiding Modal Routines

When you create DataBlade module routines, avoid including arguments
that make them modal; that is, the mode of the routine changes, depending on
the third argument. For example, there are a number of different ways to call
a routine that computes containment of spatial values. The SimpleMap
DataBlade module might implement the following routine:

Containment(polygon, polygon, integer);

This routine determines whether the first polygon contains the second
polygon, or whether the second contains the first. The caller supplies an
integer argument (for example, 1 or 0) to identify which value to compute;
but the purpose of this argument is not immediately evident to a new user of
the DataBlade module.

Consider a second design for calculating containment, as follows:

Contains(polygon, polygon)
ContainedBy(polygon, polygon)
2-28 IBM Informix DataBlade Developer’s Kit User’s Guide

Simple, Clean Interfaces
This design is an improvement: not only are the routines nonmodal, but the
routine names also clearly explain what computation is performed.
Designing DataBlade Modules 2-29

3
Chapter
Programming Guidelines
In This Chapter . 3-3

Programming Language Options 3-3
Options for Opaque Data Types 3-4

ActiveX Value Objects 3-5
Mixing Languages in Server and Client Implementations . . . 3-6
Limitations of Opaque Types for Each Language 3-9
Embedding Opaque Data Types within Opaque Data Types . . 3-10

Options for Routines 3-11
Overloading Routines in Different Languages 3-11
Handling Opaque Data Types Implemented in a

Different Language 3-12
Multilanguage DataBlade Module Issues 3-12

C Programming Guidelines 3-13

C++ Programming Guidelines 3-14

Java Programming Guidelines 3-15

DataBlade API Programming Tips 3-16

3-2 IBM
 Informix DataBlade Developer’s Kit User’s Guide

In This Chapter
This chapter contains the following sections, which discuss programming
language issues that affect the design of your DataBlade module
development:

� “Programming Language Options,” next

� “C Programming Guidelines” on page 3-13

� “C++ Programming Guidelines” on page 3-14

� “Java Programming Guidelines” on page 3-15

� “DataBlade API Programming Tips” on page 3-16

Use this chapter to help you when you write the design specification for your
DataBlade module.

Programming Language Options
This section explains the programming language options you have when you
use BladeSmith to generate source code for your DataBlade module. Blade-
Smith supports the following external languages:

� C

� C++/ActiveX

� Java
Programming Guidelines 3-3

Options for Opaque Data Types
The following table lists the objects that you can implement in an external
language and the languages you can use for each.

The following subsections discuss programming language options in detail:

� “Options for Opaque Data Types,” next

� “Options for Routines” on page 3-11

� “Multilanguage DataBlade Module Issues” on page 3-12

Options for Opaque Data Types
Opaque data types are ultimately defined as C structures; when you create an
opaque data type with BladeSmith, the built-in data types you can choose as
members are C structures provided by the DataBlade API. However, you can
implement opaque data types as value objects in other external languages. A
value object is a self-contained binary object that provides standard interfaces
to its users. Value objects can be used in client applications.

You create client value objects in BladeSmith by specifying an optional client
implementation of your opaque data type, in addition to the mandatory
server implementation. For a complete list of options you have when you
create an opaque data type with BladeSmith, see “Opaque Data Type” on
page 4-40.

Object C C++/ActiveX Java

Cast support functions Yes No Yes

Aggregates Yes No Yes

Other user-defined
routines

Yes No Yes (with
restrictions)

Opaque data types
routines (server
implementation)

Yes Yes (with
restrictions)

No

Value object methods
(client implementation)

No Yes No
3-4 IBM Informix DataBlade Developer’s Kit User’s Guide

Options for Opaque Data Types
When you decide what functionality and which language or languages to use
for your opaque data types, you should consider the following options:

� Whether to create client value objects in addition to opaque data
types for the database server. See “ActiveX Value Objects,” next, for
more information.

� Which language to use for your opaque data types. See “Limitations
of Opaque Types for Each Language” on page 3-9 for more
information.

� Whether to use different languages for the server and client imple-
mentations. See “Mixing Languages in Server and Client
Implementations” on page 3-6 for more information.

� Whether to embed opaque data types as members of other opaque
data types. See “Embedding Opaque Data Types within Opaque
Data Types” on page 3-10 for more information.

ActiveX Value Objects

You can create ActiveX value objects with DBDK. An ActiveX value object is
an object that is compliant with Microsoft Common Object Model (COM) and
contains a client-side copy of database data.

The following table summarizes the relationship between ActiveX elements
and Informix opaque data type elements.

ActiveX Element Opaque Data Type Element

ActiveX control (or ActiveX object) Opaque data type

Custom methods (dual interface) Opaque type support routines

Properties Accessor methods for the members of the
data structure that defines the opaque type

(1 of 2)
Programming Guidelines 3-5

Options for Opaque Data Types
Important: Be aware that changing an object on the client will not update the object
on the database server. To update the value on the database server, you must do so
explicitly with an SQL UPDATE statement.

Mixing Languages in Server and Client Implementations

You can choose to combine languages for the server implementation and the
optional client implementations of your opaque data type: C or C++ for the
server implementation and ActiveX for the client implementation.

States N.A.

Events N.A.

Interfaces

(ActiveX value objects provide the
IRawObjectAccess and ITDkValue
interfaces)

N.A.

ActiveX Element Opaque Data Type Element

(2 of 2)
3-6 IBM Informix DataBlade Developer’s Kit User’s Guide

Options for Opaque Data Types
The following table describes some of the advantages and disadvantages you
should consider when you choose server and client implementation
languages.

Option Advantage Disadvantage

Using the same server
and client implemen-
tation language

You have less code to edit.

With C++, much of the
server and client code
overlaps (see Figure 3-1).

C++ has restrictions on the
functionality of the opaque
data type.

You can use C++ to
implement only opaque
data types; you must use C
or Java to implement other
DataBlade module objects.

You cannot port a C++
server project from
Windows to UNIX
platforms.

See “Limitations of Opaque
Types for Each Language”
on page 3-9 for more
information.

Using different
languages for the
server and client
implementations

If you use C as the server
language, you can
implement functionality
that is not available for Java
or C++.

You have more code to edit
because you have separate
server and client source
code.
Programming Guidelines 3-7

Options for Opaque Data Types
Figure 3-1 illustrates the advantage of choosing C++ for both the client and
server implementations: much of the same generated source code can be
used to compile each project.

See “Implementing ActiveX Value Objects” on page 6-5 for more information
about the generated files.

Important: It is recommended that developers create DataBlade modules in C++
only for client projects and for server projects that use Dynamic Server on Windows
only. For the latest recommendations on C++ programming options, check the
IBM Informix Developer Zone at www.ibm.com/software/data/developer/informix.

Figure 3-1
Choosing C++ for Both Client and Server Projects

Client-specific source,
header, library, and
project files

Server-specific source,
header, library, and
project files

Common source, header,
and library files

Compiled into client
project (.dll file)

Compiled into server
project (.bld file)
3-8 IBM Informix DataBlade Developer’s Kit User’s Guide

Options for Opaque Data Types
Limitations of Opaque Types for Each Language

This section discusses the limitations you have for each language when you
implement opaque data types.

Opaque Type Limitations for C

You cannot use BladeSmith to generate a client object or its accessor methods
written in C.

Opaque Type Limitations for C++/ActiveX

The following limitations apply to using C++/ActiveX value object code:

� When you define the opaque type that you intend to encapsulate as
an ActiveX value object, BladeSmith enforces these rules:

❑ You must define the internal structure of the opaque type.

❑ The opaque type must be of a fixed size.

❑ The opaque type cannot contain members that are smart large
objects or variable in size.

❑ The opaque type can contain members that are opaque types
only if they are implemented in C++.

� You cannot import opaque types from other DataBlade modules.

� The following opaque type routine categories are not supported for
either the client or server implementations of an ActiveX value
object:

❑ Contains large objects routines. To support smart large objects.

❑ Type insert and delete notification routines. To perform tasks
before storing or deleting an opaque data type on disk.

❑ Statistics support functions. To provide a way to improve
performance when you compare opaque data type values.
Programming Guidelines 3-9

Options for Opaque Data Types
� The following opaque type routine categories have no meaning for
database clients. Thus, although you can implement these routines
for the server implementation, they are not made available to the
client application developer as ActiveX custom methods:

❑ Binary send and receive. To transfer the binary representation of
the opaque data type to and from the client.

❑ Text file import and export. To transfer the text representation of
the opaque data type to and from a flat file.

❑ Binary file import and export. To transfer the binary represen-
tation of the opaque data type to and from a flat file.

❑ Hash. To replace the built-in hashing function to cache return
values.

� The following ActiveX custom methods cannot be used in a server
project:

❑ IsNull

❑ SetNullFlag

For more information on opaque data type properties, see “Opaque Data
Type” on page 4-40.

Opaque Type Limitations for Java

You cannot generate Java code for opaque data types with Version 4.0 of
DBDK.

Embedding Opaque Data Types within Opaque Data Types

You can embed an existing opaque data type as a member of another opaque
data type with BladeSmith only if both opaque data types have the same
server implementation language. You cannot mix programming languages in
opaque data types.
3-10 IBM Informix DataBlade Developer’s Kit User’s Guide

Options for Routines
Options for Routines
If you choose to program your user-defined routines in C, you can choose any
of the routine options available in BladeSmith. For a description of these
options, see “Creating Routines” on page 4-26.

When you implement a routine in Java, you cannot specify the following
options:

� That it has a selectivity function or is a selectivity function

� That it takes row data types or collection data types as arguments

� That it is internal

� Its stack size

� Its cost

� That it has a commutator function or is a commutator function

Tip: You can also choose to implement routines in IBM Informix Stored Procedure
Language (SPL). See “Creating Routines” on page 4-26 for more information.

Overloading Routines in Different Languages

You can overload routines to handle different data types in either C or Java.
You cannot, however, overload a routine in a different language with the
same data type. For example, you can create the following two functions:

� MyFunction(lvarchar) written in C

� MyFunction(int) written in Java

However, you cannot create the following two functions:

� MyFunction(lvarchar) written in C

� MyFunction(lvarchar) written in Java
Programming Guidelines 3-11

Multilanguage DataBlade Module Issues
Handling Opaque Data Types Implemented in a Different Language

If you create a routine in C, it can handle an opaque data type implemented
in C++ without additional code.

If you create a routine in Java that handles an opaque data type implemented
in C or C++, BladeSmith generates a default implementation of the SQLData
interface for the opaque data type. See “SQLData Interface Method Support
Code” on page 8-7 for more information.

Multilanguage DataBlade Module Issues
If you use more than one external programming language in your DataBlade
module, you might have more than one resulting shared library after you
compile your source code. Figure 3-2 illustrates the shared libraries you can
produce from source code generated by BladeSmith.

For C and C++ server implementation code, BladeSmith generates a
combined Visual C++ workspace file and UNIX makefile.

For Java server and client code, BladeSmith generates a single makefile that
is appropriate for all platforms.

Figure 3-2
Shared Libraries for

Multilanguage
DataBlade Modules

C code

Server
implementation

C++ code

Client
implementation

Java

Server and client
implementations

(One for each
platform)

UNIX

Project.bld

Windows

ProjectX.dll

Windows

Project.JAR

All platforms

Project.bld

Server
implementation
3-12 IBM Informix DataBlade Developer’s Kit User’s Guide

C Programming Guidelines
C Programming Guidelines
To take advantage of Informix database server architecture, you must use the
DataBlade API and follow the guidelines in the IBM Informix DataBlade API
Programmer’s Guide when you write user-defined routines in C.

The Informix database server uses virtual processors (VPs) to service multiple
client-application SQL requests. The database server breaks the SQL request
into distinct tasks, based on the resource that the task requires. Different VP
types, called virtual processor classes (VP classes), service different kinds of
tasks.

The CPU virtual processor (CPU VP) acts as the central processor for client-
application SQL requests. When a client application establishes a connection,
the CPU VP creates the session thread for that client application. A CPU VP
runs multiple session threads to service multiple SQL client applications.
Because a session thread is the primary thread for the processing of SQL
requests, any C routines in an SQL request normally execute in the CPU VP.
However, your routine must be well-behaved by following certain guidelines
to avoid loss of performance and data.

For example, a well-behaved user-defined routine that runs in the CPU VP
must fulfill the following requirements:

� Preserve concurrency by following these rules:

❑ Yield the CPU VP regularly by using the mi_yield() DataBlade
API function.

❑ Do not use blocking I/O calls.

� Be thread safe by following these rules:

❑ Do not use heap-memory allocation; instead use the DataBlade
API memory-management functions.

❑ Do not modify global or static data; instead use the MI_FPARAM
structure to preserve state information.

❑ Do not modify the global state of the CPU VP.

� Do not use unsafe operating system calls that might impair concur-
rency or allocate local resources.
Programming Guidelines 3-13

C++ Programming Guidelines
Some of these restrictions are relaxed if you assign your routine to a user-
defined virtual processor. A user-defined virtual processor is a VP that you
create. It runs only those routines that you assign to it.

The IBM Informix DataBlade API Programmer’s Guide describes in detail each of
these guidelines and their possible workarounds using user-defined virtual
processors.

C++ Programming Guidelines
Follow these rules and guidelines when you edit the source code for your
C++ client and server projects:

� Use the following sets of methods in your code to ensure that your
code is portable between the client and server projects:

❑ The object methods that are made available as ActiveX custom
methods; see “Adding Project-Specific Logic to the Source Code”
on page 6-7

❑ The internal object methods that are not made available as
ActiveX custom methods; see “Internal Object Methods” on
page 6-13

❑ The generated C++ support library; see “C++ Support Library”
on page 6-14

For additional functionality, use the DataBlade API. For information,
see the IBM Informix DataBlade API Programmer’s Guide.

� In the server project, use C++ only to implement the opaque type
support routines that you intend to encapsulate as ActiveX value
objects. Do not use C++ to implement any other DataBlade module
objects.

� Do not use the IBM Informix Object Interface for C++ in server code.

� Do not change the function headers or parameter lists of any of the
support routines for the opaque type.

� Do not use virtual methods or virtual base classes (either direct or
inherited).
3-14 IBM Informix DataBlade Developer’s Kit User’s Guide

Java Programming Guidelines
� In the server project, check for routine arguments with null values.
The server will not call a routine that has an argument with a null
value.

� In the client project, if your project does not need to handle null
values, you can remove all calls to IsNull(), SetNull(), and
SetNullFlag() in the generated code. Then make sure all constructor
functions call SetNotNull().

For a list of restrictions on the C++ code you can generate with BladeSmith,
see “Opaque Type Limitations for C++/ActiveX” on page 3-9.

Important: It is recommended that developers create DataBlade modules in C++
only for client projects and for server projects that use Dynamic Server on Windows
only. For the latest recommendations on C++ programming options, check the
IBM Informix Developer Zone at www.ibm.com/software/data/developer/informix.

Java Programming Guidelines
You can use the following Java packages, interfaces, classes, and methods in
a Java method:

� SQLJ packages

You can use all the basic and optional Java packages that are in JDK.
That is, Java methods can use java.util.*, java.io.*, java.net.*,
java.rmi.*, and so on. However, Java methods cannot use java.awt.*,
java.applet.* and other GUI packages. For more information on these
packages, see the SQLJ Part I draft.

� Informix SQLJ extensions

Certain Informix extensions to SQLJ are available to applications that
need to exploit the capabilities of the database server. The Informix
extensions reside in the com.informix.udr package.

� Java Database Connectivity (JDBC) 1.0 API

Java methods can use the JDBC 1.0 API to access the database.

� Informix JDBC extensions

Java methods can also use Informix extensions to JDBC 1.0 to access
some JDBC 2.0 functionality.
Programming Guidelines 3-15

DataBlade API Programming Tips
When you edit your Java source code, follow the guidelines and restrictions
listed in the IBM Informix JDBC Driver Programmer’s Guide and the J/Foundation
Developer’s Guide.

Version 4.0 of BladeSmith does not generate Java code for opaque data types.
For a list of additional restrictions on the Java code you can generate with
BladeSmith, see “Options for Routines” on page 3-11.

Important: You must use the IBM Informix J/Foundation upgrade to IBM Informix
Dynamic Server to enable services that use Java. For more information about
J/Foundation, see the “J/Foundation Developer’s Guide.”

DataBlade API Programming Tips
While you program your DataBlade modules using the DataBlade API,
observe these guidelines:

� Never assume that the content of an mi_lvarchar data type is null-
terminated.

The Informix database server never passes a null-terminated exter-
nal representation of an mi_lvarchar data type; however, the
DataBlade API provides functions to convert mi_lvarchar values to
and from null-terminated strings. To allocate and free memory for
mi_lvarchar data types, use the mi_var accessor functions. For more
information, see the documentation on the mi_lvarchar_to_string()
function in the IBM Informix DataBlade API Programmer’s Guide.

� Pass and return values greater than 4 bytes by reference.

Opaque data types are wrapped in an mi_lvarchar data type and
passed by reference.

Write your user-defined routine code to pass arguments using a
pointer. All built-in data types are passed by reference except fixed-
length, noncharacter data types of fewer than 4 bytes. The mi_real
data type (the SQL data type SMALLFLOAT) is always passed by ref-
erence. Pass opaque data types by value by creating them with the
passedbyvalue modifier.
3-16 IBM Informix DataBlade Developer’s Kit User’s Guide

DataBlade API Programming Tips
� Do not modify a user-defined routine argument unless it is an OUT
parameter.

Arguments to C routines cannot be modified unless you specify that
the argument is an OUT parameter for a statement local variable. See
IBM Informix User-Defined Routines and Data Types Developer’s Guide
for more information.

� To test if an argument for a user-defined routine is null, use the
mi_fp_argisnull() function.

If you create a user-defined routine with the with (handlesnulls)
modifier, your routine must check the input parameters to determine
if they are null. To check whether arguments are null, pass the
MI_FPARAM structure as the last argument in the C routine; then
check the arguments by calling the mi_fp_argisnull() function.

� To set a return value to NULL, use the mi_fp_setreturnisnull()
function.

If you intend to return a null value from a function, you must call
mi_fp_setreturnisnull() with MI_TRUE before the return statement. If
you do not, you might receive an incorrect result or memory errors.

For code examples illustrating these and other DataBlade API coding tips, see
the example DataBlade modules provided with the DataBlade Developers
Kit in the %INFORMIXDIR%\dbdk\examples directory or the IBM Informix
Developer Zone at www.ibm.com/software/data/developer/informix.

For details on DataBlade API data types and routines, see the IBM Informix
DataBlade API Programmer’s Guide.
Programming Guidelines 3-17

4
Chapter
Creating DataBlade Objects
Using BladeSmith
In This Chapter . 4-5

Prerequisite Tasks 4-6

BladeSmith Task Overview 4-6

BladeSmith Windows 4-7

Creating a New Project 4-8
DataBlade Module Project Name. 4-10
New Object Prefix 4-10
Server Compatibility 4-11
Description Locale. 4-12
Project Version Numbers 4-12
Vendor Information 4-13

Importing Interfaces from Another DataBlade Module 4-13

Creating DataBlade Module Objects 4-14
Database Object Name Lengths 4-15
Creating Aggregates 4-16

Aggregate Name 4-18
Iteration Type 4-19
Initialization Parameter 4-19
State Type 4-19
Initialization Function 4-19
Iteration Function 4-20
Combine Function 4-20
Final Function 4-20

4-2 IBM
Creating Casts 4-21
Source and Target Data Types 4-22
Implicit and Explicit Casts 4-22
Cast Support Functions 4-23

Defining Errors 4-23
SQL Error Code 4-24
Error Locale. 4-25
SQL Error Text 4-25

Defining Interfaces. 4-25
Creating Routines 4-26

Routine Name 4-31
Statement Local Variables 4-31
Routine Arguments 4-32
Variant Functions 4-32
Parallelizable Routines 4-33
C Routine Name 4-33
Routine Behavior 4-34
User-Defined Virtual Processor Class Name. 4-34
Stack Size 4-34
Cost of Routine 4-35
Related Routines 4-35

Creating Data Types 4-37
Collection Data Type. 4-37
Distinct Data Type 4-39
Opaque Data Type 4-40
Qualified Data Type 4-56
Row Data Type 4-58

Adding Functional Test Data 4-60
Test Data for Opaque Type Support Routines 4-61
Test Data for User-Defined Routines. 4-61
Test Data for Cast Support Routines 4-62

Adding SQL Files 4-62
Importing SQL Text from a File 4-64
Object Dependencies 4-64

Adding Client Files 4-65

Generating Files . 4-66
Setting Generated File Properties 4-68
Generating All Files 4-70
 Informix DataBlade Developer’s Kit User’s Guide

Generating SQL Scripts 4-71
Generating Source Files 4-72
Generating Test Files 4-73
Generating Installation Package Files 4-73
Regenerating Files 4-74

Merging Changes in Source Code and Unit Test Files 4-74
Replacing Visual C++ Project, SQL, Functional Test, and

Installation Files 4-75
Opening the Project File in Visual C++ 4-76
Creating DataBlade Objects Using BladeSmith 4-3

4-4 IBM
 Informix DataBlade Developer’s Kit User’s Guide

In This Chapter
You use BladeSmith to create DataBlade modules. BladeSmith provides a
visual presentation of the objects in a DataBlade module and allows you to
add objects and modify properties of objects. After DataBlade module objects
are defined in a BladeSmith project, use BladeSmith to generate source code
files, SQL scripts, functional tests, and installation packaging files.

This chapter contains the following sections:

� “Prerequisite Tasks,” next

� “BladeSmith Task Overview” on page 4-6

� “BladeSmith Windows” on page 4-7

� “Creating a New Project” on page 4-8

� “Importing Interfaces from Another DataBlade Module” on
page 4-13

� “Creating DataBlade Module Objects” on page 4-14

� “Adding Functional Test Data” on page 4-60

� “Adding SQL Files” on page 4-62

� “Adding Client Files” on page 4-65

� “Generating Files” on page 4-66

BladeSmith online help contains additional topics and reference information
for BladeSmith. Use the online help for detailed descriptions of the Blade-
Smith user interface.

See Appendix A, “Source Files Generated for DataBlade Modules,” for a
complete list of generated files.

Appendix B, “Completing BladeSmith-Generated Code,” provides reference
tables that list the types of objects BladeSmith generates and indicate whether
BladeSmith generates complete code or template code you must complete.
Creating DataBlade Objects Using BladeSmith 4-5

Prerequisite Tasks
Prerequisite Tasks
Before you begin using BladeSmith, design your DataBlade module.

Write a functional specification to provide an overview of the features of your
DataBlade module and a design specification to describe in detail how you
plan to implement those features. Use your design specification as a reference
when you supply input for BladeSmith.

See “Designing Your DataBlade Module” on page 1-7 for more information.

BladeSmith Task Overview
After you design your DataBlade module, complete these general tasks to
implement your design with BladeSmith:

1. Create a DataBlade module project.

2. Import interfaces from other DataBlade module projects on which
you want your DataBlade module to depend.

3. Define new DataBlade module objects, in this order:

a. Data types

b. Routines, aggregates, and casts

c. Custom SQL and client files

4. Add functional test data for each opaque data type support routine,
user-defined routine, and cast support function.

5. Generate DataBlade module files.

BladeSmith uses code templates to generate much of the code for your
DataBlade module objects. However, you must add code to make your
routines operate the way you intend. After you edit the source code files,
compile them; then test and debug them.

You can modify your project file, generate files, and recompile the source
code as often as necessary until your development is complete. BladeSmith
merges your previous edits into the newly generated source code files. When
your DataBlade module is complete, use BladePack to create installation
packages for each platform you support.
4-6 IBM Informix DataBlade Developer’s Kit User’s Guide

BladeSmith Windows
BladeSmith Windows
The BladeSmith project window is divided into two panes. One pane, called
the project view, contains a tree representing the hierarchy of the objects in the
project, with folders for files, imported objects, and user-defined objects. The
other pane, called the item view, contains information about the object
selected in the project view.

Figure 4-1 shows a BladeSmith project window.

In the project view, expand or collapse a folder by clicking the expander
button next to the node. When you select a node in the project view, the item
view displays the node’s contents. When you select an object in the project
view, the item view displays information about the object.

Figure 4-1
BladeSmith Project Window
Creating DataBlade Objects Using BladeSmith 4-7

Creating a New Project
The information displayed in the item view depends on the type of object
selected. The View menu allows you to specify what BladeSmith displays in
the item view. You can choose Small Icons, Large Icons, List, or Details from
the View menu. When you choose the Details view, BladeSmith lists the
properties of the object.

Most objects have property sheets, which allow you to view or edit their
properties. To view the property sheet for an object, right-click the object or
select the object in either view and then choose Edit�Properties. You can also
choose Edit�Update to start the wizard for the selected object.

Creating a New Project
The first step you complete in BladeSmith to create a DataBlade module is to
create a project for it. BladeSmith saves DataBlade module object definitions
in a project file with an .ibs extension. BladeSmith generates source code, SQL
scripts, functional tests, and installation package files in directories that are
relative to the project file. By default, BladeSmith creates subdirectories src,
scripts, functest, and install in the directory where you save the project file.

Important: Create a different project directory for each DataBlade module so that
BladeSmith does not overwrite any other files.

To create a new project in BladeSmith, choose Project�New and complete
the information requested by the New Project wizard; then save your project
file in the directory you created. BladeSmith creates the necessary subdirec-
tories when you generate files.
4-8 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating a New Project
The following table lists the properties you must specify values for when you
create a project.

Property Default Value Description

DataBlade module
name

NewProject The name of the DataBlade module
project.

See “DataBlade Module Project Name”
on page 4-10 for more information.

New object prefix None A three-character prefix used in naming
new objects.

See “New Object Prefix” on page 4-10 for
more information.

Server compatibility 9.4 The version of the database server with
which you want your DataBlade module
to be compatible.

See “Server Compatibility” on page 4-11
for more information.

Description locale The locale of
your Windows
installation

The language code set for the project.

See “Description Locale” on page 4-12 for
more information.

Project version
numbers or letters

Major: 1
Minor: 0

Optional. One to four sets of numbers or
letters separated by periods to designate
version information.

See “Project Version Numbers” on
page 4-12 for more information.

Project description None Optional. A description of the DataBlade
module. This information appears to the
user, if requested, in BladeManager.

Vendor information None Optional. Information about the
company developing the DataBlade
module, including company name,
copyright, and contact. This information
appears to the user, if requested, in
BladeManager.

See “Vendor Information” on page 4-13
for more information.
Creating DataBlade Objects Using BladeSmith 4-9

DataBlade Module Project Name
DataBlade Module Project Name
The project name is combined with the version numbers as a unique
identifier to use to register the DataBlade module in the database server and
to create the installation directory. The project name must follow standard
directory naming conventions.

For Dynamic Server Version 9.2 and later, the maximum length of the project
name is 32 characters.

For Dynamic Server Version 9.14, the maximum length of the project name is
18 characters. ♦

If you change the project name or version numbers, you must regenerate files
in BladeSmith.

For more information on obtaining the project name, see “Developing Your
DataBlade Module” on page 1-10.

New Object Prefix
Use a three-character object prefix in the name of the new objects you create
in BladeSmith to ensure that your objects have unique names in the database
when the DataBlade module is registered.

Use your DataBlade module new object prefix to begin the names of the
following objects:

� New data types

� User-defined routines

� Aggregates

� Access methods

� Executable utilities and tools provided with the DataBlade module

� Tables, views, and other custom SQL objects included with your
DataBlade module

� User-defined virtual processors

� Trace classes

� Named memory

 9.14
4-10 IBM Informix DataBlade Developer’s Kit User’s Guide

Server Compatibility
You do not have to use the DataBlade module new object prefix for the
following objects:

� Names of routines that operate on data types unique to your
DataBlade module, including routines that you overload to take a
new data type

� Names of routines that operate on data types provided by other
DataBlade modules that you develop and maintain

� Names of routines in support libraries linked to the shared object file

Server Compatibility
When you create a new project in BladeSmith, you must specify the version
of the database server with which you want your DataBlade module to be
compatible. Different database server versions have different features; if you
choose a feature that is not available for the database server version you
specified, the feature is either disabled or BladeSmith displays a warning.

The following features are compatible only with Version 9.2 and later of
Dynamic Server:

� User-defined statistics

� Long identifiers for database objects

If you specify a database server version of 9.14 and attempt to add user-
defined statistics support for an opaque data type, you receive a warning
stating that statistics support is not available with Version 9.14.

You can use DBDK to generate Java code for aggregates, cast support
functions, and user-defined routines by specifying compatibility with
Version 9.2 and later of the database server. However, you must use the
IBM Informix Dynamic Server with J/Foundation upgrade to IBM Informix
Dynamic Server to enable services that use Java. For more information about
IBM Informix Dynamic Server with J/Foundation, see the manual J/Foundation
Developer’s Guide.

All other features are compatible with Version 9.14 and later versions of
Dynamic Server.
Creating DataBlade Objects Using BladeSmith 4-11

Description Locale
Description Locale
A GLS description locale is a set of files that contain information specific to a
particular language and culture. A GLS locale provides the following
information:

� The name of the code set that the application data uses

� The collation order to use for character data

� The format in which different types of data are displayed

The default locale is the locale that your Windows installation uses. For
example, Windows installations running U.S. English use the en_us.1252
locale. To change the locale, type a new locale specification in the Description
Locale field. See the IBM Informix GLS User’s Guide for more information on
locales and how to access a list of available locales.

When you generate SQL scripts, BladeSmith uses the locale information to
generate a locale-specific prepare script and locale-specific error scripts.

Project Version Numbers
The optional version information can be one to four sets of numbers or letters
separated by periods: for example, 1.2.3.4. The numbers correspond to the
categories major, minor, revision, and release. The major and minor numbers
can be up to eight characters long; the revision and release numbers can be
up to six characters long. Use a consistent versioning format for all your
projects.

The version numbers are combined with the project name as a unique
identifier to register the DataBlade module in the database server and to
create the installation directory.

If you change the version numbers or project name, you must regenerate SQL
files and installation packaging files in BladeSmith.
4-12 IBM Informix DataBlade Developer’s Kit User’s Guide

Vendor Information
Vendor Information
The vendor ID should be unique. All DataBlade modules with the same
vendor ID display the same information when the user requests it from
BladeManager. If you want to display different contact information for
different DataBlade modules, you must use different vendor IDs.

Importing Interfaces from Another DataBlade
Module
A DataBlade module can access data types and routines provided by another
DataBlade module if you import an interface from that DataBlade module.

When you use BladeManager to register or unregister DataBlade modules in
databases, BladeManager checks dependencies between modules to ensure
that all required interfaces are available.

Important: The interface you import must not contain features that are not available
for the database server version associated with your project.

To import an interface, you must have the project file (project.ibs, where
project is the name of the DataBlade module) of the DataBlade module from
which you wish to import an interface.

To import an interface

1. Open the project files for both DataBlade modules in BladeSmith: the
one to import into and the one to import from.

2. Click the object to import in the source project view.

3. Choose Edit�Copy.

4. Click the destination project window.

5. Choose Edit�Import�From Clipboard.

The object is added in the proper subfolder in the Imported Objects folder.
Creating DataBlade Objects Using BladeSmith 4-13

Creating DataBlade Module Objects
Creating DataBlade Module Objects
The following sections describe the objects that you can define in a Blade-
Smith project:

� “Creating Aggregates” on page 4-16

� “Creating Casts” on page 4-21

� “Defining Errors” on page 4-23

� “Defining Interfaces” on page 4-25

� “Creating Routines” on page 4-26

� “Creating Data Types” on page 4-37

BladeSmith uses wizards to create and edit objects. To start a wizard to create
or add an object to your project, choose Edit�Insert�ObjectName. The last
page of the wizard displays the SQL that BladeSmith generates for your
object, if there is any.

If you are generating an object that can be secured, the last page of most
wizards also allows you to specify privileges. You have these privilege
options:

� Grant usage privileges

All users can access the object, but only the owner can delete it. The
owner of an object is the user ID of the user that created the object in
the database.

� Grant none

Only the owner can access or delete the object. Use this option only
when there is a specific need to protect a type or routine.

See the IBM Informix Guide to SQL: Tutorial for more information on privileges.
4-14 IBM Informix DataBlade Developer’s Kit User’s Guide

Database Object Name Lengths
Database Object Name Lengths
The limit of the lengths of SQL database objects names varies with different
database server versions.

Dynamic Server Version 9.2 and later allows you to use long identifiers for
database object names. Most object names can have 128 characters. The
following table lists the objects whose names must be fewer than 128
characters.

Tip: The object name fields in BladeSmith are not 128 characters wide; therefore, you
might not be able to distinguish between objects on a list if they have similar names.
You can display the full name of an object with a tooltip. Select the object and place
the cursor over it to display the tooltip.

Dynamic Server Version 9.14 limits database object names to 18 characters,
except for error codes, which are always 5 characters, and opaque data type
names, which are limited to 14 characters. The names of opaque data type
support routines contain the name of the opaque data type plus a four-
character routine identifier.

Warning: BladeSmith does not prevent you from specifying long identifiers if your
database server version is 9.14; however, source code that contains long identifiers
does not compile if the database server version is earlier than Version 9.2. ♦

Object Maximum Characters

Project 32

Error code 5

Interface 64

Opaque data type (C) 110

Opaque data type
(ActiveX)

80

Client file 64

9.14
Creating DataBlade Objects Using BladeSmith 4-15

Creating Aggregates
Creating Aggregates
An aggregate is a function that returns information about a set of query
results. For example, the SUM aggregate adds all the query results together
and returns the result. An aggregate is invoked in SQL as a single function but
is implemented as one or more support functions.

You can use BladeSmith to create new, user-defined aggregates that
implement user-defined routines.

Important: You cannot use the Aggregate wizard to overload built-in aggregates for
extended data types; you must use the Routine wizard to overload each of the
operators required by the built-in aggregate. For more information on the Routine
wizard, see “Creating Routines” on page 4-26. For more information on built-in
aggregates, see the “IBM Informix DataBlade API Programmer’s Guide.”

You can define two aggregates that have the same name but operate on
different data types. An aggregate acts as a template: the aggregate support
functions must have the same names for both aggregates. If you overload an
aggregate, you cannot add, remove, or change the names of its support
functions. Use your new object prefix to begin the name of your aggregate to
avoid accidentally overloading an aggregate in another DataBlade module.
4-16 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Aggregates
The following table describes the properties you specify when you create an
aggregate.

Property Default Value Description

Aggregate name Aggregate The name of the aggregate function. If
you are overloading an aggregate, the
name can be the name of an existing
aggregate; otherwise, the name must be
unique. New aggregate names must
begin with the new object prefix.

See “Aggregate Name” on page 4-18 for
more information.

Language C Which language to use for the
aggregate functions: C or Java.

You must set server compatibility to 9.2
or later to generate code for Java
projects.

You need the IBM Informix Dynamic
Server with J/Foundation upgrade to
IBM Informix Dynamic Server to enable
Java services.

Iteration type None The data type on which the aggregate
function operates.

See “Iteration Type” on page 4-19 for
restrictions.

Initialization
parameter

No Optional. Used only for aggregates
whose behavior can be changed
dynamically.

See “Initialization Parameter” on
page 4-19 for more information.

Return type None The data type of the result of the
aggregate function.

State type None The data type of the intermediate aggre-
gation state. The state type is often
POINTER.

See “State Type” on page 4-19 for more
information.

(1 of 2)
Creating DataBlade Objects Using BladeSmith 4-17

Creating Aggregates
For information on how aggregates behave, see the IBM Informix DataBlade
API Programmer’s Guide.

The following sections describe properties of aggregates.

Aggregate Name

Use the new object prefix to begin the name of your new aggregate. The
aggregate name cannot be the same as another user-defined routine or
aggregate unless you are overloading an existing user-defined aggregate. For
more information on the new object prefix, see “New Object Prefix” on
page 4-10.

Initialization
function

AggregateInit The function called before the aggre-
gation begins. Not required if the state
and iteration data types are the same
and there is no initialization parameter.

See “Initialization Function” on
page 4-19 for more information.

Iteration function AggregateIter Called once for every value that is
aggregated. By default, this function
accepts null values.

See “Iteration Function” on page 4-20
for more information.

Combine function AggregateComb Optional. Merges results from parallel
iterations.

See “Combine Function” on page 4-20
for more information.

Final function AggregateFinl Performs computations on the
combined state, cleans up memory, and
returns the final value.

See “Final Function” on page 4-20 for
more information.

Property Default Value Description

(2 of 2)
4-18 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Aggregates
Iteration Type

You cannot use the following data types as aggregate iteration types:

� BLOB

� CLOB

� Collection data types: SET, MULTILIST, LIST

� Unnamed row data types

Initialization Parameter

The initialization parameter is an argument in the initialization function to
customize the aggregation computation. For example, if you defined an
aggregate to return the top n values of a query, your initialization parameter
can be 3 to select the top three.

State Type

The state type holds the partial result information during the aggregation
computation. The database server never accesses the state type, so it can be
any data type or structure appropriate for the partial results. For example, if
you have an aggregate that returns the three largest values from a query
result set, your state type can be an array of three integers.

If you are overloading an existing aggregate, the state type must be different
for each aggregate.

Select the POINTER data type from the data type list to indicate that your data
type is not known to the database server.

Initialization Function

The initialization function initializes the data structures required by the rest
of the aggregation computation. For example, it can set up smart large objects
or temporary files for storing intermediate results.

The initialization function can take an optional initialization parameter to
customize the aggregate computation.

The initialization function is not required for simple binary operators that
have a state type that is the same as the iteration type.
Creating DataBlade Objects Using BladeSmith 4-19

Creating Aggregates
Iteration Function

The iteration function merges a single value of the iteration type with the
partial result of the state type and returns the updated partial result.

You can specify whether the iteration function handles null values. If it does
not, any null values returned by the query are ignored. If it does handle null
values, the iteration function includes them in its computations.

Combine Function

The database server can break up the aggregation computation into several
pieces and compute them in parallel. Each piece is computed sequentially;
then the results from all pieces are combined into a single result using the
combine function. The parallel computation must give the same result as the
sequential computation.

The combine function merges partial results of the state type and returns the
updated partial result. It can also perform clean-up work by releasing
resources acquired by the initialization function.

The combine function can be the same as the iterator function if the aggregate
is derived from a simple binary operator whose result type is the same as the
state type.

Final Function

The final function converts a partial result of the state type into the result
type. It can also release resources acquired by the initialization function to
clean up the result type.

If you do not include a final function, the database server returns the final
state type. The final function is not required for aggregates derived from
simple binary operators whose result type is the same as the state type.
4-20 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Casts
Creating Casts
A cast is a conversion from one data type to another. The cast accepts the
source data type as its argument and returns the target data type.

The following table describes the properties you specify when you create a
cast.

See the IBM Informix Guide to SQL: Tutorial for general information on casts.

The following sections describe properties of casts.

Property Default Value Description

Cast from type None The source data type.

See “Source and Target Data Types” for more
information.

Cast to type None The target data type. The source and target
data types cannot both be built-in or
qualified types.

See “Source and Target Data Types” for more
information.

Implicit cast Yes The kind of cast. Implicit casts are automati-
cally called by the database server. Explicit
casts are called by the users.

See “Implicit and Explicit Casts” on
page 4-22 for more information.

Support routine Yes
typeCast

If the source and target data types do not
have the same binary representation, you
must write a routine to support the cast.

See “Cast Support Functions” on page 4-23
for more information.

Language (if you
choose to create a
support function)

C Which language to use for the cast support
function: C or Java.

You must set server compatibility to 9.2 or
later to generate code for Java projects.

You need the J/Foundation upgrade to
IBM Informix Dynamic Server to enable
Java services.
Creating DataBlade Objects Using BladeSmith 4-21

Creating Casts
Source and Target Data Types

You cannot create a cast between two built-in or qualified data types.

You also cannot create a cast that includes any of the following data types as
either the source type or target type for the cast:

� Collection data types: LIST, MULTISET, or SET

� Unnamed row types

� Smart-large-object data types: BLOB or CLOB

Implicit and Explicit Casts

You can specify whether a cast is called for implicit conversions. Implicit
conversions allow the database server to use the cast when it is not called
explicitly in an SQL statement.

For example, if you call the Plus() function with a DOLLAR argument, the
database server searches for an implicit cast from DOLLAR to a data type for
which the Plus() function is defined. If an implicit cast exists, the database
server calls the conversion function and then calls the Plus() function without
error. If no cast is specified with implicit conversion, the Plus() function call
results in an error message from the database server.

In this example, you create an implicit cast from DOLLAR to DOUBLE
PRECISION to permit the database server to execute all functions defined for
DOUBLE PRECISION on DOLLAR values. However, if you define a cast from
DOLLAR to INTEGER, you do not want that cast to be implicit, because the
conversion function truncates dollar values, resulting in inaccurate results.

See IBM Informix User-Defined Routines and Data Types Developer’s Guide for
more information on implicit and explicit casts.
4-22 IBM Informix DataBlade Developer’s Kit User’s Guide

Defining Errors
Cast Support Functions

If the source and target data types do not have the same binary represen-
tation, the database server calls a cast support function to perform the
conversion. If the two types have the same binary representation, a cast
support function might not be needed. You can also create a cast support
function to perform other types of conversions, such as applying a mathe-
matical formula. For example, you could create a cast support function to
convert temperature between Fahrenheit and Celsius.

See IBM Informix User-Defined Routines and Data Types Developer’s Guide for
more information on creating cast support functions.

Defining Errors
DataBlade module routines can print error messages and trace messages.
Error messages are printed with the mi_db_error_raise() function. Trace
messages are written to a trace file with the DBDK_TRACE macros or the
gl_dprintf() macro. See “Tracing and Error Handling” on page 5-13 for more
information on tracing and error handling.

Although it is possible to hard-code messages in your routines, defining
them in BladeSmith makes them easier to edit. Also, BladeSmith generates
code that uses the IBM Informix Global Language Support (GLS) API, so
messages that you create in BladeSmith can be easily localized.
Creating DataBlade Objects Using BladeSmith 4-23

Defining Errors
The following table lists the properties you specify when you create an error.

The following sections describe properties of errors.

SQL Error Code

To ensure that your error codes do not conflict with built-in error codes and
those of other DataBlade modules, consider qualifying the code with a three-
character DataBlade module prefix such as USR.

See “Developing Your DataBlade Module” on page 1-10 for information on
how to design your error codes.

Property Default Value Description

SQL error code None A five-character error code. This
character string uniquely identifies the
error or trace message.

See “SQL Error Code” on page 4-24 for
more information.

Error locale The locale of
your Windows
installation

An Informix locale specification for the
message.

See “Error Locale” on page 4-25 for more
information.

Register message as
error, trace, or both?

Error Error messages are added to the
syserrors system table. Trace messages
are added to the systracemsgs system
table. If you choose Both, the message is
added to both system tables.

SQL error text None A character string that can contain
embedded parameters to be replaced
with current values at runtime.

See “SQL Error Text” on page 4-25 for
more information.
4-24 IBM Informix DataBlade Developer’s Kit User’s Guide

Defining Interfaces
Error Locale

The error locale enables the database server to select a translated error or
trace message for a localized database. The locale is specified using the
format language_country.codeset. Be sure to create messages for all of the
locales in which your DataBlade module executes.

The default BladeSmith locale, en_us.8859-1, is for U.S. English using code
set 8859. This is the default locale for the Informix database server on UNIX
platforms. ♦

The default code set for the Informix database server on Windows is 1252.
Create U.S. English messages using locale en_us.1252 for Windows database
servers. ♦

For more information on locales, see the IBM Informix GLS User’s Guide.

SQL Error Text

The SQL error text is displayed with the error code in the language specified
by the message locale. To specify parameters in messages, assign each
parameter a unique name enclosed in percent characters (%). For example,
an input function could send the following message when it is unable to
translate an input value:

%FUNCNAME%: Unable to decipher input '%INPUT%'.

For information about tracing and calling error messages, see the
IBM Informix DataBlade API Programmer’s Guide.

Defining Interfaces
If you expect other DataBlade modules to use the functionality provided by
your DataBlade module, create an interface. DataBlade developers can
include the interface in a DataBlade module to ensure that BladeManager
registers the DataBlade module with the interface before registering the
DataBlade module dependent on the interface.

The interface you define encompasses all of your DataBlade module.

UNIX

Windows
Creating DataBlade Objects Using BladeSmith 4-25

Creating Routines
The following table lists the properties you specify when you create an
interface.

For Dynamic Server Version 9.2 and later, the maximum length of an
interface name is 64 characters.

For Dynamic Server Version 9.14, the maximum length of an interface name
is 18 characters. ♦

Creating Routines
You can define public or private user-defined routines that support your
DataBlade module. You can specify if the routine is called by SQL or is an
internal routine.

Routines can be functions, which return values, or procedures, which do not
return values. Routines can be written in the C or Java programming
languages or the Informix Stored Procedure Language (SPL).

Use the New Routine wizard to:

� Overload existing routines for extended data types.

Existing routines can be built-in or user-defined. Built-in routines
include operator and other arithmetic functions, and support rou-
tines. For a list of built-in routines you can overload, see IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

Property Default Description

Interface name INewInterface The name of the interface. Must be
unique. Change the name to
Iproject, where project is the name
of your DataBlade module.

Interface description None Optional. A description of the
interface and its intended purpose.

9.14
4-26 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Routines
� Overload operators for built-in aggregates for extended data types.

Built-in aggregates include AVG, DISTINCT, MAX, MIN, RANGE, SUM,
STDEV, and VARIANCE. For a list of the operators you must overload
for each built-in aggregate, see IBM Informix User-Defined Routines and
Data Types Developer’s Guide.

� Create new user-defined routines for built-in or extended data types.

The following table lists the properties you specify when you create a routine.

Property Default Value Description

Routine name prefixRoutine The name of the routine. If you are
overloading a routine, the name
can be an existing routine name;
otherwise, it must be a unique
name.

See “Routine Name” on page 4-31
for more information.

Return type No return type The data type that is returned by
the routine. Functions return a
value, but procedures do not.

Statement local
variable?
(Available for
routines that
return values
only)

No Whether the last argument passed
to the function is an OUT
parameter for a statement local
variable, allowing the function to
return two values.

See “Statement Local Variables” on
page 4-31 for more information.

Arguments None The name, data type, and default
value of each argument passed to
the routine.

See “Routine Arguments” on
page 4-32 for more information.

(1 of 4)
Creating DataBlade Objects Using BladeSmith 4-27

Creating Routines
Language C The programming language in
which to write the routine: C, Java,
or Stored Procedure Language
(SPL).

You must set server compatibility
to 9.2 or later to generate code for
Java projects.

You need the J/Foundation
upgrade to IBM Informix Dynamic
Server to enable Java services.

SQL routine body
(SPL routines)

None The SPL statements that define the
routine.

See the IBM Informix Guide to SQL:
Syntax for more information on
SPL.

Does not accept
null values?
(C and Java
routines)

Yes Whether the routine accepts null
values. If a routine that does not
accept nulls is passed a null value,
the database server returns a null
value without calling the routine.

Is variant?
(C and Java
routines)

Yes Variant routines can return
different values with the same
input arguments. The database
server never caches results from
variant routines.

See “Variant Functions” on
page 4-32 for more information.

Is parallelizable?
(C and Java
routines)

No Parallelizable routines can be split
into subqueries and processed in
parallel.

See “Parallelizable Routines” on
page 4-33 for more information.

Is a DBA routine?
(C and Java
routines)

No The routine can be created or
executed only by a user with DBA
permissions.

Property Default Value Description

(2 of 4)
4-28 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Routines
Never called
from SQL?
(C routines)

No If a routine cannot be called from
SQL, it is an internal routine that
can only be called directly by the
database server: for example,
primary access method routines.

An iterator?
(C and Java
routines)

No Iterator routines return a set of
values, one value at a time.

See the IBM Informix DataBlade API
Programmer’s Guide for more
information.

C routine name
(C routines)

prefixRoutine The name of the routine in the
shared object file. Must be unique.

See “C Routine Name” on
page 4-33 for more information.

Shared object
path
(C and Java
routines)

$INFORMIXDIR/
extend/%SYSBLDDIR%/
project.bld (C routines)

%JAVAPATH% (Java
routines)

The relative or absolute path and
filename of the shared object. The
default path and filename is
recommended.

Well behaved or
poorly behaved?
(C and Java
routines)

Well behaved Well-behaved routines can run in
the CPU virtual processors; poorly
behaved routines should run in a
user-defined virtual processor.

See “Routine Behavior” on
page 4-34 for more information.

User-defined
virtual processor
class
(C and Java
routines)

default_class The name of the user-defined
virtual processor class in which a
poorly behaved routine runs.

See “User-Defined Virtual
Processor Class Name” on
page 4-34 for more information.

Property Default Value Description

(3 of 4)
Creating DataBlade Objects Using BladeSmith 4-29

Creating Routines
The SQL that BladeSmith generates for routines uses the ALTER FUNCTION
statement to specify all but the following properties:

� Routine name

� Return type

� Statement local variable

� Arguments

Special stack size
requirements?
(C routines)

No Whether the routine needs an
unusually large amount of virtual
shared memory to execute.

See “Stack Size” on page 4-34 for
more information.

Cost of routine
(C routines)

0 The relative cost of the routine, for
query optimization.

See “Cost of Routine” on page 4-35
for more information.

Negator routine? No A routine that returns the opposite
Boolean result with the same
arguments. Used for query
optimization.

See “Related Routines” on
page 4-35 for more information.

Commutator
routine?
(C routines)

No A routine that returns the same
Boolean result with the arguments
in reverse order. Used for query
optimization.

See “Related Routines” on
page 4-35 for more information.

Selectivity
routine?
(C routines)

No A routine that estimates the
percentage of rows returned by the
routine. Used for query
optimization.

See “Related Routines” on
page 4-35 for more information.

Property Default Value Description

(4 of 4)
4-30 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Routines
� Language

� DBA routine

Using the ALTER FUNCTION statement allows BladeManager to reregister the
routine without dropping and re-creating it.

The following sections describe properties of routines.

Routine Name

Specify the name of an existing routine to overload it for a new data type, or
specify a unique routine name to create a new routine.

If you are creating a selectivity routine for a user-defined routine, name the
selectivity routine RoutineSelectivity.

You can overload built-in operator and other arithmetic routine for
collection, row, and distinct data types. (You can overload most arithmetic
routines for opaque data types with the New Opaque Type wizard.) How
arithmetic routines operate on collection and row data types is determined
by the code you write for them. For example, if you overload the Plus()
function for a row data type, it might either:

� Add the values of the fields and return a row data type with the same
number of fields as the originals.

� Return a row data type with twice as many fields as the originals.

See IBM Informix User-Defined Routines and Data Types Developer’s Guide for a
list of built-in routines you can overload.

Although it is not necessary, you can create new support routines for
collection, row, and distinct data types.

Statement Local Variables

If you want your function to return two values, check the statement local
variable check box. The last argument for your function is then defined as an
OUT parameter. The OUT parameter corresponds to a value the function
returns indirectly, through a pointer, to a statement local variable (SLV). The
value the function returns through the pointer is an extra value, in addition
to the value it returns explicitly.
Creating DataBlade Objects Using BladeSmith 4-31

Creating Routines
The SLV provides a temporary name that a single statement can manipulate.
An SQL statement uses each SLV to transmit the output from a single function
to other parts of the SQL statement.

See the IBM Informix DataBlade API Programmer’s Guide for more information.

Routine Arguments

A routine can accept 0 to 20 arguments.

Arguments passed to a routine have the following properties:

� Name. The name must follow SPL, C, or Java language naming
conventions.

� Data type. For SPL and C, any existing data type that appears on the
list; for Java, any existing data type except row or collection data
types. If you want to use a data type that is not on the list, you must
first create it in BladeSmith. For more information on SQL data types,
see IBM Informix Guide to SQL: Reference.

� Default value. Optional. The value of the argument if a value for the
argument is not specified when the routine is called.

Variant Functions

By default, user-defined functions are variant. Variant functions can return
different values or have varying side effects, given the same arguments. For
example, a function that returns the current date or time is a variant function.
However, a function that appears nonvariant can also have varying side
effects, such as updating a table or external file.

The cost of defining a nonvariant function as variant is low: you might
experience slightly diminished performance. However, the cost of defining a
function that exhibits variant behavior as nonvariant can be high, because a
query might return incorrect results.

Most functions are not variant; marking them as nonvariant improves perfor-
mance. If the function is nonvariant, the database server might cache the
return values of expensive functions or run parallel queries. Functional
indexes are only allowed on nonvariant functions.
4-32 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Routines
See the IBM Informix User-Defined Routines and Data Types Developer’s Guide
manual for more information.

Parallelizable Routines

Mark a routine as parallelizable if it can be executed within a parallel
database query (PDQ) statement. PDQ statements allow the Informix
database server to distribute the executions of one query among several
processors by dividing the query into subqueries. The database server then
allocates subqueries to separate threads for parallel processing and thus
improves performance. See IBM Informix User-Defined Routines and Data Types
Developer’s Guide for more information about using the parallelizable option.

Use routine parallelization if your routine is used as an expression in qualifi-
cation clauses, in GROUP BY lists, or as an overloaded comparison operator.

A routine cannot be parallelizable if it accepts row or collection data types as
arguments.

C and Java routines are parallelizable if they call only the DataBlade API
routines listed in the following categories from the IBM Informix DataBlade API
Programmer’s Guide:

� Data handling, except for collection manipulation functions

� Session, thread, and transaction management

� Function execution

� Memory management

� Exception handling

� Callbacks

� Miscellaneous

See the IBM Informix DataBlade API Programmer’s Guide for more information
about the routines under each category.

C Routine Name

SQL allows overloading of routine names; however, the C language does not.
Therefore, if you overload a routine, you must give it a unique C name.
Creating DataBlade Objects Using BladeSmith 4-33

Creating Routines
Routine Behavior

A routine is well-behaved within the context of Informix database server
architecture if it:

� Yields the virtual processor on a regular basis to other threads.

� Does not use blocking operating-system calls.

If your routine violates one of these conditions, mark it as poorly behaved
and type the name of a user-defined virtual processor in the user-defined
virtual processor class field.

User-Defined Virtual Processor Class Name

The name of the grouping class for the user-defined virtual processor must
be 128 alphanumeric characters or fewer, and it must be unique. The class
name is case insensitive. It is recommended that you begin the name of your
virtual processor class with your DataBlade module new object prefix.

Tip: You can create a routine that references a virtual processor class before that class
exists. However, you must create the virtual processor class and create virtual
processors in it before you register your DataBlade module in the database.

Stack Size

You can specify stack size only for a user-defined routine written in C.

Stack space is allocated from a common region in shared memory that can be
overrun if a routine consumes more stack space than is allocated for it. To
avoid stack overrun:

� allocate sufficient stack space for all the local variables in the routine.
Monitor stack usage with the onstat utility. See the Administrator’s
Guide for more information on the onstat utility.

� execute recursively called C routines with the mi_call() function.
Pass any arguments other than mi_integer data types by reference.
See the IBM Informix DataBlade API Programmer’s Guide for more infor-
mation on mi_call().

When you specify a stack size for a user-defined routine, the database server
allocates the specified amount of memory for every execution iteration of the
routine.
4-34 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Routines
See the IBM Informix Dynamic Server Administrator’s Guide for more infor-
mation on stacks.

Cost of Routine

You can specify cost only for user-defined routines written in C.

The relative cost of the routine is used by the query optimizer to determine
the order in which to process WHERE clauses in a SELECT statement.
Expensive routines are called after inexpensive routines. A cost of 0 indicates
that the routine costs about the same as the routines in the reference list that
have a cost of 0. The reference list shows all user-defined routines created in
the project. The standard formula for computing routine cost is:

lines_of_code + (I/O_operations x 100)

Because the optimizer compares routine costs, the actual cost is irrelevant;
only the relative cost matters. However, follow the general formula to ensure
that your routines interact with other DataBlade module routines in a
predictable way.

Related Routines

If your user-defined function compares or acts as a filter for two instances of
the same data type and returns a Boolean result, you can specify related
functions to optimize the execution of the function when it is called in the
WHERE clause of a SELECT statement.

Important: Related functions must exist before you can choose them. You can create
them before you create the function they are related to, or you can update the original
routine to add related routines after you create them.

Commutator and Negator Functions

You can specify a commutator function only for user-defined routines
written in C.
Creating DataBlade Objects Using BladeSmith 4-35

Creating Routines
The database server calls a commutator or a negator function instead of the
original function if the query optimizer determines that it is faster. A commu-
tator function returns the same Boolean result as the original function with
the same arguments but with the arguments in reverse order. A negator
returns the opposite Boolean result as the original function with the same
arguments in the same order.

Selectivity Functions

You can specify a selectivity function only for user-defined routines written
in C.

A selectivity function estimates the percentage of rows that might be
returned by your function, given a set of arguments. Define a selectivity
function if you want to determine the cost of your function so that the query
optimizer can determine when it is most efficient to call your function. Selec-
tivity functions determine the cost of a function with statistics gathered about
the values of the data type on which the function operates. See “User-Defined
Statistics” on page 2-16 for more information on selectivity functions and
how they process user-defined statistics.

You can create a selectivity function for your user-defined function if your
function compares or acts as a filter for two values of the following kind of
data types:

� An opaque data type for which you have created user-defined
statistics support routines (see “Statistics Support” on page 4-56)

� A built-in data type

The B-tree functions Equal() and NotEqual() that are overloaded for an
opaque data type are good candidates for selectivity functions. Because the
Equal() and NotEqual() functions are created with the Opaque Type wizard,
you must add selectivity support by assigning selectivity routines on their
properties pages after you create them.

Built-in data types have built-in statistics support routines, and all qualifying
built-in functions (such as B-tree functions) have built-in selectivity
functions. You can only create selectivity functions for functions that take
built-in data types if those functions are user-defined.
4-36 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Data Types
A selectivity function must have the following properties:

� A name in the form of FunctionSelectivity(), where Function is the
name of the function to which it is assigned

� A double-precision return type

� Two arguments of type POINTER

� All other properties as their default values

For a description of user-defined statistics and selectivity, see “User-Defined
Statistics” on page 2-16.

Creating Data Types
You can create the extended data types described in the following sections in
BladeSmith:

� “Collection Data Type,” next

� “Distinct Data Type” on page 4-39

� “Opaque Data Type” on page 4-40

� “Row Data Type” on page 4-58

In addition, you must define qualified built-in data types (see “Qualified
Data Type” on page 4-56) before you can use them in a BladeSmith project.

Collection Data Type

A collection data type is a set of elements of another, single data type.
Collection elements can never be null.

You can overload existing user-defined routines and built-in routines to work
on your collection data type. You can also define custom support routines for
your collection data type. See “Creating Routines” on page 4-26 for
instructions.
Creating DataBlade Objects Using BladeSmith 4-37

Creating Data Types
The following table lists the properties you specify when you create a
collection data type.

See the IBM Informix Guide to SQL: Tutorial for general information on
collection data types.

The following sections describe properties of collection data types.

Valid Element Data Types

You can create a collection with elements of any data type listed in your
project except SERIAL or SERIAL8. You can define a collection type of an
existing collection or row data type. For example, you can define a list of a set
of integers in SQL:

LIST(SET(integer not null))

You can also create collections of opaque or distinct data types.

Tip: If you create a collection with an element of type BLOB or CLOB, you can test
for the existence of a particular sbspace when your DataBlade module is being regis-
tered in a database using BladeManager. For information, see Appendix C, “Testing
for an Sbspace.”

Property Default Value Description

Type None The data type that makes up the
collection.

See “Valid Element Data Types” for
more information.

Constructor None The type constructor: LIST,
MULTISET, or SET.

See “Type Constructors” on
page 4-39 for more information.
4-38 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Data Types
Type Constructors

The type constructor determines the structure of the collection. The following
table shows the options between the type constructors.

See the IBM Informix Guide to SQL: Reference for more information about
collection type constructors.

Distinct Data Type

A distinct data type has an internal and external representation identical to
another data type, but the database server treats it as a different data type.
Any existing routines on the source data type are automatically registered on
the distinct data type. However, you can define new routines that operate
only on the distinct data type.

You can define custom support routines and user-defined routines for your
distinct data type. You can also overload existing user-defined routines and
built-in routines to work on your distinct type. See “Creating Routines” on
page 4-26 for instructions.

The following table lists the properties you specify when you create a distinct
data type.

Constructor Elements Ordered? Duplicates Allowed?

LIST Yes Yes

MULTISET No Yes

SET No No

Property Default Value Description

Name prefixDistinctType The name of the distinct type. This
name must be unique.

Source type None The data type the distinct type is
based on. Can be any existing data
type. The distinct type inherits all
properties of the source type.
Creating DataBlade Objects Using BladeSmith 4-39

Creating Data Types
When you create a distinct data type, the database server creates explicit casts
between the source data type and the distinct data type; however, you can
also create implicit casts between a distinct data type and its source data type.

Tip: If you create a distinct type with a source type of BLOB, CLOB, or an opaque data
type containing BLOB or CLOB arguments, you can test for the existence of a
particular sbspace when your DataBlade module is being registered in a database
using BladeManager. For information, see Appendix C, “Testing for an Sbspace.”

See the IBM Informix Guide to SQL: Reference for more information on distinct
data types.

Opaque Data Type

An opaque data type is a C structure or C++/ActiveX class. The database
server does not interpret the contents of the structure. Instead, it calls support
routines that you provide to manipulate the structure.

BladeSmith generates much of the code for the support routines. You must
complete the code and compile the source code.
4-40 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Data Types
The following table lists the properties you specify when you create an
opaque data type.

Property Default Value Description

Name prefixOpaqueType The name of the opaque type.

See “Opaque Data Type Name
Lengths” on page 4-44 for more
information.

Server
implementation

C Which language to use for
database server source code for
your opaque data type: C, C++,
or Java.

You must set server compati-
bility to 9.2 or later to generate
code for Java projects.

You need the J/Foundation
upgrade to IBM Informix
Dynamic Server to enable Java
services.

See “Server Implementation”
on page 4-44 for more
information.

Client
implementation

None Whether to generate value
objects as a client interface for
your opaque data type in
ActiveX.

See “Client Implementation”
on page 4-44 for more
information.

Generate accessor
methods?
(ActiveX client
implementation)

None Whether to create accessor
methods for value objects; that
is, whether to expose the
members of the data structure
that defines your opaque data
type as properties.

See “Accessor Methods” on
page 4-45 for more
information.

(1 of 3)
Creating DataBlade Objects Using BladeSmith 4-41

Creating Data Types
Define internal
structure?
(C)

Yes Whether you enter information
on the internal members of the
opaque type in BladeSmith.

See “Definition of Internal
Structure” on page 4-45 for
more information.

Fixed or variable size?
(C)

Fixed size Whether the opaque data type
varies in size.

See “Fixed or Variable Size” on
page 4-45 for more
information.

Total size
(if you choose not to
specify the internal
structure to Blade-
Smith and choose
fixed size)

None The total size of the opaque
data type. The maximum size is
32 KB. If you do not specify a
size, BladeSmith calculates it.

Member information
(if you choose to
specify the internal
structure to
BladeSmith)

None The name, data structure, and
array size of the members
making up the opaque type.

See “Member Information” on
page 4-46 for more
information.

Property Default Value Description

(2 of 3)
4-42 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Data Types
See IBM Informix User-Defined Routines and Data Types Developer’s Guide for
more information on opaque data types.

The following sections describe the properties of opaque data types you need
to define when you create an opaque data type with BladeSmith.

Limit allocation size?
(variable-length
opaque data types)

No The maximum size allowed the
opaque data type, not to exceed
32 KB.

See “Maximum Size” on
page 4-47 for more
information.

Memory alignment
(if you choose not to
specify the internal
structure to
BladeSmith)

4 The alignment value for the
first member of the opaque
data type.

See “Memory Alignment” on
page 4-48 for more
information.

Support routines Basic text input/output

Binary send/receive with
client (C and C++)

Text file import/export

Binary file import/export
(C and C++)

Type compare support

The routines necessary to
operate on the internal
structure of the opaque data
type and optional built-in
routines.

See “Support Routines” on
page 4-48 for more
information.

Property Default Value Description

(3 of 3)
Creating DataBlade Objects Using BladeSmith 4-43

Creating Data Types
Opaque Data Type Name Lengths

The limit of the opaque data type name is determined by the version of the
database server and the client implementation language, as shown in the
following table.

Server Implementation

The server implementation is the programming language in which you
implement your opaque data type within the database server. Each language
has restrictions on the functionality you can specify for your opaque data
type:

� C. You cannot choose a client implementation or accessor methods in
C.

� C++. See “Opaque Type Limitations for C++/ActiveX” on page 3-9
for a list of C++ restrictions.

� Java. You cannot generate Java code for opaque types with DBDK 4.0.

Client Implementation

A client implementation of your opaque data type is a value object, which
BladeSmith generates in the programming language you specify. A value
object is a client-side interface to an opaque data type and its support
routines. Client and server implementations need not be in the same
programming language.

For information on the implications of using different languages for server
and client implementations, see “Mixing Languages in Server and Client
Implementations” on page 3-6.

For more information on value objects, see “ActiveX Value Objects” on
page 3-5.

Language Version 9.14 Version 9.2 or later

C 14 110

C++/ActiveX 14 80
4-44 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Data Types
Accessor Methods

If you choose to create a client implementation of your opaque data type, you
can specify whether to generate accessor methods. Choosing this option
makes the members of the opaque data type available as properties, allowing
client-side access to those values. BladeSmith generates set and get methods
for each property.

For more information on ActiveX accessor methods, see “ActiveX
Properties” on page 6-9.

Definition of Internal Structure

You can specify an undefined internal structure for an opaque data type with
a server implementation in C or Java.

The internal structure of the opaque data type is not known to the database
server. The support routines you define for the opaque data type operate on
the internal structure.

If you define the internal structure of your opaque data type to BladeSmith,
BladeSmith generates useful code for it. If you do not specify the internal
structure, BladeSmith generates code that operates as if your opaque data
type is a stream of bytes.

Fixed or Variable Size

You can specify a variable-sized structure for an opaque data type with a
server implementation in C or Java.

An opaque data type can have a fixed size that is determined by the sum of
the sizes of the data structures within the opaque data type. The maximum
size is 32 KB.

Alternatively, an opaque data type can have a variable size if one of its
internal data structures does not have a fixed size. Typically, variable data
structures are smart large objects or other opaque data types. Variable-length
data structures can have a maximum size. Variable-length opaque data types
are treated as bit-varying types.
Creating DataBlade Objects Using BladeSmith 4-45

Creating Data Types
Member Information

Specify the following information about the internal members of your
opaque data type:

� Name. Must be unique within the opaque data type.

� Data structure. Select from the list, which includes any extended
data types you have defined or imported in the project and the data
structures that correspond to the programming language you
choose.

� Array size. Specifies the number of components and
subcomponents.

The following table maps the DataBlade API data structures listed in the
Opaque Type wizard to their external programming language equivalents.

DataBlade API Data Types C and ESQL/C Data Types
ActiveX Data
Types

gl_wchar_t char BSTR

mi_boolean boolean BOOL

mi_char char BSTR

mi_char1 char BSTR

mi_date int BSTR

mi_datetime dtime_t BSTR

mi_decimal dec_t BSTR

mi_double_precision double double

mi_int1 char short

mi_int8 ifx_int8_t BSTR

mi_integer int, long long

mi_interval intrvl_t BSTR

MI_LO_HANDLE ifx_lo_t

(1 of 2)
4-46 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Data Types
If you choose to create a variable-length opaque data type, a member is
automatically added as an mi_int1 of variable size. Change the mi_int1 data
structure to be the one you need. Be sure to list the variable-length member
last.

Tip: If you create an opaque type with a member of type MI_LO_HANDLE, you can
test for the existence of a particular sbspace when your DataBlade module is being
registered in a database using BladeManager. For information, see Appendix C,
“Testing for an Sbspace.”

Maximum Size

If you create a variable-length opaque data type, specify the maximum
allocated length of that data type. The database server does not allow an
opaque data type to grow beyond its maximum length. If you choose to
specify a maximum length, the maximum value is 32,767 bytes. This value,
however, is the maximum size of a row in a database table. Therefore, if your
opaque data type is 32,767 bytes, you cannot have any other columns in your
table.

mi_money dec_t BSTR

mi_numeric dec_t BSTR

mi_real float double

mi_smallint short short

mi_string char BSTR

mi_unsigned_char1 unsigned char short

mi_unsigned_int8 ifx_int8_t BSTR

mi_unsigned_integer long

mi_unsigned_smallint uint2 short

mi_wchar uint2 BSTR

DataBlade API Data Types C and ESQL/C Data Types
ActiveX Data
Types

(2 of 2)
Creating DataBlade Objects Using BladeSmith 4-47

Creating Data Types
Memory Alignment

If you do not specify the internal structure of your opaque data type in Blade-
Smith, you must choose the memory alignment of the first member; your
compiler aligns the other members with this value. Choose an alignment
value that corresponds to the greatest alignment requirement in the data
structure. The default alignment is 4. If you do not know the alignment of the
member with the greatest alignment, choose 8.

See IBM Informix User-Defined Routines and Data Types Developer’s Guide for
more information on memory alignment.

Support Routines

You can select from the following categories of support routines to support
your opaque data type:

� “Basic Text Input and Output” on page 4-49

� “Binary Send and Receive” on page 4-49

� “Text Import and Export” on page 4-50

� “Binary File Import and Export” on page 4-51

� “Contains Large Objects” on page 4-52 (not available for C++)

� “Type Insert and Delete Notification” on page 4-52 (not available for
C++)

� “Type Compare Support” on page 4-53

� “B-Tree Indexing Support” on page 4-53

� “Type Mathematic Operators” on page 4-54

� “More Mathematic Operators” on page 4-55

� “Type Concatenation Operator” on page 4-55

� “Type Hash Support” on page 4-55

� “Statistics Support” on page 4-56 (not available for C++ or Java)

These support routines are described in the following sections.
4-48 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Data Types
Basic Text Input and Output

This category is valid for the C and C++ languages. BladeSmith generates
this category by default.

Basic text input and output functions convert between the text representation
of the opaque data type and the internal database server format.

The text representation of an opaque data type is an mi_lvarchar value that
contains a printable representation of an instance of the data type. The text
representation enters values for the data type in SQL statements such as
INSERT and displays values in output from SQL statements such as SELECT.

The names of these functions differ for different programming languages, as
listed in the following table.

Binary Send and Receive

This category is valid for the C and C++ languages. BladeSmith generates
this category by default.

Binary send and receive functions transfer the binary representation of the
opaque data type to and from the client.

Binary send and receive functions allow the client and server to execute on
different platforms, with different data type representations. When a client
connects with a server, it sends a description of its data representation. The
server calls the binary send function to convert opaque data type values to
the client format before sending them to the client. The binary receive
function converts a value arriving from the client binary format to the server
binary format.

Language Function Names

SQL OpaqueIn()

OpaqueOut()

C OpaqueInput()

OpaqueOutput()

C++ FromString()

ToString()
Creating DataBlade Objects Using BladeSmith 4-49

Creating Data Types
You do not have to know the specifics about data representation on different
platforms to convert an instance of a data type. Binary send and receive
functions call DataBlade API routines for each member of the structure to
convert values to the appropriate C data type representation for the desti-
nation platform.

The names of these functions differ for different programming languages, as
listed in the following table.

Text Import and Export

This category is valid for the C and C++. BladeSmith generates this category
by default.

Text file import and export functions transfer the text representation of the
opaque data type to and from a flat file.

Text file import and export functions enable bulk copy for opaque data types.
When you copy data from a file into a database with PLOAD or the DB-Access
LOAD command, the server calls a text file import function to convert the
incoming value to the server binary format. When data is copied out of the
database into an external file, the server calls a text file export function to
convert the value from server binary format to text file format.

Language Function Names

SQL OpaqueSend()

OpaqueRecv()

C OpaqueSend()

OpaqueReceive()

C++ Send()

Receive()
4-50 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Data Types
You need text file import and export functions for opaque data types that
include large objects or that are exported to a disk file. On copy-out, the text
file export function creates a file on the client, writes the large object data to
it, and then sends the name of the file as the data value for storage in the copy
file. The text file import function takes the filename, opens it, and loads the
large object data. This method stores large object data independent from the
copy file so that the copy file is smaller and easier to read.

If you do not define text file import and export routines, the server calls the
text input and output routines.

The names of these functions differ for different programming languages, as
listed in the following table.

Binary File Import and Export

This category is valid for the C and C++ languages. BladeSmith generates
this category by default.

Binary file import and export functions transfer the binary representation of
the opaque data type to and from a flat file.

Use the binary file import and export functions for bulk copy of binary data.
These functions are the same as the text file import and export functions,
except that they operate on binary representations of the data type. The
functions are called when PLOAD executes.

Language Function Names

SQL OpaqueImpT()

OpaqueExpT()

C OpaqueImportText()

OpaqueExportText()

C++ ImportText()

ExportText()

Java textImport()

textExport()
Creating DataBlade Objects Using BladeSmith 4-51

Creating Data Types
The names of these functions differ for different programming languages, as
listed in the following table.

Contains Large Objects

This category is valid for the C language.

The LOhandles() function retrieves a list of the pointer structures for the
smart large objects embedded in the opaque data type. The database server
calls the LOhandles() function to obtain a list of large objects used by an
opaque data type. The LOhandles() function takes a pointer to an instance of
the data type and returns an array of the large object handles used by the
object.

This category also includes the Assign() function and the Destroy()
procedure described in the section “Type Insert and Delete Notification,”
next.

For the C language, BladeSmith prefixes the names of these functions with
the name of the data type for which they are specified: OpaqueLOhandles(),
OpaqueAssign(), and OpaqueDestroy().

Type Insert and Delete Notification

This category is valid for the C language.

The Assign() function and the Destroy() procedure perform tasks before
storing or deleting an opaque data type on disk: for example, to ensure
proper reference counting on smart large objects.

Language Function Names

SQL OpaqueImpB()

OpaqueExpB()

C OpaqueImportBinary()

OpaqueExportBinary()

C++ ImportBinary()

ExportBinary()
4-52 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Data Types
You can provide Assign() and Destroy() routines for an opaque data type
that requires special processing when an instance is stored in a database or
removed from the database. The database server calls the Assign() function
before it writes a value to a table. The database server calls the Destroy()
procedure before it deletes a value from a table.

For example, opaque data types that include large objects require special
handling before they are stored on disk or removed from a table. The
database server maintains a reference count for large objects to ensure that an
object is not dropped while a row in the database references it. When a
reference to a large object is inserted into a table, the Assign() function incre-
ments the reference count. When a reference to a large object is deleted from
a table, the Destroy() procedure decrements the reference count.

For the C language, BladeSmith prefixes the names of these functions with
the name of the data type for which they are specified: OpaqueAssign() and
OpaqueDestroy().

Type Compare Support

This category is valid for the C and C++ languages. BladeSmith generates
this category by default.

Type comparison functions Compare(), Equal() (bound to the = operator),
and NotEqual() (bound to the <> and != operators) compare two opaque data
types: for example, to support an ORDER BY clause in a query.

For the C language, BladeSmith prefixes the names of these functions with
the name of the data type for which they are specified: OpaqueCompare(),
OpaqueEqual(), and OpaqueNotEqual().

B-Tree Indexing Support

This category is valid for the C and C++.

The following B-tree strategy and support functions support using the B-tree
secondary access method to create an index on your opaque data type
column:

� Compare()

� Equal() (bound to the = operator)

� LessThan() (bound to the < operator)
Creating DataBlade Objects Using BladeSmith 4-53

Creating Data Types
� GreaterThan() (bound to the > operator)

� LessThanOrEqual() (bound to the <= operator)

� GreaterThanOrEqual() (bound to the >= operator)

� NotEqual() (bound to the != and the <> operators)

Defining these routines for opaque data types allows fast B-tree index
searches on the new data types. If a query uses the operator bound to one of
the functions, the optimizer can evaluate strategies that use the index.

For the C language, BladeSmith prefixes the names of these functions with
the name of the data type for which they are specified: OpaqueCompare(),
OpaqueEqual(), OpaqueLessThan(), OpaqueGreaterThan(), OpaqueLess-
ThanOrEqual(), and OpaqueGreaterThanOrEqual().

R-Tree Indexing Support

Version 4.0 of BladeSmith does not generate code for R-tree support routines.

Refer to the IBM Informix R-Tree Index User’s Guide or the IBM Informix
Developer Zone at www.ibm.com/software/data/developer/informix for
information about creating DataBlade modules that use the R-tree secondary
access method.

Type Mathematic Operators

This category is valid for the C and C++ languages.

Binary arithmetic operators Plus() (bound to the + operator), Minus() (bound
to the - operator), Times() (bound to the * operator), and Divide() (bound to
the / operator) perform operations on your opaque data type.

If you define these routines for an opaque data type, the database server can
resolve mathematic expressions in the select list or WHERE clause of a query.

For the C language, BladeSmith prefixes the names of these functions with
the name of the data type for which they are specified: OpaquePlus(),
OpaqueMinus(), OpaqueTimes(), and OpaqueDivide().
4-54 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Data Types
More Mathematic Operators

This category is valid for the C and C++ languages.

Unary arithmetic functions Positive() (bound to the + operator) and Negate()
(bound to the - operator) perform operations on your opaque data type.

If you define these routines for an opaque data type, your database server can
resolve mathematic expressions in the select list or WHERE clause of a query.

For the C language, BladeSmith prefixes the names of these functions with
the name of the data type for which they are specified: OpaquePositive() and
OpaqueNegate().

Type Concatenation Operator

This category is valid for the C and C++ languages.

The Concat() function (bound to the || operator) concatenates the values of
two opaque data types.

For the C language, BladeSmith prefixes the names of these functions with
the name of the data type for which it is specified: OpaqueConcat().

Type Hash Support

This category is valid for the C and C++ languages.

You should define a Hash() function for your opaque data type if the
database server cannot use the built-in hashing function to cache its return
values.

Most data types are bit-hashable and can use the built-in hash routine.

Bit-hashable data types have the property that for any hash routine:

if A = B then hash(A) = hash(B)

In practice, this means that A and B have identical bit representations.
Creating DataBlade Objects Using BladeSmith 4-55

Creating Data Types
There are some data types for which two equal values have different bit
representations. For example, in one’s-complement notation, there are two
distinct representations for 0 (+0 and -0). The SQL rules for the data type
VARCHAR require that trailing blanks be ignored in equality comparisons.
Thus, two VARCHAR values with different numbers of trailing blanks will
have different bit representations, but they should still be considered equal.

For data types that are not bit-hashable, you must provide a Hash() function.

For the C language, BladeSmith prefixes the names of these functions with
the name of the data type for which it is specified: OpaqueHash().

Statistics Support

Statistics support is available with Dynamic Server Version 9.2 and later.

This category is valid for the C language.

User-defined statistics provide a way to improve performance when you
compare opaque data type values. User-defined statistics compile infor-
mation about the values in an opaque data type column that the query
optimizer can use when it creates a query plan.

You can define statistics support functions for an opaque data type and then
a selectivity function for a routine that takes opaque data types as its
arguments. See “User-Defined Statistics” on page 2-16 for more information
on user-defined statistics.

Statistics support functions are OpaqueStatCollect(), OpaqueStatPrint(),
Opaque_SetMinValue(), Opaque_SetMaxValue(), and
Opaque_SetHistogram().

Tip: Statistics support functions reside in the statistics.c source code file, instead of
in the opaque.c source code file with all other opaque data type support routines.

Qualified Data Type

A qualified data type is a built-in data type with additional specifications that
provide information about the storage size, range of values, or precision of
the data type. For example, CHAR is a built-in data type, but CHAR(16) is a
qualified data type because you are fixing its length. You must add a qualified
data type to a BladeSmith project before you can use it as a component of an
extended data type.
4-56 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Data Types
When you create a qualified data type in a BladeSmith project, BladeSmith
adds to the list of data types from which you choose when creating extended
data types. Qualified data types do not need SQL or source code.

For example, to create a collection data type that stores sets of 16-byte
character strings, you must first create a CHAR(16) qualified data type. Then
create the collection data type, choosing CHAR(16) as the base data type and
SET as the constructor function. The new data type has the following SQL
definition:

SET(CHAR(16) not null)

The following table lists the data types that take qualifications.

BladeSmith restricts your input for qualification values to valid choices.

See IBM Informix Guide to SQL: Reference for more information about qualified
data types.

Data Type Qualification

CHARACTER, CHAR (size)

CHARACTER VARYING (size, minimum)

DATETIME largest_qualifier TO smallest_qualifier

DECIMAL, DEC (precision, scale)

INTERVAL largest_qualifier(n) TO smallest_qualifier(n)

MONEY (precision, scale)

NCHAR (size)

NVARCHAR (size, minimum)

SERIAL, SERIAL8 (start value)

VARCHAR (size, minimum)
Creating DataBlade Objects Using BladeSmith 4-57

Creating Data Types
Row Data Type

A row data type is a group of fields of existing data types arranged like a row
in a table. The fields of a row data type can be almost any data type that exists
in your project, including other row data types.

You can overload existing user-defined routines and built-in routines to work
on your row type. See “Creating Routines” on page 4-26 for instructions.

The following table lists the properties you specify when you create a row
data type.

The following sections describe properties of row data types.

Property Default Value Description

Name prefixRowType The name of the row type. Must be
unique.

To create an unnamed row type,
leave this field blank.

See “Named and Unnamed Row
Data Types” for more information.

Inherits from parent? No parent A row type can inherit the fields and
routines of another (parent) row
type.

See “Row Data Type Inheritance” on
page 4-59 for more information.

Field information None The name, data type, and nullability
of the fields within the row type.

See “Row Data Type Fields” on
page 4-59 for more information.
4-58 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Data Types
Named and Unnamed Row Data Types

You can create a named or an unnamed row data type.

A named row data type has these general characteristics:

� Its name is unique.

� It supports inheritance from a parent row data type or to a child row
data type.

� It can be used as the basis of a typed table.

An unnamed row type has these general characteristics:

� It is equivalent to any other unnamed row type with the same
structure. The structure is defined by the number of fields, the data
types of the fields, and the order of the fields.

� It does not support inheritance.

� It cannot be used as the basis of a typed table.

See the IBM Informix Guide to SQL: Tutorial for more information on named and
unnamed row data types.

Row Data Type Inheritance

Named row data types can inherit from other named row data types. A child
row data type inherits its parent’s fields and can be passed to all routines
defined for the parent data type.

You can add additional fields and routines that are only valid for the child
data type.

See the IBM Informix Guide to SQL: Tutorial for more information on
inheritance.

Row Data Type Fields

Fields in row data types can be any existing data type except SERIAL and
SERIAL8.
Creating DataBlade Objects Using BladeSmith 4-59

Adding Functional Test Data
Tip: If you create a row data type with a field of type BLOB or CLOB, you can test for
the existence of a particular sbspace when your DataBlade module is being registered
in a database using BladeManager. For information, see Appendix C, “Testing for an
Sbspace.”

Adding Functional Test Data
You can perform functional tests on your DataBlade module routines using
the functional tests generated by BladeSmith. You must enter test data for
functional tests in BladeSmith. You run functional tests on UNIX, or you run
them on Windows using a UNIX-compatible toolkit, such as MKS Toolkit.

Tip: You can also generate unit tests, which run on Windows with the DBDK Visual
C++ Add-In. See “Debugging Your DataBlade Module” on page 1-13 for more
information.

You can add functional test data for opaque type support routines, user-
defined routines, and cast support functions. Using the test data you enter,
BladeSmith generates a functional test for each routine. BladeSmith creates
UNIX shell scripts and SQL scripts to create test tables in a database, populate
them with your test data, and run SQL scripts that execute the DataBlade
module routines.

BladeSmith generates functional tests for an object only if you enter test data
for it. You must regenerate functional tests whenever you add test data to
update the functional test scripts.

Chapter 9, “Debugging and Testing DataBlade Modules on UNIX,” describes
how to use the functional tests that BladeSmith generates.

To enter test data for an object, select the object and choose Edit�Gather Test
Data.

The following sections describe the test data you enter in BladeSmith.
4-60 IBM Informix DataBlade Developer’s Kit User’s Guide

Test Data for Opaque Type Support Routines
Test Data for Opaque Type Support Routines
To enter test data for an opaque type support routine, select the routine and
choose Edit�Gather Test Data.

For opaque type support routines, each test data item includes the following
elements:

� An input value for the data type. This value must be in the format
specified for the text input routine.

� The expected output value for the input value. This value must be
in the format specified for the type’s text output routine.

� An error code, if the input value is not valid. Leave this entry blank
when the input value is expected to be correct.

Enter values to test the opaque type boundaries. For example, if a type does
not accept negative input values, enter test data with negative values and
specify the error code you expect to receive from the text input routine.

The data you enter for an opaque type is used to test all of the supporting
routines defined for the type. BladeSmith generates SQL scripts to test each
supporting routine, including the text input and output routines and other
routines, such as binary input and output routines and comparison routines.
Add test data values that thoroughly test each of these routines.

Test Data for User-Defined Routines
To enter test data for a routine, select the routine and choose Edit�Gather
Test Data.

The test data for user-defined routines includes the following items:

� The input parameters for the test case. Enter the input parameters
in the same format you type them in an SQL statement. Enclose text
parameters in single quotes.

� The result expected from the function, if the input parameters are
valid. If you enter invalid input parameters, leave this field blank. If
the user-defined routine is a procedure, the result field is not
available because procedures do not return values.

� An error code, if the input parameters are invalid. Leave this field
blank if the input parameters are expected to be valid.
Creating DataBlade Objects Using BladeSmith 4-61

Test Data for Cast Support Routines
For example, the Circle DataBlade module defines a Contains() function that
takes a Circle value and a Pnt value and returns a Boolean result. To test the
Contains() function with a Circle value of '(12,12,2)' and a Pnt value of
'(12,12)', enter the following input parameters:

'(12,12,2)','(12,12)'

Calling Contains() with these values should return a true result, which you
can enter as t. Because the input parameters are valid, you leave the Error
code field blank.

Test Data for Cast Support Routines
To enter test data for a cast support function, select the cast and choose
Edit�Gather Test Data.

The test data for a cast support functions includes the following items:

� Input data, in the text input format specified for the source data type.

� Expected output data, in the text output format specified for the
destination data type.

� The error code expected if the input data is not valid. If the input data
is valid, leave this field blank.

Enter invalid input values and values that test boundary conditions for the
data type.

Adding SQL Files
BladeSmith allows you to add custom SQL commands to the scripts that
describe a DataBlade module and its objects. You can include SQL commands
to create tables, indexes, or SPL procedures your DataBlade module requires.
For example, if your DataBlade module uses smart large objects, you can
include a statement to test for the required sbspace when you register the
DataBlade module. For information, see Appendix C, “Testing for an
Sbspace.”
4-62 IBM Informix DataBlade Developer’s Kit User’s Guide

Adding SQL Files
Use the three-character new object prefix assigned to your project in the name
of every custom SQL object you create. The maximum size of an SQL file is 20
KB.

If you create any objects for your DataBlade module, add corresponding SQL
DROP statements so that the objects are dropped when your DataBlade
module is unregistered.

To add custom SQL, start the wizard by choosing Edit�Insert�SQL Files.
Enter SQL commands directly into the BladeSmith edit window, or import a
disk file into the BladeSmith project. When you import a file, copy the
contents of the file at the time you import, or import the file by reference so
that its contents are copied whenever you generate SQL scripts.

The following table lists the properties you specify when you include custom
SQL statements.

Property Default Value Description

Descriptive name SQLfile A descriptive name for the custom
SQL statements.

Read SQL text from
file

None Use to import SQL statements into
the CREATE and DROP fields or to
import by reference.

See “Importing SQL Text from a
File” on page 4-64 for more
information.

Custom SQL CREATE
text

None A text field in which to type SQL
CREATE statements.

(1 of 2)
Creating DataBlade Objects Using BladeSmith 4-63

Importing SQL Text from a File
The following sections describe properties of custom SQL files.

Importing SQL Text from a File
If you import SQL statements from a text file, separate the CREATE and DROP
statements with a line of 40 hyphens (-). To import a file by reference, click
Browse and select a file from the Open dialog box. If you import by reference,
BladeSmith stores the full path and filename.

Object Dependencies
You can specify whether an SQL command depends upon a DataBlade
module object or upon your SQL. These dependencies determine the
sequence of SQL commands in the generated objects.sql script. BladeSmith
generates SQL in the following sequence:

1. SQL commands to create objects upon which custom SQL commands
depend

2. Custom SQL commands

3. SQL commands to create objects that depend upon custom SQL
commands

The generated SQL scripts register dependencies when the DataBlade
module is registered in a database.

Custom SQL DROP
text

None A text field in which to type SQL
DROP statements.

Depends on objects None A list of objects on which the custom
SQL depends.

See “Object Dependencies” on
page 4-64 for more information.

Which objects require
SQL

None A list of objects that depend on the
custom SQL.

See “Object Dependencies” on
page 4-64 for more information.

Property Default Value Description

(2 of 2)
4-64 IBM Informix DataBlade Developer’s Kit User’s Guide

Adding Client Files
Adding Client Files
Client files you include in your BladeSmith project are downloaded to client
workstations after a DataBlade module is installed on a database server.
Client files include:

� Graphical user interfaces

� Documentation and help files

� Shared object files, dynamic link libraries, or header files containing
DataBlade module routines executed in the client address space

Client files are installed on the database server in platform-specific direc-
tories in the DataBlade module installation directory. Clients use
BladeManager to download the files to their workstations.

To add a client file to your DataBlade module, choose Edit�Insert�Client
Files. Type the full path and filename in the local path field or click the
browse button (...) and select a file from the Open dialog box. This file must
be accessible to both BladeSmith and BladePack. Select the appropriate client
operating system, version, and architecture for your file. This information is
used by BladeManager to install the specific client files on the correct client
computer.

For Dynamic Server Version 9.2 and later, the maximum length of a client
filename is 64 characters.

For Dynamic Server Version 9.14, the maximum length of a client filename is
18 characters. ♦

9.14
Creating DataBlade Objects Using BladeSmith 4-65

Generating Files
Generating Files
When you generate files, BladeSmith creates files that describe the objects
you defined in your project. The files include:

� SQL scripts that BladeManager executes to register the DataBlade
module in databases and SQL scripts that create the DataBlade
module objects in user databases

� Source files that contain basic code for the routines defined in your
project

� Unit and functional test files

� Setup files that you use with BladePack to create an installation
package

Generate SQL files, source files, functional test files, and installation files at
any time. See “Regenerating Files” on page 4-74 for more information on
when to regenerate. If you change any of the output directories, regenerate
all files.
4-66 IBM Informix DataBlade Developer’s Kit User’s Guide

Generating Files
To generate files or change the properties of generated files, choose
Generate�DataBlade to display the Generate DataBlade dialog box, as
shown in Figure 4-2.

Figure 4-2
Generate DataBlade Dialog Box

The properties
grid

A description of
the selected
property

Generated file
category tree

Click to set
properties

Click a cell in the
Property column
to edit a property

Asterisks indicate that files
in the category need to be
generated

Click to
generate
selected and
subordinate
categories

Click to start
Visual C++
and open the
project.dsw
file

Indicates that
newly generated
code will merge
with previous
code
Creating DataBlade Objects Using BladeSmith 4-67

Setting Generated File Properties
The Generate DataBlade dialog box contains a file tree that shows categories
of generated files. Each category is represented by a node in the tree. When
you click a node, the Generate button changes to reflect the name of the
category.

The directory structure of the generated files is illustrated by Figure 4-3.

Programming language subdirectories are created during generation only if
you have defined objects in those languages.

This section includes the following subsections that describe the tasks you
can perform using the Generate DataBlade dialog box:

� “Setting Generated File Properties” on page 4-68

� “Generating All Files” on page 4-70

� “Generating SQL Scripts” on page 4-71

� “Generating Source Files” on page 4-72

� “Generating Test Files” on page 4-73

� “Generating Installation Package Files” on page 4-73

� “Regenerating Files” on page 4-74

� “Opening the Project File in Visual C++” on page 4-76

Setting Generated File Properties
Most categories of generated files have properties that you can change. The
properties appear in the Generate DataBlade dialog box Properties grid
when you select a category in the file tree.

Figure 4-3
Generated File

Directory Structure
project

functest
install
scripts
src

ActiveX

C

Java
SPL
4-68 IBM Informix DataBlade Developer’s Kit User’s Guide

Setting Generated File Properties
The following table lists the properties of the generated file categories, their
default values, categories to which they belong, and a brief description of
each.

Property Default Value Category Description

Format DOS Generate
DataBlade

The format of the generated files:

� DOS: text lines end with a carriage
return/linefeed pair.

� UNIX: text lines end with a linefeed
character.

Merge True Generate
DataBlade

Whether to merge custom changes from
previous source code files into the new
files or to overwrite existing files.

See “Merging Changes in Source Code
and Unit Test Files” on page 4-74 for
more information.

Directory install

src

scripts

functest

Packaging

Source

SQL

Tests

The name of the directory that receives
the generated files from each category.
The path is relative to the directory that
contains the project file.

Logging False Source Whether to generate logging
information.

Tracing False Source Whether to add tracing to your generated
source code.

See “Tracing and Error Handling” on
page 5-13 for more information.

MMX False C Whether to allow Intel MMX media
enhancement technology in your
DataBlade module.

If you change the value to True, Blade-
Smith generates the
Gen_IsMMXMachine function to check
for an Intel MMX processor. See “The
Gen_IsMMXMachine() Utility Function”
on page 5-24 for more information.
Creating DataBlade Objects Using BladeSmith 4-69

Generating All Files
To change a property of a generated file category

1. Click the node of the category whose properties you want to change.

2. Click the name of the property whose value you want to edit in the
Property column of the Properties grid.

3. Edit the value by typing a new value or selecting a new value from
the popup list in the Value column.

4. Click Apply.

Generating All Files
The top-level node in the Generate DataBlade dialog box file tree is Generate
DataBlade (see Figure 4-2 on page 4-67).

To generate all the files for your DataBlade module

1. In the Generate DataBlade dialog box, click the Generate DataBlade
node.

2. Edit the properties of the generated file categories, if necessary. See
“Setting Generated File Properties” on page 4-68 for instructions.

3. Click Generate DataBlade.

The Generate DataBlade node has the following properties:

� Format. Use the Format property to specify how text lines end in the
generated files:

❑ DOS. Text lines end with a carriage return/linefeed pair.

❑ UNIX. Text lines end with a linefeed character.

� Merge. The default value is True. To merge custom changes from
previous source code and unit test files into the new files, select True.
To overwrite existing files, select False. See “Merging Changes in
Source Code and Unit Test Files” on page 4-74 for more information.

The default value for the Format property is DOS.
4-70 IBM Informix DataBlade Developer’s Kit User’s Guide

Generating SQL Scripts
Generating SQL Scripts
To generate only the SQL scripts, click the SQL node in the Generate
DataBlade dialog box; then click Generate Scripts.

The property associated with the SQL node is Directory. The default
directory is scripts. You can change the name of the directory the SQL scripts
are saved in, but the path must be relative to the project directory.

The following table describes the generated SQL scripts.

BladeSmith generates separate files for locale-specific objects such as error
messages. For example, the files for the default U.S. English locale are
prepare.en_us.sql and errors.en_us.1252. Only one error message file is
necessary per language. The database server automatically translates
between languages. For example, the errors.en_us.1252 file is sufficient for all
en_us encodings; you do not need additional encodings like
error.en_us.8859-1.

You can add SQL statements to the generated SQL scripts by adding an SQL
file object to your project. See “Adding SQL Files” on page 4-62 for more
information about adding SQL statements to a DataBlade module.

Warning: Do not edit generated SQL scripts. Use BladeSmith to make changes; then
regenerate the scripts.

SQL Script Purpose

prepare.sql Contains SQL statements that describe the DataBlade module to
BladeManager.

objects.sql Contains SQL statements that update the sysbldobjects system
table with information about the DataBlade module objects that
are created in a database. BladeManager uses the information in
the table to register, unregister, and upgrade DataBlade
modules.

test.sql Contains the SQL statements to create all objects in the
DataBlade module projects and a GRANT EXECUTE statement.
Creating DataBlade Objects Using BladeSmith 4-71

Generating Source Files
Generating Source Files
To generate only the source files for objects defined in your project, click the
Source node or one of its subordinate nodes in the Generate DataBlade
dialog box (see Figure 4-2 on page 4-67); then click Generate Source. The
following table lists the source code file generation options.

The Source node has these properties:

� Directory. The default directory is src. To change the name of the top-
level directory the source code files are saved in, specify a new
directory or path. The path must be relative to the project directory.

� Logging. The default value is False. To add logging information to
your source code files, select True.

� Tracing. The default value is False. To add tracing to your generated
source code, select True. See “Tracing and Error Handling” on
page 5-13 for more information.

The property associated with the C node under the Server node is MMX. The
MMX default value is False. You can choose whether to allow Intel MMX
media enhancement technology in your DataBlade module. To generate the
Gen_IsMMXMachine function to check for an Intel MMX processor, specify
True. See “The Gen_IsMMXMachine() Utility Function” on page 5-24 for
more information.

Node Code Generated

Source All source code in the coding languages you use
for your DataBlade module objects

Client Client code (ActiveX or Java)

Server Server code in the coding languages you specified
when you create objects in BladeSmith

Individual language:
ActiveX, C++, C, Java, or SPL

Source code only for the selected language
4-72 IBM Informix DataBlade Developer’s Kit User’s Guide

Generating Test Files
BladeSmith writes a header file, source files, and makefiles for Windows and
UNIX platforms. It also generates other necessary files, depending on the
coding language. For information on the source files BladeSmith generates,
see “Source Files Generated by BladeSmith” on page 5-7 and Appendix A,
“Source Files Generated for DataBlade Modules.”

After you generate source files, edit the source files to add your code to the
routine declarations BladeSmith generated. For a description of the contents
of the generated files and how to modify and compile the generated code, see
Chapter 5, “Programming DataBlade Module Routines in C,” Chapter 6,
“Creating ActiveX Value Objects,” or Chapter 8, “Programming DataBlade
Modules in Java.”

Generating Test Files
To generate only the test files, click the Tests node in the Generate DataBlade
dialog box (see Figure 4-2 on page 4-67); then click Generate Tests. You can
also choose to generate only functional tests or only unit tests.

The property associated with the Tests node is Directory. The default
directory is functest. You can change the name of the directory the test files
are saved in, but the path must be relative to the project directory. The
functest directory only applies to functional tests; unit tests are generated in
the src directory.

See Chapter 9, “Debugging and Testing DataBlade Modules on UNIX,” for
information about executing functional tests.

Generating Installation Package Files
To generate only the installation packaging files that BladePack uses to build
installation packages, click the Packaging node in the Generate DataBlade
dialog box (see Figure 4-2 on page 4-67); then click Generate Packaging.

The property associated with the Packaging node is Directory. The default
directory is install. You can change the name of the directory where the
installation files are saved, but the path must be relative to the project
directory.
Creating DataBlade Objects Using BladeSmith 4-73

Regenerating Files
When you generate installation package files, BladeSmith creates a set of files
that you use with BladePack to generate installation scripts for your
DataBlade module:

� project.bom. A bill of materials file.

� project.cmp. A components file.

� project.prd. A product file.

� project.str. A string file.

Important: Do not edit the generated installation package files. Instead, use Blade-
Smith to regenerate the installation package files after you have added or removed
DataBlade module objects in the project file. For details about adding files to your
installation package and generating installation packages, see Chapter 11, “Using
BladePack.”

Regenerating Files
After you make changes in a BladeSmith project, regenerate the appropriate
files. For example, if you add a cast to a DataBlade module, you must regen-
erate SQL scripts. If the cast has a support routine, you must also regenerate
source files. When a node in the generated file category tree on the Generate
DataBlade dialog box needs to be generated, it is followed by an asterisk.

BladeSmith uses two processes to regenerate files, depending on the file:

� Source code and unit test files. If merging is enabled, BladeSmith
merges user changes into the newly generated code.

� Visual C++ project, SQL, functional test, and installation files.
BladeSmith replaces existing files.

Merging Changes in Source Code and Unit Test Files

When BladeSmith finds existing source code and unit test files, it copies them
to backup files before regenerating them.

If you add SQL statements to unit test files and then regenerate them, Blade-
Smith merges your code automatically.
4-74 IBM Informix DataBlade Developer’s Kit User’s Guide

Regenerating Files
If the Merge property of the DataBlade node in the Generate DataBlade
dialog box is True, BladeSmith copies the changes you made to your source
and unit test files into the newly generated source files. In this way, you can
update your objects in BladeSmith without losing the code you added.

In source code files, BladeSmith does not remove code for routines that no
longer exist in the project; you must manually remove such code. For
example, suppose you create an opaque data type with an Assign() function
specified and generate code; then you alter the opaque data type to no longer
have an Assign() function. When you regenerate the source code, the
Assign() function code remains.

If the Merge property of the DataBlade node in the Generate DataBlade
dialog box is False, BladeSmith does not merge your previous changes into
the new source files, but existing files are backed up. You can copy changes
from the backup files into the newly generated files using a text editor.

If BladeSmith encounters problems while generating files, it displays the
Generate Code Problem dialog box. For help in resolving merging problems,
click Help on this dialog box and read the online help.

For information on how to use merging to upgrade projects created with a
previous version of the DataBlade Developers Kit, see the release notes.

Replacing Visual C++ Project, SQL, Functional Test, and Installation
Files

BladeSmith does not merge changes to Visual C++ project, SQL files,
functional test files, or installation files. When you regenerate SQL files and
functional test files, BladeSmith regenerates the previous files as well as the
Visual C++ project file. When you regenerate installation files, BladeSmith
deletes relevant entries in the bill of materials file and adds them again. If you
use BladePack to add files to the package, regenerating installation files does
not affect your additions.
Creating DataBlade Objects Using BladeSmith 4-75

Opening the Project File in Visual C++
Opening the Project File in Visual C++
After you generate your C or C++ source code, you can launch Microsoft
Visual C++ and open the project workspace file for your DataBlade module
by clicking MSDev on the Generate DataBlade dialog box.

You can also open the DataBlade module project in Visual C++ from Blade-
Smith at any time by choosing Tools�MSDev or clicking the MSDev button
in the toolbar.

To launch Visual C++ and open the Visual C++ workspace file

1. With the project open in BladeSmith, choose Tools�MSDev.

If the DBDK Visual C++ Add-In toolbar does not appear, you must
add it manually. For instructions, see “Manually Loading the Add-
In” on page 10-9.

A dialog box asks if you want to select a local database server.

2. Click Yes.

The add-in Properties dialog box appears. See “Specifying Properties
for a Project” on page 10-10 for more instructions on assigning a
database server and database to your project.
4-76 IBM Informix DataBlade Developer’s Kit User’s Guide

5
Chapter
Programming DataBlade
Module Routines in C
In This Chapter . 5-5

Prerequisite Tasks 5-5

C Programming Task Overview 5-6

Source Files Generated by BladeSmith 5-7
C Header File 5-8
C Source Code Files 5-8
Microsoft Visual C++ Files 5-9
Warning File . 5-9

Using Generated Code 5-10
Identifying the Source of Generated Code 5-10
Comments in Generated Code 5-11
MI_FPARAM Function Argument 5-12
Server Connection Handle 5-12
Tracing and Error Handling 5-13

How Tracing Works 5-13
Adding Tracing and Error Handling 5-15
Enabling Tracing in a DataBlade Module 5-17
Enabling Tracing in a Database Session 5-19
Standard Error Messages 5-21

Utility Functions Generated by BladeSmith 5-23
The Gen_sscanf() Utility Function 5-24
The Gen_IsMMXMachine() Utility Function 5-24

Editing Opaque Type Support Routines in opaque.c 5-25
Text Input and Output Functions 5-26

The Generated Code. 5-26
Customizing the Code 5-28

5-2 IBM
Smart Large Object Considerations 5-29
Examples 5-30

Binary Send and Receive Functions 5-30
The Generated Code 5-31
Customizing the Code 5-32
Examples 5-32

Text File Import and Export Functions 5-32
The Generated Code 5-32
Customizing the Code 5-33
Smart Large Object Considerations 5-34

Binary File Import and Export Functions 5-34
The Generated Code 5-34
Customizing the Code 5-35
Smart Large Object Considerations 5-35

The Assign and Destroy Routines 5-35
The Generated Code 5-36
Customizing the Code 5-36
Smart Large Object Considerations 5-36
Examples 5-36

LOhandles() Function. 5-37
Comparison Functions 5-38

Compare Function 5-38
B-Tree Comparison Functions 5-40
R-Tree Comparison Functions 5-42

Mathematic Functions 5-42
The Generated Code 5-42
Completing the Code 5-43
Example . 5-43

Concat() Function 5-43
Hash() Function. 5-43

Editing Statistics Routines in statistics.c 5-44
The Statistics Collection Function 5-44

The Generated Code 5-45
Customizing the Code 5-45

The Statistics Print Function 5-45
The Statistics Minimum, Maximum, and Distribution Functions . . 5-45

The Generated Code 5-46
Completing the Code 5-46
Example . 5-46
 Informix DataBlade Developer’s Kit User’s Guide

Editing Routines in udr.c 5-46
Most User-Defined Routines 5-47

The Generated Code 5-47
Completing the Code 5-47
Examples . 5-48

Cast Support Functions 5-48
The Generated Code 5-48
Completing the Code 5-49
Example . 5-49

Aggregate Functions 5-49
The Generated Code 5-49
Completing the Code 5-50

Selectivity Functions 5-51
The Generated Code 5-51
Completing the Code 5-52
Example . 5-52

Iterator Functions 5-53
The Generated Code 5-53
Completing the Code 5-54
Example . 5-54

Compiling DataBlade Module Code 5-54
Compiling with Tracing Support 5-55
Compiling on UNIX 5-55

Unresolved Symbols 5-56
Compiling with Debug Support 5-56

Compiling on Windows 5-57
Programming DataBlade Module Routines in C 5-3

5-4 IBM
 Informix DataBlade Developer’s Kit User’s Guide

In This Chapter
This chapter contains information to help you edit and compile C language
source code generated by BladeSmith. It includes the following sections:

� “Prerequisite Tasks,” next

� “C Programming Task Overview” on page 5-6

� “Source Files Generated by BladeSmith” on page 5-7

� “Using Generated Code” on page 5-10

� “Editing Opaque Type Support Routines in opaque.c” on page 5-25

� “Editing Statistics Routines in statistics.c” on page 5-44

� “Editing Routines in udr.c” on page 5-46

� “Compiling DataBlade Module Code” on page 5-54

Prerequisite Tasks
Before editing and compiling your DataBlade module code, complete these
tasks:

1. Write functional and design specifications that comply with Informix
coding standards.

See Chapter 3, “Programming Guidelines,” for more information.

2. Create your DataBlade module in BladeSmith.

See “Creating DataBlade Module Objects” on page 4-14 for
instructions.

3. Generate source code and SQL files in BladeSmith.

See “Generating Files” on page 4-66 for instructions.
Programming DataBlade Module Routines in C 5-5

C Programming Task Overview
C Programming Task Overview
After you generate code with BladeSmith, complete these general tasks to
finish your DataBlade module code:

1. Open the project.dsw file in Visual C++. You can do this from within
BladeSmith. See “Opening the Project File in Visual C++” on
page 4-76 for instructions. ♦

2. Add code to these source code files to enable your routines to
function as you intend:

� Opaque.c. Add functionality for opaque data type support
routines, as necessary. See “Editing Opaque Type Support
Routines in opaque.c” on page 5-25 for instructions.

� statistics.c. Add functionality for statistics support routines, as
necessary. See “Editing Statistics Routines in statistics.c” on
page 5-44 for instructions.

� udr.c. Add functionality for user-defined routines, cast support
functions, and aggregates. See “Editing Routines in udr.c” on
page 5-46 for instructions.

3. Compile and link your source code files using a makefile or Visual
C++ workspace file generated by BladeSmith. See “Compiling
DataBlade Module Code” on page 5-54 for instructions.

To avoid merging conflicts when you regenerate your code, add code only in
areas marked by TO DO: comments or after the generated code. If you do
modify code outside the designated areas, after you regenerate you might
have two copies of the routine: the one you modified and the one BladeSmith
generated. Although your changes remain, you must resolve conflicts in the
two pieces of code.

Windows
5-6 IBM Informix DataBlade Developer’s Kit User’s Guide

Source Files Generated by BladeSmith
Source Files Generated by BladeSmith
When you create new objects, BladeSmith generates the source files; some
filenames are prefixed with the name of the DataBlade module (indicated by
project). By default, BladeSmith creates the source files in the src and src\c
subdirectories of the directory that contains the BladeSmith project file.
Generated source files are listed in the following table.

Some of these files are described in the following subsections.

Filename Directory Type of File More Information

project.h src\c C header file See “C Header File” for more
information.

support.c

udr.c

Opaque.c

statistics.c

src\c C source code
file

You should edit only the udr.c,
Opaque.c, and statistics.c files.

See “C Source Code Files” on
page 5-8 for more information.

project.def src\c C definition file This file lists the exported
routines declared in the source
code file.

project.dsp
project.dsw

src Visual C++ files See “Microsoft Visual C++
Files” on page 5-9 for more
information.

readme.txt src\c Text file This file describes the files in the
src\c directory.

warning.txt src\c Text file This file describes potential
problems with your source
code.

See “Warning File” on page 5-9
for more information.

ProjectU.mak src Makefile Use this file for compiling on
UNIX.

See “Compiling on UNIX” on
page 5-55 for more information.
Programming DataBlade Module Routines in C 5-7

C Header File
C Header File
The project.h header file for the DataBlade module contains:

� definitions for error messages used in generated code.

� function prototypes for utility and tracing functions BladeSmith
provides.

� DBDK_TRACE macros for the BladeSmith tracing facility.

� a type definition for the MI_LO_HANDLES structure returned by
smart large object functions.

� type definitions for opaque type structures defined in the Blade-
Smith project.

C Source Code Files
The support.c source code file for the DataBlade module project contains:

� #include directives for standard C and DataBlade API header files.

� utility functions called from BladeSmith-generated routines.

The udr.c source code file for the DataBlade module project contains function
declarations for user-defined C routines, cast support routines, and aggre-
gates in the BladeSmith project.

Each opaque data type has a source code file, Opaque.c, where Opaque is the
name of the opaque data type. The Opaque.c source code files contain
function definitions for opaque type support routines specified in the
DataBlade module project.

The statistics.c source code file for the DataBlade module project contains
user-defined statistics support routines for each opaque data type with
statistics support.
5-8 IBM Informix DataBlade Developer’s Kit User’s Guide

Microsoft Visual C++ Files
Microsoft Visual C++ Files
The project.dsp file is the Visual C++ project file that contains the project
information for both C and C++/ActiveX code: for example, a list of the
source code files. For more information about C++/ActiveX code, see
Chapter 6, “Creating ActiveX Value Objects.”

The project.dsw file is the Visual C++ workspace file that contains workspace
information and refers to the project file for project information. You open the
project.dsw file to edit and compile your source code.

For more information on compiling using the project.dsw file, see
“Compiling on Windows” on page 5-57.

Warning File
The warning.txt file includes the following types of warnings about your
source code:

� Unfinished code. The file lists the routines to which you need to add
code.

� User-defined statistics. If you included statistics-support functions
for an opaque data type, a warning states that user-defined statistics
are only available for Dynamic Server Version 9.2 and later.

� Long identifiers. If you created any objects with long identifiers, a
warning states that long identifiers are only available for Dynamic
Server Version 9.2 and later.

� The mi_selfuncarg data type. If you included the mi_selfuncarg
data type in an extended data type, a warning states that the data
type is deprecated for Dynamic Server Version 9.2 and later.

The warning.txt file might contain other warnings, as appropriate for your
source code.
Programming DataBlade Module Routines in C 5-9

Using Generated Code
Using Generated Code
This section contains the following subsections:

� “Identifying the Source of Generated Code,” next

� “Comments in Generated Code” on page 5-11

� “MI_FPARAM Function Argument” on page 5-12

� “Server Connection Handle” on page 5-12

� “Tracing and Error Handling” on page 5-13

� “Utility Functions Generated by BladeSmith” on page 5-23

Identifying the Source of Generated Code
When BladeSmith generates source code for your DataBlade module, it uses
routines and data structures from various libraries.

The following table lists common prefixes for data types and routines
appearing in generated DataBlade module code and lists their sources and
where they are documented.

Prefix Library More Information

mi_ DataBlade API Almost all DataBlade API routines and data
types have the mi_ prefix. See the
IBM Informix DataBlade API Programmer’s
Guide for more information.

Gen_ BladeSmith All variable names and routine names not
explicitly named in the project have the Gen_
prefix. See “Utility Functions Generated by
BladeSmith” on page 5-23 for more infor-
mation on utility functions.

DBDK_TRACE_ BladeSmith BladeSmith uses four macros for error
handling and tracing in generated code. See
“Tracing and Error Handling” on page 5-13
for more information.
5-10 IBM Informix DataBlade Developer’s Kit User’s Guide

Comments in Generated Code
Comments in Generated Code
BladeSmith adds comments to the code it generates. Each routine begins with
a prologue that describes the purpose of the routine, its arguments, and its
return value. Comments throughout the code describe variable declarations
and the results of generated C statements and routine calls.

In comments at the beginning and end of each generated routine, BladeSmith
stores information it uses when regenerating source code. The prologue
includes a routine ID. A comment at the end of the routine contains a calcu-
lated checksum.

Warning: Do not modify either of these comments; BladeSmith uses them to merge
your edits into the regenerated code.

BladeSmith adds a Gen_ prefix to all variable names and routine names you
did not create or explicitly define in BladeSmith: for example, utility
functions and the Gen_Con connection argument.

gl_ DataBlade API The gl_dprintf() and gl_tprintf() functions
are used for internationalized tracing. See the
IBM Informix DataBlade API Programmer’s
Guide for more information.

ifx_gl_ GLS API All GLS API routines have the ifx_gl_ prefix.
See the IBM Informix GLS Programmer’s
Manual for more information.

ifx_ ESQL/C In code generated by BladeSmith, this prefix
indicates routines and data types from
ESQL/C. See the IBM Informix ESQL/C
Programmer’s Manual for more information.

Prefix Library More Information
Programming DataBlade Module Routines in C 5-11

MI_FPARAM Function Argument
MI_FPARAM Function Argument
BladeSmith adds an extra argument to all routines it generates: a pointer to
an MI_FPARAM structure. However, with the exception of iterator functions
and user-defined functions that allow null arguments, the generated code
does not manipulate the values stored in MI_FPARAM structures. The
MI_FPARAM argument is included for your convenience. If you want to use
the MI_FPARAM structure, you must add code to all noniterator routines.

Typically, you only need to use the MI_FPARAM structure for the following
tasks:

� Check for NULL arguments or return values

� Set arguments or return values to NULL

� Get data type information about arguments or return values

� Manage iterative calls to a function

To manipulate the values in an MI_FPARAM structure, you must use its
DataBlade API accessor functions. Do not access MI_FPARAM structure
members directly, because the structure might change between versions of
the DataBlade API.

In addition to references for each of the MI_FPARAM accessor functions, the
IBM Informix DataBlade API Programmer’s Guide includes a chapter that
describes the information stored in the MI_FPARAM structure and tells you
how to get values from or store values in the structure and how to use the
structure for creating iterative functions.

For an explanation of how generated code uses the MI_FPARAM structure in
an iterator function, see “Iterator Functions” on page 5-53. The ExmAm-
ortize() function in the example Business DataBlade module uses the
MI_FPARAM structure in an iterative function.

Server Connection Handle
BladeSmith calls mi_open() at the beginning of many of the routines it
generates. The mi_open() call obtains a database server connection handle,
which is a required argument in many DataBlade API calls. If your routine
does not need a connection handle, remove the mi_open() and mi_close()
functions that BladeSmith adds to your code.
5-12 IBM Informix DataBlade Developer’s Kit User’s Guide

Tracing and Error Handling
Tip: If the only DataBlade API call your routine makes is to mi_db_error_raise(),
you do not need a connection handle. You can pass a null value to
mi_db_error_raise().

For routines running in the database server address space, except the large
object DataBlade API routines, the connection handle enables client and
database server routines to use the same DataBlade API routines.

When mi_open() is called at the beginning of a generated routine, mi_close()
is called to release the handle immediately before the routine returns.

Tracing and Error Handling
BladeSmith adds tracing and error handling code throughout the generated
source code if the tracing option is set to True when you generate source code
in BladeSmith.

A generated utility function, Gen_Trace(), processes all tracing and error
handling. Your routines must not call Gen_Trace() directly. To perform
tracing and error handling tasks, use the DBDK_TRACE macros defined in
the generated header file.

This section describes:

� How to use the supplied DBDK_TRACE macros to add tracing and
error handling to your generated code (see “Adding Tracing and
Error Handling” on page 5-15)

� How to enable tracing and use the generated TraceSet_project
procedure (see “Enabling Tracing in a DataBlade Module” on
page 5-17 and “Enabling Tracing in a Database Session” on
page 5-19)

� The standard Informix-supplied error messages (see “Standard Error
Messages” on page 5-21)

How Tracing Works

Tracing is the process of writing status messages for routines to a file. Use
tracing for debugging; tracing can generate a high volume of output, which
is not appropriate for production databases.

By default, tracing is disabled whenever you start a new database session.
Programming DataBlade Module Routines in C 5-13

Tracing and Error Handling
Each tracing message has a tracing level associated with it. When you enable
tracing, you set a threshold for tracing levels. Messages with a trace level less
than or equal to the threshold are written to the trace file.

Tracing messages are written to a trace file, which is created with a default
name and location, or with a name and location you specify. If you remove
the trace file while tracing is enabled, it is automatically re-created. The
default name and location of the trace file is tmp/session_id.trc, where
session_id is the four-digit identifier of the current database server session.
To obtain your current session ID, use the onstat -g ses command.

Messages are written to the trace file only if you:

� Generate source code with tracing. See “Generating Source Files” on
page 4-72 for instructions.

� Compile the DataBlade module. See “Compiling DataBlade Module
Code” on page 5-54 for instructions.

� Enable tracing in your DataBlade module by adding a trace class to
the systraceclasses system catalog and creating the
TraceSet_project() procedure. See “Enabling Tracing in a DataBlade
Module” on page 5-17 for more information.

� Enable tracing for a database session by setting a threshold and
optionally specifying a trace file with the TraceSet_project()
procedure. See “Enabling Tracing in a Database Session” on
page 5-19 for instructions.

Trace messages include the name of the executing routine, the source
filename, and the line number of the call to Gen_Trace() with the embedded
parameters %FUNCTION%, %FILENAME%, and %LINENO%. For example, the
following example is a portion of a log file resulting from calling the “enter
routine” and “exit routine” macros, DBDK_TRACE_ENTER() and
DBDK_TRACE_EXIT(), for the Distance() function:

===
Tracing session: 12 on 3/4/1998

10:55:32 Entering function Distance (Circle.c)

10:55:32 Successfully exiting Distance (Circle.c)
5-14 IBM Informix DataBlade Developer’s Kit User’s Guide

Tracing and Error Handling
Important: If you want to include parameters other than %FUNCTION%,
%FILENAME%, and %LINENO% in a message, you must call the gl_dprintf()
function for trace messages or the mi_db_error_raise() function for error messages.
For an example of calling these functions, see the Gen_Trace() function in the
generated source code. See the “IBM Informix DataBlade API Programmer’s Guide”
for more information on using these functions.

Adding Tracing and Error Handling

To add tracing and error handling to the generated source code, edit the
generated source code file and insert DBDK_TRACE macro calls.

The following table describes the tracing and error handling macros.

The macros are described in the following sections. See “Setting a Trace
Output File and a Trace Threshold” on page 5-21 for information on the name
and location of the trace message file.

The DBDK_TRACE_MSG() and DBDK_TRACE_ERROR() Macros

When tracing is enabled, use the DBDK_TRACE_MSG() and
DBDK_TRACE_ERROR() macros to write messages to the trace message file.
The DBDK_TRACE_ERROR() macro also raises an error.

If tracing is not enabled, no messages are written to the trace message file;
DBDK_TRACE_ERROR() still raises an error.

Macro Action (if tracing is enabled)

DBDK_TRACE_MSG() Prints a message in the trace file.

DBDK_TRACE_ERROR() Prints a message in the trace file and raises an error by
calling mi_db_error_raise().

DBDK_TRACE_ENTER() Prints a message in the trace file upon entering a
routine.

DBDK_TRACE_EXIT() Prints a message in the trace file upon exiting a routine.
Programming DataBlade Module Routines in C 5-15

Tracing and Error Handling
The syntax for the DBDK_TRACE_MSG() and DBDK_TRACE_ERROR()
macros is as follows:

DBDK_TRACE_MSG(caller, mesgNo, level);
DBDK_TRACE_ERROR(caller, mesgNo, level);

For example, if you have a function called ExmAmortize() and a trace
message number UE001 with a trace level of 20, use the following code
fragment to add tracing to the ExmAmortize() function:

DBDK_TRACE_MSG("ExmAmortize", "UE001", 20);

The DBDK_TRACE_ENTER() and DBDK_TRACE_EXIT() Macros

If you have tracing enabled and the trace threshold set to 20 or above, the
DBDK_TRACE_ENTER() and DBDK_TRACE_EXIT() macros write messages to
the trace file when the called routine is entered and exited, respectively.
BladeSmith automatically adds these macros to generated code for every
routine.

caller The name of the C routine to which you are adding the macro.

mesgNo The number for an error or trace message in the syserrors or
systraceclasses system catalog. Use numbers for messages
defined in the BladeSmith project or messages BladeManager
installs with all DataBlade modules.

See “Defining Errors” on page 4-23 for instructions on creating
error and trace messages with BladeSmith.

The standard error messages are listed in “Standard Error Mes-
sages” on page 5-21.

level An integer that determines the trace level for the message. If level
is less than or equal to the tracing threshold, then the message is
printed in the trace file. For example, the trace level for the
DBDK_TRACE_ENTER() and DBDK_TRACE_EXIT() macros is 20.

See “Setting a Trace Output File and a Trace Threshold” on
page 5-21 for more information.
5-16 IBM Informix DataBlade Developer’s Kit User’s Guide

Tracing and Error Handling
The syntax for the DBDK_TRACE_ENTER() and DBDK_TRACE_EXIT() macros
is as follows:

DBDK_TRACE_ENTER(caller);
DBDK_TRACE_EXIT(caller);

The caller parameter specifies the name of the C routine to which you are add-
ing the macro.

For example, if you have a routine called ExmAmortize(), the following code
fragment sends a message to the message file when the ExmAmortize()
routine is entered:

DBDK_TRACE_ENTER("ExmAmortize");

Enabling Tracing in a DataBlade Module

After you generate code with tracing and compile your code, enable tracing
in your DataBlade module.

To enable tracing in your DataBlade module

1. Create a trace class.

2. Create the TraceSet_project() procedure.

These steps are described in the following sections.

Creating a Trace Class

Tracing classes are categories of tracing that can be activated independently,
allowing you to tune your tracing output to suspected problem areas.

To enable tracing in a database, you must insert the DataBlade trace class as
a record in the systraceclasses system catalog.

The tracing generated by BladeSmith provides a single trace class, with the
same name as your DataBlade project.

This example creates a trace class for the Business DataBlade module:

insert into informix.systraceclasses(name)
values('Business');

You can create your own tracing classes for customized tracing. See the
IBM Informix DataBlade API Programmer’s Guide for more information.
Programming DataBlade Module Routines in C 5-17

Tracing and Error Handling
Creating the TraceSet_project Procedure

The TraceSet_project() procedure (where project is the name of your
DataBlade module project) sets the tracing output file and the trace threshold
for a database server session by calling the DataBlade API functions
mi_tracefile_set() and mi_tracelevel_set().

The TraceSet_project() procedure is included in generated source code by
BladeSmith when you choose to generate code with tracing in the Generate
DataBlade dialog box. Although the TraceSet_project() procedure is
included in the generated C code, the SQL statements to create it in the
database are not included in the generated SQL scripts. This omission
prevents end-users from accessing the TraceSet_project() procedure from
SQL statements.

After you install and register your DataBlade module in the database, create
the TraceSet_project() procedure using the following SQL statement:

CREATE PROCEDURE TraceSet_project(LVARCHAR, INT)
WITH(NOT VARIANT)
EXTERNAL NAME
"/$INFORMIXDIR/extend/project/project.bld(TraceSet_project)"
LANGUAGE C
END PROCEDURE;

project is the name of your DataBlade module.

Tip: The comments for the TraceSet_project() procedure in your source code show
the exact syntax to create the procedure for your DataBlade module.
5-18 IBM Informix DataBlade Developer’s Kit User’s Guide

Tracing and Error Handling
The syntax for using the TraceSet_project() procedure is as follows:

EXECUTE PROCEDURE TraceSet_project(
"traceFile",
traceThreshold

);

Enabling Tracing in a Database Session

After you enable tracing in your DataBlade module, enable tracing for the
database session. By default, when you start a database server session,
tracing is disabled.

To enable tracing in your Database session

1. Set the appropriate locale environment variables.

2. Register tracing routines in the database with the EnableTracing.sh
shell script.

3. Set the trace output file and the trace threshold for the current
session.

traceFile The path and filename of the trace output file for the current
database server session, surrounded by quotation marks. If
you do not specify a filename, the default file,
/tmp/session_ID.trc, is created. If you specify a filename and
then execute TraceSet_project() again during the same session
without specifying a filename, the filename is not changed.

See “Setting a Trace Output File and a Trace Threshold” on
page 5-21 for an example.

traceThreshold The trace threshold for the current database server session.
There are three possible values:

0 Tracing is disabled.

> 0 Tracing is enabled and the threshold is set to that number.

< 0 The tracing threshold is not changed.

See “Setting a Trace Output File and a Trace Threshold” on
page 5-21 for an example.
Programming DataBlade Module Routines in C 5-19

Tracing and Error Handling
These steps are described in the following sections.

Setting Your Locale

The system only displays and writes messages to your session that match the
locale specified in the session environment variables. Therefore, to see your
trace messages, you must set the SERVER_LOCALE environment variable to
the same locale you used when you created your messages in BladeSmith.

Tip: To determine the locale for your trace message, look at its properties in Blade-
Smith; click the message in the project view, under the Errors folder, and choose
Edit�Properties. See “Error Locale” on page 4-25 for more information.

Registering Tracing Routines

To register the tracing routines for a particular DataBlade module in a
database, specify the following syntax from the UNIX command line or MKS
Korn Shell:

EnableTracing.sh database DataBlade [Project]

In this command, database is the name of the database in which you want to
register the routines and DataBlade is the name of the DataBlade module that
contains the tracing routines. The square brackets [] indicate that Project
name is an optional argument. Specify a path for Project if you have moved
your DataBlade module from its default directory. When you specify Project,
specify only the part of the path that follows %INFORMIXDIR%/extend/.

After you have registered the tracing routines in the database, set the output
trace file and tracing level as shown in “Setting a Trace Output File and a
Trace Threshold” on page 5-21. The filename and trace level settings must be
reset if you change DB-Access sessions or restart the server.

To unregister the tracing routines for a particular DataBlade module in a
database, specify the following syntax from the UNIX command line or MKS
Korn Shell:

DisableTracing.sh database DataBlade [Project]
5-20 IBM Informix DataBlade Developer’s Kit User’s Guide

Tracing and Error Handling
In this command, database is the name of the database in which you want to
register the routines and DataBlade is the name of the DataBlade module that
contains the tracing routines. The square brackets [] indicate that Project
name is an optional argument. Specify a path for Project if you have moved
your DataBlade module from its default directory. When you specify Project,
specify only the part of the path that follows %INFORMIXDIR%/extend/.

Important: Disable tracing in production DataBlade modules because tracing can
substantially decrease performance, and output trace files can use considerable space.

Setting a Trace Output File and a Trace Threshold

To set the trace output file and the trace threshold, use the TraceSet_project()
procedure. The DBDK_TRACE_ENTER() and DBDK_TRACE_EXIT() macros
provided by BladeSmith use the trace level 20.

The following example sets the filename to Business.trc in the /tmp directory
and sets the threshold to 20:

EXECUTE PROCEDURE TraceSet_Business("/tmp/Business.trc", 20);

To change the trace output file without altering the trace threshold, specify
the trace threshold as -1. To change the trace threshold without altering the
trace output file, do not put a filename between the quotation marks.

Standard Error Messages

BladeSmith uses a standard set of messages in the code that it generates.
These messages are shared by all DataBlade modules created with Blade-
Smith and cannot be changed. BladeManager adds the error messages to the
syserrors system catalog and the systracemsgs system catalog when a
DataBlade module is registered in a database.

The messages have the same text and error numbers in the two system tables,
except that messages in the systracemsgs system table include the text
“(%FILENAME%, %LINENO%)” after the %FUNCTION% parameter to ensure
that the source filename and line number appear in the trace file.
Programming DataBlade Module Routines in C 5-21

Tracing and Error Handling
The following table lists the standard U.S. English DataBlade module error
messages.

The generated header file defines constants ERRORMSG1 through
ERRORMSG17 for these error numbers.

You can define additional messages used in your DataBlade module. Define
them in the BladeSmith project to ensure that they are loaded into the
database when your DataBlade module is registered. See “Developing Your
DataBlade Module” on page 1-10 for information about reserving error codes
for your DataBlade module.

Error Number Message Text

UGEN1 Connection has failed in %FUNCTION%.

UGEN2 Memory allocation has failed in %FUNCTION%.

UGEN3 Error creating large object from client file in %FUNCTION%.

UGEN4 Large object handle is invalid in %FUNCTION%.

UGEN5 Error creating large object from client file in %FUNCTION%.

UGEN6 Error saving large object to client file in %FUNCTION%.

UGEN7 Double-quoted string expected in %FUNCTION%.

UGEN8 Interval format conversion has failed in %FUNCTION%.

UGEN9 Input string is not terminated with double-quote in %FUNCTION%.

UGENA Input string is too long in %FUNCTION%.

UGENB Input data format error in %FUNCTION%.

UGENC Output LO file creation has failed in %FUNCTION%.

UGEND Entering function %FUNCTION%.

UGENE Successfully exiting function %FUNCTION%.

UGENF The collection could not be created in %FUNCTION%.

UGENG Insertion into the collection has failed in %FUNCTION%.

UGENH Invalid iterator state used in %FUNCTION%.
5-22 IBM Informix DataBlade Developer’s Kit User’s Guide

Utility Functions Generated by BladeSmith
Utility Functions Generated by BladeSmith
BladeSmith generates support functions that it calls from other generated
code. These functions include:

� Gen_IsMMXMachine(). This function determines whether the
database server is running on a computer with an Intel MMX
processor. This function is only generated if you specify that you
want MMX-enabled functions when you generate source code. See
“The Gen_IsMMXMachine() Utility Function” on page 5-24 for more
information.

� Gen_LoadLOFromFile(). When an opaque type includes a large
object handle, BladeSmith includes this function to retrieve the large
object data from a disk file.

� Gen_nstrwords(). This function counts the number of values (each
separated by a blank space) in a formatted string. This function is
called from input and import functions to retrieve values from
variable-length opaque types.

� Gen_sscanf(). This function is called from input and import
functions to convert text data to the C structure for an opaque type.
See “The Gen_sscanf() Utility Function” on page 5-24 for more
information.

� Gen_StoreLOToFile(). When an opaque type includes a large object
handle, BladeSmith includes this function to write large object data
to a disk file.

� Gen_Trace(). This function processes trace messages and errors. This
function is generally invoked by the macros DBDK_TRACE_ENTER(),
DBDK_TRACE_EXIT(), DBDK_TRACE_MSG(), and
DBDK_TRACE_ERROR(). See “Tracing and Error Handling” on
page 5-13 for more information.

Most of the generated utility functions are called by code that BladeSmith
generates, and you typically do not use them in your code. The Gen_sscanf()
utility function, however, can be useful in your input/output functions. You
can use the Gen_IsMMXMachine() function if you use Intel MMX instruc-
tions in your code.
Programming DataBlade Module Routines in C 5-23

Utility Functions Generated by BladeSmith
The Gen_sscanf() Utility Function

The Gen_sscanf() utility function scans one value from an input string and
stores it at a given address. Gen_sscanf() returns a pointer that points just
past the value it scanned from the input string.

Gen_sscanf() takes the following arguments:

The generated input and import functions call Gen_sscanf() once for each
structure member. Gen_sscanf() requires an input string in the current locale
and uses the IBM Informix GLS routines to scan the string.

The Gen_IsMMXMachine() Utility Function

The Gen_IsMMXMachine() utility function can be used when you include
Intel MMX media enhancement technology in your DataBlade module. The
function tests the processor in the database server computer to determine if
it has MMX technology support. If MMX technology support is found,
Gen_IsMMXMachine() returns 1.

If the database server machine does not have MMX technology support, or if
the FORCE_NO_MMX environment variable is set in the database server
environment, Gen_IsMMXMachine() returns 0. On UNIX machines,
Gen_IsMMXMachine() always returns 0.

Gen_Con The database connection handle

Gen_Caller The name of the calling function

Gen_InData A pointer to the text to be scanned

Gen_InDataLen An integer containing the length of the text (mi_lvarchar
strings are not null-terminated)

Gen_Width An integer containing the maximum data length for text data

Gen_Format A string containing a sscanf() format string for the structure
member to be scanned

Gen_Result A pointer to the member in the structure where Gen_sscanf()
stores the scanned value
5-24 IBM Informix DataBlade Developer’s Kit User’s Guide

Editing Opaque Type Support Routines in opaque.c
To execute MMX instructions when possible and to execute portable C code
on computers that do not have MMX technology support, call
Gen_IsMMXMachine() in an IF statement.

Gen_IsMMXMachine() declares a static INT flag, MMXType. It first looks for
the FORCE_NO_MMX environment variable, which must be set in the
environment before the database server is started.

If FORCE_NO_MMX is found, the function sets MMXType to 0without testing
the CPU. If FORCE_NO_MMX is not found, the function tests the processor
and sets the MMXType variable to 1 if MMX technology support is found or
0 if not. After the value of MMXType is set, Gen_IsMMXMachine() returns its
value immediately, so that tests are performed once after the DataBlade
module object file is loaded.

Editing Opaque Type Support Routines in opaque.c
BladeSmith generates code for opaque type support routines, as described in
the following subsections:

� “Text Input and Output Functions,” next

� “Binary Send and Receive Functions” on page 5-30

� “Text File Import and Export Functions” on page 5-32

� “Binary File Import and Export Functions” on page 5-34

� “The Assign and Destroy Routines” on page 5-35

� “LOhandles() Function” on page 5-37

� “Comparison Functions” on page 5-38

� “Mathematic Functions” on page 5-42

The following subsections describe the code BladeSmith generates for each
routine and modifications you might need to make to the generated code.

Each of the generated support routines contains an MI_FPARAM argument.
BladeSmith includes the MI_FPARAM argument in generated code for your
convenience; you can add code to use it. The generated code, however, does
not use the MI_FPARAM argument. See “MI_FPARAM Function Argument”
on page 5-12 for more information.
Programming DataBlade Module Routines in C 5-25

Text Input and Output Functions
Important: To avoid merging conflicts when you regenerate your code, add code only
in areas marked by TO DO: comments or after the generated code. If you do modify
code outside the designated areas, after you regenerate you might have two copies of
the routine: the one you modified, and the one BladeSmith generated. Although your
changes remain, you must resolve the conflicts in the two pieces of code.

Text Input and Output Functions
The text input function converts from the textual representation of an opaque
data type to the internal format. The C name of the text input function for
each opaque data type is OpaqueInput().

The text output function converts from the internal format of an opaque data
type and the textual representation. The C name of the text output function
for each opaque data type is OpaqueOutput().

BladeSmith generates complete C code for these functions.

The Generated Code

The generated code for the text input and output functions uses a default text
representation: a string containing all members of the structure, delimited
with spaces. Strings are enclosed in single quotation marks ('). Large objects
are represented as external filenames enclosed in quotation marks. The input
function calls the sscanf() C library function. Use character representations
for these types that sscanf() recognizes.

For example, the Circle DataBlade module defines a Pnt data type with two
mi_double_precision members, x and y. The Circ.h header file contains the
following structure definition:

typedef struct
{

mi_double_precision x;
mi_double_precision y;

}
Pnt;

The default text representation for the Pnt data type is as follows:

'x y'
5-26 IBM Informix DataBlade Developer’s Kit User’s Guide

Text Input and Output Functions
x and y are character strings that sscanf() can convert to double-precision
values. For example, the following statement inserts a Pnt value into a table,
using the default text representation:

insert into mytable (col1) values ('12.3 66.9');

Text Input Function

The text input function has two arguments: an mi_lvarchar pointer, which
points to the text that is to be converted, and an unused MI_FPARAM pointer.

The text input function returns a pointer to a filled-in C structure for the Pnt
data type. The contents of this structure are written to the database table. The
function allocates memory for the opaque type it returns, as follows:

/* Allocate memory room to build the UDT in. */
Gen_RetVal = (Pnt *)mi_alloc(sizeof(Pnt));
if(Gen_RetVal == 0)
{

/*
** Memory allocation has failed so issue
** the following message and quit.
**
** "Memory allocation has failed in PntInput."
*/
mi_db_error_raise(Gen_Con, MI_SQL, ERRORMESG2,

"FUNCTION%s", "PntInput", (char *)NULL);

The database server frees the allocated memory.

Next, the function scans the text string, obtaining a value for one structure
member at a time, as follows:

/* Get the data value for Gen_OutData->x. */
Gen_InData = Gen_sscanf(Gen_Con, "PntInput", Gen_InData,

mi_get_varlen(Gen_param1), 0,
"%lf %n",
(char *)&Gen_OutData->x);

/* Get the data value for Gen_OutData->y. */
Gen_InData = Gen_sscanf(Gen_Con, "PntInput", Gen_InData,

mi_get_varlen(Gen_param1), 0,
"%lf %n",
(char *)&Gen_OutData->y);

This code calls the Gen_sscanf() utility function, which BladeSmith adds to
each generated C source file.
Programming DataBlade Module Routines in C 5-27

Text Input and Output Functions
Finally, the text input function returns a pointer to the completed C structure,
as follows:

/* Return the UDT value. */
return Gen_RetVal;

Text Output Function

The text output function takes a pointer to the opaque type structure and an
MI_FPARAM pointer and returns a text representation of the data type in an
mi_lvarchar value. BladeSmith operates under the assumption that the text
representation is a string containing character representations of all of the
structure members delimited with spaces. The function encloses strings and
filenames for large objects in double quotation marks.

The generated text output function computes the maximum length of the
string it returns and calls mi_new_var() to allocate an mi_lvarchar argument,
Gen_RetVal. The database server frees the allocated memory later.

The function calls the C standard library function sprintf() once for each
structure member to write the value and a space in the data area pointed to
by the Gen_OutData argument. The following code shows the sprintf() calls
from the generated PntOutput() function in the Circle DataBlade module:

/* Format the value for Gen_InData->x. */
sprintf(Gen_OutData, "%lf ", Gen_InData->x);
Gen_OutData += strlen(Gen_OutData);

/* Format the value for Gen_InData->y. */
sprintf(Gen_OutData, "%lf", Gen_InData->y);
Gen_OutData += strlen(Gen_OutData);

Between calls to sprintf(), the function resets Gen_OutData to point to the
end of the string.

Customizing the Code

To use an input text format different from the default format, or if the C
structure contains data types that BladeSmith cannot scan with
Gen_sscanf(), you must modify the generated text input function code.
5-28 IBM Informix DataBlade Developer’s Kit User’s Guide

Text Input and Output Functions
If you want an input text format that is different than the default, replace the
generated code with your own. For example, you can choose to delimit
values with commas instead of spaces. Your code might be able to call the
Gen_sscanf() function, or you might need to write your own scanning
function.

In the Circle DataBlade module, the text representation of the Pnt data type
is changed from the default format, ‘x y’, to a new format: ‘(x, y)’.

To support the new format, Gen_sscanf() calls in the PntInput() function are
modified to include the parentheses and comma in the format string, as
shown in the following code:

/* Get the data value for Gen_OutData->x. */
Gen_InData = Gen_sscanf(Gen_Con, "PntInput", Gen_InData,

mi_get_varlen(Gen_param1), 0,
"(%lf %n,",
(char *)&Gen_OutData->x);

/* Get the data value for Gen_OutData->y. */
Gen_InData = Gen_sscanf(Gen_Con, "PntInput", Gen_InData,

mi_get_varlen(Gen_param1), 0,
"%lf %n)",
(char *)&Gen_OutData->y);

If you change the text input function to support a text format different from
the default, also change the text output function. The string returned by the
text input function should be a valid string for the text output function.

For example, to support the new text representation for the Pnt data type, the
parentheses and comma are added to the sprintf() calls in the PntOutput()
function, as follows:

/* Format the value for Gen_InData->x. */
sprintf(Gen_OutData, "(%lf,", Gen_InData->x);
Gen_OutData += strlen(Gen_OutData);

/* Format the value for Gen_InData->y. */
sprintf(Gen_OutData, "%lf)", Gen_InData->y);
Gen_OutData += strlen(Gen_OutData);

Smart Large Object Considerations

Large objects are represented as external filenames enclosed in quotation
marks.
Programming DataBlade Module Routines in C 5-29

Binary Send and Receive Functions
Examples

The following example DataBlade modules contain text input and output
functions:

� Strings DataBlade module. The text input and output functions for
the CompressStr opaque data type call user-defined routines to
compress and uncompress a string, use the MI_FPARAM argument,
and pass a smart large object handle.

� Circle DataBlade module. The text input and output functions for
the Pnt opaque data type show a modified text representation.

� Shapes DataBlade module. The text input and output functions for
the MyShape opaque data type contain code for each of the three
specific cases of MyShape: MyBox, MyCircle, and MyPoint. The
text input and output functions for the MyBox, MyCircle, and
MyPoint data types call the text input and output functions for
MyShape.

� FuzzyMatch DataBlade module. The text input function for the
ColorType opaque data type converts the textual name of a color to
a three-integer value by looking up the value in a map file.

� UDTExporter DataBlade module. The text input and output
functions for the ComplexNumber opaque data type process an
integer array.

� MMXImage DataBlade module. The text input and output functions
process the variable-length Image opaque data type using MMX
technology.

Binary Send and Receive Functions
The binary send function converts opaque data type values to the client
format before sending them to the client. The C name of the binary send
function for each opaque data type is OpaqueSend().

The binary receive function converts opaque data type values from the client
format before sending them to the database server. The C name of the binary
receive function for each opaque data type is OpaqueReceive().

BladeSmith generates complete C code for these functions.
5-30 IBM Informix DataBlade Developer’s Kit User’s Guide

Binary Send and Receive Functions
The Generated Code

The binary send and receive functions adjust data types for differing byte
order and alignment requirements on the client and server computers. The
functions call the appropriate mi_put and mi_get DataBlade API accessor
functions to transform individual members of the opaque type structure.

The binary send function takes the opaque data type as its argument and
returns a pointer to an mi_sendrecv type, which contains the opaque type
structure, and an unused MI_FPARAM pointer. The mi_sendrecv type is the
client form of the opaque data type. The binary receive function takes an
mi_sendrecv type as its argument and returns the opaque data type. If the
opaque data type is variable length, then the binary send function takes an
mi_bitvarying type as its argument, and the binary receive function returns
an mi_bitvarying type.

The binary send function calls mi_put DataBlade API accessor functions to
store the client representation of the data type in the structure to be returned
to the database server. The binary receive function calls mi_get DataBlade
API accessor functions to retrieve values for each structure member from the
input received from the client.

The following code, taken from the Circle DataBlade module CircSend()
function, calls mi_put_double_precision() to store values from an input Circ
data type (addressed by the Gen_InData argument) to an output Circ data
type (addressed by the Gen_OutData argument):

/* Prepare the value for Gen_OutData->center.x. */
mi_put_double_precision((mi_unsigned_char1 *)&Gen_OutData->center.x,
&Gen_InData->center.x);

/* Prepare the value for Gen_OutData->center.y. */
mi_put_double_precision((mi_unsigned_char1 *)&Gen_OutData->center.y,
&Gen_InData->center.y);

/* Prepare the value for Gen_OutData->radius. */
mi_put_double_precision((mi_unsigned_char1 *)&Gen_OutData->radius,
&Gen_InData->radius);

The corresponding code for the CircReceive() function is identical, except it
uses mi_get_double_precision() instead of mi_put_double_precision().
Programming DataBlade Module Routines in C 5-31

Text File Import and Export Functions
Customizing the Code

In general, you do not need to modify the generated binary send and receive
functions. If you do add code to one of the functions, you must make corre-
sponding changes to the other function. You can alter the binary send and
receive functions to encrypt data in the mi_sendrecv type before sending
data to the client and decrypt data from the mi_sendrecv type before
receiving data into the database.

Examples

The following example DataBlade module use the binary send and receive
functions without modification:

� UDTExporter DataBlade module

� Matrix DataBlade module

� Circle DataBlade module

� MMXImage DataBlade module

Text File Import and Export Functions
The text file import function transfers a flat file to the text representation of
the opaque data type. The C name of the text file import function for each
opaque data type is OpaqueImportText().

The text file export function transfers the text representation of the opaque
data type to a flat file. The C name of the text file export function for each
opaque data type is OpaqueExportText().

BladeSmith generates complete C code for these functions.

The Generated Code

The database server calls the text file import function with a pointer to an
mi_impexp type containing the input text, which it retrieves from an external
file, and an unused MI_FPARAM pointer. The text file import function
converts the text to an instance of the opaque type and returns a pointer to it.
5-32 IBM Informix DataBlade Developer’s Kit User’s Guide

Text File Import and Export Functions
The text file import function allocates memory for the opaque structure that
it returns and then calls Gen_sscanf() for each member of the structure,
storing the scanned values in the allocated memory.

The database server calls the text file export function with a pointer to an
instance of the opaque type and an unused MI_FPARAM pointer. The text file
export function converts the opaque type value to a text value stored in an
mi_lvarchar variable that it allocates. The generated code works the same
way as the text output function.

The text file export function computes the maximum length of the text value
it can return by adding the maximum lengths for each structure member.
Then it calls mi_new_var() to allocate an mi_impexp argument large enough
to hold the largest possible text value.

To create the output text, the function calls sprintf() once for each member of
the opaque type structure, concatenating a text representation of the value to
the string in the mi_impexp variable. Each value is followed by a space.

The default text file export function uses the same text representation as the
input and import functions. This format allows database users to enter values
for the opaque type and enables opaque types to be displayed. For bulk copy
operations, however, a user-readable format is not necessary.

Customizing the Code

The default format for imported text is the same as for the text input function:
a string containing each structure member, delimited with spaces. If you use
a different text representation for your data type, you can modify the format
strings in the Gen_sscanf() calls.

To conserve space in the external file or to match the representation required
by some another application that uses the export file, you can use a different
text representation for bulk copy. When you modify the text representation
that the text file export function uses for copy-out operations, make corre-
sponding modifications in the text file import function.
Programming DataBlade Module Routines in C 5-33

Binary File Import and Export Functions
Smart Large Object Considerations

If the data type contains the smart large object handle data type
MI_LO_HANDLE, the input contains the large object filename in double
quotation marks. The text file import function calls Gen_LoadLOFromFile()
to retrieve the smart large object data from the external file. The text file
export function calls Gen_StoreLOToFile() to save the smart large object in an
external file.

Binary File Import and Export Functions
The binary file import function transfers the binary representation of the
opaque data type to a flat file. The C name of the binary file import function
for each opaque data type is OpaqueImportBinary().

The binary file export function transfers the binary representation of the
opaque data type from a flat file. The C name of the binary file export
function for each opaque data type is OpaqueExportBinary().

BladeSmith generates complete C code for these functions.

The Generated Code

The Informix database server calls the binary file import function with an
mi_impexpbin pointer containing the binary representation of an opaque
type value, read from an external file. The function also receives an unused
MI_FPARAM pointer.

The binary file import function translates the binary data in the
mi_impexpbin structure into an instance of the opaque type and returns a
pointer to the C structure containing the opaque data type. The BladeSmith-
generated code allocates memory for the return structure and then calls
DataBlade API mi_get functions to retrieve a value for each member of the
structure.

The Informix database server calls the binary file export function with a
pointer to a C structure, which contains an instance of the opaque type, and
an unused MI_FPARAM pointer. The function translates the opaque type
value into a binary image and returns it in an mi_impexpbin structure. The
Informix database server writes the returned binary value into external files.
5-34 IBM Informix DataBlade Developer’s Kit User’s Guide

The Assign and Destroy Routines
The binary file export function calls mi_new_var() to allocate an
mi_bitvarying variable and then calls an mi_put function for each element
of the opaque structure to store the value.

Customizing the Code

You should not modify the generated code for the binary file import and
export functions.

Smart Large Object Considerations

If the opaque type includes large objects, the binary file import function calls
Gen_LoadLOFromFile() to read the large object data from a file. The binary
file export function calls Gen_StoreLOToFile() to save the smart large object
in an external file.

The Assign and Destroy Routines
The Assign() function performs tasks before saving an opaque data type to
disk. The C name for each opaque data type is OpaqueAssign().

The Destroy() procedure performs tasks before saving an opaque data type
to disk. The C name for each opaque data type is OpaqueDestroy().

BladeSmith generates complete C code for Assign() and Destroy() routines
that manage large object reference counts. For other types of special
processing, you must add code to the generated code.

Important: If you use text input and output functions for smart large objects, you
must define Assign() and Destroy() routines to prevent runtime errors from the
database server.
Programming DataBlade Module Routines in C 5-35

The Assign and Destroy Routines
The Generated Code

The Informix database server calls the Assign() function with a pointer to an
instance of an opaque type and a pointer to an MI_FPARAM structure that is
not used by the generated code. The function returns a pointer to the opaque
type to the database server. Usually, the pointer returned by the Assign()
function is the same one the Informix database server passed to it. If the
Assign() function alters the input opaque type in any way and returns a
pointer to it, the database server stores the modified value in the database.

The Informix database server calls the Destroy() procedure before removing
an opaque type from the database. It passes the Destroy() procedure a
pointer to the opaque type value that is about to be removed from the
database and an unused MI_FPARAM pointer. The procedure returns no
value.

Customizing the Code

If your opaque data type does not contain a smart large object, you must add
code to perform the required task.

Smart Large Object Considerations

If your opaque data type contains a smart large object, then the generated
Assign() function manages smart large object reference counts. It calls
mi_lo_validate() to determine if a valid large object exists and
mi_lo_increfcount() to increment the reference count for the large object.

The Destroy() procedure calls mi_lo_validate() for each large object. For
valid large objects, it calls mi_lo_decrefcount() to decrement the reference
count for the large object.

Examples

The following example DataBlade modules use Assign() and Destroy()
routines for smart large object processing:

� Strings DataBlade module

� MMXImage DataBlade module
5-36 IBM Informix DataBlade Developer’s Kit User’s Guide

LOhandles() Function
The MultiRep DataBlade module uses the Assign() function to determine
whether to put the multirepresentational opaque type in the database table
or in a smart large object, depending on its size. The Destroy() procedure
removes the reference counts to smart large objects, but has not effect on in-
row data.

The Creating Distinct Types and Casts exercise in the tutorial uses the
Assign() function for the FTemp (representing Fahrenheit degrees) and
CTemp (representing Celsius degrees) distinct data types to prevent a user
from entering a temperature value below absolute zero.

LOhandles() Function
The Informix database server calls the LOhandles() function to retrieve the
smart large object handles or list of smart large object handles used by an
opaque type. The LOhandles() function receives a pointer to the opaque type
and a pointer to an MI_FPARAM structure.

The LOhandles() function returns a pointer to an mi_bitvarying variable
containing an MI_LO_HANDLES structure. BladeSmith defines
MI_LO_HANDLES in the generated header file; it is not part of the DataBlade
API. The structure holds a list of MI_LO_HANDLE structures. It has the
following definition:

/* This data structure returned by LOhandles. */
typedef struct
{

mi_integer nlos; /* Number of large object handles. */
MI_LO_HANDLE los[1]; /* Valid large object handles. */

} MI_LO_HANDLES;

The LOhandles() function calls the mi_lo_validate() function for each large
object in the opaque type structure, accumulating a count of valid large
objects. If there are no valid large objects in the opaque type, the LOhandles()
function returns 0 to its caller.
Programming DataBlade Module Routines in C 5-37

Comparison Functions
If the opaque type contains valid large objects, the LOhandles() function
performs the following tasks:

1. Allocates an mi_bitvarying variable to hold the MI_LO_HANDLES
structure

2. Copies valid large object handles into the los array in the
MI_LO_HANDLES structure

3. Sets the MI_LO_HANDLES nlos member to the number of large
objects in the array

4. Returns a pointer to the MI_LO_HANDLES structure

Comparison Functions
The Informix database server calls DataBlade module comparison functions
to compare two opaque type values. For example, database users can
compare opaque values in SQL statements. If you want to support B-tree or
R-tree indexes on an opaque type, you must provide an additional set of
comparison functions.

Compare Function

The Compare() function compares two opaque types and returns an integer
indicating the result of the comparison. The C name for each opaque data
type is OpaqueCompare().

BladeSmith generates the complete C code for this function.

The Generated Code

The generated code compares the members of an opaque type C structure to
the members in the other opaque type, in the order defined in the structure.
This algorithm might not be the appropriate way to compare your data; if it
is not, you must customize the code as described in the next section.
5-38 IBM Informix DataBlade Developer’s Kit User’s Guide

Comparison Functions
The Compare() function returns:

� -1 if the values of two corresponding members are not equal and the
value of the first is less than the value of the second.

� 0 if the value of all members of the two opaque data types are
equivalent.

� +1 if the values of two corresponding members are not equal and the
value of the first is greater than the value of the second.

For example, the Circle DataBlade module defines a Pnt data type as follows:

typedef struct
{

mi_double_precision x;
mi_double_precision y;

}
Pnt;

The Compare() function generated for the Pnt type first compares the two
values of x. If the two values of x are not equal, Compare() stops and returns
the result of the comparison. If the two values of x are equal, Compare()
proceeds to compare the two values of y.

For data types such as mi_boolean, which cannot be compared for relative
magnitude, the Compare() function returns +1 if the values differ. If all
structure members are equal, it returns 0.

Customizing the Code

The algorithm used to generate the Compare() function cannot evaluate the
semantic content of an opaque type. Therefore, for many opaque types,
replace the generated code with more appropriate code.

For example, the Circ.h file of the Circle DataBlade module defines the Circ
data type as follows:

typedef struct
{
 Pnt center;
 mi_double_precision radius;
}
Circ;
Programming DataBlade Module Routines in C 5-39

Comparison Functions
The Pnt member has two mi_double_precision members: x and y. The
generated code for Compare() compares the three mi_double_precision
values individually: first x, then y, and then radius. However, if the size of
your circles is more important than their origins, you could remove the code
that compares the x and y members to base the comparison on the length of
the radius only.

If you want to use B-tree indexing, the Compare() function is the B-tree
support function. Therefore, you should analyze how you want to index your
opaque data types when modifying Compare().

Smart Large Object Considerations

The generated Compare() function does not compare the values of the smart
large objects; it compares the smart large object handles. If the smart large
object handles are the same, then both handles refer to the same object. You
can customize the code to compare the actual values of the smart large
objects.

Examples

The following example DataBlade modules implement the Compare()
function to compare opaque data types member by member:

� Matrix DataBlade module

� Circle DataBlade module

The Shapes DataBlade module uses Compare() to perform a bitwise
comparison on its Circle and Box data types.

B-Tree Comparison Functions

The Informix database server calls the following comparison operators when
constructing B-tree indexes for opaque data types:

� Equal() (=)

� LessThan() (<)

� LessThanOrEqual() (<=)

� GreaterThan() (>)
5-40 IBM Informix DataBlade Developer’s Kit User’s Guide

Comparison Functions
� GreaterThanOrEqual() (>=)

� NotEqual() (!= and <>)

The C names of each of these functions are prefixed by the name of the
opaque data type for which they are defined.

Important: The Equal() function is required if you use Visual Basic to develop a
DataBlade module.

BladeSmith generates the complete C code for these functions.

The Generated Code

For these functions, BladeSmith generates code that calls the Compare()
function described in “Compare Function” on page 5-38. For example, the
Matrix2dEqual() function generated for the Matrix2d type calls the
Matrix2dCompare() function, as follows:

/* Call Compare to perform the comparison. */
return (mi_boolean)(0 == Matrix2dCompare(Gen_param1,

Gen_param2, Gen_fparam));

Customizing the Code

You should not modify these functions. You can, however, modify the
Compare() function that these functions call.

Smart Large Object Considerations

Because these functions call the Compare() function, they only evaluate the
smart large object handles. You must customize the Compare() function to
evaluate the actual contents of smart large objects.

Examples

The following example DataBlade modules contain some of the B-tree
comparison functions:

� Matrix DataBlade module

� Circle DataBlade module

� Shapes DataBlade module
Programming DataBlade Module Routines in C 5-41

Mathematic Functions
R-Tree Comparison Functions

Version 4.0 of BladeSmith does not generate code for R-tree comparison
functions.

Refer to the IBM Informix R-Tree Index User’s Guide or the IBM Informix Online
Documentation site at
http://www.ibm.com/software/data/informix/pubs/library/for infor-
mation about creating DataBlade modules that use the R-tree secondary
access method.

Mathematic Functions
If you choose to generate mathematic functions, BladeSmith generates the
following mathematic functions that take two opaque data type arguments,
return an opaque data type, and are bound to operators:

� Plus() (+)

� Minus() (-)

� Times() (*)

� Divide() (/)

BladeSmith generates the following mathematic functions that take one
opaque data type argument, return an opaque data type, and are bound to
operators:

� Positive() (+)

� Negate() (-)

The C name of each of these functions is prefixed by the name of the opaque
data type for which they are defined.

BladeSmith generates only template code for these mathematic functions.

The Generated Code

These functions have an unused MI_FPARAM argument and one or two
opaque data type arguments, and they return a pointer to the resulting
opaque type structure.
5-42 IBM Informix DataBlade Developer’s Kit User’s Guide

Concat() Function
In the generated code, the return value is set to 0. You must add code to
perform the required operation.

Completing the Code

To complete the code for these mathematic functions, you must:

� Add your declarations, if necessary.

� Remove the call to mi_db_error_raise(), which raises an error stating
that the routine is not implemented.

� Compute the return value and store it in the Gen_RetVal argument.

The database server frees the allocated memory when it has finished
processing the result.

See IBM Informix User-Defined Routines and Data Types Developer’s Guide for
more information on these functions.

Example

The Matrix DataBlade module contains some of the mathematic functions.

Concat() Function
The Concat() function concatenates the values of its two opaque data type
arguments and returns the result. It is bound to the || operator.

The C name of this function is prefaced by the name of the opaque data type:
OpaqueConcat().

BladeSmith generates only a template for this function. You must add code
to perform the required operation.

Hash() Function
The database server uses the Hash() function when evaluating the Equal()
function for two opaque data types that do not have identical bit
representations.
Programming DataBlade Module Routines in C 5-43

Editing Statistics Routines in statistics.c
The C name of this function is prefaced by the name of the opaque data type:
OpaqueHash().

BladeSmith generates only a template for this function. You must add code
to perform the necessary operation.

Editing Statistics Routines in statistics.c
If you selected statistics support routines when creating an opaque data type
(see “Statistics Support” on page 4-56), BladeSmith generates code for the
following statistics support routines for your opaque data type in the
statistics.c source code file:

� “The Statistics Collection Function,” next

� “The Statistics Print Function” on page 5-45

� “The Statistics Minimum, Maximum, and Distribution Functions”
on page 5-45

To implement user-defined statistics, you must also create selectivity routines
to calculate the selectivity of routines that compare your opaque data type.
Selectivity routines call the statistics support functions. For a description of
user-defined statistics, see “User-Defined Statistics” on page 2-16.

Important: To avoid merging conflicts when you regenerate your code, add code only
in areas marked by TO DO: comments or after the generated code. If you do modify
code outside the designated areas, after you regenerate you might have two copies of
the routine: the one you modified and the one BladeSmith generated. Although your
changes remain, you must resolve the conflicts in the two pieces of code.

The Statistics Collection Function
The OpaqueStatCollect() function collects statistics (minimum value,
maximum value, and distribution information) for the Opaque opaque data
type when a user executes the UPDATE STATISTICS statement in medium or
high mode. For more information on the UPDATE STATISTICS statement, see
the IBM Informix Guide to SQL: Syntax.
5-44 IBM Informix DataBlade Developer’s Kit User’s Guide

The Statistics Print Function
The Generated Code

The OpaqueStatCollect() function calls the Opaque_SetMinValue(),
Opaque_SetMaxValue(), and Opaque_SetHistogram() functions.

BladeSmith generates complete code for the OpaqueStatCollect() function.
The OpaqueStatCollect() function is an iterator that processes each row in a
table. It compiles statistical information by calling the
Opaque_SetMinValue(), Opaque_SetMaxValue(), and
Opaque_SetHistogram() functions. The OpaqueStatCollect() function stores
statistical information in a multirepresentational type.

Customizing the Code

You must understand your data and how users will query it to create
meaningful statistics. BladeSmith generates statistics code under the
assumption that the minimum, maximum, and distribution of values are
appropriate for your opaque data type; however, they might not be. In that
case, you must rewrite the OpaqueStatCollect() function to call other
functions that you provide.

The Statistics Print Function
The OpaqueStatPrint() function prints formatted statistics for the Opaque
opaque data type. You can view statistics information with the dbschema
utility.

BladeSmith generates complete code for the OpaqueStatPrint() function;
however, you can alter it to customize the information it prints.

The Statistics Minimum, Maximum, and Distribution
Functions
The Opaque_SetMinValue() function computes the minimum value of the
Opaque opaque data type.

The Opaque_SetMaxValue() function computes the maximum value of the
Opaque opaque data type.
Programming DataBlade Module Routines in C 5-45

Editing Routines in udr.c
The Opaque_SetHistogram() function computes the distribution of the
values of the Opaque opaque data type.

The Generated Code

BladeSmith generates only function stubs for the Opaque_SetMinValue(),
Opaque_SetMaxValue(), and Opaque_SetHistogram() functions.

Completing the Code

To complete the code for the statistics support functions, you must add code
to compute the minimum, maximum, and distribution of the values of your
opaque data type.

When the database server computes the minimum, maximum, and distri-
bution of values for built-in data types, it uses the standard ASCII sequence
to order the values. However, opaque data types can be much more compli-
cated. For example, suppose you have a box opaque data type that contains
values for its height and its width. You might decide that area of the box is an
appropriate measure for determining the minimum and maximum values.
The distribution, however, can be more complicated. If the area of the boxes
varies, then area might be the appropriate way to assign boxes to bins. If the
areas of your boxes are all very similar, but the heights and widths vary, then
height or width might be the best distribution criteria.

Example

The Box DataBlade module has an example of statistics support routines.

Editing Routines in udr.c
BladeSmith generates code for the following types of routines in the udr.c
source code file:

� “Most User-Defined Routines,” next

� “Cast Support Functions” on page 5-48

� “Aggregate Functions” on page 5-49
5-46 IBM Informix DataBlade Developer’s Kit User’s Guide

Most User-Defined Routines
� “Selectivity Functions” on page 5-51

� “Iterator Functions” on page 5-53

Important: Avoid code merge problems by modifying code only in the sections
marked with a TO DO: note. If you do modify code outside the designated areas, after
you regenerate you may have two copies of the routine: the one you modified and the
one BladeSmith generated. Although your changes remain, you must resolve the
conflicts in the two pieces of code.

Most User-Defined Routines
BladeSmith generates only minimal code for most routines you create with
the Routine wizard.

The Generated Code

BladeSmith generates only templates for most user-defined routines.

The generated routine declares the routine, its return type, and arguments. In
addition to the arguments you specified when creating the routine, these
functions also have an MI_FPARAM argument. Only generated routines that
allow null values have code that uses the MI_FPARAM argument. The
generated code in these routines uses MI_FPARAM to set the return value of
the routine to NULL.

Completing the Code

To complete the code for most user-defined routines, you must:

� Add your declarations, if necessary.

� Remove the call to mi_db_error_raise(), which raises an error stating
that the routine is not implemented.

� Compute the return value and store it in the Gen_RetVal argument.

� Remove the call to mi_fp_setreturnisnull() that sets the return value
of your routine to NULL, if necessary.

For more information on programming routines, see the IBM Informix
DataBlade API Programmer’s Guide.
Programming DataBlade Module Routines in C 5-47

Cast Support Functions
Examples

The following example DataBlade modules have user-defined routines:

� Business DataBlade module. Provides mathematic functions for
calculating loans.

� Circle DataBlade module. Provides distance and containment
functions that operate on opaque data types.

� FuzzyMatch DataBlade module. Provides functions for handling
row data types and comparing opaque data types.

� Parts Explosion DataBlade module and DataBladeAPI DataBlade
module. Provide functions for handling and returning collection
data types.

� Strings DataBlade module. Provides character-string manipulation
functions.

The Mercury DataBlade module exercise in the tutorial provides examples of
cast support functions.

Cast Support Functions
If you specified a cast support function when you created a cast, BladeSmith
generates the cast support function in the udr.c file.

The Generated Code

BladeSmith generates only templates for cast support functions.

The generated function declares the routine, its return type, and arguments.
In addition to the arguments you specified when creating the function, these
functions also have an MI_FPARAM argument, which is not used by the
generated code.
5-48 IBM Informix DataBlade Developer’s Kit User’s Guide

Aggregate Functions
Completing the Code

To complete the code for cast support functions, you must:

� Add your declarations, if necessary.

� Remove the call to mi_db_error_raise(), which raises an error stating
that the routine is not implemented.

� Convert one data type to the other.

� Store the return value in the Gen_RetVal argument.

In a cast support function, you might convert from one binary representation
to another, if the data types involved in the cast have differing binary repre-
sentations. Alternatively, you might perform a calculation to convert one
data type to another.

Example

The Creating Distinct Types and Casts exercise in the tutorial uses cast
support functions.

Aggregate Functions
If you created a user-defined aggregate with the Aggregate wizard, Blade-
Smith generates aggregate functions in the udr.c source code file.

The Generated Code

BladeSmith generates only templates for aggregate functions.

The generated function declares the function, its return type, and arguments.
In addition to the arguments you specified when creating the function, these
functions also have an MI_FPARAM argument. Only generated functions that
allow null values have code that uses the MI_FPARAM argument. The
generated code in these functions use the MI_FPARAM to set the return value
of the function to NULL.
Programming DataBlade Module Routines in C 5-49

Aggregate Functions
Completing the Code

To complete the code for aggregate functions, you must:

� add your declarations, if necessary.

� remove the call to mi_db_error_raise(), which raises an error stating
that the routine is not implemented.

� compute the return value and store it in the Gen_RetVal argument.

� remove the call to mi_fp_setreturnisnull() that sets the return value
of your routine to NULL, if necessary.

For more information on programming aggregate functions, see the
IBM Informix DataBlade API Programmer’s Guide.

The Initialization Function

If you selected an initialization function, AggregateInit(), you must add code
to it to initialize the state type required by the aggregate computation. You
can set up smart large objects or temporary files for storing intermediate
results as the state type. The AggregateInit() function returns the state type.

The first argument of the AggregateInit() function is a dummy argument
whose value is always NULL. The second argument is an optional initial-
ization parameter to customize aggregate computation. The initialization
parameter cannot be a lone host variable reference.

The Iteration Function

You must add code to the iteration function, AggregateIter(), to perform the
aggregate computations.

The AggregateIter() function should not maintain additional states in its
MI_FPARAM argument because the MI_FPARAM argument is not shared
among the aggregate functions. However, you can use the MI_FPARAM
argument to hold information that does not affect the aggregate result.

Tip: Although the iteration function is called by the database server multiple times
to calculate the aggregation, it is not implemented as an iterator function that returns
a set of results.
5-50 IBM Informix DataBlade Developer’s Kit User’s Guide

Selectivity Functions
The Combine Function

If you selected a combine function, AggregateComb(), you must add code to
it to merge one partial result with another and return the updated state type.

The Final Function

If you selected a final function, AggregateFinl(), you must add code to
convert the state type to the result type.

You can also add code to the AggregateFinl() function to release resources
acquired by the initialization function. However, the AggregateFinl()
function must not free the state type.

Selectivity Functions
If you create a user-defined function and mark it as a selectivity function for
another function (see “Selectivity Functions” on page 4-36), BladeSmith
generates the selectivity function in the udr.c source code file.

For a description of selectivity and user-defined statistics, see “User-Defined
Statistics” on page 2-16.

The Generated Code

BladeSmith generates only templates for selectivity functions.

The generated code declares the function, its return type, and arguments. In
addition to the arguments you specified when you created the function,
BladeSmith also generates an MI_FPARAM argument, which is not used by
the generated code.
Programming DataBlade Module Routines in C 5-51

Selectivity Functions
Completing the Code

You must add code to the selectivity function to call the statistics support
functions and calculate the selectivity of the associated function for a given
set of arguments. For built-in data types, call the built-in statistics functions,
such as StatCollect(). For opaque data types, call the statistics support
functions in the statistics.c file, such as OpaqueStatCollect(). For more infor-
mation on statistics support functions for opaque data types, see “Editing
Statistics Routines in statistics.c” on page 5-44.

For example, if you have a selectivity function on an OpaqueEqual() function
that is overloaded for an opaque data types, the code for the selectivity
function, OpaqueEqualSelectivity(), might perform the following tasks:

� Determine if either of the arguments has a null value. If so, the selec-
tivity of the OpaqueEqual() function is 0.

� Determine if either of the arguments is greater than the maximum or
minimum value of your opaque data type. If so, the selectivity of the
OpaqueEqual() function is 0.

� Determine where in the distribution one of the arguments falls.
Because you know how many values are in each bin, from the
location in the distribution you can estimate how many values are
less than the argument. The selectivity of the OpaqueEqual()
function is then the number of values less than the argument divided
by the total number of values.

For more information on coding selectivity functions, see the IBM Informix
DataBlade API Programmer’s Guide.

Example

The Box DataBlade module has selectivity functions.
5-52 IBM Informix DataBlade Developer’s Kit User’s Guide

Iterator Functions
Iterator Functions
If you create an iterator function that returns a set one row at a time, Blade-
Smith adds code to process the set. The Informix database server calls iterator
functions repeatedly to process all of the return values.

The Generated Code

In addition to the arguments you specified when creating it, an iterator
function contains an MI_FPARAM argument. The Informix database server
uses an MI_FPARAM structure to control iteration over the set. The generated
code includes a C switch statement with different cases to process the set. The
switch statement uses the mi_fp_request() function to obtain the request flag
from the MI_FPARAM structure. The Informix database server sets this flag to
one of the following values before calling the function:

� SET_INIT. The initial call to the iterator function. The iterator
function allocates and initializes memory for state information. The
memory allocated must use the mi_alloc(size, PER_COMMAND)
function to be available in subsequent calls.

� SET_RETONE. The iterator function is called with this request flag
once for each value in the set.

For each value in the set, the function places the address of the next
value in the set in the Gen_RetVal argument and returns
Gen_RetVal.

When there are no more values to return, the iterator function must
call the mi_fp_setisdone() function to signal the Informix database
server that all of the set values have been returned, as follows:

mi_fp_setisdone(Gen_fparam, MI_TRUE);

On this call, the iterator function returns a null pointer.

� SET_END. The request flag the Informix database server sets after all
values in the set have been returned. The iterator function frees
allocated memory and releases any other resources it has obtained.

In the generated code, each of these sections has a TO DO: note. To avoid code
merging problems, make changes only where indicated.
Programming DataBlade Module Routines in C 5-53

Compiling DataBlade Module Code
Completing the Code

To complete the iterator code, you must:

� Add information declarations.

� Initialize the iterator function.

� Allocate private state information.

� Compute the value of the iteration.

� Call mi_fp_setisdone() when the iteration is complete.

� frEe private resources.

For more information on programming iterator functions, see the
IBM Informix DataBlade API Programmer’s Guide.

Example

The LoanAmortization() function in the Business DataBlade module is an
iterator function.

Compiling DataBlade Module Code
This section describes how to compile DataBlade module code.

BladeSmith generates makefiles for UNIX and Visual C++ project files for
Windows. When you compile the generated C source code, you produce a
shared object file or dynamic link library, called project.bld, in the source
code directory src\OS-platform, where OS-platform is the name of the
operating system and platform on which you are compiling. For example,
src\WinNT-i386 holds the shared object file compiled on a Windows NT
computer.

Important: When you generate code in BladeSmith, set the Format property of the
DataBlade folder to the correct file format for your operating system (UNIX or
DOS). The default is DOS. See “Generating Source Files” on page 4-72 for more
information.
5-54 IBM Informix DataBlade Developer’s Kit User’s Guide

Compiling with Tracing Support
Compiling with Tracing Support
By default, DataBlade modules are compiled without tracing support.

To compile with tracing, you must have generated source code in BladeSmith
with tracing. BladeSmith adds the DBDK_TRACE macros and the
TraceSet_project procedure to your code if the Tracing property of the
Source folder is set to True in BladeSmith’s Generate DataBlade dialog box.
See “Generating Source Files” on page 4-72 for more information.

After you compile with tracing, you must enable tracing for the DataBlade
module after you register it in a database. See “Enabling Tracing in a
DataBlade Module” on page 5-17 for instructions. You must also enable
tracing in the database session. See “Enabling Tracing in a Database Session”
on page 5-19 for instructions.

Compiling on UNIX
On UNIX platforms, you use the generic ProjectU.mak makefile. This
makefile includes platform-specific makefiles as files named
makeinc.platform. To specify the UNIX platform, set the TARGET
environment variable to the path and filename of the include file for your
platform. Platform-specific files are located in the directory
$INFORMIXDIR/incl/dbdk.

The makefile requires the INFORMIXDIR environment variable to be set to
the Informix database server installation directory. The BINDIR variable in
the makefile determines where the shared object file or dynamic link library
is written.

BladeSmith creates server, all, and clean targets in the makefile. The server
target builds the shared object file. The clean target deletes the shared object
file or dynamic link library. The default all target is equivalent to the server
target.

Important: Generate code in BladeSmith with the Format property set to UNIX. If
you generate code for a UNIX DataBlade module with the DOS file format, you must
convert the files to UNIX format before compiling.
Programming DataBlade Module Routines in C 5-55

Compiling on UNIX
To compile and link your DataBlade module shared object file

1. Copy the generated src/c directory and all of its contents to your
UNIX machine.

2. To compile and link shared objects on a Sun Solaris 2.5 computer
using the SPARC compiler, execute the following command at the C
shell:
setenv TARGET $INFORMIXDIR/incl/dbdk/makeinc.solaris
make -f ProjectU.mak

The project.bld file is created in the src/solaris-sparc directory.

Important: For compiling information specific to your operating system, see your
machine notes.

Unresolved Symbols

When you link on UNIX, the system displays a list of unresolved symbols.
This list can contain these types of unresolved symbols:

� Symbols that are later resolved by the database server when it loads
the DataBlade module shared object. This is expected behavior.

� Symbols that are misspelled; you must fix these. Check the list
carefully for misspellings, including incorrect case.

� Symbols that are not yet coded.

� Symbols that are not found in a private library. ♦

Compiling with Debug Support

To debug your DataBlade module while it executes in a database server
process, you must build the shared object file with debugging symbols. You
can either modify the makefile and add the required compiler flags to the
CFLAGS variable, or set the COPTS variable on the make command line.

On Solaris, the following commands build shared object files with debugging
symbols from the C shell:

setenv TARGET $INFORMIXDIR/incl/dbdk/makeinc.solaris
make -f ProjectU.mak COPTS="-g -xs"

9.14
5-56 IBM Informix DataBlade Developer’s Kit User’s Guide

Compiling on Windows
Compiling on Windows
On Windows, you use the project.dsw file generated by BladeSmith to build
your DataBlade module with Visual C++ 6.0.

The compiled DataBlade module links to sapi.lib. This library resolves the
mi_ and ifx_ symbols that the database server uses internally.

To compile and link a dynamic link library using Visual C++

1. Open the project.dsw in Visual C++.

2. Choose Build�Set Active Configuration.

3. Select a version of the project in the Set Active Project Configuration
dialog box:

� Release. This version is suitable for release and does not contain
debugging support.

� Debug. This version contains support for debugging.

4. Click OK.

5. Choose Build�Rebuild All to compile.

Visual C++ creates both a WinNT-i386 and a Debug directory under the
src\c directory to hold the release version and the debug version, respec-
tively, of the dynamic link library.

Important: Do not link the client DataBlade API library in
%INFORMIXDIR%\lib\dmi into the DataBlade module; that library resolves
client services instead of database server services.

Visual C++ also performs the following tasks on the computer on which the
Informix database server resides:

1. Creates a project.0 directory under the directory where your
database server is installed (%INFORMIXDIR%\extend)

2. Copies the project.bld file and the SQL scripts to that directory

3. Marks the project.bld file as read-only

See Chapter 10, “Debugging and Testing DataBlade Modules on Windows,”
for instructions on using the DBDK Visual C++ Add-In to edit, compile, and
debug a DataBlade module on Windows.
Programming DataBlade Module Routines in C 5-57

6
Chapter
Creating ActiveX Value Objects
In This Chapter . 6-3

Prerequisite Tasks 6-3

ActiveX Programming Task Overview 6-4

Source Files Generated by BladeSmith 6-5

Implementing ActiveX Value Objects 6-5
The Generated Code 6-6
Adding Project-Specific Logic to the Source Code 6-7
Files to Edit . 6-8
ActiveX Properties 6-9
Accessing Properties Using Visual Basic 6-10

Compiling Client and Server Projects 6-10
Compiling a Windows Server Project 6-11
Compiling a Client Project 6-12

Support Methods Reference 6-13
Internal Object Methods. 6-13
C++ Support Library 6-14

DkInStream. 6-16
DkOutStream 6-19
Memory Management Routines. 6-22

6-2 IBM
 Informix DataBlade Developer’s Kit User’s Guide

In This Chapter
This chapter describes how to use the DataBlade Developers Kit to create
ActiveX value objects. It includes the following sections:

� “Prerequisite Tasks,” next

� “ActiveX Programming Task Overview” on page 6-4

� “Source Files Generated by BladeSmith” on page 6-5

� “Implementing ActiveX Value Objects” on page 6-5

� “Compiling Client and Server Projects” on page 6-10

� “Support Methods Reference” on page 6-13

This chapter discusses using C++ to implement opaque type support
routines. These routines provide the underlying logic for the custom
methods of the ActiveX value objects you create with BladeSmith. You cannot
use C++ to implement any other DataBlade module objects.

Prerequisite Tasks
Before you edit and compile your DataBlade module code, complete these
tasks:

1. Write functional and design specifications that comply with Informix
coding standards.

See Chapter 3, “Programming Guidelines,” for more information.

2. Create your DataBlade module in BladeSmith.

See “Creating DataBlade Module Objects” on page 4-14 for
instructions.
Creating ActiveX Value Objects 6-3

ActiveX Programming Task Overview
3. Generate source code and SQL files in BladeSmith.

See “Generating Files” on page 4-66 for instructions.

ActiveX Programming Task Overview
After you generate code with BladeSmith, complete these general tasks to
finish your DataBlade module code:

1. Add code to these source code files to enable your routines to
function as you intend:

� OpaqueCommon.cpp. Contains the logic for the opaque type
routines that are implemented both as ActiveX custom methods
and server project routines.

� OpaqueCommon.h. Contains the logic for the IsNull() and
SetNullFlag() custom methods.

� OpaqueServer.cpp. Contains the logic for the opaque type
routines that are implemented only for the server project.

See “Implementing ActiveX Value Objects” on page 6-5 for
instructions.

2. Compile your source code files using the generated makefiles. See
“Compiling Client and Server Projects” on page 6-10 for instructions.

To avoid merging conflicts when you regenerate your code, add code only in
areas marked by Developer: comments or after the generated code. If you
do modify code outside the designated areas, you might have two copies of
the routine after you regenerate: the one you modified and the one Blade-
Smith generated. Although your changes remain, you must resolve conflicts
in the two pieces of code.

Important: In addition to adding logic to the opaque support routines, you can add
your own functions to the C++ classes in the OpaqueCommon, OpaqueClient,
and OpaqueServer .cpp and .h files. Do not modify any of the other generated
source files.
6-4 IBM Informix DataBlade Developer’s Kit User’s Guide

Source Files Generated by BladeSmith
Source Files Generated by BladeSmith
This section provides an overview of the code that BladeSmith generates for
client and server projects. For a complete list of generated files, see
Appendix A, “Source Files Generated for DataBlade Modules.”

BladeSmith generates the following source code for each client and server
project:

� Makefiles, project files, header files, definitions files, and so on, for
both the client project and the server project

� A support library for use by the client and server projects

BladeSmith generates the following source code for each ActiveX value
object:

� Interfaces to the object for use by the client application developer

� C++ common code that provides the internal logic for both the client
and server projects

� Server project opaque type support routines not available as ActiveX
custom methods and other code for use by the Informix database
server

Implementing ActiveX Value Objects
To implement the client and server projects of an ActiveX value object, you
add project-specific logic to particular C++ source files generated by
BladeSmith.

This section contains the following subsections:

� “The Generated Code,” next

� “Adding Project-Specific Logic to the Source Code” on page 6-7

� “Files to Edit” on page 6-8

� “ActiveX Properties” on page 6-9

� “Accessing Properties Using Visual Basic” on page 6-10
Creating ActiveX Value Objects 6-5

The Generated Code
The Generated Code
The contents of the generated C++ source code differ from generated C
source code (described in Chapter 5, “Programming DataBlade Module
Routines in C”) in the following ways:

� Comments. BladeSmith includes comments to the developer
regarding which sections must or may be modified; for more infor-
mation, see “Adding Project-Specific Logic to the Source Code” on
page 6-7.

� MI_FPARAM argument. This is not included in C++ code; it is a C
language argument.

� Server connection handle. This handle is not needed for C++ code.

� Tracing. BladeSmith does not insert tracing logic into the generated
C++ code. However, you can use the DataBlade API tracing macros
in your server code; see “Tracing and Error Handling” on page 5-13
for instructions.

� Error handling. BladeSmith inserts the DkErrorRaise() method into
the generated routines to which you must add project-specific logic,
naming the routine that has not been implemented and the file in
which it resides (see “Adding Project-Specific Logic to the Source
Code”). You can add DkErrorRaise() to other areas of the generated
code and to your project-specific logic as appropriate. For infor-
mation on the DkErrorRaise() object method, see “Internal Object
Methods” on page 6-13.

� Utility functions. BladeSmith generates a C++ support library for
each client and server project and uses the routines and methods of
the library in its generated code. For information on this support
library, see “C++ Support Library” on page 6-14.
6-6 IBM Informix DataBlade Developer’s Kit User’s Guide

Adding Project-Specific Logic to the Source Code
Adding Project-Specific Logic to the Source Code
For each routine in each support routine category that you specify for a
particular opaque type, BladeSmith generates one of the following functions:

� The function definition and a function body that contains only a call
to DkErrorRaise(). These routines are indicated by the comment
Developer: TO DO.

You must supply project-specific internal logic to these routines.

BladeSmith inserts the DkErrorRaise() method into these routines,
naming the routine that has not been implemented and the file in
which it resides. When you supply the logic to these routines, you
can remove the call to DkErrorRaise() or modify it to return an error
more appropriate to the added logic. (For information on the
DkErrorRaise() object method, see “Internal Object Methods” on
page 6-13.)

� The function definition and a default function body. These routines
are indicated by the comment Developer: Make changes in this

section if necessary.

You can keep the default logic, or you can replace or modify it as
appropriate for your project.
Creating ActiveX Value Objects 6-7

Files to Edit
Files to Edit
The following table lists each opaque type routine (by category and name),
the source file where it is defined, and whether adding project-specific logic
to that routine is required or optional.

For information on the usual behavior of the ActiveX custom methods (those
defined in the OpaqueCommon.cpp and OpaqueCommon.h files), see
Chapter 7, “Using ActiveX Value Objects.” For information on the default
behavior of the server project routines, see “Editing Opaque Type Support
Routines in opaque.c” on page 5-25.

Routine Category
Opaque Type Routine/
ActiveX Custom Method Source File

Add Logic?
(Optional/Required)

Basic Text Input/Output FromString()

ToString()

OpaqueCommon.cpp Optional

Optional

Binary Send/Receive With
Client

Send()

Receive()

OpaqueServer.cpp Optional

Optional

Text File Import/Export ImportText()

ExportText()

OpaqueServer.cpp Optional

Optional

Binary File Import/Export ImportBinary()

ExportBinary()

OpaqueServer.cpp Optional

Optional

Type Compare Support Compare()

Equal()*

NotEqual()

OpaqueCommon.cpp Optional

Optional

Optional

B-Tree Indexing Support Equal()*

GreaterThan()

GreaterThanOrEqual()

LessThan()

LessThanOrEqual()

OpaqueCommon.cpp Optional

Optional

Optional

Optional

Optional

(1 of 2)
6-8 IBM Informix DataBlade Developer’s Kit User’s Guide

ActiveX Properties
ActiveX Properties
If you choose to generate access methods in the BladeSmith New Opaque
Type wizard, BladeSmith generates code to make the members of the data
structure available as ActiveX properties so the client application developer
can access those values.

If a member of an opaque type is an array, the following additional
properties are made available:

� One-dimensional noncharacter array. A read-only property named
NameDim is created to indicate the array dimension, and the
property Name takes a one-based index as a parameter and returns
the requested element.

� Two-dimensional noncharacter array. Properties named
NameDim1 and NameDim2 are created, and the property Name
takes a one-dimensional character array. Returns a string of type
BSTR.

Type Mathematic Operators Plus()

Minus()

Times()

Divide()

OpaqueCommon.cpp Required

Required

Required

Required

More Mathematic Operators Positive()

Negate()

OpaqueCommon.cpp Required

Required

Type Concatenation Operator Concat() OpaqueCommon.cpp Required

Type Hash Support Hash() OpaqueServer.cpp Required

N.A. IsNull()

SetNullFlag()

OpaqueCommon.h Optional

* Only one Equal() routine generated, even if you specify all three categories that include it.

Routine Category
Opaque Type Routine/
ActiveX Custom Method Source File

Add Logic?
(Optional/Required)

(2 of 2)
Creating ActiveX Value Objects 6-9

Accessing Properties Using Visual Basic
� Two-dimensional character array. Treated the same as a one-dimen-
sional noncharacter array: NameDim indicates the dimension; the
property Name takes a one-based index and returns the element.

Accessing Properties Using Visual Basic
This section describes how you can get and set ActiveX properties if you are
using Visual Basic as your development environment.

For an ActiveX value object based on the opaque type named Opaque, with a
non-array data structure member named x, you can get the corresponding
property as follows:

member_value = Opaque.x

You can set the property as follows:

Opaque.x = member_value

If a data structure member is an array, you can get the property as follows:

count = Opaque.xDim

You can set or put the property as follows:

member_value = Opaque.x(i)

Compiling Client and Server Projects
Among the code files that BladeSmith generates are the following makefiles
and project files:

� ProjectU.mak. A UNIX makefile for UNIX servers generated in the
src directory

� Project.dsw. A Visual C++ workspace file for both C and C++ server
code generated in the src directory

� ProjectX.dsp. A Visual C++ project file for Windows clients
generated in the src\ActiveX directory

When you compile a server project, a Project.bld file is created. When you
compile a client project, a ProjectX.dll file is created.
6-10 IBM Informix DataBlade Developer’s Kit User’s Guide

Compiling a Windows Server Project
This section describes how to compile both a server project and a client
project.

Compiling a Windows Server Project
For Windows server projects, BladeSmith generates a Project.dsw file in the
src directory to use with Microsoft Visual C++ 6.0.

To compile a server project, the INFORMIXDIR environment variable must be
set to the Informix server installation directory.

Because BladeSmith does not generate tracing routines in the source code,
projects are not built with tracing support. If you have added DataBlade API
tracing routines to your code, you must add the instruction to compile with
tracing support to your makefile or project file. For more information, see
“Tracing and Error Handling” on page 5-13.

To compile a Windows server project

1. If necessary, open your project.dsw file in the src directory in Visual
C++.

2. Choose Build�Set Active Configuration.

3. Select a version of the project in the Set Active Project Configuration
dialog box:

� Release. This version is suitable for release and does not contain
debugging support.

� Debug. This version contains support for debugging.

4. Click OK.

5. Choose Build�Rebuild All to compile.

Visual C++ creates both a WinNT-i386 and a Debug directory under the
src\ActiveX directory to hold the release version and the debug version,
respectively, of the dynamic link library.
Creating ActiveX Value Objects 6-11

Compiling a Client Project
Compiling a Client Project
For Windows client projects, BladeSmith generates a ProjectX.dsp file in the
src\ActiveX directory to use with Visual C++ 6.0 or later.

The general process for compiling a client project is:

1. Set the include and library file directories in Microsoft Developer
Studio.

2. Compile the ProjectX.dsp file.

To set the include files and library file directories

1. In Microsoft Developer Studio Visual C++, choose Tools�Options.

2. Click the Directories tab in the Options dialog box.

3. Select Include files from the Show directories for list box.

4. If the following directories are not on the list, add them:

� \informix\incl\c++

� \informix\incl\dmi

� \informix\incl\esql

5. Select Library files in the Show directories for list box.

6. If the following directories are not on the list, add them:

� \informix\lib

� \informix\lib\c++

� \informix\lib\dmi

7. Click OK to exit the Options dialog box.

To compile a Windows client project

1. In Microsoft Developer Studio Visual C++, choose File�Open and
open ProjectX.dsp.

2. Choose Build�Set Active Configuration.

3. Select a version of the project in the Set Active Project Configuration
dialog box:

� Release. This version is suitable for release and does not contain
debugging support.

� Debug. This version contains support for debugging.
6-12 IBM Informix DataBlade Developer’s Kit User’s Guide

Support Methods Reference
4. Click OK.

5. Choose Build�Rebuild All to compile.

Visual C++ creates both a WinNT-i386 and a Debug directory under the
src\ActiveX directory to hold the release version and the debug version,
respectively, of the dynamic link library.

Support Methods Reference
This section describes the internal object and support library methods that
you can use when you add project-specific logic to your client and server
projects. Use these methods (and the methods made available as ActiveX
custom methods; see “Files to Edit” on page 6-8) to ensure that your code is
portable between client and server projects.

Internal Object Methods
For each ActiveX value object that you implement, a set of internal methods
is created. Although these methods are not made available to the client appli-
cation developer as ActiveX custom methods, you can use them when you
add project-specific logic to your client and server projects.

These are the internal object methods, where Opaque is the name of the
opaque type that defines the current object.

Method Description

static OpaqueCommon *
CreateNew()

Creates an instance of the current object.
The object name is OpaqueServer if
called by server code or OpaqueClient if
called by client code.

void DkErrorRaise(
MI_CONNECTION *conn,
mi_integer msg_type, char *msg, ...)

Maps to mi_db_error_raise on the server
and raises an error on the client; for
details, see the IBM Informix DataBlade
API Programmer’s Guide.

OpaqueStruct * GetData() Returns a pointer to the data structure
representing the current object.

(1 of 2)
Creating ActiveX Value Objects 6-13

C++ Support Library
C++ Support Library
When you use BladeSmith to generate source code for your ActiveX value
objects, the following C++ support library files are generated:

� DkClient.cpp

� DkIntf.h

� DkIntf_i.c

� DkIntfImpl.h

� StdDbdk.cpp

� StdDbdk.h

These files are used to compile both the client project and the server project;
they are automatically included in the appropriate source files.

mi_boolean IsDirty() Returns mi_true if the current object has
been modified or mi_false if it has not.

OpaqueStruct * RawCopy() Allocates a C data structure and fills it
with a copy of the raw data of the current
object.

void SetClean() Flags the current object as having not been
modified.

void SetData(
const OpaqueStruct *value)

Fills the current object with the data
supplied by the input data structure.

void SetDirty() Flags the current object as having been
modified.

void SetNotNull() A protected method that sets the current
object to not null.

Method Description

(2 of 2)
6-14 IBM Informix DataBlade Developer’s Kit User’s Guide

C++ Support Library
The C++ support library contains these classes and routines:

� DkInStream class (text input parser)

� DkOutStream class (text output parser)

� Memory management routines

There are two types of delimiters you must be aware of when using the
DkInStream and DkOutStream classes: string delimiters and field
delimiters.

String delimiters are a pair of single-byte characters that indicate the
beginning and ending of a string. By default, the string delimiters are the
open and close quote characters (" "), but you can specify other characters
by using the SetStringDelimiters() method.

Important: If you set the DkInStream class string delimiters to a different pair than
the DkOutStream string delimiters, then these text parser classes cannot exchange
strings.

Field delimiters indicate the beginning and ending of a field. By default, space
characters are always field delimiters. In addition, you can specify a
multibyte string to also be a field delimiter, using the SetFieldDelimiters()
method.

A string can contain multiple fields and their delimiters. However, a field
cannot contain a string.

For example, if the default string and field delimiters are in use and given the
characters "Date: 4 28 97", then there is one string, Date: 4 28 97, and
four fields: Date:, 4, 28, and 97.

To include a string-delimiter character in a string, precede it with a backslash
character (\). For example, to read the string Date: "4 28 97", specify the
string as follows: "Date: \"4 28 97\"".

The rest of this section provides reference information for the text parsing
classes and memory management routines.
Creating ActiveX Value Objects 6-15

C++ Support Library
DkInStream

The DkInStream class provides methods that read an input text stream and
populate an instance of the object (an opaque type if invoked by server code
or an ActiveX value object if invoked by client code). This class has a built-in
cursor that tracks how much of the input stream has been read.

All of the read methods return an mi_boolean value: mi_true if the read is
successful or mi_false if it is not. In addition, all read methods except
ReadChar, ReadGLWChar, and ReadWChar skip field and string delimiters
before reading.

The gl_wchar data type is configurable, but it is a 4-byte character by default.
For more information on this data type, see the discussion of the
IBM Informix GLS API in the IBM Informix GLS User’s Guide.

The DkInStream class provides the following methods.

Method Description

DkInStream(mi_lvarchar* inputString)

DkInStream(const char* inputString)

Reads inputString, which can be a
multibyte string.

char* CurString() Returns a pointer to the string at the
current cursor position.

mi_boolean Match(char* str) Returns mi_true if the exact sequence of
characters specified in str is found in the
input string.

This method is the opposite of
DkOutStream.WriteLiteral.

mi_boolean operator+=(size_t skip) Returns mi_true if the number of
characters specified in skip is success-
fully skipped.

mi_boolean operator-=(size_t rew) Returns mi_true if the number of
characters specified in rew is success-
fully “rewound” (skipped backwards).

mi_boolean ReadBoolean(
mi_boolean* value)

Returns mi_true if one of the following
values is successfully read: TRUE, True,
true, FALSE, False, false.

(1 of 4)
6-16 IBM Informix DataBlade Developer’s Kit User’s Guide

C++ Support Library
mi_boolean ReadChar(mi_char* value) Returns mi_true if a value of type
mi_char is successfully read. Field and
string delimiters are not skipped before
reading.

mi_boolean ReadDate(mi_date* value) Returns mi_true if a date value is
successfully read. If the date value
contains spaces or field delimiters,
enclose it in string delimiters.

mi_boolean ReadDateTime(
mi_datetime* value)

Returns mi_true if a date-time value is
successfully read. If the date-time value
contains spaces or field delimiters,
enclose it in string delimiters.

mi_boolean ReadDecimal(
mi_decimal* value)

Returns mi_true if a decimal or numeric
value is successfully read.

mi_boolean ReadDoublePrecision(
mi_double_precision* value)

Returns mi_true if a double-precision
value is successfully read.

mi_boolean ReadGLWChar(
gl_wchar_t* value)

Returns mi_true if a value of type
gl_wchar (a 4-byte character, by default)
is successfully read. Field and string
delimiters are not skipped before
reading.

mi_boolean ReadGLWString(
gl_wchar_t* value, size_t length)

Returns mi_true if a string of gl_wchar
values, size length, is successfully read.
If the string is longer than length, it is
truncated and not null-terminated. To
include a string-delimiter character in
the string, precede it with the backslash
character (\).

mi_boolean ReadInt1(mi_int1* value) Returns mi_true if a 1-byte integer value
is successfully read.

mi_boolean ReadInt8(mi_int8* value) Returns mi_true if an 8-byte integer
value is successfully read.

mi_boolean ReadInteger(
mi_integer* value)

Returns mi_true if a 4-byte integer value
is successfully read.

Method Description

(2 of 4)
Creating ActiveX Value Objects 6-17

C++ Support Library
mi_boolean ReadInterval(
mi_interval* value)

Returns mi_true if an interval value is
successfully read.

mi_boolean ReadMoney(
mi_money* value)

Returns mi_true if a money value is
successfully read.

mi_boolean ReadReal(mi_real* value) Returns mi_true if a real value is
successfully read.

mi_boolean ReadSmallInt(
mi_smallint* value)

Returns mi_true if a 2-byte integer value
is successfully read.

mi_boolean ReadString(
const mi_string* value, size_t length)

Returns mi_true if a string of mi_string
values, size length, is successfully read.
If the string is longer than length, it is
truncated and not null-terminated. To
include a string-delimiter character in
the string, precede it with the backslash
character (\).

mi_boolean ReadUChar1(
mi_unsigned_char1* value)

Returns mi_true if a 1-byte unsigned
integer value is successfully read.
(Integer is correct; the data type is
misnamed.)

mi_boolean ReadUInt8(
mi_unsigned_int8* value)

Returns mi_true if an 8-byte unsigned
integer value is successfully read.

mi_boolean ReadUInteger(
mi_unsigned_integer* value)

Returns mi_true if a 4-byte unsigned
integer value is successfully read.

mi_boolean ReadUSmallInt(
mi_unsigned_smallint* value)

Returns mi_true if a 2-byte unsigned
integer value is successfully read.

mi_boolean ReadWChar(
mi_wchar* value)

Returns mi_true if a 2-byte character is
successfully read. Field and string
delimiters are not skipped before
reading.

Method Description

(3 of 4)
6-18 IBM Informix DataBlade Developer’s Kit User’s Guide

C++ Support Library
DkOutStream

The DkOutStream class provides methods that write an object (an opaque
type if invoked by server code or an ActiveX value object if invoked by client
code) to an output stream. All of the write methods append to the output
string; they do not overwrite the existing contents of the string.

The gl_wchar data type is configurable, but it is a 4-byte character by default.
For more information on this data type, see the discussion of the
IBM Informix GLS API in the IBM Informix GLS User’s Guide.

mi_boolean ReadWString(
mi_wchar* value, size_t length)

Returns mi_true if a string of mi_wchar
values, size length, is successfully read.
If the string is longer than length, it is
truncated and not null-terminated. To
include a string-delimiter character in
the string, precede it with the backslash
character (\).

void SetFieldDelimiters(
const char* delim)

By default, the space character is a field
delimiter; this method adds delim as
another delimiter. delim can be a
multibyte string, but it cannot be longer
than DK_MAXDELIMBYTES (default
value of 20).

void SetStringDelimiters(char begin,
char end)

Sets string delimiters to two, single-byte
characters (begin and end). Default
values are the open-quote character (“)
and the close-quote character (”).

void Skip(char* delim) Skips only the sequence of characters
specified by delim.

void SkipBlanks() Skips all space characters.

void SkipDelimiters() Skips the characters specified by delim
in the SetFieldDelimiters method and
space characters.

Method Description

(4 of 4)
Creating ActiveX Value Objects 6-19

C++ Support Library
The DkOutStream class provides the following methods.

Method Description

DkOutStream(size_t initial=50,
size_t increment=50)

Creates an output string of size initial,
allocating additional memory in chunks
of size increment.

mi_lvarchar* CreateLvarChar() Returns a pointer to a new mi_lvarchar
that holds a copy of the output string.

const char* GetBuffer() Returns a pointer to the internal buffer
that contains the output string.

void SetStringDelimiters(char begin,
char end)

Sets string delimiters to two single-byte
characters (begin and end). Default
values are the open-quote character (“)
and the close-quote character (”).

void WriteBoolean(mi_boolean value) Writes a Boolean value of true or false
to the output string.

void WriteChar(mi_char value) Writes a value of mi_char to the output
string.

void WriteDate(mi_date value) Writes a date value to the output string.

void WriteDateTime(
const mi_datetime& value)

Writes a datetime value to the output
string.

void WriteDecimal(
const mi_decimal& value)

Writes a decimal or numeric value to the
output string.

void WriteDoublePrecision(
mi_double_precision value)

Writes a double-precision value to the
output string.

void WriteGLWChar(
gl_wchar_t value)

Writes a value of type gl_wchar (a 4-byte
character, by default) to the output
string.

void WriteGLWString(
const gl_wchar_t* value, size_t length)

Writes a string of gl_wchar values, size
length, to the output string. This method
precedes string-delimiter characters
with backslash characters (\).

void WriteInt1(mi_int1 value) Writes a 1-byte integer value to the
output string.

(1 of 3)
6-20 IBM Informix DataBlade Developer’s Kit User’s Guide

C++ Support Library
void WriteInt8(const mi_int8& value) Writes an 8-byte integer value to the
output string.

void WriteInteger(mi_integer value) Writes a 4-byte integer value to the
output string.

void WriteInterval(
const mi_interval& value)

Writes an interval value to the output
string.

void WriteLiteral(const char* string) Writes the specified string to the output
string. Delimiter characters are written
as is; they are neither skipped nor
preceded by backslash characters.

This method is the opposite of
DkInStream.Match.

void WriteMoney(
const mi_money& value)

Writes a money value to the output
string.

void WriteReal(mi_real value) Writes a real value to the output string.

void WriteSmallInt(mi_smallint value) Writes a 2-byte integer value to the
output string.

void WriteString(
const mi_string* value, size_t length)

Writes a string of mi_string values, size
length, to the output string. This method
precedes string-delimiter characters
with backslash characters (\).

void WriteUChar1(
mi_unsigned_char1 value)

Writes a 1-byte unsigned integer to the
output string. (Integer is correct; the data
type is misnamed.)

void WriteUInt8(
const mi_unsigned_int8& value)

Writes an 8-byte unsigned integer to the
output string.

void WriteUInteger(
mi_unsigned_integer value)

Writes a 4-byte unsigned integer to the
output string.

Method Description

(2 of 3)
Creating ActiveX Value Objects 6-21

C++ Support Library
Memory Management Routines

These routines do not form a class. They are provided for server-project use
only. It is recommended that you use the new and delete operators. Use
malloc and free only if you must; for example, if you call into a C file.

void WriteUSmallInt(
mi_unsigned_smallint value)

Writes a 2-byte unsigned integer to the
output string.

void WriteWChar(mi_wchar value) Writes a 2-byte character to the output
string.

void WriteWString(
const mi_wchar* value, size_t length)

Writes a string of mi_wchar values, size
length, to the output string. This method
precedes string-delimiter characters
with backslash characters (\).

Routine Description

void * ::operator new(size_t size) Calls mi_alloc on the server side.

void ::operator delete(void *ptr) Deletes the memory allocated with the
new operator.

void * malloc(size_t size) Calls mi_alloc on the server side.

void free(void *memblock) Frees the memory allocated with the
malloc routine.

Method Description

(3 of 3)
6-22 IBM Informix DataBlade Developer’s Kit User’s Guide

7
Chapter
Using ActiveX Value Objects
In This Chapter . 7-3

Installing and Using ActiveX Value Objects 7-3
Installing ActiveX Value Objects 7-3
Using ActiveX Value Objects 7-4

IRawObjectAccess Custom Interface 7-5

ITDkValue Custom Interface 7-6

ActiveX Custom Methods 7-8

7-2 IBM
 Informix DataBlade Developer’s Kit User’s Guide

In This Chapter
This chapter provides information for client application developers who are
using ActiveX value objects. It includes the following sections:

� “Installing and Using ActiveX Value Objects,” next

� “IRawObjectAccess Custom Interface” on page 7-5, for those using
the IBM Informix ESQL/C or the Microsoft ODBC client APIs

� “ITDkValue Custom Interface” on page 7-6, for those using the
IBM Informix C++ Interface client API

� “ActiveX Custom Methods” on page 7-8, for all users

The standard ISupportErrorInfo interface is also supported for ActiveX
value objects; for information on this interface, see one of the books recom-
mended in the “Related Reading” section of the introduction.

Installing and Using ActiveX Value Objects
This section provides some guidelines on installing and using ActiveX value
objects.

Installing ActiveX Value Objects
Use BladeManager to install the ProjectS.bld file on your Informix server
computer and the ProjectX.dll file on your Windows client computer. For
instructions, see the IBM Informix DataBlade Module Installation and Regis-
tration Guide.
Using ActiveX Value Objects 7-3

Using ActiveX Value Objects
The ActiveX project you install might also include the following files in the
installation package to assist you in locating the CLSID (class identifier) and
IID (interface identifier) information for the ActiveX value objects.

If you are using Visual Basic, you must create a reference to the newly
installed ActiveX project to start working with it.

To create a reference to an ActiveX project

1. In Microsoft Developer Studio, choose Project�References.

The Project References dialog box appears.

2. Check the check box for the project you are installing. The project is
listed in the following format:

ProjectX 1.0 Type Library

3. Click OK.

Using ActiveX Value Objects
Follow the Microsoft guidelines on how to invoke COM and automation
objects.

If you are using the IBM Informix ESQL/C client API, it is recommended that
you write the application in C++ and place only the SQL-specific code in the
.ec files through embedded C code.

If you are using Visual Basic, you must cast the Informix lvarchar data type
to char before you can work with ActiveX value objects.

File Contains

DkIntf_i.c Interface identifiers (IIDs) for the ActiveX value object custom
interfaces (IRawObjectAccess and ITDkValue; described in this
chapter)

DkIntf.h IID declarations for DkIntf_i.c

ProjectX_i.c Class identifiers (CLSIDs) for the ActiveX value objects provided by
the project named Project

ProjectX.h CLSID declarations for ProjectX_i.c
7-4 IBM Informix DataBlade Developer’s Kit User’s Guide

IRawObjectAccess Custom Interface
Important: As you use ActiveX value objects, keep in mind that object persistence
between server and client objects is not supported. In other words, although you can
modify an ActiveX value object, an associated modification does not occur to the
database data represented by that object unless you issue an SQL query.

IRawObjectAccess Custom Interface
The IRawObjectAccess custom interface is provided for users of the
IBM Informix ESQL/C API and the Microsoft ODBC API. IRawObjectAccess
enables you to instantiate an ActiveX value object with raw data or to extract
raw data from an existing value object.

If you are using the IBM Informix ESQL/C API or the Microsoft ODBC API and
a query of the database server results in an ActiveX value object, you get the
raw data of the object. You can use this data and the methods of the IRawOb-
jectAccess interface to instantiate the ActiveX value object and access its
custom methods.

To instantiate the ActiveX value object and access its custom methods

1. Call CoCreateInstance() with a CLSID of CLSID_OPAQUE and an IID
of IID_RawObjectAccess to create an empty ActiveX value object.

2. Pass the raw object data to the SetDataC() method to fill the ActiveX
value object.

3. Use QueryInterface() to get the IID for the IDispatch interface
(IID_IDispatch).

4. Use IDispatch::Invoke() to access the custom methods of the
ActiveX value object.
Using ActiveX Value Objects 7-5

ITDkValue Custom Interface
The IRawObjectAccess interface provides the following methods.

ITDkValue Custom Interface
The ITDkValue custom interface is provided for the users of the
IBM Informix C++ Interface. ITDkValue is a C++ class factory; when a query
of the database server results in an ActiveX value object, an ITDkValue
object is returned to you.

The ITDkValue object is an Object Interface for C++ ITValue object; thus, the
ITDkValue interface provides the same methods as the ITValue interface.
You can use this interface, or you can use the QueryInterface() routine to get
the IDispatch interface of the object to access its custom methods.

In addition, a global function is provided that returns an ITValue object. It
has the following syntax, where Opaque is the current object and ITMVDesc
is an Object Interface for C++ descriptor structure:

ITValue * OpaqueMakeValue(ITMVDesc *description)

For information on using the Object Interface for C++, see the IBM Informix
Object Interface for C++ Programmer’s Guide.

Method Description

void * GetDataC() Returns a pointer to OpaqueStruct, the
C data structure that defines the opaque
type that is encapsulated as an ActiveX
value object.

SetDataC(void *struct) Sets OpaqueStruct to the values
specified by struct.

void * GetDataCpp() Returns a pointer to OpaqueClient, the
C++ object that represents the ActiveX
value object.

SetDataCpp(void *struct) Sets OpaqueClient (returned by
GetDataCpp) to the values specified by
struct.
7-6 IBM Informix DataBlade Developer’s Kit User’s Guide

ITDkValue Custom Interface
The ITDkValue interface provides the following methods.

Method Description

ITBool CompatibleType(
ITValue *object)

Returns TRUE if the specified object is of
the same type as the current object.

ITBool Equal(ITValue *object) Returns TRUE if the specified object is
equal to the current object.

ITBool FromPrintable(
const ITString &printable)

Sets the value of the current object, using
a string equivalent to the one returned
by the input function of the object.

ITBool IsNull() Returns TRUE if the current object has a
null value.

ITBool IsUpdated() Returns TRUE if the current object has
been updated since it was created.

ITBool LessThan(ITValue *object) Returns TRUE if the current object is less
than the specified objects and the objects
are comparable.

const ITString &Printable() Returns the value of the current object in
a string equivalent to the one returned
by the output function of the object.

ITBool SameType(ITValue *object) Returns TRUE if the specified object is of
the same type as the current object.

ITBool SetNull() Sets the current object to a null value.

const ITTypeInfo &TypeOf() Returns the type information for the
current object.
Using ActiveX Value Objects 7-7

ActiveX Custom Methods
ActiveX Custom Methods
This section is an alphabetic reference to all possible ActiveX custom
methods for an ActiveX value object. It provides information on the usual
behavior of each method.

ActiveX value objects (and the projects that provide them) can differ greatly.
Thus, the set of custom methods made available to you can differ from object
to object, or they can have different behaviors from what is described here
(although the function headers and parameter lists of the methods do not
vary).

These methods provide dual interfaces. Thus, you can either call them
directly or by using IDispatch::Invoke. For more information, see any of the
books recommended in the “Related Reading” section of the introduction.

Many of the methods compare the current ActiveX value object, named
Opaque, to another object of the same type. All of the custom methods return
HRESULT, with a value of S_OK (success) or E_FAIL (failure).

Method Description

HRESULT Compare(
[in] IOpaque *other,
[out, retval] int *relationship)

Compares the current object to another
object of the same type, returning:

� 0 if the objects are equal.

� -1 if the current object is less than the
other object.

� 1 if the current object is greater than
the other object.

HRESULT Concat([in] IOpaque * other) Concatenates another object of the same
type to the current object. This method is
usually implemented for string objects.

HRESULT Contains([in] IOpaque
*other, [out, retval] BOOL *result)

Returns TRUE if the current object
contains another object of the same type
or FALSE if it does not.

HRESULT Divide([in] IOpaque *other,
[out, retval] IOpaque **new)

Returns a new object representing the
division of the current object by another
object of the same type.

(1 of 3)
7-8 IBM Informix DataBlade Developer’s Kit User’s Guide

ActiveX Custom Methods
HRESULT Equal([in] IOpaque *other,
[out, retval] BOOL *result)

Returns TRUE if the current object is
equal to another object of the same type
or FALSE if it is not.

HRESULT FromString([in] BSTR string) Converts a character string to a new
instance of the current object.

HRESULT GreaterThan(
[in] IOpaque *other,
[out, retval] BOOL *result)

Returns TRUE if the current object is
greater than another object of the same
type or FALSE if it is not.

HRESULT GreaterThanOrEqual
([in] IOpaque *other,
[out, retval] BOOL *result)

Returns TRUE if the current object is
greater than another object of the same
type or FALSE if it is not.

HRESULT Inter([in] IOpaque *other,
[out, retval] IOpaque **new)

Returns a new object representing the
points in common between the current
object and another object of the same
type.

HRESULT IsNull(
[out, retval] BOOL *result)

Returns TRUE if the current object is has a
null value or FALSE if it does not.

HRESULT LessThan(
[in] IOpaque *other,
[out, retval] BOOL *result)

Returns TRUE if the current object is less
than another object of the same type or
FALSE if it is not.

HRESULT LessThanOrEqual(
[in] IOpaque *other,
[out, retval] BOOL *result)

Returns TRUE if the current object is less
than or equal to another object of the
same type or FALSE if it is not.

HRESULT Minus([in] IOpaque *other,
[out, retval] IOpaque **new)

Returns a new object representing the
current object minus another object of
the same type.

HRESULT Negate() Usually negates the current object:
makes a positive object negative or a
negative object positive.

HRESULT NotEqual(
[in] IOpaque *other,
[out, retval] BOOL *result)

Returns TRUE if the current object is not
equal to another object of the same type
or FALSE if it is.

Method Description

(2 of 3)
Using ActiveX Value Objects 7-9

ActiveX Custom Methods
HRESULT Overlap([in] IOpaque *other,
[out, retval] BOOL *result)

Returns TRUE if the current object has
any points in common with another
object of the same type or FALSE if it does
not.

HRESULT Plus([in] IOpaque *other,
[out, retval] IOpaque **new)

Returns a new object representing the
current object plus another object of the
same type.

HRESULT Positive() Usually makes a negative object
positive; a positive object remains
positive.

HRESULT SetNullFlag() Sets the current object to a null value.

HRESULT Size(
[out, retval] double *size)

Returns the size of the current object, in
implementor-defined units.

HRESULT Times([in] IOpaque *other,
[out, retval] IOpaque **new)

Returns a new object representing the
current object times another object of the
same type.

HRESULT ToString(
[out, retval] BSTR *string)

Converts the current object to a character
string.

HRESULT Union([in] IOpaque *other,
[out, retval] IOpaque **new)

Returns a new object representing the
union of the current object and another
object of the same type. This method is
usually implemented for objects that
represent areas.

HRESULT Within([in] IOpaque *other,
[out, retval] BOOL *result)

Returns TRUE if the current object is
within the other object or FALSE if it is
not.

Method Description

(3 of 3)
7-10 IBM Informix DataBlade Developer’s Kit User’s Guide

8
Chapter
Programming DataBlade
Modules in Java
In This Chapter . 8-3

Prerequisite Tasks 8-3

Java Programming Task Overview 8-4

Source Files Generated by BladeSmith 8-5
Java Source Code Files 8-6
SQLData Interface Method Support Code 8-7
Warning File . 8-7

Using the Generated Code 8-8
Comments in Generated Code 8-8
Logging and Error Handling 8-8
BladeSmith Utility Classes 8-9

Editing Methods. 8-10
Most User-Defined Methods 8-10

The Generated Code. 8-10
Completing the Code 8-10
Example . 8-11

Iterators . 8-11
The Generated Code. 8-11
Completing the Code 8-12

Aggregates . 8-12
The Generated Code. 8-12
Completing the Code 8-12

Cast Support Methods 8-14
The Generated Code. 8-14
Completing the Code 8-14

8-2 IBM
Compiling Java DataBlade Module Code 8-14

Debugging and Testing DataBlade Modules Written in Java 8-16
Preparing Your Environment 8-16
Debugging a DataBlade Module 8-17

Installing a DataBlade Module 8-17
Registering a DataBlade Module 8-18
Replacing a DataBlade Module JAR File 8-18

Performing Functional Tests 8-19
 Informix DataBlade Developer’s Kit User’s Guide

In This Chapter
This chapter contains information to help you edit and compile Java
language source code generated by BladeSmith. It includes the following
sections:

� “Prerequisite Tasks,” next

� “Java Programming Task Overview” on page 8-4

� “Source Files Generated by BladeSmith” on page 8-5

� “Using the Generated Code” on page 8-8

� “Editing Methods” on page 8-10

� “Compiling Java DataBlade Module Code” on page 8-14

� “Debugging and Testing DataBlade Modules Written in Java” on
page 8-16

Prerequisite Tasks
Before you edit and compile your DataBlade module code, complete these
tasks:

1. Write functional and design specifications that comply with Informix
coding standards.

See Chapter 3, “Programming Guidelines,” for more information.

2. Create your DataBlade module in BladeSmith.

See “Creating DataBlade Module Objects” on page 4-14 for
instructions.

3. Generate source code and SQL files in BladeSmith.

See “Generating Files” on page 4-66 for instructions.
Programming DataBlade Modules in Java 8-3

Java Programming Task Overview
Important: You must use the IBM Informix Dynamic Server with J/Foundation
upgrade to IBM Informix Dynamic Server to enable services that use Java. For more
information about J/Foundation, see the “J/Foundation Developer’s Guide.”

Java Programming Task Overview
After you generate code with BladeSmith, complete these general tasks to
finish your DataBlade module code:

1. Add code to the ProjectUDRs.java source code file to enable your
routines to function as you intend. See “Editing Methods” on
page 8-10 for instructions.

2. Compile your source code files using the generated makefile. See
“Compiling Java DataBlade Module Code” on page 8-14 for
instructions.

3. Debug your source code files using the Java log file. See “Debugging
and Testing DataBlade Modules Written in Java” on page 8-16.

4. Execute functional tests. See “Performing Functional Tests” on
page 8-19.

For a list of the Java packages, interfaces, classes, and methods you can use
in Java projects, see J/Foundation Developer’s Guide.

To avoid merging conflicts when you regenerate your code, add code only in
areas marked by TO DO: comments or after the generated code. If you do
modify code outside the designated areas, after you regenerate you might
have two copies of the routine: the one you modified and the one BladeSmith
generated. Although your changes remain, you must resolve conflicts in the
two pieces of code.
8-4 IBM Informix DataBlade Developer’s Kit User’s Guide

Source Files Generated by BladeSmith
Source Files Generated by BladeSmith
When you create new objects, BladeSmith generates the source files; some
filenames are prefixed with the name of the DataBlade module (indicated by
project). By default, BladeSmith creates the source files in the src and
src\java subdirectories of the directory that contains the BladeSmith project
file. Generated source files are listed in the following table.

Filename Directory Type of File More Information

ProjectUDRs.java src\java Javasource
code file

See “Java Source Code
Files” on page 8-6.

IfmxInStream.java src\java Javasource
code file

See “BladeSmith Utility
Classes” on page 8-9.

IfmxOutStream.java src\java Javasource
code file

See “BladeSmith Utility
Classes” on page 8-9.

IfmxLog.java src\java Javasource
code file

See “BladeSmith Utility
Classes” on page 8-9.

IfmxTrace.java src\java Javasource
code file

See “BladeSmith Utility
Classes” on page 8-9.

DBDKInputException.java src\java Javasource
code file

See “BladeSmith Utility
Classes” on page 8-9.

DBDKOutputException.java src\java Javasource
code file

See “BladeSmith Utility
Classes” on page 8-9.

Opaque.java src\java Javasource
code file

See “SQLData Interface
Method Support Code” on
page 8-7.

(1 of 2)
Programming DataBlade Modules in Java 8-5

Java Source Code Files
Some of these files are described in the following subsections.

Java Source Code Files
BladeSmith generates a ProjectUDRs.java source code file that contains
method declarations for all user-defined Java routines, cast support routines,
and aggregates you defined with BladeSmith. You must edit this file to add
the functionality you require. See “Editing Methods” on page 8-10 for more
information.

BladeSmith generates the following utility class files that contain utility
methods called by BladeSmith-generated routines:

� IfmxInStream.java

� IfmxOutStream.java

� DBDKInputException.java

� DBDKOutputException.java

� IfmxLog.java

� IfmxTrace.java

readme.txt src\java Text file This file describes the files
in the src\java directory.

warning.txt src\java Text file This file describes
potential problems with
your source code.

See “Warning File” on
page 8-7 for more
information.

Project_Java.mak src\java Makefile Use this file for compiling
on both UNIX and
Windows.

See “Compiling Java
DataBlade Module Code”
on page 8-14 for more
information.

Filename Directory Type of File More Information

(2 of 2)
8-6 IBM Informix DataBlade Developer’s Kit User’s Guide

SQLData Interface Method Support Code
For more information on utility classes, see “BladeSmith Utility Classes” on
page 8-9.

SQLData Interface Method Support Code
If you define a user-defined routine, aggregate, or cast support method that
handles an opaque data type implemented in C or C++, BladeSmith
generates the SQLData interface methods readSQL() and writeSQL() to
translate objects from and to their internal server representation.

BladeSmith generates complete code for these methods in a file named
Opaque.java, where Opaque is the name of the C or C++ opaque data type.
You should not modify these methods.

Warning File
The warning.txt file includes the following types of warnings about your
source code:

� Unfinished code. The file lists the routines to which you need to add
code.

� Other. The warning.txt file might contain other warnings, as appro-
priate for your source code.
Programming DataBlade Modules in Java 8-7

Using the Generated Code
Using the Generated Code
This section contains the following subsections:

� “Comments in Generated Code,” next

� “Logging and Error Handling” on page 8-8

� “BladeSmith Utility Classes” on page 8-9

Comments in Generated Code
BladeSmith adds comments to the code it generates. Each routine begins with
a prologue that describes the purpose of the routine, its arguments, and its
return value. Comments throughout the code describe variable declarations
and the results of generated Java statements and routine calls.

In comments at the beginning and end of each generated routine, BladeSmith
stores information it uses when regenerating source code. The prologue
includes a routine ID. A comment at the end of the routine contains a calcu-
lated checksum.

Warning: Do not modify either of these comments; BladeSmith uses them to merge
your edits into the regenerated code.

Logging and Error Handling
BladeSmith adds logging and error handling code throughout the generated
source code.

You can add additional logging calls using the Log() method from the
IfmxLog class. The Log() method calls the standard Java I/O package
methods system.out.println() and system.err.println(). For more infor-
mation on these methods, see the IBM Informix JDBC Driver Programmer’s
Guide.

If the Java value object is used on the client, the Log() method writes the
logging messages to the standard output. If the Java value object is used on
the server, the Log() method writes the logging messages to the Java log file.
8-8 IBM Informix DataBlade Developer’s Kit User’s Guide

BladeSmith Utility Classes
The Java log file is distinct from the main database server log file, online.log.
The Java log file contains all logging and tracing messages specific to Java
methods.

The Java log file is specified by the JVPLOG configuration parameter, which is
set in the ONCONFIG file. By default, the Java log file is at the following
location:

$INFORMIXDIR/extend/krakatoa/jvp.log

You can change the location of the Java log file by setting the JVPLOG config-
uration parameter; see J/Foundation Developer’s Guide.

You can use the Java log entries when you debug a Java method; see
“Debugging a DataBlade Module” on page 8-17.

BladeSmith Utility Classes
BladeSmith generates the following utility classes whose methods are
included in other generated code:

� IfmxInStream and IfmxOutStream. Provide read and write
methods to convert Java value objects between a string and the
internal server format. These methods perform similar tasks to the
Gen_sscanf() utility function.

� DBDKInputException and DBDKOutputException. Provide
exception-handling methods that are called when an exception
occurs during the input or output of a Java value object to or from the
database server.

� IfmxLog. Provides logging methods that are included throughout
the source code generated by BladeSmith. For more information on
using logging, see “Logging and Error Handling” on page 8-8.

� IfmxTrace. Not currently used.
Programming DataBlade Modules in Java 8-9

Editing Methods
Editing Methods
BladeSmith generates code for the following types of methods:

� “Most User-Defined Methods,” next

� “Iterators” on page 8-11

� “Aggregates” on page 8-12

� “Cast Support Methods” on page 8-14

This code is generated in the in the ProjectUDRs.java file.

Important: To avoid code merge problems, modify only code in the sections marked
with a TO DO: note. If you do modify code outside the designated areas, after you
regenerate, you might have two copies of the routine: the one you modified and the
one BladeSmith generated. Although your changes remain, you must resolve the
conflicts in the two pieces of code.

Most User-Defined Methods
BladeSmith generates only minimal code for most methods you create with
the Routine wizard.

The Generated Code

BladeSmith only generates templates for most user-defined methods.

The generated method declares the routine, its return type, and arguments.

Completing the Code

To complete the code for most user-defined methods, you must:

� add your declarations, if necessary.

� remove the call to Log(), which raises an error stating that the
method is not implemented.

� compute the return value and store it in the Gen_RetVal argument.
8-10 IBM Informix DataBlade Developer’s Kit User’s Guide

Iterators
For more information on programming routines, see J/Foundation Developer’s
Guide.

Example

The example JavaCircle DataBlade module has user-defined methods.

Iterators
If you create an iterator method that returns a set one row at a time, Blade-
Smith adds code to process the set. The Informix database server calls iterator
methods repeatedly to process all of the return values.

The Generated Code

In addition to the arguments you specified when you created it, an iterator
function contains an MI_FPARAM argument. The Informix database server
use an MI_FPARAM structure to control iteration over the set. The generated
code includes a Java else statement with different cases to process the set. The
else statement uses the getIterationState() method to obtain the request flag
from the UDREnv object. The Informix database server sets this flag to one
of the following values before it calls the method:

� UDR_SET_INIT. The initial call to the iterator method. The iterator
method allocates and initializes memory for state information.

� UDR_SET_RETONE. The iterator method is called with this request flag
once for each value in the set.

For each value in the set, the method places the address of the next
value in the set in the Gen_RetVal argument and returns
Gen_RetVal.

When there are no more values to return, the iterator method must
call the setSetIterationIsDone() function to signal the Informix data-
base server that all of the set values have been returned.

� UDR_SET_END. The request flag the Informix database server sets
after all values in the set have been returned. The iterator method
frees allocated memory and releases any other resources it has
obtained.
Programming DataBlade Modules in Java 8-11

Aggregates
In the generated code, each of these sections has a TO DO: note. To avoid code
merging problems, make changes only where indicated.

Completing the Code

To complete the iterator code, you must:

� Add information declarations.

� Initialize the iterator function.

� Allocate private state information.

� Compute the value of the iteration.

� Call setSetIterationIsDone() when the iteration is complete.

� Free private resources.

For more information on programming iterator methods, see J/Foundation
Developer’s Guide.

Aggregates
If you created a user-defined aggregate with the Aggregate wizard, Blade-
Smith generates aggregate methods in the ProjectUDRs.java source code
file.

The Generated Code

BladeSmith only generates templates for aggregate methods.

The generated method declares the method, its return type, and arguments.

Completing the Code

To complete the code for aggregate methods, you must:

� Add your declarations, if necessary.

� Remove the call to Log(), which raises an error stating that the
routine is not implemented.

� Compute the return value and store it in the Gen_RetVal argument.
8-12 IBM Informix DataBlade Developer’s Kit User’s Guide

Aggregates
For more information on programming aggregate methods, see J/Foundation
Developer’s Guide.

The Initialization Method

If you selected an initialization method, AggregateInit(), you must add code
to it to initialize the state type required by the aggregate computation. The
AggregateInit() method returns the state type.

The first argument of the AggregateInit() method is a dummy argument
whose value is always NULL. The second argument is an optional initial-
ization parameter to customize aggregate computation. The initialization
parameter cannot be a lone host variable reference.

The Iteration Method

You must add code to the iteration method, AggregateIter(), to perform the
aggregate computations.

Tip: Although the iteration method is called by the database server multiple times to
calculate the aggregation, it is not implemented as an iterator method that returns a
set of results.

The Combine Method

If you selected a combine method, AggregateComb(), you must add code to
it to merge one partial result with another and return the updated state type.

The Final Function

If you selected a final method, AggregateFinl(), you must add code to convert
the state type to the result type.

You can also add code to the AggregateFinl() method to release resources
acquired by the initialization method. However, the AggregateFinl() method
must not free the state type.
Programming DataBlade Modules in Java 8-13

Cast Support Methods
Cast Support Methods
If you specified a cast support method when you created a cast, BladeSmith
generates the cast support method in the ProjectUDRs.java file.

The Generated Code

BladeSmith generates only templates for cast support methods.

The generated method declares the routine, its return type, and arguments.

Completing the Code

To complete the code for cast support methods, you must:

� Add your declarations, if necessary.

� Remove the call to Log(), which raises an error stating that the
routine is not implemented.

� Convert one data type to the other.

� Store the return value in the Gen_RetVal argument.

In a cast support method, you might convert from one binary representation
to another, if the data types involved in the cast have differing binary repre-
sentations. Alternatively, you might perform a calculation to convert one
data type to another.

Compiling Java DataBlade Module Code
BladeSmith generates the Project_Java.mak makefile in the src\java
directory. Use this makefile to compile Java code from the command line on
UNIX and Windows.

When you compile, the makefile produces a JAR file, Project.jar, in the source
code directory src/java. This file is appropriate for the server and client
implementations.
8-14 IBM Informix DataBlade Developer’s Kit User’s Guide

Compiling Java DataBlade Module Code
The makefile requires that you set the following environment variables
before you compile:

� INFORMIXDIR. Set to the Informix database server installation
directory.

� CLASSPATH. Set to the Java Developers Kit, the Java in the server JAR
file, and the IBM Informix JDBC Driver locations:

.:$(JDKPATH):${INFORMIXDIR}/extend/krakatoa/krakatoa.jar:
${INFORMIXDIR}/extend/krakatoa/jdbc.jar

� TARGET. Set to the path and filename of the include file for your
platform. Platform-specific files are located in the directory
INFORMIXDIR/incl/dbdk. ♦

The BINDIR variable in the makefile determines where the JAR files are
written.

BladeSmith creates server, all, and clean targets in the makefile. The server
target builds the JAR files. The clean target deletes the JAR files. The default
all target is equivalent to the server target.

Important: When you generate code in BladeSmith, set the Format property of the
DataBlade node to the correct file format for your operating system (UNIX or DOS).
The default is DOS. See “Generating Source Files” on page 4-72 for more
information.

Use the Project_Java.mak makefile with the JDK 1.1.x compiler.

To compile and link your DataBlade module JAR files

1. If you are compiling on a different computer than the one on which
DBDK is installed, copy the generated src/java directory with its
contents to the target directory.

2. Execute the appropriate command at the UNIX C shell or the MS-DOS
prompt:

make -f Project_Java.mak ♦

nmake -f Project_Java.mak ♦

Project is the name of the DataBlade module project. The Project.jar
files are created in the src/java directory.

WIN NTUNIX

WIN NTUNIX

Windows
Programming DataBlade Modules in Java 8-15

Debugging and Testing DataBlade Modules Written in Java
Debugging and Testing DataBlade Modules Written
in Java
This section describes debugging and performing functional tests on
DataBlade module routines written in Java.

This section contains the following subsections:

� “Preparing Your Environment,” next

� “Debugging a DataBlade Module” on page 8-17

� “Performing Functional Tests” on page 8-19

Preparing Your Environment
Before you can debug or test your DataBlade module, you must configure
your Informix database server.

For information on the environment variables you must set to debug and test
on UNIX, see “Preparing Your Environment” on page 9-4. ♦

For information on the environment variables you must set to debug and test
on Windows, see “Preparing Your Environment” on page 10-4. ♦

In addition, you must complete the following tasks to use Java with the
database server:

� Create an sbspace to hold the Java JAR files.

� Create the JVP properties file.

� Add or modify the Java configuration parameters in the ONCONFIG
file.

� Install symbolic links to the Java VM libraries. ♦

For instructions on how to complete these tasks, see J/Foundation Developer’s
Guide.

WIN NTUNIX

Windows

WIN NTUNIX
8-16 IBM Informix DataBlade Developer’s Kit User’s Guide

Debugging a DataBlade Module
Debugging a DataBlade Module
Debugging a DataBlade module is usually an iterative process, repeated
several times until the code is completely debugged. The debugging process
has the following general steps:

1. Compile the JAR file (if necessary).

2. Install the DataBlade module shared object and SQL scripts in the
$INFORMIXDIR/extend/project directory.

See “Installing a DataBlade Module” on page 8-17 for more
information.

3. Start your database server while logged on as the informix user.

See the IBM Informix Dynamic Server Administrator’s Guide for more
information.

4. Register the DataBlade module using BladeManager (if necessary).

See the “Registering a DataBlade Module” on page 8-18 for more
information.

5. If you are replacing an existing JAR file, shut down and restart the
database server.

See “Replacing a DataBlade Module JAR File” on page 8-18 for more
information.

6. Execute a query that calls the method using an SQL query tool such
as DB-Access or SQL Editor.

See the IBM Informix DB-Access User’s Guide for more information.

7. Examine the Java log file for errors.

See “Logging and Error Handling” on page 8-8 for more
information.

8. Edit the source code (if necessary).

9. Repeat the procedure, as necessary.

Installing a DataBlade Module

To install a DataBlade module for debugging, create a project directory and
copy the necessary files to it. Create the project directory under $INFOR-
MIXDIR/extend. The name of the project directory is what BladeManager
uses as the DataBlade module name.
Programming DataBlade Modules in Java 8-17

Debugging a DataBlade Module
A good project naming strategy is to combine the project name and version
numbers you entered in the New Project wizard in BladeSmith. For example,
the Circle project, Version 1.0, can be in $INFORMIXDIR/extend/Circle.1.0.
IBM Informix DataBlade modules also include a string indicating the build
platform and minor release: for example, 1.0.UC1.TC2, where UC1 is the first
UNIX major release, and TC2 is the second Windows minor release.

To copy the necessary files to the project directory, use one of these methods:

� Use BladePack to create an installation directory for your DataBlade
module and then copy that directory into the module subdirectory
under $INFORMIXDIR/extend. For instructions, see Chapter 11,
“Using BladePack.”

� Copy the project.jar file and the contents of the scripts directory into
the project directory.

For installation tips and solutions to common problems, see the IBM Informix
Developer Zone at www.ibm.com/software/data/developer/informix.

Registering a DataBlade Module

You need to register your DataBlade module the first time you install it and
subsequently if you change the definition of any of your DataBlade module
objects in BladeSmith and generate new SQL files. You do not have to rereg-
ister your DataBlade module when you only replace its JAR file.

Important: You must have a default sbspace defined in your database server to hold
your DataBlade module JAR files. If you do not, BladeManager does not register your
Java DataBlade module.

See the IBM Informix DataBlade Module Installation and Registration Guide for
more information on registering DataBlade modules.

Replacing a DataBlade Module JAR File

When a DataBlade module is loaded onto an Informix database server, the
database server stores it in the database server memory map. Therefore, if
you overwrite a JAR file while it is loaded in the database server, you must
stop and restart the database server to unload the old JAR file and load the
new one.
8-18 IBM Informix DataBlade Developer’s Kit User’s Guide

Performing Functional Tests
Warning: If you do not stop and restart the database server after you replace a
DataBlade module JAR file, the database server might fail when you call a DataBlade
module routine.

To unload a module without restarting the Informix database server, you
must drop all objects in the module, using the SQL DROP statement. After all
objects in the module have been dropped and all instances of the methods
have finished executing, the symbol references to the DataBlade module JAR
file are invalidated, and a message is recorded in the log file.

After the module is unloaded, replace the JAR file and load it into the
database.

Performing Functional Tests
When you generate functional tests, BladeSmith creates a set of files that
include shell scripts and SQL scripts for testing opaque data type support
routines, user-defined routines, and cast support functions.

For instructions on how to execute functional tests on UNIX, see “Performing
Functional Tests” on page 9-12. ♦

For instructions on how to execute functional tests on Windows, see
“Performing Functional Tests on DataBlade Modules” on page 10-12. ♦

WIN NTUNIX

Windows
Programming DataBlade Modules in Java 8-19

9
Chapter
Debugging and Testing
DataBlade Modules on UNIX
In This Chapter . 9-3

Prerequisite Tasks 9-4

Preparing Your Environment 9-4

Using the Shared Object File 9-5
Replacing a Shared Object File 9-5
Shared Object File Ownership and Permissions. 9-6
Symbols in Shared Object Files 9-6

Installing and Registering DataBlade Modules 9-7
Installing a DataBlade Module 9-7
Registering a DataBlade Module 9-8

Debugging a DataBlade Module 9-8
Loading the DataBlade Module 9-9
Identifying the Server Process 9-10
Running the Solaris Debugger 9-11
Setting Breakpoints 9-12

Debugging a UNIX DataBlade Module with Windows 9-12

Performing Functional Tests. 9-12
Functional Test Overview 9-14

Contents of the Functional Test Directory 9-14
Adding Custom Test Files 9-16

Executing Functional Tests 9-17
Using the Functional Test Scripts 9-17
Initializing Reference Files 9-18

9-2 IBM
 Informix DataBlade Developer’s Kit User’s Guide

In This Chapter
This chapter describes how to debug and perform functional tests for
DataBlade modules written in C for Dynamic Server on UNIX.

See “Debugging and Testing DataBlade Modules Written in Java” on
page 8-16 for instructions on debugging DataBlade modules written in Java.

The following sections describe particular testing and debugging topics in
detail:

� “Prerequisite Tasks,” next

� “Preparing Your Environment” on page 9-4

� “Using the Shared Object File” on page 9-5

� “Installing and Registering DataBlade Modules” on page 9-7

� “Debugging a DataBlade Module” on page 9-8

� “Debugging a UNIX DataBlade Module with Windows” on
page 9-12

� “Performing Functional Tests” on page 9-12
Debugging and Testing DataBlade Modules on UNIX 9-3

Prerequisite Tasks
Prerequisite Tasks
Before you debug or run functional tests on your DataBlade module code,
you must complete these tasks:

1. Create your DataBlade module in BladeSmith.

See “Creating DataBlade Module Objects” on page 4-14 for
instructions.

2. Add functional test data for your DataBlade module routines in
BladeSmith.

See “Adding Functional Test Data” on page 4-60 for instructions.

3. Generate source, SQL, and test files in BladeSmith.

See “Generating Files” on page 4-66 for instructions.

4. Complete your source code.

For instructions on completing C code, see Chapter 5, “Program-
ming DataBlade Module Routines in C.”

For instructions on completing C++ and ActiveX code, see
Chapter 6, “Creating ActiveX Value Objects.”

5. Build your DataBlade module dynamic link library.

For instructions on compiling C DataBlade modules, see “Compiling
on Windows” on page 5-57.

For instructions on compiling C++ and ActiveX DataBlade modules,
see “Compiling Client and Server Projects” on page 6-10.

Preparing Your Environment
Test and debug your DataBlade module in a nonproduction Informix
database server environment because debugging interferes with the
operation of the database server.

To successfully test and debug your DataBlade module, set your
environment so you can access your Informix database server installation
and build your DataBlade module shared object.
9-4 IBM Informix DataBlade Developer’s Kit User’s Guide

Using the Shared Object File
To run your Informix database server, check that these environment variables
are set properly: INFORMIXDIR, PATH, LD_LIBRARY_PATH, ONCONFIG,
and INFORMIXSERVER. See the IBM Informix Dynamic Server Administrator’s
Guide for more information on configuring your Informix database server.

When testing your DataBlade module, set the TESTDB environment variable
to the name of your test database.

To recompile your DataBlade module shared object file during debugging,
also set the TARGET environment variable. See “Compiling on UNIX” on
page 5-55 for more information on the TARGET environment variable.

Using the Shared Object File
A DataBlade module exists in the Informix database server as a shared object.
The shared object file is loaded into the database server the first time one of
its routines is executed after the database server is started. The shared object
file is unloaded every time the database server is stopped.

Replacing a Shared Object File
When a DataBlade module is loaded onto an Informix database server, the
database server stores it in the database server memory map. Therefore, if
you overwrite a shared object file while it is loaded in the database server,
you must stop and restart the database server to unload the old shared object
file and load the new one.

Warning: If you do not stop and restart the database server after replacing a shared
object, the database server might fail when you call a DataBlade module routine.

To unload a module without restarting the Informix database server, you
must drop all objects in the module, using the SQL DROP statement. After all
objects in the module have been dropped and all instances of the routines
have finished executing, the symbol references to the DataBlade module
shared object are invalidated, and a message is recorded in the log file.

After the module is unloaded, replace the shared object file and load it into
the database.
Debugging and Testing DataBlade Modules on UNIX 9-5

Shared Object File Ownership and Permissions
Shared Object File Ownership and Permissions
Shared object files must be owned by the user ID that runs the Informix
database server. In a production installation, the Informix database server
runs as user informix, and shared object files are owned by user informix.

The Informix database server loads a shared object file only if it is marked as
read-only. The project.bld file is marked as read-only by the makefile Blade-
Smith generates.

Important: If you receive a -9793 error when you try to execute a routine in the
shared object file, your shared object file is not marked as read-only.

Symbols in Shared Object Files
Undefined symbols in a shared object file are resolved in the database server
when the file is loaded. If a symbol is missing, the load fails on the first
execution of the user-defined routine, and a message is written in the server
log file.

You cannot resolve undefined symbols in a shared object file using defini-
tions in another shared object file.

A symbol defined in a shared object file on the database server behaves in one
of two ways:

� If the symbol referenced in the shared object file is in the same source
file that references it, the debugger accesses the symbol in the shared
object file.

� If the shared object file includes more than one source file and there
is a cross-file symbol reference, the symbol is resolved in the
database server. These symbols are listed as unresolved when you
link the shared object file.

Important: Although most of the unresolved symbols listed when you link the
DataBlade module shared object file are resolved when the database server loads the
shared object, check for mistyped symbols; these are not resolved.
9-6 IBM Informix DataBlade Developer’s Kit User’s Guide

Installing and Registering DataBlade Modules
Installing and Registering DataBlade Modules
Installing a DataBlade module places the module’s files in a subdirectory of
the $INFORMIXDIR/extend directory; registering a DataBlade module adds
the module to a database. You must install and register before you can test or
debug a DataBlade module.

Installing a DataBlade Module
See “Replacing a Shared Object File” on page 9-5 for important information
about updating an existing DataBlade module shared object file.

To install a DataBlade module for testing and debugging, create a project
directory and copy the necessary files to it. Create the project directory under
$INFORMIXDIR/extend. The name of the project directory is what
BladeManager uses as the DataBlade module name.

A good project naming strategy is to combine the project name and version
numbers you entered in the New Project wizard in BladeSmith. For example,
the Circle project, Version 1.0, can be in $INFORMIXDIR/extend/Circle.1.0.
IBM Informix DataBlade modules also include a string indicating the build
platform and minor release: for example, 1.0.UC1.TC2, where UC1 is the first
UNIX major release, and TC2 is the second Windows minor release.

To copy the necessary files to the project directory, use one of these methods:

� Use BladePack to create an installation directory for your DataBlade
module and then copy that directory into the module subdirectory
under $INFORMIXDIR/extend. For instructions, see Chapter 11,
“Using BladePack.”

� Copy the project.bld file and the contents of the scripts directory into
the project directory.

For installation tips and solutions to common problems, see the IBM Informix
Developer Zone at www.ibm.com/software/data/developer/informix.
Debugging and Testing DataBlade Modules on UNIX 9-7

Registering a DataBlade Module
Registering a DataBlade Module
You need to register your DataBlade module the first time you install it and
if you change the definition of any of your DataBlade module objects in
BladeSmith and generate new SQL files. You do not have to reregister your
DataBlade module when you only replace its shared object file.

See the IBM Informix DataBlade Module Installation and Registration Guide for
more information on registering DataBlade modules.

Debugging a DataBlade Module
Debugging a DataBlade module is usually an iterative process, repeated
many times until the code is completely debugged. The debugging process
has the following general steps:

1. Build the shared object file with debugging support while logged on
as user informix (if necessary).

To debug a DataBlade module, compile the shared object file with the
-g compiler option so that debugging symbols are available to the
debugger. See “Compiling DataBlade Module Code” on page 5-54
for information about compiling with debugging support.

2. Install the DataBlade module shared object and SQL scripts in the
$INFORMIXDIR/extend/project directory.

See “Installing a DataBlade Module” on page 9-7 for more
information.

3. Start your database server with the oninit command, while logged
on as the informix user.

See the IBM Informix Dynamic Server Administrator’s Guide for more
information.

4. Register the DataBlade module, using BladeManager (if necessary).

See “Registering a DataBlade Module” on page 9-8 for more
information.
9-8 IBM Informix DataBlade Developer’s Kit User’s Guide

Loading the DataBlade Module
5. If you are replacing an existing shared object, shut down and restart
the database server with the onmode -yuk and oninit commands.

See “Replacing a Shared Object File” on page 9-5 for more
information.

6. Load the DataBlade module by calling one of its routines.

See “Loading the DataBlade Module” on page 9-9 for instructions.

7. Log on as user root in a new window to run the debugger.

8. Obtain the database server process ID for the root session.

See “Identifying the Server Process” on page 9-10 for instructions.

9. Run the debugger and attach to the database server process.

See “Running the Solaris Debugger” on page 9-11 for instructions.

10. Set any appropriate breakpoints.

See “Setting Breakpoints” on page 9-12 for more information.

11. Issue SQL statements to call your DataBlade module routines from
the informix session.

See the IBM Informix DB-Access User’s Guide for more information.

12. Edit the source code (if necessary).

13. Repeat the procedure, as necessary.

The following sections describe some of these steps.

Loading the DataBlade Module
Before you can attach to the database server process with the debugger, load
your DataBlade module shared object file into the database server address
space. With the shared object file loaded, set breakpoints on the routine entry
points and examine local storage provided by the routines.

To load the DataBlade module into the database server address space,
execute one of its routines. One technique is to call the routine with an impos-
sible condition, as follows:

SELECT routine_name(column_name) FROM table_name
WHERE 1=0;
Debugging and Testing DataBlade Modules on UNIX 9-9

Identifying the Server Process
routine_name is the name of your routine, column_name is the name of a
column in the table, and table_name is the name of the table. This statement
loads your DataBlade module shared object file without executing the
routine.

Identifying the Server Process
To debug a routine, you must identify the virtual processor in which that
routine runs. By default, routines are assigned to the CPU virtual processor
class. However, when you create a routine in BladeSmith, you can specify if
it is poorly behaved and assign it to a user-defined virtual processor class.

To identify the virtual processor class assigned to a routine, look at the
property page for the routine in BladeSmith. If the class field is blank, then
the routine runs in the CPU VP. See “C Programming Guidelines” on
page 3-13 for more information on user-defined virtual processors.

Important: If you have more than one instance of a virtual processor in a CPU or
user-defined virtual processor class, threads can migrate between virtual processors,
making debugging difficult. To simplify debugging, configure your database server
so that there is only one instance each of the CPU VP or user-defined VP used by the
routines in your DataBlade module.

To find the process ID (PID) of the CPU or user-defined virtual processor that
you want to debug, execute the onstat command, as follows:

onstat -g glo

The last section of the output of this onstat command is similar to the
following example.

Figure 9-1
Sample onstat

Command Output
Individual virtual processors:
 vp pid class usercpu syscpu total
 1 3544 cpu 3.75 0.96 4.71
 2 3545 adm 0.05 0.03 0.08
 3 3546 lio 0.04 0.07 0.11
 4 3547 pio 0.05 0.03 0.08
 5 3548 aio 0.04 0.04 0.08
 6 3549 msc 0.39 0.19 0.58
 7 3550 aio 0.09 0.10 0.19
9-10 IBM Informix DataBlade Developer’s Kit User’s Guide

Running the Solaris Debugger
Typically, the PID circled in the sample output is the one you need. In this
example, there are no user-defined virtual processor classes; all the
DataBlade routines are marked as well behaved and run in the single
instance of the CPU VP.

Running the Solaris Debugger
To debug your DataBlade module, use a debugger that can attach to the
active database server process and access the symbol tables of dynamically
loaded shared object files. On Solaris, the dbx utility meets these criteria, as
does debugger.

Before beginning debugging, enter the following commands to disable signal
handlers in the debugger:

ignore SIGUSR1
ignore SIGUSR2

Tip: You can put these instructions in the .dbxinit file. Then put the file in the
$INFORMIXDIR/bin directory. However, then you must always start dbx from that
directory.

To start dbx, enter the following command at the shell prompt:

dbx - PID

PID is the process ID of the CPU VP or user-defined VP.

This command starts dbx on the database server virtual process without
starting a new instance of the virtual processor.

When the debugger starts, it lists the loaded shared object libraries. If your
DataBlade module shared object file is not on the list, load it by calling one of
its routines in the database server. See “Loading the DataBlade Module” on
page 9-9 for instructions.

You can set breakpoints, examine the stack, resume execution, or carry out
any other normal dbx command. See the on-line dbx manual page for more
information about available dbx commands.
Debugging and Testing DataBlade Modules on UNIX 9-11

Setting Breakpoints
Setting Breakpoints
You can set breakpoints in any routine with an entry point known to dbx.

Informix database server software is compiled with debugging support
turned off, so local storage and line number information is not available for
database server routines. However, after you compile the DataBlade module
for debugging, you can see line number information and local storage for
your functions.

When you enter a command in the client that calls one of your DataBlade
module routines, the debugger stops in the routine. Then you can follow the
steps of your routine. Because your DataBlade module is compiled with
debugging support, you can view the local variables and stack for your
routines.

Debugging a UNIX DataBlade Module with Windows
Debug a UNIX DataBlade module from your Windows computer by logging
into a UNIX computer from your Windows computer and running the
debugger in a telnet session or an X window emulation program.

Performing Functional Tests
When you generate functional tests, BladeSmith creates a set of files that
include shell scripts and SQL scripts for testing opaque data type support
routines, user-defined routines, and cast support functions. By default, these
files are created in the functest subdirectory of the directory containing the
BladeSmith project file.

Functional tests are generated only for the DataBlade module objects for
which you enter test data in your BladeSmith project. See “Adding
Functional Test Data” on page 4-60 for information about entering test data.
9-12 IBM Informix DataBlade Developer’s Kit User’s Guide

Performing Functional Tests
Functional testing is typically an iterative process, repeated many times until
the code passes all the tests. The testing process has the following general
steps:

1. Build the shared object file while logged on as user informix.

See “Compiling on UNIX” on page 5-55 for instructions.

2. Install the DataBlade module shared object, SQL scripts, and test
scripts in the $INFORMIXDIR/extend/project directory.

See “Installing a DataBlade Module” on page 9-7 for more
information.

3. Log on as the informix user and start your database server with the
oninit command.

See the IBM Informix Dynamic Server Administrator’s Guide for more
information.

4. Create a test database.

See the IBM Informix DB-Access User’s Guide for more information.

5. Register the DataBlade module, using BladeManager.

See “Registering a DataBlade Module” on page 9-8 for more
information.

6. If you are replacing an existing shared object, shut down and restart
the database server with the onmode -k and oninit commands.

See “Replacing a Shared Object File” on page 9-5 for more
information.

7. Execute the functional tests.

See “Executing Functional Tests” on page 9-17 for instructions.

8. Edit the source code (if necessary).

9. Regenerate the tests in BladeSmith (if necessary).

10. Repeat the procedure, as necessary.
Debugging and Testing DataBlade Modules on UNIX 9-13

Functional Test Overview
Functional Test Overview
Functional tests include SQL scripts and shell scripts that execute the SQL
scripts and determine the results. The shell scripts build test tables in a
database, run the SQL test scripts, and then drop the test tables from the
database.

You can create custom shell scripts to run additional tests or initialization
scripts. The generated scripts include calls to your custom scripts.

Shell scripts execute SQL scripts using DB-Access. The results from the SQL
statements are saved in .log files. When you first run functional tests, you
must inspect the .log files and, if the results are correct, use the shell scripts
to copy them to .req files.

When you execute functional tests after saving .req files, the shell script uses
the UNIX diff command to compare the .log files to the .req files. The script
prints the following messages:

� “test passed” message if the .log and .req files match

� “test failed” message if the files do not match

� “status unknown” message when a .req file does not yet exist

Important: There are minor formatting differences between the UNIX and Windows
versions of DB-Access that can cause tests to indicate failure incorrectly.

Contents of the Functional Test Directory

The functional test directory, functest, includes the following subdirectories:

� data. Contains .dat files for each opaque type, user-defined routine,
and cast for which you entered test data. The name of the data file is
objectname.dat, where objectname is either the name of the opaque
type or the name of the C routine associated with a user-defined
routine or cast.

� opaque. Contains a subdirectory for each opaque type for which you
entered test data. The subdirectory contains functional tests for the
support routines defined for the opaque type.
9-14 IBM Informix DataBlade Developer’s Kit User’s Guide

Functional Test Overview
� udr. Contains a subdirectory containing functional tests for each
user-defined routine for which you entered test data.

� cast. Contains a subdirectory containing functional tests for each cast
for which you entered test data.

The functest directory contains a master shell script, main.sh, for executing
all of the functional tests generated for the DataBlade module. Each subdi-
rectory in the udr, opaque, and cast directories also contains a main.sh script
to execute only the functional tests in that subdirectory.

The subdirectories in the udr, opaque, and cast directories contain various
SQL scripts. Each subdirectory has a setup.sql script and a cleanup.sql script.
The setup.sql script creates test tables and initializes them with test data. The
cleanup.sql script drops all of the test tables from the database.

BladeSmith creates the following SQL test scripts for the object being tested:

� call_pos.sql, for user-defined routines

� call_neg.sql, for negative tests of user-defined routines

� cast.sql, for casts

� Additional scripts for opaque types to test the support routines
defined for the type, as described in the following table

Script Names Support Routines Tested

textio_pos.sql Text input/output functions for an opaque type; uses
only valid test data.

textio_neg.sql Text input/output functions for an opaque type; uses test
data with invalid input data.

binio.sql Binary file input/output functions; uses the valid input
data for the opaque type.

textexp.sql Text file import/export functions for opaque types; uses
the UNLOAD and LOAD SQL statements.

binexp.sql Binary file import/export functions for an opaque type;
uses nested calls to the binary file import/export
functions. The result of the nested calls should be equiv-
alent to the text input format for the type.

(1 of 2)
Debugging and Testing DataBlade Modules on UNIX 9-15

Functional Test Overview
A script is generated only when the support routines it tests are defined.

Adding Custom Test Files

You can add other tests or initialization scripts to your test suite by adding
your own scripts in the subdirectories of the functest directory and editing
the sample user.sh shell script that BladeSmith generates. For example, you
can add SQL scripts to create a test database, create special test tables in it, and
execute custom tests against those tables.

notify.sql The Assign/Destroy routines; inserts and deletes values
in a new test table.

compare.sql The Compare function for an opaque type.

equal.sql The Equal function for an opaque type.

notequal.sql The NotEqual function for an opaque type.

btree.sql

lessthan.sql

lessthanorequal.sql

greaterthan.sql

greaterthanorequal.sql

B-tree support functions for an opaque type.

plus.sql

minus.sql

times.sql

divide.sql

Standard math operators for an opaque type.

positive.sql

negative.sql

The Positive and Negate functions for an opaque type.

concat.sql The concatenation operator; calls the Concat function for
an opaque data type with two instances of the type.

hash.sql The Hash support function with a SELECT...GROUP BY
SQL query.

Script Names Support Routines Tested

(2 of 2)
9-16 IBM Informix DataBlade Developer’s Kit User’s Guide

Executing Functional Tests
Executing Functional Tests
To execute functional scripts, use the main.sh script. Execute a command in
all test directories by executing the main.sh command in the top-level test
directory. You can execute tests for a specific DataBlade module object by
executing main.sh in that object’s test directory.

The first time you execute the tests, initialize the reference files. See “Initial-
izing Reference Files” on page 9-18 for instructions.

The TESTDB environment variable must be set to the name of the test
database.

Using the Functional Test Scripts

The main.sh script is a Bourne shell script that accepts one of five possible
command line parameters, as described in the following table.

Command Description

main.sh build Runs user.sh with a “build” target.

Runs the setup.sql script.

main.sh clean Deletes .log files.

Runs user.sh with a “clean” target.

Executes clean.sql in the database.

main.sh run Uses DB-Access to run each SQL script generated by Blade-
Smith, saving the output in a .log file.

If a .req file exists, calls diff to determine the test result. It prints
a message telling whether the test passed or failed.

After all BladeSmith-generated tests are run, executes user.sh
with a “run” target.

main.sh save Copies all .log files to .req files, overwriting existing .req files.

main.sh all Performs the “build,” “run,” and “clean” actions. Use this
shortcut after the .req files have been saved.
Debugging and Testing DataBlade Modules on UNIX 9-17

Executing Functional Tests
Initializing Reference Files

The first time you run tests, execute the “build” and “run” targets, as follows:

main.sh build
main.sh run

These two steps prepare the database, run the test scripts, and generate .log
files. The results of all tests are unknown (no reference file).

Check the results in each .log file to determine if the test returned the correct
result. The expected result (which was entered with the test data in
BladeSmith) is shown in a comment.

If the results are incorrect, you might need to fix the DataBlade module C
code. In other cases, the test data can be incorrect.

When the tests return correct results, create reference files by executing the
“save” target, as follows:

main.sh save

After reference files have been saved, use the “all” shortcut target to build
and run the tests and clean up the database and test directory.
9-18 IBM Informix DataBlade Developer’s Kit User’s Guide

10
Chapter
Debugging and Testing
DataBlade Modules on
Windows

In This Chapter . 10-3

Prerequisite Tasks 10-3

Preparing Your Environment 10-4

DBDK Visual C++ Add-In and IfxQuery 10-5
The Debug DataBlade Module Command 10-6
Other Add-In Commands 10-7

Debugging a DataBlade Module 10-8
Manually Loading the Add-In 10-9
Specifying Properties for a Project 10-10
Setting Breakpoints 10-10
Editing Unit Test Files 10-11

Performing Functional Tests on DataBlade Modules 10-12

10-2 IBM
 Informix DataBlade Developer’s Kit User’s Guide

In This Chapter
This chapter describes how to debug and perform functional tests for
DataBlade modules written in C and C++ for Dynamic Server on Windows.

See “Debugging and Testing DataBlade Modules Written in Java” on
page 8-16 for instructions on debugging DataBlade modules written in Java.

The following sections describe particular testing and debugging topics in
detail:

� “Prerequisite Tasks,” next

� “Preparing Your Environment” on page 10-4

� “DBDK Visual C++ Add-In and IfxQuery” on page 10-5

� “Debugging a DataBlade Module” on page 10-8

� “Performing Functional Tests on DataBlade Modules” on page 10-12

Prerequisite Tasks
Before you run tests or debug your DataBlade module code, you must
complete these tasks:

1. Create your DataBlade module in BladeSmith.

See “Creating DataBlade Module Objects” on page 4-14 for
instructions.

2. Optionally add functional test data for your DataBlade module
routines in BladeSmith.

See “Adding Functional Test Data” on page 4-60 for instructions.

3. Generate source, SQL, and test code in BladeSmith.

See “Generating Files” on page 4-66 for instructions.
Debugging and Testing DataBlade Modules on Windows 10-3

Preparing Your Environment
4. Complete your source code.

For instructions on completing C code, see Chapter 5, “Program-
ming DataBlade Module Routines in C.”

For instructions on completing C++ and ActiveX code, see Chapter 6,
“Creating ActiveX Value Objects.”

5. Build your DataBlade module dynamic link library.

For instructions on compiling C DataBlade modules, see “Compiling
on Windows” on page 5-57.

For instructions on compiling C++ and ActiveX DataBlade modules,
see “Compiling Client and Server Projects” on page 6-10.

Preparing Your Environment
Test and debug your DataBlade module in a nonproduction Informix
database server environment because debugging interferes with the
operation of the database server.

To use the debugging features of the DBDK Visual C++ Add-In, you must
have a local database server.

Before you begin testing and debugging your DataBlade module, verify that
your database server is running properly. Use the Setnet32 utility to complete
the Server Information page and create a default database server. Create a
database with SQL Editor; if the command succeeds, your server is properly
configured and the DBDK Visual C++ Add-In should work properly.

See the IBM Informix Dynamic Server Administrator’s Guide for more infor-
mation on configuring your Informix database server.
10-4 IBM Informix DataBlade Developer’s Kit User’s Guide

DBDK Visual C++ Add-In and IfxQuery
DBDK Visual C++ Add-In and IfxQuery
The DBDK Visual C++ Add-In is a toolbar that appears in Microsoft Visual
C++ after you install DBDK. The add-in aids you in debugging DataBlade
modules in the following ways:

� If you are using a local database server for debugging, the add-in
automates tasks from compiling through reaching the first break-
point in your source code. In this case, you must have your database
server on the same computer as the DataBlade Developers Kit you
used to develop your DataBlade module.

� If you are using a remote database server, the add-in automates the
following tasks:

❑ Installing the DataBlade module project file

❑ Installing the DataBlade module SQL scripts

❑ Registering the DataBlade module

The add-in toolbar contains seven buttons. To see the name of each
command, position the mouse pointer over the button. Figure 10-1 shows the
add-in toolbar.

The primary add-in command is the Debug DataBlade Module command;
it completes all the tasks necessary to bring your DataBlade module to the
first debugging breakpoint. When you use the Debug DataBlade Module
command to start debugging, the IfxQuery tool is launched from within
Visual C++ when an SQL unit test file is the active window.

Figure 10-1
DBDK Visual C++ Add-In
Debugging and Testing DataBlade Modules on Windows 10-5

The Debug DataBlade Module Command
The Debug DataBlade Module Command
If you have a DataBlade module project open in Visual C++ and click the
Debug DataBlade Module button, the Debug DataBlade Module command
performs the following steps:

1. Checks if the DataBlade module needs to be compiled and compiles
it, if necessary.

2. If necessary, creates a new directory for the DataBlade module under
the %INFORMIXDIR%\extend directory.

3. Installs the DataBlade module dynamic link library and SQL scripts
in the %INFORMIXDIR%\extend\project.0 directory.

4. If necessary, shuts down the database server.

5. Starts Visual C++ debugger with the database server attached.

Important: The database server typically runs as a Windows service; you can start
and stop it using the Services dialog box in the Control Panel. However, when the
add-in starts the database server attached to the debugger, it does not run as a service
and the Services dialog box does not show it running. If you attempt to start or stop
the database server using the Services dialog box while it is attached to the debugger,
you receive an error.

If the active window when you execute the Debug DataBlade Module
command is an SQL file, the Debug DataBlade Module command launches
IfxQuery, which performs the following additional tasks:

1. If necessary, creates the database you specified in the Configure
DBDK Visual C++ Add-In dialog box

2. Connects to the database for the project

3. Registers the DataBlade module

4. If necessary, initializes the newly created database using the
Setup.sql file

5. Executes the SQL statements from the active unit test SQL file until
the first breakpoint is reached

6. After you pass the breakpoint, executes the next SQL statement until
the next breakpoint is reached

7. After you pass all breakpoints and the routine returns, writes the
results of the SQL statements to an HTML file

8. Launches the default HTML browser for your computer
10-6 IBM Informix DataBlade Developer’s Kit User’s Guide

Other Add-In Commands
9. Displays the SQL results in the HTML browser

10. Shuts down

If the active window when you execute the Debug DataBlade Module
command is not an SQL file, you can execute SQL queries using another SQL
query tool, such as SQL Editor. However, you must first explicitly register the
DataBlade module by clicking the add-in Register DataBlade Module
button or by using BladeManager (see the IBM Informix DataBlade Module
Installation and Registration Guide for instructions). In addition, the database
you specified in the Configure DBDK Visual C++ Add-In dialog box must
exist.

Other Add-In Commands
The following table lists the other add-in command buttons, in addition to
the Debug DataBlade Module command, and the tasks they complete.

Important: Before you can run the Register DataBlade Module command, you
must install the DataBlade module by using the Upload DataBlade Module and
Upload DataBlade SQL Scripts commands, and the database you specified in the
Configure DBDK Visual C++ Add-In dialog box must exist.

Task Button

Copy the project.bld file to the local or
remote database server

Upload DataBlade Module

Copy the DataBlade module SQL scripts
to the local or remote database server

Upload DataBlade SQL Scripts

Register the DataBlade module on the
local or remote database server

Register DataBlade Module

Shut down and restart the local database
server

Stops and restarts IDS on the local host

Launch the add-in help page, which is
part of the DBDK InfoShelf

Launch InfoShelf

Change the database server or database
for a project

Configure DBDK Visual C++ Add-In
dialog box
Debugging and Testing DataBlade Modules on Windows 10-7

Debugging a DataBlade Module
Debugging a DataBlade Module
Debugging a DataBlade module is usually an iterative process, repeated
many times until the code is completely debugged. The “Creating a Simple
User-Define Routine” exercise in the DBDK InfoShelf tutorial guides you
through this process.

The debugging process on a local database server has the following general
steps:

1. Open the project.dsw file in Visual C++. You can do this in Blade-
Smith by clicking the MSDev button on the Generate DataBlade
dialog box or by choosing Tools�MSDev.

The DBDK Visual C++ Add-In toolbar should be present in the Visual
C++ program if you installed DBDK after you installed Visual C++. If
it is not present, you must add it manually before you continue with
the next step. See “Manually Loading the Add-In” on page 10-9 for
instructions.

2. The DBDK Visual C++ Add-In prompts you to configure the session
for your new DataBlade project. Click Yes to select a local server.

3. Specify the project database server, database, and, optionally, the SQL
script to initialize your database.

See “Specifying Properties for a Project” on page 10-10 for more
information.

4. Set appropriate breakpoints in one of the source code files.

See “Setting Breakpoints” on page 10-10 for instructions.

5. Open the appropriate unit test file in Visual C++ and edit it to add
appropriate SQL.

See “Editing Unit Test Files” on page 10-11 for more information.

6. Click the Debug DataBlade Module button.

7. If you need to specify an executable file for the debugging session,
the Executable For Debug Session dialog box will prompt you to do
so. Use the browse button to select
%INFORMIXDIR%\bin\oninit.exe.
10-8 IBM Informix DataBlade Developer’s Kit User’s Guide

Manually Loading the Add-In
8. If a dialog box appears, warning that oninit.exe does not have
debugging information, click OK to begin debugging.

The debugger runs until the first breakpoint.

9. To resume debugging, choose Debug�Go from the Visual C++
menu bar.

When you pass all breakpoints and all routines return, IfxQuery dis-
plays the SQL results in your default browser.

10. If necessary, edit and compile the source code.

11. Repeat the procedure, as necessary.

The following sections describe some of these steps.

Important: If you attempt to start or stop the database server with the Services dialog
box of the Control Panel during debugging, you receive an error. When the add-in
starts the database server attached to the debugger, the database server does not run
as a Windows service. To stop the database server, shut down the debugger.

Manually Loading the Add-In
The DBDK Visual C++ Add-In toolbar should be present in the Visual C++
program if you installed DBDK after you installed Visual C++. If it is not
present, you must add it manually.

To manually load the Visual C++ Add-In

1. Close your project.dsw file.

2. Choose Tools�Customize.

3. On the Add-Ins and Macro Files page of the Customize dialog box,
check the box for DBDKAddIn.1.

If the box for DBDKAddIn.1 is already checked, uncheck it, close the
Customize dialog box, and then repeat Steps 2 and 3.

4. Click Close.

5. Open your project.dsw file.
Debugging and Testing DataBlade Modules on Windows 10-9

Specifying Properties for a Project
Specifying Properties for a Project
To debug a project, each DataBlade module project must have an associated
database server and database.

When you first open a DataBlade module project in Visual C++, the
Configure DBDK Visual C++ dialog box appears, prompting you to choose a
database server and database. If you choose a local database server, you can
use any of the add-in commands. If you choose a remote database server, you
can use only the Upload DataBlade Module, Upload DataBlade SQL
Scripts, and Register DataBlade Module commands.

You can choose an existing database from the DBDK Database list or, if you
are using a local database server, type in a new database name. IfxQuery
creates the database you specify if it does not exist when you run the Debug
DataBlade Module command. If the database server you specified is a
remote server, you must choose an existing database name.

You can also specify an SQL file to initialize your test database for the project
in the Initialize Database File field. You can use the generated Setup.sql file
in the src directory as your initialization file after you add SQL statements to
it. See “Editing Unit Test Files” on page 10-11 for a description of the
Setup.sql file.

You can change the properties of a project at any time by clicking Configure
DBDK Visual C++ Add-In button and completing the corresponding dialog
box.

Setting Breakpoints
Before you start the debugger, set breakpoints in your source code.

To set breakpoints with Visual C++

1. Open a source code file. You can do this by double-clicking a routine
under the Globals node in the Class view.

2. Right-click the line of code for which you want to set a breakpoint.

3. Choose Insert�Breakpoint.
10-10 IBM Informix DataBlade Developer’s Kit User’s Guide

Editing Unit Test Files
Editing Unit Test Files
Before you start debugging, edit the unit test files to add the SQL statements
necessary to debug your DataBlade module.

When you generate unit tests for a DataBlade module, BladeSmith generates
the files listed in the following table in the src\tests directory.

When you edit unit test files, add SQL statements in the areas marked with
TEST comments. This ensures that your statements are merged when you
regenerate unit tests with BladeSmith.

Test Name Purpose

Setup.sql Optionally initializes the database. You can add SQL state-
ments to create and populate the tables necessary for your
debugging tests.

If you specify this file as your initialization file in the
Configure DBDK Visual C++ Add-In dialog box, IfxQuery
automatically runs this file after it creates a new database.

Routine.sql Tests the user-defined routine. You can add SQL statements
or modify the sample data for the routine. Use this file if
you are debugging udr.c.

IfxQuery runs this file if you click Debug DataBlade
Module with this file in the active window.

Opaque.sql Tests the support routines for each opaque data type. You
can add SQL statements or modify the sample data for each
support routine. Use this file if you are debugging
Opaque.c or OpaqueServer.cpp.

IfxQuery runs this file if you click Debug DataBlade
Module with this file in the active window.

Cleanup.sql Optionally deletes and drops tables and data in your test
database.

IfxQuery runs this file if you click Debug DataBlade
Module with this file in the active window.
Debugging and Testing DataBlade Modules on Windows 10-11

Performing Functional Tests on DataBlade Modules
Performing Functional Tests on DataBlade Modules
When you have completed the code for your DataBlade module and finished
debugging it, you should run functional tests to validate it.

When you generate functional tests, BladeSmith creates a set of files that
include shell scripts and SQL scripts for testing extended data types, user-
defined routines, and casts. By default, these files are created in the functest
subdirectory of the directory containing the BladeSmith project file.

Functional tests are generated only for the DataBlade module objects for
which you enter test data in your BladeSmith project. See “Adding
Functional Test Data” on page 4-60 for information about entering test data.

The test scripts are created to run in a UNIX shell. Therefore, you must install
a UNIX-compatible toolkit on your Windows computer: for example, MKS
Toolkit. For information about functional tests, see “Functional Test
Overview” on page 9-14.

Although functional tests are meant to be executed after development of the
DataBlade module is complete, functional testing can be an iterative process,
repeated several times until the code passes all the tests. The testing process
has the following general steps:

1. In Visual C++, build the project.bld file.

See “Compiling on Windows” on page 5-57 for instructions.

2. Create a project directory under the %INFORMIXDIR%\extend
directory for your database server.

3. Install your DataBlade module. To do this, run the Upload
DataBlade Module and Upload SQL Scripts commands on the add-
in or manually copy the necessary files (see “Installing a DataBlade
Module” on page 9-7 for instructions).

4. Register your DataBlade module. To do this, run the Register
DataBlade Module command on the add-in or use BladeManager
(see the “Registering a DataBlade Module” on page 9-8 for
instructions).

5. Execute the functional tests from a UNIX shell using MKS Toolkit.

See “Executing Functional Tests” on page 9-17 for instructions.
10-12 IBM Informix DataBlade Developer’s Kit User’s Guide

Performing Functional Tests on DataBlade Modules
6. Regenerate functional tests in BladeSmith if you change any of your
test data. If you change the definition of any of your DataBlade
module objects, regenerate source code and functional tests in
BladeSmith.

7. Edit the source code (if necessary).

8. Repeat the procedure, as necessary.
Debugging and Testing DataBlade Modules on Windows 10-13

11
Chapter
Using BladePack
In This Chapter . 11-3

Prerequisite Tasks 11-3

BladePack Overview 11-4
BladePack Projects. 11-5
BladePack Online Help 11-6
BladePack Windows 11-6

Project View 11-8
Item View 11-9

Registry Keys for Windows 11-10

Packaging for UNIX Installations 11-11
Establishing Content 11-12

Files and Directories to Be Installed or Deleted 11-13
Managing Components 11-14

Component Properties 11-16
Assigning to Components 11-16

Customizing the Installation 11-17
Building the Installation. 11-19

Installation Type 11-19
Creating Distribution Media 11-20

Packaging for InstallShield 3.1 Installations 11-21
Establishing Content 11-22

Files and Directories to Be Installed or Deleted 11-23
Registry Changes 11-25

Managing Components 11-26
Component Properties 11-28
Assigning to Components 11-29

11-2 IBM
Customizing the Installation 11-29
Adding Custom Extensions 11-29

Building the Installation 11-31
Installation Type 11-32
Installation Screen Display Text 11-33

Creating Distribution Media 11-33

Packaging for InstallShield 5.1 Installations 11-34
Establishing Content 11-35

Files and Directories to Be Installed 11-36
Registry Changes 11-37

Managing Components 11-38
Component Properties 11-40
Assigning to Components 11-40

Customizing the Installation 11-41
Building the Installation 11-41

Installation Type 11-42
Installation Screen Display Text 11-43

Creating Distribution Media 11-44
 Informix DataBlade Developer’s Kit User’s Guide

In This Chapter
This chapter describes BladePack in the following sections:

� “Prerequisite Tasks,” next

� “BladePack Overview” on page 11-4

� “Packaging for UNIX Installations” on page 11-11

� “Packaging for InstallShield 3.1 Installations” on page 11-21

� “Packaging for InstallShield 5.1 Installations” on page 11-34

Refer to the online help for detailed descriptions of the BladePack user
interface and screen elements.

BladePack creates installation packages for DataBlade modules and other
software products. BladePack provides a visual representation of an instal-
lation package, allowing you to add files to the installation package and to
customize the installation in a variety of ways. When the installation package
is defined and customizations are completed, BladePack creates the instal-
lation package in a build area.

Prerequisite Tasks
Before you package your DataBlade module code, complete these tasks:

� Create your DataBlade module in BladeSmith.

See “Creating DataBlade Module Objects” on page 4-14 for
instructions.

� Generate source, SQL, and packaging files in BladeSmith.

See “Generating Files” on page 4-66 for instructions.
Using BladePack 11-3

BladePack Overview
� Complete your source code.

See Chapter 5, “Programming DataBlade Module Routines in C,” or
Chapter 6, “Creating ActiveX Value Objects,” for instructions.

� Build your DataBlade module shared object or dynamic link library.

See “Compiling DataBlade Module Code” on page 5-54 or “Compil-
ing a Windows Server Project” on page 6-11 for instructions.

BladePack Overview
BladePack produces installation packages for installing products on UNIX
and Microsoft Windows platforms. BladePack can create a simple directory
tree containing files to be installed or an installation that includes an inter-
active user interface.

On UNIX platforms, an interactive installation includes install and uninstall
shell scripts. On Windows, an interactive installation includes the Setup
program created with InstallShield and, for InstallShield 3.1, the Uninstall
program.

Important: You must have an InstallShield Professional 3.1 or 5.1 license to create
an InstallShield installation for Windows. You specify the directory and version of
InstallShield while you install the DataBlade Developers Kit.

The files in an installation package can be divided into separate components,
subcomponents, and shared components. You must define at least one
component for an installation package. You can designate the components to
include in typical, compact, or custom installations. You can also allow users
to customize their installation by choosing the components they want to
install.

For example, in addition to the required shared object file and SQL scripts, a
DataBlade module can include example files and online help files. You can
place these additional files into separate components that are included in a
typical installation but excluded from a compact installation.
11-4 IBM Informix DataBlade Developer’s Kit User’s Guide

BladePack Projects
This section contains the following subsections:

� “BladePack Projects,” next

� “BladePack Online Help” on page 11-6

� “BladePack Windows” on page 11-6

� “Registry Keys for Windows” on page 11-10

BladePack Projects
BladePack organizes information into projects. Each project is controlled by
a product file (project.prd), which contains entries for the component file
(project.cmp), bill of materials file (project.bom), and string file (project.str).
If you are packaging a DataBlade module created by BladeSmith, the
Generate Packaging option creates these files in the install directory. The
following table describes these files.

Important: Do not edit the generated installation package files. Instead, use Blade-
Smith to update the installation package files after you have added or removed
DataBlade module objects in the project file.

When you build an installation package, you can include several BladePack
projects. For example, you can include DataBlade modules that facilitate
similar financial calculations into a single installation package.

Package File Description

project.bom A bill of materials file. This file contains an entry for each file
to be installed. The entry includes the path to the source file
and the path where the file will be installed.

project.cmp Lists the main components and subcomponents in the instal-
lation package.

project.prd The main product file that you open with BladePack. This file
lists other files that define the installation package. Initially,
this file contains entries for the .bom, .cmp, and .str files. Add
README files using BladePack.

project.str Defines character strings used in the installation.
Using BladePack 11-5

BladePack Online Help
If you include standard items in each of your installations, create a separate
project for these items and include this project in every installation. For
example, you can put registry changes required by all DataBlade modules in
a standard project file. Include these changes in a component that is always
installed.

BladePack Online Help
BladePack online help provides overview and detailed reference information
for BladePack.

The “About BladePack” section contains topics that provide an overview of
BladePack and installation packages.

The “BladePack Interface” section describes BladePack menus, project view
pages, item view pages, dialog boxes, and the Build Installation wizard.

The “BladePack Procedures” section contains instructions for working with
projects, establishing the content of the installation package, organizing
components, and setting up the installation package interface.

BladePack Windows
The BladePack project window is divided into two panes. The project view
pane displays the overall structure of the installation package. The project
view contains tabbed views of the contents of the installation package
arranged in hierarchical trees.
11-6 IBM Informix DataBlade Developer’s Kit User’s Guide

BladePack Windows
The item view pane contains detailed information about the object selected in
the project view. You use the project view to add objects to the installation
package and to organize the structure of the installation package. You use the
item view to enter details about objects in the installation package.
Figure 11-1 shows a BladePack project window.

Figure 11-1
BladePack Project Window

Item view paneProject view pane
Using BladePack 11-7

BladePack Windows
Project View

The project view has three tabbed pages: Files/Directories, Components,
and Customization.

Each page in the project view presents a hierarchical tree of the contents of
the package. To expand or collapse a folder, click the expander button next to
the folder or double-click the folder.

Important: The options you have for your installation package vary according to
whether you are building a package for a UNIX installation, an InstallShield 3.1
installation for Windows, or an InstallShield 5.1 installation for Windows. To
determine which options are valid for your installation package, see the appropriate
section on packaging.

Files/Directories Page

When you click the Files/Directories tab in the project view, BladePack
displays files and directories to install and files and directories to remove.
BladePack also displays registry changes for Windows installations.

The Files to Install, Files to Delete, Directories to Install, and Directories to
Delete folders are organized as trees that match the directories on the target
computer for the installation.

The Registry Changes folder contains entries for the Windows registry.

Components Page

The Components page displays the component organization of the instal-
lation package. An installation package can have components,
subcomponents, and shared components. You can create a component,
subcomponent, or shared component and then drag files and directories into
it. Subcomponents and shared components are subordinate to components.
Shared components are useful for files that are included in more than one
component.
11-8 IBM Informix DataBlade Developer’s Kit User’s Guide

BladePack Windows
You can organize the installation package into components to make it
possible for the customer who installs the package to select portions of the
DataBlade module in the Select Components to Install screen. For example,
if your DataBlade module includes examples, you can create a component of
the DataBlade module called Examples and then create subcomponents for
each example. Then customers can choose which examples to install with the
DataBlade module. Shared components do not appear in the Select Compo-
nents to Install screen; they are installed if the component to which they
belong is installed.

However, you can also ship your DataBlade module as a single component
that contains all of the files. You do not have to organize your installation
package into subcomponents and shared components.

Customization Page

The Customization page displays information that can be customized for the
installation package.

The Custom DLL Routine, Custom DLL Dialog, and Custom Program
folders contain custom routines, dialog boxes, and executable programs for
InstallShield installations on Windows platforms and executable programs to
run from within interactive installations on Windows or UNIX platforms. You
control when routines execute by specifying the execution sequence.

Tip: To add dialog boxes and routines to your installation package, create them using
Microsoft Visual C++ and then add them to a dynamic link library (DLL). For
examples, see the directory %INFORMIXDIR%\dbdk\setup\example.

The Readme Files folder contains files that you want to place unpacked on
the first diskette of an InstallShield installation.

The Support Files folder contains a list of files that are available during the
installation but are not installed with the product.

Item View

The item view displays one or more tabbed pages, depending on the object
you select in the project view.

If you select a folder in the project view, the first tab in the item view contains
a list of the folder contents.
Using BladePack 11-9

Registry Keys for Windows
If you select an object, such as a file, in the project view, the first tab in the item
view displays details about the object. The information displayed and the
names of the tabs depend on the type of object you are viewing. Some objects
have other tabs, containing supporting information for that object.

Much of the information in the item view is editable. For example, if you add
a component, you type its name in the name field that appears in the item
view. Editable fields have a white background. Fields that cannot be edited
have a gray background.

Registry Keys for Windows
When you install the DataBlade Developers Kit, one of the installation
screens allows you to specify InstallShield support, if you have InstallShield
installed on your computer. The version and directory of InstallShield you
choose on that screen determines the value of the following registry keys:

� AlwaysUseInstallShield5. Sets the version:

❑ 0 indicates that you have InstallShield 3.1 or that you do not have
InstallShield 5.1 on your computer.

❑ 1 indicates that you have InstallShield 5.1 on your computer.

� IShieldDir. Sets the directory.

You can reset the version and directory of InstallShield by editing these
registry keys in the registry.

The AlwaysUseInstallShield5 key is in the following registry directory:

HKEY_LOCAL_MACHINE\SOFTWARE\Informix\BladePack

The IShieldDir key is in the following registry directory:

HKEY_CURRENT_USER\Environment
11-10 IBM Informix DataBlade Developer’s Kit User’s Guide

Packaging for UNIX Installations
Packaging for UNIX Installations
To package your DataBlade module, you add content to a BladePack project,
assign components, customize the installation procedure, and build the
package.

Important: You cannot use all BladePack options when you create an installation
package for UNIX. You can only use the options mentioned in this section.

For information on packaging DataBlade modules for InstallShield 3.1, see
“Packaging for InstallShield 3.1 Installations” on page 11-21. For information
on packaging DataBlade modules for InstallShield 5.1, see “Packaging for
InstallShield 5.1 Installations” on page 11-34.

To build an installation package with BladePack

1. Open a project file in one of the following ways:

� To open the project.prd file for a project created with Blade-
Smith, choose Project�Open or launch BladePack from the
BladeSmith Tools menu while the project is open.

� For other projects, BladePack, choose Project�New to create a
new BladePack project.

2. Define the content of your product, including files, directories, and
registry changes.

3. Define and assign installation components.

4. Define optional customizations.

5. Build the installation package.

6. Transfer files from the build area to installation media.
Using BladePack 11-11

Establishing Content
Establishing Content
You can add these objects to your product in BladePack:

� Files and directories to install

For a DataBlade module, the minimum you need is the project.bld
or project.jar file and the SQL script files. These files are automati-
cally added to the Files to Install folder when you open a project.prd
file.

In addition, consider adding documentation, help, applications, and
other files to support your DataBlade module.

� Files and directories to delete

If you are packaging an upgrade, you might need to specify files or
directories to delete in the old installation.

To add a file or directory

1. Choose Edit�Insert�object, where object is File to Install, File to
Delete, Directory to Install, or Directory to Delete.

The object appears on the Files/Directories page.

2. Specify the properties of the object on the Details and other pages in
the item view.

The following sections describe the properties of the objects on the
Files/Directories page.
11-12 IBM Informix DataBlade Developer’s Kit User’s Guide

Establishing Content
Files and Directories to Be Installed or Deleted

The following table lists properties you define when you add files and direc-
tories to install or delete.

Local Paths for Files for Multiple Operating Systems

If you have files that are operating-system-specific, put them in a directory
structure that is the same except for one directory, which is named for the
operating system. When you add the file to your BladePack project, replace
the directory named for the operating system with %OS%.

Property Description

Local name The local name of the file or directory to be installed or
deleted. Choose Browse to select a file from the Open dialog
box.

You can have multiple operating system-specific files to
install. See “Local Paths for Files for Multiple Operating
Systems” on page 11-13 for more information.

Target directory For files and directories to install only.

The directory in which the file or directory is installed.

See “Specifying a Target Directory” on page 11-14 for more
information.

Target operating
system

The operating system on which to install the file or directory.

Component The component, subcomponent, or shared component to
which the file or directory is assigned.

See “Assigning to Components” on page 11-16 for more
information on assigning to components.

File copy options For files and directories to install only.

Options for copying files, including whether the file is
installed only if it has the same or later date or version than
the existing file. The default is None.
Using BladePack 11-13

Managing Components
For example, if you compile your C or C++ DataBlade module on Sun Solaris
and Windows, you have two project.bld files, one in each of these directories:

� project/src/c/Solaris-sparc

� project\src\c\WinNT-i386

Add the project/src/c/Solaris-sparc/project.bld file to the Files to Install
folder and then replace Solaris-sparc with %OS%. When you build the
BladePack project for Sun Solaris and Windows, BladePack adds the appro-
priate project.bld file to each project.

For a Java DataBlade module, you have only one version of the project.jar
file, which is in the project/src/java directory.

Specifying a Target Directory

For UNIX, the only option in the list for the Directory on target machine field
is __home. This is the directory the installer chooses during the installation
process. By default this directory is $INFORMIXDIR.

For the DataBlade module files (project.bld or project.jar and the SQL
scripts), you should specify the extend/project directory as the target
directory under the $INFORMIXDIR directory.

Managing Components
BladePack allows you to organize your product installation package into
three layers: component, subcomponent, and shared component. To see the
component hierarchy for your product, click the Components tab in the
project view.

Organizing an installation package into a component structure allows you to
define Typical, Compact, and Custom installations. You specify whether each
component or subcomponent is included in the Typical and Compact instal-
lations, and whether it is initially selected when users choose the Custom
installation.

Use a shared component for those portions of your product that are shared
by more than one component. A shared component is always installed with
the subcomponent with which it is associated.
11-14 IBM Informix DataBlade Developer’s Kit User’s Guide

Managing Components
During a Custom installation, users can choose to install any components or
subcomponents. When you mark a component Custom, the component is
initially selected. The user can choose to include or exclude any components,
except shared components, from the installation.

In most cases, the component level is sufficient to create Typical, Compact,
and Custom installation options. For example, suppose you have created the
following components (and no subcomponents) in your installation package
and marked them as shown:

� DataBlade module. Typical, Compact, Custom.

� Help. Typical.

� Examples. Typical.

� Debugging Support. Custom.

In this scheme, users install the DataBlade module, help files, and examples
if they choose the Typical installation. If they choose the Compact instal-
lation, they install the DataBlade module only. If they choose the Custom
installation, the DataBlade module and debugging support are preselected.
They can choose to add help and examples.

To create a component

1. Choose Edit�Insert�Component.

2. Complete the properties on the Component Details page in the item
view.

To create a subcomponent

1. Select the component to which you want the subcomponent to be
subordinate.

2. Choose Edit�Insert�Subcomponent.

3. Complete the properties on the Component Details page in the item
view.

To create and copy a shared component

1. Select the subcomponent to which you want the shared component
to be subordinate.

2. Choose Edit�Insert�Shared Component.

3. With the shared component still selected, choose Edit�Copy.
Using BladePack 11-15

Managing Components
4. Select another component to which you want to add the shared
component.

5. Choose Edit�Paste.

Component Properties

The following table lists the properties of components and subcomponents
you define when you create them.

Shared components have one property: an identifier that is assigned by
BladePack. You can edit the identifier; it can be an alphanumeric string up to
128 characters. Make sure it is unique among shared components. If you
change an identifier, be sure to update it for every instance of that shared
component.

Assigning to Components

You must assign every item on the Files/Directories and Customization
pages to a component, subcomponent, or shared component. If you try to
build the project with unassigned items, the build fails and you receive an
error message telling you which item is not assigned to a component.

Property Description

Name The name of the component or subcomponent that appears in
the left column on the Select Installation Components screen
during a custom installation

Description The description of the component or subcomponent that
appears in the right column when the item is selected on the
Select Installation Components screen during a custom
installation

Inclusion What type of install the component or subcomponent is
included in:

� Compact

� Typical

� Custom
11-16 IBM Informix DataBlade Developer’s Kit User’s Guide

Customizing the Installation
Initially, all files and directories that appear on the Files/Directories page are
listed under the Unassigned Files and Directories folder on the Compo-
nents page. Custom extensions are not shown on the Components page.

To assign an item to a component, use one of these methods:

� On the Components page, drag an item out of the Unassigned Files
and Directories folder into the folder of the correct component. This
process is not valid for custom extensions.

� On the Details page for the item in the item view, select a component
from the Install when customer selects this component list. You
must have already defined the component.

Customizing the Installation
Custom extensions for the installation program are optional. Your customi-
zation options depend on your operating system.

For UNIX installation packages, you can add custom programs to call from
the installation program and README files.

In addition to adding the custom programs in their respective folders, you
must also add the file containing the custom extension to the Support Files
folder. However, if you have more than one program in a file, you need only
add that file to the Support Files folder once.

To add a custom program

1. Choose Edit�Insert�Custom Program.

2. Complete the Details page in the item view.

3. Choose Edit�Insert�Support File.

4. Type the path and filename of the file containing the custom routine,
dialog box, or program or click Browse to select the file from the
Open dialog box.
Using BladePack 11-17

Customizing the Installation
The following table lists the properties of custom programs you specify when
you add them to your installation project.

To add a README file

1. Choose Edit�Insert�Readme File.

2. Type the path and filename or click Browse to select the file from the
Open dialog box.

Property Description

Name The filename of the program. Type the name or click
Browse to select the file in the Open dialog box.

ID or command line
arguments

The command line arguments you want to use for the
program during the installation process.

Target operating
system

The operating system on which the custom extension runs.

Component The component, subcomponent, or shared component to
which the file or directory is assigned.

See “Assigning to Components” on page 11-16 for more
information on assigning to components.

When to run When the custom extension is executed during the instal-
lation procedure:

� Before the installation program begins

� Before the project files are copied

� After the project files are copied

� Before the installation program exits
11-18 IBM Informix DataBlade Developer’s Kit User’s Guide

Building the Installation
Building the Installation
When the content and organization of your installation package are
complete, build and test it.

To build, choose Build�Build Installation. The Build Installation wizard is
launched and prompts you for the following information:

� Installation type: interactive or file tree

See “Installation Type,” next, for more information.

� Platform for which to build the installation package

Choose one from the list. Build a separate package for every
platform.

� The target directory in which to build the installation

This can be any directory. By default it is the project/install directory.

� List of BladePack project.prd files to include in the installation
package

You can bundle more than one project in a single installation.

Warning: If the combined length of the path and filename of any file is longer than
255 characters, the build fails. This is due to a Windows limitation. To solve this
problem, you can select a shorter staging directory.

Installation Type

BladePack creates a directory structure in the target directory and copies files
into the tree. When you build an interactive installation for a UNIX platform,
BladePack includes install and uninstall shell scripts.

When you build a file tree installation, BladePack creates the file tree
specified in the project in the target directory. A file tree build is useful for
debugging the BladePack project.
Using BladePack 11-19

Creating Distribution Media
After you successfully build an interactive installation, the target directory
contains the subdirectories described in the following table.

Creating Distribution Media
To ensure that customers can install DataBlade modules and other
IBM Informix products using common instructions, the product you
distribute must conform to the IBM Informix DataBlade module installation
standard. BladePack creates an interactive installation that ensures a
consistent user interface.

Important: If you create a UNIX .tar file, rename the cdrom directory to the name of
your product before you copy the directory to media or the release area. For example,
for the Circle DataBlade module, rename the cdrom directory to circle. (Do not
include the version number in the directory name.)

Directory Description

cdrom Contains an image of the installation package that can be
transferred to distribution media. DataBlade module
developers can rename this directory to the name of the
DataBlade module before creating a .tar file.

This directory contains an install shell script and other files
that the install script uses during installation.

support Contains copies of files to support the installation, such as
project files. Its contents are not distributed with your
installation package.

folder_tree Contains a directory tree containing the contents of all of
the directories to be included in the installation package.
The contents of this directory are not distributed with your
installation package.

tree The root of a directory tree containing files to be included
in the installation package. The tree directory can be used
to debug problems in the installation package.

The contents of this directory are not distributed with your
installation package.
11-20 IBM Informix DataBlade Developer’s Kit User’s Guide

Packaging for InstallShield 3.1 Installations
Copy the renamed directory and its contents to the media or into the archive
file. This makes it possible to distribute multiple products with their own
installations on a CD-ROM or tape.

For example, to install the Circle DataBlade module from CD-ROM, the
installer mounts the CD-ROM, changes to the circle subdirectory, and
executes the install script.

To install the Circle DataBlade module from a file named circle3.6.tar,
retrieved through a local network or the Internet, the installer extracts the file
into a temporary directory, changes to the circle subdirectory, and executes
install. When the installation has finished, the circle subdirectory can be
removed.

Tip: BladePack does not compress .tar files. If you want to distribute your DataBlade
module as a compressed file, you must compress it yourself.

Packaging for InstallShield 3.1 Installations
To package your DataBlade module, you add content to a BladePack project,
assign components, customize the installation procedure, and build the
package.

For information on packaging DataBlade modules for UNIX, see “Packaging
for UNIX Installations” on page 11-11. For information on packaging
DataBlade modules for InstallShield 5.1, see “Packaging for InstallShield 5.1
Installations” on page 11-34.

To build an installation package with BladePack

1. Open a project file:

� For DataBlade modules created using BladeSmith, open the
project.prd file by choosing Project�Open or launch BladePack
from the BladeSmith Tools menu while the project is open.

� For other products, create a new BladePack project by choosing
Project�New.

2. Define the content of your product, including files, directories, and
registry changes.

3. Define and assign installation components.
Using BladePack 11-21

Establishing Content
4. Define optional customizations.

5. Build the installation package.

6. Transfer files from the build area to installation media.

Establishing Content
You can add these objects to your product in BladePack:

� Files and directories to install

For a DataBlade module, you need the project.bld or project.jar file
and the SQL script files. If you have an ActiveX client project, you
also need the project.dll file. These files are automatically added to
the Files to Install folder when you open a project.prd file.

In addition, consider adding documentation, help, applications, and
other files to support your DataBlade module.

If you have an ActiveX client implementation, consider including
CLSID (class identifier) and IID (interface identifier) information by
including C++ client support library files (see “Support Library
Files” on page A-4) in the installation package.

� Files and directories to delete

If you are packaging an upgrade, you might need to specify files or
directories to delete in the old installation.

� Registry changes

You might have to specify registry changes for your DataBlade
module.

To add a file or directory or a change to the registry

1. Choose Edit�Insert�object, where object is File to Install, File to
Delete, Directory to Install, Directory to Delete, or Change to
Registry.

The object appears on the Files/Directories page.

2. Specify the properties of the object on the Details and other pages in
the item view.

The following sections describe the properties of the objects on the
Files/Directories page.
11-22 IBM Informix DataBlade Developer’s Kit User’s Guide

Establishing Content
Files and Directories to Be Installed or Deleted

The following table lists properties you define when you add files and direc-
tories to install or delete.

Property Description

Local name The local name of the file or directory to be installed or
deleted. Choose Browse to select a file from the Open dialog
box.

You can have multiple operating-system-specific files to
install. See “Local Paths for Files for Multiple Operating
Systems” on page 11-24 for more information.

Target directory For files and directories to install only.

The directory in which the file or directory is installed.

See “Specifying a Target Directory” on page 11-25 for more
information.

Target operating
system

The operating system on which to install the file or directory.

Component The component, subcomponent, or shared component to
which the file or directory is assigned.

See “Assigning to Components” on page 11-29 for more
information on assigning to components.

File copy options For files and directories to install only.

Options for copying files, including whether the DLL is
installed only if it has the same or later date or version than
the existing DLL. The default is None.

(1 of 2)
Using BladePack 11-23

Establishing Content
Local Paths for Files for Multiple Operating Systems

If you have files that are operating-system-specific, put them in a directory
structure that is the same except for one directory, which is named for the
operating system. When you add the file to your BladePack project, replace
the directory named for the operating system with %OS%.

For example, if you compile your C or C++ DataBlade module on Sun Solaris
and Windows, you have two project.bld files, one in each of these directories:

� project/src/c/Solaris-sparc

� project\src\c\WinNT-i386

Add the project\src\c\WinNT-i386\project.bld file to the Files to Install
folder and then replace WinNT-i386 with %OS%. When you build the
BladePack project for Sun Solaris and Windows, BladePack adds the appro-
priate project.bld file to each project.

For a Java DataBlade module, you have only one version of the project.jar
file, which is in the project/src/java directory.

File sharing options For files and directories to install only.

Whether and how a file can be shared. The default is None.

See “File Sharing Options” on page 11-25 for more
information.

Icon options For files to install only.

Whether the file has an associated icon and information
about that icon. The icon appears in the program group.
Icons are typically used for applications, read me files, or
help files; DataBlade modules do not require icons. The
default is no icon.

Property Description

(2 of 2)
11-24 IBM Informix DataBlade Developer’s Kit User’s Guide

Establishing Content
Specifying a Target Directory

You have the following options in the list for the Directory on target machine
field:

� __home. The directory the installer chooses during the installation
process. By default this directory is $INFORMIXDIR.

� __system. The Windows system directory.

� __windows. The Windows directory.

The target directory for the DataBlade module files (project.bld and the SQL
scripts) should be the extend\project directory under the $INFORMIXDIR
directory.

File Sharing Options

For files in the Files to Install folder, choose one of these file sharing options
from the Copy Options page:

� File is system shared DLL. Indicates that the file can be used by more
than one program on the target computer. The file is marked to
prevent it from being removed in an uninstallation process.

� File may be in use on target system. Indicates that the file can be in
use when the program is installed. If the file exists on the target
computer and is in use during the installation process, the instal-
lation continues, but the computer must be rebooted before the
program is run. In this case, the installation program displays the
Setup Complete, Reboot Required screen.

� None. Default. Indicates that your files are not shared and cannot be
in use during the installation process. In this case, the installation
program displays the Setup Complete screen without a prompt to
reboot the computer.

Registry Changes

You can add entries to the Windows registry for the initialization and config-
uration of your DataBlade module and its associated programs.

Refer to your Microsoft Developer Studio documentation for information
about the registry.
Using BladePack 11-25

Managing Components
To add registry changes

1. Choose Edit�Insert�Change to Registry.

2. Complete the Registry Changes Details page in the item view.

The following table lists the properties you define when adding registry
changes.

Managing Components
BladePack allows you to organize your product installation package into
three layers: component, subcomponent, and shared component. To see the
component hierarchy for your product, click the Components tab in the
project view.

Organizing an installation package into a component structure allows you to
define Typical, Compact, and Custom installations. You specify whether each
component or subcomponent is included in the Typical and Compact instal-
lations, and whether it is initially selected when users choose the Custom
installation.

Property Description

Registry hive The standard primary registry keys under which you want
to add a key:

� HKEY_CLASSES_ROOT

� HKEY_CURRENT_USER

� HKEY_LOCAL_MACHINE

Registry path The key you want to add, expressed as a path.

Key name The name of the key.

Key value The value of the key.

Component The component, subcomponent, or shared component to
which the file or directory is assigned.

See “Assigning to Components” on page 11-29 for more
information on assigning to components.
11-26 IBM Informix DataBlade Developer’s Kit User’s Guide

Managing Components
Use a shared component for those portions of your product that are shared
by more than one component. A shared component is always installed with
the subcomponent with which it is associated.

During a Custom installation, users can choose to install any components or
subcomponents. When you mark a component Custom, the component is
initially selected. The user can choose to include or exclude any components,
except shared components, from the installation.

In most cases, the component level is sufficient to create Typical, Compact,
and Custom installation options. For example, suppose you have created the
following components (and no subcomponents) in your installation package
and marked them as shown:

� DataBlade module. Typical, Compact, Custom.

� Help. Typical.

� Examples. Typical.

� Debugging Support. Custom.

In this scheme, users install the DataBlade module, help files, and examples
if they choose the Typical installation. If they choose the Compact instal-
lation, they install the DataBlade module only. If they choose the Custom
installation, the DataBlade module and debugging support are preselected.
They can choose to add help and examples.

To create a component

1. Choose Edit�Insert�Component.

2. Complete the properties on the Component Details page in the item
view.

To create a subcomponent

1. Select the component to which you want the subcomponent to be
subordinate.

2. Choose Edit�Insert�Subcomponent.

3. Complete the properties on the Component Details page in the item
view.
Using BladePack 11-27

Managing Components
To create and copy a shared component

1. Select the subcomponent to which you want the shared component
to be subordinate.

2. Choose Edit�Insert�Shared Component.

3. With the shared component still selected, choose Edit�Copy.

4. Select another component to which you want to add the shared
component.

5. Choose Edit�Paste.

Component Properties

The following table lists the properties of components and subcomponents
you define when you create them.

Shared components have one property: an identifier that is assigned by
BladePack. You can edit the identifier; it can be an alphanumeric string up to
128 characters. Make sure it is unique among shared components. If you
change an identifier, be sure to update it for every instance of that shared
component.

Property Description

Name The name of the component or subcomponent that appears in
the left column on the Select Installation Components screen
during a custom installation

Description The description of the component or subcomponent that
appears in the right column when the item is selected on the
Select Installation Components screen during a custom
installation

Inclusion What type of install the component or subcomponent is
included in:

� Compact

� Typical

� Custom
11-28 IBM Informix DataBlade Developer’s Kit User’s Guide

Customizing the Installation
Assigning to Components

You must assign every item on the Files/Directories and Customization
pages to a component, subcomponent, or shared component. If you try to
build the project with unassigned items, the build fails and you receive an
error message telling you which item is not assigned to a component.

Initially, all files and directories that appear on the Files/Directories page are
listed under the Unassigned Files and Directories folder on the Compo-
nents page. Custom extensions are not shown on the Components page.

To assign an item to a component, use one of these methods:

� On the Components page, drag an item out of the Unassigned Files
and Directories folder into the folder of the correct component. This
process is not valid for custom extensions.

� On the Details page for the item in the item view, select a component
from the Install when customer selects this component list. You
must have already defined the component.

Customizing the Installation
Custom extensions for the installation program are optional. For
InstallShield 3.1 installation packages, you can add these custom extensions:

� Routines to call from the installation program

� InstallShield dialog boxes

� Programs to call from the installation program

� README files for the installation program

Adding Custom Extensions

In addition to adding the custom routines, dialog boxes, and programs in
their respective folders, you must also add the file containing the custom
extension to the Support Files folder. However, if you have more than one
routine, dialog box, or program in a file, you need only add that file to the
Support Files folder once.
Using BladePack 11-29

Customizing the Installation
To add a custom routine, dialog box, or program

1. Choose Edit�Insert�Item, where Item is Custom DLL Routine,
Custom DLL Dialog, or Custom Program.

2. Complete the Details page in the item view.

3. Choose Edit�Insert�Support File.

4. Type the path and filename of the file containing the custom routine,
dialog box, or program or click Browse to select the file from the
Open dialog box.

To add a README file

1. Choose Edit�Insert�Readme File.

2. Type the path and filename or click Browse to select the file from the
Open dialog box.

The following table lists the properties of custom routines, dialog boxes, and
programs you specify when you add them to your installation project.

Property Description

Name The filename of the routine, dialog box, or program. Type
the name or click Browse to select the file in the Open
dialog box.

ID or command line
arguments

For a custom routine, the ID string is an identifier you can
use to determine which routine to call if you have more
than one routine in a single DLL.

For a custom dialog box, the resource ID that you specified
when creating it in Microsoft Developer Studio.

For a custom program, the command-line arguments you
want to use for the program during the installation process.

(1 of 2)
11-30 IBM Informix DataBlade Developer’s Kit User’s Guide

Building the Installation
Building the Installation
When the content and organization of your installation package are
complete, build and test it.

To build, choose Build�Build Installation. The Build Installation wizard is
launched and prompts you for the following information:

� Installation type: interactive or file tree

See “Installation Type” on page 11-32 for more information.

� Platform for which to build the installation package

Choose one from the list. Build a separate package for every
platform.

� Installation screen text

See “Installation Screen Display Text” on page 11-33 for more
information.

� The target directory in which to build the installation

This can be any directory. By default it is the project\install
directory.

Target operating
system

The operating system on which the custom extension runs.

Component The component, subcomponent, or shared component to
which the file or directory is assigned.

See “Assigning to Components” on page 11-29 for more
information on assigning to components.

When to run When the custom extension is executed during the instal-
lation procedure:

� Before the installation program begins

� Before the project files are copied

� After the project files are copied

� Before the installation program exits

Property Description

(2 of 2)
Using BladePack 11-31

Building the Installation
� List of BladePack project.prd files to include in the installation
package

You can bundle more than one project in a single installation.

Warning: If the combined length of the path and filename of any file is longer than
255 characters, the build fails. This is due to a Windows limitation. To solve this
problem, you can select a shorter staging directory.

Installation Type

BladePack creates a directory structure in the target directory and copies files
into the tree. When you build an interactive installation package for
Windows, BladePack calls InstallShield to process the files and create CD-
ROM and diskette images.

When you build a file tree installation, BladePack creates the file tree
specified in the project in the target directory. A file tree build is useful for
debugging the BladePack project.

After you successfully build an interactive installation, the target directory
contains the subdirectories described in the following table.

Directory Description

tree The root of a directory tree containing files to be included in
the installation package. The tree directory can be used to
debug problems in the installation package.

This directory is compressed into a single archive called
files.z in the cdrom directory.

cdrom Contains an image of the installation package that can be
transferred to distribution media. DataBlade module devel-
opers can rename this directory to the name of the DataBlade
module before creating a .tar file.

This directory contains Setup.exe and other files that support
an InstallShield installation.

(1 of 2)
11-32 IBM Informix DataBlade Developer’s Kit User’s Guide

Creating Distribution Media
Installation Screen Display Text

BladePack provides default text strings for the InstallShield installation
wizard screens for Windows. You can override some of these text strings. For
example, in the Select Installation Type wizard, you can change the text that
appears next to the words Typical, Compact, and Custom to provide your
own definitions for these three types of installations. When you save a
BladePack project, BladePack saves any new string definitions in the appro-
priate string files.

Creating Distribution Media
To ensure that customers can install DataBlade modules and other
IBM Informix products using common instructions, the product you
distribute must conform to the IBM Informix DataBlade module installation
standard. BladePack creates an interactive installation that ensures a
consistent user interface.

To install a product from diskettes on a Windows platform, the installer
executes the Setup.exe program on the first diskette. To create diskettes, copy
the contents of the disk1 ... diskn directories to formatted 1.4 MB diskettes.

To create all other types of media, use the cdrom directory in the build area.

disk1, disk2...diskn Contain files needed for an InstallShield installation, with
files split to fit on 1.4 MB diskettes. The disk1 directory
contains Setup.exe and the files required to begin a diskette
installation.

support Contains copies of files to support the installation, such as
project files, .dll files, and bitmap images. Its contents are not
distributed with your installation package.

folder_tree Contains a directory tree containing the contents of all of the
directories to be included in the installation package. The
contents of this directory are not distributed with your instal-
lation package.

Directory Description

(2 of 2)
Using BladePack 11-33

Packaging for InstallShield 5.1 Installations
To distribute multiple products with their own installations on a CD-ROM or
tape, rename the cdrom directory to the name of the DataBlade module
before you copy the directory and its contents to the media or into the archive
file.

For example, to install the Circle DataBlade module from CD-ROM, the
installer mounts the CD-ROM, changes to the circle subdirectory, and
executes Setup.

Important: Put the Setup.exe program in a short path. If the combined length of the
path and filename of any file is longer than 255 characters, the program will not
execute. This is due to a Windows limitation.

Packaging for InstallShield 5.1 Installations
To package your DataBlade module, you add content to a BladePack project,
assign components, customize the installation procedure, and build the
package.

Important: You cannot use all BladePack options when you create an installation
package for InstallShield 5.1. You can only use the options mentioned in this section.

For information on packaging DataBlade modules for UNIX, see “Packaging
for UNIX Installations” on page 11-11. For information on packaging
DataBlade modules for InstallShield 3.1, see “Packaging for InstallShield 3.1
Installations” on page 11-21.

To build an installation package with BladePack

1. Open a project file:

� For DataBlade modules created using BladeSmith, open the
project.prd file by choosing Project�Open or launch BladePack
from the BladeSmith Tools menu while the project is open.

� For other products, create a new BladePack project by choosing
Project�New.

2. Define the content of your product, including files, directories, and
registry changes.

3. Define and assign installation components.

4. Define optional customizations.
11-34 IBM Informix DataBlade Developer’s Kit User’s Guide

Establishing Content
5. Build the installation package.

6. Transfer files from the build area to installation media.

Establishing Content
You can add these objects to your product in BladePack:

� Files and directories to install

For a DataBlade module, you need the project.bld or project.jar file
and the SQL script files. If you have an ActiveX client project, you
also need the project.dll file. These files are automatically added to
the Files to Install folder when you open a project.prd file.

In addition, consider adding documentation, help, applications, and
other files to support your DataBlade module.

If you have an ActiveX client implementation, consider including
CLSID (class identifier) and IID (interface identifier) information by
including C++ client support library files (see “Support Library
Files” on page A-4) in the installation package.

� Registry changes

You might have to specify registry changes for your DataBlade
module.

To add a file or directory or a change to the registry

1. Choose Edit�Insert�object, where object is File to Install,
Directory to Install, or Change to Registry.

The object appears on the Files/Directories page.

2. Specify the properties of the object on the Details and other pages in
the item view.

The following sections describe the properties of the objects on the
Files/Directories page.
Using BladePack 11-35

Establishing Content
Files and Directories to Be Installed

The following table lists properties you define when you add files and direc-
tories to install.

InstallShield 5.1 does not support deleting files and directories, file copy
options, or file sharing options.

Local Paths for Files for Multiple Operating Systems

If you have files that are operating-system-specific, put them in a directory
structure that is the same except for one directory, which is named for the
operating system. When you add the file to your BladePack project, replace
the directory named for the operating system with %OS%.

Property Description

Local name The local name of the file or directory to be installed. Choose
Browse to select a file from the Open dialog box.

You can have multiple operating-system-specific files to
install. See “Local Paths for Files for Multiple Operating
Systems” on page 11-36 for more information.

Target directory The directory in which the file or directory is installed.

See “Specifying a Target Directory” on page 11-37 for more
information.

Target operating
system

The operating system on which to install the file or directory.

Component The component, subcomponent, or shared component to
which the file or directory is assigned.

See “Assigning to Components” on page 11-40 for more
information on assigning to components.

Icon options Whether the file has an associated icon and information
about that icon. The icon appears in the program group.
Icons are typically used for applications, README files, or
help files; DataBlade modules do not require icons. The
default is no icon.
11-36 IBM Informix DataBlade Developer’s Kit User’s Guide

Establishing Content
For example, if you compile your C or C++ DataBlade module on Sun Solaris
and Windows, you have two project.bld files, one in each of these directories:

� project/src/c/Solaris-sparc

� project\src\c\WinNT-i386

Add the project\src\c\WinNT-i386\project.bld file to the Files to Install
folder, then replace WinNT-i386 with %OS%. When you build the BladePack
project for Sun Solaris and Windows, BladePack adds the appropriate
project.bld file to each project.

For a Java DataBlade module, you have only one version of the project.jar
file, which is in the project/src/java directory.

Specifying a Target Directory

You have the following options in the list for the Directory on target machine
field:

� __home. The directory the installer chooses during the installation
process. By default this directory is $INFORMIXDIR.

� __system. The Windows system directory.

� __windows. The Windows directory.

The target directory for the DataBlade module files (project.bld and the SQL
scripts) should be the extend/project directory under the $INFORMIXDIR
directory.

For InstallShield 5.1, BladePack puts files that are installed in different direc-
tories into different subcomponents; user files are put in the main
component, while system files are put in a subcomponent.

Registry Changes

You can add entries to the Windows registry for the initialization and config-
uration of your DataBlade module and its associated programs.

Refer to your Microsoft Developer Studio documentation for information
about the registry.
Using BladePack 11-37

Managing Components
To add registry changes

1. Choose Edit�Insert�Change to Registry.

2. Complete the Registry Changes Details page in the item view.

The following table lists the properties you define when you add registry
changes.

Managing Components
BladePack allows you to organize your product installation package into
three layers: component, subcomponent, and shared component. To see the
component hierarchy for your product, click the Components tab in the
project view.

Organizing an installation package into a component structure allows you to
define Typical, Compact, and Custom installations. You specify whether each
component or subcomponent is included in the Typical and Compact instal-
lations, and whether it is initially selected when users choose the Custom
installation.

Property Description

Registry hive The standard primary registry keys under which you want
to add a key:

� HKEY_CLASSES_ROOT

� HKEY_CURRENT_USER

� HKEY_LOCAL_MACHINE

Registry path The key you want to add, expressed as a path.

Key name The name of the key.

Key value The value of the key.

Component The component, subcomponent, or shared component to
which the file or directory is assigned.

See “Assigning to Components” on page 11-40 for more
information on assigning to components.
11-38 IBM Informix DataBlade Developer’s Kit User’s Guide

Managing Components
During a Custom installation, users can choose to install any components or
subcomponents. When you mark a component Custom, the component is
initially selected. The user can choose to include or exclude any components,
except shared components, from the installation.

In most cases, the component level is sufficient to create Typical, Compact,
and Custom installation options. For example, suppose you have created the
following components (and no subcomponents) in your installation package,
and marked them as shown:

� DataBlade module. Typical, Compact, Custom.

� Help. Typical.

� Examples. Typical.

� Debugging Support. Custom.

In this scheme, users install the DataBlade module, help files, and examples
if they choose the Typical installation. If they choose the Compact instal-
lation, they install the DataBlade module only. If they choose the Custom
installation, the DataBlade module and debugging support are preselected.
They can choose to add help and examples.

To create a component

1. Choose Edit�Insert�Component.

2. Complete the properties on the Component Details page in the item
view.

To create a subcomponent

1. Select the component to which you want the subcomponent to be
subordinate.

2. Choose Edit�Insert�Subcomponent.

3. Complete the properties on the Component Details page in the item
view.
Using BladePack 11-39

Managing Components
Component Properties

The following table lists the properties of components and subcomponents
you define when you create them.

Assigning to Components

You must assign every item on the Files/Directories and Customization
pages to a component, subcomponent, or shared component. If you try to
build the project with unassigned items, the build fails and you receive an
error message telling you which item is not assigned to a component.

Initially, all files and directories that appear on the Files/Directories page are
listed under the Unassigned Files and Directories folder on the Compo-
nents page. Custom extensions are not shown on the Components page.

To assign an item to a component, use one of these methods:

� On the Components page, drag an item out of the Unassigned Files
and Directories folder into the folder of the correct component. This
process is not valid for custom extensions.

� On the Details page for the item in the item view, select a component
from the Install when customer selects this component list. You
must have already defined the component.

Property Description

Name The name of the component or subcomponent that appears in
the left column on the Select Installation Components screen
during a custom installation

Description The description of the component or subcomponent that
appears in the right column when the item is selected on the
Select Installation Components screen during a custom
installation

Inclusion What type of install the component or subcomponent is
included in:

� Compact

� Typical

� Custom
11-40 IBM Informix DataBlade Developer’s Kit User’s Guide

Customizing the Installation
Customizing the Installation
Custom extensions for the installation program are optional.

For InstallShield 5.1 installation packages, you can add README files for the
installation program. However, after you export your project to InstallShield
5.1, you can add custom extensions to your project using the InstallShield 5.1
project wizard.

To add a README file

1. Choose Edit�Insert�Readme File.

2. Type the path and filename or click Browse to select the file from the
Open dialog box.

Building the Installation
When the content and organization of your installation package are
complete, build and test it.

To build, choose Build�Build Installation. The Build Installation wizard is
launched and prompts you for the following information:

� Installation type: interactive or file tree

See “Installation Type” on page 11-42 for more information.

� Platform for which to build the installation package

Choose one from the list. Build a separate package for every
platform.

� Installation screen text

See “Installation Screen Display Text” on page 11-43 for more
information.

� The target directory in which to build the installation

This can be any directory. By default it is the project\install
directory.

� List of BladePack project.prd files to include in the installation
package

You can bundle more than one project in a single installation.
Using BladePack 11-41

Building the Installation
Warning: If the combined length of the path and filename of any file is longer than
255 characters, the build fails. This is due to a Windows limitation. To solve this
problem, you can shorten the names of your components and subcomponents or select
a shorter staging directory.

Installation Type

BladePack creates a directory structure in the target directory and copies files
into the tree. When you build an interactive installation package for
Windows, BladePack calls InstallShield to process the files and create CD-
ROM and diskette images.

When you build a file tree installation, BladePack creates the file tree
specified in the project in the target directory. A file tree build is useful for
debugging the BladePack project.

When you build the installation package with BladePack, you specify a
staging directory to hold the installation files. By default, the staging
directory is the project\install\InstallShield5.1\project directory. In
addition to putting the Setup.exe file in the staging directory, BladePack also
puts it in the project\install\cdrom directory.

BladePack creates the InstallShield 5.1 project file, project.ipr, in the staging
directory. To open the project file in InstallShield 5.1, double-click it.

After you successfully build an interactive installation, the staging directory
contains the subdirectories described in the following table.

Directory Description

cdrom Contains an image of the installation package that can be
transferred to distribution media. DataBlade module
developers can rename this directory to the name of the
DataBlade module before creating a .tar file.

This directory contains Setup.exe and other files that
support an InstallShield installation.

Component
Definitions

Contains the component definitions. The Default.cdf file
contains the component-to-subcomponent relationships.

(1 of 2)
11-42 IBM Informix DataBlade Developer’s Kit User’s Guide

Building the Installation
Installation Screen Display Text

BladePack provides default text strings for the InstallShield installation
wizard screens for Windows. You can override some of these text strings. For
example, in the Select Installation Type wizard, you can change the text that
appears next to the words Typical, Compact, and Custom to provide your
own definitions for these three types of installations. When you save a
BladePack project, BladePack saves any new string definitions in the appro-
priate string files.

File Groups Contains all files to be installed. The component.fgl file
describes which files are in which components and
subcomponents.

Media Contains directories for each media configuration you
specify. The Default.mda file describes where to build the
media files.

Registry Entries Contains the Default.rge file, which describes the registry
entries created in the installation process. Registry entries
are associated with components.

Script Files Contains custom setup files and the setup.rul custom setup
script.

Setup Files Not currently used by BladePack.

Shell Objects Contains icons registered during installation.

String Tables\0009-
English

Contains custom installation screen strings in the value.shl
file.

Text Substitutions Not currently used by BladePack.

Directory Description

(2 of 2)
Using BladePack 11-43

Creating Distribution Media
Creating Distribution Media
To ensure that customers can install DataBlade modules and other
IBM Informix products using common instructions, the product you
distribute must conform to the IBM Informix DataBlade module installation
standard. BladePack creates an interactive installation that ensures a
consistent user interface.

To distribute multiple products with their own installations on a CD-ROM or
tape, rename the cdrom directory to the name of the DataBlade module
before you copy the directory and its contents to the media or into the archive
file.

For example, to install the Circle DataBlade module from CD-ROM, the
installer mounts the CD-ROM, changes to the circle subdirectory, and
executes the setup program.

Important: Put the Setup.exe program in a short path. Due to a Windows
limitation, if the path for Setup.exe is too long, it fails to execute.
11-44 IBM Informix DataBlade Developer’s Kit User’s Guide

A
Appendix
Source Files Generated
for DataBlade Modules
You can use the tables in this appendix to find a brief description
of the following types of files BladeSmith generates for your
DataBlade project:

� “C Source Code Files,” next

� “ActiveX/C++ Source Code Files” on page A-3

� “Java Source Code Files” on page A-8

� “SQL Script Files” on page A-10

� “Unit Test Files” on page A-11

� “Functional Test Files” on page A-12

You can find these same descriptions in a comprehensive table
that is ordered alphabetically; see “Alphabetical List of
Generated Files” on page A-17.

C Source Code Files
BladeSmith generates Visual C++ project and workspace files and a UNIX
makefile into the \project\src directory.

BladeSmith generates the following C source files into the project\src\C
directory. You can modify only the Opaque.c, udr.c, and statistics.c files.

Project.dsp Visual C++ project file

Project.dsw Visual C++ workspace file

ProjectU.mak Combination C and C++ makefile for use from the
UNIX command line

Opaque.c Source code file generated for each opaque type; the
file contains the support functions for that opaque
type.

Project.def Definitions file listing all exported C routines; for use
by Visual C++ 6.0 or later.

Project.h Header file that contains project definitions, includ-
ing the C data structures that define your opaque
types.

readme.txt Text file providing short descriptions of the files in
this directory.

statistics.c Source code file that contains statistics support func-
tions.

support.c Source code file that contains utility functions and
#include directives for header files.

udr.c Source code file that contains user-defined routines,
cast support functions, and aggregates.

warning.txt Text file providing warnings about potential source
code problems.
A-2 IBM Informix DataBlade Developer’s Kit User’s Guide

ActiveX/C++ Source Code Files
BladeSmith generates Visual C++ project and workspace files and a UNIX
makefile into the \project\src directory.

The following sections provide a brief description of the ActiveX/C++ source
files that BladeSmith generates into the project\src\ActiveX directory:

� “Client Project Files,” next

� “Client Files” on page A-5

� “Common Files” on page A-6

� “Server Project Files” on page A-7

� “Server Files” on page A-7

This appendix lists the files generated for an ActiveX value object project
called Project that consists of a single ActiveX value object with an under-
lying opaque type called Opaque.

Important: In addition to adding logic to the opaque support routines (see “Adding
Project-Specific Logic to the Source Code” on page 6-7), you can add your own
functions to the C++ classes in the OpaqueCommon, OpaqueClient, and
OpaqueServer .cpp and .h files. Do not modify any other of the generated source
files.

Project.dsp Visual C++ project file

Project.dsw Visual C++ workspace file

ProjectU.mak Combination C and C++ makefile for use from the
UNIX command line
Source Files Generated for DataBlade Modules A-3

Client Project Files
Client Project Files
For each project, BladeSmith generates client-specific support library files
and project files.

Support Library Files

For each project, BladeSmith generates the following client-specific support
library files. Do not modify these files.

Project Files

For each project named Project, BladeSmith generates the following client
project files. Do not modify these files.

DkClient.cpp Client-specific support library functions

DkIntf.h Support library header file that defines the ActiveX
value object custom interfaces (IRawObjectAccess
and ITDkValue)

DkIntf_i.c Support library file that contains IIDs (interface iden-
tifiers) for interfaces defined in DkIntf.h

DkIntfImpl.h Support library C++ template implementations for
custom interfaces defined in DkIntf.h

ProjectX.cpp Object map entry, DLL entry points, and so on

ProjectX.def Definitions file

ProjectX.idl IDL file that Visual C++ uses to generate ProjectX.h
and ProjectX.tlb

ProjectX.rc Resource file

ProjectXps.def Generated by ATL

ProjectXps.mk Generated by ATL
A-4 IBM Informix DataBlade Developer’s Kit User’s Guide

Client Files
Client Files
For each opaque type/ActiveX value object named Opaque, BladeSmith
generates the following client files. Only the OpaqueClient.cpp and Opaque-
Client.h files can be modified.

Resource.h Header file that contains definitions, including
IDR_OPAQUE

StdAfx.cpp For precompiled header

StdAfx.h Standard header file

Opaque.cpp C++ file that contains the methods for the ActiveX
value object, that call into the C++ class (OpaqueCli-
ent.cpp).

Opaque.h Header file that contains the ActiveX value object def-
inition.

Opaque.rgs Instructions for registering the ActiveX value object
on the client computer.

OpaqueClient.cpp C++ class file that contains placeholders (function
definitions and null bodies) for the methods for
OpaqueClient. This file can be modified.

OpaqueClient.h Header file that contains the OpaqueClient class def-
inition. This file can be modified.
Source Files Generated for DataBlade Modules A-5

Common Files
Common Files
For each project, BladeSmith generates support library files and object files
that are used to compile both the client project and the server project.

Support Library Files

For each project, BladeSmith generates the following support library files,
which are used by both the client project and the server project. Do not
modify these files.

Object Files

For each opaque type/ActiveX value object named Opaque, BladeSmith
generates the following files, which are used by both the client project and the
server project. Do not modify the OpaqueStruct.h file.

StdDbdk.cpp Support library file that provides the server and, with
the DkClient.cpp file (see “Client Project Files” on
page A-4), the client library functions

StdDbdk.h Support library header file for client and server; con-
tains class and function definitions

OpaqueCommon.cpp C++ file that contains the logic for all ActiveX custom
methods and their server-project equivalents. This
file can be modified.

OpaqueCommon.h Header file that contains the OpaqueCommon class
definition. This file can be modified.

OpaqueStruct.h C header file that contains the OpaqueStruct defini-
tion (the C structure representing the opaque type)
A-6 IBM Informix DataBlade Developer’s Kit User’s Guide

Server Project Files
Server Project Files
For each project named Project, the following server project files are
generated. Do not modify these files.

Server Files
For each opaque type/ActiveX value object named Opaque, BladeSmith
generates the following server files. You can modify these files.

ProjectWrap.cpp C++ file that contains the interfaces to the server-side
support routines

ProjectWrap.h Header file for the server-side interfaces

OpaqueServer.cpp C++ class file that contains placeholders (function
definitions and null bodies) for the methods for
OpaqueServer. This file can be modified.

OpaqueServer.h Header file that contains the OpaqueServer class def-
inition. This file can be modified.
Source Files Generated for DataBlade Modules A-7

Server Files
Java Source Code Files
BladeSmith generates the following source files in the project\src\java
directory.

DBDKInputException.java Utility class file that provides exception-han-
dling methods that are called when an excep-
tion occurs during input of a Java value object to
or from the database server.

DBDKOutputExcep-
tion.java

Utility class file that provides exception-han-
dling methods that are called when an excep-
tion occurs during output of a Java value object
to or from the database server.

IfmxInStream.java Utility class file that provides read methods to
convert Java value objects between a string and
the internal server format.

IfmxLog.java Utility class file that provides logging methods
that are included throughout the source code
generated by BladeSmith.

IfmxOutStream.java Utility class file that provides write methods to
convert Java value objects between the internal
server format and a string.

IfmxTrace.java Not currently used.

Opaque.java Provides SQLData read and write methods to
support opaque types written in C or C++.

Project_Java.mak Use this file for compiling on either UNIX or
Windows.
A-8 IBM Informix DataBlade Developer’s Kit User’s Guide

Server Files
ProjectUDRs.java Contains method declarations for all user-
defined Java routines, cast support routines,
and aggregates in the BladeSmith project. You
must edit this file to add the functionality you
require.

readme.txt This file describes the files in the src\java direc-
tory.

warning.txt This file describes potential problems with your
source code.
Source Files Generated for DataBlade Modules A-9

Server Files
SQL Script Files
BladeSmith generates the following SQL scripts in the project\scripts
directory.

errors.locale Contains locale-specific error messages. For example, the
file for the default U.S. English locale is errors.en_us.1252.
This file is only generated if you define new error mes-
sages for your DataBlade module.

objects.sql Contains SQL statements that update the sysbldobjects
system table with information about the DataBlade mod-
ule objects that are created in a database. BladeManager
uses the information in the table to register, unregister,
and upgrade DataBlade modules.

prepare.locale.sql Contains SQL statements for locale-specific objects. For
example, the file for the default U.S. English locale is pre-
pare.en_us.sql.

prepare.sql Contains SQL statements that describe the DataBlade
module to BladeManager.
A-10 IBM Informix DataBlade Developer’s Kit User’s Guide

Server Files
Unit Test Files
When you generate unit tests for a DataBlade module, BladeSmith generates
the files listed in the following table in the src\tests directory.

Setup.sql Optionally initializes the database. You can add SQL
statements to create and populate the tables necessary
for your debugging tests.

If you specify this file as your initialization file in the
Properties dialog box, IfxQuery automatically runs this
file after it creates a new database.

Routine.sql Tests the user-defined routine. You can add SQL state-
ments or modify the sample data for the routine. Use
this file if you are debugging udr.c.

IfxQuery runs this file if you click Debug DataBlade
Module with this file in the active window.

Opaque.sql Tests the support routines for each opaque data type.
You can add SQL statements or modify the sample data
for each support routine. Use this file if you are debug-
ging Opaque.c or OpaqueServer.cpp.

IfxQuery runs this file if you click Debug DataBlade
Module with this file in the active window.

Cleanup.sql Optionally deletes and drops tables and data in your
test database.

IfxQuery runs this file if you click Debug DataBlade
Module with this file in the active window.
Source Files Generated for DataBlade Modules A-11

Casting Function Tests
Functional Test Files
The functional test directory, project\functest, includes the following
subdirectories:

� cast. Contains a subdirectory that contains functional tests for each
cast for which you entered test data.

� data. Contains .dat files for each opaque type, user-defined routine,
and cast for which you entered test data. The name of the data file is
objectname.dat, where objectname is either the name of the opaque
type or the name of the C routine associated with a user-defined
routine or cast.

� opaque. Contains a subdirectory for each opaque type for which you
entered test data. The subdirectory contains functional tests for the
support routines defined for the opaque type.

� udr. Contains a subdirectory that contains functional tests for each
user-defined routine for which you entered test data.

The project\functest directory contains a master shell script, main.sh, for
executing all of the functional tests generated for the DataBlade module.
Each subdirectory in the udr, opaque, and cast directories also contains a
main.sh script to execute only the functional tests in that subdirectory.

Casting Function Tests
BladeSmith generates the following files in the
project\functest\cast\castfunction directory for every cast function for
which you entered test data.

cast.sql Tests for castfunction.

cleanup.sql Drops all of the test tables from the database.

main.sh Executes the tests in this directory (.sh indicates this is a shell
script).

setup.sql Creates test tables and initializes them with test data.
A-12 IBM Informix DataBlade Developer’s Kit User’s Guide

Opaque Data Type Support Routines Tests
Opaque Data Type Support Routines Tests
BladeSmith generates the following files in the
project\functest\opaque\opaque directory for every support routine for
which you entered test data.

binexp.sql Tests binary file import/export functions for an
opaque type; uses nested calls to the binary file
import/export functions. The result of the nested
calls should be equivalent to the text input format
for the type.

binio.sql Tests binary file input/output functions; uses the
valid input data for the opaque type.

btree.sql Tests the B-tree index support routine.

cleanup.sql Drops all of the test tables from the database.

compare.sql Tests the SQL Compare function.

concat.sql Tests the concatenation operator; calls the SQL Con-
cat function for an opaque data type with two
instances of the type.

contains.sql Tests the SQL Contains function.

divide.sql Tests the SQL Divide function.

equal.sql Tests the SQL Equal function.

greaterthan.sql Tests the SQL GreaterThan function.

greaterthanorequal.sql Tests the SQL GreaterThanOrEqual function.

hash.sql Tests the SQL Hash support function with a
SELECT...GROUP BY SQL query.

inter.sql Tests the SQL Inter function.

lessthan.sql Tests the SQL LessThan function.

lessthanorequal.sql Tests the SQL LessThanOrEqual function.
Source Files Generated for DataBlade Modules A-13

Opaque Data Type Support Routines Tests
main.sh Executes the tests in this directory (.sh indicates this
is a shell script).

minus.sql Tests the SQL Minus function.

negative.sql Tests the SQL Negative function.

notequal.sql Tests the SQL NotEqual function.

notify.sql Tests the SQL Assign and Destroy routines; inserts
and deletes values in a new test table.

overlap.sql Tests the SQL Overlap function.

plus.sql Tests the SQL Plus function.

positive.sql Tests the SQL Positive function.

setup.sql Creates test tables and initializes them with test
data.

size.sql Tests the SQL Size function.

textexp.sql Tests text file import/export functions; uses the
UNLOAD and LOAD SQL statements.

textio_neg.sql Tests text input/output functions; uses test data
with invalid input data.

textio_pos.sql Tests text input/output functions; uses only valid
test data.

times.sql Tests the SQL Times function.

union.sql Tests the SQL Union function.

within.sql Tests the SQL Within function.
A-14 IBM Informix DataBlade Developer’s Kit User’s Guide

User-Defined Routine Tests
User-Defined Routine Tests
BladeSmith generates the following files in the
project\functest\udr\routine directory for every user-defined routine for
which you entered test data.

call_neg.sql Negative tests for routine.

call_pos.sql Positive tests for routine.

cleanup.sql Drops the test tables from the database.

main.sh Executes the tests in this directory (.sh indicates this is a shell
script).

setup.sql Creates test tables and initializes them with test data.
Source Files Generated for DataBlade Modules A-15

User-Defined Routine Tests
Installation Packaging Files
BladeSmith generates the following installation packaging files that you can
modify with BladePack in the project\install directory.

project.bom A bill of materials file. This file contains an entry for each
file to be installed. The entry includes the path to the
source file and the path where the file will be installed.

project.cmp Lists the main components and subcomponents in the
installation package.

project.prd The main product file that you open with BladePack. This
file lists other files that define the installation package. Ini-
tially, this file contains entries for the .bom, .cmp, and .str
files. Add README files using BladePack.

project.str Defines character strings used in the installation.
A-16 IBM Informix DataBlade Developer’s Kit User’s Guide

User-Defined Routine Tests
Alphabetical List of Generated Files
The following table provides an alphabetical list of the files generated by the
DataBlade Developer’s Kit.

Filename Directory Description

binexp.sql project\functest\opaque\opaque Tests binary file import/export
functions for an opaque type; uses
nested calls to the binary file
import/export functions. The
result of the nested calls should be
equivalent to the text input format
for the type.

binio.sql project\functest\opaque\opaque Tests binary file input/output
functions; uses the valid input data
for the opaque type.

btree.sql project\functest\opaque\opaque Tests the B-tree index support
routine.

call_neg.sql project\functest\udr\routine Negative tests for routine.

call_pos.sql project\functest\udr\routine Positive tests for routine.

cast.sql project\functest\cast\castfunction Tests for castfunction.

cleanup.sql project\functest\opaque\opaque Drops the test tables from the
database.

cleanup.sql project\src\tests Unit test script file. Optionally
deletes and drops tables and data
in your test database.

IfxQuery runs this file if you click
Debug DataBlade Module with
this file in the active window.

cleanup.sql project\functest\cast\castfunction Drops the test tables from the
database.

cleanup.sql project\functest\udr\routine Drops the test tables from the
database.

(1 of 10)
Source Files Generated for DataBlade Modules A-17

User-Defined Routine Tests
compare.sql project\functest\opaque\opaque Tests the SQL Compare function.

concat.sql project\functest\opaque\opaque Tests the concatenation operator;
calls the SQL Concat function for
an opaque data type with two
instances of the type.

contains.sql project\functest\opaque\opaque Tests the SQL Contains function.

DBDKInputException.java project\src\java Utility class file that provides
exception-handling methods
that are called when an excep-
tion occurs during input of a
Java value object to or from the
database server.

DBDKOutputException.java project\src\java Utility class file that provides
exception-handling methods
that are called when an excep-
tion occurs during output of a
Java value object to or from the
database server.

divide.sql project\functest\opaque\opaque Tests the SQL Divide function.

DkClient.cpp project\src\ActiveX Client-specific support library
functions.

DkIntf.h project\src\ActiveX Client-specific support library
header file that defines the ActiveX
value object custom interfaces
(IRawObjectAccess and
ITDkValue).

DkIntf_i.c project\src\ActiveX Client-specific support library file
that contains IIDs (interface identi-
fiers) for interfaces defined in
DkIntf.h

Filename Directory Description

(2 of 10)
A-18 IBM Informix DataBlade Developer’s Kit User’s Guide

User-Defined Routine Tests
DkIntfImpl.h project\src\ActiveX Client-specific support library C++
template implementations for
custom interfaces defined in
DkIntf.h.

equal.sql project\functest\opaque\opaque Tests the SQL Equal function.

errors.locale project\scripts Locale-specific error messages file.

greaterthan.sql project\functest\opaque\opaque Tests the SQL GreaterThan
function.

greaterthanorequal.sql project\functest\opaque\opaque Tests the SQL GreaterThan-
OrEqual function.

hash.sql project\functest\opaque\opaque Tests the SQL Hash support
function with a SELECT...GROUP
BY SQL query.

IfmxInStream.java project\src\java Utility class file that provides
read methods to convert Java
value objects between a string
and the internal server format.

IfmxLog.java project\src\java Utility class file that provides
logging methods that are
included throughout the source
code generated by BladeSmith.

IfmxOutStream.java project\src\java Utility class file that provides
write methods to convert Java
value objects between the inter-
nal server format and a string.

IfmxTrace.java project\src\java Not currently used.

inter.sql project\functest\opaque\opaque Tests the SQL Inter function.

lessthan.sql project\functest\opaque\opaque Tests the SQL LessThan function.

lessthanorequal.sql project\functest\opaque\opaque Tests the SQL LessThanOrEqual
function.

Filename Directory Description

(3 of 10)
Source Files Generated for DataBlade Modules A-19

User-Defined Routine Tests
main.sh project\functest Executes the all of the tests gen-
erated for the DataBlade mod-
ule (.sh indicates this is a shell
script).

main.sh project\functest\cast\castfunction Executes the tests in this direc-
tory (.sh indicates this is a shell
script).

main.sh project\functest\opaque\opaque Executes the tests in this direc-
tory (.sh indicates this is a shell
script).

main.sh project\functest\udr\routine Executes the tests in this direc-
tory (.sh indicates this is a shell
script).

minus.sql project\functest\opaque\opaque Tests the SQL Minus function.

negative.sql project\functest\opaque\opaque Tests the SQL Negative function.

notequal.sql project\functest\opaque\opaque Tests the SQL NotEqual function.

notify.sql project\functest\opaque\opaque Tests the SQL Assign and Destroy
routines; inserts and deletes values
in a new test table.

object.sql project\scripts SQL script file that contains the
SQL statements to create
DataBlade module objects in the
database.

Opaque.c project\src\C A C file is generated for each
opaque type; it contains the
support functions for that opaque
type.

Opaque.cpp project\src\ActiveX Client C++ file that contains the
methods for the ActiveX value
object that call into the C++ class
(OpaqueClient.cpp).

Filename Directory Description

(4 of 10)
A-20 IBM Informix DataBlade Developer’s Kit User’s Guide

User-Defined Routine Tests
Opaque.h project\src\ActiveX Client header file that contains the
ActiveX value object definition.

Opaque.java project\src\java Provides SQLData read and write
methods to support opaque types
written in C or C++.

Opaque.rgs project\src\ActiveX Client file with instructions for
registering the ActiveX value
object on the client computer.

Opaque.sql project\src\tests Unit test script file. Tests the
support routines for each opaque
data type. You can add SQL state-
ments or modify the sample data
for each support routine. Use this
file if you are debugging Opaque.c
or OpaqueServer.cpp.

IfxQuery runs this file if you click
Debug DataBlade Module with
this file in the active window.

Opaque_proxy.java project\src\java Contains value object proxy
methods for the value object
named Opaque. Do not edit this
file.

OpaqueClient.cpp project\src\ActiveX Client C++ class file that contains
placeholders (function definitions
and null bodies) for the methods
for OpaqueClient. This file can be
modified.

OpaqueClient.h project\src\ActiveX Client header file that contains the
OpaqueClient class definition. This
file can be modified.

OpaqueCommon.cpp project\src\ActiveX C++ file that contains the logic for
all ActiveX custom methods and
their server-project equivalents.
This file can be modified.

Filename Directory Description

(5 of 10)
Source Files Generated for DataBlade Modules A-21

User-Defined Routine Tests
OpaqueCommon.h project\src\ActiveX Server and client header file that
contains the OpaqueCommon class
definition. This file can be
modified.

OpaqueServer.cpp project\src\ActiveX Server-side C++ class file that
contains placeholders (function
definitions and null bodies) for the
methods for OpaqueServer. This
file can be modified.

OpaqueServer.h project\src\ActiveX Server-side header file that
contains the OpaqueServer class
definition. This file can be
modified.

OpaqueStruct.h project\src\ActiveX Server and client C header file that
contains the OpaqueStruct
definition (the C structure repre-
senting the opaque type).

overlap.sql project\functest\opaque\opaque Tests the SQL Overlap function.

plus.sql project\functest\opaque\opaque Tests the SQL Plus function.

positive.sql project\functest\opaque\opaque Tests the SQL Positive function.

prepare.sql project\scripts SQL script file that contains SQL
statements that describe the
DataBlade module to
BladeManager.

Project.bom project\install A bill of materials file that contains
an entry for each file to be installed.

Project.cmp project\install Component file listing main
components and subcomponents
in the installation package.

Project.def project\src\C Definitions file listing all exported
C routines; for use by Microsoft
Developer Studio Visual C++ 4.2 or
above.

Filename Directory Description

(6 of 10)
A-22 IBM Informix DataBlade Developer’s Kit User’s Guide

User-Defined Routine Tests
Project.dsp project\src Visual C++ project file.

Project.dsw project\src Visual C++ workspace file.

Project.h project\src\C Header file that contains project
definitions, including the C data
structures that define your opaque
types.

Project.ibs project BladeSmith project file.

Project.prd project\install BladePack product file listing the
other files that define the instal-
lation package.

Project.str project\install Character string file for interactive
installations.

Project_Java.mak project\src\java Use this file for compiling on either
UNIX and Windows.

ProjectU.mak project\src Combination C and C++ makefile
for use from the UNIX command
line.

ProjectUDRs.java project\src\java Contains contains method declara-
tions for all user-defined Java
routines, cast support routines, and
aggregates in the BladeSmith
project. You must edit this file to
add the functionality you require.

ProjectWrap.cpp project\src\ActiveX C++ file that contains the interfaces
to the server-side support routines.

ProjectWrap.h project\src\ActiveX Header file for the server-side
interfaces.

ProjectX.cpp project\src\ActiveX Client project file with object map
entry, DLL entry points, and so on.

ProjectX.def project\src\ActiveX Client project definitions file.

Filename Directory Description

(7 of 10)
Source Files Generated for DataBlade Modules A-23

User-Defined Routine Tests
ProjectX.dsp project\src\ActiveX Client project Microsoft Developer
Studio Visual C++ 5.0 ATL project
file.

ProjectX.idl project\src\ActiveX Client project IDL file that Visual
C++ 5.0 uses to generate ProjectX.h
and ProjectX.tlb.

ProjectX.mak project\src\ActiveX Client project Windows makefile
for scripts or for command-line
users.

ProjectX.rc project\src\ActiveX Client project resource file.

ProjectXps.def project\src\ActiveX Client project file generated by
ATL.

ProjectXps.mk project\src\ActiveX Client project file generated by
ATL.

readme.txt project\src\C Describes the files in this directory.

readme.txt project\src\java Describes the files in the src\java
directory.

Resource.h project\src\ActiveX Client project header file that
contains definitions, including
IDR_OPAQUE.

Routine.sql project\src\tests Unit test script file. Tests the user-
defined routine. You can add SQL
statements or modify the sample
data for the routine. Use these file if
you are debugging udr.c.

IfxQuery runs this file if you click
Debug DataBlade Module with
this file in the active window.

setup.sql project\functest\cast\castfunction Creates test tables and initializes
them with test data.

setup.sql project\functest\opaque\opaque Creates test tables and initializes
them with test data.

Filename Directory Description

(8 of 10)
A-24 IBM Informix DataBlade Developer’s Kit User’s Guide

User-Defined Routine Tests
setup.sql project\src\tests Unit test script file. Optionally
initializes the database. You can
add SQL statements to create and
populate the tables necessary for
your debugging tests.

If you specify this file as your
initialization file in the Properties
dialog box, IfxQuery automatically
runs this file after it creates a new
database.

setup.sql project\functest\udr\routine Creates test tables and initializes
them with test data.

size.sql project\functest\opaque\opaque Tests the SQL Size function.

StdAfx.cpp project\src\ActiveX Client project file for precompiled
header.

StdAfx.h project\src\ActiveX Client project standard header file.

StdDbdk.cpp project\src\ActiveX Support library file that provides
the server and, with the
DkClient.cpp file (see “Client
Project Files” on page A-4), the
client library functions.

StdDbdk.h project\src\ActiveX Support library header file for
client and server; contains class
and function definitions.

support.c project\src\C C file that contains utility functions
and #include directives for header
files.

textexp.sql project\functest\opaque\opaque Tests text file import/export
functions; uses the UNLOAD and
LOAD SQL statements.

textio_neg.sql project\functest\opaque\opaque Tests text input/output functions;
uses test data with invalid input
data.

Filename Directory Description

(9 of 10)
Source Files Generated for DataBlade Modules A-25

User-Defined Routine Tests
textio_pos.sql project\functest\opaque\opaque Tests text input/output functions;
uses only valid test data.

times.sql project\functest\opaque\opaque Tests the SQL Times function.

udr.c project\src\C C file that contains user-defined
routines, cast support routines, and
aggregates.

union.sql project\functest\opaque\opaque Tests the SQL Union function.

warning.txt project\src\c Describes potential problems with
your source code.

warning.txt project\src\java Describes potential problems with
your source code.

within.sql project\functest\opaque\opaque Tests the SQL Within function.

Filename Directory Description

(10 of 10)
A-26 IBM Informix DataBlade Developer’s Kit User’s Guide

B
Appendix
Completing BladeSmith-
Generated Code
This appendix provides tables that list the types of objects Blade-
Smith generates, indicate whether BladeSmith generates
complete code or template code you must complete, and provide
a reference to the instructions in this guide for completing the
code.

Opaque Data Type Support Routines in C
Opaque Data Type Support Routines in C
The following table lists the opaque data type support routines BladeSmith
generates for C language DataBlade module projects and provides a
reference to the sections in this guide that explain how to complete or
customize code for each type of object.

Opaque Support Routine
Complete
Code?

Customizable
Code? How to Complete or Customize the Code

Text input/output Yes Yes See “Text Input and Output Functions” on
page 5-26.

Binary send/receive Yes Yes See “Binary Send and Receive Functions” on
page 5-30.

Text file import/export Yes See “Text File Import and Export Functions” on
page 5-32.

Binary file
import/export

Yes No See “Binary File Import and Export Functions” on
page 5-34.

Assign/destroy Yes Yes See “The Assign and Destroy Routines” on
page 5-35.

LOhandles() See “LOhandles() Function” on page 5-37.

Compare() Yes Yes See “Compare Function” on page 5-38.

B-tree comparison
functions:

� Equal()

� LessThan()

� LessThanOrEqual()

� GreaterThan()

� GreaterThanOrEqual()

� NotEqual()

Yes No See “B-Tree Comparison Functions” on page 5-40.

R-tree comparison
functions

No No See “R-Tree Comparison Functions” on page 5-42.

(1 of 2)
B-2 IBM Informix DataBlade Developer’s Kit User’s Guide

Opaque Data Type Support Routines in C
Mathematic functions:

� Plus()

� Minus()

� Times()

� Divide()

� Positive()

� Negate()

No Yes See “Mathematic Functions” on page 5-42.

Concat() No Yes See “Concat() Function” on page 5-43.

Hash() No Yes See “Hash() Function” on page 5-43.

OpaqueStatCollect() Yes Yes See “The Statistics Collection Function” on
page 5-44.

OpaqueStatPrint() Yes Yes See “The Statistics Print Function” on page 5-45.

Opaque_SetMinValue() No Yes See “The Statistics Minimum, Maximum, and
Distribution Functions” on page 5-45.

Opaque_SetMaxValue() No Yes See “The Statistics Minimum, Maximum, and
Distribution Functions” on page 5-45.

Opaque_SetHistogram() No Yes See “The Statistics Minimum, Maximum, and
Distribution Functions” on page 5-45.

Opaque Support Routine
Complete
Code?

Customizable
Code? How to Complete or Customize the Code

(2 of 2)
Completing BladeSmith-Generated Code B-3

User-Defined Routines in C
User-Defined Routines in C
The following table provides references to sections in this guide that explain
how to complete or customize code for C language user-defined routines that
BladeSmith generates.

C Object
Complete
Code?

Customizable
Code? How to Complete or Customize the Code

User-defined routines
(general)

No Yes See “Most User-Defined Routines” on page 5-47.

Cast support functions No Yes See “Cast Support Functions” on page 5-48.

Aggregate functions:

� AggregateInit()

� AggregateIter()

� AggregateComb()

� AggregateFinl()

No Yes See “Aggregate Functions” on page 5-49.

Selectivity functions No Yes See “Selectivity Functions” on page 5-51.

Iterator functions No Yes See “Iterator Functions” on page 5-53.
B-4 IBM Informix DataBlade Developer’s Kit User’s Guide

Opaque Data Type Support Routines in C++
Opaque Data Type Support Routines in C++
The following table lists the opaque data type support routines BladeSmith
generates for C++/ActiveX DataBlade module projects and provides a
reference to the sections in this guide that explain how to complete or
customize code for each type of object.

C++ Method
Complete
Code?

Customizable
Code? How to Complete or Customize the Code

Binary send/receive Yes Yes See “Implementing ActiveX Value Objects” on
page 6-5 for an overview of the programming tasks.

See “Support Methods Reference” on page 6-13 for
a description of the internal object and support
library methods that you can use.

Binary file
import/export

Yes Yes See “Implementing ActiveX Value Objects” on
page 6-5 for an overview of the programming tasks.

See “Support Methods Reference” on page 6-13 for
a description of the internal object and support
library methods that you can use.

Text input/output:

� FromString()

� ToString()

Yes Yes See “Implementing ActiveX Value Objects” on
page 6-5 for an overview of the programming tasks.

See “Support Methods Reference” on page 6-13 for
a description of the internal object and support
library methods that you can use.

Text import/export:

� TextImport()

� TextExport()

Yes Yes See “Implementing ActiveX Value Objects” on
page 6-5 for an overview of the programming tasks.

See “Support Methods Reference” on page 6-13 for
a description of the internal object and support
library methods that you can use.

Type compare:

� Compare()

� Equal()

� NotEqual()

Yes Yes See “Implementing ActiveX Value Objects” on
page 6-5 for an overview of the programming tasks.

See “Support Methods Reference” on page 6-13 for
a description of the internal object and support
library methods that you can use.

(1 of 3)
Completing BladeSmith-Generated Code B-5

Opaque Data Type Support Routines in C++
B-tree comparison
methods:

� Equal()

� LessThan()

� LessThanOrEqual()

� GreaterThan()

� GreaterThanOrEqual()

� NotEqual()

Yes No See “Implementing ActiveX Value Objects” on
page 6-5 for an overview of the programming tasks.

See “Support Methods Reference” on page 6-13 for
a description of the internal object and support
library methods that you can use.

R-tree comparison
methods

No No See “Implementing ActiveX Value Objects” on
page 6-5 for an overview of the programming tasks.

See “Support Methods Reference” on page 6-13 for
a description of the internal object and support
library methods that you can use.

Mathematic methods:

� Plus()

� Minus()

� Times()

� Divide()

� Positive()

� Negate()

No Yes See “Implementing ActiveX Value Objects” on
page 6-5 for an overview of the programming tasks.

See “Support Methods Reference” on page 6-13 for
a description of the internal object and support
library methods that you can use.

Concat() No Yes See “Implementing ActiveX Value Objects” on
page 6-5 for an overview of the programming tasks.

See “Support Methods Reference” on page 6-13 for
a description of the internal object and support
library methods that you can use.

C++ Method
Complete
Code?

Customizable
Code? How to Complete or Customize the Code

(2 of 3)
B-6 IBM Informix DataBlade Developer’s Kit User’s Guide

Opaque Data Type Support Routines in C++
Hash() No Yes See “Implementing ActiveX Value Objects” on
page 6-5 for an overview of the programming tasks.

See “Support Methods Reference” on page 6-13 for
a description of the internal object and support
library methods that you can use.

IsNull() Yes Yes See “Implementing ActiveX Value Objects” on
page 6-5 for an overview of the programming tasks.

See “Support Methods Reference” on page 6-13 for
a description of the internal object and support
library methods that you can use.

SetNullFlag() Yes Yes See “Implementing ActiveX Value Objects” on
page 6-5 for an overview of the programming tasks.

See “Support Methods Reference” on page 6-13 for
a description of the internal object and support
library methods that you can use.

C++ Method
Complete
Code?

Customizable
Code? How to Complete or Customize the Code

(3 of 3)
Completing BladeSmith-Generated Code B-7

User-Defined Routines in Java
User-Defined Routines in Java
The following table provides references to sections in this guide that explain
how to complete or customize code for Java language user-defined routines
that BladeSmith generates.

Java Method
Complete
Code?

Customizable
Code? How to Complete or Customize the Code

User-defined methods
(general)

No Yes See “Most User-Defined Methods” on page 8-10.

Cast support methods No Yes See “Cast Support Methods” on page 8-14.

Aggregate methods:

� AggregateInit()

� AggregateIter()

� AggregateComb()

� AggregateFinl()

No Yes See “Aggregates” on page 8-12.

Iterators No Yes See “Iterators” on page 8-11.
B-8 IBM Informix DataBlade Developer’s Kit User’s Guide

C
Appendix
Testing for an Sbspace
If your DataBlade module contains data types that contain smart
large object data (BLOB and CLOB data types), an sbspace to store
the smart large object must exist for each database in which users
register the DataBlade module. If the required sbspace does not
exist, registration fails.

You can test for the existence of a particular sbspace when
BladeManager prepares your DataBlade module for registration
by using the following procedure. If you test for the sbspace and
it does not exist, registration fails and BladeManager writes an
error message to the registration log. If you do not test for the
sbspace and it does not exist, registration fails with an obscure
error message.

To implement a test for a particular sbspace, use BladeSmith to
add a custom SQL statement to your DataBlade module that
executes the SYSBldTstSBSpace() function. This is the syntax of
the EXECUTE FUNCTION statement that executes
SYSBldTstSBSpace():

EXECUTE FUNCTION SYSBldTstSBSpace("opt_name");

opt_name is the name of the required sbspace. To indicate the
default sbspace, replace "opt_name" with " ".

To add this user-defined routine to your registration script

1. In BladeSmith, define the DataBlade module object that
has a data type of BLOB or CLOB.

For example, create an opaque type called BigType that
has a member of type BLOB.

See “Creating Data Types” on page 4-37 for instructions.

2. Choose Edit�Insert�SQL File.

The New SQL File wizard appears.

3. In the Descriptive name for SQL text box, type a name for the SQL
file. For example, type SbspaceTest.

4. In the Custom SQL create text text box, type the following statement:
 EXECUTE FUNCTION SYSBldTstSBSpace("opt_name");

5. Click Next.

6. To specify which data types in your DataBlade module contain smart
large objects, click the appropriate objects in the These objects
require this SQL box. For example, click BigType.

For more information on dependencies, see “Object Dependencies”
on page 4-64.

7. Click Finish.

When BladeManager prepares the DataBlade module for registration, the
database server executes the SYSBldTstSBSpace() function before the SQL
statement to create the BigType data type. If the sbspace specified in
SYSBldTstSBSpace() exists, the database server creates the dependent data
type (BigType). If the sbspace does not exist, the database server writes an
error to a BladeManager log file.

For more information on BladeManager, see the IBM Informix DataBlade
Module Installation and Registration Guide.
C-2 IBM Informix DataBlade Developer’s Kit User’s Guide

D
Appendix
Notices
IBM may not offer the products, services, or features discussed
in this document in all countries. Consult your local IBM repre-
sentative for information on the products and services currently
available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does
not infringe on any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and
verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equiv-
alent agreement between us.
D-2 IBM Informix DataBlade Developer’s Kit User’s Guide

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for
the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs. © Copyright IBM Corp. (enter the
year or years). All rights reserved.

If you are viewing this information softcopy, the photographs and color illus-
trations may not appear.
Notices D-3

Trademarks
Trademarks
AIX; DB2; DB2 Universal Database; Distributed Relational Database
Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix;
C-ISAM; Foundation.2000TM; IBM Informix 4GL; IBM Informix

DataBlade Module; Client SDKTM; CloudscapeTM; CloudsyncTM;
IBM Informix Connect; IBM Informix Driver for JDBC; Dynamic
ConnectTM; IBM Informix Dynamic Scalable ArchitectureTM (DSA);
IBM Informix Dynamic ServerTM; IBM Informix Enterprise Gateway
Manager (Enterprise Gateway Manager); IBM Informix Extended Parallel
ServerTM; i.Financial ServicesTM; J/FoundationTM; MaxConnectTM; Object
TranslatorTM; Red Brick Decision ServerTM; IBM Informix SE;
IBM Informix SQL; InformiXMLTM; RedBack; SystemBuilderTM; U2TM;
UniData; UniVerse; wintegrate are trademarks or registered trademarks
of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Windows, Windows NT, and Excel are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.
D-4 IBM Informix DataBlade Developer’s Kit User’s Guide

Glossary
Glossary
access method A set of server routines that the database server uses to access
and manipulate an index or a table. B-tree is the default second-
ary access method used by DataBlade modules. Some DataBlade
modules have their own access methods, with routines defined
by the module.

See also primary access method, secondary access method.

access privilege Permission for a user to perform an operation in a specific data-
base, table, table fragment, or column.

ActiveX value
object

A Microsoft Common Object Model (COM)-compliant object that
contains a client-side copy of an opaque type and its support
routines.

See also value object.

aggregate
function

A function that performs a mathematical operation on a set of
rows selected by a query and returns a single value that contains
information about those rows. Aggregates use one or more sup-
port functions to perform the aggregate operations. Examples of
built-in aggregates include SUM, AVG, and COUNT.

arithmetic
function

A function that returns a value by performing a mathematical
operation on one or more arguments.

B-tree index A type of index that uses a balanced tree structure for efficient
record retrieval. B-tree indexes store key data in ascending or
descending order.

BLOB A smart large object data type that stores any kind of binary data,
including images. The database server performs no interpreta-
tion on the contents of a BLOB column.

See also smart large object.

built-in cast A cast that is built into the database server. A built-in cast performs automatic
conversions between different built-in data types.

built-in data type A fundamental data type defined by the database server: for example, INTE-
GER, CHAR, or SERIAL8.

built-in function A predefined, SQL-invoked function that provides some basic arithmetic and
other operations, such as cos(), log(), or today().

cast A mechanism that the database server uses to convert data from one data
type to another. The server provides built-in casts that it performs automati-
cally. Users can create both implicit and explicit casts.

See also cast support function, explicit cast, implicit cast, built-in cast.

cast support
function

A function that is used to implement an implicit or explicit cast by perform-
ing the necessary operations for conversion between two data types. A cast
support function is optional unless the internal storage representations of the
two data types are not equivalent.

class A category of objects that have common properties and are managed through
a specific system table. Informix database classes include access methods,
aggregates, casts, routines, operators, tables, and types.

client files The files that reside on a client workstation that accesses a DataBlade mod-
ule’s objects. Not all DataBlade modules have client files. Examples include
client applications or client libraries that are specific to the DataBlade mod-
ule.

CLOB A smart large object data type that stores blocks of text items, such as ASCII
or PostScript files.

See also smart large object.

collection An instance of a collection data type; a group of elements of the same data
type stored in a SET, MULTISET, or LIST type constructor.

See also collection data type.

collection data
type

A complex data type that groups values, called elements, of a single data type
in a column. Collection data types consist of the SET, MULTISET, or LIST type
constructor and an element type, which can be any data type, including a
complex data type.
2 IBM Informix DataBlade Developer’s Kit User’s Guide

commutator
function

A Boolean function that accepts the same two arguments, in reverse order, as
another Boolean function, and returns the same result. The query optimizer
might choose the commutator function if it executes more quickly in a given
query than the specified function.

See also negator function.

complex data
type

A data type that is built from a combination of other data types using an SQL
type constructor or the CREATE ROW TYPE statement, and whose compo-
nents can be accessed through SQL statements. Complex data types include
collection data types and row data types.

concurrency The ability of two or more processes to access the same database
simultaneously.

constructed data
type

A complex data type created with a type constructor: for example, a collec-
tion data type or an unnamed row data type.

constructor See type constructor.

data file A flat file containing data to be loaded into the database.

data type See built-in data type, extended data type.

database object A discrete entity within a database, such as a data type, a routine, a table, an
index, or a view. Users can define database objects with the CREATE state-
ment.

DataBlade API The C application programming interface (API) for your Informix database
server. The DataBlade API is used for the development of DataBlade mod-
ules. The DataBlade API contains routines to process data in the database
server and return the results to the calling application.

DataBlade
module

A group of database objects and supporting code that extends an object-rela-
tional database to manage new kinds of data or add new features. A
DataBlade module can include new data types, routines, casts, access meth-
ods, SQL code, client code, and installation programs.

distinct data type A data type based on an existing opaque, built-in, distinct, or named row
data type, which is known as its source type. The distinct data type has the
same internal storage representation as its source type, but it has a different
name. To compare a distinct data type with its source type requires an explicit
cast. A distinct data type inherits all routines that are defined on its source
type.
Glossary 3

element A member of a collection. See also collection data type.

element data
type

The data type of the elements in a collection.

explicit cast A cast that requires a user to specify the CAST AS keyword or cast operator
(::) to convert data from one data type to another.

See also cast, cast support function.

extended data
type

A data type that is not built-in: namely, a collection data type, row data type,
opaque data type, or distinct data type.

external function An external routine that can accept one or more arguments and returns a sin-
gle value.

external
procedure

An external routine that can accept one or more arguments, but does not
return a value.

external routine A routine written in a language external to the database (for example, C),
whose body is stored outside the database but whose name and parameters
are registered in the system catalog tables.

field A component of a named row data type. A field has a name and a data type
and is accessed in an SQL statement by using dot notation: for example,
row_type_name.field_name.

function A routine that can accept arguments and returns one or more values.

See also built-in function, routine, user-defined function.

functional index An index that stores the result of executing a specified function on a table col-
umn.

function
overloading

See routine overloading.

Global Language
Support (GLS)

An application environment that allows Informix application-programming
interfaces (APIs) and database servers to handle different languages, cultural
conventions, and code sets. Developers use the GLS libraries to manage all
string, currency, date, and time data types in their code. Using GLS, you can
add support for a new language, character set, and encoding by editing
resource files, without access to the original source code and without rebuild-
ing the DataBlade module or client software.
4 IBM Informix DataBlade Developer’s Kit User’s Guide

grant privileges Privileges granted to one or more users. The users then have the authority to
grant these same privileges to other users. A privilege list identifies the exact
privileges to be granted.

hash rule A user-defined algorithm that maps each row in a table to a set of hash values
used to determine the fragment in which a row is stored.

implicit cast A cast that the database server automatically performs to convert data from
one data type to another.

See also cast, cast support function.

index A structure of pointers to rows of data in a table. An index optimizes the per-
formance of database queries by ordering rows to make access faster.

Informix user ID A login user ID (login user name) that must be valid on all computer systems
(operating systems) involved in the client’s database access. Often referred to
as the client’s “user ID” or “user name.”

Informix user
password

A user ID password that must be valid on all computer systems (operating
systems) involved in the client’s database access. When the client specifies an
explicit user ID, most computer systems require the Informix user password
to validate the user ID.

INFORMIXDIR The Informix environment variable that specifies the directory in which
IBM Informix products are installed.

inheritance The property that allows a named row data type or a typed table to inherit
representation (data fields and columns) and behavior (routines, operators,
and rules) from a named row data type or typed table superior to it in a
defined hierarchy. Inheritance allows for incremental modification, so that an
object can inherit a general set of properties and then add properties that are
specific to itself. Under certain circumstances, distinct data types can also
have inheritance.

input parameter A placeholder within a prepared SQL statement that represents a value to be
provided at the time the statement is executed.

interface In the DataBlade Developers Kit, a way to refer to a DataBlade module within
another DataBlade module. Because an interface creates a dependency on
another module, BladeManager ensures that the originating module is regis-
tered before the module that contains the interface.
Glossary 5

iterator function A function that returns a set of results one row at a time. The database server
calls iterator functions repeatedly to process all the return values.

keyword A word that has meaning to a programming language. In Informix SQL, key-
words are shown in syntax diagrams in all uppercase letters. They must be
used in SQL statements exactly as shown in the syntax, but they can be
entered as either uppercase or lowercase letters.

large object A data object that exceeds 255 bytes in length. A large object is logically
stored in a table column but physically stored independently of the column,
because of its size. Large objects can contain non-ASCII data. Your Informix
database server recognizes two kinds of large objects: simple large objects
(TEXT, BYTE) and smart large objects (CLOB, BLOB).

See also SLV, smart large object.

LIST constructor A type constructor used to create a LIST data type.

LIST data type A collection data type in which elements are ordered and duplicates are
allowed.

See also collection data type.

locale A set of files that define the native-language behavior of the program at run-
time. The rules are usually based on the linguistic customs of the region or
the territory. The locale can be set through an environment variable that dic-
tates output formats for numbers, currency symbols, dates, and time, as well
as collation order for character strings and regular expressions.

See also Global Language Support (GLS).

LVARCHAR A built-in data type that stores varying-length character data greater than 256
bytes. It is used for input and output casts for opaque data types. LVARCHAR
supports code-set order for comparisons of character data.

math function See built-in function, operator function.

member A component of an opaque data type. A member has a name and a data type
and can be accessed in an SQL statement by user-defined accessor functions.

multirepresenta-
tional data type

A data type whose storage location can switch between a row and a smart
large object.

MULTISET
constructor

A type constructor used to create a MULTISET data type.
6 IBM Informix DataBlade Developer’s Kit User’s Guide

MULTISET data
type

A collection data type in which elements are not ordered and duplicates are
allowed.

See also collection data type.

named row data
type

A row data type that is created with the CREATE ROW TYPE statement and
has a name. A named row data type can be used to construct a typed table
and can be part of a type or table hierarchy.

See also row data type, unnamed row data type.

negator function A Boolean function that accepts the same arguments in the same order as
another Boolean function, but returns the Boolean complement. The query
optimizer might choose the negator function if it executes more quickly in a
given query than the specified function.

See also commutator function.

nonvariant
function

A function that always returns the same value when passed the same argu-
ments.

not null
constraint

A constraint on a column that specifies that the column cannot contain null
values.

object See database object.

objects script A file containing SQL statements that describe the objects in a DataBlade
module.

opaque data type An extended data type that contains one or more members but whose inter-
nal structure is interpreted by the database server using user-defined support
routines.

operator A symbol, such as =, >, +, or -, that invokes an operator function.

operator binding The association between an operator and an operator function. Operator
binding occurs when an SQL statement contains an operator and the database
server automatically invokes the associated operator function.

operator class The set of operators that the database server associates with a secondary
access method. When an index is created, it is associated with a particular
operator class.
Glossary 7

operator function An arithmetic function that has a corresponding operator symbol. An opera-
tor function processes one to three arguments and returns a value. For exam-
ple, the plus() function corresponds to the “+” operator symbol.

overloading See routine overloading.

parallel database
query (PDQ)

A query that allows the database server to distribute the execution of the
query among several virtual processors by dividing it into subqueries.

parallelizable
routine

A routine that can be executed within a parallel database query statement.

See also parallel database query (PDQ).

parameter A variable to which a value can be assigned in a specific application. In a rou-
tine, a parameter is the placeholder for the argument values passed to the
subroutine at runtime.

polymorphism See routine overloading.

prepare script A file containing SQL statements that describe the DataBlade module. There
are two types of prepare scripts:

� The script called prepare.sql contains information about the module that
is not language-specific.

� Scripts with names in the format prepare.locale.sql contain language-
specific information such as the module and vendor descriptions.

primary access
method

A set of routines that perform table operations such as inserting, deleting,
updating, and scanning data. The database server provides a virtual table
interface (VTI), with which advanced users can create primary access meth-
ods for virtual tables.

privilege Rights granted to specific users on specific objects within the database. A
privilege list identifies the exact privileges that are applicable for a particular
object and that are held by the user invoking the grant. Privileges are granted
or revoked on a database object using the GRANT and REVOKE statements.

procedure A routine that can accept arguments but does not return a value.

See also external procedure, stored procedure.

procedure
overloading

See routine overloading.
8 IBM Informix DataBlade Developer’s Kit User’s Guide

query optimizer A server facility that estimates the most efficient plan for executing a query
in the DBMS. The optimizer considers the CPU cost and the I/O cost of execut-
ing a plan.

R-tree index A type of index that uses a tree structure based on overlapping bounding
rectangles to speed access to spatial and multidimensional data types.

registration The process of executing SQL statements to create DataBlade module objects
or individual user-defined routines in a database and giving the database
server the location of the associated shared object file. Registration makes a
DataBlade module available for use by client applications that open that
database.

routine A named collection of program statements that perform a particular task and
can accept arguments. Routines include functions, which return one or more
values, and procedures, which do not return values.

See also function, procedure, user-defined routine.

routine
resolution

The process that the database server uses to determine which routine to exe-
cute, given the routine signature.

See also routine signature.

routine signature The information that the database server uses to identify a routine. The sig-
nature of a routine includes the type of the routine (function or procedure),
the routine name, the number of parameters, the data types of the parame-
ters, and the order of the parameters. In an ANSI-compliant database, the
name of the routine is specified as owner.name.

routine
overloading

Defining more than one routine with the same name but different parameter
lists.

ROW constructor The type constructor used to construct unnamed row data types.

row data type A complex data type consisting of a group of ordered data elements (fields)
of the same or different data types. The fields of a row type can be of any sup-
ported built-in or extended data type, including complex data types, except
SERIAL and SERIAL8 and, in certain situations, TEXT and BYTE.

There are two kinds of row data types:

� Named row types, created using the CREATE ROW TYPE statement

� Unnamed row types, created using the ROW constructor
Glossary 9

See also named row data type, unnamed row data type.

sbspace A logical storage area that contains one or more chunks that store only smart
large object data.

secondary
access method

A set of database server functions that build, access, and manipulate an index
structure: for example, a B-tree, an R-tree, or an index structure provided by
a DataBlade module. Typically, a secondary access method speeds up the
retrieval of data.

When an SQL query uses an index created on a secondary access method, it
accesses the index using the functions defined in the operator class associated
with that access method.

See also operator class.

selectivity
function

A function that calculates the percentage of rows that will be returned by a
filter function in the WHERE clause of a query. The optimizer uses selectivity
information to determine the fastest way to execute an SQL query.

SET constructor A type constructor used to create a SET data type.

SET data type A collection data type in which elements are not ordered and duplicates are
not allowed.

See also collection data type.

shared memory A portion of main memory that processes can use to communicate and share
common data, thus reducing disk I/O and improving performance.

signature See routine signature.

SLV Abbreviation for statement local variable.

smart large
object

A large object that:

� is stored in an sbspace, a logical storage area that contains one or more
chunks.

� has read, write, and seek properties similar to a UNIX file.

� is recoverable.

� obeys transaction isolation modes.

� can be retrieved in segments by an application.

Smart large objects include CLOB and BLOB data types.
10 IBM Informix DataBlade Developer’s Kit User’s Guide

SPL Abbreviation for Stored Procedure Language.

statement local
variable (SLV)

A variable for storing a value that a function returns indirectly, through a
pointer, in addition to the value that the function returns directly. An SLV’s
scope is limited to the statement in which it is used. The RANK parameter of
the Resembles operator function is an SLV.

stored procedure A user-defined routine that is stored in a database in executable format.
Stored procedures are used to execute frequently repeated tasks, to improve
performance, and to monitor access to data. Stored procedures are written in
Stored Procedure Language (SPL).

Stored Procedure
Language

An Informix extension to SQL that provides flow-control features such as
sequencing, branching, and looping, comparable to those features provided
in the SQL/PSM standard. SPL can be used for writing DataBlade module rou-
tines.

strategy
functions

The functions that the optimizer uses to determine what filters in a query can
use a secondary access method (index).

subquery A SELECT statement within a WHERE clause.

support routines The internal routines that the database server automatically invokes to pro-
cess a data type, cast, aggregate, or access method.

The database server uses user-defined support routines to perform opera-
tions on opaque data types (such as converting to and from the internal,
external, and binary representations of the type).

An secondary access method uses a support routine in an operator class to
perform operations on an index (such as building or searching).

system catalog A group of database tables that contain information about the database itself,
such as the names of tables or columns in the database, the number of rows
in a table, the information about indexes and database privileges, and so on.

table A rectangular array of data in which each row describes a single entity and
each column contains the values for each category of description. A table is
sometimes referred to as a base table to distinguish it from the views, indexes,
and other objects defined on the underlying table or associated with it.
Glossary 11

type constructor An SQL keyword that indicates to the database server the type of complex
data to create.

See also LIST constructor, MULTISET constructor, ROW constructor, SET con-
structor.

type inheritance The property that allows a named row data type to inherit representation
(data fields, columns) and behavior (routines, operators, rules) from a named
row type above it in the type hierarchy.

unnamed row
data type

A row type created with the ROW constructor that has no defined name and
no inheritance properties. Two unnamed row types are equivalent if they
have the same number of fields and if corresponding fields have the same
data type, even if the fields have different names.

unregistration The process of executing SQL statements to drop DataBlade module objects
or individual user-defined routines in a database and removing the ability to
access the associated shared object file from the database server.

user-defined
function

A user-defined routine that returns a value.

user-defined
routine

A routine, written in one of the languages that your Informix database server
supports, that provides added functionality for data types or encapsulates
application logic.

user-defined
procedure

A user-defined routine that does not return a value.

user-defined
statistics

Information about the opaque data type values in your database that is col-
lected by the UPDATE STATISTICS statement, which calls user-defined func-
tions to calculate the statistics. The optimizer uses these statistics to
determine the fastest way to execute an SQL query.

user-defined
virtual processor

A virtual processor that executes the user-defined routines that are assigned
to it.

See also virtual processor.

value object A self-contained binary object that provides standard interfaces to its callers.
Value objects can be used in client applications.
12 IBM Informix DataBlade Developer’s Kit User’s Guide

variant function A function that, with the same arguments, can either return different values
or have varying side effects, such as updating a table or external file.

virtual processor One of the multithreaded processes that make up the database server and are
similar to the hardware processors in the computer.
Glossary 13

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
Numerics
-9793 error 9-6

A
Access methods 2-24
Access path selection 2-23
Accessor methods, for client

implementations of an opaque
type 4-45

ActiveX value objects
accessing custom methods of 7-5
client application developer, use

by 7-3 to 7-10
client implementation for opaque

types 3-6
compiling 6-10 to 6-13
completing the code for 6-4, 6-8
creating 6-3 to 6-22
definition of 3-5
guidelines, programming 3-14
implementing 6-5 to 6-9
installing 7-3
instantiating 7-5
list of custom methods for 7-8
list of generated files

for A-3 to A-7
list of internal methods for 6-13
programming guidelines for 3-14
properties of 6-9 to 6-10
referencing in Visual Basic 7-4
restrictions for 3-9, 3-14, 6-3
server implementation for opaque

types 3-6
source code generated for 6-5

support methods for 6-13 to 6-22
types of generated files for 6-5
Visual C++ project file for 5-9

Aggregates
completing generated C code

for 5-49
completing generated Java code

for 8-12
defining with

BladeSmith 4-16 to 4-20
in SQL design 2-21
understanding C source code

for 5-8
when to use 2-19

AlwaysUseInstallShield5 registry
key 11-10

APIs, client 7-3 to 7-10
Arguments for generating user-

defined routines 4-32
Arithmetic operators 4-54
Arrays as ActiveX properties 6-9
Assign/destroy routines

completing C code
for 5-35 to 5-36

when to use 4-52

B
Basic text input/output routines

completing generated C code
for 5-26 to 5-29

completing generated C++ code
for 6-8

when to use 4-49
Bill of materials file (.bom) 11-5,

A-16

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Binary arithmetic operators 4-54
Binary file import/export routines

completing generated C code
for 5-34 to 5-35

completing generated C++ code
for 6-8

generated code for 4-51
Binary send/receive routines

completing generated C code
for 5-30 to 5-32

completing generated C++ code
for 6-8

when to use 4-49
binexp.sql file, contents of A-13
binio.sql file, contents of A-13
Bit-hashable data types 4-55
BladeManager 1-4, 7-3, C-1
BladePack

and InstallShield
3.1 11-21 to 11-34

and InstallShield
5.1 11-34 to 11-44

and UNIX 11-11 to 11-21
distribution media,

creating 11-20
item view 11-7, 11-9
on-line help 11-6
overview of 1-4
prerequisite tasks 11-3
project view 11-6, 11-8
registry changes 11-25, 11-37
software requirements for Intro-5
windows 11-6

BladeSmith
adding client files with 4-65
adding custom SQL statements

with 4-62
creating DataBlade module

objects with 4-14 to 4-59
creating interfaces with 4-25
defining aggregates

with 4-16 to 4-20
defining casts with 4-21 to 4-23
defining data types

with 4-37 to 4-59
defining errors with 4-23 to 4-25
defining tracing with 4-23 to 4-25
defining user-defined routines

with 4-26 to 4-37

description locale 4-12
generated files 4-66 to 4-75, 6-5,

A-1 to A-26
identifying tracing macros

from 5-10
identifying utility functions

from 5-10
item view 4-8
locale, default for 4-25
overview of 1-4
project properties 4-9
project view 4-7
projects, creating 4-8
setting privilege for objects

with 4-14
test scripts 9-15, A-12
utility functions generated

by 5-23
windows 4-7

.bld file, build file 5-54, 6-10, 7-3
BLOB data type

specifying an sbspace for C-1
when to use 2-7

Boldface type Intro-6
.bom file, bill of materials 11-5,

A-16
Breakpoints

setting on UNIX 9-12
setting on Windows 10-10

B-tree access method 2-24
B-tree indexing support routines

completing generated C code
for 5-40

completing generated C++ code
for 6-8

when to use 4-53
btree.sql file, contents of A-13
Build file (.bld) 5-54, 6-10, 7-3
Building an installation with

BladePack 11-19, 11-31, 11-41
Building. See Compiling.

C
C code

and multilanguage DataBlade
modules 3-12

comments in 5-11

compiling in Visual C++ 5-54
compiling on UNIX 5-55
completing for user-defined

routines B-4
completing for user-defined

routines for 5-46 to 5-54
completing opaque data type

support routines
for 5-25 to 5-44, B-2

completing statistics support
routines for 5-44 to 5-46

DataBlade API tips 3-16
definition files 5-7, A-2
developing, overview 5-6
editing 5-5 to 5-54
error handling for 5-13
for opaque types, client

implementation 3-6
for opaque types, server

implementation 3-6
generated files 5-7, A-2, A-3
header files 5-8, A-2, A-6
limitations for opaque types 3-9
makefiles 5-7
MI_FPARAM structure in 5-12
MMX support in 4-72
overloading routines 3-11
programming guidelines 3-13
README files A-2
server connection handle 5-12
source files 5-7, 5-8, A-2
tools for editing and

compiling 1-12
tracing in 5-13
utility functions generated 5-23
Visual C++ project file for 5-9
warning.txt file, contents of 5-9

call_neg.sql file, contents of A-15
call_pos.sql file, contents of A-15
Casts

adding test data for 4-62
completing C code for 5-48
completing Java code for 8-14
defining with

BladeSmith 4-21 to 4-23
test scripts for 9-15, A-12
when to use 2-21

cast.sql file, contents of A-12
2 IBM Informix DataBlade Developer’s Kit User’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Classes
creating trace 5-17
DkInStream 6-16 to 6-19
DkOutStream 6-19 to 6-22

cleanup.sql file, contents of 10-11,
A-13

Client APIs, for use with ActiveX
value objects 7-3 to 7-10

Client files
adding with BladeSmith 4-65
generated A-4, A-5
to add 7-4, 11-22, 11-35

Client implementation of an opaque
type 4-44

Client projects 6-12
CLOB data type

specifying an sbspace for C-1
when to use 2-7

CLSID information 7-4, 11-22,
11-35

.cmp file, components file 11-5,
A-16

Collection data types, defining in
BladeSmith 4-37

COM (Common Object Model) 3-5
Combine function, for an

aggregate 4-20
Comments

in C language code 5-11
in C++ language code 6-6
in Java language code 8-8

Common files for ActiveX value
objects 6-4, A-6

Commutator functions, when to
use 4-36

compare.sql file, contents of A-13
Comparison routines

completing C code
for 5-38 to 5-42

completing C++ code for 6-8, 7-8,
B-5

when to use 4-53
CompatibleType method 7-7
Compiling

ActiveX value objects 6-10 to 6-13
debugging support when 5-56
debugging symbols when 5-56
Java code 8-14
on UNIX 5-55

shared object files 5-56
tools for 1-12
using generated makefiles 5-54,

6-10
See also Makefiles.

Completing code, reference
tables B-1 to B-8

Components file (.cmp) 11-5, A-16
Components to install, setting with

BladePack 11-38
Concat method/routine 6-9, 7-8
Concatenation operators 4-55
concat.sql file, contents of A-13
Constructors 4-5
Contact information Intro-12
Contains method/routine 7-8
contains.sql file, contents of A-13
Conventions

syntax Intro-8
typographical Intro-6

Converting data types with
casts 4-21

Cost estimates
for query plans 2-23
for routines 2-15, 4-35

Counting number of values in a
string 5-23

CPU virtual processor (CPU
VP) 3-13

CreateLvarChar method 6-20
CreateNew method 6-13
Creating DataBlade module

objects 4-14 to 4-60
CurString method 6-16
Custom extensions for

BladePack 11-29
Custom methods

accessing 7-5
list of 7-8

C++ code
and multilanguage DataBlade

modules 3-12
class files A-5, A-7
comments in 6-6
common files 6-4, A-6
compiling 6-10
completing for opaque data type

support routines B-5
files to edit 6-8

for opaque types, client
implementation 3-6

for opaque types, server
implementation 3-8

generated files for 6-5, A-3 to A-7
header files 6-14, A-4, A-5, A-6,

A-7
programming guidelines 3-14
restrictions for 3-9, 3-14, 4-44, 6-3
server implementation for opaque

types 3-6, 3-8
source files A-5, A-6, A-7
support library 6-14 to 6-22, A-4,

A-6
tools for editing and

compiling 1-12
Visual C++ project file for 5-9

C++ Interface API, using with
ActiveX value objects 7-6

D
Data models, guidelines

for 2-3 to 2-5
Data types

casts between 2-21, 4-22
collection 4-37
converting with casts 4-21
defining with

BladeSmith 4-37 to 4-59
designing 2-6 to 2-9
gl_wchar 6-16, 6-19
mi_lvarchar 3-16
POINTER 4-19
qualified 4-56
row 4-58 to 4-59
when to use 2-6
when to use BLOB 2-7
when to use CLOB 2-7
when to use LVARCHAR 2-7
when to use opaque 2-6

Database object names 4-15
Database server compatibility

requirements for DBDK Intro-5
setting for DataBlade

modules 4-11
Index 3

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
DataBlade API
identifying routines and data

types from 5-10
tips for using 3-16

DataBlade Developers Kit InfoShelf
contents of Intro-10
launching Intro-10
software requirements Intro-5

DataBlade module objects
adding test data for 4-60
aggregates 4-16 to 4-20
casts 4-21 to 4-23
creating 4-14 to 4-59
data types 4-37 to 4-59
errors 4-23 to 4-25
generating files for 4-66 to 4-75
interfaces 4-25
specifying properties for 4-27
user-defined routines 4-26 to 4-37

DataBlade modules
data models for 2-3 to 2-5
debugging. See Debugging

DataBlade modules.
defined 1-3
designing SQL for 2-3 to 2-29
importing interfaces from 4-13
installing on UNIX 9-7
interoperability of 2-26 to 2-29
loading the shared object file 9-9
multilanguage 3-12
packaging 1-14
query language interface

to 2-10 to 2-14
registering C-1

DBA routine, marking as 4-28
DB-Access 1-12
DBDKInputException file, contents

of 8-9
DBDKInputException.java file,

contents of A-8
DBDKOutputException file,

contents of 8-9
DBDKOutputException.java file,

contents of A-8
DBDK_TRACE_ENTER()

macro 5-16
DBDK_TRACE_ERROR()

macro 5-15
DBDK_TRACE_EXIT() macro 5-16

DBDK_TRACE_MSG() macro 5-15
dbx utility 9-11
DDL statements 2-10
Debug DataBlade Module

command 10-6
debugger utility 9-11
Debugging DataBlade modules

compiling shared object file
for 5-56

for Java 8-16 to 8-19
for UNIX 9-4 to 9-12
for UNIX, using Windows 9-12
for Windows 10-3 to 10-11
overview of 1-13

Debugging utilities for UNIX 9-11
Definition files 5-7, A-4
delete operator 6-22
Delimiters 6-15
Dependencies for custom SQL 4-64
Description locale for a project 4-12
Designing DataBlade modules

data models for 2-3 to 2-5
data types for 2-6 to 2-9
design specification for 1-9
functional specification for 1-8
programming language options

for 1-8
query language interface

for 2-10 to 2-14
Designing SQL for DataBlade

modules 2-3 to 2-29
Developing DataBlade modules,

overview 1-5
Development plan for DataBlade

modules, guidelines for 1-9
Directory, generated file

property 4-69
Distinct data types, defining in

BladeSmith 4-39
Distribution media, creating for

InstallShield 3.1
installations 11-20

InstallShield 5.1
installations 11-33

UNIX installations 11-44
Divide method/routine 6-9, 7-8
divide.sql file, contents of A-13
DkClient.cpp file, contents of 6-14,

A-4

DkErrorRaise method 6-6, 6-7, 6-13
DkInStream class 6-16 to 6-19
DkInStream method 6-16
DkIntfImpl.h file, contents of 6-14,

A-4
DkIntf.h file, contents of 6-14, 7-4,

A-4
DkIntf_i.c file, contents of 6-14, 7-4,

A-4
DkOutStream class 6-19 to 6-22
DkOutStream method 6-20
.dll file, dynamic link library

file 6-10, 7-3
DML statements 2-10
Documentation

DataBlade Developers Kit
InfoShelf Intro-10

documentation notes Intro-11
IBM Informix Developer

Zone Intro-9
related reading Intro-8
release notes Intro-11
tutorial 1-6

E
Editing code

C code 5-5 to 5-54
Java 8-4 to 8-14
list of files to complete B-1 to B-8
tools for 1-12

Embedding opaque data types 3-10
Environment variables Intro-6

INFORMIXDIR 6-11, 9-5
INFORMIXSERVER 9-5
LD_LIBRARY_PATH 9-5
ONCONFIG 9-5
PATH 9-5
TARGET 5-55, 9-5
TESTDB 9-5

Equal method/routine 6-8, 7-7, 7-9,
B-5

equal.sql file, contents of A-13
Errors

-9793 error 9-6
adding 5-15
and DBDK_TRACE_ERROR()

macro 5-15
4 IBM Informix DataBlade Developer’s Kit User’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
defining in
BladeSmith 4-23 to 4-25

handling for Java code 8-8
in C language generated

code 5-13
raising 5-15
standard messages 5-21

ESQL/C
ActiveX value objects, using

with 7-4, 7-5
identifying routines and data

types from 5-11
Estimating

the cost of queries 2-23
the cost of routines 2-15

Expensive routines 2-15
Explicit casts 4-22
ExportBinary routine 6-8
ExportText routine 6-8

F
Field delimiters 6-15
Files

BladePack 11-13, 11-23, 11-36
.bld file, build file 5-54, 6-10, 7-3,

10-12, 11-12, 11-22, 11-35
.bom file, bill of materials 11-5,

A-16
C header 5-8
.cmp file, components file 11-5,

A-16
common files for ActiveX value

objects 6-4, A-6
C++ class A-5, A-7
definitions 5-7, A-2, A-4
directory structure for

generated 4-68
DkClient.cpp 6-14, A-4
DkIntfImpl.h 6-14, A-4
DkIntf.h 6-14, 7-4, A-4
DkIntf_i.c 6-14, 7-4, A-4
.dll file, dynamic link library

file 6-10, 7-3
functional test directory 9-14,

A-12
generated source 4-72, 5-7, 6-5,

8-5, A-3 to A-7

generated Visual C++ project 5-9
header A-5, A-6, A-7
header, C A-2
header, C++ 6-14, A-4, A-5, A-6
IDL (interface definition

language) A-4
installation package 4-73, 7-4,

11-22, 11-35, A-16
Java makefiles 8-6
Java source code 8-5
list of generated A-1 to A-26
makefiles 5-7, 5-54, 6-10
merging changes to generated

files 4-74
.prd file, product file 11-5, A-16
readme 5-7, 8-6, A-2
reference, initializing for

testing 9-18
regenerating 4-74
registration A-5
resource A-4
Resource.h A-5
sapi.lib 5-57
shared object 9-5
source code 5-7, 5-8, 8-5, A-2, A-5,

A-6
SQL script A-10
StdAfx.cpp A-5
StdAfx.h A-5
StdDbdk.cpp 6-14, A-6
StdDbdk.h 6-14, A-6
support.c 5-8, A-2
trace file location 5-14
udr.c 5-8, A-2
unit test files A-11

Final function, for an
aggregate 4-20

Fixed size opaque data types 4-45
Format, generated file

property 4-69
free routine 6-22
FromPrintable method 7-7
FromString method/routine 6-8,

7-9
Functional specification, role of 1-8
Functional tests

custom, adding 9-16
directory containing 9-14
executing 9-17

generated files for 4-73
initializing reference files for 9-18
list of files for A-12
overview of 9-14

G
Generate DataBlade dialog

box 4-67
Generated files

C code, described 5-7, A-2, A-3
C++ code, described A-3 to A-7
directories saved in A-2, A-3
Java code, described 8-5
packaging 11-5

Generating files
with BladeSmith 4-66 to 4-75

Gen_IsMMXMachine() utility
function 5-23, 5-24

Gen_LoadLOFromFile() utility
function 5-23, 5-34, 5-35

Gen_nstrwords() utility
function 5-23

Gen_sscanf() utility function 5-23,
5-24, 5-27

Gen_StoreLOToFile() utility
function 5-23

Gen_Trace() utility function 5-14,
5-23

GetBuffer method 6-20
GetData method 6-13
GetDataC method 7-6
GetDataCpp method 7-6
getIterationState() method 8-11
GLS

identifying routines from
API 5-11

locale 4-12, 4-25
gl_dprintf() function 5-15
gl_wchar data type 6-16, 6-19
GreaterThan method/routine 6-8,

7-9
GreaterThanOrEqual method/

routine 6-8, 7-9
greaterthanorequal.sql file, contents

of A-13
greaterthan.sql file, contents

of A-13
Index 5

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Grouping SQL results 2-21

H
Handling null values 3-15
Hash routines 4-55, 6-9
hash.sql file, contents of A-13
Header files

C code 5-8
C++ code 6-14, A-4, A-5, A-6

I
IBM Informix Dynamic Server

connection handle to 5-12
preparing the environment

for 9-4
process ID in 9-10
query processing in 2-14 to 2-25
shared object files for 9-5
shutting down on UNIX 9-9
starting on UNIX 9-8
tracing, enabling 5-19

Icons
Important Intro-7
Tip Intro-7
Warning Intro-7

IDispatch interface 7-6, 7-8
IDL (interface definitions language)

files A-4
IfmxInStream.java file, contents

of 8-9, A-8
IfmxLog.java file, contents of 8-9,

A-8
IfmxOutStream file, contents of 8-9
IfmxOutStream.java file, contents

of A-8
IfmxTrace.java file, contents of 8-9,

A-8
IfxQuery tool

description of 1-4, 1-12
for debugging 10-6

IID information 7-4, 11-22, 11-35
Implementing ActiveX value

objects 6-5 to 6-9
Implicit casts 4-22
Important paragraphs, icon

for Intro-7

ImportBinary routine 6-8
Importing

interfaces 4-13
SQL statements 4-64

ImportText routine 6-8
informix user

owner of shared object files 9-6
Informix-Admin group 6-11
INFORMIXDIR environment

variable 6-11, 9-5
INFORMIXSERVER environment

variable 9-5
Inheritance, row data type 4-59
Initialization of an aggregate 4-19
Installation packages

building with BladePack for
InstallShield 3.1 11-11

building with BladePack for
InstallShield 5.1 11-34

building with BladePack for
UNIX 11-21

customizing screen display
text 11-33, 11-43

directories 11-5
files 4-73, A-16
including ActiveX value

objects 7-3
Installing DataBlade modules on

UNIX 9-7
InstallShield 3.1

installations 11-21 to 11-34
InstallShield 5.1

installations 11-34 to 11-44
Instantiating ActiveX value

objects 7-5
Intel MMX technology

support 4-69, 4-72, 5-24
Inter method/routine 7-9
Interfaces

defining in BladeSmith 4-25
design guidelines for 2-27
IDispatch 7-6
importing from other DataBlade

modules 4-13
IRawObjectAccess 7-5
ITDkValue 7-6

Internal routines 4-29
Internal structure of opaque data

types 6-9

Internationalization, error
messages 4-25

Interoperability of DataBlade
modules 2-26 to 2-29

inter.sql file, contents of A-13
IRawObjectAccess custom

interface 7-5
IsDirty method 6-14
IShieldDir registry key 11-10
IsNull method 6-9, 7-7, 7-9
IsUpdated method 7-7
ITDkValue custom interface 7-6
Iteration, aggregate 4-17, 4-20
Iterator routines

completing C code for 5-53
completing Java code for 8-11
when to use 4-29

ITMVDesc structure 7-6
ITValue interface 7-6

J
JAR file, when to replace 8-18
Java code

and multilanguage DataBlade
modules 3-12

client implementation for opaque
types 3-6

comments in 8-8
compiling 8-14
completing 8-4 to 8-14, B-8
debugging 8-16 to 8-19
error handling 8-8
generated files 8-5
language restrictions for client

implementation of an opaque
type 4-44

language restrictions for server
implementation of an opaque
type 4-44

limitations for 3-11
logging 8-8
makefile 8-6
overloading routines 3-11
performing functional tests 8-19
programming guidelines 3-15
server implementation for opaque

types 3-6
6 IBM Informix DataBlade Developer’s Kit User’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
source files 8-5
testing 8-16 to 8-19
tools for editing and

compiling 1-13
utility classes 8-9

Java Database Connectivity
(JDBC) 3-15

Java Development Kit 1-6
JDBC extensions 3-15
JDK 1-12

L
Large Object Locator DataBlade

module, handling large objects
with 2-8

Large objects
bulk copy support routines 4-51
defined 2-7, C-1
loading from a file 5-23
LOhandles function 5-37
writing to a file 5-23

LD_LIBRARY_PATH environment
variable 9-5

LessThan method/routine 6-8, 7-7,
7-9

LessThanOrEqual method/
routine 6-8, 7-9

lessthanorequal.sql file, contents
of A-13

lessthan.sql file, contents of A-13
Level, for tracing 5-16
Library

C++ support 6-14 to 6-22, A-4,
A-6

sapi.lib file 5-57
LIST, type constructor 4-39
Loading

shared object in the server address
space 9-9

Visual C++ Add-In 10-9
Locale

setting for tracing 5-20
SQL scripts 4-71, A-10

Logging
Java code 8-8
specifying file property for 4-69

LOhandles() function 5-37

when to use 4-52
LVARCHAR data type, when to

use 2-7

M
main.sh script 9-17, A-12, A-14,

A-15
make command 5-56
Makefiles 5-7, 5-9, 5-54, 6-10, 8-6

See also Compiling.
malloc routine 6-22
Match method 6-16
Mathematic functions

completing C code for 5-42
completing C++ code for 6-9
when to use 4-54

Maximum size of opaque data
types 4-47

Members of opaque data
types 4-46, 6-9

Memory
alignment of opaque data

types 4-48
allocating in generated code 5-27
management routines 6-22

Merging
changes to source code files 4-74
generated file property 4-69

Methods
accessing custom 7-5
ActiveX internal 6-13
Compare 6-8, 7-8, B-5
CompatibleType 7-7
Concat 6-9, 7-8
Contains 7-8
CreateLvarChar 6-20
CreateNew 6-13
CurString 6-16
custom, for ActiveX value

objects 7-8
C++ support 6-13 to 6-22
Divide 6-9, 7-8
DkErrorRaise 6-6, 6-7, 6-13
DkInStream 6-16
DkOutStream 6-20
Equal 6-8, 7-7, 7-9
FromPrintable 7-7

FromString 6-8, 7-9
GetBuffer 6-20
GetData 6-13
GetDataC 7-6
GetDataCpp 7-6
GreaterThan 6-8, 7-9
GreaterThanOrEqual 6-8, 7-9
Inter 7-9
IsDirty 6-14
IsNull 6-9, 7-7, 7-9
IsUpdated 7-7
LessThan 6-8, 7-7, 7-9
LessThanOrEqual 6-8, 7-9
Match 6-16
Minus 6-9, 7-9
Negate 6-9, 7-9
NotEqual 6-8, 7-9, B-5
Overlap 7-10
Plus 6-9, 7-10
Positive 6-9, 7-10
Printable 7-7
RawCopy 6-14
ReadBoolean 6-16
ReadChar 6-17
ReadDate 6-17
ReadDateTime 6-17
ReadDecimal 6-17
ReadDoublePrecision 6-17
ReadGLWChar 6-17
ReadGLWString 6-17
ReadInt1 6-17
ReadInt8 6-17
ReadInteger 6-17
ReadInterval 6-18
ReadMoney 6-18
ReadReal 6-18
ReadSmallInt 6-18
ReadString 6-18
ReadUChar1 6-18
ReadUInt8 6-18
ReadUInteger 6-18
ReadWChar 6-18
ReadWString 6-19
Rewind operator 6-16
routine 6-8, B-5
SameType 7-7
SetClean 6-14
SetData 6-14
SetDataC 7-6
Index 7

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
SetDataCpp 7-6
SetDirty 6-14
SetFieldDelimiters 6-19
SetNotNull 6-14
SetNull 7-7
SetNullFlag 6-9, 7-10
SetStringDelimiters 6-19, 6-20
Size 7-10
Skip 6-19
Skip operator 6-16
SkipBlanks 6-19
SkipDelimiters 6-19
Times 6-9, 7-10
ToString 6-8, 7-10
TypeOf 7-7
Union 7-10
Within 7-10
WriteBoolean 6-20
WriteChar 6-20
WriteDate 6-20
WriteDateTime 6-20
WriteDecimal 6-20
WriteDoublePrecision 6-20
WriteGLWChar 6-20
WriteGLWString 6-20
WriteInt1 6-20
WriteInt8 6-21
WriteInteger 6-21
WriteInterval 6-21
WriteLiteral 6-21
WriteMoney 6-21
WriteReal 6-21
WriteSmallInt 6-21
WriteString 6-21
WriteUChar1 6-21
WriteUInt8 6-21
WriteUInteger 6-21
WriteUSmallInt 6-22
WriteWChar 6-22
WriteWString 6-22
See also Routines.

Microsoft
COM 3-5
Developer Studio. See Visual C++.
ODBC API, using with ActiveX

value objects 7-5
Minus method/routine 6-9, 7-9
minus.sql file, contents of A-14
mi_alloc() function 6-22

mi_bitvarying pointer 5-34
mi_close() function 5-13
mi_db_error_raise() function 5-15,

6-13
MI_FPARAM

structure 5-12
mi_fp_request() function 5-53
mi_get_double_precision()

function 5-31
mi_impexp data type 5-32, 5-33
mi_lo_decrefcount() function 5-36
MI_LO_HANDLES structure 5-37
mi_lo_increfcount() function 5-36
mi_lo_validate() function 5-36, 5-37
mi_lvarchar data type 3-16
mi_new_var() function 5-28, 5-33
mi_open() function 5-12
mi_put_double_precision()

function 5-31
mi_sendrecv data type 5-31
mi_tracefile_set() function 5-18
mi_tracelevel_set() function 5-18
MKS Toolkit 1-12
MMX. See Intel MMX technology

support.
Modal routines 2-28
More Mathematic Operators 6-9
MSDev button 4-76
Multilanguage DataBlade

modules 3-12
MULTISET, type constructor 4-39

N
Named row data types 4-59
Naming

interfaces 4-26
opaque data types 4-44
routines 2-27
user-defined routines 4-31
user-defined virtual

processors 4-34
Negate method/routine 6-9, 7-9
negative.sql file, contents of A-14
Negator functions

when to use 4-36
new operator 6-22

Nonvariant functions, when to
specify 4-32

NotEqual method/routine 6-8, 7-9,
B-5

notequal.sql file, contents of A-14
notify.sql file, contents of A-14
Null values, handling 3-15
Number of arguments in

routines 2-28

O
Object Interface for C++ 3-14
Object names

aggregates 4-18
lengths 4-15

Object persistence 3-6, 7-5
objects.sql generated script 4-71,

A-10
ONCONFIG environment

variable 9-5
On-line help

BladePack 11-6
BladeSmith 4-75

Opaque data types
bit-hashable 4-55
customizing support routines

for 5-25 to 5-44
defining with

BladeSmith 4-40 to 4-56
external representation of 5-26
fixed size 3-9
implemented in a different

language 3-12
internal structure of 3-9, 6-9
members 4-46, 6-9
name lengths 4-44
programming language

limitations 3-9 to 3-10
programming language options

for 3-4 to 3-10
routines for ActiveX custom

methods 3-9
rules for ActiveX use 3-9
sizes of 4-45, 4-47
support routines for 4-48 to 4-56,

6-8
test data, adding for 4-61
8 IBM Informix DataBlade Developer’s Kit User’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
test scripts for 9-15, A-13
when to use 2-6

Operator classes, when to
create 2-24

Optimizing user-defined
routines 4-35

Orthogonality 2-26
OUT parameter 4-31
Overlap method/routine 7-10
overlap.sql file, contents of A-14
Overloading

routines in different
languages 3-11

user-defined routines 4-31

P
Packaging DataBlade modules

InstallShield 3.1 11-21 to 11-34
InstallShield 5.1 11-34 to 11-44
overview of 1-14
UNIX 11-11 to 11-21

Parallel database query 4-33
Parallelizable routines

when to specify 4-33
Parameters in error messages 4-25
PATH environment variable 9-5
Permissions for shared object

files 9-6
Persistence 3-6, 7-5
Plus method/routine 6-9, 7-10
plus.sql file, contents of A-14
Pnt user-defined data type 5-26
POINTER data type 4-19
Polymorphism 2-28
Positive method/routine 6-9, 7-10
positive.sql file, contents of A-14
.prd file, product file 11-5, A-16
Predicate, in SQL statement 2-13,

2-15
prepare.sql generated script 4-71,

A-10
Printable method 7-7
Privileges, setting for objects 4-14
Process ID, for virtual

processors 9-10
Processing rows 2-23

Programming guidelines
ActiveX value objects 3-14
C code 3-13
C++ code 3-14
DataBlade API tips 3-16
Java code 3-15

Programming language options
development tools for 1-12
for opaque data types 3-4 to 3-10
for opaque types, client

implementation 3-6
for opaque types, server

implementation 3-6
for routines 3-11
list of 1-8, 3-3

Project names 4-10
Projects

client 6-12
creating in BladeSmith 4-8
properties of in BladeSmith 4-9
server 6-11
version numbers 4-12

Properties
for ActiveX value

objects 6-9 to 6-10
for aggregates 4-17
for casts 4-21
for collection data types 4-38
for custom SQL statements 4-63
for distinct data types 4-39
for errors 4-24
for generated files 4-69
for interfaces 4-26
for opaque data types 4-41
for row data types 4-58
for trace messages 4-24
for user-defined routines 4-27
specifying when

debugging 10-10
Property sheet 4-8

Q
Qualification in SQL

statement 2-13
Qualified data types, defining with

BladeSmith 4-56

Query language
interface 2-10 to 2-14

Query optimizer
strategies using B-trees 4-54
when to use 2-23

Query plans 2-23
Query processing 2-14 to 2-25
QueryInterface routine 7-6

R
RawCopy method 6-14
ReadBoolean method 6-16
ReadChar method 6-17
ReadDate method 6-17
ReadDateTime method 6-17
ReadDecimal method 6-17
ReadDoublePrecision method 6-17
ReadGLWChar method 6-17
ReadGLWString method 6-17
Reading an input string 5-24, 6-16
ReadInt1 method 6-17
ReadInt8 method 6-17
ReadInteger method 6-17
ReadInterval method 6-18
README files

for C code 5-7
for Java code 8-6

readme.txt file, contents of A-9
ReadMoney method 6-18
ReadReal method 6-18
ReadSmallInt method 6-18
ReadString method 6-18
ReadUChar1 method 6-18
ReadUInt8 method 6-18
ReadUInteger method 6-18
ReadUSmallInt method 6-18
ReadWChar method 6-18
ReadWString method 6-19
Receive routine 6-8
Reference files, initializing for

testing 9-18
Referencing ActiveX value

objects 7-4
Regenerating files 4-74
Registration A-5, C-1
Registry keys 11-10, 11-25
Release notes Intro-11
Index 9

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Resource.h file, contents of A-5
Return types

for aggregates 4-17
for user-defined routines 4-27

Rewind operator 6-16
Routines

Compare 6-8, B-5
Concat 6-9
defining with

BladeSmith 4-26 to 4-37
delete operator 6-22
Divide 6-9
Equal 6-8, B-5
ExportBinary 6-8
ExportText 6-8
free 6-22
FromString 6-8
GreaterThan 6-8
GreaterThanOrEqual 6-8
Hash 6-9
ImportBinary 6-8
ImportText 6-8
LessThan 6-8
LessThanOrEqual 6-8
LOhandles() 5-37
malloc 6-22
memory management 6-22
Minus 6-9
Negate 6-9
new operator 6-22
NotEqual 6-8, B-5
Plus 6-9
Positive 6-9
QueryInterface 7-6
Receive 6-8
Send 6-8
SYSBldTstSBSpace C-1
table of properties you can specify

with BladeSmith 4-27
Times 6-9
ToString 6-8
See also Methods.
See also User-defined routines.

Row data types
defining with

BladeSmith 4-58 to 4-59
when to use 2-6

Row processing 2-23
R-tree access method 2-24

S
SameType method 7-7
sapi.lib library file 5-57
Sbspaces

testing for C-1
when to create 2-8

Scanning an input string 5-24, 6-16
scripts directory

contents 4-71
Secondary access methods, when to

use 2-24
Selectivity routines

completing C code for 5-51
when to use 2-17, 4-36

Send routines 6-8
Server compatibility 4-11
Server implementation of an

opaque type 4-44
Server projects

generated files 6-11, A-7
Windows 6-11

SetClean method 6-14
SetData method 6-14
SetDataC method 7-6
SetDataCpp method 7-6
SetDirty method 6-14
SetFieldDelimiters method 6-19
SetNotNull method 6-14
SetNull method 7-7
SetNullFlag method 6-9, 7-10
SetStringDelimiters method 6-19,

6-20
Setting breakpoints

for debugging on UNIX 9-12
for debugging on Windows 10-10

setup.sql
casting function test file A-12
opaque type test file A-13, A-14
UDR test file A-15
unit test file 10-11, A-11

SET, type constructor 4-39
Shared object files

compiling 5-56
compiling with debugging

support 5-56
loading into server address

space 9-9
ownership of 9-6

path, designating in
BladeSmith 4-29

permissions on 9-6
replacing 9-5
unresolved symbols in 9-6
using 9-5

Shutting down the server on
UNIX 9-9

Signal handlers, disabling on
UNIX 9-11

Size method/routine 7-10
size.sql file, contents of A-14
Skip backwards operator 6-16
Skip method 6-19
Skip operator 6-16
SkipBlanks method 6-19
SkipDelimiters method 6-19
Smart large objects. See Large

objects.
Software requirements Intro-5
Sorting SQL results 2-20
Source code files. See Files.
Source type, for distinct data

type 4-39
SPL, in user-defined routines 4-28
sprintf() function 5-28
SQL

custom statements 4-63, 4-64,
4-71

errors 4-25
generating 4-71
grouping 2-21
importing custom statements

from a file 4-64
predicate 2-13, 2-15
privileges, setting 4-14
script files A-10
sorting rows 2-20
target list 2-11
test scripts 9-15, A-12
transaction semantics 2-25
user-defined routines in a

WHERE clause 2-13
SQL Query tool 1-12
SQLJ extensions 3-15
SQLJ packages 3-15
sscanf() function 5-26
Stack size, specifying for

UDRs 4-34
10 IBM Informix DataBlade Developer’s Kit User’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Starting the debugger on
UNIX 9-11

Starting the server on UNIX 9-8
State type, for an aggregate 4-19
Statement Local Variable

(SLV) 4-31
Statistics support routines

completing C code
for 5-44 to 5-46

generating code for 4-56
StdAfx.cpp file, contents of A-5
StdAfx.h file, contents of A-5
StdDbdk.cpp file, contents of 6-14,

A-6
StdDbdk.h file, contents of 6-14,

A-6
Stored Procedure Language 4-5
Strings

.str file, strings file 11-5, A-16
counting number of values

in 5-23
delimiters 6-15
reading 5-24, 6-16
writing 6-19

Support library, C++ 6-14 to 6-22,
A-4, A-6

Support methods 6-13 to 6-22
Support routines 4-48 to 4-56
support.c file, contents of 5-8, A-2
Symbols

unresolved when compiling on
UNIX 5-56

Syntax conventions Intro-8
sysbldobjects system table 4-71,

A-10
SYSBldTstSBSpace routine C-1
syserrors system catalog 5-16, 5-21
systraceclasses system catalog 5-16,

5-17
systracemsgs system catalog 5-21

T
TARGET environment

variable 5-55, 9-5
Target list 2-11
TESTDB environment variable 9-5

Testing DataBlade modules
adding test data 4-60
custom tests, adding 9-16
directory 9-14
executing scripts 9-17
functional test overview 9-14
initializing reference files 9-18
Java 8-16 to 8-19
on UNIX

installing 9-7
overview of tasks 9-12
preparing the environment 9-4
prerequisite tasks 9-4
shared object files 9-5

on Windows
overview of tasks 10-12
preparing the environment 10-4
prerequisite tasks 10-3

SQL scripts 9-15, A-12
unit test files 10-11, A-11

test.sql generated script 4-71
Text File import/export routines

when to use 4-50
Text file import/export routines

completing C code
for 5-32 to 5-33

completing C++ code for 6-8
Text input/output routines

completing C code
for 5-26 to 5-29

completing C++ code for 6-8
textexp.sql file, contents of A-14
textio_neg.sql file, contents of A-14
textio_pos.sql file, contents of A-14
This 4-55
Thread-safe code 3-13
Times method/routine 6-9, 7-10
times.sql file, contents of A-14
Tip icons Intro-7
ToString method/routine 6-8, 7-10
TraceSet_project procedure 5-18
Tracing

adding 5-15
classes, creating 5-17
compiling with support for 5-55
conditions for 5-14
DBDK_TRACE_ENTER()

macro 5-16

DBDK_TRACE_EXIT()
macro 5-16

DBDK_TRACE_MSG() macro,
using 5-15

default trace file location 5-14
defining messages in

BladeSmith 4-23 to 4-25
embedded parameters 5-14
enabling 5-17, 5-19
generated file property 4-69
in C language generated

code 5-13
level for 5-16
locale, setting 5-20
output file, setting 5-21
threshold, setting 5-21
TraceSet_project procedure,

creating 5-18
Transaction semantics 2-25
Tutorial for DBDK 1-6
Type compare support routines

completing C code 5-38 to 5-42
completing C++ code for 6-8, B-5
when to use 4-53

Type concatenation operator 6-9
Type constructors 4-39
Type hash support routines

in generated C++ code 6-9
when to use 4-55

Type mathematic operators
completing C code for 5-42
completing C++ code for 6-9
when to use 4-54

TypeOf method 7-7
Typographical conventions Intro-6

U
udr.c file, contents of 5-8, A-2
Unary arithmetic functions 4-55
Union method/routine 7-10
union.sql file, contents of A-14
Unit test files

editing 10-11
list of A-11

UNIX
compiling C code on 5-55
dbx utility 9-11
Index 11

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
debugger utility 9-11
installing DataBlade modules 9-7
makefiles 5-7, 5-55, A-2, A-3
shared object files 9-5
unresolved symbols when

compiling 5-56
UNIX installations

building with
BladePack 11-11 to 11-21

Unnamed row data types 4-59
Unordered row processing 2-23
Unresolved symbols

in shared object files 9-6
on UNIX 5-56

User-defined routines
completing C code

for 5-46 to 5-54
completing Java code for 8-10
defining with

BladeSmith 4-26 to 4-37
functions declarations in C source

code 5-8
functions declarations in Java

source code 8-6, A-9
implemented in server or

client 2-11
modal 2-28
naming 2-27
number of arguments 2-28
overloading 3-11, 4-31
programming language options

for 3-11
table of properties you can specify

with BladeSmith 4-27
test data, adding for 4-61
test scripts for 9-15, A-15
used in SQL statements 2-11
using MI_FPARAM

structure 5-12
when to design 2-14

User-defined statistics and
selectivity 2-16 to 2-19

User-defined virtual processors
assigning routines to 4-34
class name 4-34
discussion of 3-14
See also Virtual processors.

Utility classes for Java 8-9

Utility functions
Gen_IsMMXMachine() 5-23, 5-24
Gen_LoadLOFromFile() 5-23,

5-34, 5-35
Gen_nstrwords() 5-23
Gen_sscanf() 5-23, 5-24, 5-27
Gen_StoreLOToFile() 5-23
Gen_Trace() 5-14, 5-23

V
Variable-size opaque data

types 4-45
Variant functions

when to specify 4-32
Vendor ID 4-13
Version numbers, for a project 4-12
Virtual base classes 3-14
Virtual methods 3-14
Virtual processors 3-13

identifying for debugging 9-10
process ID 9-10
See also User-defined virtual

processors.
Visual C++

breakpoints, setting 10-10
compiling with 6-11
generated files 5-9
launching 4-76

Visual C++ Add-In
commands reference 10-7
for debugging 10-5
loading 10-9
overview of 1-4

W
Warning icons Intro-7
warning.txt file, contents of 5-9,

A-9
Windows

compiling projects with Visual
C++ 6-11

debugging UNIX DataBlade
modules on 9-12

server projects on 6-11
Within method/routine 7-10
within.sql file, contents of A-14

WriteBoolean method 6-20
WriteChar method 6-20
WriteDate method 6-20
WriteDateTime method 6-20
WriteDecimal method 6-20
WriteDoublePrecision method 6-20
WriteGLWChar method 6-20
WriteGLWString method 6-20
WriteInt1 method 6-20
WriteInt8 method 6-21
WriteInteger method 6-21
WriteInterval method 6-21
WriteLiteral method 6-21
WriteMoney method 6-21
WriteReal method 6-21
WriteSmallInt method 6-21
WriteString method 6-21
WriteUChar1 method 6-21
WriteUInt8 method 6-21
WriteUInteger method 6-21
WriteUSmallInt method 6-22
WriteWChar method 6-22
WriteWString method 6-22
Writing an output string 6-19
12 IBM Informix DataBlade Developer’s Kit User’s Guide

	IBM Informix Online Documentation
	Table of Contents
	Introduction
	In This Introduction
	About This Manual
	Organization of This Manual
	Types of Users
	Software Dependencies

	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Routine Syntax Conventions

	Additional Documentation
	Related Reading
	The IBM Informix Developer Zone
	Online Documentation
	Online Help
	The DataBlade Developer’s Kit InfoShelf
	Online Manuals
	Release Notes and Documentation Notes

	IBM Welcomes Your Comments

	Getting Started with DataBlade Module Development
	In This Chapter
	What Is a �DataBlade Module?
	DataBlade Developers Kit Tools
	Preparing to Develop �DataBlade Modules
	Becoming Familiar with IBM Informix Software and Documentation
	Installing IBM Informix Software
	DataBlade Developers Kit Tutorial
	Creating a Practice DataBlade Module

	Designing Your DataBlade Module
	Writing a Functional Specification
	Programming Resources
	Writing a Design Specification
	Creating an Iterative Development Plan

	Developing Your DataBlade Module
	Editing and Compiling DataBlade Module Code
	Debugging Your DataBlade Module
	Packaging Your DataBlade Module

	Designing DataBlade Modules
	In This Chapter
	Data Model
	Data Type Design
	Object Accessibility
	Handling Large Objects

	Query Language Interface
	SQL Query Structure
	The Target List
	The Qualification

	Query Processing
	Predicate Evaluation
	Expensive Routines
	User-Defined Statistics
	Aggregates
	Sorting Results

	Grouping
	Casts
	Access Path Selection
	Unordered Row Processing
	Secondary Access Methods

	Planning for Transaction Semantics

	Interoperability
	Orthogonality
	Simple, Clean Interfaces
	Naming Routines
	Taking Advantage of Polymorphism
	Limiting the Number of Arguments
	Avoiding Modal Routines

	Programming Guidelines
	In This Chapter
	Programming Language Options
	Options for Opaque Data Types
	ActiveX Value Objects
	Mixing Languages in Server and Client Implementations
	Limitations of Opaque Types for Each Language
	Embedding Opaque Data Types within Opaque Data Types

	Options for Routines
	Overloading Routines in Different Languages
	Handling Opaque Data Types Implemented in a Different Language

	Multilanguage DataBlade Module Issues

	C Programming Guidelines
	C++ Programming Guidelines
	Java Programming Guidelines
	DataBlade API Programming Tips

	Creating DataBlade Objects Using BladeSmith
	In This Chapter
	Prerequisite Tasks
	BladeSmith Task Overview
	BladeSmith Windows
	Creating a New Project
	DataBlade Module Project Name
	New Object Prefix
	Server Compatibility
	Description Locale
	Project Version Numbers
	Vendor Information

	Importing Interfaces from Another DataBlade Module
	Creating DataBlade Module Objects
	Database Object Name Lengths
	Creating Aggregates
	Aggregate Name
	Iteration Type
	Initialization Parameter
	State Type
	Initialization Function
	Iteration Function
	Combine Function
	Final Function

	Creating Casts
	Source and Target Data Types
	Implicit and Explicit Casts
	Cast Support Functions

	Defining Errors
	SQL Error Code
	Error Locale
	SQL Error Text

	Defining Interfaces
	Creating Routines
	Routine Name
	Statement Local Variables
	Routine Arguments
	Variant Functions
	Parallelizable Routines
	C Routine Name
	Routine Behavior
	User-Defined Virtual Processor Class Name
	Stack Size
	Cost of Routine
	Related Routines

	Creating Data Types
	Collection Data Type
	Distinct Data Type
	Opaque Data Type
	Qualified Data Type
	Row Data Type

	Adding Functional Test Data
	Test Data for Opaque Type Support Routines
	Test Data for User-Defined Routines
	Test Data for Cast Support Routines

	Adding SQL Files
	Importing SQL Text from a File
	Object Dependencies

	Adding Client Files
	Generating Files
	Setting Generated File Properties
	Generating All Files
	Generating SQL Scripts
	Generating Source Files
	Generating Test Files
	Generating Installation Package Files
	Regenerating Files
	Merging Changes in Source Code and Unit Test Files
	Replacing Visual C++ Project, SQL, Functional Test, and Installation Files

	Opening the Project File in Visual C++

	Programming DataBlade Module Routines in C
	In This Chapter
	Prerequisite Tasks
	C Programming Task Overview
	Source Files Generated by BladeSmith
	C Header File
	C Source Code Files
	Microsoft Visual C++ Files
	Warning File

	Using Generated Code
	Identifying the Source of Generated Code
	Comments in Generated Code
	MI_FPARAM Function Argument
	Server Connection Handle
	Tracing and Error Handling
	How Tracing Works
	Adding Tracing and Error Handling
	Enabling Tracing in a DataBlade Module
	Enabling Tracing in a Database Session
	Standard Error Messages

	Utility Functions Generated by BladeSmith
	The Gen_sscanf() Utility Function
	The Gen_IsMMXMachine() Utility Function

	Editing Opaque Type Support Routines in opaque.c
	Text Input and Output Functions
	The Generated Code
	Customizing the Code
	Smart Large Object Considerations
	Examples

	Binary Send and Receive Functions
	The Generated Code
	Customizing the Code
	Examples

	Text File Import and Export Functions
	The Generated Code
	Customizing the Code
	Smart Large Object Considerations

	Binary File Import and Export Functions
	The Generated Code
	Customizing the Code
	Smart Large Object Considerations

	The Assign and Destroy Routines
	The Generated Code
	Customizing the Code
	Smart Large Object Considerations
	Examples

	LOhandles() Function
	Comparison Functions
	Compare Function
	B-Tree Comparison Functions
	R-Tree Comparison Functions

	Mathematic Functions
	The Generated Code
	Completing the Code
	Example

	Concat() Function
	Hash() Function

	Editing Statistics Routines in statistics.c
	The Statistics Collection Function
	The Generated Code
	Customizing the Code

	The Statistics Print Function
	The Statistics Minimum, Maximum, and Distribution Functions
	The Generated Code
	Completing the Code
	Example

	Editing Routines in udr.c
	Most User-Defined Routines
	The Generated Code
	Completing the Code
	Examples

	Cast Support Functions
	The Generated Code
	Completing the Code
	Example

	Aggregate Functions
	The Generated Code
	Completing the Code

	Selectivity Functions
	The Generated Code
	Completing the Code
	Example

	Iterator Functions
	The Generated Code
	Completing the Code
	Example

	Compiling DataBlade Module Code
	Compiling with Tracing Support
	Compiling on UNIX
	Unresolved Symbols
	Compiling with Debug Support

	Compiling on Windows

	Creating ActiveX Value Objects
	In This Chapter
	Prerequisite Tasks
	ActiveX Programming Task Overview
	Source Files Generated by BladeSmith
	Implementing ActiveX Value Objects
	The Generated Code
	Adding Project-Specific Logic to the Source Code
	Files to Edit
	ActiveX Properties
	Accessing Properties Using Visual Basic

	Compiling Client and Server Projects
	Compiling a Windows Server Project
	Compiling a Client Project

	Support Methods Reference
	Internal Object Methods
	C++ Support Library
	DkInStream
	DkOutStream
	Memory Management Routines

	Using ActiveX Value Objects
	In This Chapter
	Installing and Using ActiveX Value Objects
	Installing ActiveX Value Objects
	Using ActiveX Value Objects

	IRawObjectAccess Custom Interface
	ITDkValue Custom Interface
	ActiveX Custom Methods

	Programming DataBlade Modules in Java
	In This Chapter
	Prerequisite Tasks
	Java Programming Task Overview
	Source Files Generated by BladeSmith
	Java Source Code Files
	SQLData Interface Method Support Code
	Warning File

	Using the Generated Code
	Comments in Generated Code
	Logging and Error Handling
	BladeSmith Utility Classes

	Editing Methods
	Most User-Defined Methods
	The Generated Code
	Completing the Code
	Example

	Iterators
	The Generated Code
	Completing the Code

	Aggregates
	The Generated Code
	Completing the Code

	Cast Support Methods
	The Generated Code
	Completing the Code

	Compiling Java DataBlade Module Code
	Debugging and Testing DataBlade Modules Written in Java
	Preparing Your Environment
	Debugging a DataBlade Module
	Installing a DataBlade Module
	Registering a DataBlade Module
	Replacing a DataBlade Module JAR File

	Performing Functional Tests

	Debugging and Testing DataBlade Modules on UNIX
	In This Chapter
	Prerequisite Tasks
	Preparing Your Environment
	Using the Shared Object File
	Replacing a Shared Object File
	Shared Object File Ownership and Permissions
	Symbols in Shared Object Files

	Installing and Registering DataBlade Modules
	Installing a DataBlade Module
	Registering a DataBlade Module

	Debugging a DataBlade Module
	Loading the DataBlade Module
	Identifying the Server Process
	Running the Solaris Debugger
	Setting Breakpoints

	Debugging a UNIX DataBlade Module with Windows
	Performing Functional Tests
	Functional Test Overview
	Contents of the Functional Test Directory
	Adding Custom Test Files

	Executing Functional Tests
	Using the Functional Test Scripts
	Initializing Reference Files

	Debugging and Testing DataBlade Modules on Windows
	In This Chapter
	Prerequisite Tasks
	Preparing Your Environment
	DBDK Visual C++ Add-In and IfxQuery
	The Debug DataBlade Module Command
	Other Add-In Commands

	Debugging a DataBlade Module
	Manually Loading the Add-In
	Specifying Properties for a Project
	Setting Breakpoints
	Editing Unit Test Files

	Performing Functional Tests on DataBlade Modules

	Using BladePack
	In This Chapter
	Prerequisite Tasks
	BladePack Overview
	BladePack Projects
	BladePack Online Help
	BladePack Windows
	Project View
	Item View

	Registry Keys for Windows

	Packaging for UNIX Installations
	Establishing Content
	Files and Directories to Be Installed or Deleted

	Managing Components
	Component Properties
	Assigning to Components

	Customizing the Installation
	Building the Installation
	Installation Type

	Creating Distribution Media

	Packaging for InstallShield 3.1 Installations
	Establishing Content
	Files and Directories to Be Installed or Deleted
	Registry Changes

	Managing Components
	Component Properties
	Assigning to Components

	Customizing the Installation
	Adding Custom Extensions

	Building the Installation
	Installation Type
	Installation Screen Display Text

	Creating Distribution Media

	Packaging for InstallShield 5.1 Installations
	Establishing Content
	Files and Directories to Be Installed
	Registry Changes

	Managing Components
	Component Properties
	Assigning to Components

	Customizing the Installation
	Building the Installation
	Installation Type
	Installation Screen Display Text

	Creating Distribution Media

	Source Files Generated for DataBlade Modules
	Completing BladeSmith- Generated Code
	Testing for an Sbspace
	Notices
	Glossary
	Index

